

Prepared in cooperation with the U.S. Fish and Wildlife Service

Literature Review and Database of Relations Between Salinity and Aquatic Biota: Applications to Bowdoin National Wildlife Refuge, Montana

Scientific Investigations Report 2009–5098

U.S. Department of the Interior U.S. Geological Survey

Literature Review and Database of Relations Between Salinity and Aquatic Biota: Applications to Bowdoin National Wildlife Refuge, Montana

By Robert A. Gleason, Brian A. Tangen, Murray K. Laubhan, Raymond G. Finocchiaro, and John F. Stamm

Prepared in cooperation with the U.S. Fish and Wildlife Service

Scientific Investigations Report 2009–5098

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

KEN SALAZAR, Secretary

U.S. Geological Survey

Suzette M. Kimball, Acting Director

U.S. Geological Survey, Reston, Virginia: 2009

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS

For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:

Gleason, R.A., Tangen, B.A., Laubhan, M.K., Finocchiaro, R.G., and Stamm, J.F., 2009, Literature review and database of relations between salinity and aquatic biota—applications to Bowdoin National Wildlife Refuge, Montana: U.S. Geological Survey Scientific Investigations Report 2009–5098, 76 p.

Contents

Abstract	1
Introduction	1
Purpose and Scope	3
Description of Bowdoin National Wildlife Refuge	3
Methods	5
Primer on Salinity Concepts	5
Salinity Definitions and Measurements	5
Sodicity	5
Factors Influencing Salinity	6
Tolerances and Adaptations of Biota to Salinity	13
Plants	13
Invertebrates	14
Database Summary Statistics	16
Plants	16
Invertebrates	16
Considerations in Using Information from the Plant and Invertebrate	
Databases	
Application to Bowdoin National Wildlife Refuge	
Plants	
Invertebrates	
Summary	
Acknowledgments	
References	
Appendix 1. Plant Taxa Identified at Bowdoin National Wildlife Refuge	
References	
Appendix 2. Invertebrate Taxa Identified at Bowdoin National Wildlife Refuge	
References	32
Appendix 3. Description of Variables Found in the Plant and Invertebrate	
Databases	
References	34
Appendix 4. Description of Each Data Source Used to Develop the Plant and	
Invertebrate Databases	
References	
Appendix 5. Summary of Plant Database	
References	
Appendix 6. Summary of Invertebrate Database	
References	76

Compact Disc

[In pocket]

Plant and Invertebrate Database (*http://pubs.usgs.gov/sir/2009/5098/downloads/databases_21april2009.xls*) Format: American Standard Code for Information Interchange (ASCII), Microsoft Office Excel 97–2003 Worksheet, Windows XP Professional operating system

Figures

1.	Map showing the location of Bowdoin National Wildlife Refuge in relation to Beaver Creek, Milk River, Dodson South Canal, and Nelson Reservoir				
2–16.		phs showing:			
	2.	Concentration of major ions in Lake Bowdoin during April–August 2006	6		
	3.	Comparison of common reporting units for salinity in relation to plant community salinity categories and the salinity of seawater	7		
	4.	Mean annual (± standard error) specific conductance for Lake Bowdoin from 1975 to 2007	9		
	5.	Palmer Hydrological Drought Index (PHDI) from 1895 to 2007 and yearly mean specific conductance for Lake Bowdoin from 1975 to 2007	10		
	6.	Palmer Hydrological Drought Index (PHDI) from 1895 to 2007 and deliveries to Bowdoin Wildlife Refuge from the Milk River via the Dodson Canal from 1938 to 2007	10		
	7.	Palmer Hydrological Drought Index (PHDI) from 1895 to 2007 and Beaver Creek flows near Bowdoin National Wildlife Refuge from 1950 to 2007 (monthly) and from 1982 to 2007 (peak)	11		
	8.	Data on reservoirs in the Beaver Creek watershed created between 1898 and 2004 for watering stock, providing wildlife habitat, and irrigation supply	12		
	9.	Number of taxa from Prairie Pothole Region wetlands in each plant community salinity category			
	10.	Number of taxa from the plant database by various categories			
	11.	Number of taxonomic orders from the invertebrate database for each category	18		
	12.	Specific conductance of water and soil for each plant physio- gnomy/life-span category and each wetland indicator category	20		
	13.	Specific conductance of water for common plant species at Bowdoin National Wildlife Refuge that are associated with wetlands			
	14.	Specific conductance of soil for common plant species at Bowdoin National Wildlife Refuge that are associated with wetlands	24		
	15.	Specific conductance of water for representative taxa in the invertebrate database that could occur at Bowdoin National			
	10	Wildlife Refuge	25		
	16.	Specific conductance of water for invertebrate families from representative taxonomic orders in the invertebrate database	26		

Tables

1.	Slope and area of primary soils on Bowdoin National Wildlife Refuge4
2.	Plant community salinity categories and the corresponding ranges of specific conductance values of water for three common reporting units
3.	Classification of saline and sodic soils and related soil condition based on specific conductance, pH, and the sodium adsorption ratio7
4.	Reported ranges of specific conductance, pH, and sodium adsorption ratio of soils located at Bowdoin National Wildlife Refuge8
5.	Sodium chloride concentration at which seed germination of halophytic plant species was reduced from 75–100 percent to approximately 10 percent15
6.	Summary information from the plant database (210 total species) for 110 species documented on Bowdoin National Wildlife Refuge

Conversion Factors

Inch/Pound to SI

Multiply	Ву	To obtain
	Length	
mile (mi)	1.609	kilometer (km)
	Area	
acre	0.4047	hectare (ha)
	Volume	
acre-foot (acre-ft)	0.123	hectare meter (ha-m)
	Mass	
ton, short (2,000 lb)	0.9072	megagram (Mg)
	Flow rate	
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m ³ /s)

SI to Inch/Pound

Multiply	Ву	To obtain
	Length	
kilometer (km)	0.6214	mile (mi)
	Area	
hectare (ha)	2.471	acre
	Volume	
hectare meter (ha-m)	8.107	acre-foot (acre-ft)
	Mass	
megagram (Mg)	1.102	ton, short (2,000 lb)
	Flow rate	
cubic meter per second (m ³ /s)	35.31	cubic foot per second (ft ³ /s)

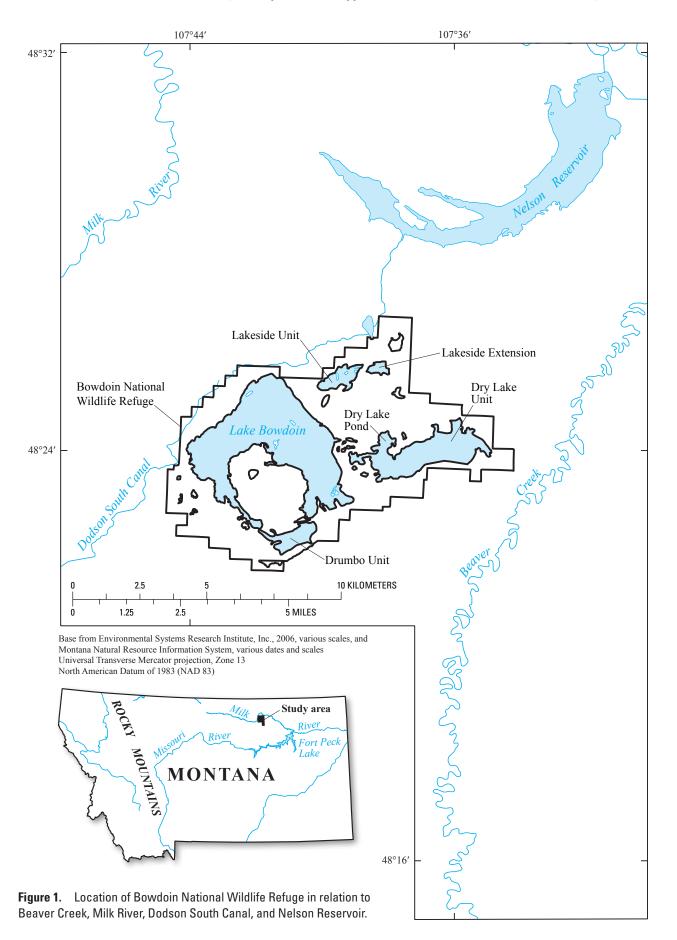
Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (μ S cm⁻¹ at 25°C).

Concentrations of chemical constituents in water are given in milligrams per liter (mg L⁻¹).

Throughout this report (including the plant and invertebrate databases) mg L⁻¹ is related to μ S cm⁻¹ by using the following formula: mg L⁻¹ = μ S cm⁻¹ × 0.64 (Tchobanoglous and Burton, 1991).

Literature Review and Database of Relations Between Salinity and Aquatic Biota: Application to Bowdoin National Wildlife Refuge, Montana

By Robert A. Gleason, Brian A. Tangen, Murray K. Laubhan, Raymond G. Finocchiaro, and John F. Stamm


Abstract

Long-term accumulation of salts in wetlands at Bowdoin National Wildlife Refuge (NWR), Mont., has raised concern among wetland managers that increasing salinity may threaten plant and invertebrate communities that provide important habitat and food resources for migratory waterfowl. Currently, the U.S. Fish and Wildlife Service (USFWS) is evaluating various water management strategies to help maintain suitable ranges of salinity to sustain plant and invertebrate resources of importance to wildlife. To support this evaluation, the USFWS requested that the U.S. Geological Survey (USGS) provide information on salinity ranges of water and soil for common plants and invertebrates on Bowdoin NWR lands. To address this need, we conducted a search of the literature on occurrences of plants and invertebrates in relation to salinity and pH of the water and soil. The compiled literature was used to (1) provide a general overview of salinity concepts, (2) document published tolerances and adaptations of biota to salinity, (3) develop databases that the USFWS can use to summarize the range of reported salinity values associated with plant and invertebrate taxa, and (4) perform database summaries that describe reported salinity ranges associated with plants and invertebrates at Bowdoin NWR. The purpose of this report is to synthesize information to facilitate a better understanding of the ecological relations between salinity and flora and fauna when developing wetland management strategies. A primary focus of this report is to provide information to help evaluate and address salinity issues at Bowdoin NWR; however, the accompanying databases, as well as concepts and information discussed, are applicable to other areas or refuges. The accompanying databases include salinity values reported for 411 plant taxa and 330 invertebrate taxa. The databases are available in Microsoft Excel version 2007 (http://pubs.usgs. gov/sir/2009/5098/downloads/databases 21april2009.xls) and contain 27 data fields that include variables such as taxonomic identification, values for salinity and pH, wetland classification, location of study, and source of data. The databases are not exhaustive of the literature and are biased toward wetland habitats located in the glaciated North-Central United States; however, the databases do encompass a diversity of biota commonly found in brackish and freshwater inland wetland habitats.

Introduction

Bowdoin National Wildlife Refuge (NWR) was established in 1936 to provide habitat for breeding and migrating waterfowl. The refuge is located about 11 km to the east of Malta, in the Milk River Valley of Phillips County, Mont. (fig. 1). Characteristic of refuges located in the arid North-Central United States, Bowdoin NWR is at risk to increased salinization and accumulation of trace elements that can threaten wetland biota (DuBois and others, 1992; Nimick, 1997; Laubhan and others, 2006). Bowdoin NWR has been the subject of various investigations and model simulations (Lambing and others, 1988; Hamilton and others, 1989; Kendy, 1999; Bauder and others, 2007) that suggest that salt concentrations in lakes and marshes are increasing and that the long-term accumulation of salts could pose a significant threat to flora and fauna. The increasing salt concentrations on the refuge have been attributed to changes in water availability and quality that, in conjunction with water management strategies that stabilize water levels and enhance retention time, have amplified the evapoconcentration of salts and reduced the effectiveness of natural salt removal processes such as flushing and deflation (removal by wind) (Hamilton and others, 1989). Further, this increase in salinity has been linked to alteration of vegetation communities that provide important wildlife habitat. For example, Hamilton and others (1989) observed that salt-tolerant plants had replaced cat-tails (Typha sp.) and bulrushes (Scirpus sp.), and submerged aquatic species such as pondweeds (Potamogeton sp.) and widgeongrass (Ruppia sp.) had largely disappeared. Additionally, declines in waterfowl use and productivity have been attributed to increased salinity and subsequent changes in vegetative composition.

To ensure the long-term success of Bowdoin NWR in providing healthy, sustainable habitat for waterfowl and other wildlife, the U.S. Fish and Wildlife Service (USFWS) is developing management strategies to maintain salt concentrations within ranges suitable for the establishment of historical plant and invertebrate communities. Currently, the USFWS is evaluating various water management scenarios that will enhance their ability to export salts and manage salinity levels in lakes and marshes on the refuge. Water management scenarios considered by the USFWS range from no action to controlled and uncontrolled (for example, flushing caused by floods)

To support the evaluation of water management scenarios, the USFWS requested that the U.S. Geological Survey (USGS) provide information on suitable ranges of salinity for plants and invertebrates of importance to the refuge. To address this need, we present summarized data obtained from various sources (for example, books, peer-reviewed publications, reports, subject reviews, unpublished data) that relate the occurrences of common aquatic plant and invertebrate species to various water and soil quality variables such as specific conductance and pH. As part of the review, we also discuss general physiological adaptations that allow flora and fauna to survive in salt-affected environments.

Purpose and Scope

The goal of this report is to provide the USFWS with scientifically based information to facilitate a better understanding of the ecological relations between salinity and flora and fauna when developing management strategies. Although the primary focus is to provide information to help address salinity issues at Bowdoin NWR, the databases, as well as concepts and information discussed, are intended to be applicable to other areas or refuges. To address our goal, we conducted an extensive search to locate existing scientific literature that reported occurrences of plants and invertebrates in relation to salinity and pH of the water and soil. Information from this literature search was incorporated into databases and used to address the following objectives:

- 1. Provide a general overview of salinity concepts and the tolerances and adaptations of biota to salinity.
- 2. Develop databases that the USFWS can use to summarize the range of reported salinity values associated with plant and invertebrate taxa.
- Perform database summaries that describe reported salinity ranges associated with plants and invertebrates at Bowdoin NWR.

Description of Bowdoin National Wildlife Refuge

The 6,294-ha refuge is located in the Glaciated Northern Grasslands (level IV ecoregion) (Woods and others, 2002) of northeastern Mont., which is characterized by rolling hills and plains that are the result of glaciation. In general, glacial and alluvial deposits overlay bedrock, and the region is characterized by saline-sodic soils (sodium and sulfate are the dominant ions) and grasslands that contain numerous depressional wetlands. Terrestrial soils of the refuge consist primarily of Bigsag clays and the Phillips-Elloam complex. The portion (36 percent) of the refuge inundated by lakes is bordered, and likely underlain, by Bigsag and Bowdoin soils (Kendy, 1999), which are relatively fine grained with low permeability and a high salt content. An inventory of primary soils and complexes on the refuge is presented in table 1.

Refuge habitats consist primarily of short- and mixedgrass prairie, planted dense nesting cover, shrublands, and both brackish and freshwater wetlands. Wetlands make up about 46 percent (2,924 ha) of the refuge, with the majority of this area consisting of five large, shallow lakes: Lake Bowdoin, Drumbo Unit, Dry Lake Unit, Dry Lake Pond, and Lakeside Unit (fig. 1). Lake Bowdoin, the largest (2,209 ha) and most prominent lake, is an oxbow of the preglacial Missouri River. The modern Missouri River flows nearly 113 km to the south of the refuge. Prior to the establishment of Bowdoin NWR, Lake Bowdoin was managed by the Bureau of Reclamation to store water from spring floods and irrigation return flows.

Direct precipitation and diverted water from the Milk River via the Dodson South Canal are the main sources of water entering the refuge, while irrigation drainage returns from nearby agricultural lands, overland runoff, floodwaters from adjacent drainages (for example, Beaver Creek), and groundwater discharges from saline seeps are secondary sources. An annual water allocation of 431 ha-m from the Milk River Irrigation Project that flows through Dodson South Canal provides a relatively reliable source of water to the refuge; however, this allocation can fluctuate annually and is contingent on the amount of water available for distribution. Measured water deliveries from the years 1938 to 2006 ranged from 70 to 1,419 ha-m and averaged 597 ha-m. Water losses are attributed primarily to evaporation and infrequent surface outflows to neighboring Beaver Creek. The average annual evaporation (92.71 cm) (Kendy, 1999) greatly exceeds the mean annual precipitation (27.94-35.56 cm) (U.S. Department of Agriculture, 2004) in this semiarid region; thus, the refuge experiences a water deficit for much of the year. Currently, USFWS personnel manage refuge wetlands for waterfowl and other wildlife by using a system of channels and dikes that allows for the capture, storage, and movement of water within the refuge.

A total of 210 plant species have been documented on the refuge (app. 1). Dominant emergent vegetation includes hardstem bulrush (*Scirpus acutus*), alkali bulrush (*S. paludosus*), common threesquare (*S. pungens*), and cat-tail (*Typha latifolia*). Other notable species that occur along the shores of lakes and marshes include pickleweed (*Salicornia rubra*) and saltgrass (*Distichlis spicata*). Common aquatic vegetation includes sago pondweed (*Potamogeton pectinatus*), widgeongrass (*Ruppia maritima*), and watermilfoil (*Myriophyllum exalbescens*) (Weydemeyer and Marsh, 1936; Hamilton and others, 1989; Johnson, 1990). Information on invertebrate communities is relatively limited; however, 32 invertebrate taxa have been documented within lakes and marshes on the

refuge (app. 2). Common aquatic macroinvertebrates documented on the refuge include midges (Chironomidae), scuds (Talitridae), water boatman (Corixidae), snails (Planorbidae and Physidae), damselflies (Coenagrionidae), mayflies (Caenidae), and water fleas (Cladocera) (Johnson, 1990).

Table 1. Slope and area of primary soils on Bowdoin National Wildlife Refuge.

[Data provided by U.S. Fish and Wildlife Service. Areas are based on 2005 color-infrared imagery and the Natural Resources Conservation Service's Soil Survey Geographic Database. --, no data]

Soil	Slope range, in percent	Area, in hectares	Percent of refuge	Cumulative percent of refuge
Water		2,269.13	35.68	35.68
Bigsag clay	0–2	889.50	13.99	49.67
Phillips-Elloam complex	0–4	463.07	7.28	56.95
Bowdoin clay	0–2	387.58	6.09	63.04
Creed-Absher complex	0–4	372.11	5.85	68.89
Scobey-Kevin clay loams	2-8	349.75	5.50	74.39
Scobey-Kevin-Elloam clay loams	2-8	279.08	4.39	78.78
Ferd-Gerdrum complex	0–4	237.77	3.74	82.52
Telstad loam	0–4	219.79	3.46	85.98
Creed-Gerdrum complex	0–4	167.26	2.63	88.61
Lardell clay loam	0–2	154.30	2.43	91.04
Telstad-Joplin loams	2-8	131.13	2.06	93.10
Vanda clay	0–2	113.52	1.79	94.89
Scobey-Phillips complex	0–4	104.53	1.64	96.53
Scobey-Elloam-Absher gravelly clay loams	2-8	53.78	0.85	97.38
Phillips-Absher complex	0–4	44.50	0.70	98.08
Joplin-Hillon loams	2-8	35.15	0.55	98.63
Sunburst-Kevin gravelly clay loams	8-15	28.67	0.45	99.08
Scobey clay loam	0–4	19.03	0.30	99.38
Scobey-Elloam clay loams	2-8	11.70	0.18	99.56
Harlake-Lostriver clays	0–2	10.93	0.17	99.73
Nishon clay loam	0–2	8.18	0.13	99.86
Degrand loam	0–4	4.09	0.06	99.92
Scobey-Kevin complex	2-8	2.91	0.05	99.97
Kobase silty clay	0–2	0.81	0.01	99.98
McKenzie clay	0–2	0.64	0.01	99.99
Hillon-Kevin complex	8-15	0.08	< 0.01	99.99

We developed plant and invertebrate databases by conducting an extensive search to locate existing scientific literature that reported occurrences of plants and invertebrates in relation to salinity and pH of the water and soil. Literature and keyword (for example, wetlands, salinity, salt, invertebrates, plants) searches were conducted by using various electronic databases such as FirstSearch, Cambridge Scientific Abstracts, Water Resources Abstracts, Web of Science, Google Scholar, and others. Additionally, we used unpublished data gathered as part of various investigations conducted primarily by the USGS Northern Prairie Wildlife Research Center.

Information obtained from this search was entered into spreadsheet databases to facilitate data summaries. The detailed databases contain 27 fields that include variables such as taxonomic identification, values for salinity and pH, wetland classification, location of study, and source of data. Appendix 3 provides a detailed description of each variable found in the databases, and appendix 4 includes an annotated description of the data obtained from each source to provide users information on the utility or applicability of the data to their region of interest.

Primer on Salinity Concepts

Salinity Definitions and Measurements

Salinity refers to the concentration of dissolved or soluble salts in water and soil. Salts are generally defined as ionic compounds which in water solution yield a cation other than hydrogen (H^+) and an anion other than hydroxyl (OH⁻) or dioxygen (O_2^{-}). As an example, the following equation displays the chemical formula for common table salt, sodium chloride:

$$Na^+ + Cl^- \leftrightarrow NaCl$$

Common ions (cations and anions) found in northern wetlands, including those within Bowdoin NWR (fig. 2), are calcium (Ca²⁺), magnesium (Mg²⁺), potassium (K⁺), sodium (Na⁺), bicarbonate (HCO₃⁻), carbonate (CO₃⁻²⁻), chloride (Cl⁻), and sulfate (SO₄⁻²⁻) (Swanson and others, 1988; Nimick, 1997; Bauder and others, 2007). When removed from solution (for example, through evaporation), principal salts in water and soils at Bowdoin NWR include sodium sulfate (Na₂SO₄), sodium bicarbonate (NaHCO₃), calcium carbonate (CaCO₃), calcium sulfate (CaSO₄), and magnesium sulfate (MgSO₄); minor amounts of chlorine (Cl⁻) and fluoride (F⁻) salts are also found (Bauder and others, 2007).

Measures of salinity for both soil and water are usually expressed as conductance (that is, specific conductance, electrical conductivity) or total dissolved solids (TDS). Specific conductance is a measure of the capacity of an aqueous solution to conduct an electrical current and is highly correlated with the concentration of ions in solution. Conductance measurements also are highly dependent on temperature because an increase in the temperature of a solution will decrease viscosity and increase the mobility of ions in solution; a rise in temperature could also increase the number of ions in solution because of dissociation of molecules. Because of the need to compare conductivity values collected at various temperatures by using differing equipment (that is, probes that differ with respect to electrode distance and area), measurement devices are typically temperature-compensated and provide standardized readings at 25°C with an electrode distance of 1 cm (for example, 1,000 µS cm⁻¹ at 25°C) (Lind, 1985). Specific conductance is commonly reported as millisiemens (mS), microsiemens (µS), millimhos (mmhos), or micromhos (µmhos). Siemens and mhos are equivalent units that are reciprocal of the ohm, the International System (SI) unit of electrical resistance.

Total dissolved solids is a measure of all inorganic and organic substances dissolved in water and is usually presented as parts per thousand (ppt, ‰), percent (%), milligrams per liter (mg L⁻¹), or total mass (in grams [g]). The concentration of TDS is typically determined by using gravimetry, which involves evaporating a known volume of liquid solvent to leave a residue which is then weighed to determine mass of dissolved solids. Total dissolved solids also may be approximated from specific conductance measurements. For example, specific conductance is typically multiplied by an empirical factor that generally varies from 0.5 to 1.0 to estimate TDS (Lind, 1985). Throughout this report (including the plant and invertebrate databases) mg L^{-1} is related to μ S cm⁻¹ by using the following formula: mg $L^{-1} = \mu S \text{ cm}^{-1} \times 0.64$ (Tchobanoglous and Burton, 1991). As a reference, in figure 3, three common salinity reporting units (µS cm⁻¹, mg L⁻¹, and ppt) are compared in relation to plant community salinity categories (table 2) described by Stewart and Kantrud (1972).

Sodicity

Sodicity refers to the sodium ion concentration in a soil or solution. Substrates classified as sodic have high sodium ion concentrations relative to other cations such as calcium or magnesium. High sodium concentrations cause soil aggregates to swell and disperse, resulting in destruction of soil structure. In contrast, calcium and magnesium ions cause soil particles to flocculate, forming aggregates that enhance and stabilize soil structure. The extent of soil structure destruction or enhancement caused by cations is not only a function of concentration but also is related to the organic matter content, carbonate and sulfate concentrations (for example, calcite and gypsum), leaching potential, and texture of the soil. The loss of soil structure can affect plant growth by impairing hydraulic conductivity (water movement through soil), drainage, gas exchange, and rooting depth. Additionally, sodicity-and salinity to a certain extent—is often accompanied by high

pH, which may impact plant growth by causing nutrient imbalance.

Soils are commonly classified as saline, sodic, or salinesodic on the basis of a combination of three factors: the sodium adsorption ratio (SAR), specific conductance, and pH (table 3). The SAR is the ratio of sodium to calcium and magnesium cations in solution, defined as

SAR =
$$\frac{[Na^+]}{\{[Ca^{2+} + Mg^{2+}]/2\}^{1/2}}$$

In general, when the SAR is above 12, physical properties of soil may be altered, and plants can become stressed because of ion toxicity and reduced water absorption (osmotic stress). We do not have specific field data (see table 3) necessary to classify soils found at Bowdoin NWR (table 1); however, on the basis of reported ranges of SAR, specific conductance, and pH values (table 4) for soils on the refuge, all three soil classes likely occur, especially if the classifications were based on the upper end of the reported values (table 4).

Factors Influencing Salinity

When evaluating the suitability of habitats for aquatic biota, it is important to recognize that water and soil salinity can vary considerably both temporally and spatially. Swanson and others (1988) reported that specific conductance measurements for 178 prairie lakes in North Dakota ranged from 365 to 70,000 μ S cm⁻¹ and that measurements from 1 pothole wetland varied from 522 to 7,700 μ S cm⁻¹ between a relatively wet and dry year. LaBaugh (1989) reviewed data from northern prairie wetlands and lakes and reported ranges of specific conductance and TDS of 42–472,000 μ S cm⁻¹ and 31–342,000 mg L⁻¹ (approximately 48–534,375 μ S cm⁻¹), respectively. Additionally, LaBaugh (1989) described studies in which specific conductance increased twofold to sixfold and salinity increased by 80 ppt (approximately 125,000 μ S cm⁻¹) within a season.

Variation in salinity is attributable to many factors, including climate, connectivity to regional and local groundwater flow systems, and intra-annual and interannual fluctuations in water levels that result in the dilution, evapoconcentration, or deflation (blowing of salts from mudflats) of salts (Lieffers and Shay, 1983; LaBaugh, 1989; LaBaugh and others, 1996). For example, between 1975 and 2007 the mean annual salinity in Lake Bowdoin varied from 4,113 (in 1990) to 28,908 (in 1984) µS cm⁻¹ (fig. 4). During this 33-year period, Lake Bowdoin was classified as moderately brackish 9 percent, brackish 79 percent, and subsaline 12 percent of the time. Such variation is characteristic of saline lakes, which often experience dynamic shifts in salinity in response to extreme climatic fluctuations that operate at decadal time scales. The influence of climatic variation on Lake Bowdoin salinity flux is illustrated when salinity is examined in relation to the Palmer Hydrological Drought Index (PHDI), which shows long-term cumulative drought and wet conditions (fig. 5). Variation in the PHDI over the past 30 years, or since salinity has been monitored in Lake Bowdoin, indicates two drought periods (1980-85, 1999-2007) and two relatively wet periods (1975-80, 1986-98) (fig. 5). During these alternating wet and dry periods, salinity levels in Lake Bowdoin tended to decrease during wet periods and increase during drought.

