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Project Summary 
The principal scientific finding of the MECA study project is that Mars had a sub- 

stantially “wetter” early history than previously thought. This realization is derived 
from several lines of evidence, including various geological arguments and geochemical 
models based on the composition of the SNC meteorites (which many investigators 
believe may be samples of Mars). 

The research suggests that Mars has outgassed the equivalent of a global Ocean of 
water 0.5-1.0 km deep. Previous estimates, based on the low measured abundance of 
atmospheric rare gas, suggested an inventory as small as 10-100 m. The discrepancy 
between these estimates is resolved if consideration is given to the various loss processes 
that may have affected the early atmosphere, such as hydrodynamic escape and atmos- 
pheric erosion by large impacts. 

Where does the surviving water reside? The only visible reservoirs are the martian 
polar caps and atmosphere, but their combined inventories fall far short of the sus- 
pected total. The “missing” water may be stored within the impact-generated regolith. 
Geologically reasonable estimates of the regolith’s total pore volume indicate that it 
may be sufficient to store a global Ocean of water as much as 1.5 km deep. 

cratered terrain suggests that the early martian climate may have differed markedly 
from that of today. Calculations indicate that an atmosphere of 1-5 bars of carbon 
dioxide would raise temperatures high enough to permit the flow of liquid water over 
the martian surface. Such conditions may have characterized the first half billion years 
of the planet’s climatic history, only to end as weathering processes depleted the atmos- 
pheric inventory of carbon dioxide faster than it could be replenished by global volca- 
nism. If the early climate of Mars was indeed warm and wet, it clearly reopens the possi- 
bility that the planet may have evolved indigenous life. 

The diurnal, seasonal, and longer-term cycles of atmospheric water, carbon dioxide, 
and dust were also addressed during the MECA project. Evidence of the cyclical nature 
of the martian climate is visible in the layered stratigraphy of the perennial polar caps. 
This record is believed to reflect obliquity-driven changes in the formation of the sea- 
sonal carbon dioxide frost caps and the intensity of global dust storms. Complicating 
our understanding of this process is the recent discovery that the albedo of the seasonal 
caps is insolation dependent, a behavior that appears to explain why the current south- 
ern seasonal cap is able to survive throughout the southern summer. 

As an experiment in the management of a complex scientific program, MECA must 
be considered a success. Of particular note were the various MECA workshops, which 
brought together scientists of diverse backgrounds to discuss issues of common interest. 
The cross-discipline education and cooperative efforts that resulted from these meet- 
ings were major factors in the success of the program. Because many important issues in 
Mars climate research remain unresolved, we strongly recommended that a mechanism 
be established to continue this program of focused workshops. Given the success of this 
approach, we believe that the investigation of other complex problems in planetary 
science would benefit from the MECA model of science management. 

’ 

The presence of integrated networks of small valleys throughout the planet’s ancient 
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Science Report 
INTRODUCTION TABLE 1. MECA workshops. 

Mars has long fascinated scientists and the public. As 
a result, it has been the target of a number of ambitious 
spacecraft missions, the most recent being that of Vikings 
1 and 2 in 1976. Following an initial period of intensive 
study, it became clear by the late 1970s that the Viking 
data could still yield important clues about the nature and 
evolution of Mars. In recognition of this potential, NASA 
established the Mars Data Analysis Program (MDAP) in 
1979 to coordinate the funding and direction of Mars 
research. The first major investigation supported by MDAP 
was a focused three-year study project on the origin and 
evolution of martian volatiles. The project, entitled “Mars: 
Evolution of its Climate and Atmosphere” (MECA), was 
initiated in 1984 under the direction of the Lunar and 
Planetary Institute. 

In many respects, MECA was an experiment in science 
management. It combined elements of both a project 
approach and an approach involving research by independ- 
ent investigators. From the project perspective, specific 
goals and objectives were defined, with administrative and 
logistical support provided through a central organization, 
the Lunar and Planetary Institute. However, investigators 
were funded individually and operated independently within 
the context of the study. To insure broad-based 
involvement, participation in the study project was open 
to all investigators who had research interests in the volatile 
and climate history of Mars, regardless of funding source. 

At the first meeting of the project, held in the spring 
of 1984, a science steering committee was elected and 
general guidelines for the project were defined. Three broad 
areas of study were identified: (1) the bulk chemical 
composition and outgassing history of Mars, (2) surface 
processes and climate history, and (3) seasonal cycles. 

a focus for research. A program of workshops was then 
organized to provide cohesion to the project and ensure 
that the project’s objectives would be addressed (Table 1). 
The results and ideas stimulated by this approach opened 
avenues of research that were unforeseen at the project’s 
outset. 

In this report, we review the scientific highlights of the 
MECA study project and discuss some of the important 
issues in martian climate research that remain unresolved. 

I 

I Within each area key questions were identified to provide 

Name of Workshop Date 

Water on Mars December 1984 

Dust on Mars I 

Clouds on Mars I 

Evolution of the Martian Atmosphere 

Dust on Mars I1 

Special Session on Martian Geomorphology 
and Its Relation to Subsurface Volatiles at 
LPSC XVII March 1986 

MECA Symposium on Mars: The Evolution of 
Its Climate and Atmosphere 

Atmospheric H2O Observations of the Earth 
and Mars September 1986 

Clouds on Mars I1 

Polar Processes on Mars 

Dust on Mars I11 

February 1985 

April 1985 

August 1985 

February 1986 

July 1986 

June 1987 

May 1988 

September 1988 

WATER ON MARS 

The principal conclusion of the MECA study project 
is that Mars had a substantially “wetter” history than 
previously thought. Although this conclusion is not 
accepted by all investigators, strong evidence has been 
rallied from several independent lines of study, including 
various geological arguments and geochemical 
considerations. 

