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Final Report on NASA/MSFC Grant NAG8-047, entitled:

"New Experiments to Constrain the Coefficients of the
Robertson Transformations for Inertial Systems”

SUMMARY

The work proposed under NASA/MSFC Grant Number NAG8-047 was
successfully completed. Under this contract, a feasibility study was
conducted to evaluate a measurement of the variability in the one-way speed
of 1light by a direct-time-of-flight approach. The proposed experiment
design was successfully completed and the initial tests indicated that the”

approach 1s wviable. The experiment 1is now being carried out under new

funding.

1. Introduction

The purpose of Grant NAGB-047 was to provide for the design and
commencement of a laboratory version of an experiment to measure variations
in the one-way velocity of light, a topic in fundamental physics that 1is
receiving 1increasing attention in the literature.* The experiment had

previously been performed at Utah State University (USU), in Logan, Utah.

*
G. Spavieri, Phys. Rev. A 34, 1708 (1986) and "Accuracy of Time
Transfer 1in Satellite Systems”, Report by the National Academy of Science

(National Academy Press, Washington, D.C., 1986).
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The USU version of the experiment lacked the rigid controls that can be
achieved in a laboratory environment. A new version of the experiment was
designed with the collaboration of Mr. Dave Gagnon (Naval Weapons Center,
China  Lake, California). Work on the actual construction of the
experimental setup was started. The effort made wunder this project

continues at present under Grant NAG8-067.

2. Experimental Setup

Numerous discussions were conducted among members of the group until
the experimental setup of Figure 1 was finally adopted. The essence of the‘
experiment consists in comparing the output of two cesium time standards
after the signal of one of them goes through a ceramic waveguide with high
refractive index. Phase locked oscillators were included in the system to
operate at higher energies than those provided by the standards. This
feature was expected to improve the signal to noise ratio. All this was
mounted on a rotating table together with data acquisition and telemetry
systems. Data were transmitted to external data reduction and monitoring

systems through a fiber optic link.

3. Tasks Performed

3.1. Cesium Standards

Cesium standards {"clocks™) with high performance tubes were
rented from Hewlet-Packard under a Lease-Purchase agreement. The
frequency stability of the clocks was characterized at 100 <Hz

and 5 MHz.




3.2.

3.3.
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Rotating Table

The desired characteristics/ of the rotating system were
determined. An air turbine was chosen to perform the rotation of
the table. Electric motors were discarded as they produce
undesirable electromagnetic noise. The construction of the
rotating mechanics was subcontracted with Reisz Engineering,

Huntsville, Alabama.

Waveguide System

A microwave guide was designed by Mr. Gagnon. The
dielectric substance chosen was barium titanate because of its
extremely high dielectric constant. A company in Lambertville,
New Jersy, was contacted for the construction of the wave guide.
RFD, Ltd., of Tampa, Florida, provided us with high reliability
phase locked frequency multipliers (oscillators). 5 MHz power
attenuators were constructed to match the power requirements of

the PLO's with the power output from the clocks.
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3.4. Data Acquisition

A data acquisition system was designed. The search started
for a system that would have the specifications of the design.
Appropriate microprocessor controller and 12 bit digital to

analog converter were ordered.

3.5. Telemetry System

Bidirectional optical compilers were constructed. An

RS-232/optical coupler circuit diagram for the interface control

system was designed.

3.6. Data Storage

A microcomputer with appropriate interfacing and data

storage requirements was selected.

3.7. Signal Processing

Method and Software packages for data analyses were

selected.

4. Data Taking

Clock data were taken (not the actual data for the present experiment)

in order to improve on the analysis of the above mentioned experiment at



Page 5

Utah State University. Basically, the noise of the clocks was restudied
and used as 1input for some refinements in the analysis of that previous

experiment.

5. Theoretical Work

Further theoretical work was done which resulted in a paper which 1is
presently under consideration for publication by the journal Foundations of

Physics (See attached copy).

