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CHAPTER 1 

INTRODUCTION 

A significant percentage of future manned and unmanned space flight missions will 
involve very large spacecraft whose components will be of such size and/or number as to 
require on-orbit assembly and integration. Although the goals of these missions may be 
quite different, the design of these spacecraft gives rise to at least one significant common 
technological requirement. This requirement is to develop the ability to construct and 
operate large, lightweight structures in space. 

Most of these structures share the characteristic that their design is primarily driven by 
stiffness as opposed to strength considerations. This along with the constraint of low 
packaged volume allowances tends to drive the use of very long slender truss members. 
However, many of these structures are also required to withstand significant loads due to 
thermal gradients, spacecraft operations, and attitude control maneuvers. Consequently, 
stability of these slender members becomes a design concern. As a compromise, concepts 
have been developed for truss members which exhibit high buckling loads and, yet, 
package very efficiently. 

One of these concepts consists of a cylindrical central column having three deployable 
longitudinal stiffeners each of which are sections of a right circular cylinder with an inner 
diameter equal to the outer diameter of the central column as shown in Fig. 1.1. While 
packaged, the stiffeners lie flush around the outside of the central column, and when 
deployed, the stiffeners are rotated outward to an angle which maximizes the moment of 
inertia of the cross section. This thesis is the summary of a study of the deployable curved 
stiffener concept. Results presented herein demonsrate the stability characteristics of 
columns employing these stiffeners, and outline a procedure for designing these columns 
for application to large space structures. 

1 



* Isometric view shows only a 

r C e n t r a l  column 

Stiffener 
Deployment angle 

Deployed 

Figure 1.1. Section of a cylindrical column with curved deployable stiffeners. 

1.1 Review of Research 

Technology development programs have been in existence for more than ten years to 
address the problem of constructing and operating large, lightweight structures in space. 
From these programs, concepts have been developed for large truss systems to support a 
variety of large aperture antennas and platforms (1,2) and a permanently manned Space 
Station (3). Typically, these truss systems share the design goals of high stiffness, low 
weight, and low packaged volume (4, 5). Constrained optimization studies have been 
conducted to determine geometric proportions of minimum mass structures using constant 
diameter cylindrical columns (6,7, 8). Results from these studies support the use of truss 
members having the maximum diameters allowed for packaging, and lengths which are set 
by local buckling or vibration requirements. 

The issue of improving member buckling loads without reducing member lengths has 
given rise to a number of design concepts for columns which retain efficient packaged 
volumes. References 8 and 9 describe a nestable tapered column concept which allows 
effectively large diameter columns to be assembled from very compactly packaged tapered 
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column halves. Results of buckling tests and analyses of nestable tapered columns are 
presented in reference 10 and verify that greatly improved buckling loads can be achieved 
for columns of a given length without sacrificing the component packaging efficiency. 

Other studies have addressed the use of built-up columns for applications requiring 
very long spans (4, 11). These columns are assembled from efficiently packaged smaller 
components using a wide variety of assembly geomemes, and they exhibit large buckling 
loads in proportion to their mass and packaged volume. 

The disadvantage to the use of built-up or nestable tapered columns is the requirement 
for on-orbit component assembly. The increase in truss construction time required because 
of component assembly will probably be acceptable for missions involving manual 
assembly of smaller truss structures or automated assembly of larger structures. However, 
there is certainly a class of missions whose assembly requirements will preclude the use of 
structural components which must be assembled on-orbit. These missions include large 
manually assembled structures and any deployable structures. For these missions it might 
be practical to investigate the use of slender, constant diameter columns with deployable 
stiffeners. 

This column concept was introduced in reference 12, and has the characteristics of 
achieving a substantial increase in column buckling load for a moderate increase in mass 
and no change in the packaged dimensions (outer diameter and length) of the column. The 
utility of the concept is very broad in that it may be substituted with essentially any column 
in any large space truss structure without affecting the packaging of the structure. The 

disadvantages are the added complexity and cost of implementing deployable stiffener 
mechanisms. Furthermore, the geometry of the structure indicates that it will exhibit 
stability modes in addition to simple Euler column buckling that must be accounted for 
during design. 

The study presented in reference 12 considered only column geomemes which 
behaved as simple Euler columns. The objectives of that study were to evaluate stiffener 
attachment schemes and determine the finite element modeling complexity necessary to 
predict Euler buckling behavior in the column. The results showed that certain stiffener 
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attachment schemes greatly improved column buckling load whereas others showed less of 
an improvement. Also, it was determined that modeling this type of structure with flat plate 
finite elements requires the use of a very fine mesh to ensure solution accuracy. 

The present study focuses on the analysis of stiffener local buckling and derivation of 
an explicit empirical expression to determine this behavior. This expression is incorporated 
into a column design routine which determines minimum mass geometric proportions of the 
stiffeners such that Euler buckling remains the fundamental stability mode of the column. 
Classical work by Donne11 (1 3) and Timoshenko (14) resulted in explicit expressions for 
local buckling of long slender curved panels for a variety of loadings and boundary 
conditions. However, it will be demonstrated that none of these solutions are applicable to 
the present problem. 

1.2 Definition of Problem and Objectives 

The stiffened column concept requires hinge mechanisms to attach the stiffeners to the 
central column. These mechanisms are perceived to be more complex than basic hinges 
because they must allow free rotation of the stiffener during deployment and yet firmly lock 
the stiffener in its deployed position to provide maximum resistance to stiffener local 
buckling. Furthermore, the efficient analysis of large space structures constructed from 
many of these columns requires the normal operating axial stiffness of the columns to be 
linear. This requirement may be satisfied in one of two ways. First, it may be possible to 
design a stiffener hinge mechanism which not only freezes rotational motion upon 
deployment, but also freezes axial motion, and thus provides an ideal (zero free play) shear 
load transfer between the central column and the stiffener. Or, second, it may be desirable 
to isolate the stiffeners from the central column by mounting the hinges to cylindrical 
collars which slip over the outside of the central column. This approach allows a transfer 
of only lateral load and no shear load between the central column and the stiffeners and thus 
removes the stiffeners from the normal operating load path which is primarily axial tension 
or compression of the central column. 

The study presented in  reference 12 identified three stiffener kinematic attachment 
schemes which represent the behavior of possible stiffener hinge designs. The first 
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kinematic attachment scheme allows the stiffeners to move independently of the central 
column and each other in the axial direction while all move together in the lateral direction. 
This scheme represents a design which uses hinges with no shear load transfer capability 
but rigid restraint against stiffener rotation. The second kinematic attachment scheme 
allows shear load transfer between individual stiffeners but not between the stiffeners and 
the central column while all components move together in the lateral direction. This scheme 
represents a design which uses hinges that become rigid in both rotation and shear upon 
deployment, but the stiffeners and hinges are attached to isolation collars which slide along 
the central column. The third kinematic attachment scheme allows direct shear and 
rotational load transfer between the stiffeners and the central column. This scheme 
represents a design which also uses hinges that become rigid in both rotation and shear 
upon deployment, but in this case the hinges are attached directly to the central column. 

All three kinematic attachment schemes result in column designs which exhibit linear 
axial stiffness within the normal operating tension and compression load range. For the 
first two attachment schemes this axial stiffness is simply the axial stiffness of the central 
column, and for the third it is the stiffness of the central column plus that of the stiffeners. 
The difference in these kinematic attachments is the way in which they allow the stiffeners 
to influence the stability of the central column. It will be shown that stiffened columns may 
exhibit either linear or nonlinear stability behavior. The nature of the fundamental or lowest 
stability mode will depend upon the type of kinematic attachment used for the stiffener and 
the geometric proportions of the stiffener and central column. 

It is apparent that any of these kinematic attachments would result in columns having 
one stability mode which could be predicted using simple linear Euler theory for a simply 
supported column (Eq. 1.1). This should be obvious for a column using the third 
kinematic attachment scheme because it would be a simple prismatic column directly 
obeying the assumptions of Euler theory, The first and second kinematic attachment 
schemes can also be understood to give rise to simple linear Euler behavior if one realizes 
the stiffener contributions in these cases can be viewed as distributed lateral elastic 
restraints. Results were presented in reference 12 which verified Euler column behavior 
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for test specimens constructed with each of the three kinematic attachment schemes 
described. It should be noted that the effective cross-sectional moment of inertia, I ,  in Eq. 
1.1 depends on the stiffener kinematic attachment scheme employed. 

In addition to the simple linear Euler stability modes described, a column designed 
with rigidly fixed stiffeners (third kinematic attachment scheme) would also have linear 
stiffener local buckling modes. These modes are similar to those predicted for stiffened 
panels under uniform axial compression ( 1 3 ,  and they would be characterized by lateral 
flexing of the stiffeners with sinusoidal amplitude variation along the column length and 
essentially no lateral motion of the central column. A number of classical linear solution 
procedures exist for calculating the local buckling stress of stiffeners with simple cross- 
sections. Furthermore, many linear numerical procedures exist for calculating the local 
buckling stress of stiffeners with complex cross-sections. Therefore, it is a relatively 
straightforward task to analyze the critical loads of stiffened columns exhibiting linear 
stability behavior. 

Brush and Almroth (16) have outlined general situations in which nonlinear analysis 
is needed to capture stability behavior. One of these situations is represented by stiffened 
columns employing either the first or second stiffener kinematic attachment scheme. These 
kinematic attachments allow only lateral load to be transferred between the stiffeners and 
the central column. Since the central column is nominally straight and loaded through 
uniform axial compression, the only way for the stiffeners to become loaded is through a 
lateral motion of the central column. This lateral motion can be determined with linear 
analysis and is equivalent to Euler column buckling. However, since this lateral motion 
only occurs as a result of passing a linear bifurcation point, predicting local stiffener 
instability beyond this point using common numerical routines such as finite element 
analysis may require nonlinear solution procedures. 

The present study will only address linear stability analyses of the stiffened column. 
These analyses will include Euler column buckling and linear local buckling of a uniformly 
compressed stiffener. Therefore, the results are most applicable to columns designed with 
hinge mechanisms which become rigid upon deployment (the third stiffener kinematic 
attachment scheme). 
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The primary stability design goal of this type of stiffened column is simply to ensure 
that its fundamental buckling mode is an Euler column mode, and thus, the value of the 
corresponding buckling load can be predicted using Eq. 1.1. Providing this guarantee 
requires the ability to analyze the possible stiffener local buckling modes and relate the 
corresponding critical loads to the design parameters of the column. 

As stated previously, the problem of stiffener local buckling is represented by a 
slender curved panel under uniform axial compression. Donne11 (1 3) and Timoshenko (14) 
have generated solutions for the stability of curved panels under uniform compression for a 
variety of boundary conditions, and in some cases have been successful in deriving exact 
explicit expressions for the critical stress. The boundary conditions applicable to this 
problem are a clamped connection along one of the stiffener's generators, free along the 
other, and pinned at both ends. The exact solution for this combination of boundary 
conditions and applied loading has not been generated to date, however, because of the 
character of the governing differential equations it can be shown that this solution would 
have the fonn of a transcendental eighth-order system of equations. A solution of this form 
would offer little insight to the relationship between the critical stress and the geometric 
parameters of the column. 

Since no exact explicit expression exists to characterize this behavior, a reasonable 
alternative is to generate an approximate explicit expression based on empirical results. 
These results may be generated in a number of ways. First, it is certainly possible to 
construct a family of test specimens which represent the expected range of design 
parameters, and base the empirical expression on experimental data accumulated from these 
specimens. Second, it is possible to derive the transcendental eighth-order system of 
equations representing the exact solution to the governing differential equations, and 
generate a family of analytical data from iterative numerical solution of this system. Third, 
it is possible to employ existing numerical structural analysis techniques (e.g. finite element 
method or the finite smp method) to generate numerical results. 