Geological Evidence for Abundant Water 

With an atmospheric surface pressure of 6.1 mbar and 
a mean equatorial temperature of 220 K, the present 
martian climate precludes the stable flow of liquid water 
on the surface. However, there is evidence that a far 
different climate may have existed in the past. Integrated 
networks of small valleys, which resemble terrestrial runoff 
channels, dissect the planet’s ancient (-4 b.y. old) heavily 
cratered terrain, an indication that the early climate may 
have differed markedly from that of today. 

As discussed by Caw (1986), the clearest evidence of 
past water is provided by the outflow channels, which are 
broad, scoured depressions hundreds of kilometers long that 

PRECEDING PAGE BLANK NOT FTLMED 



4 M E C A F i d R e p o r t  

exhibit braided and streamlined forms within their beds. 
Most outflow channels originate within the cratered 
highlands just north of the great equatorial canyon system 
of Valles Marineris. The channels emerge abruptly from 
areas of collapsed and disrupted terrain, the apparent result 
of a massive and catastrophic release of groundwater. Carr 
estimates that the volume of water required to carve the 
channels was equivalent to a global Ocean some 50 m deep. 
Channel ages, inferred from the density of superposed 
craters, indicate several episodes of flooding; the oldest 
postdate most of the valley networks, while the youngest 
apparently formed within the last 1 to 2 b.y. 

There is little evidence of the fate of the water that 
eroded the channels. Initial examination of Mariner 9 and 
Viking images failed to reveal any indication of catchment 
areas. Their absence was attributed to the rapid vaporization 
of flood waters under conditions of low atmospheric 
pressure. However, the assumption that the flood waters 
were short -lived has been challenged recently by the 
discovery of possible remnants of ancient shorelines and 
sedimentary deposits in the low-lying northern plains. The 
evidence, derived from analysis of Viking images, suggests 
that large lakes and possibly even a shallow sea may have 
developed at the confluence of the major channels Uons, 
1984; Scott and Tamka, 1986; Parker et al., 1987; Greeky 
and Guest, 1987). 

Ancient shorelines and sedimentary deposits are not the 
only evidence that sizable bodies of water may have once 
existed on Mars. Horizontal, layered deposits up to 5 km 
thick are found in several branches of Valles Marineris. 
McCauky (1978) argued that these deposits are lake 
sediments that accumulated during an early epoch. Nedell 
et al. (1987) developed this idea further, suggesting that 
the lakes were formed when extensive groundwater seepage 
filled several of the enclosed canyons. 

Given the evidence of past water and the desiccated 
appearance of Mars today, the question arises: Where has 
all the water gone? Spacecraft measurements of the 
hydrogen escape flux from the martian atmosphere 
(Anderson and Hord, 1971) and kinetic theory calculations 
(Walk ,  1977) indicate that Mars has lost -3 m of water 
by photodissociation and exospheric escape over the course 
of its geological history. Thus, most of the planet’s initial 
inventory of water should still reside in one of three 
reservoirs: the atmosphere, the perennial polar caps, or 
the regolith. The inventories of the first two reservoirs 
are readily assessed. Data obtained by the Viking Mars 
Atmospheric Water Detectors (MAWD) revealed that if 
all the water vapor present in the martian atmosphere were 

to condense on the surface it would form a global layer 
only 15 microns thick (Farmer et al., 1977). Similarly, the 
dimensions of the perennial polar caps are consistent with 
a quantity of water no greater than a global Ocean several 
tens of meters deep. The total size of these two reservoirs 
falls significantly short of the planetary inventory inferred 
from the abundant geomorphic evidence of past fluvial and 
periglacial activity (Caw, 1986). This evidence suggests that 
a considerable amount of water now resides within the 
regolith . 

How much water can the martian regolith hold? As on 
the Moon, the intense bombardment phase of early martian 
geologic history is thought to have resulted in the 
production of a blocky, porous megaregolith that extends 
to considerable depth (Fanuk, 1976; Caw, 1979). Studies 
of the seismic characteristics of the lunar crust suggest that 
it is brecciated to a depth of about 20 km. Gravitationally 
scaling this result to Mars suggests that the martian crust 
may retain significant porosity to a depth of 10 km and 
may possess a total pore volume sufficient to store a global 
layer of water 0.5-1.5 km deep (Clifford, 1987a). 

The possibility that the regolith represents a sizable 
volatile reservoir is supported by a long list of martian 
landforms whose morphology has been attributed to the 
presence of subsurface water (Rossbacher andJwdson, 1981; 
Carr, 1986). Many of these features resemble cold-climate 
features found on Earth; however, in other instances the 
morphologies appear unique to Mars. Of particular interest 
are rampart craters. Unlike craters found on the Moon, 
Mercury, and other bodies of the solar system, the ejecta 
surrounding many martian craters appears to have been 
emplaced in part as a ground-hugging fluidized flow. This 
fluidized appearance has led many investigators to conclude 
that rampart crater ejecta morphology originates from an 
impact into a water- or ice-rich crust (Caw et al., 1977; 
Gault and Greeky, 1978; Mouginis-Mark, 1987); however, 
laboratory cratering experiments indicate that interactions 
with the atmosphere may also play a role (Schultz and Gault, 
1979). If the water impact interpretation is correct, then 
the number and distribution of rampart craters indicates 
that the inventory of subsurface water on Mars, at the 
time of impact, was substantial. 