6. Budget Information

A greater part of the budget than had been proposed was used for
paying the rental of the clocks until a new grant from this NASA center was

obtained to provide for the bulk of the hardware of the experiment.
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Abstract

Experimental results are reported in a companion paper13 which,
although marginal, suggests a possible detection of anisotropies in
the one-way velocity of light which are consistent with the motion of
the solar system inferred from measurements of Smoot et al., of the
2,7K cosmic background radiation. We use Robertscon's approach to
theoretically interpret these observations using Maxwell's equations
for anisotropic space. We find that the results are consistent with
the null results of other experiments, if the metric is velocity
dependent. The physical cause of the anisotropy appears to be
related to the Fresnel convection of light in a rotating system. We

argue briefly that the results may provide experimental evidence for

ten-dimensional space.

1. Introduction

! has devised a theoretical framework which has beén

Robertson
generally used in analyzing experimental tests of Special Relativity
(SR). His approach is based on the assumption that there exists a
priori a reference frame S(x#) which intrinsically possesses. the
properties of any "rest frame" of special relativity. In this frame
light propagates isotropically at velocity c in vacuo. Space is

assumed to be homogeneous so that the coordinate transformation

equations between S(x#) and any arbitrary inertial frame S'(x'’)




moving with relative velocity v with respect to S are given by

xh = akx'! + al (1)

1

Robertson® then reduces the 16 unknown coefficients a,:“' of (1) to 3 in

the following way: (1) by the introduction of additional symmetry
arguments; (2) by suitable choices of origins and coordinate axes; (3)
by the adoption of Einstein's clock-synchronization in S and S'.
Robertson! then shows that if the Michelson-Morley (MM), Kennedy-
Thorndike (KT), experiments yield exactly null results, and Ives-
Stilwell (IS) the second order relativistic doppler effect, then the
Lorentz-Einstein transformations are derived.

2,3

Vargas expressed the transformation equations in the most

general form allowed by observational constraints taking into account

errors of measurement, namely

X' = a(x - vt) y' = ey

(2)
tl

hx + jt z' = ez

where the coefficients a, e, h and j form a four parameter family of
Robertson-Vargas (RV) transformations. Precise knowledge ofa, e, h
and j determines the mechanics, and electrodynamics associated with
the transformations, since each family of coefficients uniquely

defines an associated physical theory, each of which must closely




resemble SR. Lorentz* derived two sets of experimentally equivalent
transformations referred to by Rindler? as LTA and LTB. LTB are the
Lorentz-Einstein transformations. The values of the coefficients

for LTAS:7 and LTB are given in Table 1.

TABLE 1
Coefficient LTA LTB (SR)
a 7* y
e i | 1
h 0 _-tyv/c2
j 77! Y

*Where v = (1 - vz/cz)'l/z

The presence of terms in LTA* which violate the symmetries
associated with LTB became the primary factor which drove the physics
of the early twentieth century towards LTB. At that time the group
properties of LTB had become apparent, as had the apparent absence of .
group structure in LTA. Thus along with LTB arose a certain formalism
which, it was thought?®, would be seriously disturbed by the
anisotropies of LTA, however small they might be.

While the RV transformations do not possess group properties in
four dimensions, they do in seven dimensional space, which is the
carrier space for the transformations. Vargas9 finds that both LTA

and LTB are disomorphic in the RV group, and that rather than



constraining the physics, the RV group structure expands the possible
physical effects to be observed, and might be important for other
areas in physics. For example, of particular significance is the
fact that according to Vargas9 , sSpace-time is at 1least seven-
dimensional. Vargas finds that a passive rotation of any arbitrary
coordinate system is not the same as an active rotation of a physical
system, and this adds three more dimensions raising the total
dimensionality of space to ten. Thus any experimental test which
confirms the existence of Robertson's hypothesized rest frame, also
implies a space-time of dimensionality equal to at least ten.
Because it is impractical to consider testing all possible values of
the Robertson-Vargas family of coefficientsa, e, h and j, we restrict
ourselves, at this stage, to testing the LTA transformations.

The LTA transformations which are derived from the coefficients

given above in vector form are

R+ (y - 1) (R * y) wv? - yvT

Int
]

(3)
t =T/y

Here (R,T) are space and time coordinates in Robertson's rest frame S;
(r,t) pertain to any other arbitrary inertial frame F; v is the
velocity of F with respect to S. In order to avoid confusion with

superscript notation, we do not use primes here and in Section 2.




