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ABSTRACT

DESIGN OF INFRASOUND-DETECTION SYSTEM
VIA ADAPTIVE LMSTDE ALGORITHM

Camille S. Khalaf
01d Dominion University
Director: John W. Stoughton

A proposed solution to an aviation safety problem is based on pas-
sive detection of turbu]ént weather phenomena through their infrasonic
emission. This thesis describes a system design that is adequate for
detection and bearing evaluation. of infrasounds. An array of four sen-
sors, with the appropriate hardware, is used for the detection part.
Bearing evaluation is based on estimafes of time delays between sensor
outputs. The generalized cross correlation (GCC), as the conventional
time-delay estimation (TDE) method, is first reviewed. An adaptive TUE
approach, using the least mean square (LMS) algorithm, is then discuss-
ed. A comparison between the two techniques is made and the advantages
of the adaptive approach are listed. The behavior of the GCC, as a Roth
processor, is examined for the anticipated signals. It is shown that
the Roth processor has the desired effect of sharpening the peak of the
correlation function. It is also shown that the LMSTDE technique is an
equivalent implementation of the Roth processor in the time domain. A
LMSTDE lead-Tag model, with a variable stability coefficient and a con-
vergence criterion, is designed. This model is employed in an automatic
scheme developed for the sensor'array. The software and hardware system

parameters are derived and determined. The effectiveness of the system

is illustrated through simulation and field testing.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Current research programs have lead to significant advances in
ground-based and airborne equipment for providing information relative
to severe turbulent weather. However, most of these programs are still
in their experimental stages and very few are operational. There con-
tinues to be a serious aviation safetj problem associated with aircraft
operations in the vicinity of severe storms.

In 1981, general aviation aircraft numbered more than 200,000 and
flew more than 40 million hours [1]. General aviation operations
accounted for 662 fatal accidents from all causes, with 1,265 fatalities
(FAA, 1981). Informal accident cause/factor statistics from the Nation-
al Transportation Safety Board for 1981 indicate that weather caused, or
was a factor, in 40 percent (289 cases) of the U. S. general aviation
accidents. Earlier statistics indicated that turbulence is the largest
single cause of weather-related air carrier accidents in the U. S. From
1962 to 1974, turbulence was either a cause of or a contributing factor
in 189 of 450 weather-related cases [2].
| Tne two types of turbulence usually encountered are clear-air tur-
bulence (CAT) and thunderstorm-related turbulence. CAT, a problem for
all aircraft, cannot be seen because it usually has no cloud signature.

It may develop in a standing wave caused by air moving over mountainous



terrain, and is frequently associated with shear-induced Kelvin-
Helmholtz atmospheric waves occurring in a statistically stable atmos-
phere [3]. Accidents caused by CAT are not as serious as the ones
related to turbulence associated with thunderstorms. A CAT accident may4
result in discomfort, injuries, aircraft damage, and/or unscheduled
landing. Thunderstorms and other convective clouds are critically
important sources of Tow=altitude turbulence and wind variability. Many
produce strong downdrafts that transport air downward, which then
spreads out rapidly over the ground. This mechanism, if encountered
during take off or landing of aircraft, may result in serious if not
fatal accidents.

One of the pressing aviation safety problems is that of providing
the pilot with information needed to avoid turbulence hazards which
exceed the design capabilities of the airplane. A proposed solution to
this problem through passive detection of turbulence is presented in the

next section.

1.2 Turbulence Detection

The primary technique for detecting turbulence and storm cells is
Doppler radar. This technique requires the presence of reflective
particles such as precipitation or dust for meterological applications.
Doppler radar proved ineffective in cases of CAT or developing storm
cells due to the absence of reflective particles in these phenomena.
The proposed technique consists of passive detection of large-scale
patches of turbulence in the Earth's atmosphere through infrasonic

emissions. The infrasonic technique offers the advantages of being (1)



passive, (2) inexpensive, and (3) inherently more sensitive to atmos-
pheric disturbances than electromagnetic or optical techniques. The
assumed utilization of the infrasonic technology is illustrated in Fig-'
ure 1.1. Infrasonic emissions from the patch of turbulence are detected
at two stations, each containing an array of four sensors. By means of
real-time signal processing, the direction of the turbulent source,
based on time delays between sensors, is determined at each station.

