NASA/TM-2009-215641

Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

Joseph P. Veres Glenn Research Center, Cleveland, Ohio

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to *help@ sti.nasa.gov*
- Fax your question to the NASA STI Help Desk at 443–757–5803
- Telephone the NASA STI Help Desk at 443–757–5802
- Write to: NASA Center for AeroSpace Information (CASI) 7115 Standard Drive Hanover, MD 21076–1320

NASA/TM-2009-215641

Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

Joseph P. Veres Glenn Research Center, Cleveland, Ohio

Prepared for the 65th Annual Forum and Technology Display sponsored by the American Helicopter Society Grapevine, Texas, May 27–29, 2009

National Aeronautics and Space Administration

Glenn Research Center Cleveland, Ohio 44135

This report is a formal draft or working paper, intended to solicit comments and ideas from a technical peer group.

This report contains preliminary findings, subject to revision as analysis proceeds.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information 7115 Standard Drive Hanover, MD 21076–1320 National Technical Information Service 5285 Port Royal Road Springfield, VA 22161

Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

Joseph P. Veres National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135

Summary

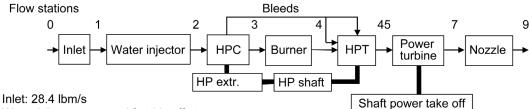
A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4 percent. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors' conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

Introduction

A notional study of the Large Civil Tilt Rotorcraft (LCTR) vehicle mission has been done in Reference 1. To meet the LCTR vehicle thrust requirements at the takeoff and cruise conditions, a thermodynamic cycle study of a notional turboshaft engine was performed in Reference 2 with the Numerical Propulsion System Simulator (NPSS) thermodynamic cycle code. The results of the engine system model are illustrated by the schematic diagram in Figure 1. Utilizing the NPSS system model, the compressor flow and pressure ratio requirements to produce a pressure ratio of 31:1 at a corrected airflow rate of 28.4 lbm/sec were determined.

The focus of this study is to perform a conceptual sizing study of the compressor to meet the pressure ratio and flow requirements of the turbine engine for the LCTR vehicle. The conceptual design was done with a mean-line flow methodology and focuses on the compressor flow path and key aerodynamic parameters of the rotor and stage at the design point condition. Off-design performance is also estimated for the 100 percent speed line with the mean-line methodology. The purpose of the conceptual design is to have an initial estimate of the overall compressor that could meet the requirements, and to identify early on any potential

technical barriers that will need to be considered during the preliminary and detailed design phases.


Compressor Conceptual Design

The purpose of the compressor conceptual design was to identify potential technical challenges towards meeting the goals. There are several options that can be considered for the shape of the flow path during the conceptual design process of multistage compressors. The constant-tip compressor flow path provides the most work capability in the fewest number of axial stages, but can result in excessively small blade spans in the rear stages. A tapered-tip axial-compressor flow path can generally produce less work per stage because of the reduction of rotor-tip diameter for each subsequent stage, and can result in blades with larger spans in the last stages than a constant-tip diameter flow path. A combination of a multistage axial compressor with a centrifugal compressor in the last stage can provide a more axially compact configuration in comparison to an all-axial compressor, but could have a larger outer diameter due to the impeller and radial diffuser. These conceptual design options for the 31:1 compressor were explored in this study with the use of a mean-line compressor design and analysis code. The mean-line compressor flow analysis and design code from Reference 3 was used in this study. The axial rotor-blade tip speed was limited to no higher than 1500 ft/sec because of anticipated structural limitations, based on historical compressor experience (Refs. 4 and 5), as well as concerns about having excessively high rotor-inlet tip relative Mach number. The diffusion factor as defined by Equation (1) was limited at the design point to be on the order of 0.53.

$$DF = 1 - \frac{W_2}{W_1} + \frac{(R_1 \ C_{U1} - R_2 C_{U2})}{(R_1 + R_2)W_1 \ \sigma}$$
 (1)

The diffusion factor is determined from flow and geometric quantities at the rotor leading edge (subscript 1) and trailing edge (subscript 2). The R refers to root-mean-square radius, while C refers to absolute velocity, and W is the relative velocity. The symbol σ is the blade solidity.

As this mean-line code does not generate blade shapes, but only estimates leading and trailing blade angles, the values for the number of blades and blade solidity at the rotor tip were obtained from the energy-efficient engine high-pressure compressor of Reference 6. Each rotor was sized to have an

Water injector: not used for this effort

High-pressure compressor: design PR = 31, polytropic efficiency = 85%, 17.4% turbine cooling bleed

Burner: T4 = 3460R (3000F), 2% del P.

High-pressure turbine: adiabatic efficiency = 85%, 43% entrance bleed, 57% mid-exit bleed

Power turbine: adiabatic efficiency = 85%, no cooling

Nozzle: pressure ratio = 1.05

Figure 1.—The notional turboshaft engine system model from Reference 2 as determined by the Numerical Propulsion System Simulator thermodynamic cycle code, showing the requirements for the compressor to deliver a 31:1 pressure ratio at a flow rate of 28.4 lbm/s.

inlet absolute Mach number on the order of 0.50; however, in the latter stages, this limit was reduced in an effort to keep the blade spans as large as possible. The adiabatic efficiency for all rotors was input into the mean-line flow code as follows: tip: 84, mid: 92, hub: 93. The loss coefficient for the stators of 0.05 as defined by Equation (2) was also an input parameter.

$$\omega = \frac{P_{t4} - P_{t2}}{P_{t2} - P_{S2}} \tag{2}$$

The ω is the pressure-loss parameter through the stator P_{t4} – P_{t2} normalized with rotor-exit total pressure P_{t2} and rotorexit static pressure P_{S2} . The mean-line compressor design analysis method of Reference 3 was used to perform the conceptual designs and analyses. The first conceptual design iteration focused on an all-axial stage design to estimate the overall geometric parameters of the compressor and the aerodynamic parameters for each stage. The aerodynamic parameters for each individual blade row were calculated at the leading edge and trailing edge to determine number of stages that would be required to produce the required pressure ratio. The aerodynamic performance of each rotor blade row was determined, including geometric parameters such as tip and hub radii and blade angles. The absolute flow angle entering each rotor was 0° at the design point operating condition. The work per blade row and the inlet and exit radii were varied, and the required exit blade angles were calculated. The diffusion factor and relative velocity ratios to achieve the prescribed work per blade row were limited to a maximum value to reduce the likelihood of flow separation. An iterative process was used that required variation of key parameters to stay within the limits of maximum diffusion factor per stage. The work split between stages was determined on the basis of the maximum work that could be achieved in a given blade row within the maximum diffusion factor limit. Also monitored during the design process was work coefficient per rotor as defined by Equation (3), where ΔH is the enthalpy rise and $U_{\rm Tip}$ is the rotor-inlet tip speed in feet per second.

$$\varphi = \frac{\Delta H}{U_{\text{Tip}}^2} \tag{3}$$

For the off-design analysis a loss model correlated to rotor incidence was used (Ref. 3), as defined by Equation (4).

$$\Delta \eta = 0.0006 \ i^3 - 0.0185 \ i^2 + 0.1699 \ i + 0.5187 \tag{4}$$

The incidence i at the rotor leading edge is the difference between the relative flow angle and the blade angle at the mean radius. The efficiency reduction at off-design values of rotor incidence is defined by $\Delta \eta$. As the rotor incidence changes at off-design flow rates, the rotor efficiency is determined by applying the loss model to the input value of rotor efficiency.

All-Axial Compressor

The blade tip maximum speed limit was 1500 ft/sec and the rotor-tip diameters were tapered or reduced in each successive stage. The flow rate of 28.4 lbm/sec, the maximum tip speed criteria and the hub-to-tip ratio of 0.36 was used to size the first-stage axial compressor, resulting in a design speed of 27 289 rotations per minute. To meet the overall pressure ratio requirement of 31:1, the flow path and each blade row were designed concurrently in an iterative process using the meanline code. This process determined the pressure ratio that can be achieved in each stage. The number of stages that would be required to meet the overall pressure ratio was determined by an iterative process. The maximum tip speed of 1500 ft/sec was considered to be a structurally acceptable limit, as advanced blade and disk materials could support these speeds. The maximum tip speed limit was also imposed because of concerns about high rotor-inlet tip relative Mach number

particularly in the first transonic stage. The taper of the tip flow path was kept at a rate such that the pressure ratio requirements could be met with eight stages without the addition of a ninth stage. Pressure ratios of this magnitude result in high gas temperatures at the compressor exit. The tapered-tip flow path axial-compressor configuration is favorable from a structural perspective, as the latter stages that experience the highest temperatures also operate at reduced tip speeds in comparison to the front-block compressor stages. The hub diameter was allowed to vary to keep the absolute Mach number near 0.50 at the rotor inlet, and within the limit of rotor diffusion factor at the design point. The flow path and the rotor designs were arrived at iteratively while keeping within limits of rotor diffusion factor and rotor-inlet Mach number.

The resulting flow path for the eight-stage axial compressor with tapered-tip diameter flow path is shown in Figure 2. The blade span of the last stage for this design is 0.281 in. at a tip diameter of 11.53 in. The rotor-tip clearance will be on the order of 0.011 in., resulting in the ratio of clearance to span in the first stage of 0.3 percent and the last stage having a clearance-to-span ratio of 4 percent.

Table I shows the results obtained with the mean-line compressor flow analysis and design code for the eight-stage axial compressor with tapered-tip flow path. The pressure ratio per stage tapers off in each subsequent stage, but the work split between the eight stages resulted in a relatively even

distribution of power of near 1350 hp per stage, as shown in Table I.

Except for the tip speed and tip relative Mach number, all other rotor parameters in the table are calculated at the rootmean-square diameter. The rotor-inlet root-mean-square radius of each successive rotor increases from 4.72 in. in the first rotor inlet through the first five stages and then gradually becomes constant at 5.71 in. for the last three stages. The first five stages are transonic at the tip. The absolute Mach number at the inlet of each rotor was on the order of 0.50. The relative flow angle at each rotor inlet is on the order of 62° from the axial direction. The rotor exit blade angles are on the order of 40° to 46° for all rotors. The resulting peak overall adiabatic efficiency at 28.4 lbm/sec is 80.3 percent. The power required to drive this compressor is estimated to be 10 781 hp. The flow path coordinates of the rotor tip and hub radial and axial positions are listed in Appendix A. Note that the flow path is based on a mean-line conceptual flow analysis, and may change as the design and analysis progress to higher levels of fidelity. The design point performance for each stage is listed in Appendixes C and D. As a follow on to this study, it is planned to generate preliminary blade shapes with a turbomachinery design code that includes the losses due to tip leakages. Structural conceptual design, material selection, and analyses of the blades and disks is also planned, as the exit temperature of 1568 °R is high, and proper material selection will determine the viability of this compressor.