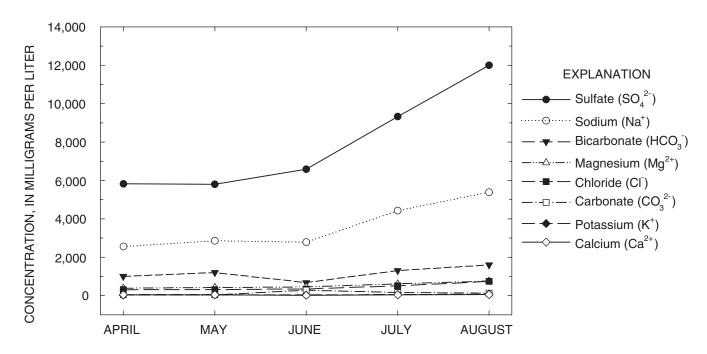
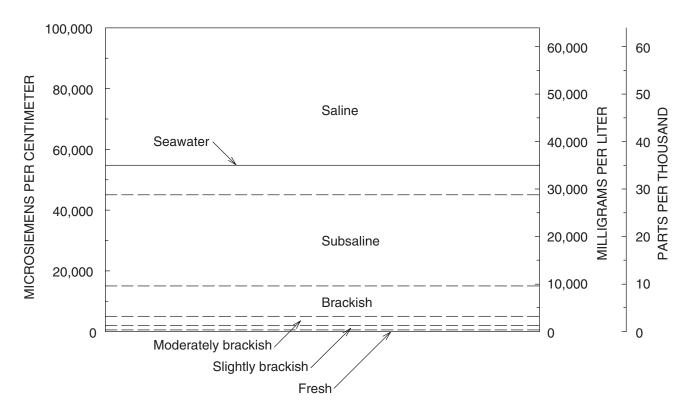



Figure 2. Concentration of major ions in Lake Bowdoin during April–August 2006 (data provided by the U.S. Fish and Wildlife Service).

Figure 3. Comparison of common reporting units for salinity in relation to plant community salinity categories (see table 2) and the salinity of seawater (approximately 35 parts per thousand).

Table 2. Plant community salinity categories and the corresponding ranges of specific conductance values of water for three common reporting units.

[Categories from Stewart and Kantrud, 1972. µS cm⁻¹, microsiemens per centimeter; mg L⁻¹, milligrams per liter; ppt, parts per thousand]

Salinity category	µS cm⁻¹	mg L ⁻¹	ppt
Fresh	0–500	0–320	0-0.3
Slightly brackish	500-2,000	320-1,280	0.3-1.3
Moderately brackish	2,000-5,000	1,280-3,200	1.3–3.2
Brackish	5,000-15,000	3,200–9,600	3.2–9.6
Subsaline	15,000-45,000	9,600–28,800	9.6-28.8
Saline	>45,000	>28,800	>28.8

Table 3. Classification of saline and sodic soils and related soil condition based on specific conductance, pH, and the sodium adsorption ratio.

[All three criteria—specific conductance, pH, and sodium adsorption ratio (SAR)—are considered for classifying soils as saline, sodic, and saline-sodic (modified from Havlin and others, 1999; North Dakota State University Agriculture and University Extension Service Web site, accessed October 1, 2008, at *http://www.ag.ndsu.edu/pubs/plantsci/soilfert/eb57-2.htm*). μ S cm⁻¹, microsiemens per centimeter]

Classification	Soil condition	Specific conductance, µS cm ⁻¹	рН	SAR
Saline	Normal ¹	>4,000	<8.5	<13
Sodic	Poor	<4,000	>8.5	>13
Saline-sodic	Normal ¹	>4,000	<8.5	>13

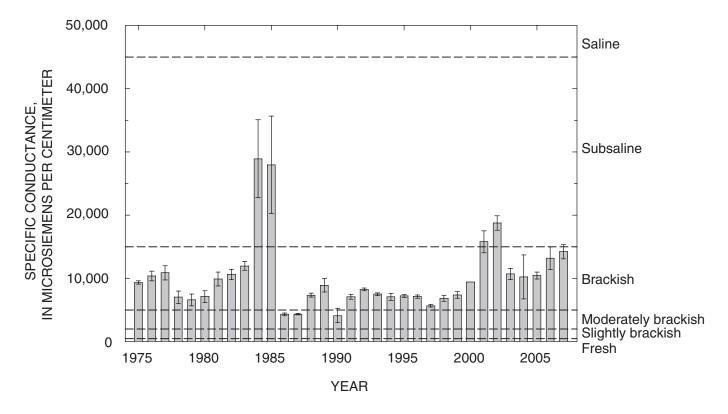
¹Soil retains "normal" physical conditions as long as sodium does not dominate the exchange complex of the soil.

The increased salinity during drought is attributed to evapoconcentration of solutes; however, drought also provides mechanisms for removal of salt by deflation and seepage to groundwater (Weydemeyer and Marsh, 1936; Hamilton and others, 1989; LaBaugh and others, 1996). Superimposed over these natural processes of deflation and seepage is the effect of water deliveries to the refuge via the Dodson South Canal (fig. 6), which can be used to dilute salts or maintain water levels during dry periods that would normally result in deflation events. Consequently, manipulating water levels provides an opportunity to both trigger and halt deflation episodes.

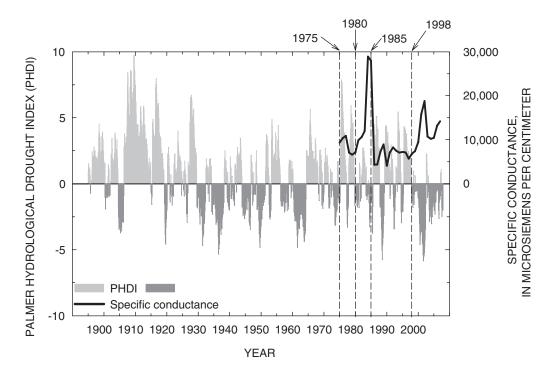
Decreases in salinity during wet periods are attributed to increased freshwater inputs that dilute salt concentrations. Further, periodic floodwaters that enter the refuge from Beaver Creek not only dilute salts but also flush salts from the system. The most notable Beaver Creek flood event that resulted in significant salt flushing during the past 30 years occurred in 1986 when peak flows exceeded 20,000 ft³/s (fig. 7*B*); this event coincided with a sixfold salinity decrease in Lake Bowdoin (fig. 5). There are insufficient data to calculate the frequency of Beaver Creek flood events (fig. 7), but refuge personnel estimate that the historical average of floodwater occurrence on the refuge was once every 3–5 years (Rodney and Mohrman, 2006; 2007). More recent observations by refuge staff suggest, however, that the frequency of flood events has decreased to once every 7–10 years. The reduced flood frequency is believed to have been caused by the establishment of small impoundments and irrigation diversions in

Table 4. Reported ranges of specific conductance, pH, and sodium adsorption ratio of soils located at Bowdoin National Wildlife

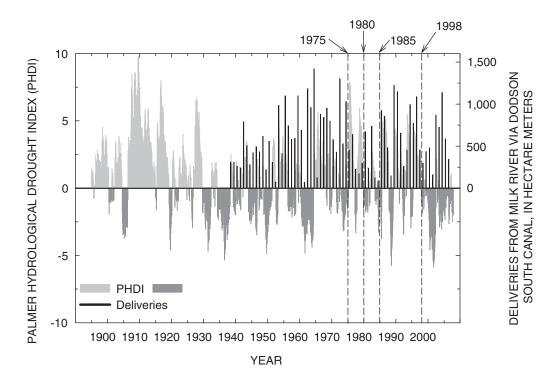
 Refuge (see table 1).

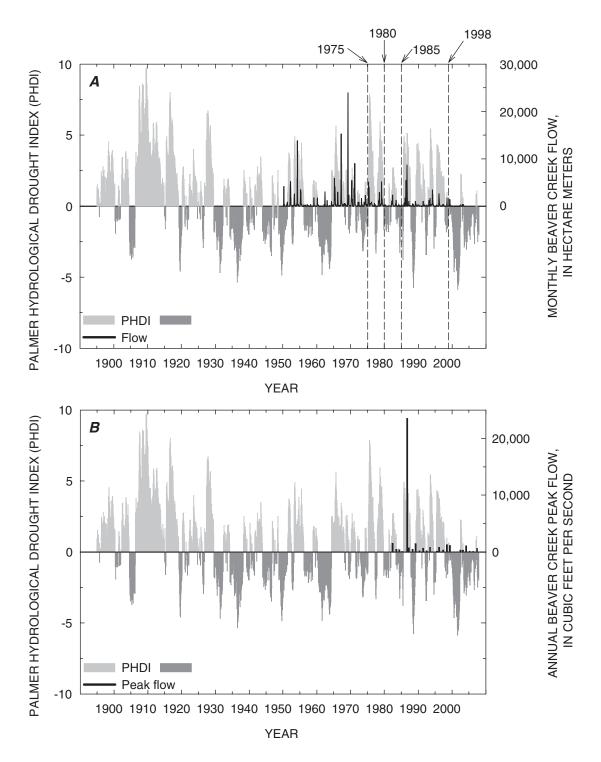

[Soil series information obtained from the Natural Resources Conservation Service's Official Soil Series Descriptions, accessed July 2008, at *http://soils.usda. gov/technical/classification/osd/index.html.* µS cm⁻¹, microsiemens per centimeter; SAR, sodium adsorption ratio; --, no data]

Soil series	Total area, in hectares¹	Taxonomic family	Specific conductance, µS cm¹	рН	SAR
Bigsag	889.5	Fine, smectitic, calcareous, frigid Typic Halaquepts	>16,000	7.9–9.0	13-20
Scobey	820.8	Fine, smectitic, frigid Aridic Argiustolls		6.6-8.4	1-8
Elloam	807.7	Fine, smectitic, frigid Aridic Natrustalfs	2,000-8,000	6.6–9.0	8–25
Kevin	660.5	Fine-loamy, mixed, superactive, frigid Aridic Argius- tolls		6.6–7.8	
Phillips	612.1	Fine, smectitic, frigid Aridic Haplustalfs	0–2,000	6.1–7.3	<13
Creed	539.4	Fine, smectitic, frigid Aridic Natrustalfs	0-4,000	6.1-8.4	8-20
Absher	470.4	Fine, smectitic, frigid Leptic Torrertic Natrustalfs	8,000-16,000	6.6–9.6	18-70
Gerdrum	405.0	Fine, smectitic, frigid Torrertic Natrustalfs	1,000-8,000	7.4–9.0	10-20
Bowdoin	387.6	Very-fine, smectitic, frigid Sodic Haplusterts	8,000-16,000	7.4–9.0	5-13
Telstad	350.9	Fine-loamy, mixed, superactive, frigid Aridic Argius- tolls	2,000-4,000	6.6–7.8	
Ferd	237.8	Fine, smectitic, frigid Aridic Haplustalfs	0-2,000	6.6–7.8	<13
Joplin	166.3	Fine-loamy, mixed, superactive, frigid Aridic Argius- tolls	0-4,000	6.6-8.4	
Lardell	154.3	Fine-loamy, mixed, superactive, frigid Typic Aquisalids	>16,000	7.9–10	8-50
Vanda	113.5	Fine, smectitic, calcareous, frigid Torrertic Ustorthents	2,000-8,000	7.8–9.6	1-30
Hillon	35.2	Fine-loamy, mixed, superactive, calcareous, frigid Aridic Ustorthents		7.9–9.0	
Sunburst	28.7	Fine, smectitic, calcareous, frigid Torrertic Ustorthents		7.9-8.4	
Harlake	10.9	Fine, smectitic, calcareous, frigid Aridic Ustifluvents	0–2,000	6.6-8.4	0-8
Lostriver	10.9	Fine, smectitic, calcareous, frigid Aridic Ustifluvents	8,000-16,000	7.4–9.6	13-30
Nishon	8.2	Fine, smectitic, frigid Typic Albaqualfs		6.1-8.4	
Degrand	4.1	Fine-loamy over sandy or sandy-skeletal, mixed, super- active, frigid Aridic Argiustolls		6.6–7.8	
Kobase	0.8	Fine, smectitic, frigid Torrertic Haplustepts	0-4,000	6.6-8.4	0–4
McKenzie	0.6	Fine, smectitic, frigid Chromic Endoaquerts			


¹Total area of all soil complexes that include the soil series (see table 1).

the Beaver Creek watershed (fig. 8). For example, Rodney and Mohrman (2006) estimated that irrigation diversion and reservoir retention have reduced total mean annual runoff in the Beaver Creek watershed upstream of Bowdoin NWR by 45 percent.


The observed salinity fluctuations in Lake Bowdoin that occur in relation to changes in climate and associated export mechanisms provide a basis for understanding how management actions and human alterations in the watershed may alter the sustainability of salt-affected lakes. Hence, understanding and defining the key temporal scales of variability in relation to ecological processes are fundamental to saline lake management.


Figure 4. Mean annual (± standard error) specific conductance for Lake Bowdoin from 1975 to 2007. Data were provided by the U.S. Fish and Wildlife Service. Horizontal dashed lines define plant community salinity categories (see table 2) and allow for a general characterization of vegetative composition in Lake Bowdoin from year to year.

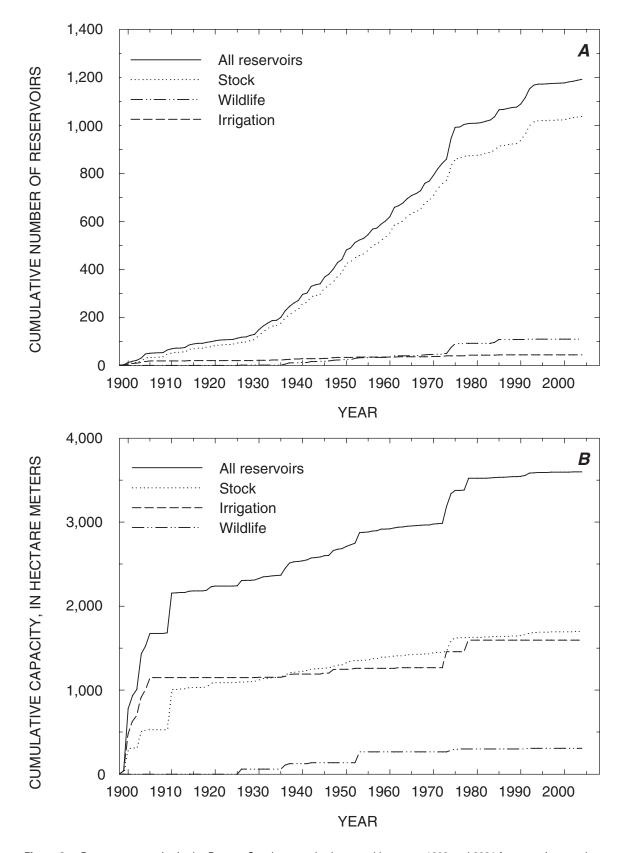
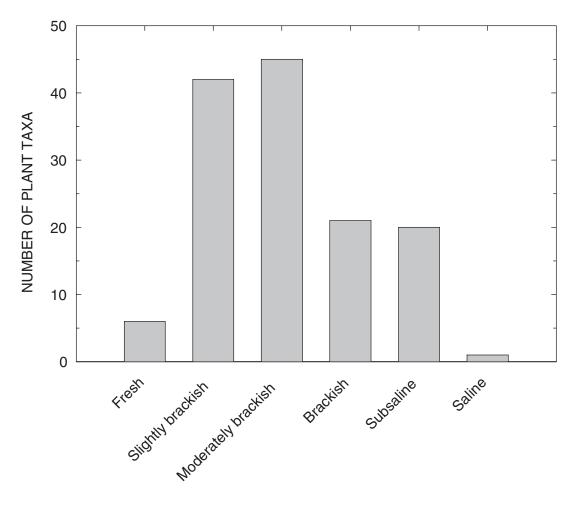

Figure 5. Palmer Hydrological Drought Index (PHDI) from 1895 to 2007 and yearly mean specific conductance for Lake Bowdoin from 1975 to 2007. Positive PHDI values indicate wetter periods, and negative PHDI values indicate dryer periods. Vertical dashed lines represent transitions between recent wet and dry periods. Specific conductance data were provided by the U.S. Fish and Wildlife Service.

Figure 6. Palmer Hydrological Drought Index (PHDI) from 1895 to 2007 and deliveries to Bowdoin Wildlife Refuge from the Milk River via the Dodson South Canal from 1938 to 2007. Positive PHDI values indicate wetter periods, and negative PHDI values indicate dryer periods. Vertical dashed lines represent transitions between recent wet and dry periods. Delivery data were provided by the U.S. Fish and Wildlife Service.

Figure 7. Palmer Hydrological Drought Index (PHDI) from 1895 to 2007 and Beaver Creek flows near Bowdoin National Wildlife Refuge from 1950 to 2007 (monthly) and from 1982 to 2007 (peak). *A*, Monthly flow in hectare meters (data obtained from Parrett, 2005; the streamflow data represent recorded and estimated values). *B*, Annual peak flow in cubic feet per second (data obtained from the U.S. Geological Survey stream gage 06166000). Vertical dashed lines represent transitions between recent wet and dry periods.

Figure 8. Data on reservoirs in the Beaver Creek watershed created between 1898 and 2004 for watering stock, providing wildlife habitat, and irrigation supply. *A*, Cumulative number of reservoirs. *B*, Water-storage capacity, in hectare meters. Data were provided by Jana Mohrman, Hydrologist, U.S. Fish and Wildlife Service.


Tolerances and Adaptations of Biota to Salinity

Plants

Differences in salinity are often reflected in the species composition of vegetation; thus, salinity has been incorporated as a modifier in many lake and wetland classification systems (Stewart and Kantrud, 1971; Cowardin and others, 1979). Stewart and Kantrud (1972) related the occurrence of 135 plant species in prairie pothole wetlands to six salinity categories (table 2). Of these species, nearly 70 percent did not occur in wetlands classified as brackish, subsaline, and saline (salinity levels greater than 5,000 μ S cm⁻¹), and about 35 percent did not occur when salinities exceeded 2,000 μ S cm⁻¹ (moderately brackish, fig. 9). Hence, relatively few inland wetland plant species can persist in saline environments.

The ability of plants to survive saline environments depends on their capacity to tolerate salts throughout various life cycle stages. Plants capable of growth, flowering, and seed production when rooted in soils with sodium chloride concentrations greater than 0.5 percent are commonly referred to as halophytes (Baskin and Baskin, 1998). In contrast, plants incapable of survival and reproduction in these environments are referred to as glycophytes, or salt-sensitive plants.

The ability of halophytes to grow and survive in saline environments is possible because of various physiological and structural adaptations. Seed germination is affected by many abiotic factors such as temperature, photoperiod, soil moisture, and pH; however, salinity is one of the primary factors that limits seed germination in both glycophytes and halophytes. Baskin and Baskin (1998) reported that concentrations of sodium chloride ranging from about 3,000 (0.3 percent, approximately 4,688 μ S cm⁻¹) to 100,000 mg L⁻¹ (10 percent, approximately 156,250 μ S cm⁻¹) were sufficient to reduce germination rates of many halophytes to about 10 percent

Figure 9. Number of taxa from Prairie Pothole Region wetlands (data from Stewart and Kantrud, 1972) in each plant community salinity category (see table 2); plant taxa were included only in the highest category in which they were found. For example, if a species was found in fresh, slightly brackish, and moderately brackish sites, it was included only in the moderately brackish category for this graph.

(table 5). Reduced germination in halophytes is generally attributed to salinity-induced osmotic stress that inhibits water uptake and production of compounds (for example, enzymes) necessary for germination and embryo development (Baskin and Baskin, 1998). The inhibitory effects also vary by species of salt; for example, potassium chloride (KCl) or magnesium chloride (MgCl₂) may affect the germination of a certain plant species more than do other salts, such as sodium chloride or calcium chloride (CaCl₂). Additionally, natural ecosystems typically contain a mixture of salts (Swanson and others, 1988), and the presence of one salt may enhance or reduce the adverse effects of another (Baskin and Baskin, 1998; Tester and Davenport, 2003).

Many halophytes exhibit physiological adaptations that allow seeds to remain dormant and not germinate during hypersaline conditions. This trait allows seeds to persist in the soil seed bank until environmental conditions are favorable for germination; for example, seeds will not germinate until climatic events lower salinity through dilution or leaching. Ultimately, dormancy release mechanisms help improve survival during seedling development, which is one of the most salt-sensitive periods of the halophyte life cycle.

After germination and early establishment, salinity can affect halophyte metabolism (for example, decreased rates of photosynthesis and respiration), as well as stimulate anatomical and morphological changes (for example, increased succulence, stomata number and size, cuticle thickness, tylose (bladder-like growth) development, early onset of lignification, and changes in diameter and number of xylem vessels) (Poljakoff-Mayber, 1975). These anatomical adaptations allow halophytes to tolerate osmotic gradients associated with saline environments.

Mature plants absorb salts from the soil solution through their root systems and lose water to the atmosphere via transpiration. These processes result in the accumulation of salts in plant tissues and often lead to high salt concentrations and death in nonhalophytes. In contrast, halophytes have evolved various mechanisms to survive saline environments. Generally, two principal types of halophytes are recognized: those that tolerate excess salts and those that resist excess salts (Ungar, 1974; Baskin and Baskin, 1998). Salt-tolerant halophytes either withstand high intracellular salt concentrations (salt-enduring) or secrete excess salts (salt-excluding) by means of salt glands, by accumulating salts in special hairs, or by transporting salts accumulated in plant structures back to the roots. In contrast, salt-resistant halophytes either do not absorb salts from the soil solution or do not transport salts to sensitive organs or leaves.

High salt concentrations in the soil can also affect plant growth by reducing the water potential gradient. For water to move from the soil to plant tissues, the water potential of the plant must be lower (that is, more negative) than that of the soil. The water potential of the soil is related to the concentration of dissolved solids in the soil-water solution; a high concentration of salts in the soil reduces the soil water potential and decreases the water potential gradient. Essentially, saline soils sequester water, making it unavailable to plants. In addition, as water evaporates from shallow, saline lakes (such as Lake Bowdoin), salts often accumulate as surficial crusts. This crusting can reduce water infiltration, thereby decreasing the availability of water to plants growing on the edges of lakes.

Effective management of salt concentrations to promote the development of vegetation for wildlife habitat will require an understanding of plant adaptations to salinity, which vary by life stage. The general overview provided above is intended only to highlight some of the more common adaptations and life-cycle strategies that should be considered in concert with other important determinants of plant community composition. For example, the simple plant/salinity relations discussed above should be considered in relation to many other factors that significantly influence establishment, growth, and reproduction. Soil pH, texture, temperature, redox potential, moisture, and water depth all influence plant establishment and growth in wetland environments (for example, Stewart and Kantrud, 1972; van der Valk and Davis, 1978; van der Valk, 1981; Fredrickson and Laubhan, 1994; Winter, 2003).

Invertebrates

As with that of plants, the composition of aquatic invertebrate communities can vary greatly in response to changes in salinity. In general, relatively fresh aquatic systems contain diverse invertebrate communities, whereas highly saline systems tend to be dominated by relatively few taxa. It is important to note, however, that even though species richness declines in highly saline systems, biomass often does not (for example, Euliss and others, 1991). Common invertebrates of highly saline systems include copepods and rotifers (particularly some species of the genera Brachionus and *Hexarthra*), as well as a small number of insects from the orders Diptera (typically from the families Chironomidae and Culicidae [genus Aedes]) and Coleoptera (Pennak, 1989). Shifts in invertebrate community structure that result from increased salinities in prairie wetlands typically include displacement of amphipods (for example, Hyalella) and anostracans (for example, Branchinecta) by more salt-tolerant brine shrimp (Artemia). In addition, a narrow range of insect taxa such as brine flies (Ephydridae) and salt-tolerant water boatmen (Corrixidae) have been found to dominate systems with high salt concentrations (Swanson and others, 1988; Euliss and others, 1999). For example, the insect community of hypersaline (up to 300 mS cm⁻¹) ponds in California was dominated by 1 corixid (Trichocorixa reticulate) and 1 midge (Tanypus grodhausi) (Euliss and others, 1991), whereas 1 midge species dominated the benthic community of an alkaline lake in central Washington where salinity levels were about 17,000 mg L⁻¹ (approximately 26,563 µS cm⁻¹). Species richness in this lake increased two to eight times as salinity levels were reduced to about 1,500 mg L⁻¹ (approximately 2,344 μ S cm⁻¹), with the highest number of species occurring

Table 5. Sodium chloride concentration at which seed germination of halophytic plant species was reduced from 75–100 percent to approximately 10 percent.

[Modified from Baskin and Baskin, 1998. NaCl, sodium chloride; mg L⁻¹, milligrams per liter]

Convo	Creation	NaCl concentration		0	o .	NaCl concentration	
Genus	Species	Molarity	mg L ⁻¹	Genus	Species	Molarity	mg L ⁻¹
Melilotus	indica	0.05	2,922.0	Sporobolus	virginicus	0.26->0.60	15,194.4->35,064.0
Salicornia	bigelovii	0.05-0.06	2,922.0-3,506.4	Suaeda	nudiflora	0.26	15,194.4
Sarcobatus	vermiculatus	0.06-0.15	3,506.4-8,766.0	Aster	tripolium	0.34-0.60	19,869.6-35,064.0
Zygophyllum	qatarense	0.07	4,090.8	Atriplex	halimus	0.34	19,869.6
Distichlis	spicata	0.09	5,259.6	Atriplex	patula	0.34	19,869.6
Glaux	maritima	0.09	5,259.6	Cotula	coronopifolia	0.34	19,869.6
Plagianthus	divaricatus	0.09	5,259.6	Mesembryanthemum	australe	0.34	19,869.6
Scirpus	americanus	0.09	5,259.6	Phragmites	communis	0.34	19,869.6
Scirpus	olneyi	0.09	5,259.6	Polypogon	monspeliensis	0.34	19,869.6
Selliera	radicans	0.09	5,259.6	Prosopis	farcta	0.34-0.6	19,869.6-35,064.0
Spergularia	salina	0.09	5,259.6	Salicornia	patula	0.34	19,869.6
Triglochin	striatum	0.09-0.17	5,259.6-9,934.8	Atriplex	griffithii	0.35	20,454.0
Iva	annua	0.13-0.17	7,597.2-9,934.8	Cochlearia	danica	0.43	25,129.2
Zannichellia	pedunculata	0.13	7,597.2	Rumex	crispus	0.43	25,129.2
Ceratoides	lanata	0.17-0.34	9,934.8-19,869.6	Puccinellia	distans	0.45	26,298.0
Hordeum	jubatum	0.17-0.31	9,934.8-18,116.4	Puccinellia	lemmoni	0.45	26,298.0
Juncus	maritimus	0.17	9,934.8	Halopeplis	amplexicaulis	0.50	29,220.0
Melaleuca	ericifolia	0.17	9,934.8	Atriplex	triangularis	0.51	29,804.4
Myrica	cerifera	0.17	9,934.8	Limonium	bellidifolium	0.60	35,064.0
Schoenus	nitens	0.17	9,934.8	Limonium	vulgare	0.60	35,064.0
Scirpus	robustus	¹ 0.17–0.20	19,934.8-11,688.0	Salsola	kali	0.60	35,064.0
Spergularia	marina	0.17-0.34	9,934.8-19,869.6	Salicornia	pacifica	0.68	39,739.2
Suaeda	linearis	0.17	9,934.8	Spartina	alterniflora	0.68	39,739.2
Melilotus	segetalis	0.20	11,688.0	Puccinellia	festucaeformis	0.75	43,830.0
Melilotus	messanensis	>0.20	>11,688.0	Cressa	cretica	0.85	49,674.0
Sesuvium	portulacastrum	0.2->0.60	11,688.0->35,064.0	Salicornia	europaea	0.85	49,674.0
<i>Atriplex</i>	canescens	0.21	12,272.4	Suaeda	depressa	0.85	49,674.0
Salicornia	brachystachya	¹ 0.24	114,025.6	Tamarix	pentandra	¹ 0.85	¹ 49,674.0
Salicornia	dolichostachya	¹ 0.24	114,025.6-14,025.6	Suaeda	japonica	0.90	52,596.0
<i>Atriplex</i>	prostrata	0.26	15,194.4	Kochia	americana	1.02	59,608.8
4triplex	polycarpa	0.26	15,194.4	Zygophyllum	dumosa	1.51	88,244.4
Plantago	coronopus	0.26	15,194.4	Salicornia	herbacea	1.70	99,348.0
Salicornia	emerici	0.26	15,194.4				

¹Highest concentration of NaCl tested; seeds could germinate at higher concentrations.

at levels ranging from 2,000 to 3,000 mg L^{-1} (approximately 3,125 to 4,688 μ S cm⁻¹) (Wiederholm, 1980).