Changlo has derived Maxwell's equations for anisotropic space

from Equations (3). Below we show that potentially these equations

predict a detectable variation in the one-way velocity of light as a

function of the orientation of the propagation path, for propagation

under non-vacuum conditions.

2. Theoretical Analysis of the Propagation of EM Waves

In terms of Equations (3), the expression for four-line element

ds? in F is
ds? - (cdt - v * dr/c)? - dr?
Equation (4) can be rewritten in tensor form:

ds? = guvdxﬂde

here x# = (x,y,2z,ct) and Iy is the covariant metric tensor.

contravariant metric tensor is given as:

[ 1 0 0 vy/C T
0 1 o] vy/C
ghV =
o o 1 v,/c
v, /c v,/c v,/c —14v?/c? ]

(4)

(5)

Then the

(8)



For an electromagnetic (EM) wave in free space, the EM wave equation

will be

FEFN
gtV ——— = 0

(7)
IxtixV

where A is a component of electric field E or magnetic field B.

Substituting (6) into (7), we get

v aa v} 1 9%
V2A+2—'V——(1——————=O (8)
c2

This is an explicit expression of the EM wave equation in anisotropic
free space.

Chang!?® has proposed two theories for deriving the wave
equation. Although the theory published in 1983 is not rigorous, it
gives a simple derivation of the EMwave equation in an infinite medium
without sources. Chang will present a rigorous treatment of the

derivation in a separate paper.

In terms of (4), a notation x° can be introduced:

0

x°® =ct - (1/c)v ¢+ r (9)



which denotes the zeroth space coordinate in four dimensional space.
Then (4) can be rewritten in a form which has four dimensional

symmetry:
ds? = (dx°)? - [(dx")? + (dx%)? + (ax?)1? (10)

Here x° is not equivalent to the time coordinate in the F frame (i.e.,
except for the privileged frame). The significance of this
formulation is that physical laws have the same form in any inertial
frame if x° is used as the zeroth space component. However, the same
physical laws will have different forms in different frames if x° is
given by the quantity [ct - (v * r)/c]. The four dimensional symmetry
is broken when we use (r,t) as variables. We recognize that if no
physical consequence arises from this approach, this will be
equivalent to a resynchronization.

We need to derive the wave equation for propagation in a
homogeneous medium of refractive index 7. Following chang's10 1983
illustrative approach, equations (9) and (10) yield the following

relations for the differential operators:

0/0x° = (1/c)d/dt (11a)
Vs =V + (v/c?)d/at (11b)



The notations (6/6x°,V3) in (11) have the same definition as in
special relativity, but they must be changed into the operators shown
on the right hand sides of (11). Following the above rule, one may

write the wave equation in the form:.

%A
Va?A - g2—— =0 (12)
(9x°)?

for an EM wave propagating in a uniform medium without a source, where
7 is the refractive index. Nowwe replace the notations (V3,3/90x%°) by

using (11), and (12) becomes:

v 4 )? 7% 9%A
v"'____A____:O (13)
c? It c? §t?

Equation (13) can be rewritten as:

\ 2 oA [ , sz 9%a
VA + — (v ¢+ V) — - [9? - — =0 (14)
c? 0t c?) c?at?

Equation (14) is a fundamental equation for an EMwave propagating in

an infinite homogeneous medium in anisotropic space. We assume that



the solution for a plane wave in orm:
A= Aoe'(“” skt ) : (15)

Substituting (15) into (14), we get:

[ \ vz] w 2 , _
n° = =—| —m + — (v * kK)o - k* =0 (16)
c?) c® ¢?
e dw iJ4)
We define the group velocity as: u, = ’ ’
0k, 0k, Ok,

Equation (16) gives the solution:

C

u, = (17)
n + v cos 8/c

Here ¢ is the angle between v and the direction of the EM wave. If n
=1, u, is the expression for the one-way velocity of light in vacuun.

According to (17), it is easy to see that the roundtrip time interval
for a plane EMwave in an infinite stationary medium (or in a vacuunm) is

direction independent:




L L 2Ly

tyy = + = (18)
u,(9) u, (e + m) c

where L is the propagation distance. Therefore, the wave equations
for propagation in a homogeneoué infinite space (which corresponds to
the situation for most optical experiments such as those of Brillet
and Halll!, and Trimmer et al.'?, to cite two examples) yield null
results. Equation (18) also gives a method to measure the index of
refraction 7. The expression for the group velocity of light for

propagation in a moving medium in the S frame is derived in Appendix I.