Geological estimates of the amount of water that Mars 
has degassed have varied over a wide range. By mapping 
the extent and thickness of the planet’s volcanic units, 
G e e 4  (1987) has estimated that about 46 m of water 
may have been released by volcanism alone, given lava 
volatile contents comparable to Earth‘s. Can (1986) has 
taken a different approach. Based on his estimate of the 
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volume of water required to erode the outflow channels 
and the likely extent of its original source area, he estimates 
a global inventory of water in excess of 500 m, assuming 
the source region was representative of the rest of the 
planet. 

Mars Volatile Inventory: 
Geochemical Considerations 

Most early attempts at estimating the volatile inventory 
of Mars were based on comparisons of the relative 
abundance of various atmospheric constituents (e.g., the 
noble gases, carbon, and nitrogen) with the corresponding 
values found on Earth. These comparisons were made in 
the belief that they provided an accurate indication of 
the relative extent of outgassing that Mars had experienced. 
However, the inventory of water predicted by these models 
was invariably small (100 m or less) and clearly at odds 
with the geological evidence. This conflict may at last be 
reconciled as a result of knowledge gained from an unlikely 
source: the Shergotty, Nakhla, and Chassigny (SNC) 
meteorites. 

The SNCs are a group of eight stony meteorites that 
share at least two unique characteristics: a remarkably 
youthful crystallization age (-1.3 b.y.) and an embedded 
gas component that provides persuasive evidence of their 
origin. Based on age alone, the SNCs have attracted 
considerable attention, for they are half as old as the next 
youngest extraterrestrial sample found to date. Such recent 
crystallization requires a parent body that was geologically 
active for far longer than might be reasonably expected 
of the Moon or any asteroid. This consideration narrows 
the field of dynamically reasonable candidates to just one: 
Mars (Wasson and Wetherill, 1979; Wood and Ashwal, 1981). 

Virtual confirmation that Mars is the parent body of 
the SNC meteorites has come from the analysis of gas 
trapped within their shock-induced melt. The gas has an 
isotopic composition that is strikingly similar to the 
atmospheric samples analyzed by the Viking Landers 
(Bogard, 1982; Pepin, 1987). This similarity extends to an 
observed enrichment in "N, a compositional characteristic 
that is otherwise unique to Mars (Becker and Pepin, 1984). 

As probable samples of Mars, the SNCs provide clues 
to the planet's bulk composition and geochemical history 
(Dreibus and Wanke, 1985; McSween, 1985). When 
normalized to the abundances of such refractory elements 
as Si and La, the SNC meteorites are found to be several 
times richer in the moderately volatile elements (e.g., Na, 
K, and Br) than is generally inferred for Earth (Dreibus 

and Wiinke, 1985). This finding provides further support 
for the belief that Mars is a volatile-rich planet. 

Although a high volatile inventory appears difficult to 
reconcile with the low measured abundance of atmospheric 
rare gas, the discrepancy is readily explained if the martian 
atmosphere experienced a substantial mass loss early in its 
history. There are at least three processes by which such 
a loss may have occurred: hydrodynamic escape, atmos- 
pheric erosion by energetic impacts, and loss via the solar 
wind. 

Hydrodynamic escape, or the rapid thermally-driven loss 
of hydrogen from a planetary atmosphere, was probably 
most effective during the first few hundred million years 
of solar system history, when the atmospheres of the 
terrestrial planets may have still possessed a significant solar 
component and when the sun's ultraviolet output was 
1-2 orders of magnitude greater than it is today. One 
consequence of a vigorous flow of escaping hydrogen would 
be the enhanced loss of other light atmospheric constit- 
uents. As a result, an atmosphere that has undergone this 
process should exhibit a noticeable mass-fractionation of 
the lighter species; this is precisely what is observed in 
the present-day noble gas pattern of Mars (Hunten et al., 
1987; Pepin, 1987). 

At least two other processes may have contributed to 
the depletion of a dense early atmosphere. Calculations 
by Watkins and Lewis (1985) suggest that large impacts 
may have blasted a significant portion of the early 
atmosphere off into space. This process would have been 
particularly effective during the heavy bombardment 
period, when large impacting bodies were still prevalent 
in the solar system. The depletion of the atmosphere wa6 
probably further enhanced by the interaction of the solar 
wind with the martian ionosphere. Particle velocities within 
the resulting plasma flow likely exceeded the 5 km sel escape 
velocity of Mars. Calculations indicate that this process, 
alone could have reduced a dense early atmosphere to its 
present state in as little as a billion years (Perez-de-Tejadu, 
1987). 

Thus, lines of geological evidence and geochemical models 
based on the composition of the SNC meteorites suggest 
that a substantial amount of water was present on Mars 
thoughout much of its early history. The apparent 
discrepancy between this large inventory and the low 
measured abundance of atmospheric rare gas is readily 
explained if consideration is given to the various loss 
processes that are likely to have affected the early 
atmosphere. 
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EVOLUTION OF THE CLIMATE 

There are at least two schools of thought regarding the 
climatic conditions that prevailed on Mars at the time of 
valley network formation. The first is based on the idea 
that the networks resulted from precipitation and surface 
runoff (e.g., Masursky et al., 1977), a model that requires 
atmospheric pressures and surface temperatures far higher 
than those of today. Such conditions are possible if Mars 
had an early “greenhouse” environment. Estimates of the 
amount of carbon dioxide necessary to maintain surface 
temperatures above freezing range from 1 to 5 bars 
(Postawko and Kuhn, 1986; Kasting, 1987). Although this 
is two to three orders of magnitude greater than the present 
atmosphere, i t  is well within current estimates of the 
planet’s total volatile budget (Pepin, 1986). 