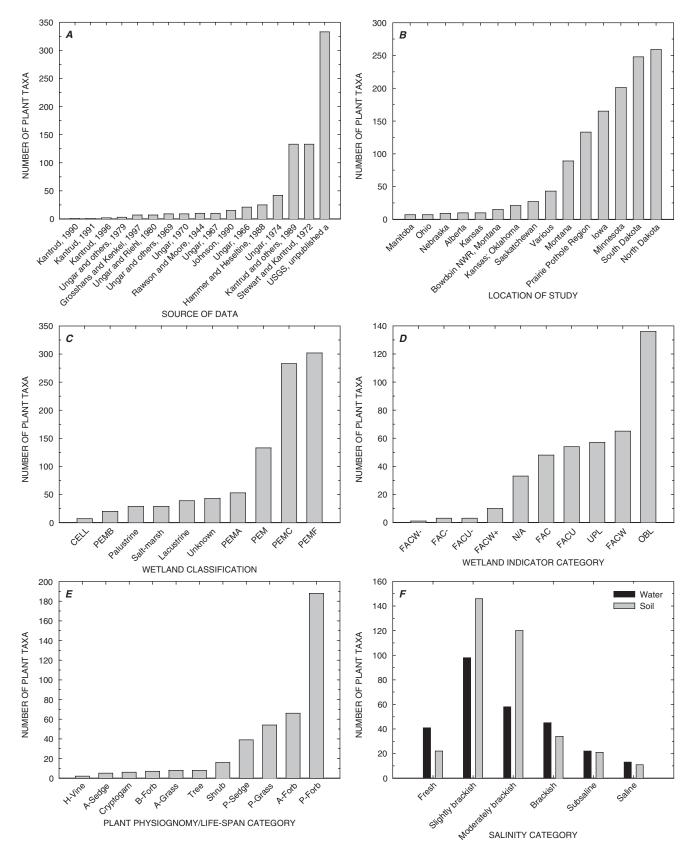
A majority of aquatic invertebrates are able to tolerate a relatively large range of salt concentrations, but few species can survive in highly saline waters. Most invertebrate species are unable to maintain their internal salt and water balance when placed in a solution that contains greater than 0.9 percent (9,000 mg L⁻¹ or approximately 14,063 µS cm⁻¹) salts, or roughly 25 percent the salt content of seawater (Pennak, 1989; Hart and others, 1991). Only a narrow assemblage of euryhaline organisms (for example, inhabitants of estuaries and tide pools) can thrive in both freshwater and marine environments. In general, habitats that support a large number of common freshwater fauna have concentrations of TDS that range from about 10 to 1,000 mg L^{-1} (approximately 16 to 1,563 μS cm⁻¹) (Pennak, 1989; Hart and others, 1991). Salinity levels in inland lakes and wetlands, however, can vary considerably, and the few species that can tolerate extremely high salt concentrations require highly specialized and efficient osmoregulatory systems to maintain a proper internal balance of salt and water. Since water will tend to move into the hypertonic (high salt) tissues of freshwater invertebrates through permeable surfaces such as epithelia, cuticle, chitin, and gills (Pennak, 1989), these species have developed various adaptations such as contractile vacuoles, flame bulb systems, nephridia, and various glandular structures that are capable of forming highly dilute urine (hypotonic to body fluids) that is excreted in great quantities. As a result, concentrations of internal salts and water remain somewhat constant.

Similar to that of plants, the salinity tolerance of aquatic invertebrates often varies by life stage, with immature organisms often exhibiting less tolerance to salts than do adults (Euliss and others, 1999; Brock and others, 2005; Pinder and others, 2005). Many species of Coleoptera and Hemiptera are able to exist in prairie wetlands in spite of highly variable salinities because their adult stages are capable of flying to suitable habitats. Conversely, many nonflying aquatic invertebrates and immature stages of flying insects must rely on various adaptations that allow them to endure highly saline habitats, including burrowing into substrates or producing ephippia (resting eggs), cysts, or waterproof secretions (Euliss and others, 1999). For example, cladocerans such as Daphnia sp. produce ephippia that remain viable in the substrate until conditions are favorable for hatching. Because of the high mobility of some adult invertebrates and the inability of many immature aquatic invertebrates to cope with high salinities, the presence of adults in highly saline wetlands does not necessarily indicate the presence of a persistent population (Pinder and others, 2005).

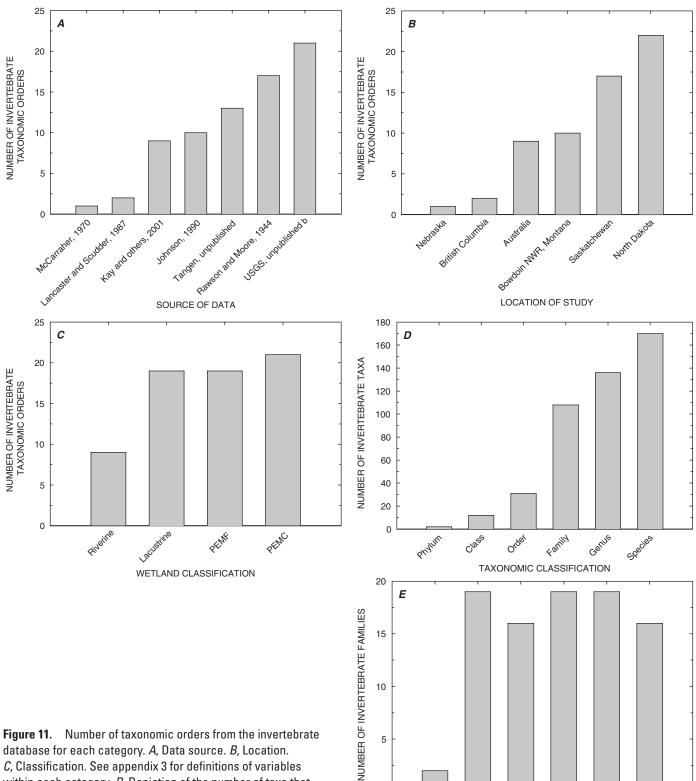
Database Summary Statistics

Plants

The plant database (*http://pubs.usgs.gov/sir/2009/5098/ downloads/databases_21april2009.xls*) contains information on 411 taxa obtained from 17 studies conducted in 9 States and 3 Canadian Provinces, as well as literature that did not specify a location (apps. 4 and 5). Figure 10 is a graphic portrayal of the compiled data by the number of plant taxa in relation to source (fig. 10*A*), location (fig. 10*B*), wetland classification (fig. 10*C*), wetland indicator category (fig. 10*D*), plant physiognomy/life-span (fig. 10*E*), and salinity categories (fig. 10*F*). We used this database to compute the minimum and maximum reported specific conductance and pH by substrate (soil, water) for each plant taxon (app. 5).


Invertebrates

The invertebrate database (*http://pubs.usgs.gov/ sir/2009/5098/downloads/databases_21april2009.xls*) contains 330 taxa obtained from 7 sources (apps. 4 and 6) that represent studies from 3 States, 2 Canadian Provinces, and Australia. Figure 11 provides a summary of the number of invertebrate taxa by source (fig. 11*A*), location (fig. 11*B*), wetland classification (fig. 11*C*), taxonomic classification (fig. 11*D*), and salinity maxima (fig. 11*E*). Appendix 6 contains the minimum and maximum specific conductance and pH for invertebrate taxa included in the database.


Considerations in Using Information from the Plant and Invertebrate Databases

The plant and invertebrate databases represent information obtained from an extensive search of the scientific literature and unpublished data; however, it is not considered comprehensive. Data are derived primarily from field studies conducted in natural wetland ecosystems rather than from experimentally derived tolerance values. Users should consider the following aspects and limitations when creating summaries or conducting analyses:

 The data represent information from numerous geographic locations (for example, Iowa, North Dakota, Prairie Pothole Region, Manitoba) and wetland types (for example, palustrine, lacustrine, salt-marsh); users may want to focus on, or exclude data from, a certain region or wetland type.

Figure 10. Number of taxa from the plant database by various categories. *A*, Data source. *B*, Location. *C*, Classification. *D*, Wetland indicator category. *E*, Plant physiognomy/life-span category. See appendix 3 for definitions of variables within each category. *F*, The number of taxa from the plant database in relation to plant community salinity categories presented in table 2. Plant taxa were included in each category on the basis of the maximum reported salinity of soil and water.

Silonthy brackish

Fresh

0

Neoberatew Diseksin

Subsaine

Saline

Brackish

SALINITY MAXIMA

18 Database of Relations Between Salinity and Aquatic Biota: Applications to Bowdoin National Wildlife Refuge, Mont.

C, Classification. See appendix 3 for definitions of variables within each category. D, Depiction of the number of taxa that were reported at each level of taxonomic classification. E, The number of taxa from the invertebrate database in relation to plant community salinity categories presented in table 2. Invertebrate taxa were included in each category on the basis of the maximum reported salinity of water.

- 2. To avoid misinterpretation, users should always consider the database variables DATA_TYPE and CONDUCTIV-ITY_CODE. DATA_TYPE defines whether the waterquality value (for example, specific conductance) was reported as a single measurement or as a summarized value such as a mean, median, minimum, or maximum. For consistency, salinity units were converted to microsiemens in the databases. The variable CONDUCTIV-ITY_CODE identifies whether the original study reported the value as microsiemens, or if it was converted (see Methods, above).
- 3. For consistency, taxonomic and common names for plants were based on The Great Plains Flora Association (1986) when possible. Therefore, the variables GENUS and SPE-CIES do not necessarily represent the scientific names reported by the original source; the variables GENUS_R and SPECIES_R present the scientific name reported by the original study.
- 4. Users of the invertebrate database must first determine which taxonomic classification is most appropriate since individual studies report invertebrate occurrences at varying degrees of resolution (for example, Order, Family, Genus, Species). Resolution will be lost when using a higher taxonomic classification such as Order, whereas using a lower taxonomic classification such as Genus may result in the loss of some information on occurrence.
- 5. Certain taxa in both databases may have only been reported in a single or small number of studies. Therefore, salinity values for specific taxa may be limited by a paucity of data. Additionally, many studies that report salinity values are conducted in highly saline systems and focus only on salt-tolerant taxa; therefore, many common freshwater taxa may not be well represented.
- 6. It is important to consider that many abiotic factors that control wetland plant and invertebrate community composition are highly dynamic and exhibit seasonal and annual

fluctuations. Therefore, salinity or other measurements recorded on a given day or year may not be representative of the site during other time periods. Consequently, the occurrence of plant and invertebrate taxa recorded at a site may be influenced by factors, or values of factors, other than those occurring at the time of sampling.

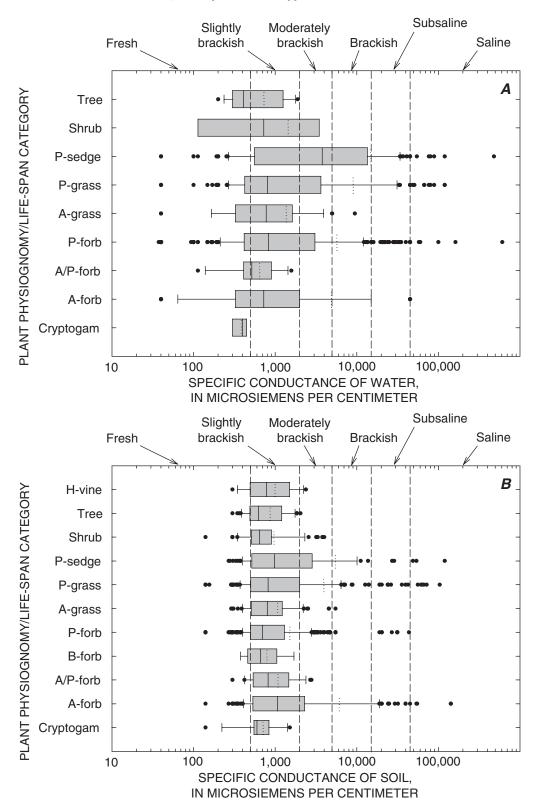
7. For both plants and invertebrates, tolerance to salinity can vary significantly depending on life stage. Mature plants may be able to survive in saline conditions as long as the proper conditions existed during the period of germination, which is often earlier in the year when snowmelt and spring rains dilute waters and result in lower salinities. Similarly, presence of mobile adult invertebrates does not necessarily indicate the presence of a persistent population.

Application to Bowdoin National Wildlife Refuge

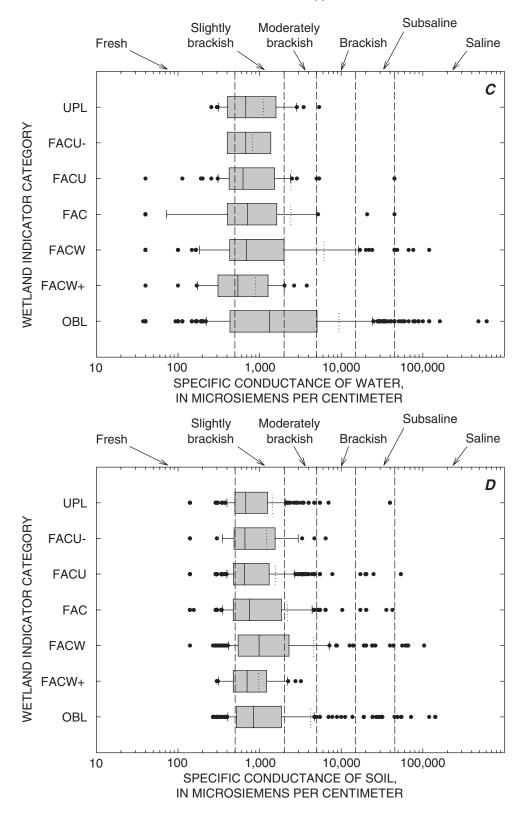
Plants

There are about 210 plant species documented on Bowdoin NWR according to a vegetation survey conducted in the late 1980s and early 1990s (app. 1). Of these plants, the database compiled for this report includes information for 110 species that was obtained from 13 known locations distributed among 9 types of aquatic systems, 8 wetland indicator categories, and 11 plant physiognomy/life-span categories (table 6). On the basis of this information, at least some taxa in each plant physiognomy and wetland indicator category can tolerate fresh to moderately brackish habitats (fig. 12; based on 10th and 90th percentile ranges); however, most taxa within each category (based on mean and median as measures of central tendency) tolerate only slightly brackish

Table 6.Summary information from the plant database (210 total species) for 110 species documented on Bowdoin NationalWildlife Refuge (app. 1).


[Data were obtained from 13 known locations and represent 9 types of aquatic systems (classification), 8 wetland indicator categories, and 11 plant physiognomy/life-span categories]

Location	Alberta, Iowa, Kansas, Manitoba, Minnesota, Montana, Nebraska, North Dakota, Ohio, Oklahoma, Prairie Pothole Region, Saskatchewan, South Dakota, "unknown"
Classification ¹	CELL, LACUSTRINE, PALUSTRINE, PEM, PEMA, PEMB, PEMC, PEMF, SALT-MARSH, "unknown"
Wetland indicator category ² (number of taxa)	FAC (10), FAC- (1), FACU (26), FACU- (2), FACW (9), FACW+ (1), OBL (30), UPL (24), n/a (7)
Plant physiognomy/life-span ³ category (number of taxa)	A-forb (19), A-grass (6), A/P-forb (3), B-forb (1), cryptogam (2), H-vine (1), P-forb (45), P-grass (17), P-sedge (7), shrub (5), tree (4)


¹See variable "CLASSIFICATION" in app. 3 for definitions.

²See variable "WIC" in app. 3 for definitions.

³See variable "PHYSIOGNOMY" in app. 3 for definitions.

Figure 12. Specific conductance of water and soil for each plant physiognomy/life-span category and each wetland indicator category (see variables "PHYSIOGNOMY" and "WIC" in app. 3). *A*, Specific conductance of water for each plant physiognomy/life-span category. *B*, Specific conductance of soil for each plant physiognomy/life-span category. *C*, Specific conductance of water for each wetland indicator category. *D*, Specific conductance of soil for each wetland indicator category. The data represent taxa identified at Bowdoin National Wildlife Refuge (app. 1) that are found in the plant database. The box plots show the median (solid line); mean (dotted line); 10th, 25th, 75th, and 90th percentiles (horizontal boxes with error bars); and outliers (dots). Vertical dashed lines delineate boundaries for plant community salinity categories (table 2).

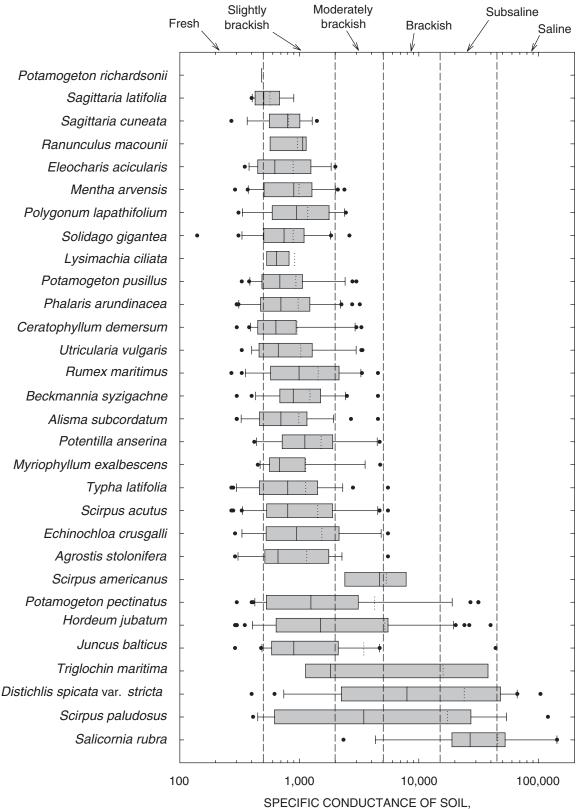
Figure 12. Specific conductance of water and soil for each plant physiognomy/life-span category and each wetland indicator category (see variables "PHYSIOGNOMY" and "WIC" in app. 3). *A*, Specific conductance of water for each plant physiognomy/life-span category. *B*, Specific conductance of soil for each plant physiognomy/life-span category. *C*, Specific conductance of water for each wetland indicator category. *D*, Specific conductance of soil for each wetland indicator category. The data represent taxa identified at Bowdoin National Wildlife Refuge (app. 1) that are found in the plant database. The box plots show the median (solid line); mean (dotted line); 10th, 25th, 75th, and 90th percentiles (horizontal boxes with error bars); and outliers (dots). Vertical dashed lines delineate boundaries for plant community salinity categories (table 2).—Continued

conditions (figs. 13, 14). Most of the dominant plant species found on the refuge (see *Description of Bowdoin National Wildlife Refuge*) exhibited the greatest tolerance to salinity. Examples include hardstem bulrush (*Scirpus acutus*), alkali bulrush (*S. paludosus*), common threesquare (*S. americanus*), saltgrass (*Distichlis spicata*), pickleweed (*Salicornia rubra*), sago pondweed (*Potomogeton pectinatus*), and widgeongrass (*Ruppia maritima*). Few of these species, however, appear to tolerate salinities above brackish (approximately 15,000 μ S cm⁻¹).

Invertebrates

Most of the taxonomic orders and families of aquatic invertebrates known to occur on the refuge (app. 2) are represented in the database (figs. 15, 16). Examination of invertebrates at the taxonomic level of family (fig. 16) indicates that most families can occur in fresh to brackish habitats; however, the greatest diversity tends to occur within slightly to moderately brackish habitats. Similar to that of plants, information on invertebrates compiled in the database suggests that few taxa appear capable of tolerating salinities above brackish (approximately 15,000 μ S cm⁻¹).

Summary


We reviewed and summarized relevant literature to assess the relation between salinity and composition of biotic communities associated with freshwater ecosystems. This is not a comprehensive literature review and should not be considered exhaustive. Further, we do not report experimentally derived threshold values (for example, minimum or maximum salt tolerance) for individual plant or invertebrate species; instead, we present data obtained from field surveys that describe species occurrences across naturally fluctuating ranges of salinity and other environmental factors (for example, salt composition, temperature, pH). This approach allows for the prediction of broad species assemblages that have the potential to occur in wetlands with varying ranges of salinity that should facilitate evaluation of various management practices and strategies aimed at enhancing wildlife habitat. As an example, wetlands on Bowdoin NWR are characterized by elevated salinity levels that have been exacerbated by changes in land use and past management activities that enhance water inputs into a closed basin. The high salinity levels have had a negative impact on the ability of wetlands to support waterfowl, which is one of the primary objectives of the refuge. Refuge staff can use the information presented in this report to evaluate various management strategies designed to remove salts from wetlands and create environmental conditions that favor establishment of plant and invertebrate communities that are highly attractive to waterfowl. In addition, refuge staff can use this information to help establish specific (for example, obtain a specific range of salinity levels) rather than general (for example, reduce salinity levels) management goals. A primary focus of this report was to provide information to address the salinity problem at Bowdoin NWR, but information in the database, as well as concepts and information discussed, is intended to be applicable to other areas or refuges. Ideally, information in the database will be augmented with additional field studies by resource managers (for example, salinity monitoring, vegetation inventories) to facilitate a better understanding of the ecological relations between salinity and flora and fauna when developing management strategies.

Acknowledgments

Funding for this project was provided by the U.S. Fish and Wildlife Service and the U.S. Geological Survey. We thank Charles Dahl, Betty Euliss, Rachel Laubhan, Dave Mushet, and Kathy Tribby for assisting in the literature search and providing data and technical assistance, and Suzanne Roberts for the cover art on this report. Additionally, we thank the following people for comments on previous versions of this report: Mike Artmann, Wayne King, Jana Mohrman, Rick Sojda, Amy Symstad, and Kathy Tribby.

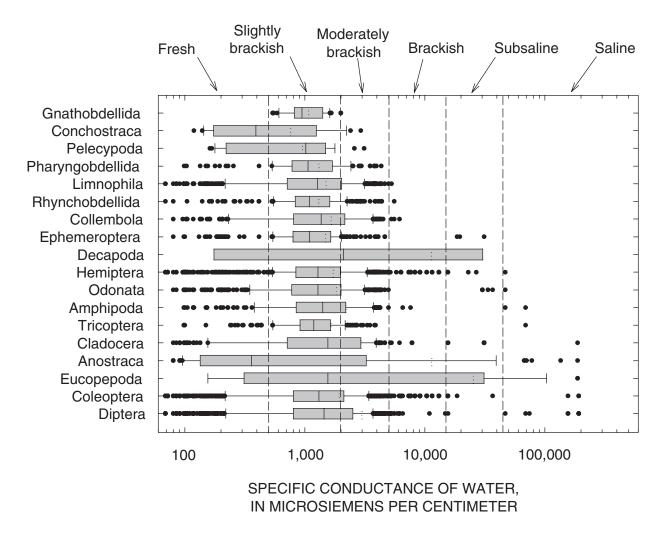
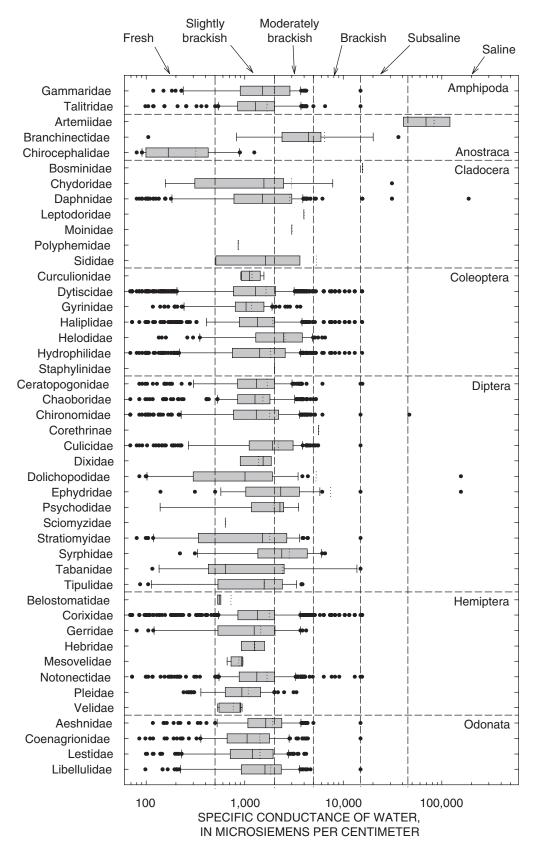


Figure 13. Specific conductance of water for common plant species at Bowdoin National Wildlife Refuge that are associated with wetlands (FACW, FACW+, OBL; see variable "WIC" in app. 3). The box plots show the median (solid line); mean (dotted line); 10th, 25th, 75th, and 90th percentiles (horizontal boxes with error bars); and outliers (dots). Vertical dashed lines delineate boundaries for plant community salinity categories (table 2).



IN MICROSIEMENS PER CENTIMETER

Figure 14. Specific conductance of soil for common plant species at Bowdoin National Wildlife Refuge that are associated with wetlands (FACW, FACW+, OBL; see variable "WIC" in app. 3). The box plots show the median (solid line); mean (dotted line); 10th, 25th, 75th, and 90th percentiles (horizontal boxes with error bars); and outliers (dots). Vertical dashed lines delineate boundaries for plant community salinity categories (table 2).

Figure 15. Specific conductance of water for representative taxa in the invertebrate database that could occur at Bowdoin National Wildlife Refuge. The box plots show the median (solid line); mean (dotted line); 10th, 25th, 75th, and 90th percentiles as horizontal boxes with error bars; and outliers (dots). Vertical dashed lines delineate boundaries for plant community salinity categories (table 2).

Figure 16. Specific conductance of water for invertebrate families from representative taxonomic orders in the invertebrate database. The box plots show the median (solid line); mean (dotted line); 10th, 25th, 75th, and 90th percentiles (horizontal boxes with error bars); and outliers (dots). Vertical dashed lines delineate boundaries for plant community salinity categories (table 2).

References

- Baskin, C.C., and Baskin, J.M., 1998, Seeds—ecology, biogeography, and evolution of dormancy and germination: San Diego, Calif., Academic Press, 666 p.
- Bauder, J.W., Hershberger, K., and Sessom, H., 2007, Bowdoin National Wildlife Refuge salt mitigation impact review: Bozeman, Montana State University, Department of Land Resources and Environmental Sciences, Open-file report to Montana Reserve Water Rights Compact Commission, Technical Advisory Team, April 2007, 81 p.
- Brock, M.A., Nielsen, D.L., and Crossle, K., 2005, Changes in biotic communities developing from freshwater wetland sediments under experimental salinity and water regimes: Freshwater Biology, v. 50, p. 1376–1390.
- Cowardin, L.M., Carter, V., Golet, F.C., and LaRoe, E.T., 1979, Classification of wetlands and deepwater habitats of the United States: Washington, D.C., U.S. Fish and Wildlife Service, 131 p.
- DuBois, K.L., Palawski, D.U., and Malloy, J.C., 1992, Bowdoin National Wildlife Refuge contaminants biomonitoring study: Helena, Mont., U.S. Fish and Wildlife Service, Contaminant Report R6/207H/92, 53 p.
- Euliss, N.H., Jr., Jarvis, R.L., and Gilmer, D.S., 1991, Standing crops and ecology of aquatic invertebrates in agricultural drainwater ponds in California: Wetlands, v. 11, p. 179–190.
- Euliss, N.H., Jr., Wrubleski, D.A., and Mushet, D.M., 1999, Wetlands of the Prairie Pothole Region—invertebrate species composition, ecology, and management, *in* Batzer, D.P., Rader, R.B., and Wissinger, S.A., eds., Invertebrates in freshwater wetlands of North America—ecology and management: New York, N.Y., John Wiley & Sons, Inc., p. 471–514.
- Fredrickson, L.H., and Laubhan, M.K., 1994, Managing wetlands for wildlife, *in* Bookhout, T.A., ed., Research and management techniques for wildlife and habitats: Bethesda, Md., The Wildlife Society, p. 623–647.
- Grosshans, R.E., and Kenkel, N.C., 1997, Dynamics of emergent vegetation along natural gradients of water depth and salinity in a prairie marsh—delayed influences of competition, *in* Goldsborough, L.G., and Hann, B.J., eds., University of Manitoba Field Station (Delta Marsh) thirtysecond annual report: Portage la Prairie, Manitoba, Canada, p. 83–93.