The turbulence is then located by triangulation between the two sta-
tions. This information is relayed from a control center to a flight
services advisory, and from there to the pilots of approaching aircraft;
A serijes of such stations would provide early warning along the length
of domestic air traffic routes.

It is informative at this point to mention that the first step
toward realization of the infrasonic technique was the development of a
unified acquisition system for acoustic data [4] by Dr. Allan J.
Zuckerwar and Mr. Harlan K. Holmes at NASA Langley Research Center.
This system served an important role in understanding the detection
problem during the early stage of this research.

The delay-to-angle conversion needed in this passive approach is
illustrated in Figure 1.2. If T4 js the time delay between the
arrival of the infrasonic signal at two spatially separated sensors,

then the direction of the turbulent source is given by

(1.1)
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Delay-to-angle conversion.

Figure 1.2.



where V 1is the sound velocity (1080 ft/sec at 0°C), and £ is the
distance betweén the two sensors. For a given delay, the solution of
equation (1.1) can be interpreted in two ways as shown in the figure.
The signal associated with the false direction is usually referred to as
the "ghost" signal. The presence of the ghost-signal requires a minimum
of three sensors in the array to uniquely determine the source direc-

tion,

1.3 Research Objectives
The infrasonic technique, proposed to provide pilots with an early
warning of turbulence, was described in the previous section. The three

aspects that are essential to its success are the fo]]owing:

1. emission and propagation of infrasounds from turbulent weather
phenomena;

2. detection of infrasounds and bearing evaluation of their
sources at every station;

3. Tocating the sources by triangulation between stations via a

communication network that is also responsible for transferring
the information to pilots.

The first aspect is out of the designer's control and is based on the
theoretical predictions of infrasonic emission and propagation. The
third aspect constitutes the commercial phase of the program once the
performance of the individual stations proves satisfactory.

The goal of tnis research is the overall system design that is
adequate fbr jmplementing the second aspect of the infrasonic technique.

In this context, the system should function as an infrasonic detector,



time-delay estimator, and delay-to-angle converter. The detection part
involves the sensor array and corresponding hardware blocks while the
delay-to-angle conversion is accomplished by a simple software routine.
The main design issue is that of an appropriate signal processing tech-
nique for time-delay estimation. The GCC method and the LMS parametric
technique will both be reviewed. More specifically, the GCC method
using a Roth weighting function, and the adaptive implementation of the
LMS technique, will be examined. Design decisions, regarding the TDE
technique as well as the hardware system, will then be made according to
the anticipated Signal characteristics.

In Chapter 2, the theory behind ‘TDE techniques is reviewed. Based
on this theory and the anticipated infrasounds, the system design is
presented in Chapter 3. Chapter 4 evaluates the system through simu-
lation of the basic TDE algorithm response and discussion of the system
performance in the actual field. Conclusions and future research are

presented in Chapter 5.



CHAPTER 2
THEORY

2.1 Introduction

The problem identified in chapter one is a fundamental passive
sonar signal processing problem in which delays between the times of
arrival of the pertinent acoustic waves at four sensors are to be esti-
mated. This chapter will discuss the theory behind TDE techniques.
Section two reviews the conventional generalized cross correlation
approach (GCC) while section three reviews the Roth processor specifi-
cally. Uf particular interest is a parametric approach through Widrow's
adaptive filter. The filter structure is reviewed in section four while
its application to TDE is presented and thoroughly investigated in the
fifth section. The chapter is concluded in section six by presenting
the advantages of the adaptive least mean squared time delay estimation

(LMSTDE) method.

