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Preface 

This report presents a computer program for estimating prediction uncertainty that is caused 
by error propagation during raster processing. The performance of this computer program has 
been tested in raster-processing models using environmental data; however, future applications of 
the program could reveal errors that were not detected in the test simulations. Users are requested 
to notify the U.S. Geological Survey (USGS) if errors are found in the report or in the computer 
program. Correspondence regarding the report should be sent to:

U.S. Geological Survey
Colorado Water Science Center
Mail Stop 415, Denver Federal Center
Lakewood, CO 80225

Although this program has been used by the USGS, no warranty, expressed or implied, 
is made by the USGS or the United States Government as to the accuracy and functioning of 
the program and related program material. Nor shall the fact of distribution constitute any such 
warranty, and no responsibility is assumed by the USGS in connection therewith.

The computer program documented in this report is available through the World Wide Web 
at the address: 

http://co.water.usgs.gov/projects/REPtool/





Abstract

The U.S. Geological Survey Raster Error Propagation Tool (REPTool) is a custom tool for use with the Environmental 
System Research Institute (ESRI) ArcGIS Desktop application to estimate error propagation and prediction uncertainty in raster 
processing operations and geospatial modeling. REPTool is designed to introduce concepts of error and uncertainty in geospatial 
data and modeling and provide users of ArcGIS Desktop a geoprocessing tool and methodology to consider how error affects 
geospatial model output. Similar to other geoprocessing tools available in ArcGIS Desktop, REPTool can be run from a dialog 
window, from the ArcMap command line, or from a Python script.

REPTool consists of public-domain, Python-based packages that implement Latin Hypercube Sampling within a probabi-
listic framework to track error propagation in geospatial models and quantitatively estimate the uncertainty of the model output. 
Users may specify error for each input raster or model coefficient represented in the geospatial model. The error for the input 
rasters may be specified as either spatially invariant or spatially variable across the spatial domain. Users may specify model 
output as a distribution of uncertainty for each raster cell. REPTool uses the Relative Variance Contribution method to quantify 
the relative error contribution from the two primary components in the geospatial model—errors in the model input data and 
coefficients of the model variables.

REPTool is appropriate for many types of geospatial processing operations, modeling applications, and related research 
questions, including applications that consider spatially invariant or spatially variable error in geospatial data as follows.

A. Analyses of error propagation, uncertainty, and sensitivity to understand and estimate:

•	 How error in geospatial model input propagate through Map Algebra expressions.

•	 The magnitude of spatially variable uncertainty of geospatial model predictions from error introduced as model input. 

•	 The relations between spatially variable uncertainty of geospatial model predictions and error introduced from individual 
model inputs.

B. Given uncertainty in geospatial model predictions:
•	 Evaluate the range of probable predictions from geospatial models to environmental standards or regulatory limits. 

•	 Determine the type and location of data needed to improve model prediction confidence. 

•	 Assist best management strategies and decisionmaking under finite resources. 
This report presents the theory and implementation of Latin Hypercube Sampling within the probabilistic framework for 

uncertainty analysis, capabilities and limitations of REPTool, detailed explanation of how to use REPTool, and developer-level 
documentation about Python-package architecture in REPTool. Additionally, example applications of REPTool are presented 
and illustrate that spatially variable prediction uncertainty of geospatial models can be quantified and used to reduce prediction 
uncertainty in future iterations of geospatial models. 

Estimating Prediction Uncertainty from Geographical 
Information System Raster Processing: A User’s Manual for 
the Raster Error Propagation Tool (REPTool)

By Jason J. Gurdak, Sharon L. Qi, and Michael L. Geisler
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Introduction 

Error that is inherent to geospatial raster data can propagate through geospatial models that are used in geographic 
information systems (GIS) for many natural science and social science applications. The error propagation can result in 
substantial and spatially variable prediction uncertainty in model results. Consequently, prediction uncertainty has important 
implications for the use and interpretation of geospatial model results by scientists, environmental regulators, resource 
managers, elected officials, and the general public. 

The propagation of input error from raster data and resulting prediction uncertainty of geospatial models, however, are 
rarely quantified or reported. Heuvelink (1999, p. 207) poses the question: “But exactly how large are the errors in the results of 
a spatial modeling operation, given the errors in the input to the operation?” Many GIS users may be aware of error propagation 
during geospatial modeling and question the confidence, or conversely, uncertainty, in the results of the operations but in 
practice rarely address or quantify this problem because of the lack of a universally available tool or methodology. As noted 
by Krivoruchko and Gotway (2005, p. 74), “GIS users need easily accessible tools for quantifying errors and assessing their 
impacts on resulting maps derived from geographical layers.”

The ubiquitous use of raster data, the relative lack of awareness of error propagation by some GIS users, and the lack of 
available tools to address the inherent error propagation in geospatial models and resulting prediction uncertainty have prompted 
the following important questions that need to be addressed by scientists and other users of geospatial models. What function 
does the propagation of error from raster data have on prediction uncertainty of geospatial models? Can prediction uncertainty 
be quantified in geospatial models? Can prediction uncertainty be minimized in future geospatial models? Addressing these 
types of priority questions and a better understanding of the causes and effects of error propagation and uncertainty in model 
results are needed to establish the utility of data and models as decision support tools, to direct efforts toward improving data 
and models, and to identify alternative resource management strategies using the knowledge that model results from decision 
support tools are uncertain (Brown and Heuvelink, 2005). 

To address these priority questions, the U.S. Geological Survey (USGS) Center of Excellence for Geospatial Information 
Science (CEGIS) supported development of the computer program called Raster Error Propagation Tool (REPTool). REPTool 
uses a probabilistic framework to identify the propagation of input error from raster data used during geospatial modeling and to 
quantify the prediction uncertainty that is associated with the geospatial model output. REPTool is a general error-propagation 
tool appropriate for many natural science and social science applications that use raster data and geospatial modeling. 

Purpose and Scope

The purpose of this report is to describe the theory, implementation, structure, and operation of REPTool to estimate error 
propagation and prediction uncertainty during raster processing in a GIS. The report also includes examples of REPTool in 
geospatial modeling applications, which demonstrate that spatially variable prediction uncertainty of geospatial models can be 
quantified and an approach to reduce prediction uncertainty in future model runs using REPTool. 

Overview of Raster Error Propagation Tool (REPTool)

 The Raster Error Propagation Tool (REPTool) is a public domain, Python-based geoprocessing tool (computer program) 
that is designed for use with the Environmental System Research Institute (ESRI) ArcGIS Desktop application (ESRI; Redlands, 
Calif.) and may be accessed using a graphical-user interface (GUI). REPTool uses Latin Hypercube Sampling (LHS) (McKay 
and others, 1979) within a probabilistic framework to track error propagation from user-specified input raster data and a geo-
spatial model to quantitatively estimate the prediction uncertainty of model output (fig. 1). The system overview of REPTool 
includes the input rasters, geospatial model, and model output (fig. 1). A user-specified error (spatially invariant or spatially vari-
able error) for each input raster value is represented in the geospatial model as a user-specified distribution (Normal, Lognormal, 
or Uniform). Any coefficient used in the geospatial model may also have a user-specified error and the same distribution type as 
the input rasters. The LHS is used to efficiently propagate the error through each operator of the geospatial model and estimate 
the error propagation through to the final model output (fig. 1). REPTool enables the user to estimate a distribution of prediction 
uncertainty for each output raster cell (fig. 1). REPTool uses the Relative Variance Contribution (RVC) approach (van Horssen 
and others, 2002) to quantify the relative error contribution from the inherent errors in the model input data and coefficients of 
the model variables.
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Figure 1.  System overview of Raster Error Propagation Tool (REPTool).

Getting Started

The following sections outline the basic information for obtaining, installing, and executing REPTool. Detailed information 
on using REPTool is provided in the section “REPTool User’s Guide.” Users that are unfamiliar with the topics of error 
propagation and uncertainty in geospatial operation and models will find additional background information in Brown and 
Heuvelink (2005), Foody and Atkinson (2002), Heuvelink (1998), Konstantin and Gotway (2005), and Zhang and Goodchild 
(2002).

System Requirements

•	 ArcGIS Desktop version 9.2 (ESRI; Redlands, Calif.) installed on a computer with Microsoft Windows operating system. 
ArcGIS is a suite of GIS software products produced by Environmental System Research Institute (ESRI; Redlands, 
Calif.) that allows users to create, edit, visualize, analyze, and output geographically referenced data. ArcGIS Desktop is 
used as a framework for REPTool because of its widespread availability and use among natural, social, and geographic-
information scientists. The information in this report is presented under the assumption that the user has a working 
knowledge of the ArcMap, ArcToolbox, and Spatial Analyst extension and Map Algebra (Tomlin, 1990) concepts within 
ArcGIS Desktop. 

•	 A Spatial Analyst license for ArcGIS Desktop version 9.2. ArcGIS Spatial Analyst is a set of tools for raster- and vector-
based spatial modeling and analysis. 

•	 Python version 2.4. Python is a dynamic, object-oriented programming language that has an open-source license. Python 
is not installed with REPTool and must be downloaded (www.python.org/download/) and installed independently from 
REPTool. 

http://www.python.org/download/
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Figure 2.  Selection of the “Add Toolbox” option from the 
Arc Toolbox window.

Installation and Execution of REPTool

The Raster Error Propagation Tool (REPTool) is a public domain, Python-based geoprocessing tool that may be down-
loaded and used within the ArcToolbox environment of ArcGIS Desktop (Environment System Research Institute, 2006; Red-
lands, Calif.). REPTool is available as a zipped file on the World Wide Web at http://co.water.usgs.gov/projects/REPtool/ and 
http://arcscripts.esri.com/. The REPTool_v_1_0.zip file contains the REPTool source code, user interface, User’s Manual, and 
other supporting documentation.

Once REPTool_v_1_0.zip is downloaded, it can be unzipped in any user-specified directory; however, because ArcGIS 
Desktop does not allow for spaces in pathnames for some types of processing, the file must be unzipped in a directory that does 
not have spaces in the path. The unzipped REPTool_v_1_0 directory contains the REPTool.tbx file and the “src” and “Docs” 
directories. The “src” directory contains all the necessary Python packages to run REPTool. The “Docs” directory contains sup-
port files for the REPTool interface and a file of this User’s Manual. 

After the files are unzipped into the directory REPTool_v_1_0, the toolbox can be added to an ArcMap session by right 
clicking within the Arc Toolbox window and selecting the “Add Toolbox” option (fig. 2). 

In the Add Toolbox window (fig. 3), browse to the REPTool_v_1_0 directory, select REPTool.tbx, and click “Open” to add 
REPTool to the Arc Toolbox. 

After the toolbox is added to the Arc Toolbox, one additional step is required by the user prior to running REPTool. The 
user right-clicks on the REPTool icon in the Arc Toolbox and selects “Properties” (fig. 4). 

In the REPTool Properties window, select the Source tab, and in the Script File window browse to the …\REPTool_v_1_0\
src\main\ directory and select the main.py file (fig. 5). Click “Open” to accept the main.py as the Script File and click “OK” in 
the REPTool Properties to close that window. This step is important because it links the REPTool dialog window (GUI) with the 
Python source code that runs REPTool. 

http://co.water.usgs.gov/projects/REPtool/
http://arcscripts.esri.com/
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Figure 4.  The Properties option for REPTool is 
selected from the Arc Toolbox window. 

Figure 3.  The REPTool.tbx is selected from the REPTool_v_1_0 folder. 
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Program Capabilities and Characteristics

REPTool is a general error-propagation tool that quantifies uncertainty about model results by propagating user-specified 
error and is appropriate for geospatial operations, modeling applications, and research questions. REPTool has the following 
capabilities. 

•	 REPTool can be integrated into any geospatial operation or model in an ArcGIS within the Map Algebra framework 
using raster data that are an estimate about the error(s) associated with those raster data. 

•	 REPTool addresses error propagation for local operations in GIS [see “Glossary” for definition of local operation]. A 
local operation refers to those processes that produce an output value at single location (cell) that is dependent on the 
input-data value at that same location. 

•	 REPTool integrates raster-based geospatial operations and modeling. Therefore, REPTool inherently includes all the 
capabilities and advantages of using raster data compared to vector data within a GIS. These capabilities and advantages 
are listed by Buckey (2008) and include the following. 

◦◦ The geographic location of each raster cell is implied by its position in the cell matrix and, thus, only the origin point 
coordinates are stored in the matrix. 

◦◦ Analysis of raster data is usually easier and quicker to perform than analysis of vector data. 

◦◦ Each cell in a raster data set stores one attribute, which makes raster data well suited for mathematical modeling and 
quantitative analysis. 

◦◦ Raster data facilitate and integrate discrete and continuous data. 

Figure 5.  Select main.py as the Script File in the Source Tab of the 
REPTool Properties window. 
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•	 REPTool allows users to represent spatially invariant and spatially variable error that may be associated with input raster 
data used in a geospatial operation or model. The areal distribution of the spatially variable error must be provided by the 
user as a raster data set for input into REPTool. 

•	 In addition to the results of the model equation, REPTool produces spatially variable raster maps of prediction uncer-
tainty that are associated with the results. 

•	 REPTool uses a probabilistic framework, which provides a number of advantages for error propagation and uncertainty 
analysis in geospatial models and includes the following. 

◦◦ REPTool uses LHS, which is a stratified Monte Carlo method and results in greater confidence in the sample distribu-
tion, fewer model simulations, and faster computation times than simple random Monte Carlo methods, which are nec-
essary for application in GIS. Additional details of LHS and the advantages over Monte Carlo methods are described 
in the section “Raster Processing, Error, and Uncertainty.” 

◦◦ REPTool enables users to represent normal, lognormal, or uniform error distributions for raster values and coefficients 
in a Map Algebra framework of the geospatial model. 

◦◦ The probabilistic frameworks of REPTool offers users a number of applications, as first outlined by Krivoruchko and 
Gotway (2005), including:

▫▫ Error propagation and uncertainty analysis to describe how the inherent error in rasters may affect the uncertainty of 
geospatial-model output. 