3. Experimental Arrangement and Measurements

Details of the experimental arrangement are given in a companion
paper by Kolen and Torr! 3. Only a summary descripti_on is given here.

Measurements of the one-way time-of-flight of EM waves were made
by propagating a 5 MHz wave generated by a stable Cesium atomic
frequency standard with high performance beam tubes. The 5 MHz
signal was injected into a 1 km coaxial cable filledwith dry nitrogen
maintained at a pressure of 2 psi above ambient. The center conductor
was supported by a polyurethane spiral helical structure. The
refractive index was 1.04. The roundtrip time-of-flight was also
measured simultaneously by reflecting back part of the signal by an
impedance mismatch at the end of the cable. The phase of the source

and reflected signals was compared using a linear phase comparator

10




which yielded an eqguivalent detection threshold for the time-of-
flight of =2 x 10"!? seconds.

To make the one-way measurement, a second identical frequency
standard was located at the west end of the cable, which was oriented
in the east~west direction. The arrival time 6f a point of constant
phase was compared at the west end with the phase of an identical
signal generated by the west-end clock. Ideally, the difference in
arrival times between the phase points at the phase comparator
represents an arbitrary "turn-on" phase difference between the two
unsynchronized standards at t = 0 plus an additional time difference
directly dependent on the one-way time-of-flight of the phase point
propagated through the cable. A detailed technical description of
the experiment has been given elsewhereld, 14,

Laboratory calibration at zero separation yei;ded a mean value
of Av/v = 2.5 x 10" !* frequency stability over a diurnal cycle. The
clock housings were isclated from external electrical and magnetic
influences and the temperature was actively controlled. Active
modulation of the thermal environment was introduced via random
cycling of the heating and cooling periods. Clock and cable
temperatures were monitored every 10 minutes. The thermally induced
variations in frequency were computed using a predetermined
functional relationship. BAnalysis of the thermally induced

variations confirmed that over a period of approximately one month,

the randomization procedure reduced the average value to below

11




detection threshold (Av/v = 3.5 x 10°!% for one month's
integration). Data were taken for 150 days over 1 1/2 years. The
detection threshold was estimated to be AV/Vv =~ 1 x 10715, Data were

averaged over 149 sidereal cycles.

4. Tentative Analysis of the One-Way Time-of—Flight Results

Results for the one-way time-of-flight are shown in Figure 1.
The experiment yielded a departure from a constant value for the time-
of-flight parameterized by (see Figure 1) §t = 80 x 10™12 sin{wt)
seconds for L = 1 km, where here p is the angular velocity of the earth.

From the perspective of an observer in the Robertson frame, the
oscillator frequencies of the clocks are retarded according to (3),
and following the same procedure used in special relativity to derive

the doppler shifted received frequency, v,, we find it is given by

{Appendix II)

(1 - v,2/¢*) (1 -¥, * K. /Q)
Ve =V, (19)
(1 - v, %/e?) (1 - ¥, * K,/

Where K,, K,, and {} are the wave vectors and angular frequency
respectively observed from the S frame. The square root factor in

(19) comes from the effect of time dilation due to the motion of the

source and receiver. And we have

12




Vs=V_+u| Vr=

l<
+
I

r _ {20)

where (20) effectively defines the relative velocities u, and u,,
between source, receiver and the laboratory measured in the S frame
respectively. We also note that (20) is the appfopriate velocity
addition law in the Robertson rest frame.

In terms of (19), (20) and (III.4) in Appendix IIII, the frequency

difference recorded by the receiver, i.e. calculated for the receiver

frame is given to second order in v/c by

Av Ve =V, (Hr - Hs) t e (Er - Es) ' E(ys' e)
v, v, c* c*?
(7% - 1)
+ (Yr ‘v, - ys ' Zs)
c2

+ (21)

where c* = c/7.

.