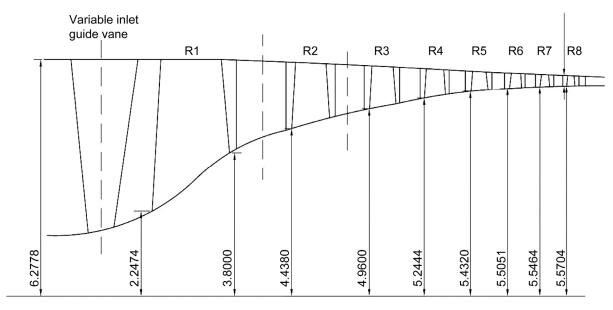


Figure 2.—Axial compressor conceptual design for an eight-stage compressor (units: inches).

TABLE I.—SUMMARY OF THE EIGHT-STAGE ALL-AXIAL COMPRESSOR WITH TAPERED-TIP FLOW PATH

Relative flow angle, deg 62.7 62.9 64.3 63.8 61.7 61.9 62.8 Blade angle, deg 57.6 56.7 58.4 57.5 55.6 55.4 56.2 Rotor exit Blade angle, deg 40.5 43.5 46.0 44.2 41.0 41.7 42.3	8
Flow rate, corrected, lbm/sec 28.40 15.65 9.61 6.52 4.59 3.38 2.57 Mach absolute 0.53 0.54 0.47 0.45 0.47 0.44 0.40 Relative Mach at tip 1.50 1.34 1.19 1.10 1.05 0.98 0.92 Tip speed (U), ft/sec 1495 1475 1452 1434 1419 1407 1399 1 Relative flow angle, deg 62.7 62.9 64.3 63.8 61.7 61.9 62.8 Blade angle, deg 57.6 56.7 58.4 57.5 55.6 55.4 56.2 Rotor exit Blade angle, deg 40.5 43.5 46.0 44.2 41.0 41.7 42.3	
Ibm/sec Mach absolute 0.53 0.54 0.47 0.45 0.47 0.44 0.40 Relative Mach at tip 1.50 1.34 1.19 1.10 1.05 0.98 0.92 Tip speed (U), ft/sec 1495 1475 1452 1434 1419 1407 1399 1 Relative flow angle, deg 62.7 62.9 64.3 63.8 61.7 61.9 62.8 Blade angle, deg 57.6 56.7 58.4 57.5 55.6 55.4 56.2 Rotor exit Blade angle, deg 40.5 43.5 46.0 44.2 41.0 41.7 42.3	
Mach absolute 0.53 0.54 0.47 0.45 0.47 0.44 0.40 Relative Mach at tip 1.50 1.34 1.19 1.10 1.05 0.98 0.92 Tip speed (U), ft/sec 1495 1475 1452 1434 1419 1407 1399 1 Relative flow angle, deg 62.7 62.9 64.3 63.8 61.7 61.9 62.8 Blade angle, deg 57.6 56.7 58.4 57.5 55.6 55.4 56.2 Rotor exit Blade angle, deg 40.5 43.5 46.0 44.2 41.0 41.7 42.3	1.99
Relative Mach at tip 1.50 1.34 1.19 1.10 1.05 0.98 0.92 Tip speed (U), ft/sec 1495 1475 1452 1434 1419 1407 1399 1 Relative flow angle, deg 62.7 62.9 64.3 63.8 61.7 61.9 62.8 Blade angle, deg 57.6 56.7 58.4 57.5 55.6 55.4 56.2 Rotor exit Blade angle, deg 40.5 43.5 46.0 44.2 41.0 41.7 42.3	
Tip speed (U), ft/sec 1495 1475 1452 1434 1419 1407 1399 1 Relative flow angle, deg 62.7 62.9 64.3 63.8 61.7 61.9 62.8 Blade angle, deg 57.6 56.7 58.4 57.5 55.6 55.4 56.2 Rotor exit Blade angle, deg 40.5 43.5 46.0 44.2 41.0 41.7 42.3	0.36
Relative flow angle, deg 62.7 62.9 64.3 63.8 61.7 61.9 62.8 Blade angle, deg 57.6 56.7 58.4 57.5 55.6 55.4 56.2 Rotor exit Blade angle, deg 40.5 43.5 46.0 44.2 41.0 41.7 42.3	0.86
Blade angle, deg 57.6 56.7 58.4 57.5 55.6 55.4 56.2 Rotor exit Blade angle, deg 40.5 43.5 46.0 44.2 41.0 41.7 42.3	392
Rotor exit Blade angle, deg 40.5 43.5 46.0 44.2 41.0 41.7 42.3	64.0
Blade angle, deg 40.5 43.5 46.0 44.2 41.0 41.7 42.3	57.6
Absolute flow angle deg 47.8 48.2 45.7 42.3 41.1 40.8 42.4	43.8
Absolute now angle, deg 47.6 46.2 43.7 42.5 41.1 40.6 42.4	43.2
Flow deviation, deg 4.5 4.4 4.0 3.9 4.0 4.0 4.0	4.0
Diffusion factor 0.50 0.55 0.52 0.49 0.50 0.49 0.51	0.51
Relative velocity ratio 1.95 1.85 1.69 1.61 1.55 1.55 1.57	1.57
Exit temperature, °R 657.9 794.0 922.1 1054.0 1184.0 1313.0 1442.0 1	568.0
Stage	
Pressure ratio 2.056 1.789 1.587 1.519 1.440 1.387 1.354	1.314
Temperature ratio 1.268 1.207 1.161 1.143 1.123 1.109 1.099	1.087
Efficiency, adiabatic 85.5 87.6 87.2 87.5 87.1 87.3 87.5	87.6
Work coefficient, φ 0.388 0.395 0.385 0.410 0.416 0.423 0.436	0.435
Horsepower 1391 1364 1290 1343 1336 1339 1367 1	350

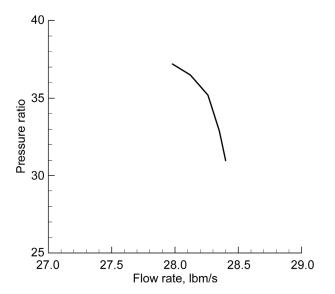


Figure 3.—Pressure ratio at 100 percent speed.

All-Axial Compressor Off-Design Operation

The mean-line methodology was used to perform an off-design analysis of this all-axial compressor at the 100 percent speed line. The criteria that were used for predicting surge in the analysis are a maximum value of a diffusion factor of 0.60. The pressure ratio versus flow is shown in Figure 3, while the adiabatic efficiency versus flow rate is shown in Figure 4.

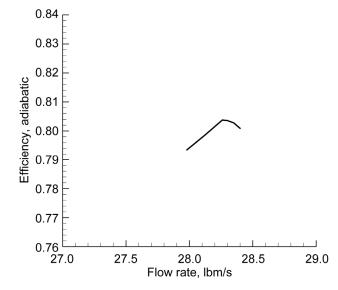


Figure 4.—Adiabatic efficiency at 100 percent speed.

Figure 3 illustrates the steep pressure rise characteristic as the flow is reduced from the design value of 28.4 lbm/sec. The off-design characteristics at a range of part speed operating conditions will be studied in more detail in the future, as it is important to understand the operability of this high-pressure compressor. In addition to the variable inlet guide vanes (IGV), there will likely be a need to have several stator vanes variable as well, to aerodynamically match the stages at part speed operating conditions with acceptable levels of rotor incidence.

Since the last stage blade span of 0.281 in. is low in comparison to traditional designs, a steeper tip-taper rate will also be studied in the future in order to increase the span of the last stage, possibly requiring additional axial stages.

Axial-Centrifugal Compressor

The second configuration that was studied focused on an axial-centrifugal compressor, since traditionally, rotary winged aircraft engines typically feature axial-centrifugal compressors. This design utilized a first-stage axial compressor that is close to the first stage of the previous allaxial case shown in Figure 2, but the tip flow-path taper through the subsequent axial stages is even steeper. The design shaft speed is 27 289 rotations per minute. This conceptual design iteration focused on adding one centrifugal stage to the back end of the compressor to take the place of several axial stages. In addition, the taper of the tip flow path was increased to make the rotor blade spans as large as possible. This further reduced the tip clearance-to-span ratio of the axial rotors, as well as their hub-to-tip ratio. This reduction was considered to be particularly important for the centrifugal impeller, as its efficiency can be negatively influenced by a high inlet hub-to-tip ratio. The increased rate of tip flow-path taper through the axial stages accommodates the transition to the centrifugal impeller with a hub-to-tip ratio as low as possible.

As the tapered-tip flow path already provided this transition to the centrifugal impeller, there was no need to use a transition duct after the last axial stage to further reduce the inlet hub-to-tip ratio. This was done in an effort to reduce pressure losses normally experienced in the "goose neck" of traditional axial-centrifugal compressors.

The centrifugal compressor can effectively produce enough pressure ratio to take the place of several rear-block axial stages. However, there are limitations on the impeller pressure ratio such as specific speed (Ref. 7), which is a normalized aerodynamic parameter that can be used to estimate the flow and pressure ratio where the centrifugal compressor will operate most efficiently. Specific speed N_S is defined by the following Equation (5).

$$N_{S} = \frac{N\left(Q^{\frac{1}{2}}\right)}{\Delta H^{\frac{3}{4}}} \tag{5}$$

Q is the volumetric flow rate in cubic feet per minute, while ΔH is the enthalpy rise through the rotor, and N is the shaft speed in rotations per minute. The range of centrifugal impeller specific speed that typically has the highest potential level of efficiency is 80 to 90. If the centrifugal is not designed to be in this range of specific speed, the maximum attainable efficiency will be limited. Another limitation of centrifugal compressors is the structural and material limitation of tip speed at high operating temperatures.

A mechanical design study for the LCTR engine has not yet been done, as it is currently only in the study phase. Rotordynamics analyses would be done on the engine system after the complete shaft assembly, including the turbines, bearings, and seals, has been sized. Likely, there will be mechanical and rotordynamics considerations that will influence the evolution of the final compressor flow path. The cross section for the compressor that resulted from this conceptual design is shown in Figure 5.

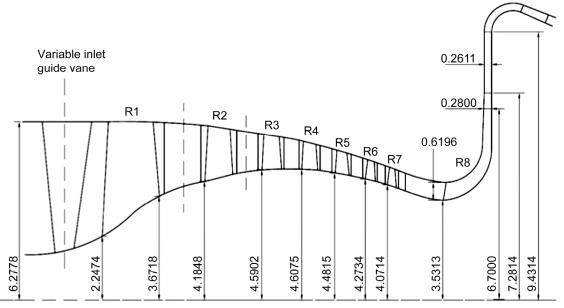


Figure 5.—Axial-centrifugal compressor conceptual design sizing featuring seven axial stages followed by a centrifugal.