For the atmospheric inventory of carbon dioxide to 
decline from an initial value of several bars to its present 
level of 6.1 mbar implies a significant depletion process. 
Although atmospheric erosion may have played a role, an 
alternative explanation is that atmospheric carbon dioxide 
reacted with the regolith and liquid water to form carbonate 
rocks (Kahn, 1985; PolIack et al., 1987). The further 
development of the regolith by repeated impacts and 
weathering would have created an additional sink via 
adsorption (Fanale et ai., 1986). These processes may have 
ultimately modified the climate to the point where liquid 
water was no longer stable at the surface. Proponents of 
this model suggest that this transition occurred about 4 b.y. 
ago, marking the end of valley network formation. 

The second school of thought suggests that the early 
climate did not differ substantially from that of today. 
Advocates of this view find no compelling reason to invoke 
a warmer, wetter period to explain the origin of the valley 
networks. Rather, they cite evidence that the primary 
mechanism of small valley formation was groundwater 
sapping (Pieri, 1980; Brakenridge et al., 1985; Baker and 
Partridge, 1986), a process that does not require that liquid 
water exist in equilibrium with the atmosphere. If this 
analysis is correct, then small valleys could develop even 
under current climatic conditions (CUTT, 1983; Brakenndge 
et al., 1985). 

Yet if the early climate were similar to the present one, 
why are valley networks found almost exclusively in the 
oldest terrains? Several explanations are possible. First, it 
has been observed that many small valleys originate on 
or near the rims of large craters. This association led 
Brakenridge et al. (1985) to suggest a genetic relationship 
whereby the impact melt produced during the formation 

of large craters resulted in the establishment of local 
hydrothermal systems within the surrounding ice-rich crust; 
the discharge from these systems then formed the valleys. 
Because only large impacts would have produced sufficient 
melt to establish the necessary hydrothermal activity, the 
decline in valley network formation might then simply 
reflect a decline in the number of large impactors. 

Another possibility has been proposed by Jakosky and 
Carr (1985). They note that prior to the formation of the 
Tharsis volcanic complex, the obliquity of Mars periodically 
reached values as high as 45”. During these times, large 
quantities of water ice may have sublimed from the 
perennial polar caps. As the resulting vapor was transported 
toward the equator, cold nighttime temperatures could have 
led to saturation and snowfall at low latitudes, creating 
a snowpack that grew until the obliquity once again 
declined. Clow (1987) has shown that the absorption of 
sunlight within such a snowpack could lead to transient 
melting, even at pressures and temperatures only slightly 
in excess of those of today. The meltwater so produced 
may have then eroded the valleys. 

An interesting aspect of this proposal is that it is self- 
terminating. With the formation of Tharsis, the maximum 
obliquity of Mars declined to 35”, a figure too small to 
generate the high polar sublimation rates and low-latitude 
snowpack ascribed to the pre-Tharsis climate. Although 
the exact timing is not well constrained, present estimates 
indicate that the age of the Tharsis complex is about 3.5 b.y. 

Finally, recent geological mapping by Masursky et al. 
(1987) indicates that some small valleys may be considerably 
younger than previously thought, although it is unclear 
whether these valleys are volcanic or fluvial in origin. If 
subsequent investigation establishes that the valleys are 
indeed fluvial, then either our understanding of the middle 
course of martian climatic history, or the process involved 
in valley network formation, will likely need revision. 

Geomorphic Evidence of the Current Climate 

Although there is considerable uncertainty regarding the 
conditions that characterized the early martian climate, 
there is little debate that Mars has been cold throughout 
its recent history. Climatic models indicate that surface 
temperatures have probably not varied significantly from 
the current average of 220 K at the equator and 160 K 
at the poles. Atmospheric surface pressures have probably 
also been low, with obliquity-driven polar insolation changes 
causing oscillations between 0.1 to 15 mbar, a variation 
that reflects differences in the amount of carbon dioxide 
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adsorbed in the regolith and stored as ice in the seasonal 
polar caps (Fanale et al., 1982). 

An important characteristic of the current climate is 
that between the latitudes of *35”, mean annual 
temperatures exceed the frost point. Consequently, ground 
ice in this region is unstable and will eventually sublime 
away (Clifford and Hillel, 1983; Fanale et al., 1986). The 
vapor that results from the sublimation of equatorial ground 
ice is ultimately cold trapped at higher latitudes, thus 
enriching the ground ice content of the temperate and 
polar regolith. 

Evidence that the distribution of ground ice conforms 
to this theoretical expectation has been presented by 
Squyres and Caw (1986). They note that while crater rims, 
scarps, and ridges are all sharply defined at equatorial 
latitudes, these features exhibit more rounded and subdued 
profiles closer to the poles. Squyres and Carr propose that 
this “softened” appearance is the result of ice-enhanced 
creep, and they further note that the absence of softened 
terrain near the equator is consistent with the theoretical 
prediction that this latitude band is ice free. 