The obvious disadvantage in obtaining results through experimental study is the cost 
and time necessary to construct and test an adequate series of specimens. Therefore, 
numerical analysis techniques may bC better suited for this task. Such techniques have 
been demonstrated to be very accurate for linear stability calculations. Probably the most 
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widely used numerical structural analysis technique is the finite element method. Results 
presented in reference 12 indicate that applying this technique to the modeling of a slender 
stiffened column would require a very fine mesh and result in excessive solution times to 
ensure solution accuracy. This is very undesirable for an analytical study requiring the 
generation of a set of parametric solutions. 

Alternatively, references 17 and 18 describe an efficient and accurate solution 
technique using a linked-plate representation of the structure. This technique is used to 
model prismatic branched plate or shell structures acted upon by longitudinally invariant 
loads as assemblies of thin flat plate smps rigidly connected along their longitudinal edges. 
The two-dimensional plate equations describing each plate strip are reduced to one- 
dimensional equations through the assumption of sinusoidal longitudinal deformations, and 
a generalized stiffness mamx representing the structure is assembled from equilibrium and 
compatibility considerations. Reference 18 describes the structural analysis code VIPASA 
which generates this linked-plate representation of the structure and uses it  in the solution 
of linear stability and vibration problems. 

There are two fundamental advantages to using the VIPASA routine for analysis of 
prismatic branched plate and shell structures with longitudinally invariant applied loadings. 
First, the solution accuracy is guaranteed for structures which obey the kinematic 
constraints imposed. This is because it is a numerical solution to the linear differential 
equations governing the structure. Second, by reducing the 2-D plate theory to a 1-D 

theory, the size of the problem is greatly reduced and, consequently, the solution times are 
very small compared to other routines such as those based on finite element analysis. 
Because of these considerations, all stability calculations for the present study are 
performed using the VIPASA analysis routine imbedded in the design optimization code, 
PASCO (19, 20). 

The present study focuses on the derivation of an approximate empirical expression 
for buckling of a curved stiffener, clamped along one edge and free along the other. The 
solution is sought for bounded ranges of the stiffener geometric parameters. The bounds 
for these ranges are derived from considerations set forth by typical large space structure 
design studies. The empirical expression for stiffener local buckling is used in formulating 
design rules for stiffened columns which exhibit Euler buckling as a fundamental stability 
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mode. Additionally, studies are conducted on the cross-sectional moment of inertia of the 
stiffened column to develop rules governing mass minimization of the design. Finally, 
these results are assembled in a computer design program which is used to generate 
stiffened column designs for two current large space structure applications. 
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CHAPTER 2 

ANALYSIS 

This chapter is a summary of analyses performed to derive rules governing the 
minimum mass design of a slender cylindrical column stiffened with curved deployable 
stiffeners. These rules are determined from two sources: 1) consideration of equivalent 
cross-sectional properties, and 2) consideration of stiffener stability. The first section of 
the chapter deals with calculation of equivalent cross-sectional properties. These properties 
determine column mass, packaged size, and equivalent flexural stiffness, and a knowledge 
of their functional dependence on the cross-sectional geometric parameters leads to 
minimum mass design rules. The second section of the chapter outlines analyses 
performed to determine an approximate explicit expression governing stiffener local 
buckling. This expression is used to define a design condition that guarantees Euler 
buckling as the fundamental stability mode of the column. The third section of the chapter 
outlines the development and use of a stiffened column design procedure. Finally, a 
computer program which automates the design procedure is discussed as well as the steps 
for employing it  in a design exercise. 

2.1 Cross-sectional Geometric Properties 

As previously stated, the ultimate goal in the design of a stiffened column is insuring 
the fundamental stability mode of that column to be Euler buckling. Given that 
consequence, the column can be characterized by equivalent properties such as the cross- 
sectional area and moment of inertia. Calculating these properties involves evaluating 
double integrals over the column cross section. Derivations for these equivalent properties 
will be presented later. First, the general nature of the cross section will be examined in 
detail in order to simplify the equivalent representation of the column. 

10 



2.1.1 Effect of Stiffener Kinematic Attachment on 
Geometric Properties 

As stated in the introduction, the equivalent cross-sectional properties of the stiffened 
column depend not only on the cross-sectional shape but also on the stiffener kinematic 
attachment scheme. Stiffened columns employing any of the three attachment schemes 
identified in the introduction can be represented by one of two distinct equivalent members. 
One of these equivalent members represents the first stiffener attachment scheme (no shear 
load transfer between stiffeners or the stiffeners and the central column). The other 
equivalent member represents either the second or the third stiffener attachment scheme 
(ideal shear load transfer between stiffeners, and either ideal or no shear load transfer 
between the stiffeners and the central column). 

A stiffened column using either the second or third stiffener attachment scheme is 
represented by a single member having the equivalent moment of inertia of the entire cross 
section about axes centered at its centroid. This is seen clearly for the third attachment 
scheme in which the stiffeners are rigidly attached and represent simple extensions of the 
central column. This also applies to the second attachment scheme in which the stiffener 
assembly behaves as one member and the central column behaves as another so that the 
equivalent moment of inertia is the sum of the inertias of the two components with respect 
to their respective centroids. However, due to symmetry, the two components have the 
same centroid location. Thus, summing their moments of inertia with respect to their 
respective centroids is equivalent to calculating the moment of inertia of the entire section. 

A stiffened column using the first stiffener attachment scheme can be thought of as an 
assembly of members which assume the same lateral deflection without any shear load 
transfer between them. The equivalent cross-sectional moment of inertia of this assembly 
is simply the sum of the inertias of the individual elements with respect to their respective 
centroids, and consequently, the flexural stiffness of the column is the Young's modulus 
times this equivalent moment of inertia. Before concentrating on stiffened columns 
employing the third stiffener attachment scheme, a short discussion is presented to explain 
the consequences of employing the first stiffener attachment scheme. 

The flexural stiffness of a column employing the first kinematic stiffener attachment 

11 



scheme has some interesting characteristics which can be determined by employing the 
procedure just established for calculating its equivalent cross-sectional moment of inertia. 
The total moment of inertia is simply the sum of the inertias of the individual components 
about their respective centroids. Expressions for the moments of inertia of two of the 
stiffeners can be derived from the the moments of inertia of the remaining stiffener by 
applying axis rotation transformations known to be as follows (21): 

2 2 

2 2 

I,' = I ,  cos 8 + I ,  sin 8- IXysin28 

I,' = I ,  cos 8 + I ,  sin 8+ I , ,  sin2 8 

I , ,  = z( I ,  - 1, ) sin28+ I , ,  cos2 e I ]  

where I,, I,, and I,, are the cross-sectional moments of inertia in the original coordinate 
system, 8 is the angle of rotation of the coordinate system, and I,', ZyB, and Zxy' are the 
cross-sectional moments of inertia in the rotated coordinate system. 

It should be noted that, relative to a given stiffener, one of the others is rotated by 
2fl3 and the remaining one is rotated by -2fl3.  Therefore, applying the transformation and 
summing the resulting inertias gives: 

where I,,, I,,, and Ixyr, are the equivalent cross-sectional moments of inertia, ICC is the 
moment of inertia of the central column relative to its centroid, and I, and I, are the 
principal moments of inertia of one of the stiffeners relative to its centroid. 
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Two very interesting results are shown in Eq. 2.2. First the equivalent product of 
inertia, Ixye, of the cross section is equal to zero despite the fact that the individual 
stiffeners may have a non-zero product of inertia. Second, the equivalent moments of 
inertia about the x and y axes are identical. These two results taken together dictate that the 
equivalent moment of inertia of the cross section has only one value, independent of the 
orientation angle of the reference axis. This is certainly significant and desirable from the 
standpoint that it precludes the column from having a preferred direction of Euler buckling. 

Another significant characteristic is that the same expression will result (Eq. 2.2) 
regardless of the value of stiffener deployment angle (see Fig. 1.1). This can be 
understood by realizing two points. First, the constraint that the stiffeners differ in 
orientation by 2 d 3  exists independently of deployment angle. Second, the reference axes 
can always be oriented parallel to the principal axes of one of the stiffeners so I,, and Isy 
will have the same value for any deployment angle. Therefore, not only is the equivalent 
cross-sectional moment of inertia for a given deployment angle independent of the 
orientation angle of the reference axis, but the value of the moment of inertia is also 
independent of deployment angle. Thus, the cross section has the same equivalent flexural 
stiffness regardless of whether or not the stiffeners are deployed. 

These results contribute valuable information for the design of a stiffened column. It 
is obvious that designing a column with hinges having no shear load transfer capability 
would be pointless. The same improvement in equivalent cross-sectional moment of inertia 
could be achieved with less added mass by simply increasing the thickness of the central 
column. Thus, only the columns with stiffeners attached through hinges having effectively 

rigid shear load transfer capability are further analyzed. These correspond to the second 
and third kinematic att;ichmcnt schemes. 

The independence of cross-sectional moment of inertia with reference axis orientation 
can also be demonstrated for columns employing stiffener hinges with rigid shear load 
transfer capability. A rigorous mathematical proof of this point would involve rather 
lengthy expressions and, therefore, an equally conclusive proof by deduction is performed. 
The basis of this proof is the fact that the moment of inertia of a cross section made up of 
three infinitesimal area elements located at the vertices of an equilateral triangle is 
independent of the orientation of the reference axis. 
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Each stiffener in the stiffened column cross section can be broken up into a large 
number of differential area elements with each element having corresponding elements on 
both of the other stiffeners as indicated in Fig. 2.1. Due to symmetry, at any arbitrary 
deployment angle, these three differential elements are all located the same radial distance 
from the centroid of the cross section and the same distance from each other. Therefore, 
the three differential area elements are located at the vertices of an equilateral mangle whose 
centroid is coincident with the centroid of the cross section. Consequently, the moment of 
inertia of these three area elements is independent of the reference axis orientation for any 
arbitrary deployment angle. Furthermore, the moment of inertia of the stiffener assembly is 
simply the sum of the inertias of a set of differential triangles subdividing the stiffener 
assembly cross section, and therefore this moment of inertia is also independent of the 
reference axis orientation. Finally, the total moment of inertia of the cross section is the 
sum of the inertia of the stiffener assembly and that of the central column, and thus, this 
quantity is also independent of reference axis orientation angle. 

Y t  

Equilateral [r \ yyJJce;erEnts 

triangle 1 / 

Centroid 

,J/ - - -  

Figure 2.1. Symmetry of stiffened column cross section. 

2.1.2 Calculation of Geometric Properties 

The previous result establishes that it is only necessary to calculate one equivalent 
cross-sectional moment of inertia to completely characterize the flexural stiffness of the 
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stiffened column. The following derivation of this expression is performed assuming 
arbitrary values for all cross-sectional geometric parameters. Referring to Fig. 2.2, these 
parameters include central column inner radius (ri) and outer radius (ro), stiffener outer 
radius (rp), arc angle (N, and deployment angle (@). 

Figure 2.2. Stiffened column cross-sectional geometric parameters. 

It should be apparent that Eq. 2.2, which were derived for a column using stiffener 
attachment hinges with no shear load transfer capability, are also applicable to the 
derivation of the equivalent cross-sectional moment of inertia for columns using hinges 
with a rigid shear connection. The only modification necessary is that for the later case, I ,  
and I,, denote the x and y moments of inertia of the stiffener relative to the centroidal 
coordinate axes of the entire cross section. Given these definitions, it is possible to derive 
the following expressions for these component moments of inertia. The derivation of these 
expressions is given in Appendix A. 