The wall curvature of the flow path leading into the centrifugal stage has been sized to reduce curvature effects on local velocity, which has an effect on the pressure losses encountered in the duct. The flow path coordinates of the rotor tip and hub radial and axial positions are listed in Appendix A. Note that these coordinates are based on a mean-line conceptual flow analysis, and may change as the design and analysis progress to higher levels of fidelity. In addition, subsequent structural analyses may indicate that the limits on maximum tip speed may be different from 1500 ft/sec used in this conceptual design. The design point performance for each stage is listed in Appendixes C and D.

The work split among the seven axial stages was tailored to be as even as possible and within the limits on rotor diffusion factor. The specific speed of the centrifugal compressor stage is 56 and is lower than the level considered to be near the optimum value for maximum efficiency potential. To be closer to what is considered to be the optimum specific speed, more of the work would have to be done by the axial stages, or more stages would be required, and the centrifugal compressor pressure ratio would need to be reduced (lower impeller exit diameter, and/or more back swept blade angle). Another way to increase the specific speed of the centrifugal stage is to have a two-spool compressor, as suggested in Reference 2. The second spool would rotate at a faster speed, allowing more flexibility to optimize the specific speed of the centrifugal

stage. The two-spool compressor will be studied in more detail in the future.

Since the tip flow path taper is steeper than the previous allaxial compressor case, the blade spans for the rear block axial stages are larger, culminating with a 0.61 in. blade span of the seventh (last axial) stage rotor. This significant increase in blade span from the previous all-axial case was caused by two factors (1) the reduced rotor-tip diameters resulted in reduced pressure ratio per stage from the previous case and (2) as the rotor-tip diameter was reduced, the annular area in the flow path required a larger span to accommodate the increased volume flow. Even with a 0.62-in. impeller inlet span that was the result of reduced tip flow path through the axial stages, this design produced a high impeller inlet hub-to-tip ratio of 0.85. The centrifugal impeller exit height is 0.280 in., and the exit blade angle has a 20° back sweep from the radial direction. The tip clearance of this impeller will likely vary from inlet to exit. Table II summarizes the key stage-by-stage mean-line performance parameters for the seven-stage axial compressor followed by the centrifugal stage.

A reasonable axial running clearance of this impeller at the exit tip is on the order of 0.005 in., or near 2 percent of the exit span. It will be necessary to maintain tight axial clearances to minimize tip leakages and prevent a reduction in impeller efficiency.

TABLE II.—THE AXIAL-CENTRIFUGAL COMPRESSOR DESIGN POINT STAGE-BY-STAGE AERODYNAMIC PERFORMANCE

	1	2	3	4	5	6	7	8 Centrifugal				
	Rotor inlet											
Flow rate, corrected, lbm/sec	28.4	15.81	9.86	6.82	5.05	3.92	3.18	2.65				
Mach absolute	0.53	0.50	0.49	0.44	0.41	0.40	0.37	0.29				
Relative Mach at tip	1.50	1.31	1.16	1.03	0.93	0.85	0.78	0.65				
Tip speed (U) , ft/sec	1495	1452	1379	1319	1248	1169	1106	1595 (exit)				
Relative flow angle, deg	62.7	63.6	62.0	62.4	61.6	59.7	59.2	60.6				
Blade angle	57.6	57.4	55.7	56.2	55.2	53.2	53.0	54.5				
	Rotor exit											
Blade angle, deg	40.1	41.5	42.0	40.5	38.0	36.0	34.0	20.0				
Absolute flow angle, deg	50.1	47.5	44.2	42.5	43.1	40.2	41.1	63.8				
Flow deviation, deg	4.8	4.5	4.2	4.2	4.4	4.2	4.4	18.2				
Diffusion factor	0.43	0.55	0.53	0.52	0.53	0.51	0.52	0.74				
Relative velocity ratio	2.00	1.88	1.77	1.69	1.70	1.65	1.67	1.54				
Exit temperature, °R	654.9	785.7	906.0	1017.	1119.	1212.	1298.	1577.				
	Stage											
Pressure ratio	2.031	1.755	1.553	1.431	1.351	1.284	1.241	1.818				
Temperature ratio	1.263	1.200	1.153	1.123	1.101	1.083	1.071	1.215				
Efficiency, adiabatic	85.8	87.5	87.4	87.2	87.3	87.1	86.8	82.8				
Work coefficient, φ	0.379	0.403	0.408	0.418	0.438	0.450	0.470	0.718				
Horsepower	1361	1296	1211	1126	1053	957	897	2935				

The reduced tip radii of each subsequent axial rotor are also good from a structural perspective, since the operating temperatures of each subsequent axial rotor are higher from the previous stage, and a reduced blade tip speed in the latter rotors can result in a more structurally acceptable design. The material selection and structural design of the centrifugal impeller needs careful consideration as its tip speed is 1595 ft/sec at an exit temperature of 1565 °R. The feasibility of this rotor needs to be verified with structural and thermal analyses.

The resulting overall compressor efficiency at 28.4 lb/sec is 79.6 percent adiabatic. The power required to drive it is estimated to be 10 850 hp. The results from Tables I and II are shown in Appendix B as plots comparing the values obtained from the all-axial compressor study and the axial-centrifugal compressor.

As shown in Table II, the diffusion factor of the axial rotors at the design point ranges between 0.43 and 0.55. These values indicate that there is a surge margin available. The centrifugal impeller design point relative velocity ratio from inlet to exit is 1.54. The value of diffusion factor for the centrifugal impeller is higher at the design point (0.74) than the axial rotor diffusion factors, but this is not unexpected as centrifugal impellers are typically more highly loaded than axial blades.

Structural conceptual design, material selection, and analyses of the blades and disks are planned to determine whether this design is feasible, as the exit temperature of 1577 °R and impeller tip speed of 1595 ft/sec may be challenging with current material capabilities. The development of a material that can support these high tip speeds at high temperatures will determine the viability of this compressor.

Axial-Centrifugal Off-Design

The mean-line methodology of Reference 3 was used to perform an off-design analysis of this axial-centrifugal compressor at the 100 percent speed line. The criteria that were used for modeling the onset of surge were a maximum value of rotor diffusion factor of 0.60 for the axial rotors and relative velocity ratio of 1.95. Figure 6 and 7 show the compressor performance along the 100 percent speed line. As the flow rate is reduced to 27.7 lbm/sec, the maximum relative velocity ratio that is experienced in the axial rotors is 1.9 and 1.77 in the centrifugal impeller. Based on the relative velocity criteria, it appears that at the 100 percent speed, stall will be initiated in the axial rotors and not in the centrifugal impeller. However, the diffusion factor limit for the centrifugal compressors at surge needs further validation.

Further analyses of this compressor are planned to determine the variable geometry schedule that will be necessary to operate it with an acceptable surge margin at part speed.

The pressure ratio versus flow rate of the axial-centrifugal compressor is illustrated in Figure 6.

As illustrated in Figure 6, the pressure rise characteristic of this compressor is shallow as the flow is reduced from the

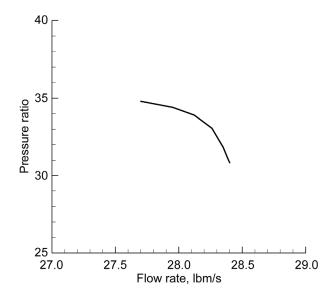


Figure 6.—Pressure ratio on the 100 percent speed line.

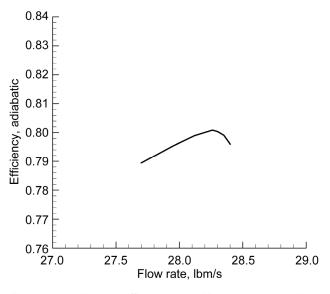


Figure 7.—Adiabatic efficiency on 100 percent speed line.

design point value. The adiabatic efficiency versus flow rate is shown in Figure 7. The axial-centrifugal compressor pressure rise characteristic was compared to the all-axial compressor pressure rise characteristic in Figure 8. The axial-centrifugal compressor has less pressure rise as the flow is reduced, than does the all-axial compressor case. The axial-centrifugal compressor appears to have higher flow margin before surge is encountered, in comparison to the all-axial case. The reduced pressure rise to surge of the axial-centrifugal configuration and the additional flow margin are likely due to the centrifugal compressor. Figure 9 illustrates the efficiency characteristics of the all-axial versus the axial-centrifugal compressor. The peak efficiency of both compressors is at a flow rate of 28.3 lbm/sec.

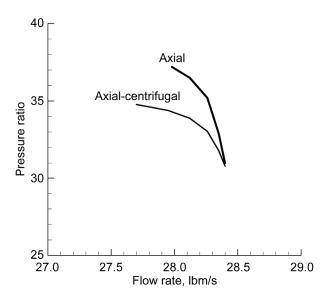


Figure 8.—Comparison of the all-axial to the axial-centrifugal configuration pressure rise characteristics.

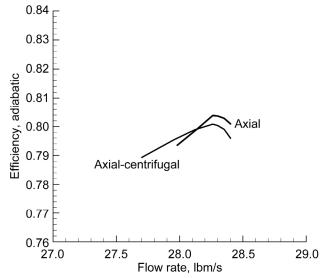


Figure 9.—Comparison of the all-axial to the axial-centrifugal configuration efficiency characteristics.

Conclusions

A conceptual design study was made on two potential compressors to meet the Large Civil Tilt Rotorcraft (LCTR) engine pressure ratio and flow requirements. An all-axial compressor was sized with a tapered-tip flow path, resulting in the last-stage rotor span of 0.281 in., and a tip-to-span clearance ratio of 4 percent. The hub-to-tip ratio of the last rotor is high at 0.95. Further study of the all-axial configuration is planned to increase the blade span of the last stage by increasing the tip taper and likely requiring additional axial stages. A second compressor was studied, featuring an axial-centrifugal compressor configuration with seven axial stages followed by a centrifugal stage. The centrifugal compressor has a specific speed of 56, which is low even for centrifugals. The impeller inlet also has a high hub-to-tip ratio of 0.85 and an exit height of 0.28 in. The high hub-to-tip ratio and low exit height will require tight control of eccentricity and axial clearance for this compressor configuration to keep rotor-tip leakages at acceptable levels. It is planned to do a conceptual design study of a two-spool compressor in the future that can provide additional flexibility to increase the specific speed of the centrifugal stage. The result of this study shows that from an aerodynamic perspective, it may be feasible to meet the requirements of a 31:1 pressure ratio compressor for the LCTR engine with either the all-axial compressor with a tapered-tip flow path, or with an axialcentrifugal compressor featuring seven axial stages, followed by a centrifugal stage. The high rotor-tip speeds of the latter compressor stages operating at temperatures up to 1580 °R will require advanced alloy materials be selected that are typically used to make turbines. The selection of materials for these high-tip-speed rotors operating in a high-temperature environment is a technology that will enable the feasibility of these compressors. Further study is planned with higher fidelity turbomachinery design and flow analysis codes to estimate the compressor efficiencies with clearance effects. Preliminary structural and thermal analyses of the blades and vanes are needed to determine if the required tip speeds from this conceptual design study can be achieved with currently available advanced alloy rotor materials. The mechanical design of the compressor and turbine shafts will also influence the feasibility of the flow paths in this study.