▫▫ Quantitative-risk analysis to describe the probability of an event occurring and the likely consequences should it 
occur.

▫▫ Decisionmaking and resource-allocation analysis to evaluate “what if” scenarios and sensitivity assessments that 
may help the user in making the most informed decision. 

Program Limitations

Although REPTool is a flexible and user-friendly program for estimating error propagation in geospatial models, the fol-
lowing list gives limitations of REPTool that should be considered by the user. 

•	 There are some limitations and disadvantages of using raster data rather than vector data within a geospatial-model 
framework. REPTool is designed for application with raster data and therefore inherently includes all the limitations and 
disadvantages of using raster data rather than vector data within a geospatial-model framework. These limitations and 
disadvantages are listed by Buckey (2008) and include the following. 

◦◦ The raster cell size determines the resolution at which the data are represented, and some data may not be represented 
at the original resolution when converted to raster form. 

◦◦ Depending on the cell resolution, it may be difficult to represent detailed or spatially dense linear features in raster 
form. 

◦◦ The processing of raster attribute data may be challenging or cumbersome if large amounts of data are required in the 
geospatial model. 

◦◦ Although an advantage in most applications, raster data inherently represent only one attribute, which may be a 
limitation in some applications. 

◦◦ Because many spatial data are in vector form, the data must undergo a vector-to-raster conversion prior to being 
used in REPTool. In addition to increased processing requirements, a vector-to-raster conversion may introduce data 
integrity and error concerns. 

•	 REPTool does not quantify the error that may be associated with the input raster data. The user of REPTool must specify 
the error associated with the input raster data and model coefficients. Previous research has focused on approaches for 
quantifying the six standard error components of GIS data, which are attribute accuracy, positional accuracy, lineage, 
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logical consistency, completeness, and temporal accuracy (Heuvelink, 1998). Although the user is responsible for assign-
ing the appropriate error for input raster data, REPTool may be most useful for analyzing the propagation of attribute 
accuracy because this error component is most important for raster data. The other five standard error components 
(positional accuracy, lineage, logical consistency, completeness, and temporal accuracy) are more important for vector 
data (Heuvelink, 1998). Some considerations for quantifying error of input raster data are provided in “REPTool User’s 
Guide.” 

•	 The LHS error-propagation framework that is implemented in REPTool follows the assumption originally outlined by 
McKay and others (1979) that input raster data, model coefficients, and corresponding error are statistically independent 
unless explicitly defined by the user in the REPTool model equation. Therefore, the current version of REPTool samples 
the distribution of the input rasters, model coefficients, and error as if they are statistically independent. The user should 
be aware that if correlation structure exists between input raster, model coefficients, and (or) error, the theoretical statisti-
cal properties of the output distribution may not be an accurate representation of the input correlation structure. Addi-
tional details are given in the section “Latin Hypercube Sampling Method.”     

•	 REPTool does not explicitly account for heteroscedasticity or spatial autocorrelation but does enable the user to specify 
input rasters of spatially variable error that may have heteroscedasticity or spatial autocorrelation characteristics.       

•	 REPTool is limited in the number of unique variables and coefficients that may be used in a geospatial model equation. 
REPTool allows for 100 unique variables (var00 to var99) and 100 unique coefficients (c00 to c99) within the geospatial 
model. 

Raster Processing, Error, and Uncertainty 

The scope of raster processing ranges from simple binary operations (that is, raster A–raster B) to complex computational 
models. Often, raster processing is used to derive new geospatial data for either stand-alone applications or for use in more 
complex natural science or social science models. The use of raster processing to derive new raster data from existing rasters 
is one of the most common types of manipulations and most powerful capabilities of GIS (Heuvelink, 1999). The new rasters 
commonly are derived using various operations and functions within the Map Algebra framework. Additionally, rasters are 
particularly useful for quantitative-spatial modeling. The data contained in rasters are frequently the starting point for deriving 
secondary data and input used in models for decisionmaking (Heuvelink and others, 1989). If information about error is not 
recorded in the metadata of the primary or intermediate raster products, then the accuracy of the final product will be uncertain. 

The popularity and far-reaching application of raster processing has created a substantial challenge for scientists and GIS 
practitioners—endemic uncertainty associated with geospatial model predictions because of propagation of inherent error during 
raster processing (Mowrer and Congalton, 2000). More importantly, many GIS practitioners may be aware of error propaga-
tion during raster processing, but in practice rarely address or quantify the error propagation because of the lack of a universally 
available tool or methodology.

This challenge stems from the unavoidable and inherent error associated with geospatial (raster) data in GIS as imperfect 
representations of the real world (Zhang and Goodchild, 2002; Hunsaker and others, 2001; Burrough and McDonnell, 1998). 
The two main types of error in GIS include the source error that exists in geospatial data used as input and the propagation 
of error through operations performed on these data (Heuvelink, 1998). The source error of geospatial data is defined by the 
difference between reality and the representation of reality in the geospatial data and generally is a function of the accuracy 
and precision of the geospatial data (Mowrer and Congalton, 2000; Heuvelink, 1998; Heuvelink and others, 1989). Accuracy 
of geospatial data refers to the closeness of represented measurements or computations to their “true” or accepted values, and 
precision refers to the level of measurement and exactness of descriptions reported in the geospatial data (Gottsegen and others, 
1999). 

The many different sources of error in geospatial data are discussed in detail by Veregin (1999), Burrough and McDonnell 
(1998), Heuvelink (1998, 1999), and Burrough (1986). Heuvelink (1998) lists the six standard-error components of geospatial 
data as attribute accuracy, positional accuracy, lineage, logical consistency, completeness, and temporal accuracy. Although it 
is beyond the scope of this report to describe all sources of error and methods to estimate those errors, a general overview is 
presented in “Theory of Error Propagation and Uncertainty.”    
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Theory of Error Propagation and Uncertainty

The theoretical basis of error propagation and the related computations in REPTool is presented in this section. Although 
recent research efforts have improved quantification methods for many types of source error associated with geospatial data in 
GIS, no generally accepted theory exists for handling error propagation and uncertainty in GIS (Heuvelink, 1998). The error-
propagation theory that is implemented in REPTool and presented in this report largely follows a stochastic error modeling 
framework that is previously described by Heuvelink (1998, 1999) and Heuvelink and others (1989). 

Error propagation occurs because the output from a raster process or geospatial operation is a function of the input raster 
data sets, which have inherent source error that automatically affects the computed results (Heuvelink, 1998). The cause of 
error propagation is generally more complex because source error is not the only type of error that propagates through raster 
processing. Many raster processing applications use simple and complex computational methods (Gurdak and Qi, 2006; Qi and 
Gurdak, 2006; Gurdak, 2008) with coefficients or model structure that are subject to estimation error (van Horssen and others, 
2002). Therefore, the uncertainty of results from raster processing is a function of error propagation from both source error of 
geospatial data and the computational error introduced by the geospatial model.

The result of error propagation is uncertainty in the model output. The uncertainty may create model output that is not 
sufficiently reliable for correct interpretation (Heuvelink, 1998). Moreover, the error-propagation and prediction uncertainty is 
further compounded when the output from one geoprocessing operation or model is used as input to a subsequent geoprocessing 
operation or model (Heuvelink, 1998). Tracking error propagation through various steps of a geoprocessing model may provide 
quantitative estimates of the uncertainty that is associated with the output and thus provide valuable information for those that 
subsequently use or interpret the output. 

Quantitative Error Model
As defined by Heuvelink (1998, 1999), error is the difference between reality and the representation of reality that is 

expressed by the geospatial (raster) data. Error may be the result of human mistakes in measurement, in translating reality into 
geospatial data, or from natural spatiotemporal variation. Following this definition, error, v(x), can be quantified as 		

						      v x a x b x( ) = ( ) − ( ) 						      (1)

where 
v(x)		 is the error, 
a(x)		 is the true value at some location x, and
b(x)		 is the representation of the true value by the geospatial data at location x.

Although b(x) is known exactly because it is the attribute value in the geospatial data, the definition expressed in equation (1) 
assumes that the exact values of a(x), and thus v(x), are unknown. As described previously in this report, error is inherent to geo-
spatial data and thus creates the logical inequality that a(x) ≠ b(x). If a(x) were known exactly, GIS users would simply assign 
b(x) = a(x) in the geospatial data and thus have no error term, v(x), as in equation 1. 

Consequently, the error term, v(x) in equation 1, is never known exactly. However, using a stochastic method, the distribu-
tion of possible v(x) values can be estimated and represented as a random variable V(x) (Note—the capital notation denotes a 
random field or function from a deterministic variable). The stochastic method enables a conceptualization that the uncertainty 
about a(x) (as expressed in the error, v(x)) can be represented as a random mechanism, A(x), even though a(x) has one determin-
istic value in reality (Heuvelink, 1998, 1999). Thus, equation (1) becomes 

						      V x A x b x( ) = ( ) − ( ) 						     (2)

where 
V(x)	 is the random error field (or function) representing the distribution that surrounds the deterministic value of 

v(x), 
A(x)	 is the random field (or function) representing the distribution that surrounds the deterministic value of a(x), 

and 
	 b(x)	 is the representation of the true value by the geospatial data at location x.

Rearranging equation (2) results in the quantitative stochastic error model: 
 
						      A x b x V x( ) = ( ) + ( ) 						     (3)
where 

A(x), b(x), and V(x) are as defined previously in equation (2). 
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The uncertain and variable nature of v(x) at any one location x, which is expressed as the random error field V(x) (eq. 3), 
allows for V(x) to be quantified as a probability distribution. The mean and standard deviation of V(x) are denoted by the 
expected value, or mean value, E[V(x)] = m(x) and standard deviation [(V(x)] = s(x). The m(x) is the systematic error or bias 
and represents how much b(x) differs from A(x), and the s(x) is the nonsystematic error and represents the random component 
of V(x) (Heuvelink, 1998). The m(x) and s(x) may be used to define the cumulative distribution function (CDF) of V(x),Fv(x)
(·), or the probability distribution function of V(x), fv(x)(·). Although it is frequently assumed in error analysis that V(x) follows 
a normal (Gaussian) distribution, it may be more appropriate in some applications for V(x) to follow another distribution type, 
such as a lognormal or uniform distribution (Heuvelink, 1998). The motivation behind the use of the normal distribution for 
V(x) is the central limit theorem, which generally states that the average of a large number of random variables yields a normal 
distribution regardless of the distribution of the individual random variables (Heuvelink, 1998). The use of the lognormal 
distribution for V(x) may be more appropriate in natural-science applications because many variables observed in the natural 
sciences follow a lognormal distribution (Heuvelink, 1998). A uniform distribution may be more appropriate distribution for 
V(x) when only a range for v(x) is estimated (Sanchez and Blower, 1997; Swartzman and Kaluzny, 1987).

Assigning Error

Raster data sets are rarely free of error, v(x), (see eq. 1). However, GIS users face inherent challenges in estimating error 
and assigning V(x) to the quantitative stochastic error model (eq. 3). In practice, the challenge of estimating error often is 
the result of the users, being many steps removed from the producers of raster data sets, and the metadata may inadequately 
document the error sources (Longley and others, 1999). Many methods for estimating raster error are described in the literature, 
including those by Heuvelink (1998, 1999), Krivoruchko and Gotway (2005), Longley and others (1999), Mowrer and 
Congalton (2000), Veregin (1999), and Zhang and Goodchild (2002). 

In general, the random error field, V(x), can be assumed to be spatially invariant or spatially variable on the spatial domain, 
D, of interest. Heuvelink (1999) suggests assumptions of spatially invariant error may be appropriate if observed error at test 
points of D are available and support that assumption. For example, a common type of geospatial data found in many natural-
science applications results from geostatistical interpolation techniques of point observations. The s(x) of the resulting inter-
polated geospatial data may be assumed to be spatially invariant and thus estimated by the root mean squared error (RMSE) 
(Heuvelink, 1999; Veregin, 1999). As an example, the error inherent to the USGS 30-meter digital elevation model (DEM) of 
the conterminous United States (U.S. Geological Survey, 1997) is reported in terms of the RMSE, but the error values likely 
vary spatially depending on the data and methods used to create the DEM (Bishop and others, 2006). Another possible approach 
for assigning spatially invariant error may involve a sensitivity analysis to determine the uncertainty of the model results to 
various user-assumed error percentage values (Helton and Davis, 2003). For example, Emmi and Horton (1995) evaluate the 
sensitivity of property damage and casualty predictions from a seismic risk assuming a 5-percent (increase or decrease) error in 
ground-shaking intensity values, which are input data to the seismic-risk model. The 5-percent error was propagated through the 
seismic-risk model using a stochastic method (Monte Carlo methods, see “Latin Hypercube Sampling Method”) and indicate 
an 11-percent lower to 15-percent greater predicted damage for residential structures than model predictions not including the 
5-percent error in ground-shaking intensity values (Emmi and Horton, 1995). The sensitivity-analysis example by Emmi and 
Horton (1995) illustrates that user-assigned error may be somewhat arbitrary to evaluate the sensitivity of models and “what if” 
scenarios of model predictions. For example, additional user-specified percent-error values of ground-shaking intensity, such as 
10, 15, and 20 percent, could also have been used in the sensitivity-analysis example. 

For some geospatial models, the assumption of spatially invariant error may not be appropriate. Heuvelink (1996, 1999) 
suggests that spatially variable error may be estimated from the spatial variability of the attributes of interest and the mapping 
procedure used to create the raster of interest, such as kriging. For example, observed error at test points of D may indicate 
systematic, rather than random, differences in error values among various regions of D. Observed error at test points of D 
may indicate that the variance of error differs (increases or decreases) with changes (increases or decreases) in magnitude of 
the spatial attribute represented by the raster, which is called heteroscedasticity. Similarly, the systematic differences in error 
values among various regions of D may indicate spatial autocorrelation between spatial attributes and corresponding error 
values (see Heuvelink [1999] for additional details). REPTool does not explicitly account for heteroscedasticity or spatial 
autocorrelation but does enable the user to specify input rasters of spatially variable error that may have heteroscedasticity or 
spatial autocorrelation characteristics.
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Application of Quantitative Error Model and Error Propagation in GIS

The following section describes an application of the quantitative stochastic error model and error-propagation theory to a 
geospatial analysis that was first described by Heuvelink (1996, 1999) and Heuvelink and others (1989). REPTool assumes that 
the geospatial analysis is composed of only local GIS operators. REPTool does not track the movement of error through other 
types of GIS operations (such as neighborhood, flow-directed, or zonal operations). 