(2.3) 
I, = a1 sin2# + a2 sin#( sina - sin (a - y,) 

+ a3 ( ~2 + (sida - sin2(a - v)) /4 ) 
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where: 

Additionally, the moment of inertia of the central column is derived in reference 2 1, 
and the expression follows. 

Substituting Eq. 2.3 and 2.5 into Eq. 2.2 gives the expression for the cross-sectional 
moment of inertia of a stiffened column. After simplification using trigonometric identities, 
this expression becomes: 

x 4 4  
4 I =-( ro-  ri ) +3al ( 1  -cos@) 

A similar procedure may be followed to obtain the expression for cross-sectional area 
of the stiffened column. This derivation is very straightforward and the result is given in 
Eq. 2.7 without presentation of the details. 

A = 2 r 2 + ( x - T ) r : - x r i  2 p  2 
(2.7) 
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2.1.3 Optimization Considerations for a Stiffened Column 

As mentioned in the introduction, the primary design goal of the stiffened column is 
to produce columns whose fundamental stability mode is Euler buckling, and, 
consequently, whose buckling load will be proportional to the cross-sectional moment of 
inertia presented in Eq. 2.6. Therefore, mass optimization of a column having a certain 
length involves simply minimizing the cross-sectional area of the column for a given cross- 
sectional moment of inertia. It is reasonable to assert that minimizing the cross-sectional 
area for a given moment of inertia is equivalent to the conjugate task of maximizing the 
moment of inertia for a given area. Performing this conjugate optimization will prove more 
useful for many applications; because a common set of design constraints is a maximum 
mass allowance and maximum packaged size allowance (outer radius of stiffeners, rp). 

The first issue to be addressed in obtaining the maximum moment of inertia for a 
given area is calculation of the optimum stiffener deployment angle. Eq. 2.7 demonstrates 
a straightforward observation that the cross-sectional area is not dependent on the stiffener 
deployment angle. Furthermore the trigonometric functions in Eq. 2.6 having @ as an 
argument can only go through at most one half cycle for the whole range of allowed values 
of @, (0s @ ,< n). Therefore, there exists a unique value for the deployment angle which 
will produce a maximum cross-sectional moment of inertia for given values of the other 
cross-sectional geometry parameters (ri, r,, rp, and w}. This value can be determined by 
differentiating Eq. 2.6 with respect to @, setting the resulting expression equal to zero, and 
solving for 41. Differentiating Eq. 2.6 with respect to qj gives: 

2 
d!. = 3al sin@ + 6 ~ 2  sin (F) [ I / .  COS ($ COS (" 
@ 

Reducing this expression using trigonometric identities and the definitions in Eq. 2.4, and 
equating it to zero, gives the following: 

0 = a, sin# + a2 sin - cos a -- (TI I Y) 
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Since the surrogate angle a is defined in terms of @ (see Eq. 2.4), it is necessary to 
further employ trigonometric identities to solve the above expression for 4. After this is 
done the following expression is derived for the deployment angle,@, which maximizes the 
cross-sectional moment of inertia for given values of the stiffener radii and arc angle. 

where: 

Eq. 2.6, 2.7, and 2.8 represent three constraint conditions on the design of a 
stiffened column. The next section will address stiffener stability analyses which will lead 
to one more design condition. That will bring the total number of conditions to four, with 
the total number of unknown parameters equal to seven ( T i ,  ro, rp,  @, w, I ,  and A ) .  

Obviously, most truss applications will also specify the column buckling load and, thus, 
through Eq. 1.1, specify the moment of inertia, I. With this additional constraint, the total 
number of conditions come to five for the seven specified parameters. 

Although the system is still indeterminate at this point, it would certainly be possible 
to locate a minimum column mass. However, performing this optimization will invariably 
produce a design in which rp + 00, causing the cross-sectional area and, consequently, the 
mass to become infinitesimal. The implication of this is simple; without imposing 
constraints on the magnitudes of the column radii, mass optimization produces no useful 
results. Furthermore, this argument can be extended to show that the only way of 
producing useful designs from a mass optimization routine is to make the routine 
determinate by suppling two independent constraints on the column radii. 

The example of mass minimization with no constraints on column radii was just 
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shown to result in designs in which rP 3 -, Similarly, applying only one constraint to the 
column radii leaves the problem indeterminate and will result in useless minimum mass 
designs. For example, packaging requirements or on-orbit handling requirements for most 
truss applications will impose maximum allowances on the outer radius, rP. This additional 
constraint eliminates the possibility of obtaining infinite radii from a mass minimization 
routine. However, performing the mass minimization will invariably produce a design in 
which ri = r,, or, in other words, one with all of the material in the stiffeners and no central 
column. This result can be easily deduced by realizing that the most efficient location for 
the material is in the stiffeners, because they are at a greater distance from the centroid than 
the central column. Likewise, it should be apparent that applying a maximum constraint to 
any of the radii will give the same mimimum mass design result, ri = I,. Therefore, in 
order to produce useful minimum mass designs it is necessary to supply two independent 
constraints on the column radii. Thus, the design procedure consists of seven independent 
constraint equations and seven independent unknown parameters. 

This statement should be alarming because it implies that it is possible to locate the 
minimum of a parameter in a fully determined system. However, mass minimization 
considerations form the basis of the derivation of the remaining design condition dealing 
with stiffener stability. Therefore, the resulting determinate system will, implicitly, 
describe the minimum mass design. 

2.2 Analysis of Stiffener Local Buckling 

The discussion in the introduction defined the need for a relationship between the 

geometric design parameters of the stiffened column and the critical stress for stiffener local 
buckling. The stiffener is represented as a long slender curved panel of constant radius, 
and the loading condition that produces stiffener local buckling is uniform axial 
compression (see Fig. 2.3). The applicable boundary conditions for this problem were 
determined to be a clamped connection along one of the stiffener's generators and free 
along the other. Furthermore, it was established that an explicit empirical expression 
would be more useful for impletnmtation in a design routine than the complex 
transcendental eight-order system of equations that would be derived from an exact solution 
of the governing differential equation$. This section presents a preliminary discussion of 
explicit expressions derived for related problems to give insight into the functional 

I f  
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dependence of stiffener local buckling on the geometric design parameters. Finally, the 
section concludes with the derivation of an explicit empirical expression relating stiffener 
local buckling stress to the geometric design parameters. 

Clamped edge -\ 

- - /  

Pinned end Pinned end 
Free edge Local buckling mode 

Figure 2.3. Stiffener local buckling mode due to uniform axial compression. 

2.2.1 Functional Dependence of Stiffener Local Buckling on 
Geometric Design Parameters 

The six geometric design parameters being considered for the stiffened column ( I ,  ri, 
ro, rp, 9, and yi) were defined in the previous section. However, the analysis of stiffener 
local buckling only depends on four of these (l ,  ro, rp, and @, because the central column 
geometry and orientation of the stiffener with respect to the central column have no effect 
on stiffener local buckling. This result leads to the assumption that the stiffener hinge line 
can be represented as a clamped connection for the stiffener stability analysis. An 
equivalent, and more convenient set of geometric parameters for use in studying stiffener 
local buckling are I ,  r,, r,, and yi. Where r, and r, are the mean radius and thickness of the 
stiffener and are defined as: 

, ts = rp - r, rp + ro 

2 
r, = - (2.10) 

In reference 14, Timoshenko and Gere derived expressions for the buckling stress of 
flat and curved panels, pinned at both ends and acted on by uniform axial compression, for 
a variety of boundary conditions on both generator edges. These expressions provide 
explicit relationships between the critical stress and the panel geometric parameters (rs, ts, I ,  
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and wfor a curved panel and b, t, and I for a flat panel). Although, reference 14 does not 
address the solution of curved panel stability for the boundary conditions of the present 
problem, the explicit relationships derived for similar problems provide insight as to the 
form of an explicit expression for the present problem. 

Results from reference 14 indicate that long, slender flat panels (6 e< I) restrained by 
clamped boundaries along one or both of the generator edges tend to buckle as infinitely 
long panels. In other words, the buckling mode will include a large number of sine waves 
along the length of the panel, and, consequently, the value of the buckling stress is 
independent of panel length, 1. Since all practical stiffened column designs will be very 
slender and thus, the stiffeners will be characterized by rsw <<I, it seems reasonable that 
the stiffener buckling stress will also be independent of column length. 

Also, results from reference 14 show that the buckling stress of curved panels tends 
to be a polynomial function of the non-dimensional quotient, tJrs, regardless of the panel 
size or boundary conditions. Therefore, it follows that the explicit expression sought 
herein for the local buckling of curved stiffeners will, most probably, only be a function of 
two independent geometry parameters, f irs  and ty. 

Another observation from the work presented in reference 14 is that there are a 
number of different exact expressions for critical stress of a curved panel derived for a 
given set of boundary conditions. These different expressions only apply within distinct 
ranges of the geometry parameters, tJrs and y. Therefore, it is very important to determine 
the ranges of these parameters applicable to a particular problem so that the proper 
expression may be applied. This observation also has significance in the derivation of an 
approximate empirical expression for stiffener local buckling. Since this expression is to 
be derived from a matrix of parametric data, it is important to fiist define the ranges for tJrs 
and w by determining bounding values of these parameters that would be expected in 
design applications. 

It is easy to establish an absolute range for w, the stiffener arc angle, as 0 5 w52M3 
(see Fig. 2.2). However, it should also be noted that there exists a practical lower limit to 
the arc angle, such that below this limit the structural improvement offered by the stiffeners 
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is offset by the cost, in complexity and mass, of incorporating the hinged attachments. The 
preliminary nature of this design study makes it difficult to assess these costs and set a 
definite value for this lower limit. However, a lower limit of d 3  will be assumed for 
generating parametric data leading to an explicit expression for stiffener critical stress, thus, 
I,Y will be bounded as shown in Eq. 2.1 1, 

z q f s -  2a 
3 3 (2.11) 

It is more difficult to set limits on the range of the parameter tJrr It must be recalled 
here that the explicit expression for stiffener local buckling is sought as a means of 
establishing a stiffened column design condition which would result in a minimum mass 
design having the same values for both stiffener local buckling stress and Euler buckling 
stress. Therefore, the values of tJrs that would characterize this design boundary for all 
perceived stiffened column applications can only be determined by understanding this 
design condition. 

This lack of a priori knowledge about the possible range for tJrs necessitates the use 
of an iterative approach to determine this range. This iterative approach involves making an 
initial guess for the applicable range of f i rs ,  and generating parametric data throughout this 
range from which a design condition could be derived and, consequently, the range for tJrs 
could be refined. This approach can be applied on subsequent iterations until the bounding 
values of this range converge. Furthermore, it is possible to use the explicit expression for 
critical stress of a related problem, a slender flat panel clamped along one generator and free 
along the other, to determine an initial guess for the range of tJr,. The design condition 
derived from this range of empirical data can then be used, as stated, to verify or modify 
the range of tJrs. 

Timoshenko and Gere (14) derived the explicit relationship for the local buckling 
stress of a slender flat panel, clamped along one generator edge and free along the other, 
and this expression is given in Eq. 2.12. It should be apparent that the critical stress for a 
curved stiffener is greater than the critical stress of a flat stiffener having the same width 
and length because of the higher lateral bending stiffness of the curved stiffener. 
Preliminary numerical stability analyses performed on curved stiffeners indicates that, in 
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most cases, the critical stress of a curved stiffener is roughly two orders of magnitude 
greater than that of the flat stiffener. So, a reasonable approximation to the local buckling 
stress of a curved stiffener is given by Eq. 2.13, where the flat panel width, b, has been 
replaced by the equivalent curved panel width, rsv/. 

os = 1.328 E ($ (2.12) 

(2.13) 

The other equation needed to construct the aforementioned minimum mass design 
condition is the expression for the Euler buckling stress, o,, of the stiffened column. This 
expression can be determined from EQ. 1.1 by recognizing that the equivalent cross- 
sectional moment of inertia is equal to the cross-sectional area times the radius of gyration, 
p, squared (Eq. 2.14). The resulting expression is given in Eq. 2.15. 