Appendix A.—Compressor Coordinates

The coordinates listed below describe the hub and tip flow path contour for both the eight-stage all-axial compressor and the seven-stage axial-centrifugal compressor. LE is the blade or vane leading edge and TE is the blade or vane trailing edge.

Eight-stage all-axial compressor

Eight-stage all-axial compressor										
		Tip Hı								
	X	R	X	R						
Rotor 1 LE	0.2218	6.2778	0.0000	2.2474						
Rotor 1 TE	1.7847	6.2778	1.9957	3.8000						
Stator 1 LE	2.1728	6.2634	2.1728	3.9049						
Stator 1 TE	3.4517	6.2120	3.4517	4.3956						
Rotor 2 LE	3.7025	6.2009	3.6033	4.4439						
Rotor 2 TE	4.4893	6.1646	4.5798	4.7246						
Stator 2 LE	4.7238	6.1534	4.7238	4.7615						
Stator 2 TE	5.4735	6.1162	5.4735	4.9363						
Rotor 3 LE	5.6755	6.1059	5.6149	4.9659						
Rotor 3 TE	6.2246	6.0770	6.2972	5.0945						
Stator 3 LE	6.3877	6.0682	6.3877	5.1098						
Stator 3 TE	6.9196	6.0390	6.9196	5.2288						
Rotor 4 LE	7.0800	6.0300	7.0314	5.2503						
Rotor 4 TE	7.5312	6.0080	7.5753	5.3435						
Stator 4 LE	7.6681	6.0001	7.6681	5.3576						
Stator 4 TE	8.0874	5.9756	8.0874	5.4143						
Rotor 5 LE	8.2775	5.9643	8.2373	5.4320						
Rotor 5 TE	8.6236	5.9434	8.6770	5.4674						
Stator 5 LE	8.7729	5.9343	8.7729	5.4744						
Stator 5 TE	9.0998	5.9140	9.0998	5.5051						
Rotor 6 LE	9.2801	5.9146	9.2282	5.5051						
Rotor 6 TE	9.5195	5.9041	9.5425	5.5234						
Stator 6 LE	9.6297	5.8993	9.6297	5.5280						
Stator 6 TE	9.8973	5.8875	9.8973	5.5411						
Rotor 7 LE	10.0574	5.8805	10.0159	5.5464						
Rotor 7 TE	10.2404	5.8725	10.2656	5.5564						
Stator 7 LE	10.3702	5.8668	10.3702	5.5601						
Stator 7 TE	10.6039	5.8565	10.6039	5.5675						
Rotor 8 LE	10.7352	5.8507	10.7071	5.5704						
Rotor 8 TE	10.8959	5.8437	10.9208	5.5755						
Stator 8 LE	11.0220	5.8381	11.0220	5.5776						
Stator 8 TE	11.1900	5.8308	11.1900	5.5804						

Seven-stage axial-1 centrifugal compressor

Tip Hub									
	1	1p							
	X	R	X	R					
Rotor 1 LE	0.2218	6.2778	0.0000	2.2474					
Rotor 1 TE	1.7858	6.2647	2.0067	3.6718					
Stator 1 LE	2.1728	6.2483	2.1728	3.7529					
Stator 1 TE	3.4517	6.1508	3.4517	4.1597					
Rotor 2 LE	3.7072	6.1313	3.6019	4.1848					
Rotor 2 TE	4.4767	6.0112	4.5760	4.4313					
Stator 2 LE	4.7146	5.9741	4.7146	4.4598					
Stator 2 TE	5.4592	5.8578	5.4592	4.5707					
Rotor 3 LE	5.6627	5.8261	5.5970	4.5902					
Rotor 3 TE	6.1991	5.7423	6.2887	4.6127					
Stator 3 LE	6.3668	5.7161	6.3788	4.6141					
Stator 3 TE	6.8933	5.6171	6.8933	4.6103					
Rotor 4 LE	7.0470	5.5695	6.9848	4.6075					
Rotor 4 TE	7.4863	5.4694	7.5454	4.5781					
Stator 4 LE	7.6303	5.4339	7.6303	4.5717					
Stator 4 TE	8.0420	5.3223	8.0420	4.5016					
Rotor 5 LE	8.2207	5.2718	8.1611	4.4815					
Rotor 5 TE	8.5639	5.1714	8.6409	4.3913					
Stator 5 LE	8.7134	5.1262	8.7134	4.3791					
Stator 5 TE	9.1205	4.9985	9.1205	4.2940					
Rotor 6 LE	9.2980	4.9408	9.2135	4.2734					
Rotor 6 TE	9.5245	4.8652	9.5654	4.1882					
Stator 6 LE	9.6303	4.8291	9.6303	4.1756					
Stator 6 TE	9.9066	4.7329	9.9066	4.0952					
Rotor 7 LE	10.0604	4.6780	9.9850	4.0714					
Rotor 7 TE	10.2467	4.6101	10.2979	3.9663					
Stator 7 LE	10.3712	4.5639	10.3712	3.9402					
Stator 7 TE	10.6099	4.4735	10.6099	3.8536					
Rotor 8 LE	12.0406	4.1509	11.9423	3.5313					
Rotor 8 TE	13.3540	6.7000	13.6340	6.7000					
Stator 8 LE	13.3722	7.2814	13.6340	7.2814					
Stator 8 TE	13.3722	9.4314	13.6340	9.4314					
-									

Appendix B.—Plots of Compressor Parameters at the Design Point

Figures 10 to 23 present plots comparing the values obtained from the all-axial compressor study and the axial-centrifugal compressor (see Tables I and II in text).

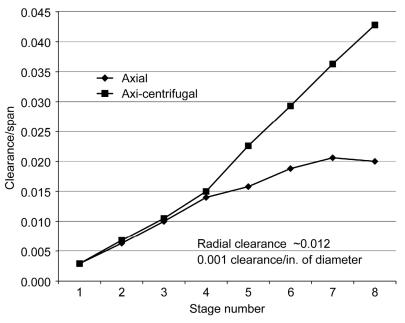


Figure 10.—Radial tip clearance and span comparison for the rotor leading edge.

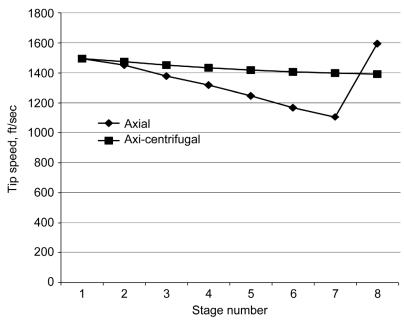


Figure 11.—Rotor peripheral tip speed versus stage.

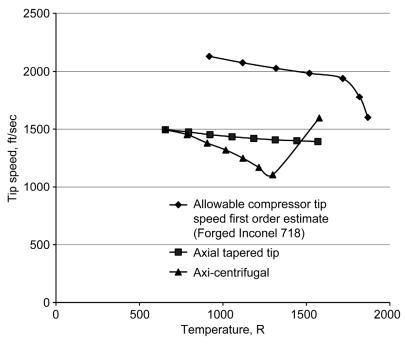


Figure 12.—Compressor stage exit temperature versus tip speed, compared to estimated maximum allowable for forged Inconel 718.

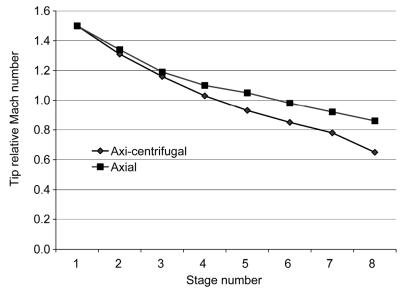


Figure 13.—Rotor inlet tip relative Mach number versus stage.

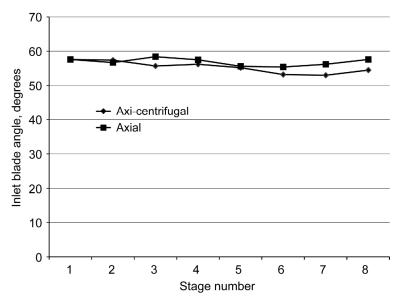


Figure 14.—Rotor inlet blade angle versus stage.

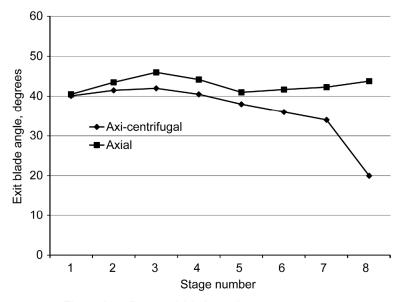


Figure 15.—Rotor exit blade angle versus stage.

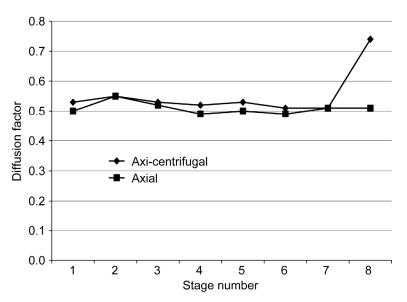


Figure 16.—Rotor diffusion factor versus stage.

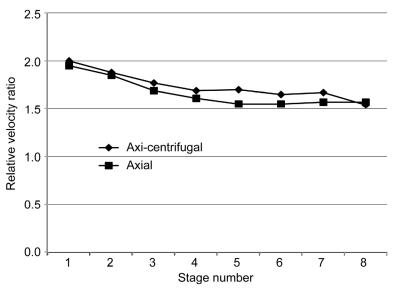


Figure 17.—Rotor relative velocity ration versus stage.

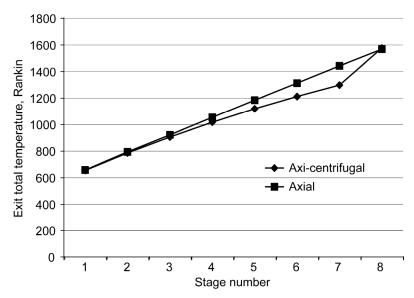


Figure 18.—Rotor exit total temperature versus stage.