Local operations in GIS produce an output value at a location, P(x), that depends on the input, Ai (x), at that same location, 
x, where each Ai (x) location is therefore treated as spatially independent and is expressed as:
 
					     P x g A x A x A x A xn( ) = ( ) ( ) ( ) ( )⎡⎣ ⎤⎦1 2 3, , ,..., 				    (4)
 
where 

P(x)	 is the output of the geospatial operation or model, g(x), in GIS at location x, 
g(x)	 is the geospatial operation or model at location x, and 

     Ai(x)	 is the value at location x in each input raster, where i differentiates the inputs. 
 
In practice, g(x) is typically applied to D using a Map Algebra expression. Under the assumption of local operations, g(x) 
is computed independently for all cells in D, and any spatial contiguity in the output values of P(x) is the result of spatial 
contiguity of input attribute values from Ai(x) (Heuvelink and others, 1989). The g(x) may take the form of a predefined local 
operation from the Spatial Analyst extension in ArcGIS Desktop or user-specified empirically derived operations or models. 
Uncertainty of empirically derived GIS models have been evaluated recently in a number of applications, including modeling of 
groundwater vulnerability to nonpoint-source contamination (Gurdak and Qi, 2006; Gurdak and others, 2007; Gurdak, 2008); 
pedotransfer functions to predict soil hydraulic properties (Finke and others, 1996); regional vegetation models (van Horssen 
and others, 2002); landscape classifications (Canters and others, 2002); wildfire behavior modeling (Bachman and Allgöwer, 
2002); and general modeling of environmental variables (Heuvelink and others, 2007) [Note—P(x) frequently is used as input to 
complex models executed outside a GIS, which is illustrated with an example application of REPTool herein]. 

Empirically derived GIS models commonly contain model coefficients. For example, in a logistic-regression model, g(x) 
may take the form of: 
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where 
g(x)	 is the geospatial operation (logistic-regression model in this example) at location x, 

	    e	 is the base of the natural logarithm,
	   bi	 are the coefficients of the logistic-regression model, and
    Ai(x)	 are the values at location x from each input raster of the logistic-regression model. 

The bi are rarely known exactly for all locations, x, and therefore the values of bi are often estimated in most modeling 
approaches (Heuvelink, 1998). For example, Gurdak and Qi (2006) and Gurdak and others (2007) use the Wald 95-percent 
confidence limit on the logistic regression model coefficients, bi, as an estimate of error for error-propagation analysis of a 
logistic regression-based groundwater vulnerability model of the High Plains aquifer. Therefore, error-propagation analysis 
may consider error that is associated with the raster data, Ai(x), and error that is associated with the model coefficients, bi, in the 
geospatial operation, g(x).  

Consequently, the general objective of evaluating error propagation is to estimate the error in the output of the geospatial 
operation or model, P(x), given that the operation, g(x), and input rasters, Ai(x), contain error (Heuvelink, 1999). Similar to 
V(x) and A(x), the output raster, P(x), can be considered as a random field (or function) with a distribution that is described 
by a mean, z(x), and standard deviation, t(x). Therefore, the standard deviation, t(x), or other measures of spread such as 
variance,t2(x), provide meaningful information about the effects of error propagation on the magnitude of uncertainty of P(x) 
(Brown and Heuvelink, 2005). In order to represent the uncertainty of P(x) as a statistical distribution function, the domain of 
the probability model must be specified under a set of assumptions that are described in detail by Brown and Heuvelink (2005). 
The integrals that define the domain of probability, typically expressed as a CDF, are not amenable to a closed-form evaluation 
and solution (Helton and Davis, 2003). Therefore, approximation procedures, such as Monte Carlo methods, are frequently used 
to estimate z(x) and t(x) from the CDF of uncertainty surrounding P(x) (Heuvelink, 1999). Although simple random Monte 
Carlo sampling method is frequently used in error propagation analyses, the Latin Hypercube Sampling method provides a 
number of advantages that are more appropriately suited for application in GIS and are described next. 
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Latin Hypercube Sampling Method

Monte Carlo methods have been successfully applied to error-propagation and uncertainty studies of GIS models (Brown 
and Heuvelink, 2007; Bishop and others, 2006; van Horssen and others, 2002; Sklar and Hunsaker, 2001; Phillips and Marks, 
1996; Fisher, 1991). Latin Hypercube Sampling (LHS) (McKay and others, 1979) is a stratified sampling variation on the 
simple random Monte Carlo sampling method and provides an efficient method for GIS-based error-propagation and uncertainty 
analyses (Gurdak and Qi, 2006; Gurdak and others, 2007; Gurdak, 2008). To illustrate the efficiency and advantages of LHS 
over simple random Monte Carlo sampling in GIS applications, an explanation of the Monte Carlo method is first presented.

The simple random Monte Carlo sampling method involves generating repeated and random sample observations from a 
probability distribution of an uncertain variable. The sample observations often are used to characterize the uncertainty sur-
rounding that variable and may be used as input to a similarly repeated number of computer simulations that result in a large 
number of possible output realizations. Specific to the “Theory of Error Propagation and Uncertainty” described previ-
ously, Monte Carlo methods may be used to calculate the result of g(x) for a large number of times, N, with input values for bi 
and Ai(x) that are randomly sampled from their respective distribution functions. The result of the large N is a random sample 
of P(x) from which statistic parameters, such as z(x), t(x), and t2(x) can be estimated. The N must be sufficiently large that the 
random sample, or set of realizations, accurately represent P(x). The accuracy of estimates from simple random Monte Carlo 
sampling is inversely related to the square root of the number of realizations and, as noted by Heuvelink and Burrough (1993), 
indicates that the accuracy of simple random Monte Carlo sampling slowly improves as N increases. For example, to double the 
accuracy of a particular set of simple random Monte Carlo realizations, four times as many N are needed (Brown and Heuvelink, 
2005). Heuvelink (1998) reports that many practical applications of simple random Monte Carlo sampling use N = 50 to 2,000. 
Therefore, the main disadvantage of simple random Monte Carlo sampling is the computational time that is required to calculate 
g(x) at N times for each bi and Ai(x) when the number of raster cells in typical applications of Ai(x) may exceed many tens to 
hundreds of thousands, depending on the cell size and resolution of the data. Although some studies have implemented simple 
random Monte Carlo sampling in GIS models using N = 10 or 20, Goodchild and others (1992) note that using small N values, 
such as 10 or 20, during simple random Monte Carlo sampling is not sufficient to obtain accurate estimates of z(x). 

In contrast, LHS implements a type of stratified Monte Carlo method rather than a purely random sample with traditional 
Monte Carlo methods. Using a general notation scheme (Swiler and others, 2004; Wyss and Jorgensen, 1998), LHS selects n 
different values from each of uncertain k variables X1, X2, …,Xk in the following steps:

(i)	 The range of each variable [bi and Ai(x) in the specific case of equations 4 and 5] that will be sampled is 
divided into n nonoverlapping intervals on the basis of equal probability (that is, such that the probability of 
falling in any of the intervals is 1/n). 

(ii)	 One value is randomly sampled (selected) from each interval with respect to the CDF in the interval.
(iii)	 The n values that are randomly sampled from each interval are randomly paired (without replacement) for 

each combination of Xk. For example, the n values obtained for X1 are paired in a random manner (that is, 
equally likely combinations) with the n values of X2. The n pairs for X1 and X2 are combined in a random 
manner with the n values for X3, and so on, until n k-tuplets are created (Swiler and Wyss, 2004; Wyss and 
Jorgensen, 1998). 

(iv)	 The result of this random pairing is n combinations of k variables, which represent an (n · k) matrix of input 
data where the ith row contains specific values of each of the k input variables to be used on the ith model 
simulation. 

The main advantage of LHS over simple random Monte Carlo sampling is that the stratified sampling of the n nonoverlapping 
intervals in LHS requires fewer samples to accurately describe the CDF of interest. The stratified sampling technique of LHS 
produces a distribution of samples that more closely corresponds to the input probability distribution (McKay and others, 1979). 

To illustrate the difference in sampling techniques between LHS and simple random Monte Carlo methods, consider an 
example of LHS where n = 10 and input variables X1 and X2 are both normally distributed (Wyss and Jorgensen, 1998). The CDF 
for X1 and X2 are described by m values equal to 0 and 5 and s values equal to 1 and 1, respectively. The CDFs and correspond-
ing 10 nonoverlapping intervals, each defined by quantiles having an equal 0.1 probability, for X1 and X2 are shown in figure 6.

Once the nonoverlapping intervals of equal probability are identified for each variable (fig. 6), the next LHS step is 
the random sampling of specific values from the actual distribution domain (x-axis, fig. 6) for X1 and X2 in each of the n=10 
respective intervals. In practice, however, the random sampling is done relative to the CDF (y-axis, fig. 6) rather than the actual 
distribution values (x-axis, fig. 6) because the nonoverlapping intervals are defined by the 10 quantiles of equal probability that 
are expressed as cumulative-probability units from 0 to 1 (y-axis, fig. 6). For this example, the randomly selected cumulative 
probability, p, from each of the 10 nonoverlapping intervals is listed in table 1. The actual distribution values, x, (x-axis, 
fig. 6) are calculated by inverting the CDF (Note—REPTool uses an algorithm defined by Acklam (2004) to invert the normal 
cumulative distributions. The equations defining the inverse cumulative distributions for normal, lognormal, and uniform 
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Figure 6.  As an example of the stratified Latin Hypercube Sampling approach, n=10 nonoverlapping intervals 
having equal probability of 10 percent are shown on cumulative distribution functions (CDF) for (A) X1 as 
intervals a–j, and for (B) X2 as intervals k–t. The mean (m) and standard deviations (s) for each CDF are shown 
in the figure.

Table 1.  Summary of randomly selected values for Latin Hypercube Sampling example.

Interval 
for X1

Cumulative 
probabilities, 
p, within the 

interval

Corresponding 
actual distribution 

values, x

Interval 
for X2

Cumulative 
probabilities, 
p, within the 

interval

Corresponding 
actual distribution 

values, x

a 0.04 –1.9 k 0.09 3.6
b 0.14 –1.1 1 0.19 4.1
c 0.22 –0.7 m 0.26 4.4
d 0.37 –0.4 n 0.35 4.6
e 0.43 –0.3 o 0.46 4.9
f 0.55 0.3 p 0.54 5.1
g 0.64 0.35 q 0.65 5.4
h 0.79 0.65 r 0.71 5.6
i 0.84 1 s 0.88 6.1
j 0.95 1.45 t 0.99 7.1
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distributions are described in Appendix 1 of this report). The corresponding distribution values, x, for each randomly selected 
probability, p, are in table 1 and figure 7. 

Next, the 10 values from X1 are randomly paired (without replacement) with the 10 values from X2 as two dimensional 
input vectors for each realization of the model equations (table 2). Assuming this demonstration example uses the model equa-
tion Y = X1 + X2, then the calculated Y values are summations of the randomly paired 10 values from X1 and X2 (table 2). For 
example, for model simulation number 1, the input vector is the first permutation vector (0.3, 4.4) from randomly paired sets of 
X1 and X2 and the model result, Y, is 4.7 (table 2). The input vectors for the second and subsequent simulations are constructed in 
a similar manner. The sorted model results in table 2 illustrate the distribution of uncertainty surrounding Y given error distribu-
tions of X1 and X2.

It is important to note that the current version of REPTool uses the McKay and others (1979) implementation of LHS that 
independently samples and randomly pairs the uncertain k variables, as demonstrated in table 2. Even though k variables are 
sampled independently and paired randomly, the sample correlation coefficients of the n pairs of variables may not equal zero 
due to sampling fluctuations (Swiler and Wyss, 2004). Furthermore, Iman and Conover (1982) state that if a correlation structure 
exists among the k input variables, but the actual LHS assumes independence among k variables, then the theoretical statistical 

Table 2.  Randomly paired values and model results from the Latin Hypercube 
Sampling example.

Model simulation 
number

X1, randomly 
paired set

X2, randomly 
paired set

Model result, Y 
(Y=X1 + X2)

Rank of model 
result, Y

1 0.3 4.4 4.7 5
2 0.65 5.1 5.75 8
3 –0.4 4.9 4.5 4
4 –1.9 5.6 3.7 2
5 1.45 6.1 7.55 10
6 –0.3 5.4 5.1 6.5
7 –0.7 7.1 6.4 9
8 0.35 3.6 3.95 3
9 –1.1 4.6 3.5 1

10 1 4.1 5.1 6.5

Figure 7.  Randomly selected values using Latin Hypercube Sampling (LHS) for (A) X1 and (B) X2 .
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Figure 8.  Randomly selected values using simple random Monte Carlo sampling for (A) X1 and (B) X2 . 

properties of the P(x) may not adequately describe the input correlation structure. REPTool users may use methods in the 
Geostatistical Analyst extension of ArcGIS Desktop to determine the extent and structure of any spatial correlation between data 
sets. For example, the cross-covariance cloud can be used to detect the extent of spatial correlation between input data sets, and 
the search direction tool can be used to indicate directional structure or asymmetry of the correlation between data sets. 