THE SEASONAL CYCLES OF CARBON DIOXIDE, 
WATER, AND DUST 

The rotational axis of Mars is currently inclined by 25”; 
thus the planet experiences seasonal change; In late fall, 
the reduction in insolation at high latitudes is sufficient 
to cause carbon dioxide to condense from the atmosphere. 
Surface pressure variations monitored by the Viking Landers 
indicate that as much as a fifth of the planet’s atmosphere 
freezes out during winter, forming a seasonal polar cap that 
extends toward the equator as far as 40” latitude. By 
midspring, the measured rise in surface pressure indicates 
that virtually all of the carbon dioxide has returned to 
the atmosphere. 

Because northern winter occurs very near perihelion, 
the seasonal cycle of carbon dioxide is not symmetric 
between the poles. As a consequence of its shorter season, 
the northern carbon dioxide cap is smaller than its southern 
counterpart. In addition, while the northern seasonal cap 
disappears entirely during summer, a remnant of the 
southern seasonal cap persists throughout the year. This 
year-round survival of carbon dioxide has been attributed 
to a polar cap albedo that is significantly higher in southern 
spring than observed during the equivalent season in the 
north (Paige and Ingersoll, 1985). A possible explanation 
for this disparity is that major dust storms on Mars occur 
at a time when the northern cap is forming, making it 

inherently dustier than its southern counterpart. However, 
the Viking mission found that global dust storms did not 
occur every year, and that the seasonal variation of 
atmospheric pressure showed little variability. This 
insensitivity of the carbon dioxide cycle to atmospheric 
dustiness may be related to the greater insolation of 
southern spring, which may cause dust grains entrained 
in the seasonal deposit to become hot and sink into the 
frost, producing a dramatic increase in the seasonal cap’s 
surficial reflectivity (Paige and Kieffer, 1986). 

There is a clear link between the seasonal cycle of carbon 
dioxide and the corresponding cycles for dust and water. 
When the seasonal cap sublimes in southern spring, the 
high mass flm from the cap and the sharp temperature 
contrast across the cap boundary often results in the 
generation of local dust storms. Closer to perihelion, larger 
storms frequently occur at the subsolar point. The actual 
manner in which dust is initially raised by these storms 
is unknown, but several mechanisms have been proposed. 
These mechanisms include impact ejection of dust particles 
by saltating sand grains, the entrainment of dust clumps 
or aggregates by low-speed surface winds, and dust 
fountaining due to the rapid desorption of carbon dioxide 
(Huguenin et al., 1986) or water (Greek and Leach, 1979) 
from the regolith. Dust devils, discovered recently on Viking 
Orbiter images by Thomas and Gierasch (1985), may be 
another mechanism for raising dust into the atmosphere. 

Perihelion dust storms frequently grow to global 
proportions. Two examples of this occurred during the first 
year observed by the Viking mission. However, while global 
dust storms may dominate the planet one year, they can 
be absent the next. This interannual variability may be 
linked to the dust cycle itself. For example, the transport 
of dust into the northern hemisphere during the winter 
of one year may ultimately weaken the Hadley circulation 
in the following year (Haberle, 1986). 

Pollack et al. (1979) have suggested that the fate of 
atmospheric dust is intimately tied to the formation of 
the seasonal polar caps. They propose that airborne dust 
particles serve as nucleation centers for the condensation 
of water ice. As either hemisphere enters the fall season, 
the suspended particles receive an additional coating of 
frozen carbon dioxide. This coating of carbon dioxide makes 
the particles heavy enough to precipitate from the 
atmosphere, contributing to the formation of the seasonal 
polar caps. In the spring, the carbon dioxide sublimes away; 
however, at high latitudes, it leaves behind a residual deposit 
of water ice and dust that adds to the perennial caps. 
Insolation changes, due to axial precession and periodic 



8 MECAFinnlRepxt 

variations in obliquity and orbital eccentricity, may alter 
the mixing ratio of ice to dust in the annual depositional 
layer. Such a scenario appears to explain the origin of the 
numerous horizontal layers that comprise the stratigraphy 
of both caps (Toon et al., 1980). This model of polar 
deposition has a potential problem, however. As noted by 
Jakosky and Martin (1987), Viking infrared observations, 
made at times of peak dust storm activity, indicate that 
the temperature of the polar atmosphere above the 
lowermost scale height often exceeds the frost point of 
carbon dioxide. Clearly, such an observation is difficult 
to reconcile with the condensation mechanism of Pollack 
et al. (1979). As a result, the process of polar deposition 
remains an active area of theoretical investigation. 

Mariner 9 radio occultation data indicates that the polar 
deposits may be anywhere from 1-6 km thick (Dzurisin 
and Blasius, 1975). If the larger estimates are accurate, 
calculations suggest that the deposits may be thick enough 
to undergo geothermal melting at their base (Clifford, 
1987b). In the north the deposits cover an area -lo00 km 
across, while in the south they have a diameter of 
approximately 1500 km. Because few craters with diameters 
greater than 300 m are visible within the deposits, they 
are believed to be relatively young (-10’ years; Pluut et 
al., 1988). Interestingly, elsewhere on the planet there are 
a number of older, but morphologically similar, deposits. 
Though they now appear devoid of ice, Schultz and Lutz 
(1988) have argued that these deposits may be evidence 
that the location of the poles has migrated over time due 
to changes in the planet’s moment of inertia. Such changes 
may have resulted from the filling of impact basins by flood 
basalts and the development of the Tharsis volcanic 
complex. 