- Hamilton, D.B., Roelle, J.E., and Schafer, W.M., 1989, A simulation model of water and salt balance at Bowdoin National Wildlife Refuge: Fort Collins, Colo., U.S. Fish and Wildlife Service, National Ecology Research Center, NERC-89/08, 60 p.
- Hammer, U.T., and Heseltine, J.M., 1988, Aquatic macrophytes in saline lakes of the Canadian prairies: Hydrobiologia, v. 158, p. 101–116.
- Hart, B.T., Bailey, P., Edwards, R., Hortle, K., James, K., McMahon, A., Meredith, C., and Swadling, K., 1991, A review of the salt sensitivity of the Australian freshwater biota: Hydrobiologia, v. 210, p. 105–144.
- Havlin, J.L., Beaton, J.D., Tisdale, S.L., and Nelson, W.L., eds., 1999, Soil fertility and fertilizers (6th ed.): Upper Saddle River, N.J., Prentice Hall, 515 p.
- Johnson, K.M., 1990, Aquatic vegetation, salinity, aquatic invertebrates, and duck brood use at Bowdoin National Wildlife Refuge: Bozeman, Montana State University, master's thesis.
- Kantrud, H.A., 1990, Sago pondweed (*Potamogeton pecinatus* L.)—a literature review: Washington, D.C., U.S. Fish and Wildlife Service, Resource Publication 176, 89 p.
- Kantrud, H.A., 1991, Widgeongrass (*Ruppia maritima* L.)—a literature review: Washington, D.C., U.S. Fish and Wildlife Service, Fish and Wildlife Research 10, 58 p.
- Kantrud, H.A., 1996, The alkali (*Scirpus maritimus* L.) and saltmarsh (*S. robustus* Pursh) bulrushes—a literature review: Washington, D.C., National Biological Service Information and Technology Report 6, 77 p.
- Kantrud, H.A., Millar, J.B., and van der Valk, A.G., 1989, Vegetation of wetlands of the prairie pothole region, *in* van der Valk, A., ed., Northern prairie wetlands: Ames, Iowa State University Press, p. 132–187.
- Kay, W.R., Halse, S.A., Scanlon, M.D., and Smith, M.J., 2001, Distribution and environmental tolerances of aquatic macroinvertebrate families in the agricultural zone of southwestern Australia: Journal of the North American Benthological Society, v. 20, p. 182–199.
- Kendy, E., 1999, Simulation of water and salt budgets and effects of proposed management strategies for Bowdoin National Wildlife Refuge, northeastern Montana: Helena, Mont., U.S. Geological Survey Water-Resources Investigations Report 98–4260, 86 p.

LaBaugh, J.W., 1989, Chemical characteristics of water in northern prairie wetlands, *in* van der Valk, A., ed., Northern prairie wetlands: Ames, Iowa State University Press, p. 56–90.

LaBaugh, J.W., Winter, T.C., Swanson, G.A., Rosenberry, D.O., Nelson, R.D., and Euliss, N.H., Jr., 1996, Changes in atmospheric circulation patterns affect midcontinent wetlands sensitive to climate: Limnology and Oceanography v. 41, p. 864–870.

Lambing, J.H., Jones, W.E., and Sutphin, J.W., 1988, Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in Bowdoin National Wildlife Refuge and adjacent areas of the Milk River Basin, northeastern Montana, 1986-87: Helena, Mont., U.S. Geological Survey Water-Resources Investigations Report 87–4243, 71 p.

Laubhan, M.K., Gleason, R.A., Knutsen, G.A., and Euliss, N.H., Jr., 2006, A preliminary biological assessment of Long Lake National Wildlife Refuge Complex, North Dakota: Washington, D.C., U.S. Fish and Wildlife Service Biological Technical Publication BTP R6006-2006, 66 p.

Lieffers, V.J., and Shay, J.M., 1983, Ephemeral saline lakes on the Canadian prairies—their classification and management for emergent macrophyte growth: Hydrobiologia, v. 105, p. 85–94.

Lind, O.T., 1985, Handbook of common methods in limnology (2d ed.): Dubuque, Iowa, Kendall/Hunt Publishing Company, 199 p.

Moss, B., 1998, Ecology of fresh waters—man and medium, past to future (3d ed.): Blackwell Science, Inc., 557 p.

Nimick, D.A., 1997, Hydrology and water chemistry of the Benton Lake basin with emphasis on the fate of dissolved solids at Benton Lake National Wildlife Refuge, westcentral Montana: Helena, Mont., U.S. Geological Survey Water-Resources Investigations Report 97-4100, 79 p.

Parrett, C., 2005, Synthesis of monthly and annual streamflow records (water years 1950-2003) for Big Sandy, Clear, Peoples, and Beaver Creeks in the Milk River Basin, Montana: Reston, Va., U.S. Geological Survey Scientific Investigations Report 2005–5216, 29 p.

Pennak, R.W., 1989, Fresh-water invertebrates of the United States—Protozoa to Mollusca (3d ed.): New York, N.Y., John Wiley & Sons, Inc., 628 p.

Pinder, A.M., Halse, S.A., McRae, J.M., and Shiel, R.J., 2005, Occurrence of aquatic invertebrates of the wheatbelt region of Western Australia in relation to salinity: Hydrobiologia, v. 543, p. 1–24. Poljakoff-Mayber, A., 1975, Morphological and anatomical changes in plants as a response to salinity stress, *in* Poljakoff-Mayber, A., and Gale, J., eds., Plants in saline environments: New York, Heidelberg, Berlin, Springer-Verlag, p. 97–117.

Rawson, D.S., and Moore, J.E., 1944, The saline lakes of Saskatchewan: Canadian Journal of Research, v. 22, p. 141–201.

Rodney, M., and Mohrman, J., 2006, Analysis of stock reservoirs in Beaver Creek Basin, Montana, for downstream effects near Bowdoin National Wildlife Refuge: Lakewood, Colo., U.S. Fish and Wildlife Service, Mountain-Prairie Region, Report dated July 5.

Stewart, R.E., and Kantrud, H.A., 1971, Classification of natural ponds and lakes in the glaciated prairie region: Washington, D.C., U.S. Department of the Interior, Fish and Wildlife Service, Resource Publication 92, 57 p.

Stewart, R.E., and Kantrud, H.A., 1972, Vegetation of prairie potholes, North Dakota, in relation to quality of water and other environmental factors: Washington, D.C., U.S. Geological Survey Professional Paper 585-D, 36 p.

Swanson, G.A., Winter, T.C., Adomaitis, V.A., and LaBaugh, J.W., 1988, Chemical characteristics of prairie lakes in south-central North Dakota—their potential for influencing use by fish and wildlife: Washington, D.C., U.S. Fish and Wildlife Service, Fish and Wildlife Technical Report 18, 44 p.

Tchobanoglous, G., and Burton, F.L., 1991, Wastewater engineering; treatment, disposal, and reuse (3d ed.): New York, N.Y., Metcalf & Eddy, Inc., McGraw-Hill Inc., 1,024 p.

Tester, M., and Davenport, R., 2003, Na⁺ tolerance and Na⁺ transport in higher plants: Annals of Botany, v. 91, p. 503–527.

The Great Plains Flora Association, 1986, Flora of the Great Plains: Lawrence, University Press of Kansas, 1,402 p.

Ungar, I.A., 1966, Salt tolerance of plants growing in saline areas of Kansas and Oklahoma: Ecology, v. 47, p. 154–155.

Ungar, I.A., 1967, Vegetation-soil relationships on saline soils in northern Kansas: American Midland Naturalist, v. 78, p. 98–120.

Ungar, I.A., 1970, Species-soil relationships on sulfate dominated soils of South Dakota: American Midland Naturalist, v. 83, p. 343–357.

Ungar, I.A., 1974, Inland halophytes of the United States, *in* Reimold, R.J., and Queen, W.H., eds., Ecology of halophytes: New York, N.Y., Academic Press, Inc., p. 235–305.

- Ungar, I.A., Benner, D.K., and McGraw, D.C., 1979, The distribution and growth of Salicornia Europaea on an inland salt pan: Ecology, v. 60, p. 329–336.
- Ungar, I.A., Hogan, W., and McClelland, M., 1969, Plant communities of saline soils at Lincoln, Nebraska: The American Midland Naturalist, v. 82, p. 564–577.
- Ungar, I.A., and Riehl, T.E., 1980, The effect of seed reserves on species composition in zonal halophyte communities: Botanical Gazette, v. 141, p. 447–452.
- U.S. Department of Agriculture, 2004, Soil survey of Phillips County area, Montana, part I: Washington, D.C., U.S. Department of Agriculture, Natural Resources Conservation Service, 226 p.
- van der Valk, A.G., 1981, Succession in wetlands—a Gleasonian approach: Ecology, v. 62, p. 688–696.
- van der Valk, A.G., and Davis, C.B., 1978, The role of seed banks in the vegetation dynamics of prairie glacial marshes: Ecology, v. 59, p. 322–335.
- Weydemeyer, W., and Marsh, V.L., 1936, The bird life of Lake Bowdoin, Montana: The Condor, v. 38, p. 185–198.
- Wiederholm, T., 1980, Effects of dilution on the benthos of an alkaline lake: Hydrobiologia, v. 68, p. 199–207.
- Winter, T.C., ed., 2003, Hydrological, chemical, and biological characteristics of a prairie pothole wetland complex under highly variable climate conditions—the Cottonwood Lake area, east-central North Dakota: Washington, D.C., U.S. Geological Survey Professional Paper 2003–1675, 109 p.
- Woods, A.J., Omernik, J., Nesser, M., Shelden, J.A., Comstock, J., Azevedo, J.A., and Sandra, H., 2002, Ecoregions of Montana (2d ed.), (color poster with map, descriptive text, summary tables, and photographs): Corvallis, Oreg., U.S. Environmental Protection Agency, Western Ecology Division, map scale 1:1,500,000.

Appendix 1. Plant Taxa Identified at Bowdoin National Wildlife Refuge

Plant taxa (genus and species; common name) identified at Bowdoin National Wildlife Refuge during a preliminary vegetation survey conducted from 1987 to 1993 by researchers from the U.S. Fish and Wildlife Service, U.S. Army Corps of Engineers, and the Southeastern Wisconsin Regional Planning Commission. Taxa followed by an asterisk (*) are in the plant/salinity database. Nomenclature follows The Great Plains Flora Association (1986).

Acer negundo; box elder Achillea millefolium; yarrow* Agropyron cristatum; crested wheatgrass* Agropyron repens; quackgrass* Agropyron smithii; western wheatgrass* Agropvron spicatum; bluebunch wheatgrass Agrostis stolonifera; redtop* Alisma subcordatum; common water plantain* Allium textile; onion Amaranthus retroflexus; rough pigweed* Ambrosia artemisiifolia; common ragweed, short ragweed* Ammannia coccinea; toothcup* Anemone patens; pasque flower Apocynum androsaemifolium; spreading dogbane Arnica fulgens; arnica Artemisia cana; dwarf sagebrush Artemisia dracunculus; silky wormwood* Artemisia frigida; prairie sagewort* Artemisia ludoviciana; white sage* Aruncus pubescens; bride's feathers Asclepias speciosa; showy milkweed* Asparagus officinalis; asparagus Aster ericoides; white aster* Aster floralvinda; wild aster Aster puniceus; swamp aster Aster sp.; wild aster* Astragalus pectinatus; tine-leaved milk-vetch, narrow-leave Astragalus racemosus; alkali milk-vetch, creamy poison-vetch Avena fatua; wild oats* Beckmannia syzigachne: sloughgrass* *Betula papyrifera*; paper birch, canoe birch Bouteloua gracilis; blue grama Brassica kaber; charlock* Bromus inermis; smooth brome* Bromus japonicus; Japanese brome* Bromus porteri; nodding brome Bromus tectorum; downy brome* Buchloe dactyloides; buffalo grass Callitriche hermaphroditica; northern water starwort* Cardaria draba; hoary cress Carex brevior; fescue sedge* Carex dewevana: sedge Carex hookerana; sedge Carex rostrata; beaked sedge* *Castilleja sulphurea*; Indian paintbrush Centaurea maculosa; spotted knapweed Cerastium arvense; prairie chickweed Cerastium brachypodum; nodding chickweed* Ceratophyllum demersum; hornwort, coontail* Cheilanthes feei; lip fern Chenopodium sp.; goosefoot, lamb's quarter* Chrysanthemum leucanthemum; ox-eye daisy, marguerite Chrysopsis villosa; golden aster

Chrvsothamnus nauseosus; rabbit brush Cirsium arvense; Canada thistle, field thistle* Cirsium undulatum; wavy-leaf thistle Cirsium vulgare; bull thistle* Clematis pseudoalpina; virgin's bower Clematis terniflora; virgin's bower Cleome serrulata; rocky mountain bee plant Collomia linearis; collomia Convolvulus arvensis; field bindweed* Dactylis glomerata; orchard grass* Distichlis spicata var. stricta; inland saltgrass* Echinacea angustifolia; purple coneflower Echinochloa crusgalli; barnyard grass* Elaeagnus angustifolia; Russian olive* Eleocharis acicularis; needle spikerush* Eleocharis macrostachva; common spikerush* Elodea canadensis; Canadian waterweed* Elodea nuttallii; waterweed Elvmus canadensis; Canada wild rve* Elymus glaucus; blue wild rye Epilobium angustifolium; willow-herb Equisetum arvense; field horsetail* Equisetum fluviatile; water horsetail* Eragrostis cilianensis; stinkgrass Erigeron glabellus; fleabane *Erigeron* sp.; fleabane Eriogonum flavum; yellow wild buckwheat Escobaria vivipara; spinystar Euphorbia esula; leafy spurge* Euphorbia glyptosperma; ridge-seeded spurge Fraxinus pennsylvanica; green ash* Galium boreale; northern bedstraw* Gaura coccinea; scarlet gaura Glycyrrhiza lepidota; wild licorice* Grindelia squarrosa; curly-top gumweed* Gutierrizia sarothrae: snakeweed Helianthus laetiflorus; sunflower Helianthus maximiliani; maximilian sunflower* Heliotropium curassavicum; seaside heliotrope* Hordeum jubatum; foxtail barley* Hydrochloa carolinensis; water grass *Hystrix patula*; bottlebrush grass *Iva axillaris*; poverty weed Juncus balticus; baltic rush* Juncus sp.; rush* Juniperus communis; common or dwarf juniper Kochia scoparia; kochia* Koeleria cristata: junegrass *Lactuca oblongifolia*; blue lettuce Lactuca serriola; prickly lettuce* Lappula echinata; blue stickseed Lappula occidentalis; flatspine stickseed Lappula redowskii; stickseed

Lappula texana; cupseed stickseed Lepidium perfoliatum; clasping peppergrass Lepidium sp.; peppergrass Liatris punctata; dotted blazing star* Linaria vulgaris; butter-and-eggs Lupinius flexuosus; lupine Lygodesmia juncea; skeletonweed* Lysimachia ciliata; fringed loosestrife* Machaeranthera spinulosus; aster Malva moschata; musk mallow *Malva neglecta*; common mallow* Medicago lupulina; black medick* Medicago sativa; alfalfa* Melilotus officinalis; yellow sweet clover* Mentha arvensis; field mint* Monarda spicata; horse mint, beebalm Myriophyllum exalbescens; American milfoil* Oenothera villosa; common evening primrose Opuntia polyacantha; plains prickly pear Oxytropis lambertii; purple locoweed Oxytropis sericea; white locoweed Panicum miliaceum; broom-corn millet Penstemon albidus; white beardtongue Petalostemum purpurea; purple prairie clover Phalaris arundinacea; reed canarygrass* Phleum pratense; timothy* Phlox douglasii; phlox Pinus ponderosa; ponderosa pine Plantago lanceolata; English plantain, buckhorn Plantago major; common plantain* Poa pratensis; Kentucky bluegrass* Poa sandbergii; Sandberg's bluegrass* Polanisia dodecandra; clammy-weed Polemonium haydeni; Jacob's-ladder Polygonum aviculare; knotweed* Polygonum buxiforme; knotweed Polygonum convolvulus; climbing or wild buckwheat* Polygonum lapathifolium; pale smartweed* *Polygonum persicaria*; lady's thumb Polygonum ramosissimum; bushy knotweed* Populus deltoides; cotton-wood* Potamogeton filiformis; slender pondweed* Potamogeton friesii; Fries' pondweed* Potamogeton pectinatus; sago pondweed* Potamogeton pusillus; baby pondweed* Potamogeton richardsonii; claspingleaf pondweed* Potentilla anserina; silverweed* Potentilla argentea; silvery cinquefoil Potentilla arguta; tall cinquefoil* Potentilla rivalis; brook conquefoil* Prunus virginiana; choke cherry Psoralea argophylla; silver-leaf scurf-pea* Ranunculus longirostric; white water crowfoot Ranunculus macounii; Macoun's buttercup* Ratibida columnifera; prairie coneflower*

Rhus aromatica; fragrant sumac, polecat bush *Ribes odoratum*; buffalo currant Rosa arkansana; prairie wild rose* Rosa woodsii; western wild rose* Rudbeckia sp.; coneflower Rumex maritimus; golden dock* Rumex sp.; dock, sorrel* Rumex venosus; wild begonia Ruppia maritima; ditchgrass, widgeon grass* Sagittaria cuneata; arrowhead* Sagittaria graminea; arrowhead Sagittaria latifolia; common arrowhead* Salix exigua subs. interior; sandbar willow* Salix sp.; willow* Salsola iberica; russian thistle* Sarcobatus vermiculatus; greasewood Scirpus acutus; hardstem bulrush* Scirpus americanus; chairmaker's bulrush* Scirpus paludosus; cosmopolitan bulrush* Senecio integerrimus; groundsel Setaria sp.; foxtail* Setaria viridis; green foxtail Shepherdia argentea; buffaloberry Silene cserei; smooth catchfly Sisymbrium altissimum; tumbling mustard Solidago gigantea; late goldenrod* Solidago juncea; early goldenrod Solidago missouriensis; prairie goldenrod* Solidago rigida var. rigida; rigid goldenrod* Sonchus arvensis; field sow thistle* Sparganium emersum; bur-reed Sphaeralcea coccinea; red false mallow Sporobolus airoides; alkali sacaton* Sporobolus asper; rough dropseed Stipa comata; needle-and-thread* Stipa spartea; porcupine-grass Stipa viridula; green needlegrass* Symphoricarpos occidentalis; western snowberry* Symphoricarpos orbiculatus; coralberry, buckbrush Taraxacum officinale; common dandelion* Thlaspi arvense; field pennycress* Tragopogan dubius; goat's beard, western salsify Triglochin maritima; seaside arrowgrass* Typha latifolia; broad-leaved cat-tail* Utricularia vulgaris; common bladderwort* Verbena bracteata; prostrate vervain Vicia americana; American vetch* Yucca glauca; soapweed, yucca Zigadenus venenosus; death camass

References

The Great Plains Flora Association, 1986, Flora of the Great Plains: Lawrence, University Press of Kansas, 1,402 p.

Appendix 2. Invertebrate Taxa Identified at Bowdoin National Wildlife Refuge

Invertebrate taxa identified at Bowdoin National Wildlife Refuge by Johnson (1990) and DuBois and others (1992). All taxa are in the invertebrate/salinity database.

Phylum	Class	Order	Family
Annelida	Hirudinea		
Annelida	Oligochaeta		
Arthropoda	Arachnoidea	Hydracarina	
Arthropoda	Branchiopoda	Cladocera	
Arthropoda	Copepoda		
Arthropoda	Insecta	Coleoptera	
Arthropoda	Insecta	Diptera	Ceratopogonidae
Arthropoda	Insecta	Diptera	Chironomidae
Arthropoda	Insecta	Diptera	Culicidae
Arthropoda	Insecta	Diptera	Ephydridae
Arthropoda	Insecta	Diptera	Stratiomyidae
Arthropoda	Insecta	Diptera	Tabanidae
Arthropoda	Insecta	Diptera	
Arthropoda	Insecta	Ephemeroptera	Baetidae
Arthropoda	Insecta	Ephemeroptera	Caenidae
Arthropoda	Insecta	Ephemeroptera	
Arthropoda	Insecta	Hemiptera	Corixidae
Arthropoda	Insecta	Hemiptera	Notonectidae
Arthropoda	Insecta	Hemiptera	
Arthropoda	Insecta	Odonata	Aeshnidae
Arthropoda	Insecta	Odonata	Coenagrionidae
Arthropoda	Insecta	Odonata	Libellulidae
Arthropoda	Insecta	Tricoptera	Leptoceridae
Arthropoda	Insecta	Tricoptera	Phryganeidae
Arthropoda	Insecta	Tricoptera	Polycentropodidae
Arthropoda	Insecta	Tricoptera	
Arthropoda	Malacostraca	Amphipoda	Gammaridae
Arthropoda	Malacostraca	Amphipoda	Talitridae
Mollusca	Gastropoda	Limnophila	Lymnaeidae
Mollusca	Gastropoda	Limnophila	Physidae
Mollusca	Gastropoda	Limnophila	Planorbidae
Nematoda			

References

DuBois, K.L., Palawski, D.U., and Malloy, J.C., 1992, Bowdoin National Wildlife Refuge contaminants biomonitoring study: Helena, Mont., U.S. Fish and Wildlife Service, Contaminant Report R6/207H/92, 53 p.

Johnson, K.M., 1990, Aquatic vegetation, salinity, aquatic invertebrates, and duck brood use at Bowdoin National Wildlife Refuge, Montana: Bozeman, Montana State University, master's thesis.

Appendix 3. Description of Variables Found in the Plant and Invertebrate Databases

Variable	Description and units
CHLORIDE	Concentration of chlorides, reported as %
CLASS	Taxonomic Class of invertebrate taxa
CLASSIFICATION	 Wetland classification; in some cases this was provided, and in others the class was assigned on the basis of site descriptions provided by the authors of each data source. LACUSTRINE = lake; classification of Cowardin and others, 1979 PALUSTRINE = marsh or wetland; classification of Cowardin and others, 1979 PEM = palustrine emergent; classification of Cowardin and others, 1979 PEMA = palustrine emergent, temporarily flooded; classification of Cowardin and others, 1979 PEMB = palustrine emergent, saturated; classification of Cowardin and others, 1979 PEMC = palustrine emergent, seasonally flooded; classification of Cowardin and others, 1979 PEMF = palustrine emergent, semipermanently flooded; classification of Cowardin and others, 1979 PEMF = palustrine emergent, semipermanently flooded; classification of Cowardin and others, 1979 SALT-MARSH = general term for saline wetlands commonly used in scientific literature CELL = artificial wetland or pond UNKNOWN = data were presented for multiple wetland classes, or the wetland class could not be determined
COMMON_NAME	Common name of plant
CONDUCTIVITY_CODE	 This variable identifies conductivity measurements (μS cm⁻¹) that were reported as μS cm⁻¹ or that were converted to μS cm⁻¹ from other units (for example, mg L⁻¹, ppm, %). CONVERSION = value was converted from other salinity unit. Total dissolved solids and specific conductance were related using the following forumula: mg L⁻¹ = μS cm⁻¹ × 0.64 (Tchobanoglous and Burton, 1991). REPORTED = value was reported as μS cm⁻¹
DOM_SALT	Dominant salt identified for the water body
FAMILY	Taxonomic Family of invertebrate taxa
GENUS	 Genus of the plant or invertebrate Plant genus terminology following The Great Plains Flora Association (1986) when possible
GENUS_R	Genus of the plant reported by the original source
LOCATION	Location of the study from which the data were obtained (for example, State, Province, country, region)
MG_L	Salinity, reported as milligrams per liter (mg L ⁻¹)
OPTIMUM_MG_L	Salinity reported as optimum for the growth of the plant species, reported as milligrams per liter (mg L ⁻¹)
ORDER	Taxonomic Order of invertebrate taxa
PERCENT	Salinity (for example, dissolved solids, total salts), reported as %
РН	pH of the water or soil where a plant species occurred
PHYLUM	Taxonomic Phylum of invertebrate taxa
PHYSIOGNOMY	Plant physiognomy (for example, forb/herb, graminoid, shrub, tree, vine) and life span (A, annual; B, bi- ennial; P, perennial) according to The Great Plains Flora Association (1986) and the U.S. Department of Agriculture, National Conservation Service web page, accessed September 2007, at <i>http://plants.</i> <i>nrcs.usda.gov/growth_habits_def.html</i>
PPM	Salinity, reported as parts per million
SODIUM	Concentration of sodium, reported as %
SOURCE	Source of the data

Variable	Description and units
SPECIES	Species of the plant or invertebrateTerminology following The Great Plains Flora Association (1986) when possible
SPECIES_R	Species of the plant reported by the original source
SUBSTRATE	 Substrate from which the variable (for example, salinity, pH) was obtained. S = soil W = water
SULFATE	Concentration of sulfate, reported as %
DATA TYPE: • TYPE_CHL (chloride) • TYPE_MG_L (mg L ⁻¹) • TYPE_PCNT (%) • TYPE_PH (pH) • TYPE_SOD (sodium) • TYPE_SUL (sulfate) • TYPE_US_CM (µS cm ⁻¹)	 Data type; these variables identify whether the measurement (for example, salinity, pH) was reported as a mean, median, range, etc. For example, if TYPE_US_CM = 'MEAN,' then the value was reported as a mean value by the original source; if TYPE_PH = 'MIN,' then the value was reported as a minimum value (for example, smallest value of a range) by the original source, etc. MAXIMUM = reported as maximum value, typically as part of a range (for example, 1–10) MEAN = reported as a calculated mean MEDIAN = reported as a calculated median MINIMUM = reported as minimum value, typically as part of a range (for example, 1–10) OCCURRENCE = a single value was reported, and it was not specified as a mean, median, etc.
US_CM	Salinity, reported as microsiemens per centimeter (µS cm ⁻¹); if salinity was reported in other units (for example, milligrams per liter [mg L ⁻¹], percent [%]), the data were converted to provide a consistency among studies. The original data/units are also provided, and the data that were converted are identified by the variable "CONDUCTIVITY_CODE" (see above).
WIC	 Wetland indicator category according to the U.S. Department of Agriculture, Natural Resources Conservation Service Web page, accessed September 2007, at <i>http://plants.usda.gov/wetinfo.html</i>: OBL = Obligate Wetland: Occurs almost always (estimated probability 99%) under natural conditions in wetlands. FACW = Facultative Wetland: Usually occurs in wetlands (estimated probability 67%–99%), but occasionally found in nonwetlands. FAC = Facultative: Equally likely to occur in wetlands or nonwetlands (estimated probability 34%–66%). FACU = Facultative Upland: Usually occurs in nonwetlands (estimated probability 67%–99%), but occasionally found on wetlands (estimated probability 1%–33%). UPL = Obligate Upland: Occurs in wetlands in another region, but occurs almost always (estimated probability 99%) under natural conditions in nonwetlands in the regions specified. If a species does not occur in wetlands in any region, it is not on the National List. A positive (+) or negative (-) sign was used with the Facultative Indicator categories to more specifically define the regional frequency of occurrence in wetlands. The positive sign indicates a frequency toward the higher end of the category (more frequently found in wetlands), and a negative sign indicates a frequency toward the lower end of the category (less frequently found in wetlands).

References

Cowardin, L.M., Carter, V., Golet, F.C., and LaRoe, E.T., 1979, Classification of wetlands and deepwater habitats of the United States: Washington, D.C., U.S. Fish and Wildlife Service, FWS/OBS-79/31, 131 p.

Tchobanoglous, G., and Burton, F.L., 1991, Wastewater engineering; treatment, disposal, and reuse (3d ed.): New York, N.Y., Metcalf & Eddy, Inc., McGraw-Hill Inc., 1,024 p.

The Great Plains Flora Association, 1986, Flora of the Great Plains: Lawrence, University Press of Kansas, 1,402 p.

Appendix 4. Description of Each Data Source Used to Develop the Plant and Invertebrate Databases

Grosshans and Kenkel, 1997

<u>General description</u>: Species composition (7 dominant plant species) and specific conductance were reported for the Marsh Ecology Research Complex (MERC) located on the southern end of Lake Manitoba, Manitoba, Canada. The MERC consists of 10 sand-diked marshes (cells) that are approximately 5–7 ha. The data were obtained from table 2.