Note that we introduce here vy, and y,, the velocities

respectively of the medium near the receiver and source with respect

to the s frame, e is the unit vector in the direction of propagation.

13




Here the fourth and fifth terms on the right hand side of (21) come from
the expansion of the square root portionof (19). To the first order,
the above four equations are valid for a wave propagating in a co-axial

cable. PFrom (3) and (17) we derive the following relations to the

first order in v/c:

e =¢e' +qgv/c - pe'(e' . ¥)/c,

u, - u, =B'r = ull'

2 2 (22)
u,z—u, =u', -u',2=0,
(u'y —u'y,) * &' =0

and from (21) and (22),
Av 1 - p? 7% - 1
-_= 2 (_‘.1.‘!'_311)..!"' 2 (Ve * ¥ -V, * ¥y)
Ve c c
(23)

Suppose the medium is at rest in the laboratory system, i.e.

Ve, = Vv, = V. Then (23) reduces to null result:

14



Vo

The reason for this is given below. In deriving (17) for the
group velocity, we used (14) where the metric is determined solely by
the uniform Robertson velocity of the laboratory. When the medium
actually moves with source and receiver, the motion within the
laboratory frame affects the metric locally. 1In this case the metric
depends on V; and V., i.e., on u, and u,. Since Chang'slo metric
vields a null result, we suggest that the group velocity of light
propagating in the moving medium depends only partially on the earth's
rotation. The physical implication would be that light is only
partially Fresnel convected in the case of rotational motion. 1In

this case v, and v, can be generalized as

(25)

I<
”
]
<
+
2
=
e ]

In order to represent the partial Fresnel convection, the coefficient
& is introduced whichhasarange0<a<1. It is obvious that ifa =-o0,
Vg =V, =V, which is the null result case. On the other hand, ifa =1,
i.e., if there isno difference between the convection and rotational

motion, v, = V,, v, = V,, and (23) becomes

15



- = (u', - u',) * v + (.‘lrz - ‘_,’2)
Vo c? . c?
7% - 1 ’
= > (u'y —u',) * ¥ ,
c . (26)
Since (u', - u',) * v = -pLv cos w't', we obtain
Av wLv
— = (n® - 1) cos w't’ (27)
Ve c h

where L is the distance between the receiver and source. Then

tl
Av Lv '
ftr = — dt' = - — = (9% - 1) sin p't" (28)
Ve cc
o

For §t' =80 + 65 ps, we £ind v in the equatorial plane to be less than
163 kms~! with the vector pointing to z11:30 hours R.A. If 0< @< 1, we
have partial Fresnel convection of lightand v > 163 km. The value of

a must be determined by experiment. 1In terms of (25) the following

16




result is derived for the fractional frequency variation predicted:

Av wLv
— - —2 (7)2 - 1) @ cos p't! (29)
v C

which is a generalized form of (27). We also have
ét' = - Lv (9% - 1) a sin ©'t'/c? (30)

If we assume v = 390 km/s measured by Smoot, et al.ls, Equation (30)
vields 0t' = 80 sin w't' ps for @ = 0.46. The physical implication j.s
that the rotational motion of the earth results in only partial
Fresnel convection of the EM wave. As mentioned above, this
sensitivity of the metric to angular motion means that space-time
exhibits velocity dependent properties in rotating homogeneous
media. This result suggests the interesting conclusion: that
within the context of the Robertson preferréd frame hypothesis, a
Riemannian metric is consistent with the null predictions of special
relativity, whereas if space-time 1is velocity dependent, the
associated velocity dependent metric allows for the non-null case.
It should be noted that this space-time is a more general depiction of

the usual Riemannian case. Equation (30) which is an experimental

result, if confirmed, will define the form of the metric. The reason

17



the dependence on rotational motion only shows up in the one-way
results is because, in this case, we rely on the rotational motion to
reverse the orientation of the experiment. These results are ingood
agreement in phase and amplitude with the results of Smoot, et a1.1%
In the case of the rocket-borne hydrogen maser experiment of Vessot

and Levine!®, and others where 5 =1, null results are derived.