An example of simple random Monte Carlo sampling (N=10) for X1 and X2 (fig. 8) illustrates that observation samples 
from Monte Carlo sampling typically do not characterize the CDF as well as LHS (fig. 7)—particularly the tails of distribution 
functions. To improve the characterization of the CDF for X1 and X2 using Monte Carlo methods, N must be increased. In 
general, for the same number of samples, LHS produces a more unbiased estimate of the mean and a smaller variance as 
compared to simple random Monte Carlo sampling. The smaller variance from LHS translates into a greater confidence, fewer 
model simulations, and faster computation times necessary for use within ArcGIS (Gurdak and Qi, 2006). This is especially 
beneficial for complex geospatial model simulations because executing enough simulations to properly represent the input 
distribution may be impractical using Monte Carlo methods. Although no absolute rule exists for n in LHS, McKay and others 
(1979) indicate that an n equal to twice the number of uncertain k variables may provide an adequate balance between accuracy 
and computational costs. Similarly, other studies indicate that satisfactory results are produced using n from 1.3 to 3 times the 
number of uncertain k parameters (Iman and Helton, 1988; Manache and Melching, 2004). 

REPTool User’s Guide

Similar to other geoprocessing tools available in ArcGIS Desktop, REPTool can be run from a dialog window (GUI) 
(fig. 9), from the ArcMap command line, or from a Python script. The “REPTool User’s Guide” section describes how to use 
REPTool from a dialog window (GUI). The command-line syntax and scripting usage of REPTool are described in Appendix 
2 of this report and in the REPTool Help page. The main REPTool Help page is accessed by clicking on “Show Help>>” at the 
bottom of the REPTool dialog window (fig. 9) and then by clicking on the “Help” button at the top-right of the expanded dialog 
help. 

The REPTool dialog window (GUI) (fig. 9) consists of a sequence of entry fields that enable the user to specify input and 
output information for the Map Algebra model equation. The required fields include Input rasters, the Distribution type, and the 
Output workspace. All other fields are optional. The Advanced Parameters of REPTool (fig. 9) can be used to input spatially 
variable error and calculate the Relative Variance Contribution (RVC) of components in the model equation. Each user-entry 
field, from the top of the dialog window to the bottom, is described in the subsequent sections of the report. The user is encour-
aged to pay particular attention to the “Model Equation” section of this report because REPTool requires specific syntax for the 
input Map Algebra model equation that is somewhat different than the standard syntax for other ArcGIS Desktop applications, 
such as the Raster Calculator in Spatial Analyst.
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Input Instructions

The following Input Instructions describe each user-entry field (fig. 9) that provides input to REPTool. The input user-
entry fields are used to specify the geospatial model equation, the inputs and outputs to the model equation, and how error is 
represented and propagated through the model equation. 

The hypothetical model equation and input/output information presented in equation 6 are used as an example throughout 
many of the subsequent sections of Input Instructions. Note—equation 6 is a hypothetical equation presented for illustration 
purposes and does not represent a real process.  
 
					     Model Equation=

c c00 00 01 01

02

* var * var

var

( ) ( )+ 				    (6)
 
where  
	 c00	 is hypothetical model coefficient 1, 
	 var00	 is hypothetical raster (model variable) 1, 
	 c01	 is hypothetical model coefficient 2, 
	 var01	 is hypothetical raster (model variable) 2, and 
	 var02	 is hypothetical raster (model variable) 3.

Figure 9.  The dialog window is a graphical user interface 
(GUI) for REPTool. 
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The model variables and coefficients of equation 6 represent the following values:
	 c00	 is 1.158

	 var00	 is depth to groundwater (dtw) (raster file name: dtw_ex)
	 c01	 is –0.010

	 var01	 is percentage of irrigated land (irrpct) (raster file name: irrpct_ex), and 
	 var02	 is percentage of clay in the soil (clpct) (raster file name: clpct_ex).

The model variables and coefficients of equation 6 have the following user-specified spatially invariant error:
	 c00	 is 35 percent
	 var00	 is 10 percent, 
	 c00	 is 5 percent, 
	 var01	 is 20 percent, and 
	 var02	 is 30 percent.

Preparing Rasters for REPTool

Some preparation and preprocessing of the input rasters are required prior to use with REPTool. Although other preparation 
may be required for specific applications of REPTool, the following general preparation guidelines for input rasters ensure 
proper error propagation through the local functions that are being analyzed with REPTool. 

•	 All rasters used as input for analysis in a particular REPTool execution must have the same spatial properties, resolution, 
extent, and projection. 

•	 The cells of the input rasters must be aligned because REPTool works on a cell-by-cell basis for local geoprocessing 
functions. This alignment may be achieved by using one of the raster inputs as a reference and snapping the other raster 
inputs to this raster. The reference raster used as the snap extent can be set in the “Extent” tab of the “Options” item in 
the Spatial Analyst drop-down menu in the ArcMap session (fig. 10).

•	 REPTool allows users to consider spatially variable error that is associated with a raster. Because each cell of a raster 
contains one attribute value, the spatially variable error values must be specified in a raster separate from the correspond-
ing input raster. Rasters of spatially variable error must also have the same spatial properties and alignment as other input 
rasters. 

Figure 10.  The “Options” window selected from the 
Spatial Analyst menu of an ArcMap session.
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Figure 11.  The Input rasters and Input errors (optional) entry fields of 
REPTool. 

Note about Computation Runtimes for REPTool:
Before running REPTool, it is important for the user to evaluate the objectives of the geospatial operation or model and 

the expected computational intensity of REPTool in meeting those objectives. The number of input rasters, the size and resolu-
tion of the rasters, the complexity of the model equation, the number of iterations, and the hardware capabilities (that is, one 
central processing unit [CPU] system compared to multi-CPU systems) of the computer executing REPTool can substantially 
affect the computation times and the magnitude of CPU and memory usage. As a general guideline, execution times double as 
the number of iterations doubles (keeping all other input parameters equal). Development testing of REPTool also indicates that 
each incremental increase in model equation complexity (keeping all other input parameters equal) generally increases execution 
times by approximately 10 percent. As a specific example of computation times, the model equation in the “Example Problem” 
section ran for approximately 4.3 hours on a computer with hardware capabilities including an Intel Core 2 CPU 6600 @2.4 
GHz, 2.39 GHz, and 3.00 GB of RAM. The example model uses four input rasters that each have approximately 7,000 cells at a 
500-m resolution, which is approximately 1,750 square kilometers (676 square miles). The model equation is relatively complex 
and uses 10 iterations for the LHS. Therefore, it is important while evaluating modeling objectives and computational times to 
consider source error for each input raster and the coarsest resolution that adequately describe the modeled variables to balance 
model precision with REPTool execution times. 

Input Rasters and Errors

All input rasters for REPTool must have the same spatial properties and alignment (see section “Preparing Rasters for 
REPTool”). For convenience and ease of referencing inputs in the model equation, the user is encouraged to select input rasters 
using the Input rasters entry field (fig. 11) in the order they appear within the model equation (see section “Model Equation”). 

In the Input errors (optional) entry field (fig. 11), the user can specify spatially invariant error (that is, error that does not 
vary spatially) associated with each input raster. The error values must be entered as a percentage (0 to 100) and be separated 
with commas with no white space in the Input errors (optional) entry field in the same order as the corresponding input rasters 
are entered in Input rasters entry field. The Input errors (optional) entry field should be left blank if spatially variable errors are 
assigned to any of the input rasters in the Advanced Parameters of REPTool (see the “Advanced Parameters” section of this 
report for details). 

The user-specified error percentage values, v(x), that are entered into the Input errors (optional) entry field are used in 
REPTool to define the standard deviation s(x) of A(x) (see equation 3). Therefore, s(x) is defined in REPTool as 

						       x( ) = ( ) ( )v x
b x

100
* 						     (7)

 
 
where 
	 s(x)	 is the standard deviation of A(x),
	 v(x)	 is the user-defined error (eq. 1), and 
	 b(x)	 is the representation of reality (true value) that is expressed by the geospatial data at location x.
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Figure 12.  The Model coefficients? and Specify coefficient file (optional) entry 
fields of REPTool.

It is worth reiterating that REPTool is not designed to explicitly guide or assist the user in identifying, classifying, or quan-
tifying the various types of error that may be associated with the input rasters. Rather, REPTool provides the user a stochastic 
framework to estimate error in the input rasters, to propagate that error through geospatial processing, and to quantify the effects 
of errors on the uncertainty of the geospatial-processing results. Therefore, the user has the responsibility of assigning error 
values, v(x), for input rasters used in REPTool (see “Theory of Error Propagation and Uncertainty”). 

Model Coefficients

After specifying the input rasters and error, the user may specify error information about model coefficients, if applicable 
to the model equation. Not all model equations may have coefficients. The Model coefficients? box (fig. 12) should be checked 
by the user to attribute error to model coefficients during the REPTool error-propagation calculations. The coefficients and 
associated error are input to REPTool from a user-generated text (.txt) file that may be selected from the Specify coefficient file 
(optional) entry field (fig. 12). 

Similar to the input for error values of rasters (see equation 7 and fig. 11), the error in the coefficient text file must be 
expressed as error percentage values. The coefficient text file should have the following general format:

<coefficient value>,<error percentage>:
<coefficient value>,<error percentage>:
<coefficient value>,<error percentage>:
<coefficient value>,<error percentage>

Note that each coefficient and error-percentage value is comma separated with no white space, and there is no colon at the 
end of the last line. The colon is used to separate individual sets of coefficient and error percentage values and is therefore not 
needed after the last set of values. The example coefficient text file for equation 6 contains: 

	 1.158,35:
	 0.010,5

Distribution Type

The user must select the shape of the cumulative distributions for the LHS by using the Distribution type drop-down field 
(fig. 13). The current version of REPTool provides Normal, Lognormal, or Uniform distributions for the LHS. The selected 
distribution shape is applied to the LHS of all uncertain variables and coefficients that are specified in the model equation. 

Model Equation

The model equation is specified directly in the Model equation (optional) entry field or entered as a text file in the Model 
equation text file (optional) (fig. 14) to facilitate input and entering multiple simulations of a complex model equation. The 
example model equation (eq. 6) has been entered in the Model equation entry field of figure 14. REPTool will not run if both 
the Model equation (optional) and Model equation text file (optional) entry fields are left blank. Therefore, the user must either 
specify a model equation manually or by using the text file option. Note—the Model equation text file option must be used 
to input the model equation if REPTool is run from the ArcMap command line. The ArcMap command-line interpreter does 
not accept special characters in model equations, which will cause an error if the model equation is specified using the Model 
equation option. Therefore, it is necessary to input the model equation as a text file when running REPTool from the ArcMap 
command line. 
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It is important to note that the math handler for REPTool requires specific syntax and semantics for coefficients, variables, 
and functions that are expressed in the Model equation and Model equation text file entry fields (fig. 14). Therefore, the user 
is encouraged to spend time becoming familiar with the following section on “How to Write Model Equations in REPTool,” 
which describes in detail the syntax and semantics of writing model equations and naming conventions used in REPTool. 

How to Write Model Equations in REPTool

Model equations in REPTool may have zero or more sign characters ('-') followed by an expression ( <expr> ). An 
expression may include the following: 
	 an open parenthesis character	 ( '(' ),  
	 followed by zero or more sign characters	 ( '-' ), 
	 followed by a left-hand-side operand	 ( <operand> ), 
	 followed by a binary operator	 ( '-', '+', '*', '/', or '%' ), 
	 followed by zero or more sign characters	 ( '-' ), 
	 followed by a right-hand-side operand	 ( <operand> ), and 
	 followed by a closing parenthesis character	 ( ')' ).
The final expression has the general form of:		  
	 <sign(s)> <(> <sign(s)> <operand> <binop><sign(s)> <operand> <)> 
Note—illegal characters are treated as white-space characters.

Because REPTool requires at least two raster inputs, the simplest specific expression that may be entered into the equation 
field is a simple binary operation. Using the syntax required by REPTool, an example of this simple binary operation would be:

						      var var00 01−( ) 						      (8)

where the parentheses around the binary operation are required and the subtraction operator may be any valid operator allowed 
by REPTool syntax. Another simple example may be the combination of two binary operations:

	  				    var var var var00 01 02 03+( ) − +( )( ) 					     (9)

where each binary operation requires a set of parentheses; the two binary operations within the outer parentheses each require a 
set of parentheses. Because the combination of the two inner binary operations is a binary operation, a set of parentheses must 
be used around the whole equation.

Users may build more elaborate expressions using substitution of equivalent subexpressions. For example, the following 
subexpressions may be substituted for any <operand> in an <expr>:

	 <var>		  is a variable,
	 <literal>		  is a literal value,
	 <func>		  is a function, and
	 <expr>	 is another expression

Figure 13.  The Distribution type drop-down field of REPTool.

Figure 14.  The Model equation (optional) and Model equation text file 
(optional) entry fields of REPTool. 
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where a function may be: 
	 a function name defined by REPTool syntax	 ( 'exp', 'log', and so forth),

	 followed by an opening parenthesis character	 ( '(' ),
	 followed by zero or more sign characters preceding each parameter	 ( '-' ),
	 followed by a one or more parameters separated by commas	 ( <param>, ...),
	 followed by a closing parenthesis character	 ( ')' ).

The final lexeme, which is the lowest-level syntactic or semantic unit of a language, has the general form of:
	 'function name'<(> [<param> <comma>] ... <)>; and

an example function may have the specific form of:
	 exp(---10, log(2,5))

Users may build more elaborate functions by using substitution of equivalent subexpressions. For example, the following 
subexpressions may be substituted for any <param> in a <func>:

	 <var>		  is a variable,
	 <literal>		 is a literal value,
	 <func>		  is another function, and
	 <expr>		  is an expression,

where a variable may be:
range: [ var00 to var99 ], 
range: [ c00 to c99 ], or
range: [ a syntax defined constant ( e or pi )].