Models of the martian atmospheric circulation have been 
constructed to study the transport processes involved in 
the formation of the polar deposits. Since much of the 
redistribution of dust is thought to occur during northern 
winter, most of the research has focused on the circulation 
at this time of year. Constraining the models are Viking 
observations showing a substantial warming of the polar 
atmosphere during the second global dust storm of 1977 
(Martin and Kiefier, 1979). The fact that the warming occurs 
well into the polar night indicates that it must be due 
to atmospheric dynamics, although the precise mechanism 
remains unclear. Early calculations with an inviscid zonally 
symmetric model were unable to reproduce the warming 
(Haberk et ai., 1982). More recently, however, Magalhaes 
(1987) and B a r n  and Hollingsworth (1987) have been able 
to reproduce some of its features, although the mechanisms 

they invoke are fundamentally different. Magalhaes, for 
example, retains zonal symmetry but invokes viscous mixing, 
while Barnes and Hollingsworth employ a planetary wave 
mechanism similar to that involved in the sudden warming 
of the Earth’s stratosphere. 

In each of these approaches, suspended dust particles 
play a key role by altering the thermal drive for atmospheric 
motions. Pollack et al. (1987) have begun to investigate 
this interaction with the aid of a general circulation model. 
Their first results show that the presence of atmospheric 
dust has a substantial effect: strengthening and expanding 
the Hadley circulation, enhancing the thermal tides, and 
changing the character of the midlatitude storms. One 
interesting result of their calculations is the steady increase 
in low-level winds (at the latitudes where dust storms 
originate) as the total dust in the atmosphere increases. 
However, if wind speeds continue to increase, what stops 
the dust-raising process? One possibility is that by increasing 
the atmospheric stability, dust in the atmosphere suppresses 
the turbulence that mixes momentum down to the surface. 
Calculations with a boundary layer model tailored for Mars 
have shown this to be the case, suggesting that a direct 
reduction in wind speeds is not necessary to shut off the 
dust-raising process (Haberk, 1987). 

Water, like dust and carbon dioxide, is cycled seasonally 
between its reservoirs. Measurements from both Earth- 
based instruments and the Viking MAWD experiment have 
shown that the distribution of atmospheric water vapor 
varies both seasonally and latitudinally. This variability is 
thought to result from a combination of atmospheric 
transport and exchange with surface and subsurface 
reservoirs (Jakosky, 1985). The most likely reservoirs are 
surface ice deposits and water adsorbed within the regolith. 
However, because of their similar response to solar 
insolation and because of the uncertain role of atmospheric 
transport, the relative contributions of these two sources 
are difficult to determine. 

Nevertheless, it is known that the residual north polar 
cap is composed of water ice and that it acts as a source 
of vapor during the summer (Kiefjer et al., 1976; Farmer 
et al., 1976). However, is the residual cap the only source 
of water at this season? Recent modeling calculations by 
Haberk and jakosky (1987) suggest that it is not. If it were, 
then the resulting vapor would have to be transported to 
lower latitudes rather quickly; otherwise, the polar regions 
would be saturated and covered with clouds, a condition 
that is not observed. Furthermore, calculations show that 
the high latitude circulation is too weak to move water 
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very far from the cap. Other sources of water must therefore 
exist. 

On an annual and zonally averaged basis, there is a 
gradient in atmospheric water vapor abundance from north 
to south. The cause of this asymmetry has been the subject 
of some debate.Jukosky (1983) has argued that the gradient 
is a reflection of the different composition of the remnant 
caps and that it implies a net north-to-south transport. 
However, asymmetries in global circulation patterns due 
to dust storms (Duuies, 1981) or the seasonal mass flux 
of carbon dioxide to and from the caps uumes, 1986) can 
also set up a gradient in water vapor with no net transport. 
Thus, the mass balance of the caps remains an open issue. 

SUMMARY 

The view of Mars that has evolved during the MECA 
study project is far different from that which existed shortly 
after the Viking mission. Mars is now recognized as a wetter 
and more complicated planet than previously thought; 
however, many questions about its evolution still remain: 

How much water did Mars inherit from the solar nebula, 
and how much of this was ultimately outgassed? Was there 
an additional late-stage input from comets and meteorites? 
What was the primordial composition of the atmosphere 
and to what extent was it affected by hydrodynamic escape 
and impact erosion? What conditions gave rise to the valley 
networks? How much confidence is there in the identi- 
fication of various martian landforms as indicators of 
subsurface volatiles? What variables affect the current 
annual cycles of carbon dioxide, water, and dust? How have 
these cycles varied with time? These are just a few of the 
many questions that investigators have only begun to 
address. 

Some answers may be provided by the further analysis 
of data already in hand; this is the approach of the three- 
year study project that succeeds MECA, entitled “Mars: 
Evolution of Volcanism, Tectonism, and Volatiles.” New 
data anticipated from Mars Observer (the next U.S. Mars 
mission, scheduled for launch in 1992) will be of critical 
importance. But ultimately our ability to answer many of 
the outstanding questions concerning the martian climate 
is contingent on the missions that follow Mars Observer. 
These will likely include rover investigations of the polar 
layered terrains, canyons, volcanos, outflow channels, and 
valley networks; the establishment of a global meteorological 
network to monitor the present climate; seismic and 
electrical investigations to determine the current state and 
distribution of subsurface volatiles; and the return of 

samples to Earth to allow researchers to bring to bear the 
full spectrum of modern analytical techniques to the 
investigation of martian mineralogy, geochemistry, and 
volatiles. 