I = p2A - 
2 

oe=n E [;[ 
(2.14) 

(2.15) 

As mentioned previously, a practical stiffened column design would have Euler 
buckling as its fundamental stability mode. The minimum mass design condition is derived 
by equating the Euler buckling stress with the stiffener local buckling stress. Applying the 
expressions in Q. 2.13 and 2.15 gives the following approximate minimum mass design 
condition. 

1 .  

It can be shown that the radius of &ration of the stiffened column is typically within 
twenty percent of the value of the dadfhs of the stiffener, so assuming that p s r, and 
simplifying the above expression gives the following approximate minimum mass design 
condition. 
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(2.16) 

It is now possible to define an approximate range for the non-dimensional parameter 
tJrs by specifying the minimum and maximum values for the parameters y, and rsjl. Eq. 
2.1 1 established a range for the stiffener arc angle, y, and an appropriate range for rJ1 may 
be specified by considering the dimensions of slender columns currently being considered 
for large space structure applications. A lower bound for rs/l is represented by the 
candidate truss components for the Space Station Freedom discussed in reference 22. The 
diagonal members of this truss have an rsjl z .0035. An upper bound for rJ1 is represented 
by the candidate truss components for the Precision Segmented Reflector testbed structure 
discussed in reference 23. The members of this truss have an average rsll s .016. 
Therefore, by applying the minimum and maximum bounds of rJ1 and y, respectively, to 
Eq. 2.15, an approximate range for fJrs is defined to be: 

.001 &_<.01 
r S  

(2.17) 

2.2 .2  Derivation of Approximate Explicit Relationship for 
Stiffener Local Buckling 

As indicated, stiffener local buckling should only be a function of two independent 
parameters, tJrS and I,Y, and Eq. 2.11 and 2.17 define approximate ranges for these 
parameters that are applicable to the present problem. Therefore, it is now possible to 
conduct a parametric study to determine an approximate explicit relationship for stiffener 
local buckling based on local buckling analysis of a large set of stiffeners having 
dimensions falling within the bounds set in Eq. 2.1 1 and 2.17. 

In the introduction, it was explained that the present study will employ the VIPASA 
structural analysis routine to generate an efficient linked-plate representation of the structure 
for numerical solution of the stability problem. As explained, this method of structural 
representation assumes lengthwise sinusoidal deformations of the structure, and thus 
requires that only the cross section of the structure be discretized. Fig. 2.4 shows a typical 
curved stiffener as represented in VIPASA. The constant radius curvature of the stiffener 
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is approximated with eight discrete flat plate strips. The dashed line in Fig. 2.4 shows the 
lateral deformation corresponding to a typical stiffener local buckling mode. As stated, the 
magnitude of this deformation varies sinusoidally along the length of the stiffener with 
essentially the same wavelength as that for an infinitely long stiffener. 

Free 

edge 

Typical local buckling 
mode 

Discrete jlat plate strip 

Undeformed stiffener 

longitudinal edge longitudinal 
0 

Figure 2.4. Typical plot of curved stiffener as represented in VIPASA. 

Preliminary parametric analyses were performed, using the VIPASA model, to verify 
that the local buckling stress of the curved stiffener is only a function of w and tJ/rs. 
Although this data is not presented, indeed, this assumption was found to be true 
throughout the parametric ranges defined in Eq. 2.11 and 2.17. Therefore, subsequent 
parametric analysis are performed using a value of one inch for the stiffener radius of 
curvature, rs, and thus variations in the parameter f i r s  are achieved by varying only the 
thickness, ts. 

A matrix of values for stiffener local buckling stress can be generated by selecting a 
set of discrete values for the parameters tyand fJrs,  and performing a VIPASA stability 
analysis on the resulting family of stiffeners. Table 2.1 presents the values of these 
stresses normalized to the Young's modulus of the stiffener for a family of thirty designs. 
By reviewing this data, it is apparent that the local buckling stress monotonically increases 
with increasing fJ/rs, and decreasing v. Furthermore, the corresponding rates of increase 
of the local buckling stress are approximately constant for both parameters. 
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Table 2.1. Matrix of Normalized Stiffener Local Buckling Stresses From 
VIPASA Analysis. 
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This result indicates that a reasonable approximate expression for the normalized local 
buckling stress might be a bilinear equation in wand tslrs. The general form for this 
bilinear equation is given in Eq. 2.18, where the coefficients b l ,  b2, b,, and b4 are 

constants. 
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Figure 2.5. Plot of normalized stiffener local buckling stresses from VIPASA analysis. 
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The data from Table 2.1 is plotted in Fig. 2.5 in the form of a carpet plot, and best-fit 
interpolation lines corresponding to constant values of w and rJrs are dashed in to 
demonstrate the near linear behavior of the local buckling stress. An important observation 
from this plot is that the slopes of the lines for the constant values of ware very nearly the 
same. Also, the slopes of the lines for constant values of f i rs  are very nearly the same with 
the exception of the line for f i r s  = 0.001. Neglecting the case of rJrS = 0.001 for the 
moment, it follows that the local buckling stress should be adequately represented with the 
planar Eq. 2.19 which is derived from Eq. 2.18 with b4 = 0. 

(2.19) 

Considering now the case of tJrS = 0.001, it is noted that these data points 
correspond to very low local buckling stresses and would not be accurately predicted with a 
planar expression of the form in Eq. 2.19. Results of design studies to be presented in the 
following chapter will demonstrate that practical stiffened column designs will exhibit 
buckling stresses above these values. Therefore, a planar expression for local buckling 
stress will prove sufficiently accurate for the applications being considered. 

The method of least-squares (see reference 24) is selected for calculating the 
coefficients b l ,  b2, and b3 in Eq. 2.19 given the set of discrete data in Table 2.1. 
Application of this method results in a system of three linear algebraic equations in bl, b2, 
and b3. This system is given in Eq. 2.20 in which the summation index i denotes the iLh 
data point in Table 2.1, and N is the total number of data points. 

N E W  
i=l 

i=l i= I 

N 

i=l i=l 

1 = l  E (%Ii 
N 

i=l 
(2.20) 
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Because Eq. 2.20 is only a third-order system, the solutions for bl,  bZ, and bj are 
most easily derived by Gauss elimination and back substitution. Implementing this 
procedure in a computer program produces the appropriate values of bl,  b2, and b3. After 
substitution of these values into Eq. 2.19, the approximate, explicit expression for stiffener 
local buckling stress becomes: 

os = E (6.0 x - 8.74 x w+ 8.97 X Io-2 (&)) 
rS 

(2.21) 

800 

600 

200 

0 

-2o() L .................................................................................................................. ~ ...................................... 

Figure 2.6. Comparison of normalized stresses from VIPASA and explicit expression. 

Fig. 2.6 presents a comparison of the stresses predicted using Eq. 2.21 and those 
from the VIPASA analysis, summarized in Table 2.1. The difference between Fig. 2.6 and 
Fig. 2.5 is that the dashed lines in Fig. 2.6 are the best-fit planar representation of the 
stresses derived from Eq. 2.21. As anticipated, the agreement between the approximate 
stresses and the VIPASA results is quite good with the exception of the very low stress 
region of the graph where fs/rs < .002 and w 2 n/2. In this region Eq. 2.21 predicts 
ncgntive values for the local buckling stress which is obviously inadmissible. Neglecting 
the three data points for fJr,  = .001 and w 2  n/2, the rms error of the remaining values 
predicted using Eq. 2.21 is only 7.2%. Therefore, it is reasonable to apply Eq. 2.21 to 
predict the local buckling stress of a curved stiffener unless fJrs < .002 and w-> x/2. 
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Further studies of local buckling for stiffeners with f i r s  > .OZ show that application 
of Eq. 2.21 to this region results in local buckling stress values which are consistently low 
when compared to values from VIPASA analysis. This implies that applying Eq. 2.21 to 
the design of stiffened columns with stiffeners having fs/rs > .OZ would result in a 
conservative design, and, thus, one which is guaranteed to exhibit Euler buckling as a 
fundamental stability mode. 

It was stated previously that a minimum mass design is one which exhibits the same 
critical stress for both Euler column buckling and stiffener local buckling. However, to 
avoid stability mode interaction and ensure Euler buckling for the fundamental stability 
mode, stiffened column designs will be sought for which the stiffener local buckling stress 
is greater than the Euler buckling stress. Thus, equating these stresses provides a limiting 
condition for stiffened column design. This design condition is given in Eq. 2.22 and is 
derived from the stress expressions in Eq. 2.15 and 2.21. 

a2 (;r S(6.O x ZO-5 - 8.74 x Z P 5  w +  8.97 x ZO-2 (k)) (2.22) 

It was pointed out in the first section of this chapter that, with the addition of this 
design condition, the procedure for generating a minimum mass stiffened column design is 
characterized by seven parameters; (Ti ,  To, rp, 9, y, I, and A), or, equivalently (ri, rs, c,, #, 
y, I, and A ) ,  and is governed by five constraint Eq.; 1 . 1 ,  2.6, 2.7, 2.8, and 2.22. It was 
also demonstrated that it is necessary to specify two additional independent conditions on 
the radii of the stiffened column in order to make the problem determinate, and solvable for 
a useful design. The following section will address the selection of these additional 
conditions for general design problems, and then will define a set of conditions and the 
resulting design routine to be used in exqple  design problems to demonstrate the potential 
mass savings offered by the stiffened column concept. 

2.3 Column Design Algorithm 

A main goal of the present study is to demonstrate the potential mass savings offered 
by the stiffened column concept. This swings will be quantified by comparing design 
curves of mass versus buckling load for minimum mass stiffened column designs with the 
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corresponding design curves for the central column with varying thickness. These curves 
will allow the comparison of two designs which can be used interchangeably for a given 
application because they have the same outer radius, length, and buckling load. To 
generate these design curves a design algorithm must be established which solves the 
determinate system consisting of Eq. 1.1, 2.6, 2.7, 2.8, and 2.22 and two additional 
conditions on the column radii. 

In general, when developing a stiffened column design routine there are a variety of 
independent conditions on the column radii that can be chosen, and the most useful ones 
depend on the particular application. For example, it was noted previously that often a 
maximum value for rp will be given from packaging or on-orbit handling considerations. 
Also, manufacturing and handling requirements impose minimum values on wall thickness 
for both the central column (ro-ri) and the stiffeners (rp-ro or, equivalently, ts). Alternately, 
it may be desireable to implement curved deployable stiffeners on a fixed central column 
design. In which case, both ri and ro would be defined, and, thus provide the additional 
design conditions needed. 

In the present study, the later of these additional radius constraints are employed so 
that mass penalty as a function of increased buckling load can be studied for a fixed central 
column design. This approach is taken because it is well suited for demonstrating the 
potential mass savings offered by the stiffened column. A family of minimum mass 
stiffener designs will be generated for the given central column which have optimum values 
of t,, y, and @, and, thus, the minimum total column mass, for a range of values of the 
buckling load. The resulting mass versus buckling load curve will show the minimum 
percent increase of mass necessary to achieve a particular percent increase in buckling load. 
As mentioned, the mass savings of the stiffened column will be quantified by comparing 
this curve to the corresponding mass versus buckling load curve derived for a simple 
circular column having the same outer radius and buckling load. 