The following example demonstrates five steps to convert a natural equation into REPTool correct form and is slightly 
more complex than the example provided in equation 6. The example equation for this demonstration is 

				    P
e

dtw irrpct clpct

=

+

+ − + +( ) ( ) ( )⎡

⎣
⎢

⎤

⎦
⎥1 158 0 010 0 013 0 011

1

. . * . * . *

ee
dtw irrpct clpct1 158 0 010 0 013 0 011. . * . * . *+ − + +( ) ( ) ( )⎡

⎣
⎢

⎤

⎦
⎥

			              (10)

 

where
	 P	 is the predicted probability of the model equation,
	 e	 is the base of natural logarithm,
	 dtw	 is depth to groundwater (dtw), 
	 irrpct	 is percentage of irrigated land (irrpct), and
	 clpct	 is percentage of clay in the soil (clpct).

Step 1: Begin full qualification.

Full qualification means that the user must specify the order of the operations completely. To fully qualify equation 10, first 
rename the expression variables to match the syntax and semantics of REPTool following Steps 1 a–c:

a.	 Replace coefficients with c00 to c99 depending on the number of coefficients used in the equation and according to the 
order specified in the coefficient input file (see fig. 12).

b.	 Replace raster file names with var00 to var99, depending on the number of rasters used in the equation and according 
to the order specified in the REPTool dialog window (see fig. 11).

c.	 Replace function names with REPTool names for those functions defined in the equation.

The Steps 1a–c applied to equation 10 result in the following: 
 
				  

P
c c c c

c c
=

+ ( ) + ( ) + ( )⎡⎣ ⎤⎦
+ +
exp *var *var *var

exp

00 01 00 02 01 03 02

1 00 001 00 02 01 03 02*var *var *var( ) + ( ) + ( )⎡⎣ ⎤⎦c c
			               (11)

Step 2: Determine operator precedence.
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Determine operator precedence of the example equation (equation 10) according to how the equation is evaluated 
mathematically. For example, in equation 11 the parenthesis delimiters already surround the coefficient and raster value pairs 
(that is, (c01*var00)). If the parenthesis delimiters were omitted in this equation 11, the operator precedence of a typical 
calculator would evaluate the multiplications first before any of the additions were made just as if the parenthesis delimiters 
were present. However, REPTool does NOT apply operator precedence automatically the way a typical calculator does. 
REPTool requires full qualification of equations and therefore the user must specify the order of operations explicitly and 
completely. 

In equation 11, the set of additions internal to the exp( ) functions have the same precedence so these components do not 
need further specification. Likewise, the single function in the numerator and the simple expression in the denominator (1 + a 
function) require no further specification. However, in an example situation where the exp() function contains a set of additions 
that are divided by another set of additions, the user is required to qualify each of the sets of additions with parenthesis delimit-
ers and then qualify the division with another set of delimiters to produce a REPTool expression.

Step 3: Replace interior components with REPTool syntax and semantic equivalents.

The interior components of the equation must be replaced with REPTool syntax and semantic equivalents. For example, a 
function in REPTool has a REPTool name identifier, such as ‘exp’ for the exponential function (equation 11) and a specific set 
of allowed formats for operations according to the number of parameters the function takes. Specific to equation 11, ‘exp’ takes 
only one parameter and raises ‘exp’ to the power of that parameter. The operational requirements for specifying the parameter 
are as follows:

a.	 In the form: -- exp(param) --
‘exp’ names the function and
-- ( ) --delimiters surround the parameter.

b.	 The parameter can be any one of three possibilities: a variable or literal value, another function, or an expression. All 
three possible versions of a parameter are evaluated before the function is applied. The following are examples of 
allowable forms for the exp() function:

	 exp(25),			
	 exp(var00),
	 exp(log(2.5, 10)), or
	 exp(((c00*var00)+(c01*var00))).

Every parameter in a REPTool function must be replaced in the same fashion with inner functions and expressions that conform 
to the syntax and semantic requirements of REPTool.

In equation 11, the exp() functions contain a literal value and three binary operations connected by addition into an 
expression that must be translated into REPTool form. Therefore, all binary operations must be surrounded by a parenthesis 
pair to be evaluated correctly by the math handler used in REPTool. The coefficients and variable (that is, c##*var##) pairs are 
already formatted. Beginning from left to right, the following consecutive equations (12–14) show how equation 11 is converted 
to binary operations: 
 
 
				    P

c c c c

c
=

+ + +

+ +

( )( ) ( ) ( )( )
(

exp * var * var * var

exp

00 01 00 02 01 03 02
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		              (12)

 
 
				    P

c c c c

c
=

+ + +

+
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1 000 01 00 02 01 03 02+ + +( )( ) ( )( ) ( )( )( )c c c* var * var * var
		              (14)

Notice how each left-hand-binary operation from equation 11 becomes a REPTool expression and the left-hand operand of the 
next binary operation requires conversion.

Step 4: Replace the next operational precedence with REPTool syntax and semantics.
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Figure 15.  The Number of iterations entry field of REPTool. 

The next level of operational precedence must be replaced with REPTool syntax and semantic elements. For example, 
equation 12 now has a REPTool correct function divided by an expression that consists of a literal plus, ‘+’, a REPTool correct 
function. Therefore, the next level of operational precedence for this demonstration example involves translating the expression 
in the denominator into a REPTool correct expression by placing it inside parenthesis delimiters: 
 
 
			   P

c c c c

c
=

+ + +

+

( )( ) ( )( ) ( )( )( )exp * var * var * var

exp

00 01 00 02 01 03 02

1 000 01 00 02 01 03 02+ + +( )( ) ( )( ) ( )( )( )( )c c c* var * var * var
			              (15)

Step 5: Continue replacing successive levels of operational precedence. 

Each successive level of operational precedence must be replaced until a single REPTool correct expression remains 
(eq. 14). Therefore, the long bar in equation 13 must be replaced with a division symbol and the entire expression is surrounded 
by a parenthesis pair: 

    P=(exp((((c00+(c01*var00))+(c02*var01))+(c03*var02)))/(1+exp((((c00+(c01*var00))+(c02*var01))+(c03*var02)))))     (16)

Equation 16 represents the REPTool correct form of equation 10. The user would enter equation 16 into the Model equation 
(optional) or Model equation text file (optional) entry fields of REPTool (fig. 14). 

Number of Iterations

The number of LHS sample iterations, n (see “Latin Hypercube Sampling Method”), allowed in REPTool is 10, 25, 50, 
or 100 and is selected from a drop-down field (fig. 15). It is important to note that REPTool computation times increase as n 
increases. An n value of 10 or 25 may be sufficient to adequately describe most CDFs using LHS. 

Output Percentiles and Workspace

REPTool requires user specifications about output percentiles and workspace (fig. 16). The output percentiles refer to the 
percentiles of the distribution surrounding P(x) for each raster cell (see sections “Application of Quantitative Error Model 
and Error Propagation in GIS” and “Latin Hypercube Sampling Method” for additional details of the distribution of P(x)). 
REPTool allows the following user-specified output percentile values:

1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 99. 
Additionally, the default output from REPTool provides summary statistics on P(x) for each raster cell and includes minimum 
(MIN), maximum (MAX), mean (MEAN), median (MEDIAN), and standard deviation (STDEV) values (see “Description of 
Output Files” for additional details on REPTool output). 

Multiple output percentile values may be entered in the Output percentiles (optional) entry field by the user for any single 
REPTool run to evaluate statistical properties of P(x) and must be separated by a semicolon with no white spaces (fig. 16). For 
example, the user may evaluate the minimum (that is, MIN default output), median (that is, enter ‘50’ as the output percentile 
value), and maximum (that is, MAX default output) values of P(x). Additionally, the user may evaluate various prediction inter-
vals of P(x) uncertainty. For example, the 90-percent prediction interval of P(x) can be evaluated using the 5th and 95th percen-
tile of P(x) by entering ‘5;95’ as the output percentile values (see fig. 16) and then subtracting the 5th percentile values from the 
95th percentile values of the REPTool output file by using the Field Calculator application in ArcMap. 

The user may specify any output workspace directory in the Output workspace entry field of REPTool (fig. 16). Additional 
details about REPTool output are provided in “Description of Output Files.” 
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Advanced Parameters

The advanced functions of REPTool are accessed using the optional Advanced Parameters drop-down field from the dialog 
window (fig. 17). The Advanced Parameters enable the user to evaluate spatially variable error that may be associated with 
input variables of the model equation and to evaluate the relative-error contributions from various components of the model 
equation. The Advanced Parameters may not be applicable for some simple operations, particularly if estimates of spatially 
variable error are not available for input variables. Applications of REPTool to evaluate spatially invariant error will not use the 
Advanced Parameters.

To evaluate the effects of spatially variable error on model output, P(x), using Advanced Parameters, the user must specify 
a separate error raster for each input raster that is specified in the Input rasters entry field (fig. 11). The spatial attributes for 
each error raster are thus estimates of spatially variable error for each corresponding input raster. The error rasters must be 
entered in Input spatially variable error rasters (optional) entry field of REPTool (fig. 17) in the same order as their corre-
sponding input rasters were entered in the Input rasters entry field (fig. 11).

The Advanced Parameters must be used for model equations that consider spatially variable error for some variables and 
spatially invariant error for other variables (fig. 17). Because Advanced Parameters require a separate error raster for each input 
raster (that is, each variable in the model), error rasters must be specified for both spatially invariant and spatially variable cases 
when considering both error types. The spatially invariant error rasters (that is, dtw_err, irrpct_err, and clpct_err in figure 17) 
will simply have a constant value for all error-attribute values, whereas the spatially variant error rasters (that is, nirrpct_err 
in figure 17) will have error-attribute values that vary over the spatial domain that are displayed as a raster and input by the 
user. For example, the error rasters dtw_err, irrpct_err, and clpct_err will each have constant attribute values of 10 percent, 

Figure 16.  The Output percentiles (optional) and Output workspace entry fields of 
REPTool. 

Figure 17.  The Advanced Parameters of REPTool includes the Spatially 
variable error check box, Input spatially variable error rasters (optional) 
entry field, and the Calculate relative variance contribution (RVC) check 
box.
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20 percent, and 30 percent, respectively, as defined in equation 6 and figure 11. However, the hypothetical variable nirrpct has 
spatially variable error that must be assigned by the user as an error raster (nirrpct_err in figure 17) for input to REPTool. The 
user is encouraged to read the “Raster Processing, Error, and Uncertainty” section of this manual in considering the effects of 
spatially variable error on model output and assigning those error values to REPTool Advanced Parameters. 

The relative variance contribution (RVC) analyses are run by checking the Calculate relative variance contribution box in 
the Advanced Parameters of REPTool (fig. 17). The RVC analysis is done on each cell of P(x) and determines the RVC of error 
from the model coefficients and from model variables (input rasters). The RVC calculations in REPTool are based on a method 
originally presented by van Horssen and others (2002) to evaluate spatial interpolation during ordinary block kriging.

Using the RVC approach (van Horssen and others, 2002), the total prediction variance of P(x), expressed as s2[P(x)], is 
equal to the sum of the variance as a result of error in the model coefficients, sc

2[P(x)], and variance as a result of error in model 
variables, sv

2[P(x)]. The general decomposition of the total prediction variance is as follows:

		      2 2 2 2 22P x P x P x Cov P x P xv c v c( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ]{ }= + + * , 		              (17)

where 
	 s2[P(x)]	 is the total prediction variance of P(x),
	 sv

2[P(x)]	 is the variance of P(x) as a result of error in the model variables,
	 sc

2[P(x)]	 is the variance of P(x) as a result of coefficients in the model variables,
and
	 Cov{sv

2[P(x)], sc
2[P(x)]} 	 is the covariance of each pair of sv

2(P(x and sc
2(P(x)) that are formed from the

		  components of the sum. 

The covariance of sv
2[P(x)] and sc

2[P(x)] is assumed in REPTool to be negligible because of independence between components 
in the model equation. Therefore, the relative variance contribution due to the model variables (RVCv) is calculated as follows:
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The relative variance contribution due to model coefficients (RVCc) is calculated as follows:
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If the error from the model variables and coefficients contribute equally to the uncertainty of P(x), the RVCv will equal the RVCc. 
However, values of RVCc greater than RVCv indicate locations of the spatial domain, D, where uncertainty due to model coef-
ficients dominates the total uncertainty of P(x). This result would indicate the need for improved characterization of the model 
in those locations to reduce the total prediction uncertainty of P(x). For example, Gurdak and others (2007) indicated that RVCc 
may be improved by installing additional monitoring wells to better calibrate coefficients for a logistic regression-based ground-
water vulnerability model. RVCc values less than the RVCv values indicate locations of D where P(x) uncertainty due to error in 
model variables dominates the total prediction uncertainty. This result would indicate the need to reduce error in input rasters in 
those locations to reduce the total prediction uncertainty of P(x). 

If the Calculate relative variance contribution box is checked in the Advanced Parameters, the output from REPTool 
includes s2[P(x)], sv

2[P(x)], sc
2[P(x)], RVCv, and RVCc. As stated above, s2[P(x)] is calculated as the variance of the model 

output distribution, P(x), after LHS at each cell in the output raster. During the REPTool calculations of s2[P(x)], the model 
variables, Ai(x), and coefficients, bi(x), (see equation 5) are treated as distributions in the LHS as specified by user input (see 
equation 7). However, during the REPTool calculations of sv

2[P(x)], the model variables are treated as distributions, Ai(x), in the 
LHS, but the bi(x) are treated as the model-coefficient values specified in the model-coefficient input file. Therefore, sv

2[P(x)] 
represents the variance in P(x) that is the result of error introduced only by the model variables. Conversely, during the REPTool 
calculations of sc

2[P(x)], the model coefficients, bi(x), are treated as distributions in the LHS, but the model variables are treated 
as the attribute values, b(x) (see equation 1), in each raster. Therefore, sc

2[P(x)] represents the variance in P(x) that is the result 
of error introduced only by the model coefficients. Assuming independence between the model variables and coefficients, the 
s2[P(x)] should equal sv

2[P(x)] plus sc
2[P(x)] (equation 17). However, discrepancies in this logic have been shown to occur 

because of the nature of random pairing in LHS (Iman and Conover, 1982) (see the “Latin Hypercube Sampling Methods” 
section of this manual) and (or) because all of the variance and covariance components of the model equation may not be 
accounted for, and the assumptions of independence between model variables and coefficients may not be appropriate (Thorsen 
and others, 2001). In spite of this, Thorsen and others (2001) and Gurdak and others (2007) suggest that the RVC approach may 
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still provide an indication of the relative importance of the error introduced from the sum of model variables and the error intro-
duced from the sum of model coefficients on the overall model-prediction uncertainty. Additional details about the RVC in the 
REPTool output are presented in “Description of Output Files.” 