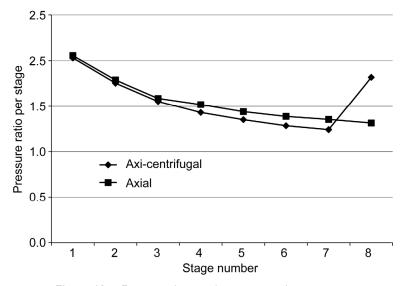


Figure 19.—Rotor total-to-total pressure ratio per stage.

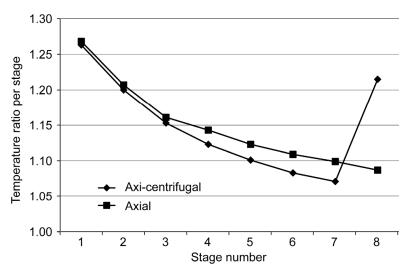


Figure 20.—Rotor total-to-total temperature ratio per stage.

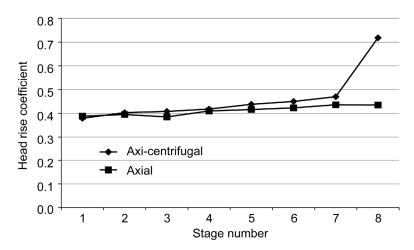


Figure 21.—Stage head rise coefficient.

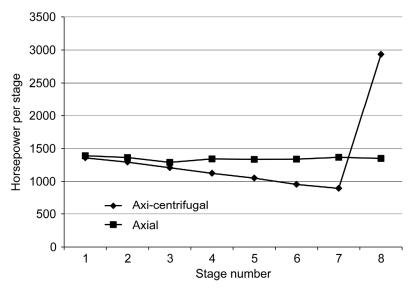


Figure 22.—Horsepower per stage.

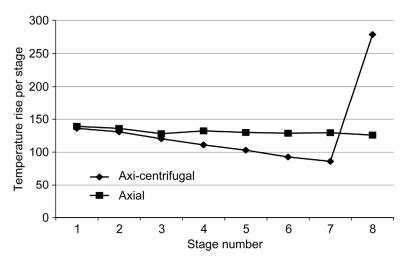


Figure 23.—Total temperature rise per stage.

Appendix C.—All-Axial Compressor Data

Below are the all-axial compressor mean-line flow analysis results at the design point operating condition.

LCTR	8 Axia	l Compresso	r Stage :	100% Spe	ed				
	COMPRESS	OR INLET CO	NDITIONS	, STAGE		1			
RESET =	0.000	BLEED = 0.	000 DP	Inc 5.00	0 Kg/se	c = 12.9042	25		
W	act	RPM act	Pt.	ı	Tt.	'POTS	POTH	т <u>А</u>	eroBl
•		27289.000							
W	cor	RPM cor	GAMM	A	Ср	'R	NBLAD)	THK
	28.39	27289.789	1.4	402	0.249	53.349	28.0	000	0.030
R	OTOR LEA	DING EDGE C	ONDITION	S, STAGE		1			
	R1	DING EDGE Co Stator 0.00	Alfa	C1	CU1	Cm1	Abs MACH		
TIP	6.28	0.00	-0.02	636.07	-0.22	636.07	0.59		
MEAN	4.72	0.00	-0.02	578.24	-0.20	578.24	0.53		
HUB	2.25	0.00	-0.02	462.60	-0.16	462.60	0.42		
	BetaFl	o BetaBla	de Incid	U1	W1	Ps1	Ts1	Rel Mach	
TIP	66.96	62.00	4.96	1495.53	1625.38	11.58	485.21	1.50	
MEAN	62.76	62.00 57.66	5.10	1123.15	1263.44	12.05	490.74	1.16	
HUB	49.17	44.20	4.97	535.10	707.46	12.95	500.97	0.64	
				_	_				
	ROTOR EX	IT CONDITION	NS, STAG	E	1				
В2	axial	THK	AeroBl						
0.	30	0.030	0.950						
	R2	C2	Cu2	Cm2	Ao2	Mach2			
TIP	6.28	C2 890.20	702.10	547.27	1222.90	0.73			
MEAN	5.19	874.11	647.99	586.67	1185.39	0.74			
		1082.43							
	112	W2	W112	Mach P	ol2 Wa1/t	wi 2			
TTD	1495 53	WZ 963 86	793 43	0 79	eiz Wai/i	12			
MEAN	1236 03	963.86 830.64	793.43 588 04	0.79	1 96				
HUB	904.94	699.65	75.57	0.61	1.50				
	Pt2	PR	Ps2	Tt2	TR	Ts2			
TIP	33.52	2.29	23.55	687.41	1.33	621.24	0.83		
MEAN	29.62	2.03 1.96	20.63	647.37	1.25	583.59	0.90		
HUB	28.63	1.96	16.06	639.26	1.23	541.65	0.91		
	Alfa	2 Beta FLO	Beta BL	ADE Devi	at Slip	F. Diff Fo	t Solidit	у	
TIP	52.06	55.40	51.50	3.90	0.93	0.57	1.32	-	
MEAN	47.84	45.07	40.50	4.57	0.93	0.50	1.75		
HUB	50.01	6.20	1.00	5.20	0.93	0.21	3.68		
ST	AGE EXIT	CONDITIONS	, STAGE		1				
יידת	F LOSS	Effic	DA:	sch	PR	TR	Ns	N.	s nondim
DIL	0.05	0.855		065		1.269			2.076
	0.00	3.033	30.		2.00,	1.205	207.7		
	thalpy			Rey					
867	478.44	0.388	1391.	703 1191	539.375				

COMPRESSOR	INLET	CONDITIONS,	STAGE
COMPRESSOR	TNTET	CONDITIONS,	DIAGE

	COMPRESSOR	R INLET CO	NDITIONS	, STAGE		2			
W	act RI 28.39 2	PM act 27289.000	Pt 30.	065	Tt 658.012	'POTS 1.100	POT 0.	н 900	AeroBl 0.980
W	cor RI 15.63 2	PM cor 24228.629	GAMM.	A 401	Cp 0.249	'R 53.349	NBLA 38.	D 000	THK 0.030
R	OTOR LEAD	NG EDGE C	ONDITION	S, STAGE	:	2			
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH		
TIP	6.20	0.00	-0.02	720.54	-0.25	720.54	0.59		
MEAN	5.39	0.00	-0.02	655.04	-0.23	720.54 655.04	0.54		
HUB	4.44	0.00	-0.02	589.54	-0.20	589.54	0.48		
	BetaFlo	BetaBla	de Incid	U1	W1	Ps1 23.76 24.73 25.73	Ts1	Rel Mac	:h
TIP	63.97	57.82	6.15	1475.29	1642.07	23.76	615.16	1.34	<u> </u>
MEAN	62.96	56.70	6.26	1283.25	1440.97	24.73	622.24	1.18	}
HUB	60.85	54.60	6.25	1056.87	1210.36	25.73	629.32	0.98	3
	ROTOR EXIT	CONDITIO	NS, STAG	E	2				
	axial								
0.	20 (0.030	0.950						
	R2	C2	Cu2	Cm2	Ao2	Mach2			
TIP	6.16	885.95	663.11	587.53	1341.71	0.66			
MEAN	5.49	881.34	657.35	587.06	1325.89	0.66			
HUB	4.72	900.82	641.19	632.74	1303.07	0.69			
	U2	W2	Wu2	Mach R	tel2 Ws1/	W2			
TIP	1466.71	995.48	803.60	0.74					
MEAN	1466.71 1306.45	875.19	649.09	0.66	1.85				
HUB	1123.55	795.64	482.36	0.61					
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2		
TIP	56.83	1.89	42.40	813.88	1.24	748.46	0.84		
MEAN	55.75	1.85	41.44	795.64	1.21	730.90	0.92		
HUB	51.09	1.70	37.11	773.46	1.18	748.46 730.90 705.83	0.93		
	Alfa2	Beta FLO	Beta BL	ADE Devi	at Slip	F. Diff F	ct Solidi	tv	
TIP	48.46	53.83	50.00	3.83	0.93	0.55	1.27	-2	
MEAN	48.23	47.87	43.50	4.37	0.93	0.55	1.46		
HUB	45.38	37.32	32.50	4.82	0.93	0.55 0.50	1.77		
ST	AGE EXIT	CONDITIONS	, STAGE		2				
א דת	'F LOSS	Effic	Pdi	sch	PR	TR	Νe		Ns nondim
DIF	0.05	0.876	53.	845	1.791	1.207	213.	512	1.655

Del Enthalpy Del_H/U^2 851000.19 0.396

GHP Reynolds# 1365.266 794049.563

COMPRESSOR	INLET	CONDITIONS,	STAGE

	COM REDE	ON INDEL CO	NDIIIOND	, bindl		J			
W	act	RPM act 27289.000	Pt		Tt	'POTS	POTE	I	AeroBl
	28.39	27289.000	53.	845	794.328	1.100	0.9	900	0.980
W	cor	RPM cor 22051.896	GAMM	A	Ср	'R	NBLAI)	THK
	9.59	22051.896	1.	398	0.251	53.349	50.0	000	0.030
F	ROTOR LEA	DING EDGE C	ONDITION	S, STAGE		3			
	R1	Stator 0.00	Alfa	C1	CU1	Cm1	Abs MACH		
TIP	6.10	0.00	-0.02	699.40	-0.24	699.40	0.52		
MEAN	5.56	0.00	-0.02	635.82	-0.22	635.82	0.47		
HUB	4.96	0.00	-0.02	572.24	-0.20	572.24	0.42		
	BetaFl	o BetaBla	de Incid	U1	W1	Ps1	Ts1	Rel Mac	h
TIP	64.29	58.20	6.09	1452.66	1612.48	44.87	754.12	1.19	
MEAN	64.35	58.40	5.95	1323.90	1468.86	46.28	760.77	1.09	
HUB	64.16	58.40 58.40	5.76	1181.18	1312.67	47.71	767.41	0.96	
	ROTOR EX	IT CONDITIO	NS, STAG	E	3				
В2	2 axial	THK	AeroBl						
0.	.10	0.030	0.950						
	R2	C2	Cu2	Cm2	Ao2	Mach2			
TIP	6.07	873.06 861.81	624.63	609.97	1449.37	0.60			
MEAN	5.60	861.81	618.16	600.50	1440.31	0.60			
HUB	5.09	848.71	568.87	629.84	1423.84	0.60			
	U2	W2	Wu2	Mach R	.el2 Ws1/	W2			
TIP	1445.76	1022.89	821.12	0.71					
MEAN	1333.91	. 93 4. 29	715.75	0.65	1.69				
HUB	1211.78	900.01	642.91	0.63					
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2		
TIP	88.57	PR 1.64	69.33	938.26	1.18	875.00	0.84		
MEAN	88.57	1.64	69.55	925.75	1.17	864.11	0.92		
HUB	82.37	1.53	64.79	904.19	1.14	844.42	0.93		
	Alfa	12 Beta FLO	Beta BL	ADE Devi	at Slip	F. Diff F	ct Solidit	y	
TIP	45.68	53.39	49.70	3.69	0.93	0.52	1.22		
MEAN	45.83	50.00	46.00	4.00	0.93	0.52	1.34		
HUB	42.09	50.00 45.59	41.50	4.09	0.93	0.46	1.51		
Sī	TAGE EXIT	CONDITIONS	, STAGE		3				
DIE	F LOSS	Effic	Pdi	sch	PR	TR	Ns		Ns nondim
	0.05	0.873	85.	573	1.589	TR 1.162	179.7	754	1.393
Del Er	thalpy	Del H/U^2	GHP	Rey	nolds#				
806	5058.38	Del_H/U^2 0.386	1293.	166 650	593.000				