By selecting values for ri and ro, and defining the buckling load, Pcr, it should be 
obvious that the determinate system describing the minimum mass stiffened column 
reduces to a five equation (eqs. 1.1, 2.6, 2.7, 2.8, and 2.22 ) and five unknown (t,, @, y, 
I, and A )  system. Furthermore, it can be seen that EQ. 1.1 and 2.7 and the variables, I and 
A uncouple, and leave a three by three system to be solved. However, reviewing the 
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remaining equations, it is seen that this system is highly coupled and nonlinear, thus 
difficult to solve. An alternate approach to solving this system is to select the value for v a t  
the outset, and allow the buckling load, Pcr, to become a solution variable. This approach 
results in a relatively simple iterative solution procedure for the nonlinear system, which 
will be shown to converge quite quickly to the desired system solution. 

The first step in developing this solution procedure is to rearrange Eq. 2.22 by 
solving for tr The resulting expression is given in Eq. 2.23. 

+ 9.74 x I O 4  v -  6.69 x (2.23) 

Eq. 2.23 appears to be an explicit expression for f,, however r, and p are both 
implicit functions of t, through the remaining system equations and Eq. 2.10 and 2.14 
(recall that w has been defined at the outset). Therefore, Eq. 2.23 is in the correct form for 
application of fixed-point iteration to determine the solution for f, (see reference 24). This 
iteration procedure is quite simple. An initial estimate for t, is made and substituted into the 
right hand side of Eq. 2.23, then the equation is solved to determine the new estimate for 
f,, and this procedure is repeated until t, converges. At each iteration step, the new values 
for r, and p are calculated from Eq. 2.6,2.7,2.8,2.10, and 2.14 which uncouple if solved 
in the order: 2.8, 2.6,2.7 then 2.10 and 2.14. 

Rather than making an initial estimate for f, and solving the system of equations for 
initial estimates of r, and p, it  is easier to begin the iteration process by making initial 
estimates for r, and p. These initial values are assumed to be the outer radius of the central 
column, To. Although this initial estimate implies that t, = 0 (from Eq. 2.10) it will be 
shown that the fixed-point iteration procedure will, nonetheless, converge rapidly to the 
desired solution. 

By determining a converged solution for t,, converged solutions for r,, @, p, I, and A 
are also implicitly determined using this process. Finally, the value for buckling load, Pcr, 
can be determined from the value of I, and Eq. 1.1. Therefore, the result of this iteration 
procedure is the minimum mass design and the corresponding buckling load of a stiffened 
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column having a stiffener arc angle = y. 

A complete curve of minimum column mass versus buckling load can be generated by 
determining minimum mass design for the complete range of y. It will be shown that as w 
is increased, so will the minimum mass and buckling load of the column. Finally using 
Eq. 1.1, 2.5 and 2.7 with I,, = w = 0, it is possible to calculate a set of masses and 
buckling loads of the central column for a range of thicknesses. 

Appendix B presents a flow chart and a listing of the FORTRAN computer program 
DESTCO that was written to perform the fixed-point iterative solution of the above system 
of equations, and generate the mass versus buckling load design curve data for both the 
minimum mass stiffened column and the central column. The program was written and 
executed using a FORTRAN compiler on a desk-top personal computer. 
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CHAPTER 3 

EXAMPLES AND DISCUSSION 

This chapter is a summary of results from stiffened column design studies conducted 
using the design program DESTCO. These studies will serve to illustrate the procedures 
involved in generating minimum mass stiffened column designs, as well as verify that the 
resulting designs exhibit Euler buckling as their fundamental stability mode. The first 
section of the chapter presents two stiffened column design examples which are applicable 
to typical large space structure missions currently envisioned and analyses to verify the 
DESTCO results. The final section presents a discussion of the results, and additional 
practical considerations for implementation of stiffened column designs. 

3.1 Generation of Design Curves for Example Problems 

In the last chapter it was explained that the design routine embedded in the DESTCO 
program requires that the central column size be completely specified (ri, ro, and 2). 
Therefore, application of this routine results in the set of minimum mass curved stiffeners 
for the given central column and the corresponding values for percent increase in column 
buckling load and mass. 

Two example central column designs have been selected for illustrative purposes in 
generating minimum mass stiffener d e s i p .  The first is from the Space Station Freedom 
five-meter truss structure (see reference 22), and the second is from the Precision 
Segmented Reflector two-meter truss structure (see reference 23). The nominal dimensions 
assumed for these two central columns an given in Table 3.1. 
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Table 3.1. Nominal Dimensions for Example Central Columns. 

Example Column 
I I I I I 

ri (in) ro (in) 1 (in) 

Precision Segmented 
Reflector 

I SpaceSlationFreedom I 0.9675 I 1.0325 I 196.8 I 
0.4700 0.5300 78.7 

I w 1, (in) 

A I3 DO14 

5A 112 .0016 

A I2 .0017 

7n 112 .0019 

2~ 13 .002 1 

The dimensions in Table 3.1 are used as input to DESTCO to generate the set of 
minimum mass stiffener designs for the range of stiffener arc angles given in Eq. 2.1 1. 
Tables 3.2 and 3.3 present these results for the Space Station Freedom column and the 
Precision Segmented Reflector column, respectively. 

.0244 

.0249 

.0256 

.02& 

.0275 

Table 3.2. Design Data for Space Station Freedom Column. 

~~ 

.191 

.192 

.193 

.194 

.195 

w 
A /3 

5~ 112 

A 12 

7A I12 

2n I3 

.0019 

.0022 

.0025 

.0028 

.003 1 

.0018 

.0021 

.0024 

.0027 

.0030 

115. 

120. 

125. 

129. 

.212 

.217 

.225 

.235 

.248 

A (in21 

.415 

.417 

.420 

.424 

A29 

Table 3.3. Design Data for Precision Segmented Reflector Column. 

ts l r  s 

DO26 

.0029 

.0032 

.003 6 

.0039 

110. 

115. 

120. 

125. 

129. 
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It should be recalled that the empirical expression for stiffener local buckling derived 
in the last chapter (eq. 2.21) is only applicable for the range .OOZ I fJrs I .OZ with the 
exception of .002 I tJrs when y/ 2 x/2. Initial approximate stiffener local buckling 

analyses determined these bounds as appropriate for typical stiffened column design 
problems to be considered. Fig. 3.1 shows the actual variation in rJr, for the minimum 
mass designs of the two examples considered. It is seen that, indeed, these designs all lie 
within the aforementioned bounds on f i r s ,  and thus, the analyses imbedded in the 
DESTCO program are applicable to these examples. 

0.004 

0.003 

0.002 
t s  

rs 
- 

- 

Precision Segmented 
- 

Reflector column - 
Space Station - 

Freedom column - 
t 

0 n/3 

Stiffener arc angle, y/ 

2 d 3  

Figure 3.1. Stiffener thickness variation with arc angle for minimum mass designs. 

It is important that the designs generated using DESTCO have values for tJrs which 
are within the acceptable limits. If not, one could either derive a new stiffener local 
buckling expression, applicable for the new range, or one could use the original results and 
accept the lower solution accuracy. Recall that the error in employing the DESTCO 
program outside of the specified range on tsjrs, should result in only near-minimum mass 
designs, but the fundamental stability d e  of these designs should still be Euler buckling. 
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Data from Table 3.2 

I 

0 10 20 30 40 50 

Percent Increase in 
Column Buckling Load 

Figure 3.2. Minimum mass design curve for Space Station Freedom column. 

10 

8 

6 
Percent Increase 
in Column Mass 

4 

2 

0 10 20 30 40 50 

Percent Increase in 
Column Buckling Load 

Figure 3.3. Minimum mass design curve for Precision Segmented Reflector column. 
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The minimum mass designs presented in Tables 3.2 and 3.3 represent the stiffener 
thickness, for a given stiffener arc angle, that results in equal Euler buckling and stiffener 
local buckling stresses (see Eq. 2.23). Designs with larger thicknesses will have Euler 
buckling as their fundamental stability mode, and designs with smaller thicknesses will 
have stiffener local buckling as their fundamental stability mode. Additionally, for designs 
which behave as Euler columns, the percent increases in buckling load and mass are equal 
to the percent increases in cross-sectional inertia and area, respectively. Therefore, the data 
in Tables 3.2 and 3.3 can be used to generate a portion of a stiffened column design curve 
showing minimum percent mass increase versus percent buckling load increase. 

Fig. 3.2 and 3.3 show the complete minimum mass design curves for the Space 
Station Freedom column and the Precision Segmented Reflector column, respectively. The 
two dashed lines superimposed over these curves represent stiffened columns having 
stiffener arc angles of n/3 and 2x13 and are generated using Eq. 2.6 and 2.7 with 
successively increasing values of stiffener thickness. The portion of the design curve 
between the origin and point B represents designs with increasing values of stiffener 
thickness and arc angle, for which the Euler buckling stress equals the stiffener local 
buckling stress. The portion of the curve between points A and B was generated from data 
in Tables 3.2 and 3.3, and is extrapolated to the origin to show an approximation of the 
curve in this region. The portion beyond point B, represents designs having 1y=2x/3 (the 
imposed upper limit on stiffener arc angle) and increasing stiffener thicknesses. As 
mentioned, designs in this region have Euler buckling stresses which are less than their 
stiffener local buckling stresses. 

The lighter weight solid lines in Fig. 3.2 and 3.3 show the mass penalty necessary to 
get the given buckling load increase by simply increasing the thickness of the central 
column. These lines are generated using Eq. 2.5 and 2.7. The difference between the 
thickened central column line and the minimum mass design curve is the mass savings 
attributed to the stiffened column concept. The slope of the thickened central column line is 
approximately one. This follows from the fact that, for a thin circular cross section, both 
the inertia and the area are proportional to the thickness, and thus, a given increase in 
thickness will cause the same percent increase in both area and inertia. Conversely, the 
slope of the minimum mass design curve beyond point B is approximately 1/4, and thus, a 
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given percent increase in buckling load in this region, will require only 1/4 of that 
percentage in increased mass. 

The design curves in Fig. 3.2 and 3.3 can be verified through further analysis. As 
mentioned, the portion of the curves between points A and B should represent the 
boundary between designs with Euler buckling as their fundamental stability mode and 
designs with stiffener local buckling as their fundamental stability mode. Fig. 3.4 is an 
exploded view of this portion of the design curve for the Space Station Freedom column. 
The square data points along the design curve correspond to designs which were analysed 
using VIPASA and verified to have Euler buckling as a fundamental stability mode. 
Additionally, models of these designs, with slightly smaller values for stiffener thickness, 
were analysed and determined to exhibit stiffener local buckling as their fundamental 
stability mode. These data points are indicated with stars in Fig. 3.4. These results 
indicate that, indeed, the design curves presented represent the minimum mass designs and 
the boundary between designs with Euler buckling as their fundamental stability mode and 
those with stiffener local buckling as their fundamental stability mode. 

5 

4 

3 
Percent Increase 
in Column Mass 

2 

1 .-' , 
**/ 0 m Local sliffcner 

1 */ s, ' 
I . . . .  I . . . . )  . . .  . l . . . . l  

0 5 10 15 20 25 

Percent Increase in 
Column Buckling Load 

Figure 3.4. Verification of Space Station Freedom column design curve. 
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3.2 Discussion of Results 

It should be reiterated that the design curves presented in Fig. 3.2 and 3.3 present the 
percent increase in only the structural mass of the stiffened columns, with no allowance for 
the added mass of the hinge and deployment mechanisms attaching the stiffeners to the 
central column. This added mechanism mass can be estimated as a percentage of the mass 
of the central column, and can be considered a constant for the entire range of stiffener 
designs. Fig. 3.5 shows the minimum mass design curve for the Space Station Freedom 
column when the mass of the hinge and deployment mechanisms is assumed to be 10 
percent of the central column mass. This curve is constructed by simply adding 10 percent 
to the minimum mass design curve in Fig. 3.2. 