2.2 Generalized Cross Correlation Approach
The GCC approach to time delay estimation has been discussed by
many investigators. Well known references include papers written by
Knapp and Carter [5], and Hassab and Boucher [6]. This section only
reviews this approach through Figure 2.1. x;(t) and x,(t) are sam-
pled at two spatially separated sensors and then fed to a basic cross

correlator. The basic cross correlator, as discussed by Papoulis [7],
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computes the cross correlation function, Rxlxz(T)’ between x;(t) and
X (t) Dy means of the inverse Fourier transform of their cross power
spectrum, lexz(f). Then the delay estimate is simply the abscissa
value at which the cross correlation function peaks. In order to im-
prove the accuracy of the delay estimate, a linear filter, w(t), is
convolved with the output of the cross correlator. A peak detéctor
routine is then used to determine the abscissa value of the peak in the
filtered correlation function. In practice, a frequency weighting W(f)
= F [w(t)], where F[+] denotes the Fourier transform of [+ ], which is
equivalent to w(t), is applied to the cross power spectrum prior to
taking the inverse Fourier transform. This frequency weighting replaces
the linear filter so that all computations, except for the peak detector
routine, are done in the frequency domain. A discussion of this
weighting, after mathematically modeling the system, is presented next.
A signal emanating from a remote source and monitored in the pres-

ence of noise at two spatially separated sensors can be mathematically

modeled as
x1(t) = S1(t) + m(t) (2.1a)
Xo(t) = aSp(t + Td) +m2(t) (2.1b)

where S (t), m (t) and m2(t) are real, zero-mean, jointly stationary

random processes, T4 denotes time delay and « an attenuation factor.

Signal §;(t) s assumed to be uncorrelated with my(t) and my(t).
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The cross correlation between x;(t) and x,(t) is related to the
cross power spectral density function, GX « (f), by the Fourier trans-
1%2 -

form relationship

jenfr
= f) eI df :
X1X2(T) f.m GX1X2( ) y (2 2)

In practice, only an estimate G; < (f) of (2.2) can be obtained from
1%2

finite observations of x;(t) and x2(t). Consequently, the output of

the basic cross correlator, when no weighting is used, is:

: - 6 (f) 3FTT g :
Rxlxz(r) {m x1x2( ) e d (2.3)
It is informative at this point to examine the shape of the cross
correlation function RX « (t), so that the necessity of using a
1X2
weighting function can be justified. An expression for R (t) can

X1X2
be obtained from (2.1), using the expectation operator E[+], as

-

Ry, x, (T) = EDx1 (1) xa (7] = @ Rg g (T=Tg) + Ry, (F)  (2.4)
The Fourier transform of (2.4) gives the cross power spectrum

-jZIrde
f) = ab. . (f + £) . 2.5
GX1X2( ) = o SlSl( ) e Gm1mz( ) (2.5)
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If m(t) and my(t) are uncorrelated, G (f) = 0, and since
112 .
multiplication in one domain is a convolution in the transformed domain,

it follows from (2.5) that

R (t) = aR (t) =& §(t-t

X1 X2 19 (2.6)

"
‘ . ) -j2nf‘rd
where ®» denotes convolution and 6(r—rd) = F-1 Le ]. Une
interpretation of (2.6) is that the delta function has been spread or
“smeared” by the Fourier transform of the signal spectrum. If S;(t)
is a white noise source, then its autocorrelation function is a delta
function and no spreading takes place. However, for most practical
applications this is not the case and spreading acts to broaden the peak
of the cross correlation.

To minimize the spreading effect, many weighting functions have
been proposed in the literature (see Table 2.1) to operate on the cross
power spectrum given in (2.5). With a general weighting, Wg(f), the

estimate of the generalized cross correlation becomes

(1) = [ W) e (f) T

df (2.7)
X1 X2 X1X2

Wg(f) should be chosen to ensure a large sharp peak in Ri < (t) rather
1X2

than a broad one in order to obtain a good time-delay resolution.

2.3 Roth Processor

The weighting functions found in the literature are listed in Table
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2.1, where the notation y(f) has been used for the coherence function

which is defined as

(f) "
Y12 =
lexl(f) zexz(f)

The selection of Wg(f) .to optimize certain performance criteria has
been studied by several investigators (see, for example [8]). The pur-
pose of considering the Roth processor is that it is equivalent to the
time domain weighting involved in the adaptive LMSTDE approach. This
equivalence will be shown in section five and will be helpful in gaining
insight to the adaptive method.