COMPRESSOR	TNLET	CONDITIONS,	STAGE

W	act 28.39	RPM act 27289.000	Pt 85.	573	Tt 922.735	'POTS 1.100	POTH 0.9	AeroBl 0.980
W	cor	RPM cor 20460.078	GAMM	A 395	Cp 0.253	'R 53.349	NBLAD	THK 0.030
ŀ	ROTOR LEA	ADING EDGE C	ONDITION	S, STAGE	i	4		
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH	
TIP	6.02	0.00	-0.02	724.66	-0.25	724.66	0.50	
MEAN	5.65	0.00 0.00 4 0.00	-0.02	658.78	-0.23	658.78	0.45	
HUB	5.24	0.00	-0.02	592.91	-0.20	592.91	0.40	
	BetaF]	lo BetaBla	de Incid	U1	W1	Ps1	Ts1	Rel Mach
TIP	63.20	57.00	6.20	1434.56	1607.43	72.33	879.86	1.10
MEAN	63.91	L 57.50 L 58.00	6.41	1344.94	1497.83	74.41	886.96	1.03
HUB	64.61	L 58.00	6.61	1248.91	1382.69	76.53	894.04	0.94
	ROTOR EX	KIT CONDITIO	NS, STAG	E	4			
В2	2 axial	THK	AeroBl					
0.	.10	0.030	0.950					
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	6.00	926.43	632.40	677.01	1543.43	0.60		
	5.68	902.12	610.45	664.20	1536.64	0.59		
HUB	5.34	902.12 916.89	621.65	673.98	1530.54	0.60		
	U2	W2	Wu2	Mach R	el2 Ws1/	W2		
TIP	1429.32	1045.68	796.93	0.68				
MEAN	1352.53	995.92	742.08	0.65	1.62			
HUB	1271.10	935.97	649.46	0.61				
	Pt2	PR 1.54 7 1.54	Ps2	Tt2	TR	Ts2	Eff2	
TIP	132.14	1.54	103.67	1065.67	1.15	994.92	0.84	
MEAN	132.17	1.54	104.75	1053.29	1.14	986.21	0.93	
HUB	130.41	1.52	102.40		1.14	978.38	0.94	
	Alfa	a2 Beta FLO	Beta BL	ADE Devi	at Slip	F. Diff F	ct Solidit	Y
TIP	43.05	49.65	45.80	3.85	0.93	0.51	1.19	
MEAN	42.59	48.17	44.24	3.93	0.93	0.50	1.27	
HUB	42.69	49.65 48.17 43.94	39.70	4.24	0.93	0.49	1.37	
SI	TAGE EXIT	CONDITIONS	, STAGE		4			
DIE	FF LOSS	Effic	Pdi	sch	PR	TR	Ns	Ns nondi
	0.05	0.876	130.	176	1.521	1.144	148.3	1.150
el Er	ıthalpv	Del_H/U^2 0.411	GHP	Rev	nolds#			

COMPRESSOR	TNLET	CONDITIONS,	STAGE

COMPRESSOR INLET CONDITIONS, STAGE 5									
W	act R 28.39	PM act 27289.000	Pt 130.1		rt 055.544	'POTS 1.100	POT 0.	н 900	AeroBl 0.980
W	cor R	PM cor		A	Съ	'R 53.349	NBLA	D 000	ТНК 0.030
R	OTOR LEAD	ING EDGE C	ONDITIONS	S, STAGE		5			
	D1	0+++	216-	G1	CITT1	O1	aha wagu		
TIP	5.96	Stator 0.00	0 02	700 75	0.30	700 75	ADS MACH		
MEAN	5.90	0.00	-0.02	726.73	-0.26	736.73	0.31		
HUB	5.43	0.00	-0.02	653.52	-0.23	653.52	0.42		
1102									
	BetaFlo	BetaBla	de Incid	U1	W1	Ps1	Ts1	Rel Mac	
TIP	60.63	54.10 55.60	6.53	1418.85	1628.47	108.87	1003.97	1.05	
	61.85	55.60	6.25	1356.98	1539.27	112.20	1012.50	0.99	
HUB	63.18	56.80	6.38	1292.16	1448.22	115.61	1021.01	0.92	
	ROTOR EXI	T CONDITIO	NS, STAGI	3	5				
В2	axial	THK	AeroBl						
0.	05	THK 0.030	0.950						
	R2	C2	Cu2	Cm2	Ao2	Mach2			
TIP	5.94	983.70	648.18	739.95	1634.40	0.60			
MEAN		961.63							
HUB	5.46	931.93	562.69	742.88	1619.14	0.58			
	U2	W2	W112	Mach Re	-12 Wg1/t	wi 2			
TTP	1414 08	1064 96	765 90	0 65	JIZ (151)	12			
MEAN	1358 52	1064.96 1021.04	722 61	0.63	1 56				
HUB		1047.07							
	Pt2	PR 1.47	Ps2	Tt2	TR	Ts2	Eff2		
TIP	191.71	1.47	150.33	1198.90	1.14	1119.92	0.84		
MEAN	193.99	1.49 1.41	153.56	1190.66	1.13	1115.18	0.92		
HUB	183.68	1.41	146.96	1170.00	1.11	1099.12	0.93		
	Alfa2	Beta FLO	Beta BLA	ADE Devia	at Slip	F. Diff Fo	ct Solidi	tv	
TIP	41.22	45.99	42.00	3.99	0.93	0.51	1.21	-1	
MEAN	41.40	45.99 45.05	41.00	4.05	0.93	0.50	1.27		
HUB		44.81							
		CONDITIONS			5				
	T 1055	n.c.:		1-	D D				
DIF	F LOSS 0.05	Effic 0.872	Pdis	sch 318	PR 1.443	TR 1.124	Ns 129.		Ns nondim
	0.05	0.8/2	T8/.8	0.10	1.443	1.124	129.	201	1.003
		_							

Del Enthalpy Del_H/U^2 837881.94 0.419

GHP Reynolds# 1344.221 517435.875

COMPRESSOR INLET	' CONDITIONS.	STAGE
------------------	---------------	-------

W	act R 28.39	PM act 27289.000	Pt 187.	818 1				AeroBl 00 0.980
W	cor R	PM cor 18042.957	GAMM	A 383	Cp 0.259	'R 53.349	NBLAD 80.00	THK 0.030
F	ROTOR LEAD	ING EDGE CO	ONDITION	S, STAGE		6		
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH	
TIP	5.91	0.00	-0.02	793.95	-0.27	793.95	0.48	
MEAN	5.71	0.00	-0.02	721.77	-0.25	721.77	0.44	
HUB	5.50	0.00	-0.02	649.60	-0.22	649.60	0.39	
	BetaFlo	BetaBlac	de Incid	U1	W1	Ps1	Ts1	Rel Mach
TIP	60.57	53.90	6.67	1407.11	1615.88	160.59	1136.17	0.98
MEAN	62.03	53.90 55.43 57.10	6.60	1359.21	1539.18	164.89	1144.50	0.93
HUB	63.62	57.10	6.52	1309.56	1462.03	169.25	1152.81	0.88
	ROTOR EXI	T CONDITION	NS, STAG	Ε	6			
D.		muv	Nome D1					
		THK						
0.	.05	0.030	0.950					
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	5.90	981.22	654.68	730.87	1723.20	0.57		
MEAN	5.71	981.22 951.16	626.87	715.37	1719.28	0.55		
		926.24						
	II2	W2	W112	Mach R	el2 Wg1/t	wi2		
TTP	1404 58	1047.15	749 90	0 61	011			
MEAN	1360 01	1047.13	733 14	0.61	1 56			
HUB	1313.92	1024.33 1040.76	742.68	0.61	1.50			
		PR	Ps2	Tt2	TR	Ts2	Eff2	
TIP	265.99	1.42	214.00	1328.46	1.12	1250.81	0.85	
		1.42						
HUB	257.59	1.37	211.50	1302.37	1.10	1233.18	0.94	
	Alfa2	Beta FLO	Beta BL	ADE Devi	at Slip	F. Diff Fo	t Solidity	У
TIP	41.85	45.74	41.70	4.04	0.93	0.52	1.21	
MEAN	41.23	45.74 45.70	41.70	4.00	0.93	0.50	1.25	
HUB	38.08	45.53	41.70	3.83	0.93	0.44	1.30	
SI	AGE EXIT	CONDITIONS	STAGE		6			
D.T	III TOCC	nee!	n 3 '	L	DD.	mn	37	W 21
DIF	O OF	Effic 0.874	Pa1:	SCN 104	PK	TR	Ns 113.1	Ns nondim
	0.05	0.874	261.	184	1.391	1.109	113.10	0.877
Del Er	thalpy	Del H/U^2	GHP	Rev	nolds#			
841	334.13	Del_H/U^2 0.426	1349.	759 468	731.500			