Percent Increase 
in Column Mass 

0 10 20 30 40 50 
Percent Increase in 

Column Buckling Load 

Figure 3.5. Design curve for Space Station Freedom column including 10% 
mechanisim mass. 

It is apparent from this figure that the added mechanism mass significantly changes 
the character of the minimum mass design curve. When mechanism mass is considered, 
small to moderate increases in buckling load can be achieved with less mass penalty by 
simply increasing the wall thickness of the central column. In this example, buckling load 
increases up to about 15 percent would favor the thickened central column over the central 
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column with deployable stiffeners. Also, this cross over point occurs fairly close to point 
B which is the start of the portion of the design curve on which 1y=2n/3. This implies that 
the addition of an appreciable mechanism mass causes the region of the design curve 
between points A and B in  Fig. 3.2 and 3.3 to become essentially unimportant. Thus the 
consideration of stiffener local buckling is unnecessary. Therefore the practical column 
design problem is reduced to the consideration of only two design regions: thickened 
central column for low buckling load increases and stiffened column with 1y=2~/3 for 
higher buckling load increases. 

The upper and lower portions of the design curve in Fig. 3.5 are generated using Eq. 
2.5, 2.6 and 2.7, and by linearly increasing the value of stiffener thickness (upper portion 
of curve) or central column thickness (lower portion of curve). The near linear shape these 
segments of the curve suggest that Eq. 2.5, 2.6 and 2.7 may be linearized with respect to 
these two thicknesses and still give accurate results. Performing this linearization is exactly 
equivalent to invoking the following small thickness assumptions. 

(Ti + r,) = (r,  + rp) = 2r 

tcc = r, - ri << r (3.1) 

t, = rp - r, << r 

Additionally, a further simplification can be made by observing a result presented in 
reference 12. In this reference, it was demonstrated that the cross-sectional inertia of the 
stiffened column does not vary more than five percent for deployment angles within 10 to 
15 degrees of the optimum value. Therefore, it is possible to assume the deployment 
angle, I$ = 2n/3 and still ensure a reasonable approximate result. Applying this assumption 
and the small thickness assumptions in Eq. 3.1 to Eq. 2.5,2.6 and 2.7 gives the following 
linearized equations governing the design of a thickened central column and a stiffened 
column with 1y=2n/3. 

I,, m3tcc 

I z m3(tcc + 4tJ 
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A r2m(tcc + t,) (3.4) 

These equations illustrate the conclusions previously drawn. First, an increase in 
thickness of the central column will cause the same percent increase in both area and inertia. 
Second, an increase in thickness of the stiffeners will give rise to a percent increase in 
inertia which is four times the percent increase in area 

Eq. 3.2,3.3, and 3.4 can be used to generate an approximate stiffened column design 
curve. Fig. 3.6 presents this approximate design curve superimposed over the exact curve 
from Fig. 3.5. In this example, the approximate curve is in reasonable agreement with the 
exact curve. Furthermore, the approximate curve gives consistently conservative results 
(slightly higher mass increase for a given buckling load increase). Therefore, it is 
reasonable to simply use the approximate expressions given in Eq. 3.2, 3.3, and 3.4 to 
generate frst iteration design curves. 

Percent Increase 
in Column Mass 

20 

15 

10 

5 

Approximate curve 

Exact curve 

- 
- - -  

0 10 20 30 40 50 
Pcrcent Increase in 

Column Buckling Load 

Figure 3.6. Comparison of approximate and exact design curves for Space Station 
Freedom column including 10% mechanism mass. 
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It should be noticed that the approximate percent mass increase and buckling load 
increase are only linear functions of the percent increase in tcc and f,. Consequently, a 
general expression can be easily derived from Eq. 3.3 and 3.4 which relates the percent 
increase in stiffened column mass (AM) to the percent increase in buckling load (AP,,,) nnd 

the deployment mechanism mass as a percentage of the central column mass (Adm). This 
expression is given in Eq. 3.5 and applies to any stiffened column design having w = 2M3. 

AM = .25APc, + M,,, (3.5) 

A family of approximate stiffened column design curves can be generated from Eq. 
3.5 using a set of values for the deployment mechanism mass. Fig. 3.7 presents one such 
family of curves. These curves provide a first iteration estimate of the percent mass 
increase necessary to achieve a given percent buckling load increase for any stiffened 
col L) mn application. 

150 r 

100 - 

Percent Increase / 

in Column Mass 

50 

0 50 100 150 200 250 

Pcrccnt Increase in 
Column Buckling Load 

Figure 3.7. Family of approximate general stiffened column design curves. 
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As an illustrative example, if one desires to increase the buckling load of a circular 
column by 200 percent using deployable stiffeners, and one assumes that the mass of the 
deployment mechanism would be 50 percent of the mass of the central column, then Eq. 
3.5 and, similarly, Fig. 3.7 shows that this would require approximately a 100 percent 
increase in total column mass. This compares to a 200 percent increase in total mass if the 
increased buckling load is achieved through simply thickening the central column. 

Finally, for further evaluating the usefulness of stiffened columns, Appendix C 
presents the effect of deployable stiffeners on column fundamental vibration frequency. 
The results from these calculations indicate that there is an increase in column vibration 
frequency with the addition of deployable stiffeners just as there is an increase in column 
buckling load. However, the percent increase in vibration frequency is typically an order 
of magnitude less than the percent increase in buckling load, thus deployable stiffeners 
appear not to be well suited for an application only requiring an increase in vibration 
frequency. 
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CHAPTER 4 

CONCLUSIONS 

This paper has presented the results of a stability design study of a slender column 
with curved longitudinal stiffeners for large space structure applications. These stiffeners 
are attached to the central column through deployment mechanisms which allow the 
stiffeners to package flush around the outside of the central column. The stiffened column 
concept is attractive because it allows the buckling load of a slender column to be increased 
at a fairly low cost in increased mass, and with no change to the packaged size of the 
column. Furthermore, the use of deployable stiffeners eliminates the need for extra on- 
orbit assembly time which is characteristic of other high-buckling-load, low-packaged- 
volume column concepts. 

The symmetry of the stiffened column cross section gives rise to a zero product of 
inertia and, consequently, a constant value for moment of inertia regardless of reference 
axis orientation. Therefore, the stiffened column is perfectly suited for stability 
applications because it does not have a "preferred" direction of buckling. 

The kinematic attachment constraints offered by the stiffener deployment mechanisms 
are very important in determining the stability modes of the stiffened column. Stiffener 
attachment mechanisms which do not allow shear load to be transferred may require non- 
linear numerical analysis to determine stiffener buckling modes. For the purposes of this 
study, the stiffener attachment is assumed to provide perfect shear load transfer, and thus, 
the stiffener buckling analysis performed is strictly linear. 

An approximate explicit expression describing stiffener local buckling stress was 
derived from numerical analysis results using a one dimensional "linked-plate" 
approximation to the stiffener differential equations. This approximate expression was 
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demonstrated to be accurate to within ten percent for the appropriate range in geometric 
parameters. Also, equations were derived which relate the set of geomemc parameters to 
column mass and buckling load. The resulting indeterminate system was studied to 
determine mass minimization considerations. The need for additional geometric constraints 
was defined, and one set was selected for construction of a determinate minimum mass 
stiffened column design routine. 

The resulting column design routine was used to construct design curves for two 
current large space structure applications: the Space Station Freedom column and the 
Precision Segmented Reflector column. These curves are comprised of two segments: one 
representing designs for which Euler buckling stress equals stiffener local buckling stress 
and the other representing designs for which the stiffener arc angle is fixed at 2x13 and 
Euler buckling stress is less than stiffener local buckling stress. The designs on the first 
segment of the design curve were verified through further numerical analysis of the entire 
stiffened column cross section using the "linked-plate" structural representation. 

These examples demonstrate that stiffener local buckling is only a concern for 
stiffened columns having approximately 20 percent or less increase in buckling load over 
that of the central column. Also, this lower design range proves to be of no practical 
interest after allowing for the increased mass necessary for the stiffener deployment 
mechanisms. Therefore, stiffener local buckling proves to not be a concern for practical 
stiffened column designs. Consequently, the stiffened column design problem is reduced 
to determining the necessary stiffener thickness and corresponding optimum deployment 
angle to achieve a given percent increase in cross-sectional inertia. 

Furthermore, the equations for cross-sectional inertia and area of the stiffened column 
can be linearized in terms of the stiffener and central column thicknesses by invoking small 
thickness approximations. These approximate equations result in a very simple 
approximate design equation which relates the percent increase in column mass to the 
percent increase in column buckling load and the stiffener deployment mechanism mass. 
Neglecting deployment mechanism mass, it turns out that a given percent increase in area of 
the stiffened column (through increased stiffened thickness) will give rise to four times that 
percent increase in inertia. This is compared to the mass penalty associated with increasing 
the buckling load of the central column by simply increasing its thickness. In this case, a 
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given percent increase in area of the central column will cause only the same percent 
increase in inertia. 

The potential mass savings offered by the stiffened column are clear. In the ideal case 
where the deployment mechanisms are assumed to add negligible mass, it offers a given 
buckling load improvement at one fourth the added mass of a circular column with the same 
outer radius. In practical cases where the deployment mechanisms are known to add a 
certain amount of mass, the mass savings of the stiffened column are small for small 
buckling load increases, but approach the ideal rate for higher buckling load increases. 

Finally, results from calculations of column fundamental vibration frequency indicate 
that there is an increase in column vibration frequency with the addition of deployable 
stiffeners just as there is an increase in column buckling load. However, the percent 
increase in vibration frequency is typically an order of magnitude less than the percent 
increase in buckling load, thus deployable stiffeners appear not to be well suited for an 
application only requiring an increase in vibration frequency. 

46 



REFERENCES 

1. Large Space Antenna Systems Technology - 1982, Parts 1 and 2. NASA CP- 
2269, November 30-December 3,1982. 

2. Large Space Antenna Systems Technology - 1984, Parts I and 2. NASA CP- 
2368, December 4-6,1984. 

3. Mikulas, Martin M., Jr.; Croomes, Scott D.; Schneider, William; Bush, Harold G.; 
Nagy, Kornell; Pelischek, Timothy; Lake, Mark S.; and Wesselski, Clarence: 
Space Station Truss Structures and Construction Considerations. NASA TM- 
86338, January 1985. 

4. Mikulas, Martin M., Jr.; Bush, Harold G.; and Card, Michael F.: Structural 
Stiflness, Strength and Dynamic Characteristics of Large Tetrahedral Space Truss 
Structures. NASA TMX-74001, March 1977. 

5. Mikulas, Martin M., Jr.; and Bush, Harold G.: Advances in Structural Concepts. 
Published in Large Space Antenna Systems Technology - 1982, Part I ,  NASA 
CP-2269 November 30-December 3,1982, pp. 257-283. 

Reinert, R. P.: Weight Optimization of Ultra Large Space Structures. Presented at 
the 38th Annual Conference of the Society of Allied Weight Engineers, Inc., May 
1979, S A W  paper No. 1301. 