Description of Output Files

The output from REPTool is stored in the REPData directory that is created by REPTool under the user-specified output 
directory entered in the Output workspace entry field (fig. 16). Each run of REPTool will create a subdirectory under the REP-
Data directory that is named with a timestamp generated at the start of the REPTool execution. 

REPTool also creates a log-file directory in C:/temp/logs and files for logging errors, log_003_tool_<timestamp>.txt, where 
timestamp is the actual time stamp of the execution. If no errors are generated during a REPTool execution, the log file will only 
contain the execution start and the end time. The log files may be useful for reporting results and determining errors. 

Under the <output workspace>\REPData\timestamp subdirectory, REPTool creates three subdirectories for each execution: 
temp, data, and results. Although the temp and data subdirectories contain intermediate files that may be useful for some appli-
cations, the results subdirectory contains the final results from the model equation and will be important for all REPTool runs. A 
brief description of temp and data subdirectories is presented next, followed by a detailed description of the results subdirectory. 

Under the temp subdirectory, REPTool generates a tempgrd.shp point shapefile and set of associated files and folders that 
ArcMap generates automatically during raster to point shapefile conversions. The temp subdirectory also contains four text files, 
rawsource.txt, synlex.txt, semlex.txt, and execf.txt, that are generated during Map Algebra processing. The rawsource.txt file 
contains the REPTool-correct version of the model equation that was used by REPTool, which may be useful in troubleshooting 
REPTool execution errors. The other files in the temp subdirectory are not needed for normal operation of REPTool and may be 
ignored for most REPTool applications. 

Under the data subdirectory, REPTool generates a subdirectory for each input raster variable name and associated spatially 
variable error raster files. For example, a model equation that has three input variables and three spatially variable error files will 
generate var00, err00, var01, err01, var02, and err02 subdirectories. Each of these subdirectories will contain a shp subdirec-
tory that stores a point shapefile and associated ArcMap files with the same name as the var or err subdirectory. The point 
shapefiles are created during the previously described raster-to-point conversion by REPTool and contain the values for each 
raster cell. The var subdirectories (that is, var00, var01, var02, and so forth) will also contain two text files that are suffixed with 
the variable name before the .txt extension and prefixed by dist_ or std_dev_, respectively (that is, dist_var00.txt and std_dev_
var00.txt under a var00 subdirectory). These files store distribution and standard-deviation calculation results and serve as input 
files for execution of the model equation. The information stored in the data subdirectories may be ignored by users for most 
REPTool applications. However, some users may find useful information in the distribution and standard deviation intermediate 
files. 

Under the results subdirectory, REPTool generates the results of the model equation, the output percentile calculations, and 
the RVC calculations, which are all stored in the results.shp point shapefile. The points in results.shp represent the center of each 
cell in the input raster data. The attribute list for each point in results.shp includes default outputs and user-specified outputs that 
are based on the Input Instructions used to run REPTool. The default output includes FID, Shape, POINTID, GRID_CODE, 
and summary statistics about P(x) for each raster cell in the model output (fig. 18). The summary statistics for P(x) include mini-
mum (MIN), maximum (MAX), mean (MEAN), median (MEDIAN), and standard deviation (STDEV) values (fig. 18).

The results.shp attribute fields that appear to the right of the STDEV field are dependent on the user-specified input instruc-
tions to REPTool. User-requested output percentiles (see “Output Percentiles and Workspace”) will be named “percX” or 
“percXX” where “X” or “XX” is the value of the output percentile requested (fig. 18). Additional attribute fields in results.shp 
include the RVC fields (VARtot, VARv, VARc, RVCv, and RVCc) (fig. 18). The VARtot field represents s2[P(x)]; VARv field 
represents sv

2[P(x)]; VARc field represents sc
2[P(x)]; RVCv field represents RVCv; and the RVCc field represents RVCc (see 

equations 17–19). The RVC fields are explained in the section “Advanced Parameters.”  
The user may convert any of the results.shp point attributes into a raster using the Features to Raster conversion in the 

Spatial Analyst extension in ArcGIS (fig. 19). Figure 19 illustrates the example conversion of the MEDIAN point attributes to a 
MEDIAN raster. The MEDIAN raster is shown in figure 20. 

Example Problem

 In order to demonstrate the applicability and capabilities of REPTool, a slightly more complex simulation is presented here 
than was used in the “Input Instructions” section. The example problem (equation 20) is based on a logistic regression-based 
groundwater vulnerability model that was originally presented by Gurdak and Qi (2006) and Gurdak and others (2007). 
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Figure 18.  An example output from REPTool that illustrates default values (FID, 
Shape, POINTID, GRID_CODE) and summary statistics [minimum (MIN), maximum 
(MAX), MEAN, MEDIAN, and standard deviation (STDDEV)]. Note — for this example 
the user did not check the Model coefficients? box, specified Output percentile 
(optional) entry values of 5 and 90, and checked the Calculate relative variance 
contribution (RVC) box in the Advanced Parameters of REPTool.

Figure 19.  An example of the Features to Raster conversion in the Spatial 
Analyst extension in ArcGIS using the MEDIAN attribute value from results.
shp.
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Figure 20.  The MEDIAN raster shown in an ArcMap application after conversion 
from results.shp.
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where
	 P	 is the predicted probability of groundwater vulnerability to elevated nitrate concentrations greater than 
		  or equal to 4 milligrams per liter (as N), in units of percentage, 
	 e	 is the base of natural logarithm,
	 dtw	 is depth to groundwater (var00), in meters,
	 nirrpct	 is percentage of nonirrigated land (var01), 
	 irrpct	 is percentage of irrigated agricultural land (var02), 
and
	 clpct	 is percentage of clay in the soil (var03).
The REPTool-correct version of equation 20 that is input as the model equation text file is:
( (exp( ( ( ( ( c00 + (c01*var00) ) + (c02*var01) ) + (c03*var02) ) + (c04*var03) ) ) / ( 1 + exp( ( ( ( ( c00 + (c01*var00) ) + 
(c02*var01) ) + (c03*var02) ) + (c04*var03) ) ) ) )*100 )
The associated model-coefficients file is as follows:
	 1.158,219:
	 –0.010,92:
	 0.013,139:
	 0.011,186:
	 –0.019,179

A normal distribution is used to estimate the error distributions, and the minimum number of iterations (n=10) is used for the 
LHS. Output percentiles of 25, 50, and 75 and the RVC analysis are also specified in the example problem. The input instruc-
tions for the example problem are shown in the REPTool dialog window (fig. 21). 

The results of the example problem indicate spatial variability in the predicted probability of groundwater vulnerability to 
elevated nitrate and in the uncertainty surrounding the vulnerability calculation (fig. 22). The 25th and 75th percentiles of the 
output distribution represent a 50-percent prediction uncertainty surrounding the mean (50th percentile) model result (fig. 22).  
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Figure 21.  Input instructions in the REPTool dialog window used for 
the example problem.
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Figure 22.  The spatial distribution of the probability of detecting nitrate (as N) greater than 4 milligrams per liter 
(mg/L) in recently recharged groundwater from the output distribution for (A) 75th percentile, (B) 50th percentile, and 
(C) 25th percentile.
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A prediction interval may be a more meaningful visualization of the uncertainties surrounding a REPTool model result than 
individual percentiles from the output distribution (fig. 22). A prediction interval may be calculated as the difference between 
any two output percentile values using the Field Calculator application in ArcMap or the Raster Calculator in Spatial Analyst. 
For example, the 50-percent prediction interval of uncertainty surrounding the mean (50th percentile) model result is calculated 
as the difference between the 75th and 25th percentiles (fig. 23). Figure 23A, which is the same map shown in figure 22B, 
indicates a horizontal band of relatively low probability of nitrate greater than 4 mg/L and relatively higher probability north and 
south of the horizontal band. However, the 50-percent prediction interval (fig. 23B) is relatively larger in the horizontal band 
than areas to the north and indicates greater uncertainties in the model results. The information in figure 23A may be useful to 
groundwater managers interested in knowing where to allocate resources for groundwater protection. The information in figure 
23B is equally valuable to resource managers because it provides information about the confidence associated with model results 
(fig. 23A).

The RVC analysis (fig. 24) indicates that the uncertainty in the model result is dominated by error introduced from the 
model coefficients because the RVCc values (fig. 24B) are substantially greater than the RVCv values (fig. 24A). The type of 
information provided by the RVC analysis in this example problem could be used by resource managers and scientists to 
improve the prediction confidence of future versions of the groundwater vulnerability model. The RVCc could be reduced in the 
example problem by installing more monitoring wells to reduce the error attributed to the model coefficients (Gurdak and others, 
2007). Assuming actions were taken that reduced the error contributions from the model coefficients by a factor of 10, the RVC 
from the new REPTool output indicate a substantial reduction in RVCc and corresponding increase in RVCv (fig. 25).  

Most important, the hypothetical reduction in model-coefficient error by a factor of 10 substantially improves the 
50-percent prediction interval surrounding the median model results (fig. 26). Prior to the reduction in model-coefficient error, 
the 50-percent prediction interval was in the range of 20–60 percent (fig. 23B). After the reduction in model-coefficient error, the 
50-percent prediction interval is less than 20 percent over most of the spatial domain (fig. 26B). Therefore, the confidence in the 
example groundwater vulnerability model is substantially improved by reducing the error associated with the model coefficients. 
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Figure 23.  The (A) median (50th percentile) model output is surrounded by the (B) 50-percent prediction interval, which is the 
difference between the 75th and 25th percentiles from the model output probability distribution. 
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Figure 24.  The spatial distribution of the relative variance contributions from the (A) model variables (RVCv) and 
(B) model coefficients (RVCc) based on error introduced from original model coefficients.
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Figure 25.  The spatial distribution of the relative variance contributions from the (A) model variables (RVCv) and (B) 
model coefficients (RVCc) based on error introduced from model coefficients reduced by a factor of 10.
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Figure 26.  The (A) median (50th percentile) model output is surrounded by the (B) 50-percent prediction interval after a 
hypothetical reduction in model-coefficient error by a factor of 10.
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attribute  As used in this report, an attribute is the property of a geographic object or location in a raster. 

cell size  The dimensions in reality that are represented by a single cell in a raster and are measured in map units (Environmen-
tal System Research Institute, Inc. [ESRI], 2006). 

error   Heuvelink (1998) states that error is the “difference between reality and our representation of reality; it includes not 
only ‘mistakes’ or ‘faults’ but also the statistical concept of ‘variation’.” Therefore, in the context of data quality, error refers to 
a measured, observed, calculated, or interpreted value that differs from the true value (Environmental System Research Institute, 
2006). In the context of a GIS database, spatial error is from error in position (feature coordinates are wrong) and topology (fea-
tures do not properly connect, intersect, or adjoin) (Environmental System Research Institute, 2006).  

error propagation  The process of error from the input attributes in a GIS operation or model causing error and uncertainty in 
the output of the GIS operation or model. 

extent  The extent is the minimum bounding rectangle (xmin, ymin, xmax, and ymax) that is defined by coordinate pairs of a 
data source (Environmental System Research Institute, 2006). 

geographic information system (GIS)   A software package that allows users to create, edit, analyze, store, display, and output 
geographically referenced data.

geoprocessing operation  One or more algorithms that create new geospatial data from geospatial data already held in a GIS 
database (Krivoruchko and Gotway, 2005). Geoprocessing operations are generally classified as local, neighborhood, and 
global operations (Environmental System Research Institute, 2006). 

geospatial model(ing)  As used in this report, refers to the use of raster data in computational models within a geographic 
information system and is synonymous with spatial model(ing). 

global operation  An operation that defines or computes an output raster such that each cell location is a function of all the cells 
in the input rasters (Environmental System Research Institute, 2006).

local operation  An operation that defines or computes a new value (or raster) for a location using input values (or rasters) at 
the same location (Environmental System Research Institute, 2006). 

Map Algebra  Map Algebra (Tomlin, 1990) is a language that defines a syntax for combining map themes by using mathemati-
cal operations and analytical functions to create new map themes (Environmental System Research Institute, 2006). In a Map 
Algebra expression, the operators are a combination of mathematical, logical, or Boolean operator, and spatial analysis func-
tions, and the operands are spatial data and numbers or model coefficients. 

metadata  Information that describes content, quality, condition, origin, and many other important characteristics of geospatial 
data (Environmental System Research Institute, 2006).

model  As used in this report, a model is a simplified and mathematically based representation of reality. 

neighborhood operation  An operation that defines or computes new values for locations using the values of other locations 
within a given distance, direction, or spatial window (Environmental System Research Institute, 2006).

Glossary
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operation  See geoprocessing operation. 

prediction uncertainty  An expression of confidence about results from a predictive model.

projection  A method that is used to portray the curved surface of the Earth on a flat surface (Environmental System Research 
Institute, 2006).