Description of data: Mean soil conductivities were presented for each species for a range of water depths.

Specific conductance reporting units: micromhos cm⁻¹ (μ S cm⁻¹), no conversion

Description of data "type":

• <u>Mean</u>: reported as mean value

Hammer and Heseltine, 1988

<u>General description</u>: Plant species composition (aquatic macrophytes), pH, specific conductance, and makeup of the dominant salt were reported for 35 lakes located in Alberta and Saskatchewan, Canada. The data were obtained from tables 1 and 2. <u>Description of data</u>: Ranges or single values of specific conductance, single values of pH, and makeup of the dominant salt were presented for all lakes. Additionally, aquatic macrophytes occurring in each lake were identified. Since specific conductance was presented as a range and as a single value, the low and high ranges are presented in this database as minimum and maximum values and the single values are presented as an occurrence (the authors do not state that the values are measures of central tendency). Plants occurring in each lake were assigned the specific conductance (single value or range), pH, and dominant salt of the lake.

Specific conductance reporting units: mS cm-1

• converted to μ S cm⁻¹ (mS cm⁻¹ × 1,000 = μ S cm⁻¹)

Description of data "type":

- <u>Occurrence</u>: single value presented
- Min: lowest value presented in range
- <u>Max</u>: greatest value presented in range

Johnson, 1990

<u>General description</u>: Salinity gradients and their relation to vegetation and aquatic invertebrates were reported for habitats on Bowdoin National Wildlife Refuge, Mont.

<u>Description of data</u>: Table 1 provides the specific conductance values for each transect. Table 2 describes aquatic macrophytes found along 8 transects categorized as slightly brackish; table 3 describes aquatic macrophytes found along 5 transects categorized as moderately brackish; table 4 describes aquatic macrophytes found along 9 transects categorized as brackish; table 6 describes aquatic invertebrate taxa and their abundance per salinity category. Aquatic macrophytes were assigned salinity values based on sample transect data presented in table 1. Invertebrate species were assigned a range of conductivity values based on the salinity categories from table 6.

<u>Specific conductance reporting units</u>: µS cm⁻¹, no conversion Description of data "type":

Description of data "type":

- <u>Min</u>: lowest conductivity value reported for each taxa
- <u>Max</u>: greatest conductivity value reported for each taxa

Kantrud, 1990

<u>General description</u>: Data were obtained from a literature review of sago pondweed (*Potamogeton pectinatus* L.) and represent information from multiple sources.

<u>Description of data</u>: Table 5 presents the salinity concentrations of locations where sago pondweed occurred. The data represent numerous sources and consist of ranges or single observations of salinity and optimum salinity. Table 6 presents a range of pH values that represent data from multiple sources.

Specific conductance reporting units: mg L⁻¹

• converted mg L^{-1} to μ S cm⁻¹ (mg $L^{-1} / 0.64$)

- Description of data "type":
 - <u>Min</u>:
 - <u>Salinity</u>: lowest value presented in table 5, which contains ranges from multiple sources (that is, multiple minimum values)
 - <u>pH</u>: lowest value from single range presented in table 6, which represents data summarized from multiple sources

36 Database of Relations Between Salinity and Aquatic Biota: Applications to Bowdoin National Wildlife Refuge, Mont.

- Max:
 - Salinity: greatest value presented in table 5, which contains ranges from multiple sources (that is, multiple maximum values)
 - pH: greatest value from single range presented in table 6, which represents data summarized from multiple sources

Kantrud, 1991

General description: Data were obtained from a literature review of wigeongrass (Ruppia maritima) and represent information from multiple sources.

Description of data: Table 5 presents the salinity concentrations of locations where wigeongrass occurred. The data represent numerous sources and consist of ranges or single observations of salinity and optimum salinity. Tables 6 (water) and 7 (soil) present ranges of pH values that represent data from multiple sources.

Specific conductance reporting units: mg L-1

- converted mg L⁻¹ to μ S cm⁻¹ (mg L⁻¹ / 0.64)
- Description of data "type":
 - Min:
 - Salinity: lowest value presented in table 5, which contains ranges from multiple sources (that is, multiple minimum values)
 - pH: lowest value from single range presented in tables 6 or 7, which represents data summarized from multiple sources
 - Max:
 - Salinity: greatest value presented in table 5, which contains ranges from multiple sources (that is, multiple maximum values)
 - \circ pH: greatest value from single range presented in tables 6 or 7, which represents data summarized from multiple sources

Kantrud, 1996

General description: Data were obtained from a literature review of the alkali (Scirpus maritimus L.) and saltmarsh (Scirpus robustus Pursh) bulrushes and represent information from multiple sources.

Description of data: Tables 6 (water) and 10 (soil) present the salinity concentrations of locations where alkali and saltmarsh bulrush occurred. The data represent numerous sources and consist of ranges or single observations of salinity and optimum salinity. Tables 8 (water) and 10 (soil) present ranges of pH values that represent data from multiple sources.

Specific conductance reporting units: g L⁻¹ (water) and mS cm⁻¹ (soil)

- converted g L⁻¹ to μ S cm⁻¹ (g L⁻¹ × 1,000 = mg L⁻¹ / 0.64)
- converted mS cm⁻¹ to μ S cm⁻¹ (mS cm⁻¹ × 1,000)

Description of data "type":

- Min:
 - <u>Salinity</u>:
 - g L⁻¹: lowest value presented in table 6, which contains ranges from multiple sources (that is, multiple minimum values)
 - mS cm⁻¹: lowest value from single range presented in table 10, which contains ranges from multiple sources
 - Total salts (%): lowest value from single range presented in table 10, which contains ranges from multiple sources
 - \circ <u>pH</u>: lowest value from single range presented in tables 8 or 10, which contains ranges from multiple sources
- Max:
 - Salinity:
 - $\underline{g} \underline{L}^{-1}$: greatest value presented in table 6, which contains ranges from multiple sources (that is, multiple maximum values)
 - mS cm⁻¹: greatest value from single range presented in table 10, which contains ranges from multiple sources
 - Total salts (%): greatest value from single range presented in table 10, which contains ranges from multiple sources
 - pH: greatest value from single range presented in tables 8 or 10, which contains ranges from multiple sources

Kantrud and others, 1989

General description: Vegetation occurrence (hydrophytes, submerged and floating aquatic plants) and specific conductance data were summarized for Prairie Pothole Region wetlands by combining data from relevant literature and unpublished data. The data were obtained from tables 5.10, 5.11, and 5.12.

Description of data: Mean, minimum, and maximum values for specific conductivity were presented for each plant species (when available). Additional information included wetland class and/or water regime.

Specific conductance reporting units: mS cm-1

• converted to μ S cm⁻¹ (mS cm⁻¹ × 1,000 = μ S cm⁻¹)

Description of data "type":

- <u>Mean</u>: reported as mean value
 - Values for submerged and floating aquatic plants (table 5.12) are presented as either a mean, or as a single measurement. In this report, all values are considered a mean since the authors do not specify which are mean values or single measurements.
- <u>Min</u>: reported as minimum value
- <u>Max</u>: reported as maximum value

Kay and others, 2001

<u>General description</u>: Aquatic macroinvertebrates were collected and conductivity and pH were measured at 176 river sites in Australia during the spring of 1997.

Description of data: Table 3 presents ranges (min/max) of specific conductance and pH for each invertebrate family.

- Specific conductance reporting units: mS cm⁻¹
- converted to μ S cm⁻¹ (mS cm⁻¹ × 1,000 = μ S cm⁻¹)

Description of data "type":

- <u>Min</u>: lowest value reported in range
- <u>Max</u>: greatest value reported in range

Lancaster and Scudder, 1987

<u>General description</u>: Communities of aquatic Coleoptera and Hemiptera were examined in eight fishless lakes of varying salinities in central British Columbia, Canada.

<u>Description of data</u>: Table 1 presents seasonal (monthly; May–October) measurements of specific conductance for each lake. Table 2 presents the invertebrate species composition for each lake. Invertebrate species were assigned the range of conductivity values for the lakes where they occurred.

Specific conductance reporting units: µS cm⁻¹, no conversion

Description of data "type":

- Mean: mean conductivity value for each lake from the six sample periods
- Min: lowest conductivity value for each lake from the six sample periods
- Max: greatest conductivity value for each lake from the six sample periods

McCarraher, 1970

<u>General description</u>: Fairy shrimps (Anostraca) were collected and specific conductance and pH were measured in 246 sites in the sandhills region of Nebraska.

Description of data: Table 1 presents specific conductance and pH values for 6 fairy shrimp species from 23 locations.

<u>Specific conductance reporting units</u>: μ S cm⁻¹, no conversion

Description of data "type":

• <u>Occurrence</u>: value represents single conductivity/pH measurement from each location (the author does not state whether the values are single measurements or measures of central tendency).

Rawson and Moore, 1944 (plants)

<u>General description</u>: Plant species (common rooted aquatic plants) composition and salinity concentration were reported for lakes of varying salinities in Saskatchewan, Canada.

<u>Description of data</u>: Table VIII presents plant species occurrences and salinities (total solids) for 9 lakes. Plants occurring in each lake were assigned the salinity reported for the lake.

Specific conductance reporting units: ppm (total solids)

• ppm converted to μ S cm⁻¹ (ppm = mg L⁻¹ / 0.64 = μ S cm⁻¹)

Description of data "type":

• <u>Occurrence</u>: single value presented

Rawson and Moore, 1944 (invertebrates)

<u>General description</u>: Salinity ranges were reported for invertebrate taxa inhabiting lakes of varying salinities in Saskatchewan, Canada.

<u>Description of data</u>: Table X reported salinity ranges for numerous species of Cladocera and Copepoda and one species of Anostraca. Data for additional invertebrates (for example, insects, snails, leeches) were obtained by estimating salinity ranges presented graphically in figure 7.

38 Database of Relations Between Salinity and Aquatic Biota: Applications to Bowdoin National Wildlife Refuge, Mont.

Specific conductance reporting units: ppm (total solids)

• ppm converted to μ S cm⁻¹ (ppm = mg L⁻¹ / 0.64 = μ S cm⁻¹)

Description of data "type":

- <u>Occurrence</u>: single value presented
- <u>Min</u>: lowest value reported (table X) or estimated (figure 7)
- <u>Max</u>: greatest value reported (table X) or estimated (figure 7)

Stewart and Kantrud, 1972

<u>General description</u>: Plant species (primary and secondary) characteristic of Prairie Pothole Region wetlands in North Dakota were reported as (1) frequently common or abundant, (2) frequently fairly common/occasionally common or abundant, or (3) occasionally fairly common for various wetland zones (for example, wet-meadow, shallow-marsh, deep-marsh). Each plant was reported to occur in wetlands characterized as fresh, slightly brackish, moderately brackish, brackish, subsaline, or saline. Each of these salinity categories was associated with a normal range of specific conductance values. The data were obtained from figures 4, 9, 20, 27, 35, 37.

<u>Description of data</u>: Ranges (minimum/maximum) of salinity were assigned to each plant based on the salinity categories of the type of wetland where each species occurred.

Specific conductance reporting units: micromhos cm⁻¹ (µS cm⁻¹), no conversion

Description of data "type":

- Min: lowest salinity value associated with the "most fresh" salinity category reported for the species
- Max: greatest salinity value associated with the "most saline" salinity category reported for the species

Tangen, unpublished

<u>General description</u>: Aquatic macroinvertebrates were collected and conductivity and pH were measured from 24 wetlands (PEMF) within the Prairie Pothole Region of North Dakota during 2000.

<u>Description of data</u>: Data from individual wetlands were summarized across the three sample periods (June, July, August) and include invertebrate taxa occurrence in relation to specific conductance and pH of the water. Invertebrates occurring in each wetland were assigned the specific conductance and pH of the wetland.

Specific conductance reporting units: µS cm⁻¹, no conversion

Description of data "type":

- <u>Mean</u>: mean value (specific conductance, pH) for each wetland (n=24) calculated from measurements collected during each sample period (n=3).
- <u>Min</u>: minimum value (specific conductance, pH) for each wetland (n=24) calculated from measurements collected during each sample period (n=3).
- <u>Max</u>: maximum value (specific conductance, pH) for each wetland (n=24) calculated from measurements collected during each sample period (n=3).

Ungar, 1966

General description: Salt tolerance of plants growing in saline areas of Kansas and Oklahoma was examined.

<u>Description of data</u>: Table I presents ranges of soil salt content in which plant species were found in saline areas of Kansas and Oklahoma. Values reported are for the upper 10 cm of the soil profile and are expressed as percentage total salts on a dry soil weight basis. Mean, minimum, and maximum salinity values were reported for each species.

Specific conductance reporting units: percent

• converted percent to μ S cm⁻¹ (% × 10,000 = ppm = mg L⁻¹ / 0.64)

Description of data "type":

- <u>Mean</u>: reported as mean value
- <u>Min</u>: reported as minimum value
- <u>Max</u>: reported as maximum value

Ungar, 1967

General description: Vegetation-soil relationships on saline soils in northern Kansas were examined.

<u>Description of data</u>: Table 3 presents ranges of soil salinity and pH, as well as the concentration of chloride (%) for vegetation communities found in salt marshes of northern Kansas. Salinity values reported are for the upper 10 cm of the soil profile and are expressed as conductivity and total solids. Range (minimum and maximum) of conductivity, pH, chloride, and total solids were reported for the dominant species for each vegetation community.

Specific conductance reporting units: mmhos cm-1 and total solids (%)

• converted mmhos cm⁻¹ to μ S cm⁻¹ (mmhos cm⁻¹ × 1,000)

Description of data "type":

- <u>Min</u>: lowest value reported in range
- <u>Max</u>: greatest value reported in range

Ungar, 1970

General description: Species-soil relationships on sulfate-dominated soils of South Dakota were examined.

<u>Description of data</u>: Plant species-soil (upper 10 cm) relationships were presented for Stink and Bitter lakes in South Dakota. Table 2 presents single and median values for pH, conductivity, total salts (%), sulfate (%), chloride (%), and sodium (%) for each plant species.

Specific conductance reporting units: mmhos cm⁻¹ and total salts (%)

• converted mmhos cm⁻¹ to μ S cm⁻¹ (mmhos cm⁻¹ × 1,000)

Description of data "type":

- <u>Occurrence</u>: single value reported
- <u>Median</u>: value reported as median

Ungar, 1974

<u>General description</u>: The data were acquired from a book chapter containing an extensive literature review of halophytes. Salinity and pH values were reported in the text as well as in tables.

Description of data: Salinity and pH data from numerous sources were reported for various plant species. These data were summarized for this report.

Specific conductance reporting units: mmhos cm⁻¹ and/or total salts (%)

- converted mmhos cm⁻¹ to μ S cm⁻¹ (mmhos cm⁻¹ × 1,000)
- converted percent to μ S cm⁻¹ (% × 10,000 = ppm = mg L⁻¹ / 0.64)

Description of data "type":

- <u>Min</u>: lowest value reported (data summarized from entire chapter)
- <u>Max</u>: greatest value reported (data summarized from entire chapter)

Ungar and others, 1969

<u>General description</u>: Plant species-soil (upper 10 cm) relationships at salt marshes near Lincoln, Nebraska, were examined. <u>Description of data</u>: Tables 1 and 2 present single values of conductivity, total salts (%), sodium (%), chloride (%), sulfate (%), and pH.

Specific conductance reporting units: mmhos cm⁻¹ and total salts (%)

• converted mmhos cm⁻¹ to μ S cm⁻¹ (mmhos cm⁻¹ × 1,000)

Description of data "type":

- <u>Occurrence</u>: single value reported
- <u>Median</u>: median value reported
- <u>Min</u>: lowest value reported
- <u>Max</u>: greatest value reported

Ungar and others, 1979

<u>General description</u>: The distribution and growth of *Salicornia europaea* and other halophytes along a soil salinity gradient were described for a salt marsh in Ohio.

<u>Description of data</u>: Ranges of specific conductance for vegetation zones (represented by dominant species) were presented. <u>Specific conductance reporting units</u>: mmhos cm⁻¹

• converted mmhos cm⁻¹ to μ S cm⁻¹ (mmhos cm⁻¹ × 1,000)

Description of data "type":

- <u>Min</u>: lowest value reported
- <u>Max</u>: greatest value reported

Ungar and Riehl, 1980

<u>General description</u>: Soil salinities were presented for 5 vegetation zones (represented by dominant species) from an inland saline pan in Ohio.

<u>Description of data</u>: Soils from the 5 vegetation zones were collected and ranges of soil salinities for the growing season were presented. Each plant species was assigned the range of soil salinities for the vegetation zone where it was present. Specific conductance reporting units: percent

• converted percent to μ S cm⁻¹ (% × 10,000 = ppm = mg L⁻¹ / 0.64)

40 Database of Relations Between Salinity and Aquatic Biota: Applications to Bowdoin National Wildlife Refuge, Mont.

Description of data "type":

- Min: lowest value reported
- <u>Max</u>: greatest value reported

USGS, unpublished a

<u>General description</u>: Vegetation surveys were conducted and specific conductance and pH (water and soil) measurements were collected from 204 depressional wetlands (PEMC, PEMF) located in 5 States (Iowa, Minnesota, Montana, North Dakota, and South Dakota) across the Prairie Pothole Region during 1997 (USGS, Northern Prairie Wildlife Research Center, Study Plan 168.01).

<u>Description of data</u>: Data from individual wetlands were summarized by state and wetland class (that is, PEMC, PEMF) and include plant species occurrences in relation to specific conductance and pH of the soil and/or water. Plants occurring in each wetland were assigned the specific conductance and pH of the wetland and/or soil sample corresponding to each vegetation zone.

Specific conductance reporting units: µS cm⁻¹, no conversion

Description of data "type":

- <u>Occurrence</u>: value represents occurrence of plant species in a single wetland basin
- Mean: mean value for the species calculated from all wetlands located in each state/wetland class combination
- Min: lowest value for the species based on data from all wetlands located in each state/wetland class combination
- Max: greatest value for the species based on data from all wetlands located in each state/wetland class combination

USGS, unpublished b

<u>General description</u>: Aquatic invertebrates were collected from 17 wetlands (PEMC, PEMF) located at the Cottonwood Lake long-term study area in Stutsman County, N. Dak. This database represents samples collected monthly (May–October) from 1992–2006 (USGS, Northern Prairie Wildlife Research Center, Study Plan 140.01).

Description of data:

- 1. Data from individual wetlands (3 transects, 3 sample methods [funnel traps, benthic core sampler, sweep net], 2–4 sampling zones [wet-meadow, shallow-marsh, deep-marsh, open-water]) were summarized by month and year.
- 2. Specific conductance data were summarized for individual wetlands by month and year.
- 3. Data for all wetlands were summarized by wetland class (PEMC, PEMF) and year.

Specific conductance reporting units: µS cm⁻¹, no conversion

Description of data "type":

- Mean: mean value for the taxon calculated for each year/wetland class combination.
- Min: lowest value for the taxon for each year/wetland class combination.
- Max: lowest value for the taxon for each year/wetland class combination.

References

- Grosshans, R.E., and Kenkel, N.C., 1997, Dynamics of emergent vegetation along natural gradients of water depth and salinity in a prairie marsh—delayed influences of competition, *in* Goldsborough, L.G., and Hann, B.J., eds., University of Manitoba Field Station (Delta Marsh) thirty-second annual report: Portage la Prairie, Manitoba, Canada, p. 83–93.
- Hammer, U.T., and Heseltine, J.M., 1988, Aquatic macrophytes in saline lakes of the Canadian prairies: Hydrobiologia, v. 158, p. 101–116.
- Johnson, K.M., 1990, Aquatic vegetation, salinity, aquatic invertebrates, and duck brood use at Bowdoin National Wildlife Refuge: Bozeman, Montana State University, master's thesis.
- Kantrud, H.A., 1990, Sago pondweed (*Potamogeton pecinatus* L.)—a literature review: Washington, D.C., U.S. Fish and Wildlife Service, Resource Publication 176, 89 p.
- Kantrud, H.A., 1991, Widgeongrass (*Ruppia maritima* L.)—a literature review: Washington, D.C., U.S. Fish and Wildlife Service, Fish and Wildlife Research 10, 58 p.
- Kantrud, H.A., 1996, The alkali (*Scirpus maritimus* L.) and saltmarsh (*S. robustus* Pursh) bulrushes—a literature review: Washington, D.C., National Biological Service Information and Technology Report 6, 77 p.

Appendix 4. Description of Each Data Source Used to Develop the Plant and Invertebrate Databases 41

- Kantrud, H.A., Millar, J.B., and van der Valk, A.G., 1989, Vegetation of wetlands of the prairie pothole region, *in* van der Valk, A., ed., Northern prairie wetlands: Ames, Iowa State University Press, p. 132–187.
- Kay, W.R., Halse, S.A., Scanlon, M.D., and Smith, M.J., 2001, Distribution and environmental tolerances of aquatic macroinvertebrate families in the agricultural zone of southwestern Australia: Journal of the North American Benthological Society, v. 20, p. 182–199.
- Lancaster, J., and Scudder, G.G.E., 1987, Aquatic Coleoptera and Hemiptera in some Canadian saline lakes—patterns in community structure: Canadian Journal of Zoology, v. 65, p. 1383–1389.
- McCarraher, D.B., 1970, Some ecological relations of fairy shrimps in alkaline habitats of Nebraska: American Midland Naturalist, v. 84, p. 59–68.
- Rawson, D.S., and Moore, J.E., 1944, The saline lakes of Saskatchewan: Canadian Journal of Research, v. 22, p. 141-201.
- Stewart, R.E., and Kantrud, H.A., 1972, Vegetation of prairie potholes, North Dakota, in relation to quality of water and other environmental factors: Washington, D.C., U.S. Geological Survey Professional Paper 585-D, 36 p.
- Ungar, I.A., 1966, Salt tolerance of plants growing in saline areas of Kansas and Oklahoma: Ecology, v. 47, p. 154–155.
- Ungar, I.A., 1967, Vegetation-soil relationships on saline soils in northern Kansas: American Midland Naturalist, v. 78, p. 98–120.
- Ungar, I.A., 1970, Species-soil relationships on sulfate dominated soils of South Dakota: American Midland Naturalist, v. 83, p. 343–357.
- Ungar, I.A., 1974, Inland halophytes of the United States, *in* Reimold, R.J., and Queen, W.H., eds., Ecology of halophytes: New York, N.Y., Academic Press, Inc., p. 235–305.
- Ungar, I.A., Benner, D.K., and McGraw, D.C., 1979, The distribution and growth of Salicornia Europaea on an inland salt pan: Ecology, v. 60, p. 329–336.
- Ungar, I.A., Hogan, W., and McClelland, M., 1969, Plant communities of saline soils at Lincoln, Nebraska: The American Midland Naturalist, v. 82, p. 564–577.
- Ungar, I.A., and Riehl, T.E., 1980, The effect of seed reserves on species composition in zonal halophyte communities: Botanical Gazette, v. 141, p. 447–452.

Appendix 5. Summary of plant database.

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	p	Н	Source ¹
			-	Min	Мах	Min	Max	
Achillea	millefolium	yarrow	S	400	3,330			10
Acorus	calamus	sweet flag	S		600			10
Agropyron	caninum	slender wheatgrass	S	640	3,800			10
Agropyron	cristatum	crested wheatgrass	S	400	1,050			10
Agropyron	dasystachyum	thickspike wheatgrass	S		20,313			17
Agropyron	elongatum	tall wheatgrass	S	340	5,500			10
Agropyron	intermedium	intermediate wheatgrass	S	345	5,500			10
Agropyron	intermedium	intermediate wheatgrass	W		1,623		7.7	10
Agropyron	repens	quackgrass	S	140	6,460			10,13
Agropyron	repens	quackgrass	W	40	5,000	7.2	8.8	9,10
Agropyron	smithii	western wheatgrass	S	400	7,000	7.7	8.1	10,14,15,16,17
Agropyron	smithii	western wheatgrass	W	307	1,623	7.7	8.0	10
Agropyron	sp.	wheatgrass	S	350	2,790			10
Agrostis	hyemalis	ticklegrass	S		490			10
Agrostis	scabra	ticklegrass	S	345	4,688			10,17
Agrostis	scabra	ticklegrass	W		1,301		7.9	10
Agrostis	stolonifera	redtop	S	290	5,500			10
Agrostis	stolonifera	redtop	W	200	630	7.2	8.3	4,10
Alisma	gramineum	narrowleaf water plantain	S	400	1,850			10
Alisma	gramineum	narrowleaf water plantain	W	300	15,000	7.4	8.6	3,4,9,10
Alisma	subcordatum	common water plantain	S	300	4,550			10
Alisma	subcordatum	common water plantain	W	113	9,500	6.7	9.8	4,10
Alisma	triviale	water plantain	W	40	5,000			9
Allium	canadense	wild onion	S	400	620			10
Allium	stellatum	pink wild onion	S	650	2,200			10
Alopecurus	aequalis	short-awn foxtail	S	300	1,850			10
Alopecurus	aequalis	short-awn foxtail	W	40	5,000	7.0	9.7	4,9,10
Amaranthus	retroflexus	rough pigweed	S	730	2,450			10
Ambrosia	artemisiifolia	common ragweed, short ragweed	S	300	20,313			10,17

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	p	н	Source ¹
	·		-	Min	Мах	Min	Max	
4mbrosia	artemisiifolia	common ragweed, short ragweed	W	326	1,582	7.3	8.6	10
Ambrosia	psilostachya	western ragweed	S	140	4,000			10
Ambrosia	psilostachya	western ragweed	W	560	729	8.0	8.6	10
Ambrosia	sp.	ragweed	S		590			10
Ammannia	coccinea	toothcup	W	40	2,000			9
Amorpha	canescens	lead plant	S	400	850			10
Amorpha	fruticosa	false indigo	S	525	850			10
Andropogon	gerardii	big bluestem	S	350	2,620			10
Andropogon	scoparius	little bluestem	S		1,500			10
Anemone	canadensis	meadow anemone	S	140	2,940			10
Anemone	canadensis	meadow anemone	W	355	429	7.6	8.4	10
Apocynum	cannabinum	indian hemp dogbane, prairie dogbane	S	310	1,975			10
Apocynum	cannabinum	indian hemp dogbane, prairie dogbane	W	40	5,000	7.2	8.6	4,9,10
Artemisia	absinthium	wormwood	S	350	5,500			10
Artemisia	absinthium	wormwood	W		1,623		7.7	10
Artemisia	biennis	biennial wormwood	S	290	3,970			10
Artemisia	biennis	biennial wormwood	W	40	15,000		9.7	9,10
Artemisia	dracunculus	silky wormwood	S	290	2,380			10
Artemisia	frigida	prairie sagewort	S	900	3,330			10
Artemisia	ludoviciana	white sage	S	290	2,200			10
Asclepias	incarnata	swamp milkweed	S	295	1,725			10
Asclepias	incarnata	swamp milkweed	W	274	900	8.1	9.6	4,10
Asclepias	ovalifolia	ovalleaf milkweed	S	300	1,340			10
Asclepias	sp.	milkweed	S		550			10
Asclepias	speciosa	showy milkweed	S	300	1,730			10
Asclepias	speciosa	showy milkweed	W	40	2,000	8.5	8.6	9,10
Asclepias	syriaca	common milkweed	S	140	2,830			10
Asclepias	syriaca	common milkweed	W	326	774	7.2	9.5	10