Heard, Walter L., Jr.; Bush, Harold G.; Walz, Joseph E.; and Rehder, John J.: 
Structural Sizing Considerations for Large Space Platforms. AIAA Journal of 
Spacecraft and Rockets, Vol. 18, No. 6, Nov.-Dec., 1981, pp. 556-564. 

6. 

7. 

8. Bush, Harold G.; Heard, Walter L., Jr.; Walz, Joseph E.; and Rehder, John J.: 
Deployable and Erectable Concepts for Large Spacecraft. Presented at the 39th 
Annual Conference of the Society of Allied Weight Engineers, Inc. May 1980, 
S A W  paper No. 1374. 

Bush, Harold G.; Heard, Walter L., Jr.: General Description of Nestable Column 
Structural and Assembly Technology. NASA TM-83255, December 198 1. 

Heard, W. L., Jr.; Bush, H. G.; and Agranoff, Nancy: Buckling Tests of 
Structural Elements Applicable to Large Space Trusses. NASA TM-78628, 
October 1978. 

9. 

10. 

1 1. Mikulas, Martin M., Jr,: Structural Efficiency of Long Lightly Loaded Truss and 
Isogrid Columns for Space Applications. NASA TM-78687, July 1978. 

47 



12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

Lake, Mark S.; and Wu, K. Chauncey: Preliminary Investigation of Stability of a 
Fin-Stiflened Slender Strut. NASA T M  4034, April 1988. 

Donnell, Lloyd Hamilton: Beams, Plates, and Shells. McGraw-Hill Book Co., 
1976. 

Timoshenko, Stephen P.; and Gere, James M.: Theory of Elastic Stability, Second 
ed. McGraw-Hill Book Co., 1961. 

Murray, N. W.: Introduction to the Theory of Thin- Walled Structures. Clarendon 
Press, 1984. 

Brush, Don 0.; and Almroth, Bo 0.: Buckling of Bars, Plates, and Shells. 
McGraw-Hill Book Co., 1975. 

Wittrick, W. H.: General Sinusoidal Stiffness Matrices for Buckling and Vibration 
Analyses of Thin Flat- Walled Structures International Journal of Mechanical 
Sciences 1968, Vol. 10, pp. 949-966. 

Wittrick, W. H.; and Williams, F. W.: Buckling and Vibration of Anisotropic or 
Isotropic Plate Assemblies Under Combined Loadings. International Journal of 
Mechanical Sciences 1974, Vol. 16, pp. 209-239. 

Stroud, W. Jefferson; and Anderson, Melvin S.: PASCO: Structural Panel 
Analysis and Sizing Code, Capability and Analytical Foundations. NASA TM- 
80181, November 1981. 

Anderson, Melvin S.; Stroud, W. Jefferson; Durling, Barbara J.; and Hennessy, 
Katherine W.: PASCO: Structural Panel Analysis and Sizing Code, User's 
Manual. NASA TM-80182, November 198 1 .  

Roark, Raymond J.; and Young, Warren C.: Formulas for Stress and Strain, Fifth 
ed. McGraw-Hill Book Co., 1982. 

Mikulas, Martin M., Jr.; and Bush, Harold G.: Design, Construction and 
Utilization of a Space Station Assembled from 5-Meter Erectable Struts. NASA 
TM-89043, October 1986. 

Collins, Timothy J.; and Fichter, W. B.: Support Trusses for Large Precision 
Segmented Reflectors: Preliminary Design and Analysis. NASA TM-  10 1560, 
March 1989. 

Burden, Richard L.; and Faires, J. Douglas: Numerical Analysis, Third ed. PWS- 
Kent Publishing Co., 1985. 

48 



APPENDIX A 
DERIVATION OF STIFFENER CROSS-SECTIONAL INERTIAS 

The cross-sectional moment of inertia components of the curved stiffener can be 
calculated for arbitrary stiffener dimensions and deployment angle by performing the 
appropriate double integrals. The general expressions for these integrals are given in Eq. 
A.l .  

Before evaluating these integrals, it is necessary to define a convenient coordinate 
system and appropriate limits for the integrals. Due to the circular curvature of the stiffener 
cross section, it is convenient to use a polar coordiante system centered at the stiffener's 
center of curvature. Fig. A.l shows a stiffener of arc angle v a t  the deployment angle @, 

with the column cross section oriented such that the stiffener's center of deployment 
rotation lies along the global y axis. This center of deployment rotation lies along the 

middle surface through the stiffener's thickness and, for this study, is defined to be a 
distance away from the edge equal to half the stiffener thickness ( (rp-r0)/2 ). Integration in 
polar coordinates will be conducted relative to the local coordinate system (x', y') which is 
centered at the global coordinates (x,,y,). Eq. A.2 gives the expressions for these global 
coordinates. 
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Figure A. 1. Cross-sectional parameters for stiffener moments of inertia. 

As seen in Fig. A. 1, a differential area element can be defined at any angle, 0, and 
radius, r,  relative to the local coordinate system. Also, the global coordinates of this are3 
element are easily defined as in Eq. A.3. 

Now it is possible to express the explicit polar form of Eq. A.l. These expressions 
are given in Eq. A.4. Performing these integrations will result in Eq. 2.3 and Eq. 2.4 
given in the main text. 

(r,, + rp[l  - cos($))/2 + rsin(8) rdrd6 

(A.4) 
isx = 1.: 
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APPENDIX B 
ILE;SIGN OF a I F F E N E D  U L U M N  CODE (DESTCO) 

Select value of stiffener 
arc height 

The computer program DESTCO was developed for the design of stiffened columns 
using design rules developed in the present study. The program was written and executed 
using a FORTRAN 77 compiler on a desk-top personal computer. Fig. B.l presents a 
flow chart which explains program execution, and following is a program listing. 

- 

Interactive data input w 

c I 

L 

Calculate deployment angle, inertia, 1 
area, and radius of gyration 

Figure B. 1. Flow chart of DESTCO program. 

SUBROUTINE INERTIA 
Calculatc deployment angle 

and corresponding maximum 
inertia for cross section 
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Stare minimum mass 
dcsign information 

I 
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I 
L A Generate comparison mass and buckling load data I 



c ..................................................................... 
C 
C D E S T C O  
C 
C THIS IS A PROGRAM TO GENERATE THE DESIGN CURVE FOR A LATER- 
C ALLY STIFFENED SLENDER COLUMN. THE CROSS SECTION INCLUDES A 
C CIRCULAR TUBE WITH THREE CYLINDRICAL OPEN SECTIONS FUN- 
C CTIONING AS DEPLOYABLE STIFFENERS WHICH INCREASE THE BENDING . 
C STIFFNESS OF THE SECTION. 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

INPUT QUANTITIES INCLUDE THE CORE TUBE DIMENSIONS (INNER RAD- 
IUS, OUTER RADIUS, AND LENGTH), A MAXIMUM VALUE OF THE BUCK- 
LING LOAD IMPROVEMENT RATIO TO BE STUDIED, AND AN INTEGER 
NUMBER OF EQUALLY SPACED STIFFENER ARC HEIGHTS TO BE ANALYZED. 

THE PROGRAM BEGINS BY CALCULATING ALLOWED STIFFENER THICKNESS 
FOR A SERIES OF STIFFENER ARC HEIGHTS (IE, 30, 60, 90, AND 120 
DEGREES) USING A RECURSIVE APPLICATION OF A DESIGN EQUATION 
DERIVED FROM THE STABILITY OF AN INFINITELY LONG CURVED PANEL 
CLAMPED ALONG ONE EDGE AND FREE ALONG THE OTHER. THIS PRO- 
CEDURE REQUIRES CALCULATING THE DEPLOYED INERTIA OF THE 
CROSS-SECTION AND THE CORRESPONDING OPTIMUM VALUE OF THE FIN 
DEPLOYMENT ANGLE FOR INITIAL APPROXIMATIONS OF THE CROSS-SECT- 
IONAL GEOMETRY. SUBSEQUENT APPROXIMATIONS ARE THEN DERIVED 
FROM THE PREVIOUS VALUES. 

FINALLY, THE SET OF INERTIAS AND AREAS ARE NORMALIZED TO THE 
INERTIA AND AREA OF CORE TUBE SO THAT A DATA FILE CAN BE GEN- 
ERATED FOR A PLOT OF NORMALIZED WEIGHT INCREASE VS. NORMALIZED 
BUCKLING LOAD IMPROVEMENT. 

INPUT VARIABLES ARE AS FOLLOWS: 

RI = INNER RADIUS OF TUBE 
RO = OUTER RADIUS OF TUBE (INNER OF STIFFENER) 
L = LENGTH OF COLUMN 
PMAX = RATIO OF MAXIMUM DESIGN BUCKLING LOAD 

NARC = NUMBER OF STIFFENER ARC HEIGHTS 
TO THAT OF THE CORE TUBE 

TO BE ANALYZED 

OTHER INTERNAL VARIABLES ARE AS FOLLOWS: 

PHI = DEPLOYMENT ANGLE OF STIFFENERS 
PSI = ARC HEIGHT OF STIFFENERS 
RP = OUTER RADIUS OF STIFFENERS 

............................................................... 
REAL IX, ICORE, INORM, L 
CHARACTER"1 TAB 
DIMENSION T (10) , PDESIGN (lo) , WDESIGN (lo) , P ( 5 , s )  , W (5 ,5)  
TAB=Z'09' 
IOUT=l 
IDAT=2 
WRITE (*,I) 
WRITE (*,2) 
OPEN(IOUT,FILE='STIFF. STRUT DESIGN.OUT',STATUS='NEW') 

.. 
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OPEN(IDAT,FILE='STIFF. STRUT DESIGN.PLT',STATUS='NEW') 
1 FORMAT (5X,28HDATA WILL BE SENT TO PRINTER) 
2 FORMAT (5X,58HPLOT DATA WILL BE ECHOED TO FILE "STIFF. STRUT DE 

5 CONTINUE 
XSIGN. PLT") 

c 
C READ IN DATA AND ECHO TO OUTPUT FILE 
C 

10 FORMAT (SX, 32HINPUT INNER RADIUS OF TUBE (IN) : ) 
20 FORMAT (5X,32HINPUT OUTER RADIUS OF TUBE (IN):) 
30 FORMAT (SX,28HINPUT LENGTH OF COLUMN (IN) : )  
40 FORMAT (5X,48HINPUT MAXIMUM STRUT-TO-CORE BUCKLING LOAD RATIO:) 
50 FORMAT (5X,48HINPUT NUMBER OF ARC HEIGHTS TO BE STUDIED (<lo):) 
60  FORMAT (10X165H************************************************ 
I*****************) 

7 0  FORMAT ( lox ,  1H*, 63X,lH*) 
80 FORMAT (10X165H* GENERAL DESIGN OF A LATERALLY STIFFENED SL 

90 FORMAT (lox, 1H*, 63X, 1H*) 
1ENDER COLUMN * )  

100 FORMAT (lOX,65H****************X"******************************** 
..................... 

110 FORMAT (9X,24HINNER RADIUS OF TUBE = ,F9.4,5H (IN)) 
120 FORMAT (9X,24HOUTER RADIUS OF TUBE = ,F9.4,5H (IN)) 
130 FORMAT (9X,24HLENGTH OF TUBE = ,F9.4,5H (IN)) 
140 FORMAT (9X,24HMAX. BUCKLING RATIO = ,F9.6) 
150 FORMAT (9X,24HNUMBER OF ARC HEIGHTS = ,141 