5. Discussion

The theoretical significance of these results lies in the
interpretation of what is the quantity that clocks actually measure.
Since no clock synchronization was used in the experiments reported
here, the results serve to determine the appropriate temporal
coordinate to be identified with the measurement of time i.e., the
results, if confirmed, show that x° =ct~ (1/c) v * rand notct. The
actual character of space-time, however, remains unchanged, even
though the appearance of the metric becomes frame dependent. The
invariance oﬁ the line element is preserved, although we must expect
small new terms to appear in the equations of mechanics,
electrodynamics, gravitation, particle physics, quantum mechanics,
and other areas of Physics which, nevertheless, closely resemble
relativity in numerical values. Vargas and Vargas and Torr?®
discusses the group properties of the LTA group in the context of the

larger RV group and the impact on other areas of physics in detail.

i8
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APPENDIX I

The Velocity of Light in a Moving Medium

According to Equation (14), the four-line element in a medium-

rest frame F (r,t) is
ds? = guydzxﬂdxv = (dr)? - 1/9%(cdt - v ¢ dr/c)?® (I.1)
Using the transformation Equation (3)
r =R+ (y - 1)(R * v)v/v® - yyT (Eq.3)
t =T/y

We obtain

das? = (arR)2 + 7%(1 - 1/9%)(cdT - v * dR/c)?
(1.2)

- c?ar?

Where R,t are the space and time coordinate in S frame. For the

propagation of light, let as? = o, Equation (I.2) vyields

20




v+ e)?
1 - 731 - 1/9%)| 1 - ( ] (I.3)

where the upper case U, refers to the velocity of light in S.
Here e is the unit vector of the velocity of light.

To the first order of (v/c), (I.3) reduces to

Ug = (/7)) + (1 - 1/9%)(v * e) (I.4)

which is the same as Fresnel's formula for the convection of light.

The vector form of (I.4) is

c 1
Uy =—e + (1 - —) (v * e)e (I.5)
7 n?

21



APPENDIX II

The Transformation of the Frequency and Wave Vector

Consider that the phase angle is an invariant

$ =(QT -K*R=0wt-k ' . (I1.1)

Where () and K are the angular frequency and wave vector in Robertson

rest frame S, and »w and k are in frame F. Using the transformation

Equation (3), we obtain

=70 -v *K) =711 -v * K/ (II.2)

k=K -—— (v 'Ky ) (II.3)

Assume a source with frequency v, moves with velocity V, with respect

to S, Eguation (II1.2) becomes

21V, = y,0(1 - VvV, * K, /) (II.4)

Assume the receiver moves with velocity V, with respect to S, the

Equation (II.2) gives

22




2mv, = 7.1 - ¥, * K. /) (II.5)

Equation (II.5) divided by (II.4) yeilds

1 - v, 2%/c? v (11.6)
Ve = v, II.
1 - Vrz/cz 1 -V, KI/Q

[o
|
<

L]
=
L]
N
2

This is the Doppler formula [Equation (19)].

23



APPENDIX III

The Relationship Between K and e

We start with (16)

Replace @, k by using (II.2) and (I1.3). We obtain

v? 0 v 2 v 0
n? - ——]72 = - =K +2{=K -]
C2 C c C C
I R
- \_ ' 5) - (K)* =0 (IT1.1)
c

In terms of the definition of group velocity,

(30 a0 00]
g, =

oK. 0K, OK,

where the upper case U, represents the velocity of light in the S

frame. We have

24




g, = + Vv (III.2)
-Gtz g2
N = =7 = ==t =] + = -
c? c c 0 c 0

kK 79? \ (v . v
6 = :; U, |1 - (p° - 1)P:E- u, - (n° - 1) -:2 (III.3)

Substituting(I.S)into(III.S),andevaluatinglgﬂ)atthelocationof

the receiver and the source, we get

Kl’ 8 7) XI [} g z Yl’ ]
—_— = - e - (nz - 1) 2’ =—* - (7’ - 1) 2 (III-4)
(o4 (o] (o4 . (o4

where v, , are the velocities of the medium with respect to the S frame

and c* = c/n. Substituting (III.4) into (19), we obtain

1 - V,%/c? 1 - (U, v e)/c* + (9% - 1)(V, ¢ v,)/c?
S

1 -v,2/c? 1 - (v, v oe)ser + (9% - 1)(V, * v,)/c

25
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