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	p	Н	Source ¹
	-		_	Min	Мах	Min	Мах	
Asclepias	verticillata	whorled milkweed	S	620	700			10
Aster	brachyactis	rayless aster	S	620	2,930			10
Aster	brachyactis	rayless aster	W	500	15,000	8.2	8.4	9,10
Aster	ericoides	white aster	S	380	4,700			10,17
Aster	ericoides	white aster	W	492	630	7.8	8.1	10
Aster	falcatus	white prairie aster	S	400	3,970			10
Aster	falcatus	white prairie aster	W		630		8.1	10
Aster	hesperius	panicled aster	W	400	9,800			4
Aster	novae-angliae	new england aster	S		590			10
Aster	sagittifolius	arrow-leaved aster	W		1,000			4
Aster	simplex	panicled aster	S	295	5,500			10
Aster	simplex	panicled aster	W	40	16,100	6.7	9.7	4,9,10
Aster	sp.	wild aster	S	300	850			10
Aster	sp.	wild aster	W	391	590	7.4	8.3	10
Aster	subulatus	saltmarsh aster	S	1,875	9,844			14,17
Astragalus	canadensis	Canada milk-vetch	S	530	540			10
Atriplex	argentea	silver-scale saltbush	S	3,594	15,625			14,17
Atriplex	subspicata	spearscale	S	1,250	55,000	7.0	8.7	10,12,13,14,15,17
Atriplex	subspicata	spearscale	W	500	76,400		8.4	4,9,10
Avena	fatua	wild oats	S	820	1,470			10
Azolla	mexicana	water fern, mosquito fern	S		330			10
Azolla	mexicana	water fern, mosquito fern	W		471		7.3	10
Baccharis	salicina	willow baccharis	S	313	9,844			14
Васора	rotundifolia	water hyssop	S		410			10
Васора	rotundifolia	water hyssop	W	40	2,000		8.2	9,10
Beckmannia	syzigachne	sloughgrass	S	300	4,550			10
Beckmannia	syzigachne	sloughgrass	W	40	9,500	6.7	9.7	4,9,10
Bidens	cernua	nodding beggar-ticks	S	290	5,500			10
Bidens	cernua	nodding beggar-ticks	W	40	2,500	8.0	8.4	4,9,10

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	p	н	Source ¹
	·		-	Min	Max	Min	Max	
Bidens	frondosa	devil's beggar-ticks	S	290	3,465			10
Bidens	frondosa	devil's beggar-ticks	W	40	6,673	6.7	8.4	9,10
Bidens	sp.	beggar-ticks	S		820			10
Bidens	vulgata	big devil's beggar-ticks	W	40	2,000			9
Boltonia	asteroides	boltonia	S	290	3,480			10
Boltonia	asteroides	boltonia	W	100	6,800	7.4	8.2	4,10
Boltonia	asteroides var. latisquama	violet boltonia	W	40	2,000			9
Bouteloua	curtipendula	sideoats grama	S	770	1,150			10
Brassica	kaber	charlock	S	1,320	1,430			10
Bromus	inermis	smooth brome	S	140	4,000			10
Bromus	inermis	smooth brome	W	256	5,387	7.1	9.5	10
Bromus	japonicus	japanese brome	S	400	900			10
Bromus	japonicus	japanese brome	W		1,623		7.7	10
Bromus	tectorum	downy brome	S	400	650			10
Bromus	tectorum	downy brome	W		326		7.8	10
Calamagrostis	canadensis	bluejoint	S	350	3,480			10
Calamagrostis	canadensis	bluejoint	W	40	3,800	6.9	9.5	4,9,10
Calamagrostis	stricta	slimstem reedgrass	S	140	4,700			10
Calamagrostis	stricta	slimstem reedgrass	W	40	17,600	7.3	9.8	4,9,10
Callitriche	hermaphroditica	northern water starwort	W	40	2,500			4,9
Callitriche	verna	vernal water starwort	W	40	2,000			4,9
Calystegia	sepium	hedge bindweed	S	430	5,156			10,13
Carduus	nutans	musk thistle, nodding thistle	S		500			10
Carex	alopecoidea	foxtail sedge	S		400			10
Carex	aquatilis	water sedge	S	330	1,475			10
Carex	aquatilis	water sedge	W	170	3,800	6.9	9.6	4,10
Carex	atherodes	slough sedge	S	295	3,075			10
Carex	atherodes	slough sedge	W	40	8,500	6.6	9.9	4,9,10
Carex	bebbii	bebb's sedge	S	340	530			10

[Scientific and common names primarily follow The Great Plains Flora Association (1986), and the minimum and maximum values represent all data types (that is, values reported as minimum, maximum, mean, median, or single occurrence). S, soil; W, water; μ S cm⁻¹, microsiemens per centimeter]

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	p	Н	Source ¹
	-		_	Min	Max	Min	Max	
Carex	brevior	fescue sedge	S	400	700			10
Carex	buxbaumii	brown bog sedge	S		450			10
Carex	buxbaumii	brown bog sedge	W	391	1,400		8.0	4,10
Carex	granularis	meadow sedge	S	410	720			10
Carex	granularis	meadow sedge	W		113		6.9	10
Carex	hallii	deer sedge	S		630			10
Carex	hallii	deer sedge	W		412		7.9	10
Carex	interior	interior sedge	S		480			10
Carex	lacustris	hairy sedge	W	900	1,700			4
Carex	laeviconica	smoothcone sedge	W	40	3,200			4,9
Carex	lanuginosa	woolly sedge	S	290	2,615			10
Carex	lanuginosa	woolly sedge	W	40	32,600	7.2	9.5	4,9,10
Carex	praegracilis	clustered-field sedge	S	620	3,800			10
Carex	praegracilis	clustered-field sedge	W	40	5,000			4,9
Carex	rostrata	beaked sedge	S		305			10
Carex	rostrata	beaked sedge	W	200	2,600			4
Carex	sartwellii	sartwell's sedge	S	450	900			10
Carex	sartwellii	sartwell's sedge	W	40	5,000		8.0	4,9,10
Carex	sp.	sedge	S	290	4,700			10,17
Carex	sp.	sedge	W	192	1,487	6.9	9.9	10
Carex	stipata	sawbeak sedge	W		400			4
Carex	stricta	tussock sedge	W	100	9,400			4
Carex	sychnocephala	manyhead sedge	S		340			10
Carex	tetanica	rigid sedge	W	900	5,500			4
Carex	vulpinoidea	fox sedge	S	300	3,120			10
Carex	vulpinoidea	fox sedge	W	40	2,000	7.5	8.6	4,9,10
Carum	carvi	caraway	S		850			10
Centaurium	pulchellum	branched centaury	S		350			10
Cerastium	brachypodum	nodding chickweed	S		450			10

46

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	p	H	Source ¹
	·		-	Min	Max	Min	Max	
Ceratophyllum	demersum	hornwort, coontail	S	300	3,300			10
Ceratophyllum	demersum	hornwort, coontail	W	40	5,100	7.0	9.9	3,4,9,10
Chenopodium	album	lamb's quarters	S	300	4,000			10
Chenopodium	album	lamb's quarters	W	40	500			9
Chenopodium	glaucum	oak-leaved goosefoot	S		39,800			17
Chenopodium	glaucum	oak-leaved goosefoot	W	500	15,000			9
Chenopodium	rubrum	alkali blite	S	350	39,800			10,17
Chenopodium	rubrum	alkali blite	W	40	15,000	7.8	9.7	9,10
Chenopodium	sp.	goosefoot, lamb's quarter	S	860	1,870			10
Chenopodium	sp.	goosefoot, lamb's quarter	W		311		8.6	10
Cicuta	maculata	common water hemlock	S	450	1,720			10
Cicuta	maculata	common water hemlock	W	274	2,200	7.4	9.1	4,10
Cicuta	maculata angustifolia	common water hemlock	W	3,500	7,500	8.3	8.7	2
Cirsium	arvense	Canada thistle, field thistle	S	140	5,500			1,10
Cirsium	arvense	Canada thistle, field thistle	W	40	5,387	7.2	9.6	4,9,10
Cirsium	flodmanii	flodman's thistle	S	480	3,330			10
Cirsium	vulgare	bull thistle	S	380	1,700			10
Cirsium	vulgare	bull thistle	W		1,623		7.7	10
Convolvulus	arvensis	field bindweed	S	140	2,830			10
Convolvulus	arvensis	field bindweed	W	450	729	8.2	8.6	10
Conyza	canadensis	horse-weed	S	300	4,000			10
Coreopsis	tinctoria	plains coreopsis	S	345	615			10
Cornus	sericea	redosier dogwood	S	550	575			10
Cornus	sericea	redosier dogwood	W		537		8.5	10
Crataegus	rotundifolia	northern hawthorn	S		550			10
Crataegus	rotundifolia	northern hawthorn	W		450		8.6	10
Crepis	runcinata	hawk's-beard	S	140	1,260			10
Crepis	runcinata	hawk's-beard	W	326	1,263	7.2	8.6	10
Cyperus	acuminatus	tapeleaf flatsedge	S	720	850			10

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	p	Н	Source ¹
			_	Min	Max	Min	Мах	
Cyperus	acuminatus	tapeleaf flatsedge	W	40	2,000			9
Cyperus	erythrorhizos	redrooted cyperus	S		900			10
Cyperus	odoratus	fragrant flatsedge	S	480	1,975			10
Cyperus	sp.	umbrella sedge	S	310	1,470			10
Cypripedium	sp.	lady's-slipper	S		1,730			10
Dactylis	glomerata	orchard grass	S	395	770			10
Dalea	purpurea	purple prairie clover	S	290	850			10
Descurainia	sophia	flixweed	S	560	2,380			10
Dichanthelium	oligosanthes	dichanthelium	S		530			10
Distichlis	spicata var. stricta	inland saltgrass	S	400	104,000	6.8	10.0	10,11,14,15,16,17
Distichlis	spicata var. stricta	inland saltgrass	W	500	120,000	7.9	9.1	2,4,9,10
Drepanocladus	sp.	drepanocladus moss	W	40	5,000			4,9
Echinochloa	crusgalli	barnyard grass	S	290	5,500			10
Echinochloa	crusgalli	barnyard grass	W	40	5,000	6.7	9.1	4,9,10
Elaeagnus	angustifolia	russian olive	S	550	1,150			10
Elaeagnus	commutata	silverberry	S	900	6,460			10
Eleocharis	acicularis	needle spikerush	S	350	2,000			10
Eleocharis	acicularis	needle spikerush	W	40	5,800	7.2	9.8	4,9,10
Eleocharis	compressa	flatstem spikerush	S	500	2,400			10
Eleocharis	compressa	flatstem spikerush	W	400	5,000		8.2	4,10
Eleocharis	macrostachya	common spikerush	W	100	41,000			4
Eleocharis	obtusa var. ovata	blunt spikerush	S	500	900			10
Eleocharis	obtusa var. ovata	blunt spikerush	W	40	2,000	7.8	9.1	9,10
Eleocharis	palustris	common spikerush	S	305	10,938			10,17
Eleocharis	palustris	common spikerush	W	40	15,000	6.8	9.8	2,9,10
Eleocharis	sp.	spikerush	S	290	3,160			10
Eleocharis	sp.	spikerush	W	113	2,597	6.6	9.5	10
Ellisia	nyctelea	waterpod	S		620			10
Elodea	canadensis	canadian waterweed	W	40	2,000			4,9

[Scientific and common names primarily follow The Great Plains Flora Association (1986), and the minimum and maximum values represent all data types (that is, values reported as minimum, maximum, mean, median, or single occurrence). S, soil; W, water; μ S cm⁻¹, microsiemens per centimeter]

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	p	н	Source ¹
				Min	Max	Min	Max	
Elymus	canadensis	Canada wild rye	S	400	3,800			10,17
Epilobium	ciliatum	willow-herb	S	500	2,930			10
Epilobium	ciliatum	willow-herb	W	40	5,000			4,9
Epilobium	leptophyllum	narrow-leaved willow-herb	S	290	4,000			10
Epilobium	leptophyllum	narrow-leaved willow-herb	W		1,232		8.5	10
Epilobium	sp.	willow-herb, fireweed	S		460			10
Equisetum	arvense	field horsetail	S	140	1,520			10
Equisetum	arvense	field horsetail	W	400	450		8.6	4,10
Equisetum	fluviatile	water horsetail	W		300			4
Equisetum	hyemale	common scouring rush	S	470	2,100			10
Equisetum	laevigatum	smooth scouring rush	S	140	3,800			10
Equisetum	laevigatum	smooth scouring rush	W	192	412	7.9	9.7	10
Erigeron	philadelphicus	Philadelphia fleabane	S	340	1,613			10
Erigeron	philadelphicus	Philadelphia fleabane	W	401	729	8.0	8.6	10
Erigeron	strigosus	daisy fleabane	S	300	1,260			10
Eriophorum	polystachion	narrowleaf cottongrass	W	500	2,200			4
Eupatorium	maculatum	joe-pye weed, spotted joe-pye weed	S	400	760			10
Eupatorium	maculatum	joe-pye weed, spotted joe-pye weed	W	148	700		7.3	4,10
Euphorbia	esula	leafy spurge	S	600	1,880			10
Euphorbia	maculata	spotted spurge	S	570	2,570			10
Euphorbia	maculata	spotted spurge	W		148		7.3	10
Eustoma	grandiflorum	showy prairie gentian	S	938	15,156			14
Euthamia	graminifolia var. graminif	flat-top goldentop	S	450	1,730			10
Euthamia	graminifolia var. graminif	flat-top goldentop	W	100	2,100		8.0	4,10
Fragaria	virginiana	wild strawberry	S	140	3,800			10
Fragaria	virginiana	wild strawberry	W		450		8.6	10
Fraxinus	pennsylvanica	green ash	S	345	2,050			10
Galium	boreale	northern bedstraw	S	400	1,270			10
Galium	sp.	bedstraw, cleavers	S		540			10

49

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	p	Н	Source ¹
	·		-	Min	Мах	Min	Max	
Galium	sp.	bedstraw, cleavers	W		355		7.6	10
Galium	trifidum	small bedstraw	S	400	630			10
Galium	trifidum	small bedstraw	W	300	590	7.4	7.6	4,10
Glaux	maritima	sea milkwort	S	1,290	4,000			10
Glaux	maritima	sea milkwort	W	288	5,000		7.6	9,10
Glyceria	borealis	northern mannagrass	W	40	1,000			4,9
Glyceria	grandis	tall mannagrass	S	330	1,290			10
Glyceria	grandis	tall mannagrass	W	40	4,000	6.7	9.9	4,9,10
Glyceria	striata	fowl mannagrass	S	350	2,200			10
Glyceria	striata	fowl mannagrass	W	260	800		9.8	4,10
Glycyrrhiza	lepidota	wild licorice	S	300	4,000			10
Glycyrrhiza	lepidota	wild licorice	W	450	1,487	8.1	8.6	10
Gratiola	neglecta	hedge hyssop	W	40	2,000			9
Grindelia	squarrosa	curly-top gumweed	S	450	20,313			10,17
Hedeoma	hispidum	rough false pennyroyal	S	300	630			10
Helenium	autumnale	sneezeweed	W	40	2,500			4,9
Helianthus	annuus	common sunflower	S	340	3,480			10
Helianthus	annuus	common sunflower	W		326		7.8	10
Helianthus	maximiliani	maximilian sunflower	S	140	3,800			10
Helianthus	maximiliani	maximilian sunflower	W	450	590	7.4	8.6	10
Helianthus	nuttallii	nuttall's sunflower	S	400	3,800			10
Helianthus	nuttallii	nuttall's sunflower	W	590	856	7.4	8.1	10
Helianthus	petiolaris	plains sunflower	S	400	760			10
Helianthus	rigidus	stiff sunflower	S	400	2,200			10
Helianthus	sp.	sunflower	S	140	450			10
Heliopsis	helianthoides	false sunflower, ox-eye	S	500	1,730			10
Heliotropium	curassavicum	seaside heliotrope	W	2,000	15,000			9
Hesperis	matronalis	dame's rocket	S	450	2,615			10
Hesperis	matronalis	dame's rocket	W		355		7.6	10

[Scientific and common names primarily follow The Great Plains Flora Association (1986), and the minimum and maximum values represent all data types (that is, values reported as minimum, maximum, mean, median, or single occurrence). S, soil; W, water; μ S cm⁻¹, microsiemens per centimeter]

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	þ	Н	Source ¹
	·		-	Min	Max	Min	Мах	_
Hierochloe	odorata	sweetgrass	S		760			10
Hierochloe	odorata	sweetgrass	W	40	2,000			9
Hippuris	vulgaris	mare's tail	S		850			10
Hippuris	vulgaris	mare's tail	W	267	4,100	8.1	8.6	2,4,8,9,10
Hordeum	jubatum	foxtail barley	S	290	39,800	6.4	9.5	10,11,12,13,14,15,16,1
Hordeum	jubatum	foxtail barley	W	40	48,600	7.3	9.7	4,9,10
Hypoxis	hirsuta	yellow stargrass	S	530	640			10
Impatiens	capensis	spotted touch-me-not	W		400			4
Iris	sp.	iris, flag	S	270	890			10
Iris	sp.	iris, flag	W	274	729	7.2	9.0	10
Iris	versicolor	blue flag	S	600	750			10
Iris	versicolor	blue flag	W	302	729	8.6	9.1	10
Iva	annua	marsh elder	S	1,875	24,000	6.9	8.2	11,14,15,17
Iva	xanthifolia	marsh elder	S	340	2,930			10
Iva	xanthifolia	marsh elder	W		1,582		7.3	10
Juncus	alpinus	richardson's rush	S	850	2,570			10
Juncus	alpinus	richardson's rush	W	964	1,947	7.3	8.2	10
Juncus	balticus	baltic rush	S	290	43,750			10,17
Juncus	balticus	baltic rush	W	40	45,000	7.8	8.1	4,9,10
Juncus	bufonius	toad rush	S		450			10
Juncus	bufonius	toad rush	W	40	2,300			4,9
Juncus	dudleyi	dudley rush	W	40	2,000			4,9
Juncus	interior	inland rush	S	380	4,000			10
Juncus	interior	inland rush	W	40	2,000		7.8	4,9,10
Juncus	sp.	rush	S	1,225	2,790			10
Juncus	torreyi	torrey's rush	S	490	5,500			10
Juncus	torreyi	torrey's rush	W	40	10,000		7.3	4,9,10
Kochia	scoparia	kochia	S	300	20,313			10,14,17
Kochia	scoparia	kochia	W	40	45,000			9

5

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	þ	н	Source ¹ 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10
	·		-	Min	Мах	Min	Max	
Lactuca	serriola	prickly lettuce	S	340	2,930			10
Lactuca	serriola	prickly lettuce	W	2,000	45,000			9
Lactuca	tatarica	blue lettuce	S	290	3,970			10
Lactuca	tatarica	blue lettuce	W		307		7.8	10
Lathyrus	palustris	marsh vetchling	S	340	1,730			10
Lathyrus	palustris	marsh vetchling	W		590		7.4	10
Leersia	oryzoides	rice cutgrass	S	380	1,475			10
Leersia	oryzoides	rice cutgrass	W	192	326	7.8	9.7	10
Lemna	minor	common duckweed	S	350	4,000			10
Lemna	minor	common duckweed	W	40	15,000	6.6	9.9	2,4,9,10
Lemna	trisulca	star duckweed	S	350	4,000			10
Lemna	trisulca	star duckweed	W	40	13,900	7.0	9.9	4,9,10
Lepidium	densiflorum	peppergrass	S		300			10
Leptochloa	fascicularis	bearded sprangletop	S	469	7,656			10,14
Leptochloa	fascicularis	bearded sprangletop	W		577		7.9	10
Liatris	ligulistylis	rocky mountain blazing star	S	3,330	3,800			10
Liatris	punctata	dotted blazing star	S		650			10
Liatris	pycnostachya	prairie blazing star	S		1,730			10
Lilium	philadelphicum	wild lily	S		540			10
Limosella	aquatica	mudwort	W	40	2,000			9
Lindernia	dubia	false pimpernel	W	40	2,000			9
Linum	perenne	blue flax	S		450			10
Lithospermum	canescens	hoary puccoon	S		550			10
Lithospermum	canescens	hoary puccoon	W		450		8.6	10
Lobelia	spicata	palespike lobelia	S	770	2,620			10
Lotus	unifoliolatus	Amercian bird's-foot trefoil	S	670	3,330			10
Lycopus	americanus	Amercian bugleweed	S	300	4,000			10
Lycopus	americanus	Amercian bugleweed	W	274	24,000	7.2	9.6	2,4,10
Lycopus	asper	rough bugleweed	S	330	4,700			10

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	p	Н	Source ¹
	·		_	Min	Max	Min	Max	
Lycopus	asper	rough bugleweed	W	40	32,600	6.8	9.8	4,9,10
Lygodesmia	juncea	skeletonweed	S		690			10
Lysimachia	ciliata	fringed loosestrife	S	500	2,780			10
Lysimachia	ciliata	fringed loosestrife	W	166	2,653	6.7	8.3	10
Lysimachia	hybrida	loosestrife	S	330	860			10
Lysimachia	hybrida	loosestrife	W	40	2,000	7.7	9.0	4,9,10
Lysimachia	thyrsiflora	tufted loosestrife	S	370	735			10
Lysimachia	thyrsiflora	tufted loosestrife	W	192	3,800	7.4	9.7	4,10
Malva	neglecta	common mallow	S		1,320			10
Marsilea	vestita	western water clover	W	40	2,000			9
Medicago	lupulina	black medick	S	300	2,500			10
Medicago	sativa	alfalfa	S	300	5,500			10
Medicago	sativa	alfalfa	W		629		7.2	10
Melilotus	officinalis	yellow sweet clover	S	140	6,460			10
Melilotus	officinalis	yellow sweet clover	W	326	1,582	7.3	8.6	10
Melilotus	sp.	sweet clover	S	375	5,500			10
Melilotus	sp.	sweet clover	W		362		7.0	10
Mentha	arvensis	field mint	S	290	2,380			10
Mentha	arvensis	field mint	W	40	5,000	6.7	9.0	4,9,10
Mentha	arvensis villosa	field mint	W	3,500	4,100		8.3	2
Mimulus	ringens	alleghany monkey-flower	W		600			4
Monarda	fistulosa	wild bergamot	S	450	550			10
Muhlenbergia	asperifolia	scratchgrass	S	880	4,688			10,17
Muhlenbergia	asperifolia	scratchgrass	W	700	45,000			4,9
Muhlenbergia	racemosa	marsh muhly	S		1,725			10
Muhlenbergia	richardsonis	mat muhly	S	400	3,800			10
Myriophyllum	exalbescens	American milfoil	S	450	4,740			10
Myriophyllum	exalbescens	American milfoil	W	40	8,000	7.2	9.8	2,3,4,8,9,10
Myriophyllum	heterophyllum	water milfoil	W	40	2,000			9

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	р	н	Source ¹
			-	Min	Мах	Min	Мах	$\begin{array}{c} 4\\ 3,4,9\\ 4\\ 10\\ 4\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$
Myriophyllum	pinnatum	green parrot's feather	W		100			4
Myriophyllum	verticillatum	whorl-leaf watermilfoil	W	400	5,000			3,4,9
Najas	flexilis	naiad	W	300	700			4
Nepeta	cataria	catnip	S		380			10
Nuphar	lutea var. variegatum	yellow water lily	W		400			4
Oxalis	stricta	yellow wood sorrel	S	140	1,700			10
Oxalis	stricta	yellow wood sorrel	W		450		8.6	10
Oxalis	violacea	violet wood sorrel	S	450	620			10
Panicum	americanum	pearl millet	S	290	5,500			10
Panicum	americanum	pearl millet	W		275		7.9	10
Panicum	capillare	common witchgrass	S	290	2,500			10
Panicum	capillare	common witchgrass	W	40	15,000			9
Panicum	virgatum	switchgrass	S	300	2,750			10
Panicum	virgatum	switchgrass	W	260	856	7.8	9.8	10
Parietaria	pensylvanica	Pennsylvania pellitory	S		900			10
Parnassia	glauca	grass-of-parnassus	W		900			4
Pedicularis	canadensis	common lousewort, wood betony	S	500	1,730			10
Phalaris	arundinacea	reed canarygrass	S	300	3,210			10
Phalaris	arundinacea	reed canarygrass	W	40	3,800	6.9	9.9	4,9,10
Phleum	pratense	timothy	S	400	2,050			10
Phleum	pratense	timothy	W	600	729	8.3	8.6	10
Phragmites	australis	common reed	S	580	4,660		7.3	1,10,16
Phragmites	australis	common reed	W	100	32,600	7.6	9.0	2,4,9,10
Physalis	virginiana	Virginia ground cherry	S	350	1,700			10
Plagiobothrys	scouleri	popcorn-flower	W	40	2,000			9
Plantago	eriopoda	alkali plantain	W	500	20,100			4,9
Plantago	major	common plantain	S	400	5,500			10
Plantago	major	common plantain	W	40	5,000		7.8	4,9,10
Poa	arida	plains bluegrass	S	1,094	20,313			14,17

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	p	н	Source ¹
	·		-	Min	Мах	Min	Мах	Source ¹ 13 10 4,9,10 10 10 10 10 10 10 10 10 10 10 10 10 1
Poa	compressa	Canada bluegrass	S	1,250	5,156			13
Poa	palustris	fowl bluegrass	S	140	5,500			10
Poa	palustris	fowl bluegrass	W	40	5,000	7.4	9.7	4,9,10
Poa	pratensis	Kentucky bluegrass	S	140	5,500			10
Poa	pratensis	Kentucky bluegrass	W	192	1,623	7.4	9.7	10
Poa	sandbergii	Sandberg's bluegrass	S		400			10
Poa	sp.	bluegrass	S		550			10
Poa	sp.	bluegrass	W		632		7.4	10
Polygonum	amphibium	water smartweed	S	270	3,020			10
Polygonum	amphibium	water smartweed	W	40	5,000	6.6	9.9	3,4,9,10
Polygonum	amphibium var. emersum	swamp smartweed	W	40	5,000			4,9
Polygonum	aviculare	knotweed	S		630			10
Polygonum	aviculare	knotweed	W		355		7.6	10
Polygonum	convolvulus	climbing or wild buckwheat	S	300	2,380			10
Polygonum	erectum	erect knotweed	S	380	1,560			10
Polygonum	lapathifolium	pale smartweed	S	310	2,450			10
Polygonum	lapathifolium	pale smartweed	W	40	5,000	7.8	8.6	9,10
Polygonum	pensylvanicum	Pennsylvania smartweed	S	1,145	2,450			10
Polygonum	pensylvanicum	Pennsylvania smartweed	W		629		7.2	10
Polygonum	ramosissimum	bushy knotweed	S	410	54,063			10,14,17
Polygonum	ramosissimum	bushy knotweed	W	2,000	45,000			9
Populus	deltoides	cotton-wood	S	300	1,850			10
Populus	deltoides	cotton-wood	W	362	1,385	7.0	7.9	10
Populus	tremuloides	quaking aspen	S	300	2,620			10
Populus	tremuloides	quaking aspen	W	192	429	7.8	9.7	10
Potamogeton	diversifolius	waterthread pondweed	W	40	500			9
Potamogeton	filiformis	slender pondweed	W	560	8,000			3
Potamogeton	friesii	Fries' pondweed	W	300	4,100		8.3	2,4
Potamogeton	gramineus	variable pondweed	S	430	660			10

Genus	Species	Common name	Substrate		luctivity 5 cm ⁻¹)	þ	Н	Source ¹
			_	Min	Max	Min	Мах	-
Potamogeton	gramineus	variable pondweed	W	40	2,000	6.7	8.3	4,9,10
Potamogeton	natans	floatingleaf pondweed	S		500			10
Potamogeton	natans	floatingleaf pondweed	W		777		7.7	10
Potamogeton	nodosus	longleaf pondweed	S	410	535			10
Potamogeton	nodosus	longleaf pondweed	W	401	496	8.0	8.2	10
Potamogeton	pectinatus	sago pondweed	S	300	31,406	8.4	8.9	1,5,10,16,17
Potamogeton	pectinatus	sago pondweed	W	38	162,500	6.3	10.8	2,3,4,5,8,9,10,11,17
Potamogeton	pusillus	baby pondweed	S	330	3,000			10
Potamogeton	pusillus	baby pondweed	W	40	6,700	6.9	9.9	4,9,10
Potamogeton	richardsonii	claspingleaf pondweed	S	450	520			10
Potamogeton	richardsonii	claspingleaf pondweed	W	40	5,000	8.0	9.5	2,3,4,8,9,10
Potamogeton	sp.	pondweed	W		148		7.3	10
Potamogeton	strictifolius	narrowleaf pondweed	W		267			8
Potamogeton	vaginatus	sheathed pondweed	W	267	15,000		8.9	2,4,8,9
Potamogeton	zosteriformis	flatstem pondweed	S	380	630			10
Potamogeton	zosteriformis	flatstem pondweed	W	260	5,000	7.3	9.9	3,4,8,9,10
Potentilla	anserina	silverweed	S	420	4,700			10
Potentilla	anserina	silverweed	W	100	45,000		7.2	4,9,10
Potentilla	arguta	tall cinquefoil	S	530	1,520			10
Potentilla	norvegica	Norwegian cinquefoil	S	400	2,940			10
Potentilla	norvegica	Norwegian cinquefoil	W	40	2,000		8.6	4,9,10
Potentilla	pensylvanica	Pennsylvania cinquefoil	S	400	1,990			10
Potentilla	rivalis	brook conquefoil	W		300			4
Psoralea	argophylla	silver-leaf scurf-pea	S	290	1,870			10
Puccinellia	nuttalliana	nuttall's alkaligrass	S	880	39,800	7.7	8.6	10,16,17
Puccinellia	nuttalliana	nuttall's alkaligrass	W	700	120,000	7.9	9.6	2,4,9
Ranunculus	cymbalaria	shore buttercup	S	760	4,688			10,17
Ranunculus	cymbalaria	shore buttercup	W	500	34,000	8.0	9.6	2,4,9,10
Ranunculus	flabellaris	threadleaf buttercup	S	450	890			10