WRITE (*,lo) 
READ (*,*) RI 
WRITE (*,20) 
READ (* ,*)  RO 
WRITE (*,30) 
READ (*,*) L 
WRITE (*,40) 
READ (*,*) PMAX 
WRITE (*,SO) 
READ (* ,*)  NARC 
WRITE (IOUT, 60) 
WRITE (IOUT,70) 
WRITE (IOUT, 80) 
WRITE (IOUT, 90) 
WRITE (IOUT, 100) 
WRITE (IOUT,110) RI 
WRITE (IOUT,120) RO 
WRITE (IOUT,130) L 
WRITE (IOUT, 140) PMAX 
WRITE (IOUT, 150) NARC 
PI=ACOS (-1.0) 

C 
C DETERMINE THE INERTIA AND AREA OF THE CORE TUBE 
C 

ICORE=PI* ( (RO**4) - (RI**4) ) / 4 .  
ACORE=PI*((RO**2)-(RI**2)) 
PSIINC=PI/ ( 3 "  (NARC-1) ) 
PDESIGN(1)=1.0 
WDESIGN ( 1 ) =1.0 

C 
C DETERMINE SET OF ALLOWABLE THICKNESSES USING A RECURSIVE 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

APPROACH. THE FIRST STEP DETERMINES THE ALLOWED THICKNESS 
BASED ON A FIRST GUESS AT THE RADIUS OF THE STIFFENER AND THE 
RADIUS OF GYRATION OF THE STRUT EQUAL TO THE OUTER RADIUS OF 
THE CORE. THE SECOND AND SUBSEQUENT STEPS REFINE THE ESTIMATE 
OF THE ALLOWED THICKNESS USING VALUES FOR THE STIFFFENER RADIUS 
AND RADIUS OF GYRATION BASED ON RESULTS FROM THE PREVIOUS GUESS. 
ITERATION IS HALTED WHEN THE THICKNESS CONVERGES TO .5 PERCENT 
( .  005 )  . AT EACH ITERATION STEP, SUBPROGRAM "INERTIA" IS CALLED 
TO CALCULATE THE OPTIMUM DEPLOYMENT ANGLE FOR THE GIVEN DESIGN. 

THE DESIGN EQUATION COMES FROM EQUATING THE EULER STRESS 
OF THE COLUMN TO THE LOCAL BUCKLING STRESS OF AN INFINITELY 
LONG CURVED STIFFENER, CLAMPED ALONG ONE EDGE AND FREE ALONG 
THE OTHER. 

DO 4 0 0  I=l,NARC 
ICOUNT=O 

RHO=RO 
RFIN=RO 
T (I) = O  . 0 

200 CONTINUE 

PSI=PSIINC* (1-1)t(P1/3.) 

C 
C BEGIN ITERATION TO DETERMINE ALLOWED THICKNESS FOR THE 
C GIVEN ARC HEIGHT. 
C 

ICOUNT=ICOUNT+l 
TMl=T (I) 
T(I)=RFIN* (110.* ((RHO/L)**2)t.O00974*PSI-.O00669) 
RP=ROtT (I ) 
CALL INERTIA (RI , RO, RP , IX, PHI, PSI ) 

C 
C 
C 

C 
C 
C 
C 

CALCULATE STRUT AREA AND NEW RADIUS OF GYRATION 

ATUBE=PI* ( (RP**2) - (RO**2) ) * (PSI*3) / (PI*2) +ACORE 
RHO=SQRT (IX/ATUBE) 
RFIN=RO+T (I) / 2  

TEST FOR CONVERGENCE AND CHECK THE MAXIMUM ITERATION 
COUNTER. 

IF (ICOUNT.EQ.1) GO TO 200 

TEST=ABS (TEST) 
IF (ICOUNT.GE.20) GO TO 250 
IF (TEST.GT.0.005) GO TO 200 

TEST= (T (I) /TM~) -1.0 

250 CONTINUE 
J=I+1 

WDESIGN (J) =ATUBE/ACORE 

PSIDEG=PSI*180/PI 

PDESIGN ( J) =IX/ICORE 

PHIDEG=PHI*~~~/PI 

C 
C PRINTOUT INERTIA AND AREA 
C 
260 FORMAT (/12X,21HARC HEIGHT OF FIN = ,F8.3,10H (DEG) 1 
270 FORMAT (/13X, ZOHTHICKNESS OF FIN = , E12.5,SH (IN) ) 

54 



280 FORMAT 

290 FORMAT 
300 FORMAT 

XDEG) ) 

WRITE 
WRITE 
WRITE 
WRITE 
WRITE 

400 CONTINUE 
C 

(5X,28HOPTIMUM DEPLOYMENT ANGLE = ,F8.3,10H ( 

(27X,6HIX = ,E12.5,7H(IN**4) 
(25X,8HAREA = ,E12.5,7H(IN**Z) / )  
IOUT, 260) PSIDEG 
IOUT, 270) T (I) 
IOUT, 280) PHIDEG 
IOUT,290) IX 
IOUT, 300) ATUBE 

C ENTER LOOP TO DETERMINE A SERIES OF STRUT DESIGNS 
C FOR PSI=O, 30, 60, 90, 120 DEGREES. THIS DATA CAN 
C BE USED TO PLOT FOR COMPARISON WITH THE DESIGN 
C CURVES ALREADY GENERATED. BASE THE MAXIMUM THICKNESS 
C ON AN APPROXIMATION TO A BUCKLING LOAD = (PMAX*PCORE) 
C 

TINCs (PMAX-1. ) *ICORE/ (52.67* (RO**3) 
TFIN=TINC 
PSIINC=PI/6. 

DO 500 I=1,5 
P (I,l)=l. 0 
w (I, 1)=1.0 

500 CONTINUE 
DO 520 J=2,5 
RP=RO+TFIN 
P (I, J)=PI* ( (RP**4) -(RI**4) ) / (4"ICORE) 
W (1, J)=PI* ( (RP**2) -(RI**2) ) /ACORE 

DO 510 I=2,5 
PSI=PSIINC* (1-1) 
CALL INERTIA (RI,RO,RP, IX,PHI,PSI) 

ATUBE=PI* ( (RP**2) - (RO**2) ) * (PSI*3) / (PI*2) 
P (I, J) =IX/ICORE 

X + ACORE 
W (I, J) =ATUBE/ACORE 

510 CONTINUE 

520 CONTINUE 
TFIN=TFINtTINC 

C 
C WRITE NORMALIZED INERTIAS AND AREAS TO OUTPUT 
C DATA FILE. 
c 

DO 550 
WRITE 

530 FORMAT 
540 FORMAT 
550 CONTINUE 

N=NARCt 1 
DO 560 
WRITE 

560 CONTINUE 
STOP 
END 

I=l, 5 

(10 (F12.6,Al) 1 
(F12.6,Al, F12.6) 

IDAT,530) (W(K,I) ,TAB,P(K,I) ,TAB,K=1,5) 

I=1,N 
IDAT, 5 4 0 ) WDESIGN ( I ) , TAB, PDES IGN ( I ) 

c. .................................................................... 
C 
C SUBROUTINE INERTIA CALCULATES THE DEPLOYMENT ANGLE, PHI 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

WHICH GIVES THE IMUM INERTIA FOR THE GIVEN RADII 
(RI,RO,RP). USING THIS VALUE OF PHI, IT CALCULATES THE 
AREA MOMENT OF INERTIA OF THE SECTION 

INPUT VARIABLES ARE AS FOLLOWS: 

RI = INNER RADIUS OF TUBE 
RO = OUTER RADIUS OF TUBE 

RP = OUTER RADIUS OF STIFFENERS 
PSI = ARC HEIGHT OF STIFFENERS 

(INNER RADIUS OF STIFFENERS) 

OUTPUT VARIABLES ARE AS FOLLOWS: 

IX = MAXIMUM MOMENT OF INERTIA FOR CROSS-SECTION 
PHI = DEPLOYMENT ANGLE FOR MAXIMUM INERTIA 

c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
REAL IX 
PI=ACOS (-1.0) 
Al=(PSI/8.0) * (RP**z-R0**2) * ( (RPtRO) ""2) 
A2=(RP**3-R0**3) * (RPtRO) /3.0 
A3=3.0*PSI*(RP**4-RO**4)/8.OtPI*(RO**4-R1**4) /4.O 

CALCULATE OPTIMUM DEPLOYMENT ANGLE 

BETA=(PI/2.)-(PS1/2.)tZ.*ATAN( (RP-R0)/(2.*(RP+RO))) 
PHI=ATAN ( (A2*SIN (PSI/2. ) *COS (BETA) 

IF (PHI.LT.0.) THEN 
PHI=PHItPI 
END IF 

/ 
x (A2*SIN (PSI/2. ) *SIN (BETA) -AI) 

DETERMINE INERTIA OF CROSS SECTION 

THETAE=PI/2.otPHI+2.o*ATAN((RP-RO)/(~.o*(RP+Ro))) 
IX=3.*A1* (l.O-COS(PHI))t6.*A2*SIN(PHI/2.)*SIN(PSI/~.~ 

RETURN 
END 

X*COs((PHItPSI-2.*THETAE)/Z.)tA3 
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APPENDIX C 
VIBRATION FREQUENCIES OF THE STIFFENED COLUMN 

Local vibration of truss members is a concern in the design of large space structures 
because of the desire to avoid interaction between local vibration modes and global 
vibration modes as well as active attitude control systems. Therefore, it is necessary to 
determine the effect deployable stiffeners have on the vibration frequency of the column in 
order to throughly evaluate their usefulness for application to large space structures. 

The linearized expressions for column cross-sectional area and inertia given in Eq. 
3.3 and 3.4 can be used to derive an approximation for the fundamental vibration frequency 
of the column. From this, an expression can be derived for percent increase in vibration 
frequency as a function of increase in mass and buckling load. Thus the general stiffened 
column design curves given in Fig. 3.7 can be amended to include information on vibration 
frequency increase. 

The vibration frequency of interest corresponds to the half-sine wave lateral vibration 
of a pin-pinned column. The formula for this frequency is given in Eq. C-1 (21). 

where p is defined as the mass density of the material. 

For the purpose of determining percent increase in vibration frequency, it is sufficient 
to consider the leading parenthetic phrase in Eq. C.l to be a constant. Thus the vibration 
frequency is simply proportional to the square-root of the ratio of moment of inertia to area. 
Inserting Eq. 3.3 and 3.4 into Eq. C.l and accounting for the additional deployment 
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mechani mma s, the following -quation 

~ ~ 

arise to describe the unstiffened (initial) vibration 
frequency (0,) and the stiffened vibration frequency (0). 

oo=cdE = c  

where: 

The percent increase in vibration frequency from that of the ustiffened column is then 
simply: 

=7-] I + Mm + tJtcc 

Eq. C.4 can be expressed in terms of the percent increase in column buckling load by 
noticing APcr = 4ts/tcc, as shown in Chapter 3. This resulting expression is given in Eq. 
c.5. 

- 1  I +Mu 
I + M, + .25Mcr 

Setting do to any constant value in Eq. C.5 results in an equation which is linear in 
Per. Furthermore it is possible to superimpose these lines of constant do over the general 
stiffened column design curves presented in Fig. 3.7. Fig. C. 1 presents the resulting plot. 
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Figure C. 1. General stiffened column design curves with vibration frequency increase. 

Notice that the line corresponding to the thickened central column is also the line for 
which there is zero percent increase in vibration frequency. This result follows from Eq. 
C.2 in which it is shown that the vibration frequency of a thin walled circular column is 
independent of wall thickness. As expected, there is an increase in vibration frequency 
with the addition of deployable stiffeners just as there is an increase in column buckling 
load. However, it is important to note that the magnitude of increase in vibration frequency 
is typically much less than that for buckling load (e.g. approximately one order of 
magnitude less for a mechanism mass equal to 50%). 
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