The weighting proposed by Roth [9] is

1

%1%, ()

NR(f) =

Substituting for Wg(f) 1in (2.7) yields

Ry

© G, (f) .
O E’il_i‘z___ edanfr 4¢ (2.8)

Xlxl(f)

Equation (2.8) estimates the impulse response of the optimum linear

(Wiener-Hopf) filter [10]

6,  (f
H(f) = Sux D

lexl(f)
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Table 2.1. MWeighting Functions

Processor Name We ight , Reference
Cross Correlation 1 81, [71
Roth Processor . _t (91
- (f)
1 l
SCOT [10]
B x () By, x, (F)
2 !
PHAT (10]
lexl X2 (f) I
. 1 '
Eckart Filter ; 0 (5]
G f) G
My My m, M,
Y
ML3 | 12(6)]? [5]

16, (D 0L-hy (A2

1 snoothed coherence transform
2Phase transform

3Maximum 1ikelihood
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which "best" approximates the mapping of x;(t) to x,(t). If m(t) 2
0, then lexl(f) = Gslsl(f) + Gmlml(f), and equation (2.6) becomes for

the Roth processor

R (t) =8(x-1)) »
d w0
X1 X2 Gslsl(f) + Gmlml(f)

From (2.9) we can conclude that only when Gm 0 (f) 1is negligible or
1

when it equals any constant times Gslsl(f), the spreading does not
occur and Rxlxz(r) becomes a delta function. However, as can be seen
from the integral part in (2.9), the Roth processor has the desirable
effect of suppressing those frequency regions where qnlml(f) is large
and lexz(f) is more likely to be in error.

The generalized cross correlation approach suffers regardless of
which weighting function is used, from two basic facts. First, it
re]ies‘on a sequence of fast Fourier transform (FFT) computations that
tends to be time consuming. Second, as seen in Table 2.1, it requires a
priori knowledge of the signal and noise statistics to implement the
specific weighting. In passive detection problems, this information is
unknown and if it were to be estimated, it would increase the complexity
of the process and the time involved. The next section presents the
adaptive LMSTDE algorithm, which is equivalent to the Roth processor,

and is able to overcome both difficulties found in the generalized cross

correlation method.



16

2.4 Adaptive Filters

This section will review the basic structure of adaptive filters
discussed by Widrow [11], while section 2.5 presents the application of
the filter in TDE problems.

A signal filtering approach using an adaptive filter is in some
sense a self-designing (really self-optimizing) process. The adaptive
filter described here bases its own "design” (its internal adjustment
settings) upon estimated or measured statistical characteristics of the
input and output signals. The statistics are not measured explicitly;
rather, the filter design is accomplished in a single process by a re-
cursive LMS algorithm that automatically updates the system coefficients
with the arrival of each set of data samples. Figure 2.2 illustrates
schematically the adaptive filter used in this case as a linear combina-
torial system. The filter consists of a set of variable weights (filter
coefficients) whose input are the sampled input signals, a summer to add
the weighted signals, and an algorithm to adjust the weights automatic-
ally. The impulse response of such a discrete system is completely
controlled by the weight settings. The adaptation process automatically
seeks an optimal filter impulse response by adjusting the weights using
gradient techniques to minimize the mean-square-error function.

"The analysis of the adaptive filter can be developed by assuming
that the input signals are statistically stationary random processes.

Let the nth set of input signals be a vector X(n) of length N,

K'(n) = [ (n) x(n) ... xy(n)]



17

s *WelSAS |eLJa03ReuLquOd Jedul] antydepy °Z°2 @4nbid
(u)p
asuodsad
paJ4Lsag
(WA - (u)p = ()3 N
40443 2 - (u) X
. €
e i Acv .x
(W)X (u) M= (WA
feubts anding
. ()X
I Acvﬂx
(u)m (u)x
saybLapm s|eubts

anduL pa|dues



18

where XT denotes the transpose of X. Let the set of weights, at the

nth time, be designated by the vector wT(n) = [wy(n) wy(n) ... wN(n)].