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	р	н	Source ¹
	•		_	Min	Мах	Min	Max	
Ranunculus	flabellaris	threadleaf buttercup	W	40	2,500	7.4	9.6	4,9,10
Ranunculus	gmelinii	small yellow buttercup	S	410	2,100			10
Ranunculus	gmelinii	small yellow buttercup	W	113	2,867	6.9	9.9	4,9,10
Ranunculus	longirostris	white water crowfoot	S	530	1,520			10
Ranunculus	longirostris	white water crowfoot	W	40	5,000	7.5	9.7	3,9,10
Ranunculus	macounii	macoun's buttercup	S	450	1,530			10
Ranunculus	macounii	macoun's buttercup	W	40	2,100	7.4	7.8	4,9,10
Ranunculus	pensylvanicus	bristly crowfoot	S	1,005	1,440			10
Ranunculus	pensylvanicus	bristly crowfoot	W		1,263		8.6	10
Ranunculus	sceleratus	cursed crowfoot	S		550			10
Ranunculus	sceleratus	cursed crowfoot	W	40	8,500			4,9
Ranunculus	sp.	buttercup, crowfoot	S	1,130	2,790			10
Ranunculus	sp.	buttercup, crowfoot	W		729		8.7	10
Ranunculus	subrigidus	white water crowfoot	W	200	4,500			4
Ratibida	columnifera	prairie coneflower	S	400	2,270			10
Rhus	glabra	smooth sumac	S		550			10
Ribes	americanum	wild black currant	S	535	630			10
Ribes	americanum	wild black currant	W	355	391	7.6	8.0	10
Riccia	fluitans	slender riccia	S	400	740			10
Riccia	fluitans	slender riccia	W	40	4,700	6.9	7.9	4,9,10
Riccia	sp.	liverwort	S	375	4,000			10
Riccia	sp.	liverwort	W	307	6,673	7.0	8.4	10
Ricciocarpus	natans	purple-fringed riccia	S		1,120			10
Ricciocarpus	natans	purple-fringed riccia	W	40	3,200		7.9	4,9,10
Rorippa	palustris	bog yellow cress	S	290	2,930			10
Rorippa	palustris	bog yellow cress	W	40	3,200	7.6	9.0	4,9,10
Rosa	arkansana	prairie wild rose	S	300	3,800			10
Rosa	blanda	smooth wild rose	S	500	740			10
Rosa	woodsii	western wild rose	S	140	900			10

Genus	Species	Common name	Substrate		luctivity 5 cm ⁻¹)	ł	н	Source ¹
			-	Min	Max	Min	Мах	
Rosa	woodsii	western wild rose	W		113		6.9	10
Rudbeckia	hirta	black-eyed susan	S	400	3,800			10
Rudbeckia	hirta	black-eyed susan	W		1,623		7.7	10
Rumex	crispus	curly dock	S	290	11,250			10,14,17
Rumex	crispus	curly dock	W	326	1,623	7.2	9.7	10
Rumex	maritimus	golden dock	S	270	4,550			10
Rumex	maritimus	golden dock	W	40	15,000	7.1	9.9	9,10
Rumex	mexicanus	willow-leaved dock	W	40	5,000			4,9
Rumex	occidentalis	western dock	S	300	2,930			10
Rumex	occidentalis	western dock	W	40	5,000	7.9	8.8	9,10
Rumex	orbiculatus	great water dock	S		885			10
Rumex	salicifolius	willow dock	S	300	5,500			10
Rumex	salicifolius	willow dock	W	307	6,673	7.2	9.5	10
Rumex	sp.	dock, sorrel	S	420	2,700			10
Rumex	sp.	dock, sorrel	W	113	1,582	6.7	8.5	10
Rumex	stenophyllus	Eurasian dock	S		700			10
Ruppia	maritima	ditchgrass, widgeon grass	S		31,406	3.1	8.8	6,17
Ruppia	maritima	ditchgrass, widgeon grass	W	94	609,375	6.0	10.8	2,3,6,8,9,11,17
Ruppia	maritima var. occidentalis	ditchgrass, widgeon grass	W	600	14,200			4
Ruppia	maritima var. rostrata	ditchgrass, widgeon grass	W	5,500	66,000			4
Sagittaria	cuneata	arrowhead	S	270	1,400			10
Sagittaria	cuneata	arrowhead	W	40	6,700	6.8	9.5	2,4,8,9,10
Sagittaria	latifolia	common arrowhead	S	400	900			10
Sagittaria	latifolia	common arrowhead	W	148	1,444	6.7	9.8	10
Sagittaria	sp.	arrowhead	S	400	650			10
Sagittaria	sp.	arrowhead	W	256	782	7.2	8.6	10
Salicornia	rubra	saltwort	S	2,344	142,813	7.0	9.0	11,12,13,16,17
Salicornia	rubra	saltwort	W	5,000	45,000			9
Salix	amygdaloides	peachleaf willow	S	350	2,620			10

Genus	Species	Common name	Substrate		luctivity 5 cm ⁻¹)	þ	Н	Source ¹
	•		-	Min	Max	Min	Max	-
Salix	amygdaloides	peachleaf willow	W	192	1,385	7.4	9.7	10
Salix	exigua	sandbar willow, coyote willow	S	300	1,655			10
Salix	exigua	sandbar willow, coyote willow	W	192	600	8.3	9.7	10
Salix	exigua subs. interior	sandbar willow	W	300	1,700			4
Salix	nigra	black willow	S		620			10
Salix	sp.	willow	S	410	1,850			10
Salix	sp.	willow	W	201	1,896	7.7	9.8	10
Salsola	iberica	Russian thistle	S		39,800			17
Scirpus	acutus	hardstem bulrush	S	270	5,500			10,17
Scirpus	acutus	hardstem bulrush	W	40	37,000	6.6	9.9	2,3,4,9,10
Scirpus	americanus	chairmaker's bulrush	S	1,719	11,200	7.9	8.5	14,15,17
Scirpus	americanus	chairmaker's bulrush	W	500	120,000	8.3	9.6	2,9
Scirpus	atrovirens	darkgreen bulrush	S	580	2,270			10
Scirpus	atrovirens	darkgreen bulrush	W	500	2,200		7.5	4,10
Scirpus	fluviatilis	river bulrush	S	330	4,550			10
Scirpus	fluviatilis	river bulrush	W	40	6,700	6.6	9.9	4,9,10
Scirpus	heterochaetus	slender bulrush	S	300	2,470			10
Scirpus	heterochaetus	slender bulrush	W	40	4,200	6.9	9.8	4,9,10
Scirpus	microcarpus	panicled bulrush	W	300	900			4
Scirpus	nevadensis	Nevada bulrush	W	12,000	45,000			4,9
Scirpus	pallidus	cloaked bulrush	S	340	2,050			10
Scirpus	pallidus	cloaked bulrush	W	565	1,809	7.2	8.6	10
Scirpus	paludosus	cosmopolitan bulrush	S	410	120,000	5.2	8.9	7,10,11,14,15,16,17
Scirpus	paludosus	cosmopolitan bulrush	W	113	481,250	6.4	9.8	2,3,4,7,9,10,17
Scirpus	pungens	common threesquare	S	465	5,500			10
Scirpus	pungens	common threesquare	W	100	70,000	7.2	8.4	4,10
Scirpus	robustus	sturdy bulrush	S	2,600	111,000	3.1	6.6	7
Scirpus	robustus	sturdy bulrush	W	313	60,938	4.0	8.3	7
Scirpus	sp.	bulrush	S	450	975			10

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	p	H	Source ¹
			-	Min	Мах	Min	Max	
Scirpus	sp.	bulrush	W	192	629	7.2	9.7	10
Scirpus	validus	softstem bulrush	S	280	4,550			10
Scirpus	validus	softstem bulrush	W	40	6,673	7.0	9.7	4,9,10
Scolochloa	festucacea	sprangletop	S	400	4,660			1,10
Scolochloa	festucacea	sprangletop	W	40	15,000	6.8	9.8	2,4,9,10
Scrophularia	lanceolata	figwort	S		340			10
Scutellaria	galericulata	marsh skullcap	W		300			4
Scutellaria	sp.	skullcap	S	380	760			10
Scutellaria	sp.	skullcap	W	256	661	7.2	9.1	10
Senecio	congestus	swamp ragwort	S	620	2,450			10
Senecio	congestus	swamp ragwort	W	40	5,000			9
Senecio	pseudaureus	falsegold groundsel	S	610	1,260			10
Sesuvium	verrucosum	sea purslane	S	3,594	81,500	7.0	9.7	14,17
Setaria	sp.	foxtail	S	300	2,500			10
Setaria	sp.	foxtail	W	192	964	7.3	9.7	10
Silene	sp.	catchfly, campion	S	340	500			10
Sisyrinchium	campestre	white-eyed grass	S		530			10
Sium	suave	water parsnip	S	400	3,800			10
Sium	suave	water parsnip	W	40	5,000	7.2	9.9	4,9,10
Solidago	canadensis	Canada goldenrod	S	140	4,700			1,10
Solidago	canadensis	Canada goldenrod	W	590	725	7.4	8.6	10
Solidago	gigantea	late goldenrod	S	140	2,620			10
Solidago	gigantea	late goldenrod	W		629		7.2	10
Solidago	missouriensis	prairie goldenrod	S	140	1,220			10
Solidago	mollis	soft goldenrod	S	500	6,460			10
Solidago	rigida var. rigida	rigid goldenrod	S	140	4,700			10
Sonchus	arvensis	field sow thistle	S	290	20,313			1,10,17
Sonchus	arvensis	field sow thistle	W	40	20,800	7.2	9.6	4,9,10
Sonchus	asper	prickly sow thistle	S	490	800			10

Genus	Species	Common name	Substrate		uctivity cm ⁻¹)	þ	Н	Source ¹
	·			Min	Max	Min	Max	
Sorghastrum	nutans	Indian grass	S		530			10
Sparganium	eurycarpum	giant burreed	S	270	4,550			10
Sparganium	eurycarpum	giant burreed	W	40	5,000	6.6	9.6	4,9,10
Spartina	gracilis	alkali cordgrass	S	4,688	7,813			17
Spartina	gracilis	alkali cordgrass	W	700	45,000			4,9
Spartina	pectinata	prairie cordgrass	S	290	20,313			10,17
Spartina	pectinata	prairie cordgrass	W	40	33,500	6.6	9.5	4,9,10
Spergularia	marina	salt-marsh sand spurry	S	2,344	39,800			13,17
Spergularia	marina	salt-marsh sand spurry	W	2,000	15,000			9
Sphenopholis	obtusa	wedgegrass	S	17,188	20,313			17
Sphenopholis	obtusata	prairie wedgegrass	S		1,900			10
Spiraea	alba	meadow-sweet	S	525	740			10
Spiraea	alba	meadow-sweet	W	588	774	8.9	9.6	10
Spirodela	polyrhiza	duckmeat, greater duckweed	S	330	730			10
Spirodela	polyrhiza	duckmeat, greater duckweed	W	40	3,000	6.9	9.0	4,9,10
Sporobolus	airoides	alkali sacaton	S	156	42,656	6.5	10.0	14,17
Sporobolus	texanus	Texas dropseed	S	1,875	72,000	7.4	8.3	14,15
Stachys	palustris	hedge-nettle, marsh betony	S	290	3,480			10
Stachys	palustris	hedge-nettle, marsh betony	W	40	5,000	6.9	9.8	4,9,10
Stipa	comata	needle-and-thread	S	620	1,150			10
Stipa	viridula	green needlegrass	S	400	1,500			10
Stipa	viridula	green needlegrass	W		725		8.6	10
Suaeda	depressa	sea blite	S	5,781	110,400	6.8	10.0	11,14,15,16,17
Suaeda	depressa	sea blite	W	5,000	66,000			4,9
Symphoricarpos	occidentalis	western snowberry	S	350	4,000			10
Symphoricarpos	occidentalis	western snowberry	W	725	3,480	8.1	8.6	10
Tamarix	ramosissima	salt cedar	S	2,188	96,000	7.4	8.7	14,15
Taraxacum	officinale	common dandelion	S	300	4,688			10,17
Taraxacum	officinale	common dandelion	W	326	630	7.8	8.4	10

Genus	Species	Common name	Substrate		luctivity 5 cm ⁻¹)	p	Н	Source ¹
			_	Min	Max	Min	Мах	
Teucrium	canadense	wood sage	S	450	1,720			10
Teucrium	canadense	wood sage	W	391	856	7.4	9.5	10
Teucrium	canadense var. boreale	wood sage	W	40	9,100			4,9
Thalictrum	dasycarpum	purple meadow rue	S	550	860			10
Thalictrum	dasycarpum	purple meadow rue	W		450		8.6	10
Thalictrum	venulosum	early meadow rue	S	525	1,730			10
Thalictrum	venulosum	early meadow rue	W		590		7.4	10
Thlaspi	arvense	field pennycress	S	470	2,380			10
Tradescantia	bracteata	spiderwort	S	400	740			10
Tragopogon	dubius	goat's beard	S	380	2,000			10
Trifolium	hybridum	alsike clover	S	450	520			10
Trifolium	pratense	red clover	S	400	930			10
Trifolium	pratense	red clover	W		326		7.8	10
Trifolium	repens	white clover	S	520	640			10
Triglochin	maritima	seaside arrowgrass	S	900	72,000	8.1	8.2	10,17
Triglochin	maritima	seaside arrowgrass	W	700	120,000	7.9	9.6	2,4,9
Triglochin	palustris	marsh arrowgrass	W				9.6	2
Typha	angustifolia	narrow-leaved cat-tail	S	280	4,550			10
Typha	angustifolia	narrow-leaved cat-tail	W	192	15,000	7.0	9.9	4,9,10
Typha	latifolia	broad-leaved cat-tail	S	270	5,500			10
Typha	latifolia	broad-leaved cat-tail	W	40	13,600	6.2	9.9	2,4,9,10,11
Typha	sp.	cat-tail	S	420	4,660			1,10
Typha	sp.	cat-tail	W	195	5,387	6.9	8.5	3,10
Typha	x glauca	hybrid cat-tail	S	330	4,550			10
Typha	x glauca	hybrid cat-tail	W	100	6,600	6.7	9.9	4,9,10
Urtica	dioica	stinging nettle	S	400	3,800			10
Urtica	dioica	stinging nettle	W	274	5,387	7.1	9.0	10
Utricularia	vulgaris	common bladderwort	S	330	3,370			10
Utricularia	vulgaris	common bladderwort	W	40	8,100	6.8	9.9	2,4,8,9,10

[Scientific and common names primarily follow The Great Plains Flora Association (1986), and the minimum and maximum values represent all data types (that is, values reported as minimum, maximum, mean, median, or single occurrence). S, soil; W, water; μ S cm⁻¹, microsiemens per centimeter]

Genus	Species	Common name	Substrate _	Conductivity (µS cm ⁻¹)		рН		Source ¹
				Min	Мах	Min	Max	
Vallisneria	americana	tapegrass	S	410	880			10
Vallisneria	americana	tapegrass	W	192	852	7.6	9.8	10
Verbena	hastata	blue vervain	S	415	1,690			10
Verbena	hastata	blue vervain	W	355	632	7.4	7.6	10
Verbena	sp.	vervain	S		590			10
Vernonia	fasciculata	ironweed	S	310	1,400			10
Vernonia	fasciculata	ironweed	W	40	500	7.2	7.8	4,9,10
Veronica	anagallis-aquatica	water speedwell	S		500			10
Veronica	peregrina	purslane speedwell	S		4,000			10
Veronica	peregrina	purslane speedwell	W	40	2,000			9
Vicia	americana	American vetch	S	400	1,720			10
Vicia	sp.	vetch	S	140	770			10
Vicia	sp.	vetch	W		450		8.6	10
Viola	nuttallii	yellow prairie violet	S	580	650			10
Viola	sororia	downy blue violet	S	535	860			10
Viola	sororia	downy blue violet	W	391	590	7.4	8.6	10
Xanthium	strumarium	cocklebur	S	300	5,500			10
Xanthium	strumarium	cocklebur	W	40	5,000	7.7	9.7	9,10
Zannichellia	palustris	horned pondweed	W	300	45,000			3,4,9
Zigadenus	elegans	white camass	S	530	760			10
Zizia	aptera	meadow parsnip	S	400	620			10
Zizia	aptera	meadow parsnip	W	192	450	8.6	9.7	10
Zizia	aurea	golden alexanders	S	400	1,725			10
Zizia	aurea	golden alexanders	W	590	856	7.4	8.1	10

¹Source: 1, Grosshans and Kenkel, 1997; 2, Hammer and Heseltine, 1988; 3, Johnson, 1990; 4, Kantrud and others, 1989; 5, Kantrud, 1990; 6, Kantrud, 1991; 7, Kantrud, 1996; 8, Rawson and Moore, 1944; 9, Stewart and Kantrud, 1972; 10, USGS unpbublished a; 11, Ungar and others, 1969; 12, Ungar and others, 1979; 13, Ungar and Riehl, 1980; 14, Ungar, 1966; 15, Ungar, 1967; 16, Ungar, 1970; 17, Ungar, 1974.

64 Database of Relations Between Salinity and Aquatic Biota: Applications to Bowdoin National Wildlife Refuge, Mont.

References

- Grosshans, R.E., and Kenkel, N.C., 1997, Dynamics of emergent vegetation along natural gradients of water depth and salinity in a prairie marsh—delayed influences of competition, *in* Goldsborough, L.G., and Hann, B.J., eds., University of Manitoba Field Station (Delta Marsh) thirty-second annual report: Portage la Prairie, Manitoba, Canada, p. 83–93.
- Hammer, U.T., and Heseltine, J.M., 1988, Aquatic macrophytes in saline lakes of the Canadian prairies: Hydrobiologia, v. 158, p. 101–116.
- Johnson, K.M., 1990, Aquatic vegetation, salinity, aquatic invertebrates, and duck brood use at Bowdoin National Wildlife Refuge: Bozeman, Montana State University, master's thesis.
- Kantrud, H.A., 1990, Sago pondweed (*Potamogeton pecinatus* L.)—a literature review: Washington, D.C., U.S. Fish and Wildlife Service, Resource Publication 176, 89 p.
- Kantrud, H.A., 1991, Widgeongrass (*Ruppia maritima* L.)—a literature review: Washington, D.C., U.S. Fish and Wildlife Service, Fish and Wildlife Research 10, 58 p.
- Kantrud, H.A., 1996, The alkali (Scirpus maritimus L.) and saltmarsh (S. robustus Pursh) bulrushes—a literature review: Washington, D.C., National Biological Service Information and Technology Report 6, 77 p.
- Kantrud, H.A., Millar, J.B., and van der Valk, A.G., 1989, Vegetation of wetlands of the prairie pothole region, *in* van der Valk, A., ed., Northern prairie wetlands: Ames, Iowa State University Press, p. 132–187.
- Rawson, D.S., and Moore, J.E., 1944, The saline lakes of Saskatchewan: Canadian Journal of Research, v. 22, p. 141-201.
- Stewart, R.E., and Kantrud, H.A., 1972, Vegetation of prairie potholes, North Dakota, in relation to quality of water and other environmental factors: Washington, D.C., U.S. Geological Survey Professional Paper 585-D, 36 p.
- Ungar, I.A., 1966, Salt tolerance of plants growing in saline areas of Kansas and Oklahoma: Ecology, v. 47, p. 154–155.
- Ungar, I.A., 1967, Vegetation-soil relationships on saline soils in northern Kansas: American Midland Naturalist, v. 78, p. 98–120.
- Ungar, I.A., 1970, Species-soil relationships on sulfate dominated soils of South Dakota: American Midland Naturalist, v. 83, p. 343–357.
- Ungar, I.A., 1974, Inland halophytes of the United States, *in* Reimold, R.J., and Queen, W.H., eds., Ecology of halophytes: New York, N.Y., Academic Press, Inc., p. 235–305.
- Ungar, I.A., Benner, D.K., and McGraw, D.C., 1979, The distribution and growth of Salicornia Europaea on an inland salt pan: Ecology, v. 60, p. 329–336.
- Ungar, I.A., Hogan, W., and McClelland, M., 1969, Plant communities of saline soils at Lincoln, Nebraska: The American Midland Naturalist, v. 82, p. 564–577.
- Ungar, I.A., and Riehl, T.E., 1980, The effect of seed reserves on species composition in zonal halophyte communities: Botanical Gazette, v. 141, p. 447–452.

Appendix 6. Summary of invertebrate database.

Dhulum	Class	Ordor	Fomily	Conuo	Species	Conductiv	ity (µS cm⁻¹)	p	н	Course
Phylum	Class	Order	Family	Genus	Species	Min	Мах	Min	Max	Source
Annelida	Hirudinea					270	15,625	7.1	9.3	1,5,6,7
Annelida	Hirudinea	Gnathobdellida	Hirudinidae			540	1,997	7.1	9.4	6
Annelida	Hirudinea	Pharyngobdellida	Erpobdellidae			531	2,000	7.1	9.7	6
Annelida	Hirudinea	Pharyngobdellida	Erpobdellidae	Erpobdella		99	4,340			7
Annelida	Hirudinea	Rhynchobdellida	Glossiphoniidae			531	2,000	7.3	9.7	6
Annelida	Hirudinea	Rhynchobdellida	Glossiphoniidae	Glossiphonia		105	2,930			7
Annelida	Hirudinea	Rhynchobdellida	Glossiphoniidae	Helobdella		69	5,554	7.1	10.0	6,7
Annelida	Hirudinea	Rhynchobdellida	Glossiphoniidae	Helobdella	stagnalis		2,644			7
Annelida	Hirudinea	Rhynchobdellida	Glossiphoniidae	Placobdella		168	1,243			7
Annelida	Hirudinea	Rhynchobdellida	Glossiphoniidae	Theromyzon		217	4,378			7
Annelida	Oligochaeta					57	69,100	5.4	12.9	1,2,5,7
Arthropoda	Arachnida	Acarina				100	33,600	4.6	12.9	2
Arthropoda	Arachnoidea	Hydracarina				57	15,625	7.1	10.0	1,5,6,7
Arthropoda	Branchiopoda	Anastraca	Streptocephalidae	Streptucephalus	texanus	101	982			7
Arthropoda	Branchiopoda	Anostraca				80	2,178			7
Arthropoda	Branchiopoda	Anostraca	Artemiidae	Artemia	salina	26,622	187,500	10.0	10.6	4,5
Arthropoda	Branchiopoda	Anostraca	Branchinectidae	Branchinecta	campestris	5,130	5,557	9.8	9.9	4
Arthropoda	Branchiopoda	Anostraca	Branchinectidae	Branchinecta	lindahli	1,312	36,342	9.3	10.3	4
Arthropoda	Branchiopoda	Anostraca	Branchinectidae	Branchinecta	mackini		2,394		9.3	4
Arthropoda	Branchiopoda	Anostraca	Chirocephalidae	Chirocephalopsis	bundyi	680	1,250	8.8	9.0	4
Arthropoda	Branchiopoda	Anostraca	Chirocephalidae	Eubranchipus		188	892			7
Arthropoda	Branchiopoda	Anostraca	Chirocephalidae	Eubranchipus	bundyi	91	388			7
Arthropoda	Branchiopoda	Anostraca	Chirocephalidae	Eubranchipus	ornatus	80	892			7
Arthropoda	Branchiopoda	Anostraca	Streptocephalidae	Streptocephalus	seali		136		7.8	4
Arthropoda	Branchiopoda	Cladocera				99	15,000			1,7
Arthropoda	Branchiopoda	Cladocera	Bosminidae	Bosmina	obtusirostris	156	31,250			5
Arthropoda	Branchiopoda	Cladocera	Chydoridae	Alona	costata	156	7,813			5
Arthropoda	Branchiopoda	Cladocera	Chydoridae	Alona	rectangula	313	1,563			5
Arthropoda	Branchiopoda	Cladocera	Chydoridae	Alonella			1,879			7
Arthropoda	Branchiopoda	Cladocera	Chydoridae	Chydorus		185	3,658			7
Arthropoda	Branchiopoda	Cladocera	Chydoridae	Chydorus	gibbus	313	1,563			5

Dhul	Class	Order	Family	Carrie	Species	Conductiv	ity (µS cm⁻¹)	p	н	Source
Phylum	Class	Urder	Family	Genus	Species	Min	Max	Min	Max	Source
Arthropoda	Branchiopoda	Cladocera	Chydoridae	Chydorus	sphaericus	156	31,250			5
Arthropoda	Branchiopoda	Cladocera	Chydoridae	Eurycercus	lamellatus	156	2,497			5,7
Arthropoda	Branchiopoda	Cladocera	Chydoridae	Graptoleberis	testudinaria	313	1,563			5
Arthropoda	Branchiopoda	Cladocera	Chydoridae	Pleuroxus	denticulatus	156	7,813			5
Arthropoda	Branchiopoda	Cladocera	Daphnidae	Ceriodaphnia		91	4,650			7
Arthropoda	Branchiopoda	Cladocera	Daphnidae	Ceriodaphnia	quadrangula	313	15,625			5
Arthropoda	Branchiopoda	Cladocera	Daphnidae	Daphnia		80	6,150			7
Arthropoda	Branchiopoda	Cladocera	Daphnidae	Daphnia	longispina	156	187,500			5
Arthropoda	Branchiopoda	Cladocera	Daphnidae	Daphnia	pulex	313	31,250			5
Arthropoda	Branchiopoda	Cladocera	Daphnidae	Scapholeberis		196	3,698			7
Arthropoda	Branchiopoda	Cladocera	Daphnidae	Scapholeberis	mucronata	156	31,250			5
Arthropoda	Branchiopoda	Cladocera	Daphnidae	Simocephalus		57	5,266			7
Arthropoda	Branchiopoda	Cladocera	Daphnidae	Simocephalus	vetulus	156	15,625			5
Arthropoda	Branchiopoda	Cladocera	Leptodoridae	Leptodora	kindtii	156	7,813			5
Arthropoda	Branchiopoda	Cladocera	Moinidae	Moina			2,295			7
Arthropoda	Branchiopoda	Cladocera	Moinidae	Moina	macrocopa		3,706			7
Arthropoda	Branchiopoda	Cladocera	Polyphemidae	Polyphemus	pediculus	156	1,563			5
Arthropoda	Branchiopoda	Cladocera	Sididae	Diaphanosoma		1,104	4,073			7
Arthropoda	Branchiopoda	Cladocera	Sididae	Diaphanosoma	leuchtenbergianum	156	31,250			5
Arthropoda	Branchiopoda	Cladocera	Sididae	Sida	crystallina	313	1,563			5
Arthropoda	Branchiopoda	Conchostraca				119	2,407			7
Arthropoda	Branchiopoda	Conchostraca	Lynceidae	Lynceus		140	2,930			7
Arthropoda	Copepoda					500	15,000			1,7
Arthropoda	Copepoda	Calanoida				105	6,150			7
Arthropoda	Copepoda	Cyclopoida				69	6,543			7
Arthropoda	Copepoda	Eucopepoda	Canthocamptidae	Cletocamptus	albuquerquensis	31,250	187,500			5
Arthropoda	Copepoda	Eucopepoda	Cyclopidae	Cyclops	albidus	313	7,813			5
Arthropoda	Copepoda	Eucopepoda	Cyclopidae	Cyclops	bicuspidatus	313	15,625			5
Arthropoda	Copepoda	Eucopepoda	Cyclopidae	Cyclops	fimbriatus	313	1,563			5
Arthropoda	Copepoda	Eucopepoda	Cyclopidae	Cyclops	leuckarti	313	3,125			5
Arthropoda	Copepoda	Eucopepoda	Cyclopidae	Cyclops	serrulatus	313	31,250			5