	COMPRESS	OR INLET CO	NDITIONS	, STAGE		7			
W	act 1	RPM act 27289.000	Pt 261.	184 1	Tt 316.314	'POTS 1.100	POT1	н 900	AeroBl 0.980
		RPM cor 17130.342							
		DING EDGE CO							
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH		
TТР									
MEAN	5.71	0.00 0.00	-0.02	691.83	-0.24	691.83	0.40		
HUB	5.54	0.00	-0.02	622.65	-0.21	622.65	0.36		
	RotaFl	o BetaBlac	de Ingid	111	W1	De1	Ta1	Pol Mag	h
TT D	61 46	54.80	6 66	1200 06	1502 70	220 E2	1270 60	n as	
TTE	63.04	54.00	6.00	1350.30	1534./3	247.33	1070 00	0.92	
MEAN HUB	64.74	56.20 57.90	6.84	1319.40	1459.13	234.57	1278.23	0.88	
		IT CONDITION							
		тнк							
в ₂	axiai 05	0.030	0.950						
		C2							
	5.87	963.51	659.92	702.04	1807.01	0.53			
MEAN	5.71	938.35	639.43	686.75	1804.28	0.52			
HUB	5.55	915.64	595.68	695.39	1798.28	0.51			
		W2				W2			
TIP	1397.06	1017.95	737.13	0.56					
MEAN	1359.94	995.37	720.51	0.55	1.58				
HUB	1321.78	1005.38	726.10	0.56					
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2		
TIP	358.21	PR 1.37	296.07	1456.51	1.11	1382.65	0.85		
MEAN	361.80	1.39	301.75	1448.54	1.10	1378.49	0.93		
	352.33	1.35	296.03	1436.04	1.09	1369.33	0.94		
	Δlfa	2 Beta FLO	Beta BL	ADE Devi	at Slin	F. Diff F	at Solidi:	tv	
TTP	43 23	46 40	42 30	4 10	0 03	0.53	1 22	-2	
MEAN	42 96	46 37	42 30	4 07	0.53	0.55	1 26		
HUB	40.58	46.40 46.37 46.24	42.30	3.94	0.93	0.47	1.30		
		CONDITIONS			7				
DIE	'F LOSS	Effic	Pdia	aah	PR	TR	Ns		Ns nondim
DIF	0.05	0.876		scn 474	1.357	1.099	NS 98.		0.764
	0.05	0.8/6	334.4	± / '	1.35/	1.099	90.	503	0./04
	thalpy	Del_H/U^2	GHP		nolds#				
860	064.69	0.441	1379.8	809 427	515.625				

COMPRESSOR INLET CONDITIONS, STAGE 8									
W a	act 28.39	RPM act 27289.0	Pt 00 354.		Гt 447.031	'POTS 1.100	POT:	н Ае 900	eroBl 0.980
TAT .		DDM gom	GAMM		(Im	'R	NBLA		гнк
W	cor 1.97	RPM cor 16338.2		368	Cp 0.267	53.349			0.030
RO	ROTOR LEADING EDGE CONDITIONS, STAGE 8								
		4	116-		G111	G 1	11 - 11 GT		
	R1	Stat			CU1	Cm1	Abs MACH		
TIP	5.84	4 0.0	0 -0.02	721.08	-0.25	721.08	0.39		
MEAN	5.7	1 0.0	0 -0.02	655.53	-0.23	655.53	0.36		
HUB	5.5	0.0	0 -0.02	589.98	-0.20	589.98	0.32		
	BetaF:	lo Beta	Blade Incid	. 01	W1	Ps1	Ts1	Rel Mach	
TIP	62.63	2 55.7	0 6.92	1391.89	1567.80	319.10	1406.66	0.86	
MEAN	64.2	5 57.6	0 6.65	1358.91	1508.97	324.77	1413.34	0.83	
HUB	66.0			1325.11			1420.00	0.79	
I	ROTOR EXIT CONDITIONS, STAGE 8								

В2	axial	тнк	AeroBl				
0.	05	0.030	0.950				
	R2	C2	Cu2	Cm2	702	Magh?	
		933.48					
MEAN	5.71	912.48	632.67	657.54	1883.46	0.48	
HUB	5.57	892.03	596.42	663.33	1878.86	0.47	
	U2	W2	Wu2	Mach Re	el2 Ws1/V	W2	
TIP	1390.20	1000.50	741.72	0.53			
MEAN	1358.65	979.50	725.98	0.52	1.59		
HUB	1326.35	986.31	729.93	0.52			
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2
TIP	469.94	1.33	398.85	1581.94	1.09	1513.62	0.85
MEAN	475.61	1.34	406.42	1575.66	1.09	1510.38	0.93
HUB	466.31	1.32	400.91	1565.40	1.08	1503.02	0.94
	Alfa2	2 Beta FLO	Beta BL	ADE Devia	at Slip	F. Diff Fct	Solidity
TIP	44.00	47.85	43.80	4.05	0.93	0.53	1.21
3677337						0.50	

		17.00	13.00	05	0.33	0.55	
MEAN	43.90	47.83	43.80	4.03	0.93	0.52	1.24
HUB	41.96	47.74	43.80	3.94	0.93	0.48	1.28

STAGE EXIT CONDITIONS, STAGE 8

DIFF LOSS	Effic	Pdisch	PR	TR	Ns	Ns nondim
0.05	0.877	467.192	1.318	1.088	88.784	0.688

Del Enthalpy Del_H/U^2 GHP Reynolds# 1365.482 393019.219 851134.44 0.440

OVERALL EXIT CONDITIONS; ALL 8 STAGES

Del Enthalpy GHP EFFICIENCY PR TR 6755277.50 10837.5469 0.8032 31.7818 3.0353

Appendix D.—Axial-Centrifugal Compressor Data

Below are the axial-centrifugal compressor mean-line flow analysis results at the design point operating condition.

LCTR 7 Axial 1 Centrifugal Stage 100% Speed

		OR INLET CO						
RESET =	0.000	BLEED = 0.	000 DPIn	5.000	Kg/sec =	12.90909		
W	act :	RPM act	Pt		Tt	'POTS	POTH	AeroBl
	28.40	27289.000	14.	613	518.670	1.100	0.8	0.980
W								THK
	28.40	27289.789	1.4	402	0.249	53.349	28.0	0.030
R	OTOR LEAD	DING EDGE C	ONDITION	S, STAGE	1	1		
	R1	Stator 0.00	Alfa	C1	CU1	Cm1	Abs MACH	
TIP	6.28	0.00	-0.02	636.97	-0.22	636.97	0.59	
		0.00						
HUB	2.25	0.00	-0.02	463.25	-0.16	463.25	0.42	
	BetaFl	o BetaBla	de Incid	U1	W1	Ps1	Ts1	Rel Mach
TIP	66.93	62.00 57.56	4.93	1495.05	1625.29	11.57	485.12	1.50
MEAN	62.72	57.56	5.16	1122.83	1263.54	12.04	490.66	1.16
HUB	49.12	44.20	4.92	535.10	707.89	12.94	500.92	0.64
	ROTOR EX	IT CONDITIO	NS, STAG	E	1			
В2	axial	THK 0.030	AeroBl					
0.	30	0.030	0.950					
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	6.28	C2 864.45	685.22	527.02	1222.52	0.71		
		870.86						
HUB	3.67	1048.17	801.40	675.59	1140.89	0.92		
	U2	W2	Wu2	Mach R	el2 Ws1/	W2		
TIP	1495.05	966.22	809.83	0.79				
MEAN	1224.70	966.22 789.04	556.90	0.66	2.00			
HUB	874.41	679.52	73.00	0.60				
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2	
TIP		2.26						
MEAN	30.05	2.06	21.02	650.09	1.25	586.78	0.91	
HUB	27.51	2.06 1.88	15.93	631.26	1.22	539.70	0.92	
	Alfa	2 Beta FLO	Beta BL	ADE Devi	at Slip	F. Diff F	ct Solidit	v
TIP	52.44	2 Beta FLO 56.95	53.20	3.75	0.93	0.57	1.32	1
		44.89						
HUB	49.87				0.93			
ST	AGE EXIT	CONDITIONS	, STAGE		1			
חד≖	F LOSS	Effic	p.d.i.e	sch	PR	TR	Ns	Ns nondir
DIF	0.05			677				85 2.112
		Del_H/U^2		_				
848	001.94	0.379	1360.	967 1192	642.500			

COMPRESSOR	TNLET	CONDITIONS,	STAGE

	COMPRESSOR	INLET CO	NDITIONS	, STAGE		2		
W	act RP 28.40 2	M act 7289.000	Pt 29.	677	Tt 654.883	'POTS 1.100	POT:	H AeroBl 900 0.980
W	cor RP 15.81 2	M cor 4286.434	GAMM.	A 401	Cp 0.249	'R 53.349	NBLA	D THK 000 0.030
R	OTOR LEADI	NG EDGE C	ONDITION	S, STAGE		2		
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH	
TIP	6.10	0.00	-0.02	679.69	-0.23	679.69	0.56	
MEAN	6.10 5.23	0.00	-0.02	617.90	-0.21	617.90	0.50	
HUB	4.18	0.00	-0.02	556.11	-0.19	556.11	0.45	
	BetaFlo	BetaBla	de Incid	U1	W1	Ps1	Ts1	Rel Mach
TTP	64.93	59.00	5.93	1452.66	1604.02	24.06	616.74	1.31
MEAN	63.62	57.42	6.20	1245.69	1390.71	24.93	623.05	1.14
HUB	63.62 60.84	54.50	6.34	996.62	1141.44	25.83	629.35	0.92
	ROTOR EXIT	CONDITIO	NS, STAG	E	2			
В2	axial	THK	AeroBl					
	0.20							
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	5.98	865.82	633.85	589.80	1331.49	0.65		
MEAN	5.26	873.23	644.05	589.68	1316.63	0.66		
HUB	4.43	941.87	700.49	629.63	1297.19	0.73		
	U2	W2	Wu2	Mach R	el2 Ws1/	W2		
TIP	1424.09	986.07	790.23	0.74	,			
MEAN	1424.09 1253.29	847.87	609.24	0.64	1.88			
HUB		722.67	354.71	0.56				
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2	
TIP	Pt2 53.91	1.82	40.57	799.56	1.22	737.07	0.84	
MEAN	53.30	1.80	39.67	784.25	1.20	720.69	0.92	
HUB	53.30 51.19	1.72	36.04	773.34	1.18	699.41	0.93	
	λlfa2	Beta FI.O	Reta RI.	ADE Devi	at Glin	F. Diff Fo	ct Solidi:	+17
ΨΤЪ	47 N6	53 26	49 47	3 79	0 03	0 54	1 27	Cy
MEAN	47.06 47.52	45 93	41 46	4 47	0.93	0.51	1 48	
	48.05							
ST	'AGE EXIT C	ONDITIONS	, STAGE		2			
שדת	'F LOSS	Fffic	DA:	ach	DD	ΨĐ	Ne	Na nondim
DIF	0.05	0.875	52 -	097	1.755	1.200	219.4	Ns nondim 481 1.701
			-2.			00		