Python  An open-source, object-oriented, and high-level programming language with dynamic semantics. For additional details, 
see the Python Programming Language official Web site on the World Wide Web at: www.python.org (accessed November 28, 
2008). 

raster  A type of geospatial data model that defines space as an array of equally sized cells arranged in rows and columns. Each 
cell contains an attribute value and location coordinates, which are contained in the data model in the ordering of the matrix. 
Thus, groups of cells that have the same value represent the same type of geographic feature (Environmental System Research 
Institute, 2006). 

raster processing  A type of geoprocessing operation that uses rasters.

resolution  The dimensions represented by each cell in a raster (Environmental System Research Institute, 2006).

snapping  An automatic editing operation in ArcGIS Desktop that moves points or features within a specified distance of other 
points or features to coincide exactly with each others’ coordinates (Environmental System Research Institute, 2006). 

stochastic  A random event or process that can be described by a statistical probability. 

uncertainty  An expression of confidence about knowledge (Brown and Heuvelink, 2005; Heuvelink and others, 2007). See 
also prediction uncertainty. 

virtual machine  An abstract software implementation of a machine (computer) that executes programs like a real machine. The 
virtual machine used in REPTool is an abstraction separate from the details of processing the Map Algebra model equation that 
executes the program that is represented by the Map Algebra model equation. 

http://www.python.org
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Appendix 1–Statistical Functions

Algorithm to Compute Inverse Normal Cumulative Distribution Function

The following algorithm was created by Peter J. Acklam (2004) and is used in REPTool to compute the inverse normal 
cumulative distribution function (CDF) (fig. 27) used for LHS. The Acklam (2004) algorithm is used because the inverse normal 
cumulative distribution in a nonlinear function that has no closed-form numerical solution. The predicted absolute value from 
the Acklam (2004) algorithm has a reported relative error of less than 1.15 × 10–9 in the entire region of prediction. Additional 
details on this algorithm are found at Peter J. Acklam’s Web site at: http://home.online.no/~pjacklam/notes/invnorm/index.html 
(accessed December 1, 2008).

The algorithm is computed using input of the probability of the CDF and outputs the corresponding value in the domain for 
the probability function of variable X. A unique rational approximation is used for the lower, central, and upper regions of the 
inverse normal CDF. The regions are defined using the probability (p) of the inverse normal cumulative distribution as follows: 
lower region is 0 < p < 0.02425; the central region is 0.02425 <= p <= 0.97575; and the upper region is 0.97575 < p < 1. 

The rational approximation for the lower region (0 < p < 0.02425) is defined by
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and

						      q p= − ( )2 * log 					                 (22)
where

  y		 is the value in the domain of the probability function (y-axis, fig. 27), 
c1		 is a coefficient equal to –7.784894002430293 x 10–3,
c2		 is a coefficient equal to –3.223964580411365 x 10–1,
c3		 is a coefficient equal to –2.400758277161838,
c4		 is a coefficient equal to –2.549732539343734,
c5		 is a coefficient equal to 4.374664141464968,
c6		 is a coefficient equal to 2.938163982698783,
d1		 is a coefficient equal to 7.784695709041462 x 10–3,
d2		 is a coefficient equal to 3.224671290700398 x 10–1,
d3		 is a coefficient equal to 2.445134137142996,
d4		 is a coefficient equal to 3.754408661907416, and
  p	 	is the cumulative probability value between 0 and 1 (x-axis, fig. 27). 

The rational approximation for the central region (0.02425 <= p <= 0.97575) is defined by
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and
						      r q q= * 						                  (24)
and

						      q p= − 0 5. 						                  (25)
where

  y		 	is the value in the domain of the probability function (y-axis, fig. 27), 
a1 		 is a coefficient equal to –3.969683028665376 x 101,
a2			 is a coefficient equal to 2.209460984245205 x 102,
a3			 is a coefficient equal to –2.759285104469687 x 102,

http://home.online.no/~pjacklam/notes/invnorm/index.html
http://home.online.no/~pjacklam/notes/invnorm/index.html
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a4			 is a coefficient equal to 1.383577518672690 x 102,
a5			 is a coefficient equal to –3.066479806614716 x 101,
a6			 is a coefficient equal to 2.506628277459239,
b1			 is a coefficient equal to –5.447609879822406 x 101,
b2			 is a coefficient equal to 1.615858368580409 x 102,
b3			 is a coefficient equal to –1.556989798598866 x 102,
b4			 is a coefficient equal to 6.680131188771972 x 101,
b5			 is a coefficient equal to –1.328068155288572 x 101, and
  p		 	is the cumulative probability value between 0 and 1 (x-axis, fig. 27). 

The rational approximation for the upper region (0.97575 < p < 1) is defined by
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and

						      q p= − −( )2 1* log 					                 (27)

where
  y		 is the value in the domain of the probability function (y-axis, fig. 27), 
c1		 is a coefficient equal to –7.784894002430293 x 10–3,
c2		 is a coefficient equal to –3.223964580411365 x 10–1,
c3		 is a coefficient equal to –2.400758277161838,
c4		 is a coefficient equal to –2.549732539343734,
c5		 is a coefficient equal to 4.374664141464968,
c6		 is a coefficient equal to 2.938163982698783,
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Where
   µ = mean = 0
   σ = standard deviation = 1

Figure 27.   The standard (mean = 0, standard 
deviation = 1) inverse normal cumulative distribution 
function (CDF).
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d1		 is a coefficient equal to 7.784695709041462 x 10–3,
d2		 is a coefficient equal to 3.224671290700398 x 10–1,
d3		 is a coefficient equal to 2.445134137142996,
d4		 is a coefficient equal to 3.754408661907416, and
  p	 	is the cumulative probability value between 0 and 1 (x-axis, fig. 27). 

The Acklam (2004) algorithm refines the lower, central, and upper region approximations using the complementary error 
function (erfc) and error function (erf). The erfc, where erfc(x) = 1 – erf(x), is appropriate for refining the approximations 
because there is a relation between the normal CDF and the erfc as follows: 
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where
	     x 		 is the refined value y in the domain of the normal cumulative probability distribution,
      y		 is the value in the domain of the probability function,
      p		 is the mathematical constant Pi that is approximately equal to 3.14159, and
erfc()		 is the complementary error function, where erfc() = 1 – erf().

Normal Cumulative Distribution Function

The normal cumulative distribution function (CDF), F(x), is expressed as
 
						      F x erf

x( ) ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= +
−1

2
1

2




				                (31)

where
	 erf		 is the error function,
	 x	 	is the value in the domain of the probability function,
	 m	 	is the mean value of the normal distribution, and
	 s	 	is the standard deviation of the normal distribution.

For LHS, it is useful to sample the cumulative probability values (y-axis, fig. 27) relative to the normal CDF rather than 
sample the actual distribution values (x-axis, fig. 27) because the nonoverlapping intervals are defined by quantiles of equal 
probability that are expressed as cumulative probability units from 0 to 1 (y-axis, fig. 27) (see the section “Latin Hypercube 
Sampling Method”). The actual distribution values, x, (x-axis, fig. 27) are calculated by inverting the normal CDF using the 
Acklam (2004) algorithm (see the section “Algorithm to Compute Inverse Normal Cumulative Distribution Function”) as 
follows: 
 
						      x x= +  * 						                  (32)
where
	 m	 is the mean value of the normal distribution, 
	 s	 is the standard deviation of the normal distribution, and 

x 	 is the refined value y in the domain of the normal cumulative probability distribution (see equation 26).
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Lognormal Cumulative Distribution Function

The lognormal cumulative distribution function (CDF), F(x), is expressed as
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where
	 erf	 is the error function,
	 ln	 is the natural logarithm,	

	 x	 is the value in the domain of the probability function,
	 m	 is the mean value of the lognormal distribution, and
	 s	 is the standard deviation of the lognormal distribution.

Similar to the normal CDF, it is useful to sample the cumulative-probability values relative to the normal CDF rather than 
sample the actual distribution values during LHS (see “Normal Cumulative Distribution Function”). The actual lognormal 
distribution values, x, (x-axis, fig. 29) are calculated by inverting the normal CDF using the Acklam (2004) algorithm as follows:
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x
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where
	 e	 is the base of the natural logarithm,

	 m	 is the mean value of the lognormal distribution, 
	 s	 is the standard deviation of the lognormal distribution, and 

x 	 is the refined value y in the domain of the normal cumulative probability distribution (see equation 26).
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Uniform Cumulative Distribution Function

The uniform cumulative distribution function (CDF), F(x), is expressed as
 
						      F x

x a

b a
( ) =

−

−
						                  (35)

where
	 x	 is the value in the domain of the probability function of variable x,
	 a	 is the minimum value of the uniform distribution, and
	 b	 is the maximum value of the uniform distribution.
	 For LHS, it is useful to rearrange equation 33 and use the cumulative-probability value, F(x), as input to solve for x as 
follows:  
 
						      x F x b a a= ( ) −( ) + 					                 (36)
 
where
	 x	 is the value in the domain of the probability function of variable x,

F(x)	 is the cumulative probability value between 0 and 1 for the uniform CDF,
	 a	 is the minimum value of the uniform distribution, and
	 b	 is the maximum value of the uniform distribution.
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Where
   µ = mean = 0
   σ = standard deviation = 1

LOGNORMAL CDF

Figure 29.  The standard (mean = 0, standard deviation = 1) 
lognormal cumulative distribution function (CDF).
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Appendix 2–Command-Line Syntax and Python Scripting 

Appendix 2 provides command-line syntax and Python scripting use and examples for REPTool. The information provided in 
Appendix 2 also is available in the REPTool Help page. 

Command-Line Syntax

reptool_custom <Input_rasters;Input_rasters...> {Spatially_variable_error} {Input_spatially_variable_error_rasters;Input_spa-
tially_variable_error_rasters...} {Input_errors} {Model_uses_coefficients_} {Specify_coefficient_file} <Distribution_type> 
{Model_equation} {Model_equation_text_file} <10 | 25 | 50 | 100> {Output_percentiles} {Calculate_relative_variance_contri-
bution__RVC_} <Output_workspace>  
 
Parameters

Expression Explanation

<Input_rasters;Input_rasters...> The rasters used as input for the model.

{Spatially_variable_error} Command-line syntax if the error associ-
ated with any one of the input rasters varies 
spatially.

{Input_spatially_variable_error_rasters;Input_spatially_variable_error_rasters...} The error raster data sets associated with each 
input raster data set.

{Input_errors} Input error (as percent) for each of the input 
raster data sets. The error values must be 
comma separated and be in the same input 
order as the input raster data sets.

{Model_uses_coefficients_} Command-line syntax if the model equation 
contains any coefficients.

{Specify_coefficient_file} The text file that contains the information about 
the coefficients and associated errors. 

<Distribution_type> The type of error distribution to be used for 
each of the input data sets.

{Model_equation} The model equation containing the coefficients, 
variables (input rasters), operators, and func-
tions that will be used to process the input data 
sets.

{Model_equation_text_file} The text file that contains the model equation. 
Note – The Model equation text file option 
must be used to input the model equation if 
REPTool is run from the ArcMap command 
line. The ArcMap command-line interpreter 
does not allow for special characters in model 
equations, which will cause an error if the 
model equation is specified using the Model-
equation option. Therefore, it is necessary to 
input the model equation as a text file when 
running REPTool from the ArcMap command 
line.

<10 | 25 | 50 | 100> The number of iterations used to define the 
probability distribution for the Latin Hyper-
cube Sampling (LHS) technique.

{Output_percentiles} The percentiles (semicolon separated) of the 
final output distribution surrounding the model 
results.



{Calculate_relative_variance_contribution__RVC_} Command-line syntax to calculate the relative 
variance contributions (RVC) of model error 
versus the RVC of the input data sets (explana-
tory variables).

<Output_workspace> Output workspace where results will be written 
and temp files will be processed.

Command-Line Example

Reptool_custom D:\MyData\irrpct3;D:\MyData\soilinf3 # # 10,20 true D:\MyData\coeff.txt Normal # D:\MyData\equation.txt 
10 5;90 true D:\MyData\finalmap2

Note — the ‘#’ is used as a placeholder for optional parameters. 

Scripting Syntax

Reptool_custom (Input_rasters, Spatially_variable_error, Input_spatially_variable_error_rasters, Input_errors, Model_uses_
coefficients_, Specify_coefficient_file, Distribution_type, Model_equation, Model_equation_text_file, Number_of_interations, 
Output_percentiles, Calculate_relative_variance_contribution__RVC_, Output_workspace) 
 
 
Parameters

Expression Explanation

Input_rasters (Required) The rasters used as input for the model.

Spatially_variable_error? (Optional) Scripting syntax if the error associated with any one of the input rasters varies 
spatially.

Input_spatially_variable_error rasters (Optional) The error raster data sets error associated with each input raster data set.

Input_errors (Optional) Input errors (as percent) for each of the input raster data sets. The error values 
must be comma separated and be in the same input order as the input raster 
data sets.

Model_uses_coefficients? (Optional) Scripting syntax if your model equation contains any coefficients.

Specify_coefficient_file (Optional) The text file that contains the information about the coefficients and associ-
ated errors.

Distribution_type (Required) The type of error distribution to be used for each of the input data sets.

Model-equation (Optional) The model equation containing the coefficients, variables (input rasters), 
operators, and functions that will be used to process the input data sets.

Model_equation_text-file (Optional) The text file that contains the model equation. Note – The Model equation text 
file option must be used to input the model equation if REPTool is run from 
the ArcMap command line. The ArcMap command-line interpreter does not 
allow for special characters in model equations, which will cause an error if 
the model equation is specified using the Model-equation option. Therefore, it 
is necessary to input the model equation as a text file when running REPTool 
from the ArcMap command line.

Number_of_iterations (Required) The number of iterations used to define the probability distribution for the 
Latin Hypercube Sampling (LHS) technique.

Output_percentiles (Optional) The percentiles (semicolon separated) of the final output distribution sur-
rounding the model results.

Calculate_relative_variance_contribution (RVC) 
(Optional) 

Scripting syntax to calculate the relative variance contributions (RVC) of 
model error compared to the RVC of the input data sets (explanatory vari-
ables).
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Output_workspace (Required) Output workspace where results will be written and temp files will be pro-
cessed.