As an experiment in the management of a major science 
program, MECA must be viewed as a success. Besides 
meeting its scientific goals, the study project clearly 
demonstrated the benefits of an interdisciplinary approach 
to the investigation of a complex and multifaceted topic. 
The success of this strategy was particularly evident during 
the study project’s various workshops, where terrestrial and 
planetary scientists were often brought together from 
seemingly disparate fields. Yet out of these meetings came 
discussions and collaborations that often produced 
significant advances in our understanding of the martian 
atmosphere and climate. The fruit of this effort is likely 
to benefit Mars research for many years to come. 
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- Appendix 1. Origin of MECA 
The Mars Data Analysis Program (MDAP) was initiated 

in FY-79 to provide support for the post-Viking analysis 
of Mars data. I t  was recognized by the scientific community 
that the amount of high-quality data acquired during the 
Primary and Extended Viking Mission (from June 1976 to 
August 1980) constituted a national resource, but that 
adequate support for continued analysis was not available 
from the existing Research and Analysis Program. 

3 .  
4. 

What is the volcano-tectonic history of Mars? 
What are the major components of the atmospheric 

circulation and what processes are responsible for major 
atmospheric phenomena? 

Because of limited resources, the restructured Mars Data 
Analysis Program was unable to support research to address 
all of these questions concurrently. Rather, the approach 

climate first, and to defer the volcanic-tectonic research 
topics to a later time. 

A Space Science and Applications Notice entitled “The 
Volatile Evolution and Climate History of Mars” was 
released May 25, 1983. Proposals were received and 
reviewed later that year. AS stated in the notice: 

1 was to address problems dealing with atmosphere and 

TABLE A l .  Ad hoc Mars Science Working Group, assembled March 
1 1 ,  1982 to define science goals for a Mars data analysis program. 

Members Affiliation 

R. Greeley, Chairman Arizona State University 

J .  Boyce, ex officio 
M. Malin 
R. Batson 
S. Sunders 
S. Squyres 
E. Shoemaker 
L. Wilkening 
V. Baker 
M. Carr 
J .  Pollack 
A. Albee 
F. Fanale 
D. Wilhelms 
D. Wise 
H. Kieffer 

NASA Headquarters 
Arizona State University 

US.  Geological Survey 
Jet Propulsion Laboratory 

Cornell University 
US .  Geological Survey 
University of Arizona 
University of Arizona 

US.  Geological Survey 
NASA Ames Research Center 

Jet Propulsion Laboratory 
University of Hawaii 

US.  Geological Survey 
University of Massachusetts 

US .  Geological Survey 

An ad hoc Mars Working Group (Table Al)  of planetary 
scientists met in 1981 and defined the key science questions 
for Mars that could be addressed with the available data. 
Representatives of the working group then met with NASA 
administrators and presented their findings. Four major 
scientific questions were identified for continued study of 
Mars: 

1. 
2. 

What is the volatile history of Mars? 
What is the climatic history of Mars and how have 

lithosphere/atmosphere/hydrosphere interactions affected 
the evolution of the martian surface? 

Plans for administering this study involve not only 
focusing the effort [science], but also introducing 
a novel method of coordinating the individual 
research tasks which are selected. The approach 
involves the establishment of a working group 
consisting of all investigators whose proposals are 
accepted and, through occasional meetings of the 
group, the coordination of the research efforts. 

The organized approach is not intended to coerce 
any of the participants to redirect their research, 
but rather to take advantage of the collective wisdom 
of the participants to guide the study, to identify 
important areas of research not addressed by 
proposals, and to encourage voluntary responses to 
the identified needs. 

Thus, in addition to having scientific goals, the program 
was also an experiment in science management that, in 
many respects, combined elements of a mission-oriented 
project while retaining the principal investigator’s individual 
goals and responsibilities. 

An organizational meeting of funded investigators and 
associates was held in March 1984 to refine the science 
objectives and to decide how to move forward on the three- 
year program. A steering committee was elected (Table 
A2) and science questions were posed around three issues 
for Mars: (1) seasonal cycles, ( 2 )  surface processes/climate 
history, and ( 3 )  bulk chemical composition and outgassing 
history (Table A3). 
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TABLE A2. MECA Science Steering Committee. 

Member Affiliation Area 

Ronald Greeley Arizona State Chairperson 

Michael Carr US. Geological Surface Processes 

Fraser Fanale University of Hawaii Climate Change 

Robert Haberle NASA Ames Research Seasonal Cycles 

University 

Survey 

Center 

Robert Pepin University of Minnesota Bulk Chemistry 

Peter Schultz Lunar and Planetary Project Scientist 
Institute (to 1984) 

Stephen Clifford Lunar and Planetary Project Scientist 
Institute (1984 to 1988) 

Joseph Boyce NASA Headquarters Ex Officio 

Kevin Burke Lunar and Planetary Ex officio 

Pam Jones Lunar and Planetary Project 
Institute Administrator 

Institute 

TABLE A3. Major MECA study questions. 

h o n  cyckr 
0 What are the physical processes that control the present ~ e a ~ o n a l  

0 How do the seasonal cycles change from year to year? 
0 How can models of the seasonal cycles be extended to long-term 

cycles of dust, water, and carbon dioxide? 

variations? 
Surfuce Processes and Climate History 

0 What are the causative agents of climate change on Mars? 
0 How have the abundum of surface volatiles changed with time? 

What are the major volatile reserwirs, and how have they changed 

0 What has been the climatic history of Mars and how has it been 

0 What observations and modeling will help resolve the above questions? 

0 What is the range of possible absolute and relative abundances of 
the initial Mars volatile inventory? 

0 What evidence exists that the planet has undergone significant 
oxidation? Is the oxidation only on the surface? Are there plans to 
try to measure martian atmospheric DIH? Has the composition of 
degassed volatiles changed with styles of volcanism in time and space 
(inputs from climate history/ surface morphology)? 