[The minimum and maximum values represent all data types (that is, values reported as minimum, maximum, mean, median, or single occurrence). μ S cm⁻¹, microsiemens per centimeter]

Phylum	Class	Order	Family	Genus	Species	Conductiv	ity (µS cm⁻¹)	р	Н	Source
Phylum	CIASS	Order	ганну	Genus	Species	Min	Max	Min	Max	Source
Arthropoda	Copepoda	Eucopepoda	Cyclopidae	Cyclops	viridis	156	46,875			5
Arthropoda	Copepoda	Eucopepoda	Diaptomidae	Diaptomus	oregonensis	156	1,094			5
Arthropoda	Copepoda	Eucopepoda	Diaptomidae	Diaptomus	shoshone	3,125	31,250			5
Arthropoda	Copepoda	Eucopepoda	Diaptomidae	Diaptomus	siciloides	1,563	187,500			5
Arthropoda	Copepoda	Eucopepoda	Diaptomidae	Diaptomus	tenuicaudatus	156	46,875			5
Arthropoda	Copepoda	Eucopepoda	Ergasilidae	Ergasilus			1,493			7
Arthropoda	Copepoda	Eucopepoda	Laophontidae	Laophonte	mohammed	1,094	31,250			5
Arthropoda	Eubranchiopoda	Anostraca	Branchinectidae	Branchinecta	lindahli	105	5,800			7
Arthropoda	Eubranchiopoda	Conchostraca	Caenestheriidae	Caenestheriella			960			7
Arthropoda	Insecta	Coleoptera				313	156,250	7.8	7.9	1,5,6
Arthropoda	Insecta	Coleoptera	Curculionidae	Litodactylus	griseomicans	913	1,568			3
Arthropoda	Insecta	Coleoptera	Curculionidae	Lixellus	filiformis	913	1,568			3
Arthropoda	Insecta	Coleoptera	Dytiscidae			69	192,000	4.9	12.9	2,6,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Acilius		650	1,492			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Acilius	semisulcatus		811			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Agabus		57	4,378	7.5	9.4	6,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Agabus	ajax	45	9,106			3,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Agabus	antennatus	45	9,106			3,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Agabus	bifarius	107	811			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Agabus	falli		3,850			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Agabus	griseipennis	6,335	15,524			3
Arthropoda	Insecta	Coleoptera	Dytiscidae	Colymbetes		85	5,266			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Colymbetes	sculptilis	190	3,310			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Coptotomus		57	4,030	8.0	9.4	6,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Coptotomus	longulus	107	3,019			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Dytiscus		80	4,030	7.5	9.7	6,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Dytiscus	alaskanus	99	4,892			3,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Dytiscus	circumcinctus	1,651	1,771			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Dytiscus	cordieri	45	3,430			3,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Dytiscus	hybridus	179	3,850			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Graphoderus		57	4,030	7.1	9.2	6,7

67

Dhulum	01	Orden	F !	0	Creation	Conductivi	ty (µS cm⁻¹)	р	Н	Source ¹
Phylum	Class	Order	Family	Genus	Species	Min	Max	Min	Мах	Source
Arthropoda	Insecta	Coleoptera	Dytiscidae	Graphoderus	liberus	45	72			3
Arthropoda	Insecta	Coleoptera	Dytiscidae	Graphoderus	occidentalis	140	3,955			3,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Graphoderus	perplexus	45	4,340			3,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hydaticus		105	3,385		8.0	6,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hydaticus	modestus	279	2,670			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hydroporus		91	4,210	8.2	8.7	6,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hydroporus	criniticoxis		324			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hydroporus	notabilis		1,602			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hydroporus	pervicinus	228	951			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hydroporus	superioris	153	2,575			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hydroporus	tenebrosus	183	2,253			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hydroporus	undulatus		1,936			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hygrotus		57	5,266	7.5	9.7	6,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hygrotus	canadensis	168	2,046			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hygrotus	impressopunctatus	153	3,310			3,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hygrotus	lutescens	45	4,892			3
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hygrotus	masculinus	6,335	15,524			3
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hygrotus	patruelis	153	4,078			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hygrotus	picatus	324	1,791			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hygrotus	sayi	45	9,106			3,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hygrotus	sellatus	190	3,130			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hygrotus	turbidus	238	2,819			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Hygrotus	unguicularis	45	9,106			3,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Ilybius		101	4,378	7.1	9.4	6,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Ilybius	fraterculus	45	3,883			3,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Ilybius	subaenus	45	4,892			3
Arthropoda	Insecta	Coleoptera	Dytiscidae	Laccophilus		57	3,822	7.1	10.0	6,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Laccophilus	biguttatus	45	3,808			3,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Laccophilus	maculosus	217	4,098			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Laccornis			171			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Liodessus		100	4,973			7

[The minimum and maximum values represent all data types (that is, values reported as minimum, maximum, mean, median, or single occurrence). μ S cm⁻¹, microsiemens per centimeter]

Phylum	Class	Order	Family	C	Creation	Conductiv	ity (µS cm⁻¹)	p	н	Source
Phylum	Class	Urder	Family	Genus	Species	Min	Max	Min	Max	Source
Arthropoda	Insecta	Coleoptera	Dytiscidae	Liodessus	affinis	140	4,744			7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Potamonectes	griseostriatus	45	72			3
Arthropoda	Insecta	Coleoptera	Dytiscidae	Potamonectes	spenceri	6,335	15,524			3
Arthropoda	Insecta	Coleoptera	Dytiscidae	Potamonectes	striatellus	6,335	9,106			3
Arthropoda	Insecta	Coleoptera	Dytiscidae	Rhantus		57	4,210	7.3	9.4	6,7
Arthropoda	Insecta	Coleoptera	Dytiscidae	Rhantus	frontalis	45	15,524			3,7
Arthropoda	Insecta	Coleoptera	Gyrinidae			153	18,600	6.4	9.0	2,7
Arthropoda	Insecta	Coleoptera	Gyrinidae	Gyrinus		117	3,405	7.6	8.4	6,7
Arthropoda	Insecta	Coleoptera	Gyrinidae	Gyrinus	maculiventris	363	2,888			7
Arthropoda	Insecta	Coleoptera	Gyrinidae	Gyrinus	minutus		1,682			7
Arthropoda	Insecta	Coleoptera	Gyrinidae	Gyrinus	pectoralis		1,782			7
Arthropoda	Insecta	Coleoptera	Haliplidae	Haliplus		57	5,160	7.5	10.0	6,7
Arthropoda	Insecta	Coleoptera	Haliplidae	Haliplus	connexus	947	1,048			7
Arthropoda	Insecta	Coleoptera	Haliplidae	Haliplus	hoppingi	217	3,883			7
Arthropoda	Insecta	Coleoptera	Haliplidae	Haliplus	immaculicollis	45	15,524			3,7
Arthropoda	Insecta	Coleoptera	Haliplidae	Haliplus	leechi	45	72			3
Arthropoda	Insecta	Coleoptera	Haliplidae	Haliplus	salinarius	1,209	3,356			7
Arthropoda	Insecta	Coleoptera	Haliplidae	Haliplus	stagninus	913	11,532			3,7
Arthropoda	Insecta	Coleoptera	Haliplidae	Haliplus	strigatus	45	15,524			3,7
Arthropoda	Insecta	Coleoptera	Haliplidae	Haliplus	subguttatus	986	3,720			7
Arthropoda	Insecta	Coleoptera	Haliplidae	Peltodytes		153	4,210	7.5	9.7	6,7
Arthropoda	Insecta	Coleoptera	Haliplidae	Peltodytes	edentulus	140	3,883			7
Arthropoda	Insecta	Coleoptera	Haliplidae	Peltodytes	tortulosis		1,714			7
Arthropoda	Insecta	Coleoptera	Helodidae			134	6,543			7
Arthropoda	Insecta	Coleoptera	Hydraenidae			400	192,000	5.3	9.0	2
Arthropoda	Insecta	Coleoptera	Hydrophilidae			100	192,000	6.1	12.9	2,7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Berosus		91	4,720	7.8	8.6	6,7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Berosus	fraternus	99	3,083			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Berosus	hatchi	991	3,430			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Berosus	striatus	99	3,706			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Cercyon		1,015	4,210			7

69

Dhulum	Class	Order	Family	Conuc	Enonica	Conductiv	ity (µS cm⁻¹)	p	н	Source ¹
Phylum	LIASS	Order	Family	Genus	Species	Min	Max	Min	Мах	20nice.
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Cymbiodyta	dorsalis		2,888			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Enochrus		80	5,266		8.4	6,7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Enochrus	diffusus	3,706	15,524			3
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Helophorus		57	4,973			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Helophorus	linearis	179	2,123			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Helophorus	lineatus		205			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Helophorus	oblongus	811	1,080			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Hydrobius		69	2,930			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Hydrobius	fuscipes		107			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Hydrochara		134	4,210			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Hydrochara	obtusatus		273			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Hydrochus		99	4,210			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Laccobius	sp.	6,335	11,532			3
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Paracymus		205	6,120			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Paracymus	subcupreus	1,682	2,323			7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Tropisternus		123	3,946		7.9	6,7
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Tropisternus	lateralis	148	3,850			7
Arthropoda	Insecta	Coleoptera	Scirtidae			100	36,700	5.9	12.9	2
Arthropoda	Insecta	Coleoptera	Staphylinidae	Micralymma			2,000		8.2	6
Arthropoda	Insecta	Collembola				272	2,384	8.1	9.2	6,7
Arthropoda	Insecta	Collembola	Entomobryidae			118	5,554			7
Arthropoda	Insecta	Collembola	Isotomidae			80	6,150			7
Arthropoda	Insecta	Collembola	Poduridae			455	1,466			7
Arthropoda	Insecta	Collembola	Sminthuridae			134	4,378			7
Arthropoda	Insecta	Diptera				57	15,000		8.8	1,6,7
Arthropoda	Insecta	Diptera	Ceratopogonidae			57	192,000	4.6	12.9	1,2,5,6,7
Arthropoda	Insecta	Diptera	Ceratopogonidae	Bezzia		540	2,000	7.5	8.7	6
Arthropoda	Insecta	Diptera	Chaoboridae			544	2,000	7.6	8.9	6
Arthropoda	Insecta	Diptera	Chaoboridae	Chaoborus		57	5,266	7.1	9.7	6,7
Arthropoda	Insecta	Diptera	Chironomidae			57	192,000	4.6	12.9	1,2,5,6,7
Arthropoda	Insecta	Diptera	Corethrinae			313	10,938			5

Phylum	Class	Order	Family	Genus	Species	Conductiv	ity (µS cm⁻¹)	р	H	Source
FIIYIUIII	61855	Uluer	ганну	Genus	opecies	Min	Max	Min	Max	Source
Arthropoda	Insecta	Diptera	Culicidae			91	192,000	4.6	9.3	1,2,6,7
Arthropoda	Insecta	Diptera	Culicidae	Aedes		69	4,210			7
Arthropoda	Insecta	Diptera	Culicidae	Culex		159	5,554			7
Arthropoda	Insecta	Diptera	Culicidae	Culiseta		126	5,554			7
Arthropoda	Insecta	Diptera	Culicidae	Mansonia	perturbans	1,512	2,013			7
Arthropoda	Insecta	Diptera	Dixidae			153	2,123			7
Arthropoda	Insecta	Diptera	Dolichopodidae			85	192,000	4.6	9.1	2,5,7
Arthropoda	Insecta	Diptera	Ephydridae			140	156,250	4.6	9.3	1,2,5,7
Arthropoda	Insecta	Diptera	Psychodidae			139	3,536			7
Arthropoda	Insecta	Diptera	Psychodidae	Pericoma		2,283	2,294			7
Arthropoda	Insecta	Diptera	Ptychopteridae				3,698			7
Arthropoda	Insecta	Diptera	Sciomyzidae				637		9.2	6
Arthropoda	Insecta	Diptera	Simuliidae			200	14,800	5.9	12.9	2
Arthropoda	Insecta	Diptera	Stratiomyidae			80	15,000			1,7
Arthropoda	Insecta	Diptera	Stratiomyidae	Odontomyia		105	2,927			7
Arthropoda	Insecta	Diptera	Syrphidae			220	6,543			5,7
Arthropoda	Insecta	Diptera	Tabanidae			115	15,000			1,5,7
Arthropoda	Insecta	Diptera	Tipulidae			57	192,000	5.4	12.9	2,7
Arthropoda	Insecta	Ephemeroptera				313	31,250			1,5
Arthropoda	Insecta	Ephemeroptera	Baetidae			185	19,600	6.9	8.7	1,2,7
Arthropoda	Insecta	Ephemeroptera	Baetidae	Baetis		286	2,930			7
Arthropoda	Insecta	Ephemeroptera	Baetidae	Callibaetis		132	4,098	7.1	10.0	6,7
Arthropoda	Insecta	Ephemeroptera	Caenidae			100	18,600	6.4	9.0	1,2
Arthropoda	Insecta	Ephemeroptera	Caenidae	Caenis		80	2,381	7.1	9.7	6,7
Arthropoda	Insecta	Ephemeroptera	Ephemeroptera			185	4,650			7
Arthropoda	Insecta	Hemiptera				313	46,875			1,5
Arthropoda	Insecta	Hemiptera	Belostomatidae	Belostoma			531		9.7	6
Arthropoda	Insecta	Hemiptera	Belostomatidae	Lethocerus			572		9.4	6
Arthropoda	Insecta	Hemiptera	Belostomatidae	Lethocerus	americanus	210	2,245			7
Arthropoda	Insecta	Hemiptera	Corixidae			69	23,100	6.1	12.9	1,2,6,7
Arthropoda	Insecta	Hemiptera	Corixidae	Callicorixa		57	4,378	7.6	10.0	6,7

Dhulum	Close	Ordor	Family	Conve	Gracias	Conductivi	ty (µS cm⁻¹)	р	н	Coursel
Phylum	Class	Order	Family	Genus	Species	Min	Max	Min	Max	Source
Arthropoda	Insecta	Hemiptera	Corixidae	Callicorixa	audeni	45	4,892			3
Arthropoda	Insecta	Hemiptera	Corixidae	Cenocorixa		57	4,098	7.8	10.0	6,7
Arthropoda	Insecta	Hemiptera	Corixidae	Cenocorixa	bifida	45	15,524			3
Arthropoda	Insecta	Hemiptera	Corixidae	Cenocorixa	expleta	6,335	15,524			3
Arthropoda	Insecta	Hemiptera	Corixidae	Corisella			3,018			7
Arthropoda	Insecta	Hemiptera	Corixidae	Corisella	tarsalis	1,628	1,679			7
Arthropoda	Insecta	Hemiptera	Corixidae	Cymatia		98	3,350	7.5	10.0	6,7
Arthropoda	Insecta	Hemiptera	Corixidae	Cymatia	americana	45	4,892			3
Arthropoda	Insecta	Hemiptera	Corixidae	Dasycorixa	rawsoni	858	15,524			3,7
Arthropoda	Insecta	Hemiptera	Corixidae	Hespercorixa		531	2,000	7.5	9.7	6
Arthropoda	Insecta	Hemiptera	Corixidae	Hesperocorixa		57	4,030			7
Arthropoda	Insecta	Hemiptera	Corixidae	Hesperocorixa	atopodonta	107	811			7
Arthropoda	Insecta	Hemiptera	Corixidae	Hesperocorixa	laevigata	45	9,106			3
Arthropoda	Insecta	Hemiptera	Corixidae	Hesperocorixa	vulgaris		811			7
Arthropoda	Insecta	Hemiptera	Corixidae	Sigara		57	5,800	7.5	10.0	6,7
Arthropoda	Insecta	Hemiptera	Corixidae	Sigara	solensis	99	1,940			7
Arthropoda	Insecta	Hemiptera	Corixidae	Trichocorixa		274	4,210	7.6	9.7	6,7
Arthropoda	Insecta	Hemiptera	Corixidae	Trichocorixa	borealis	1,608	4,098			7
Arthropoda	Insecta	Hemiptera	Corixidae	Trichocorixa	naias	1,782	4,098			7
Arthropoda	Insecta	Hemiptera	Corixidae	Trichocorixa	verticalis interiores	2,014	3,755			7
Arthropoda	Insecta	Hemiptera	Gerridae			105	3,650			7
Arthropoda	Insecta	Hemiptera	Gerridae	Gerris		80	4,210			7
Arthropoda	Insecta	Hemiptera	Gerridae	Rheumatobates		194	2,030			7
Arthropoda	Insecta	Hemiptera	Hebridae	Hebridae		925	1,583	8.5	8.7	6
Arthropoda	Insecta	Hemiptera	Mesovelidae	Mesovelia		665	959	7.3	9.4	6
Arthropoda	Insecta	Hemiptera	Nepidae	Ranatra	fusca		1,682			7
Arthropoda	Insecta	Hemiptera	Notonectidae			100	26,900	5.3	10.0	1,2,6,7
Arthropoda	Insecta	Hemiptera	Notonectidae	Buenoa		308	2,745	7.5	10.0	6,7
Arthropoda	Insecta	Hemiptera	Notonectidae	Buenoa	margaritacea	1,064	4,098			7
Arthropoda	Insecta	Hemiptera	Notonectidae	Notonecta		101	3,850	7.5	10.0	6,7
Arthropoda	Insecta	Hemiptera	Notonectidae	Notonecta	kirbyi	45	15,524			3,7

Phylum	Class	Order	Family	Convo	Species	Conductivi	ty (µS cm⁻¹)	p	н	Source
riyium	UIASS	Uraer	ramity	Genus	opecies	Min	Max	Min	Max	Source
Arthropoda	Insecta	Hemiptera	Notonectidae	Notonecta	undulata	45	4,098			3,7
Arthropoda	Insecta	Hemiptera	Pleidae			240	978			7
Arthropoda	Insecta	Hemiptera	Pleidae	Neoplea		286	2,000	7.1	9.7	6,7
Arthropoda	Insecta	Hemiptera	Pleidae	Plea		270	3,350			7
Arthropoda	Insecta	Hemiptera	Velidae			531	942	7.3	9.7	6
Arthropoda	Insecta	Odonata				80	46,875	7.1	10.0	5,6,7
Arthropoda	Insecta	Odonata	Aeshnidae			117	30,200	5.9	9.3	1,2,7
Arthropoda	Insecta	Odonata	Aeshnidae	Aeshna		57	4,973	7.8	8.8	6,7
Arthropoda	Insecta	Odonata	Aeshnidae	Anax		150	4,340			7
Arthropoda	Insecta	Odonata	Coenagrionidae			200	30,200	6.7	9.3	1,2,7
Arthropoda	Insecta	Odonata	Coenagrionidae	Amphiagrion			223			7
Arthropoda	Insecta	Odonata	Coenagrionidae	Coenagrion		680	1,890			7
Arthropoda	Insecta	Odonata	Coenagrionidae	Enallagma		57	4,378	7.3	10.0	6,7
Arthropoda	Insecta	Odonata	Coenagrionidae	Ischnura		85	2,710			7
Arthropoda	Insecta	Odonata	Corduliidae			100	33,600	5.3	12.9	2
Arthropoda	Insecta	Odonata	Lestidae			117	36,700	5.3	9.3	2,7
Arthropoda	Insecta	Odonata	Lestidae	Lestes		100	4,210	7.1	9.2	6,7
Arthropoda	Insecta	Odonata	Libellulidae			194	30,200	6.4	9.3	1,2,7
Arthropoda	Insecta	Odonata	Libellulidae	Leucorrhinia		147	2,470			7
Arthropoda	Insecta	Odonata	Libellulidae	Libellula		147	4,340			7
Arthropoda	Insecta	Odonata	Libellulidae	Sympetrum		98	4,210	7.5	8.3	6,7
Arthropoda	Insecta	Trichoptera				313	31,250			5
Arthropoda	Insecta	Tricoptera				98	15,000		9.0	1,6,7
Arthropoda	Insecta	Tricoptera	Brachycentridae	Brachycentrus		1,454	2,012			7
Arthropoda	Insecta	Tricoptera	Leptoceridae			100	69,100	4.9	12.9	1,2,7
Arthropoda	Insecta	Tricoptera	Leptoceridae	Nectopsyche			1,421			7
Arthropoda	Insecta	Tricoptera	Leptoceridae	Oecetis		826	1,030	7.5	9.2	6
Arthropoda	Insecta	Tricoptera	Leptoceridae	Triaenodes		845	1,640	8.1	8.6	6
Arthropoda	Insecta	Tricoptera	Limnephilidae			245	2,725			7
Arthropoda	Insecta	Tricoptera	Limnephilidae	Anabolia			873			7
Arthropoda	Insecta	Tricoptera	Limnephilidae	Limnephilus		240	2,407			7

Dhul	01	0	F !	C	C !	Conductivi	ty (µS cm⁻¹)	р	н	Co
Phylum	Class	Order	Family	Genus	Species	Min	Max	Min	Max	Source
Arthropoda	Insecta	Tricoptera	Molannidae	Molanna	flavicornis	911	3,808			7
Arthropoda	Insecta	Tricoptera	Phryganeidae			150	15,000			1,7
Arthropoda	Insecta	Tricoptera	Phryganeidae	Fabria		910	1,640	7.3	9.4	6
Arthropoda	Insecta	Tricoptera	Polycentropodidae			363	15,000			1,7
Arthropoda	Insecta	Tricoptera	Polycentropodidae	Cernotina		540	1,542	7.6	8.8	6,7
Arthropoda	Malacostraca	Amphipoda				313	46,875			5
Arthropoda	Malacostraca	Amphipoda	Ceinidae			100	69,100	4.9	12.9	2
Arthropoda	Malacostraca	Amphipoda	Gammaridae			500	15,000			1
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus		118	4,214		8.0	6,7
Arthropoda	Malacostraca	Amphipoda	Perthiidae			200	7,600	5.4	9.0	2
Arthropoda	Malacostraca	Amphipoda	Talitridae			500	15,000			1
Arthropoda	Malacostraca	Amphipoda	Talitridae	Hyalella		98	6,543	7.1	10.0	6,7
Arthropoda	Malacostraca	Amphipoda	Talitridae	Hyalella	azteca	254	4,098			7
Arthropoda	Malacostraca	Decapoda	Cambaridae	Cambarus		313	3,906			5
Arthropoda	Malacostraca	Decapoda	Palaemonidae			200	34,100	6.1	8.8	2
Arthropoda	Malacostraca	Decapoda	Parastacidae			100	29,200	5.9	8.8	2
Arthropoda	Ostracoda					101	6,150			7
Bryozoa	Phylactolaemata	Plumatellida	Plumatellidae	Plumatella		313	1,563			5
Cnidaria	Hydrozoa	Hydroida	Hydridae	Hydra		313	1,875			5
Mollusca	Bivalvia	Pelecypoda	Sphaeriidae			162	3,125			5,7
Mollusca	Bivalvia	Pelecypoda	Sphaeriidae	Pisidium	casertanum		185			7
Mollusca	Bivalvia	Pelecypoda	Sphaeriidae	Pisidium	nitidum	168	2,594			7
Mollusca	Bivalvia	Pelecypoda	Sphaeriidae	Sphaerium	lacustre	217	1,608			7
Mollusca	Bivalvia	Pelecypoda	Unionidae	Anodonta		313	469			5
Mollusca	Gastropoda					313	15,625			5
Mollusca	Gastropoda	Limnophila	Lymnaeidae			119	15,000			1,7
Mollusca	Gastropoda	Limnophila	Lymnaeidae	Lymnaea		196	3,658			7
Mollusca	Gastropoda	Limnophila	Lymnaeidae	Lymnaea	caparata	510	1,618			7
Mollusca	Gastropoda	Limnophila	Lymnaeidae	Lymnaea	elodes	57	4,214			7
Mollusca	Gastropoda	Limnophila	Lymnaeidae	Lymnaea	reflexa	324	1,416			7
Mollusca	Gastropoda	Limnophila	Lymnaeidae	Lymnaea	stagnalis	767	1,985			7

[The minimum and maximum values represent all data types (that is, values reported as minimum, maximum, mean, median, or single occurrence). μ S cm⁻¹, microsiemens per centimeter]

Dhulum	Class	Order	Family	Come	Creation	Conductivi	ty (µS cm⁻¹)	р	Н	C
Phylum	Class	Order	Family	Genus	Species	Min	Max	Min	Мах	Source
Mollusca	Gastropoda	Limnophila	Lymnaidae			540	1,579	7.9	9.4	6
Mollusca	Gastropoda	Limnophila	Physidae			500	15,000	7.1	10.0	1,6,7
Mollusca	Gastropoda	Limnophila	Physidae	Aplexa	hypnorum	188	3,480			7
Mollusca	Gastropoda	Limnophila	Physidae	Physa		119	286			7
Mollusca	Gastropoda	Limnophila	Physidae	Physa	gyrina	351	3,880			7
Mollusca	Gastropoda	Limnophila	Physidae	Physa	jennessi	98	5,266			7
Mollusca	Gastropoda	Limnophila	Planorbidae			105	15,000	7.1	10.0	1,6,7
Mollusca	Gastropoda	Limnophila	Planorbidae	Armiger	crista	57	4,250			7
Mollusca	Gastropoda	Limnophila	Planorbidae	Gyralus		168	2,407			7
Mollusca	Gastropoda	Limnophila	Planorbidae	Gyralus	parvus	85	4,378			7
Mollusca	Gastropoda	Limnophila	Planorbidae	Gyraulus	circumstriatus	57	4,650			7
Mollusca	Gastropoda	Limnophila	Planorbidae	Helisoma	anceps	334	1,264			7
Mollusca	Gastropoda	Limnophila	Planorbidae	Helisoma	trivolvis	98	3,456			7
Mollusca	Gastropoda	Limnophila	Planorbidae	Planorbula	campestris	220	261			7
Mollusca	Gastropoda	Limnophila	Planorbidae	Promenetus	exacuous	98	4,340			7
Mollusca	Gastropoda	Limnophila	Planorbidae	Promenetus	umbilicatellus	69	3,680			7
Mollusca	Gastropoda	Mesogastropoda	Valvatidae	Valvata	lewesi	122	1,985			7
Nematoda						313	156,250			1,5
Nemato- morpha	Gordioida	Gordea	Gordiidae	Gordius		313	1,094			5
Platyhel- minthes	Turbellaria	Tricladida	Planariidae	Planaria		313	469			5

¹Source: 1, Johnson, 1990; 2, Kay and others, 2001; 3, Lancaster and Scudder, 1987; 4, McCarraher, 1970; 5, Rawson and Moore, 1944; 6, Tangen, unpublished; 7, USGS, unpublished b.

76 Database of Relations Between Salinity and Aquatic Biota: Applications to Bowdoin National Wildlife Refuge, Mont.

References

- Johnson, K.M., 1990, Aquatic vegetation, salinity, aquatic invertebrates, and duck brood use at Bowdoin National Wildlife Refuge: Bozeman, Montana State University, master's thesis.
- Kay, W.R., Halse, S.A., Scanlon, M.D., and Smith, M.J., 2001, Distribution and environmental tolerances of aquatic macroinvertebrate families in the agricultural zone of southwestern Australia: Journal of the North American Benthological Society, v. 20, p. 182–199.
- Lancaster, J, and Scudder, G.G.E., 1987, Aquatic Coleoptera and Hemiptera in some Canadian saline lakes—patterns in community structure: Canadian Journal of Zoology, v. 65, p. 1383–1389.
- McCarraher, D.B., 1970, Some ecological relations of fairy shrimps in alkaline habitats of Nebraska: American Midland Naturalist, v. 84, p. 59–68.

Rawson, D.S., and Moore, J.E., 1944, The saline lakes of Saskatchewan: Canadian Journal of Research, v. 22, p. 141-201.

Publishing support provided by: Helena and Lafayette Publishing Service Centers

For more information concerning this publication, contact: Director, Northern Prairie Wildlife Research Center U.S. Geological Survey 8711 37th Street Southeast Jamestown, North Dakota 58401 (701) 253-5500

Or visit the Northern Prairie Wildlife Research Center Web site at: http://www.npwrc.usgs.gov/