Script Example

# reptool.py
# Description:
#  Quantify error propagation and uncertainty during raster processing
# Requirements: None
# Date: July 21, 2008
# Import system modules
import arcgisscripting
# Create the Geoprocessor object
gp = arcgisscripting.create()
try:

# Set local variables
InRasters = “D:/REPTool_v_1_0/Example/dtw;D:/ REPTool_v_1_0/Example /aqbottom”

	  InErrors = “10,20”
	  coef_file = “D:/ REPTool_v_1_0/Example /coef_file.txt”
	  InEq = “var01 - var00”
	  Dist = “Normal”
	  no_itns = “10”
	  out_pctls = “5;25;75;95”
	  out_wsp = “D:/ REPTool_v_1_0/Example /Analysis”
	  # Check out Spatial Analyst extension license
	  gp.CheckOutExtension(“Spatial”)
	  # Run REPTool

gp.reptool_custom(InRasters,#,#,InErrors,”true”,coef_file,Dist,InEq,#,no_itns,out_pctls,”true”,out_wsp)
except:

# If an error occurred while running a tool, then print the messages.
	 print gp.GetMessages()
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Appendix 3 – Developer Documentation

Overview

Appendix 3 presents an overview of REPTool version 1.0 Python software-package architecture. The purpose of the over-
view is to provide information for software developers seeking details of the REPTool implementation; this information is not 
needed for general REPTool use. Appendix 3 outlines a general overview of each package model. The contents of Appendix 3 
are listed below. The reader is encouraged to begin with How To Read Developer Documentation.
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accessor  Object-oriented programming languages may define objects with private or protected attributes (not directly acces-
sible or visible to other objects) to protect the attributes from mishandling. However, those objects will usually define a method 
to retrieve the value stored by an attribute or even a reference to the attribute itself in a controlled manner. These methods are 
accessor methods. In Python, attributes are typically accessed directly using the object.attribute syntax, but accessor methods 
may still be a preferable option. These methods are often called the “get” methods and use the getAttributeName( ) syntax.

attribute  An attribute may hold a value describing a characteristic of an object defined by a class. An automobile object has 
many attributes describing characteristics common to automobiles. Two of these attributes might be color and tire pressure, and 
the values assigned to these attributes in an instance of an automobile object might be blue and 35 pounds per square inch (psi), 
respectively. The value of an attribute may or may not be assigned to an instance of an object during execution of a program, and 
if it is assigned it may also be changed one or more times during the execution cycle.

class  In an object-oriented programming language a class defines the attributes and methods describing the characteristics 
and behavior of an object. A Python class is defined in a Python module file. A class defining a circle object might have attri-
butes for radius, diameter, and circumference and methods defining calculation strategies for determining the radius, diameter, and 
circumference.

constructor  A class method which initializes an instance of the class. Python’s default constructor for classes is the __init__( ) 
method. Instantiation of a class named SomeClass might appear as in the following line of code:

	 some_object = SomeClass( )

And the __init__( ) constructor method would be called with no arguments. Following this assignment statement, the variable 
name, some_object , references an instance of the class SomeClass.

expression  A binary operation consisting of a left-hand-side operand and right-hand-side operand separated by a binary opera-
tor and enclosed by parenthesis delimiters. Zero or more unary operators indicating sign changes may precede either operand as 
well as the binary operation. Operands must conform to syntax and semantics that REPTool (1.0) defines for Map Algebra equa-
tions; they must be valid variables, constants, functions, or another expression with valid syntax and semantics. For example, in 
the expression

	 [-( exp( 4 ) * var00 ) + var01 ]

there is an inner expression serving as the left-hand-side operand, [ ( exp( 4 ) * var00 ) ], and it is preceded by a single unary 
operator indicating a sign change. The right-hand-side operand, [var01], and the outer expression are both preceded by zero 
unary operators. The left-hand-side and the right-hand-side operands of the outer expression are separated by a binary operator 
[ + ]. The left-hand-side operand of the inner expression, [ exp( 4 ) ], a function defined by REPTool with the correct syntax and 
semantics, is separated from the right-hand-side operand of the inner expression, [ var00 ], also by a binary operator, [ * ], and 
both of these operands are preceded by zero unary operators indicating sign changes. The inner and the outer binary operations 
are enclosed by parenthesis delimiters.

functionality	 The questions what and how as they are applied to a system describe its functionality. A software system’s 
services or behaviors describe what it does, and the specific implementations of code defining system objects and methods 
describe how the system performs those services or achieves its behavior; therefore, its functionality is the sum of these descrip-
tions.
 
generalization	    See generalized.
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generalized  Describes a class definition that specifies a common set of method and(or) attributes for the general case of an 
object category. For example, a car object is the generalized case for sports car objects and a sports car object is in turn the gener-
alized case for a convertible sports car object. A car object cannot serve as the generalized case for a jet airplane object. However, a 
transportation object could serve as generalized case for both a car object and an airplane object. In an object-oriented language an 
inheritance hierarchy typically establishes inheritance between levels of generalization.

graphical user interface (GUI)  A Windows dialogue screen containing user-input components such as check boxes, text fields, 
buttons, and file browsers.

implementation  Is the code that defines a method, class, or module. The implementation of a method, defined by a class, 
determines the behavior of instances of that class. A class that inherits a method from its inheritance hierarchy may use the 
inherited method as is, or the class may define its own implementation for that method to provide custom behavior.

inherits  See inheritance.
 
inheritance  The sharing and reuse of common attributes and methods from an implementation of a general category of 
objects by specific types of objects that customize the general case defines an inheritance hierarchy. For example, a sports 
car object and a delivery van object are customized cases of the car category that might have an attribute for tire pressure and a 
method for acceleration that are common to the car category. In an object-oriented language, an inheritance hierarchy governs 
the manner in which general case implementations of a class may be customized with additional functionality or modifications 
to the functionality inherited from the general case class. The custom case extends the general case and in turn may be extended 
even further, thereby providing a hierarchy of generalization for the objects in question. Continuing with the car example, a 
European-made sports car object might extend the sports car object and define a custom method for braking and, likewise, a 
family van object might extend the delivery van object and define a custom method for powered rear-door locks, and both of 
these objects would inherit the attributes and methods of the objects they extend as well as those from the most general case 
object, the car object, which those objects inherit from. In object-oriented programming languages like Python and Java, single 
(Java) or multiple (Python) inheritance is allowed; meaning classes may inherit from a single class or from multiple class defini-
tions, respectively.

initialization  See initialized.

initialize	  See initialized.

initialized  Immediately following the first occurrence in the execution of a software program where an attribute is assigned a 
value, the state of the attribute is considered as initialized. The attribute remains initialized until the program changes the value 
held by the attribute with an assignment statement. Attributes may not be used by a program until they have been initialized by 
an assignment statement—these attributes are considered as uninitialized, and attempts by a program to use them will generally 
cause an error.

instance  An occurrence of a class whose attributes have been assigned values determining the state of the occurrence is an 
instance of that class. For example, a class named BallClass that models a ball object might have a floating point number attribute 
for size and a string attribute for color. A program using the BallClass could then create an instance of the BallClass with the values 
1.5 and “blue” for its size and color attributes, respectively, and another instance of the BallClass could be created with its attributes 
set to the values 5.0 and “green” in the same manner. Depending on the implementation of the constructor method for BallClass, 
it is possible that an instance of BallClass could be created without assigning specific values to its size and color attributes, and 
in this case the state of the instance would be considered uninitialized. For the BallClass example provided above, the size and 
color attributes are both instance attributes, but it is possible for a class to define class attributes as well and class attributes are 
shared by all instances of that class. Therefore, this means that a change in the value of a class attribute changes the value for all 
instances of the class.
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Instantiation  Is the act of creating an instance of an object that is defined by a class. Instantiation typically takes place in an 
assignment statement such as the following:

	 some_attribute = SomeClass( )

where SomeClass is the name of a class and the syntax demonstrated automatically calls the constructor method for the named 
class. In Python, the __init__( ) method is used for construction, and during instantiation a class will typically have defined its 
constructor to initialize the values of the instance under construction to some reasonable initial or default state. For example, a 
set of integer attributes used as counters might be set to an initial value of 0, or a color attribute might be assigned the value of a 
background color by default to prevent accidental interference with a color scheme.
 
lexeme  Is the lowest-level syntactic or semantic unit of a programming language. A token (category of a language’s lexemes) 
list representing a few examples of syntax lexemes defined by REPTool’s programming language for Map Algebra expressions 
has the following entries

	 Lexemes	 Tokens				    REPTool Notation

	 c00		  coefficient identifier		  <var>

	 *		  binary operator			   <op>

	 1.5		  numeric literal 			   <literal>

	 (		  parenthesis delimiter		  <( >

	 var01		  raster data identifier		  <var>

	 ,		  comma delimiter			   <,>

	 -		  unary operator			   <->

	 e		  constant identifier			   <var>

	
A similar list containing a few examples of semantic lexemes that are constructed using sets of syntax and semantic lexemes has 
the following entries:

	 Lexemes Set				    Tokens

	 <UNOP>		  <->		  -	 unary operator

	 <BINOP>		  <op>		  *	 binary operator

	 <BINOP>		  <op>		  -	 binary operator

	 <OPERAND>	 <var>		  c00	 binary operation coefficient operand

	 <DELIM>		  < )>		  )	 parenthesis delimiter

	 <SIGN>		  <op>		  +	 sign operator

	 <SIGN>		  <UNOP>		  <->	 -sign operator

where the uppercase semantic notation is inside <>, the lowercase syntax notation is inside <>, and the following elements 
“belong to” preceding elements. For example, the sixth entry in the list is a semantic lexeme notated by the <SIGN> element, 
and the value of the semantic lexeme is defined by a set of syntax lexemes. In this example, a set of one and the syntax lexeme 
notated by the <op> element has the value notated by the + element; so the + element “belongs to” the syntax element and the 
syntax element “belongs to” the semantic element. Notice the value of the syntax element in the first and the third entry seman-
tic lexeme happen to be the same—this is because the ‘-’ character may assume two roles in a Map Algebra expression. Separat-
ing two operands, the ‘-’ character acts as a binary operator, but the ‘-’ character may also indicate a sign change if it precedes an 



Appendix 3 – Developer Documentation    69

expression or an operand. Also, note how the final entry defines a semantic lexeme that is constructed with a set of lexemes, and 
in this case is a set of one, using semantic units. The combination of semantic and syntax elements, tab separated in the example 
case, are line separated during actual parsing of Map Algebra input, and it is the entire chain of elements parsed out that defines 
an expression accordingly with REPTool’s defined syntax and semantics.
	

method  Is a software model defined by a programming language to provide an object with specific behavior by implementa-
tion of a strategy, a calculation, or a set of instructions. A method may receive input and generate output, define attributes for 
its own use, or reference the attributes of objects and is generally associated with the software model where it is defined. In Java 
this is typically a class model, but other languages like Python—where methods may be defined for a module or a class—prove 
that a class definition is not the only case where a method is defined and associated with a software model.

module  A software model used by the Python programming language to define attributes, methods, and classes in an object-
oriented manner. A Python module is stored as a file with a specific dot extension (.py) under a Python package folder in a file 
system and contains the code defining any attributes, methods, and class definitions associated with the module. Additionally, a 
module may contain multiple definitions (attribute, method, and class definitions).

object  Is a software model of something that exists in reality at a physical or conceptual level. A baseball, a glass of water, or 
an automobile are all examples of physical realities that might be modeled in software and, like each of these physical objects, 
an object has associated characteristics and behaviors. The characteristics and behaviors of an object are defined by many 
object-oriented programming languages (Java, Python, C++, and so forth) using a class to assign attributes (characteristics) and 
methods (behaviors) to an object.

package  Is a software model used by object-oriented programming languages, such as Java and Python, to organize files and 
determine scope for objects modeled by the language. In a file system, a package is simply a folder with the name of the pack-
age containing the files defining objects in the syntax and semantics of the language. In Java, package folders store files with a 
specific dot extension (.java) that contain Java code for Java class definitions. In Python, however, package folders store files 
with a specific dot extension (.py) containing Python code for Python module definitions and the file is considered the module. 
A Python module may contain many Python class definitions or it may have none, in which case, the attributes and methods 
defined in the module file exist independently of an object. 

program  Is the set of expressions which conform to the syntax and semantics REPTool defines for Map Algebra expressions. 
A mathematical expression which has been translated into the format required by REPTool is parsed and compiled into a set of 
REPTool semantic elements or expressions that the virtual machine implementations can then execute. A simple example of a 
mathematical expression and its translation into REPTool format is as follows:

	 var00 + var01

is translated to:

	 ( var00 + var01 )

REPTool expressions consist of binary operations surrounded by parenthesis delimiters. Signs are allowed for expressions and 
operands inside an expression. For example, the above expression in the definition of program could also be written as:

	  - ( -var00 + -var01 )
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processor set  The REPTool application creates a Python dictionary during input verification and validation to hold refer-
ences to objects used throughout the execution of the tool. This dictionary is forwarded to the various processing strategies 
defined by the application, where references are accessed, modified, and when necessary added to the dictionary. The term 
processor set refers to the Python dictionary described by this definition of processor set.

state  Is the value(s) assigned to or held by an attribute, method, or an object at any given moment during a software pro-
gram’s execution. For example, any changes in values held by an attribute, method, or an object change the state. The state of 
any attribute or object is considered to be uninitialized before the first assignment of a value or values occurs. 

validation  See verification and validation.

verification  See verification and validation.

verification and validation	  The terms verification and validation are applied to software engineering requirements under the 
category of quality control. Verification is the checklist for a requirement. Verification asks the question—does it exist? Vali-
dation is concerned more with the quality of a requirement. Validation asks the question—is it correct? The verification and 
validation are rarely addressed separately.

uninitialized  During the execution of a software program state of an attribute or object is considered uninitialized until it 
has been initialized. For an attribute, simply giving it a value such as 1.5 or “blue” achieves initialization, but the state of an 
object typically is not considered initialized until all of its attributes and behaviors have been assigned initial or default values.

Unified Modeling Language (UML)  Is an International Organization for Standardization (ISO) standard notation or language for 
designing and documenting a system in an object-oriented manner.

wrapper  The well-documented wrapper design pattern, also known as an adapter, solves the conversion problem between the 
implementation reality of a service class and the reality of a client class with an incompatible implementation.
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