N
The nth output signal is y(n) =& wi(n) Xi(n)‘ This can be written
i=1
in matrix form as
T T ’
y(n) =W (n) X(n) = X (n) W(n). (2.10)

’

Denoting the desired response by d(n), the error at the nth time is
T
e(n) = d(n) - y(n) = d(n) - W (n) X(n). (2.11)

The square of the error is

T T

e2(n) = @(n) - 2d(n) X (n) W(n) + W (n) X(n) X'(n) W(n). (2.12)

The expected value of €2(n) is

T

T
dx (

E [e2(n)] =@ (n) - 2 V,, W(n) + W (n) V,, W(n). (2.13)
where (+) denotes the mean value of (+), or E[+]. The vector Vix 18

the cross covariance petween d(n) and x{(n) and is defined as

d
Vgx = ELd(n) X(n)] = € [d(n) xa(n) (2.14)
i
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and VXX denotes the auto-covariance matrix of X(n)

Xy (n) xp(n)  xy(n) xz{n)... 7
. T _Ixa(n) x1(n)  x2(n) x2(n) ..
Vg = E [X(n) X'(n)] =E | (2.15)
i XN(n) XN(n)

It may be observed from (2.13) that for stationary input signals, the
mean-square ekror is a second-order function of the weights. Thus, the
mean-square-error function may be viewed, as suggested by Widrow [11],
as a "performance surface" for the adaptive process that has a unique
stationary point (minimum) which can be sought using gradient tech-
niques.

The gradient at any point on the performance surface can be obtain-
ed by differentiating the mean-square-error function (2.13) with respect

to the weights. The gradient is

v{e2(n)] = -2 Vg, + 2V, W(n) (2.18)

The "optimal" weight vector, WLMS’ that yields the least-mean-square

error, is found where the gradient is zero. Accordingly,

or W (2.17)
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where [+ ]-1 denotes the inverse of [«]. Equation (2.17) is the Wiener-
Hopf equation in matrix form [12]. Solving (2.17) for the optimum
weight vector (the minimum point on the performance surface) can present
serious computational problems. However, it will be shown that the
adaptation process tries to find an exact or an approximate solution to
the Wiener-Hopf equation by using_the IMS algorithm with less computa-
tional complexity. :

When using the LMS algorithm, changes in the weight vector are made

along the direction of the estimated gradient vector. Accordingly,
W(n+l) = W(n) + K ¥ [e2 (n)] (2.18)
where

W(n) A weight vector before adaptation

W(n+l) 4 weight vector after adaptation

KS A scalar constant controlling the rate of convergence and
stability (Ks < 0)

V'[Ez(n)]g estimate of gradient of E[e2] = €2 with respect to W,

with W = W(n)

One method for obtaining the estimated gradient of the mean-square-error
function is to take the gradient of a single time sample of the squared

error. That is,
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V2 ()] =V [£2(n)] = 2e(n) V[e(n)] (2.19)
From equation (2.11),

vle(n)] =7 [d(n) - W (n) X(n)] = - X(n)
Thus,
v[e2(n)] = - 2 €(n) X(n) (2.20)

It can be shown that the gradient estimate of (2.20) is unbiased, so

that
£V [22(n)]=7 [22(n)]
Substituting (2.20) in (2.18) yields
W(n+l) = W(n) - 2 Ks e(n) X(n) . (2.21)

and the next weight vector is obtéined by adding to the present weight
vector the input vector scaled by the value of the error. This is the
LMS algorithm.

Next, the expected value E[W(n)] of the weight vector after a
large number of iterations will be shown to converge to the Wiener solu-
tion given by (2.17). For this purpose, assume that the time between
successive iterations of the algorithm is sufficiently long so that the

input vectors X(n) and X(n+l) are uncorrelated. Taking the expected



22

value of both sides of (2.21) we obtain a difference equation in the

expected value of the weight vector:

ECN(n+1)] = ECW(n)T - 2 K E { X(n) [d(n) - X"(n) W(n)]}

(2.22)

[I+2 KS Vxxj E[W(n)] - 2 KS de

where I s an identity matrix. With an initial weight vector W(0),

n+l iterations of (2.22) yield

+1 | i
ELW(n+1)] = [1+2 K, vXX]” W(0) - 2 K [1+2 KV, 7' Vg (2.23)

([ -1

i=0
Equation (2.23) can be put in diagonal form by using the normal-form

expansion of the matrix Vxx’ That is,
= -1
Vxx =" AQ

where the diagonal matrix of eigenvalues is A, and the square matrix
of eigenvectors is the modal matrix Q. Equation (2.23) may now be

expressed as

ECW(n+1) = [1+2 K, Q-1AQ1™™ W(0) - 2 K, 3 2 aAQ)’ v,
1=

n+l [1+2 KSA]iQ V,, -(2.24)