0 What does the present atmosphere tell us about integrated outgassing 
modified by “loss processes” to the regolith and to space over-martian 

with time? 

affected by the agents, abundances, and reservoirs? 

Bufk Chemicul Composition and Outgassing History 

It was decided that the study project [named “Mars: 
Evolution of Its Climate and Atmosphere” (MECA)) would 
be open to  all investigators who had a potnetial 
contribution, regardless of funding. A letter of invitation 
was mailed to more than 3500 individuals on the LPI 
distribution list. Eventual membership for the project grew 
to about 130 (see Appendix 2). Newsletters were issued 
regularly to keep the study group, NASA, and the 
community abreast of MECA activities. Figure A1 shows 
the relationship among NASA, the Working Group, and 
the Lunar and Planetary Institute. 

The scientific program of MECA was conducted through 
a series of symposia, special sessions, and workshops. For 
each of these activities, an organizing committee was formed 
to develop the program, solicit participants, and prepare 
summaries of the program. All activities were supported 
through LPI for logistics, including mailing and preparation 
of abstract volumes and technical reports. 

eologic time? Implications of isotopic signatures (15N/’*N, 
he / ’32Xe ,  wAr/~Ar)?  
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Appendix 2. MECA Membership List 
Vincent J. Abreau 

SPRL 
2455 Hayward 
Ann Arbor, MI 48 105 

Mail Stop 695.0 
NASA Goddard Space Flight Center 
Greenbelt, MD 20771 

Arden L. Albee 
Division of Geological and Planetary Science 
Caltech 
Pasadena, CA 91 125 

Department of Geology 
San Jose State University 
San Jose, CA 95 192 

Duwayne M. Anderson 
Eust Bizell Hall, Room 305 
Texas A d M University 
College Station, TX 77843-1 I I2 

Department of Chemistry, B-017 
University of California, San Diego 
La Jolla, CA 92093 

McDonneU Center for the Space Sciences 
Washington Uniwrsity 
St .  Louis, MO 63 130 

Department of Geosciences 
University of Arizona 
Tucson, A2 8572 1 

Mail Stop 239-12 
NASA Ames Research Center 
Moffett Field, CA 94035 

Department of Atmospheric Sciences 
Oregon State University 
Coruallis, OR 9733 1 

Institute of Geophysics and Planetary Physics 
University of California, Los Angeles 
Los Angeles, CA 90024 

Mail Code EL4 
NASA Headquarters 
Washington, DC 20546 

Department of Geological Sciences 
Wright State University 
Dayton, O H  45435 

Mario H. Acuna 

David W. Andersen 

James R. Arnold 

Raymond E. Arvidson 

Victor R. Baker 

Amos Banin 

Jeffrey R. Barnes 

Bruce Barraclough 

Joseph Boyce 

G. Robert Brakenridge 

Geoffrey Brigs 
Mail Code EL 
NASA Headquarters 
Washington, DC20546 

Mail Code EL 
NASA Headquarters 
Washington, DC 20546 

LUMT and Planetary lnstitute 
3303 NASA Road One 
Houston, TX 77058 

Mail Stop 183-301 
Jet Propulsion Laboratory 
4800 Oak Grwe Drive 
Pasadena,CA91109 

U.S. Geological Suruey 
345 Middlefield Road 
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Appendix 3. MECA Bibliography 

What follows is a compilation of papers and abstracts authored by participants in the 
MECA program during the period 1984-1988. Notably absent from this listing are abstracts 
from the last two MECA workshops: Polar Processes on Mars (to be issued as a NASA 
Technical Memorandum) and Dust on Mars I11 (to be published as an LPI Technical 
Report), neither of which had gone to press by the time this summary was ready for 
publication. While every effort has been made to ensure that this bibliography is otherwise 
complete, a few abstracts and papers have undoubtedly slipped through the cracks. This 
possibility should be kept in mind when using the bibliography for research purposes. 

Special thanks are due Mildred Dickey, who spent countless hours inputting and revising 
this bibliography, and to Stephen Tellier, of the Institute's Library Information Center, 
who compiled and maintains the Lunar and Planetary Bibliography Database from which 
many of these citations were originally obtained. 

Symbol notation: "'" MECA Principal Investigator, "*" Member MECA 
Study Group. 
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Anderson D. M.t and Brandstrom G.  W. (1987) Evidence for glaciation 
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Lunar and Planetary Institute, Houston. 
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tectonic processes on Venus and Mars. In Lunar and Planetary Science 
XVI, pp. 17-18. Lunar and Planetary Institute, Houston. 
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Baker V. R.t (1985) Models of fluvial activity on Mars. In Models in 
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Boston. 
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by spring sapping. Geol. Soc. Arner. Abst. with Prog., 16, 435. 

Baker V. R.' and O'Connor J. E. (1986) Flow modeling of cataclysmic 
flood discharges. NASA TM-88383, pp. 274-276. 

Baker V. R.t and Partridge J. B. (1984) Morphometry of small valley 
networks on Mars. In Lunar and Planetary Science XV, pp. 23-24. Lunar 
and Planetary Institute. 

Baker V. R.t and Partridge J. B. (1984) Pristine and degraded segments 
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Baker V. R.t and Partridge J.  B. (1986) Small Martian valleys: Pristine 
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