0

=]

= Q-1[1+2 K AT QW(0) - 2 Ko Q-

.i
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Consider the diagonal matrix [I+2 KSA]. As long as its diagonal terms
are all of a magnitude less than unity,

gim [1+ 2 kA" 5 0

n +

and the first term of (2.24) vanishes as the number of iterations in-

creases. The summation factor in the second term of (2.24) becomes

where the formula for the sum of a geometric series has been used. That
is,

P12k A) = 1 -

0 1-(142 KA) 2 KA

Thus, in the limit, equation (2.24) becomes

: = g-1a-1 = -1
nllmm E[W(n+1)] = Q-tA-* Q de VXx de

which is the Wiener-Hopf solution in (2.17).
Convergence of E[W(n+1l)] to (2.17) is obtained if and only if the
diagonal terms of [I+2 KSA] all have magnitudes less than unity, and

since all eigenvalues in A are positive (the auto-covariance matrix,
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Vxx’ is positive definite), the bounds on Ks are given by

-1
|1+2stm|<1 or  — <K <0

An
where Am is the maximum eigenvalue of Vxx' The convergence condition

can be related to the total input power as follows:

= 27 = 3
Ag € trace [Vxx] 111 E[xij Total input power.

-1

Therefore, < Ks < Q.

E[x3]

Hn &=

i=1

For a slow, precise adaptation KS is usually chosen such that

> K|
E[x2]

W M=
.__I

i

It is believed that the assumption of independent successive input
vectors used for the convergence proof is overly restrictive. Griffiths
[13] has shown that adaptation using highly correlated successive sam-
ples converges to the Wiener solution, but leads to higher steady-state
mean-square error. Thus, we can conclude that for short-term stationary

signals, with the feedback estimate, Kg s being bounded by (2.25), the
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weight vector, after a large number of iterations, is expected to con-
verge to the Weiner solution that best maps the input x(n) to the

desired response d(n).

2.5 Adaptive LMSTDE Approach
The LMS adaptive filter deséribed in the previous section has

been widely applied in situations where the statistics of the inputs are
either unknown or partia{ly unknown. Some applications include noise
cancelling [14], line enhancing [14], prediction [11], spectrum analysis
[13], and adaptive array processing [15]. A recent application of the
filter is time delay estimation by F. Reed, P. Feintuch and N. Bershad
[16]. This application is demonstrated in Figure 2.3, where the adap-
tive filter has a slightly different structure. The filter to be con-
sidered here has only two inputs: a primary input x(n) and a second-
ary input (desired response) d(n). The primary input is fed to a tap-
ped delay line to generate the adaptive filter input signals. In this

case, the input vector at the nth iteration becomes

X" (n)

1 (n) xg(n) .o xn(n)]

x(n) x(n-1) ... x{(n=N+1)]

(for a filter of length N)

and the weights are updated with the arrival of each new data sample

x(n).
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Let x;(t) and y,(t), in Figure 2.3, be given as in equation
(2.1) with the same assumptions. Let us consider the discrete time

version of (1) for the following analysis. That is,
x1(n) = S1(n) + m(n)

~and x2(n) = S2(n) + m2(n) =a Si(n-D) + m2(n)

where D s a positive integer less than N, representing the discrete
time delay between S;(n) and S,(n).

The adaptive filter inputs are then given by

x(n) = x1(n) = S1(n) + mi(n) (2.26a)
and d(n) = x2(n) = a S1(n-D) + m2(n) (2.26b)

The adaptive filter, with inputs given by (2.26), can be thought of as a
system attempting to insert a delay equal to the propagation delay be-
tween the two sensors in the primary filter input, x(n), aligning the
signal component in time prior to subtraction to produce the error sig-
nal. Hence, one weight of the filter corresponding to the correct

deTay would be unity and all other weights zero. In practice, due to
the fact that the filter must interpolate between its discrete taps to
provide delays that are noninteger multiples of the sample time, the

weights converge to a shape that is peaked at the correct delay.
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Therefore, determination of the delay, as in the GCC method, requires
estimation of the peak of the adaptive filter weight vector.

To examine the shape of the weight vector, let us consider the
frequency domain window corresponding to the 1east-mean—§quare set of

Y ; = | .
weights, wLMS (VXX) Vy o That is,

ips(f) = FlHy ()] =

For d(n) and x(n) given by (2.26), this becomes

(2.27)

65151( My

Converting back to time domain and using the convolution theorem, the

kth weight at the nth iteration is

i
n
i
o
—
1
[}
ny
=
-+
<
e
-]
-
1
—
[ e |
Q
[P
(V2]
—
N
iy

Wy s (K)

[
-
—
—

: ® () .
eIy g 5% ; edanfhys  (2.28)

where 0< K< N-1. Equation (2.28) is to be compared with equation

(2.9), where W __(K) 1is a discrete time version of R (t) obtained

LMS X1X2
using the Roth processor. It is important at this point to note that
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equations (2.27) and (2.28) do not depend on szmz(f)‘ Therefore, as
suggested by Ahmed and Carter [17], it is desirable in this adaptive
approach to have the signal with lower S/N ratio as the secondary 1nhut

to the filter. From equation (2.27) we can see that when

Gmlml(f) =0 (2.29a)
or, Gmlml(f) = const. x Gslsl(f) (2.29b)
we have W yo(f) =8 e-JznfD, where B is a real constant. In this

case, equation (2.28) becomes

-jZ‘T\’fD]

Wyys(K) =8 x F-1 {e (2.30)

Let us examine equation (2.30) for two types of input signals.

First, consider the case when the input signals are broad-band, i.e.

f f

-3¢ f< 2, where f, denotes the sampling rate. Evaluating (2.30)

2 2
for this type of signal yields

f .
T - s/2 . .
wLMS(K) =8 f e-JZNfD X e‘]zandf =B f e"JZ'TfD X eJZﬁdef
~ ~fsr2

8 sinc {w[K-D]1} (2.31)

]
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sin(e)
()

vector has the shape of a sinc function peaking with amplitude equal to

where sinc (¢) = and 0< K < N-1. In this case the weight

one when K-D =0 or K =D. The first zero crossing of (2.31) happens

for

n(k-D) =2t nm => K=Dz=%1
Hence, the main lobe of the sinc function is only two resolutions wide,
simulating a delta function. However, as in the Roth processor, when

the condition (2.29) on G (f) 1is not met, the main lobe of the sinc
1

mym
function will be spread outlby convolving with the integral part of
(2.28).

A second relevant case is one in which the input signals are band-
1imited in frequency. Evaluating equation (2.30) for band-limited sig-
nals leads to a slightly different form of the weight function as dis-

cussed by Ahmed and Carter [17]. Consider an ideal band-limited signal

as follows
G # 0 f < <
$,S (w) or wek |w|w;
G (w) =0 s elsewhere

35

where the conversion to the radian frequency, w, was made for the ease

of analysis only. For this type of signal, equation (2.30) becomes
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L} . . (01 .
WLMS(K) =B f : e‘J“’D erls do = 2 B f e-!'-.]u.)(l(-D)dm
= 48 wb sinc [wb(K-D)] cos [wC(K-D)] (2.32)
where wy = wj -wo and w, = w]+wo

The peak in the weight function still occurs at the correct delay, that
is, for K-D = 0 or when K=D, but the main lobe is spread out. That
can be seen by examining the first zero crossing of equation (2.32).

The first zero in the sinc function occurs for

mb(K-D)=t1r+ K=__ +D

while the first zero in the cosine function occurs for

w (K-d) =t T » K=Z_ +0D
¢ 2

Since ch > s the first zero in the cosine function occurs sooner

than in the sinc and yields a main Tobe width of 2 x L =T s for
2mC W

band-1imited input signals, the spreading in the peak of the weight

function is inversely proportional to the band width. For a white input

signal, w_ = T and the main lobe width is two resolutions as pointed

2
out earlier,
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Other issues that should be considered in this approach include
interpolation, dynamic behavior of the filter, and the filter length.
The time delay obtained from the estimated discrete weight function,
wLMS(K)’ is an integer multiple of the sampling period whi