Del Enthalpy Del_H/U^2 816707.63 0.403

GHP Reynolds# 1310.742 812599.375

	COMPRESSO	OR INLET CO	NDITIONS	, STAGE		3		
W	act 1	RPM act	Pt		Tt	'POTS	POTH	AeroBl
	28.40	27289.000	52.	097	785.718	1.100	0.9	AeroBl 00 0.980
W	cor 1	RPM cor	GAMM	A	Ср	'R	NBLAD	тнк
	9.86	22172.389	1.3	399	0.251	53.349	50.0	THK 0.030
R	OTOR LEAD	OING EDGE C	ONDITION	S, STAGE		3		
		Stator						
TIP	5.79	0.00	-0.02	729.10	-0.25	729.10	0.54	
MEAN	5.22	0.00	-0.02	662.81	-0.23	662.81	0.49	
HUB	4.59	0.00	-0.02	596.53	-0.21	596.53	0.44	
	BetaFlo	o BetaBla	de Incid	U1	W1	Ps1	Ts1	Rel Mach
TIP	62.14	56.00	6.14	1378.84	1559.96	42.62	742.01	1.16
MEAN	61.96	55.70	6.26	1244.19	1409.93	44.09	749.24	1.05
HUB	61.38	55.00	6.38	1093.07	1245.43	45.60	756.46	0.92
	ROTOR EX	IT CONDITION	NS, STAG	E	3			
В2	axial	THK	AeroBl					
		0.030						
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP		868.09						
MEAN	5.19	855.65	596.31	613.63	1422.29	0.60		
HUB	4.61	895.51	633.67	632.78	1411.88	0.63		
	U2	W2	Wu2	Mach R	el2 Ws1/	W2		
TIP		971.77						
		886.48						
HUB	1098.55	785.19	464.88	0.56				
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2	
TIP	83.00	PR 1.59	64.79	917.93	1.17	855.37	0.84	
MEAN	82.05	1.57	64.26	903.25	1.15	842.47	0.92	
		1.54						
	Alfa	2 Beta FLO	Beta BL	ADE Devi	at Slip	F. Diff Fc	t Solidit	y
TIP		50.52				0.54		-
MEAN	44.18	46.19	42.01	4.18	0.93	0.53	1.36	
HUB	45.04	46.19 36.30	31.47	4.83	0.93	0.53	1.54	
ST	AGE EXIT	CONDITIONS	, STAGE		3			
DIF	'F LOSS	Effic	Pdia	sch	PR	TR	Ns	Ns nondim
	0.05	0.874	80.	924	1.553	1.153	192.0	
Del En	thalpy	Del H/U^2	GHP	Rey	nolds#			
	495.94	0.408	1210.	898 703	666.375			

COMPRESSOR	INLET	CONDITIONS,	STAGE

	COMPRESS	OR INLET CO	NDITIONS	, STAGE		4		
W	act 1	RPM act 27289.000	Pt 80.	924	Tt 905.963	'POTS 1.100	POTH 0.9	AeroBl 00 0.980
W	cor :	RPM cor	GAMM	A	Ср	'R	NBLAD	THK
	6.82	20648.596	1.	395	0.252	53.349	60.0	0.030
R	OTOR LEAD	DING EDGE C	ONDITION	S, STAGE	:	4		
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH	
TIP	5.54	Stator 0.00	-0.02	697.68	-0.24	697.68	0.48	
		0.00						
HUB	4.61	0.00	-0.02	570.83	-0.20	570.83	0.39	
	BetaFl	o BetaBla	de Incid	U1	W1	Ps1	Ts1	Rel Mach
TIP	62.12	56.00 56.20 57.00	6.12	1318.83	1492.21	69.06	866.19	1.03
MEAN	62.40	56.20	6.20	1213.05	1369.05	70.93	872.77	0.95
HUB	62.52	57.00	5.52	1097.12	1236.91	72.84	879.34	0.85
	ROTOR EX	IT CONDITIO	NS, STAG	E	4			
В2	axial	тнк	AeroBl					
	0.10	0.030	0.	950				
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	5.44	C2 863.90	584.23	636.39	1519.69	0.57		
MEAN	5.03	852.54	575.81	628.70	1512.51	0.56		
HUB	4.58	879.96	603.22	640.68	1505.43	0.58		
	U2	W2	Wu2	Mach R	el2 Ws1/	W2		
TIP	1295.49	954.40 884.01	711.26	0.63				
MEAN	1197.27	884.01	621.46	0.58	1.69			
HUB	1090.24	804.77	487.02	0.53				
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2	
TIP	117.54	1.45	94.47	1025.79	1.13	964.21	0.84	
MEAN	117.44	1.45	94.72	1015.10	1.12	955.13	0.92	
HUB	115.96	1.45 1.43	92.08	1010.07	1.11	946.18	0.93	
	Alfa	2 Beta FLO	Beta BL	ADE Devi	at Slip	F. Diff Fo	ct Solidit	У
TIP	42.55	48.18	44.26	3.92	0.93	0.52	1.19	
MEAN	42.49	44.67	40.51	4.16	0.93	0.52	1.29	
HUB	43.28	37.24	32.62	4.62	0.93	0.52	1.43	
ST	AGE EXIT	CONDITIONS	, STAGE		4			
DIF	F LOSS	Effic	Pdi	sch	PR	TR	Ns	Ns nondim
	0.05	0.872	115.		1.431	1.123		
Del En	thalpy	Del H/U^2	GHP	Rev	nolds#			
	661.88	0.418		104 637				

	COM KEDD	OK INDDI CO	NDIIIOND	, DIMOL		3			
W	act I	RPM act 27289.000	Pt		Tt	'POTS	POTH	Αe	eroBl
	28.40	27289.000	115.	820 1	016.988	1.100	0.90	0	0.980
W	cor I	RPM cor	GAMM	A	Съ	'R	NBLAD	2	HK
•	5.05	RPM cor 19488.920	1.	391	0.255	53.349	70.00	0	0.030
F	ROTOR LEAI	DING EDGE CO	ONDITION	S, STAGE		5			
	R1	Stator 0.00 0.00 0.00	Alfa	C1	CU1	Cm1	Abs MACH		
TIP	5.24	0.00	-0.02	690.70	-0.24	690.70	0.45		
MEAN	4.88	0.00	-0.02	627.91	-0.22	627.91	0.41		
HIIB	4 48	0.00	-0.02	565 12	_0.19	565 12	0.12		
	BetaFlo	BetaBlac 54.80 55.20 55.50	de Incid	U1	W1	Ps1	Ts1 R	el Mach	
TIP	61.04	54.80	6.24	1247.86	1426.47	100.90	978.31	0.93	
MEAN	61.60	55.20	6.40	1161.06	1320.17	103.26	984.70	0.86	
HUB	62.10	55.50	6.60	1067.23	1207.79	105.66	991.09	0.78	
	ROTOR EX	IT CONDITION	NS, STAG	E	5				
В2	axial	THK	AeroBl						
	0.10	0.030	0.	950					

	R2	C2	Cu2	Cm2	Ao2	Mach2			
TIP	5.14	849.48	575.31	625.00	1597.25	0.53			
MEAN	4.78	844.07	576.55	616.48	1592.18	0.53			
HUB	4.39	854.35	579.87	627.43	1585.22	0.54			
	112	W2	W112	Mach R	el2 Wg1/W	1 2			
TTD	1224 05	900.82	648 73	0.56	011				
MEAN	1120 20	934 00	540.75 561 05	0.50	1 70				
HEAN	1045 75	834.09 781.48	16E 00	0.52	1.70				
пов	1045.75	701.40	403.00	0.49					
	Pt2	PR 1.37	Ps2	Tt2	TR	Ts2	Eff2		
TIP	158.30	1.37	130.71	1127.51	1.11	1068.43	0.84		
MEAN	159.28	1.38	131.68	1120.00	1.10	1061.66	0.93		
HUB	156.10	1.38	128.25	1112.16	1.09	1052.39	0.94		
	Alfa	2 Beta FLO	Beta BL	ADE Devi	at Slip	F. Diff Fo	et Solidity		
TTP	42.63	46.07	42.00	4.07	0.93	0.53	1.21		
MEAN	43 08	46.07 42.35	38 00	4 35	0.93	0.53	1 30		
HUB	42.74	36.59	32.00	4.59	0.93	0.52	1.42		
		CONDITIONS							
DIE	FF LOSS	Effic 0.873	Pdi	sch	PR	TR	Ns	Ns	nondim
	0.05	0.873	156.	506	1.351	1.101	159.81	.4	1.239
Del Er	nthalpv	Del H/U^2	GHР	Rev	nolds#				
655	5986.81	Del_H/U^2 0.438	1052.	800 604	502.250				

5

Del Enthalpy Del_H/U^2 GHP Reynolds# 596158.88 0.450 956.781 593802.938

	COMPRESSOR	INLET CO	NDITIONS	, STAGE		6		
W								I AeroBl
	28.40 2	7289.000	156.	506 1:	119.889	1.100	0.9	0.980
W	cor RP 3.92 1	M cor	GAMM	A	Ср	'R	NBLAD	тнк
	3.92 1	8571.986	1.3	386	0.257	53.349	80.0	0.030
F	ROTOR LEADI	NG EDGE C	ONDITIONS	S, STAGE		6		
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH	
TIP	4.91 4.60	0.00	-0.02	703.82	-0.24	703.82	0.44	
MEAN	4.60	0.00	-0.02	639.84	-0.22	639.84	0.40	
HUB	4.27	0.00	-0.02	575.85	-0.20	575.85	0.36	
	BetaFlo	BetaBla	de Incid	U1	W1	Ps1	Ts1	Rel Mach
TIP	58.96	52.20	6.76	1169.27	1364.97	137.44	1080.07	0.85
MEAN	59.73 60.50	53.20	6.53	1096.05	1269.33	140.47	1086.66	0.79
HUB	60.50	54.20	6.30	1017.58	1169.39	143.54	1093.23	0.72
	ROTOR EXIT	CONDITIO	NS, STAGI	E	6			
	2 axial							
0.	10 0	.030	0.950					
	R2 4.83	C2	Cu2	Cm2	Ao2	Mach2		
TIP	4.83	845.97	548.72	643.88	1661.44	0.51		
MEAN	4.52 4.18	833.86	537.94	637.13	1656.75	0.50		
HUB	4.18	864.62	579.20	641.95	1653.46	0.52		
	U2					W2		
TIP	1151.18 1076.35	881.78	602.46	0.53				
	1076.35	834.15	538.40	0.50	1.65			
HUB	995.91	765.34	416.70	0.46				
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2	
TIP	202.28	1.29	169.75	1218.08				
MEAN				1209.89	1.08	1153.45	0.93	
HUB	202.83	1.30	168.62	1209.54	1.08	1148.86	0.94	
	Alfa2	Beta FLO	Beta BL	ADE Devi	at Slip	F. Diff F	ct Solidit	У
TIP	40.44	43.10	39.00	4.10	0.93	0.52		
MEAN	40.18							
HUB						0.52		
SI	CAGE EXIT C	ONDITIONS	, STAGE		6			
DIE	F LOSS	Effic	Pdis	sch	PR	TR	Ns	Ns nondim
		0.871		887	1.284		154.6	

	COMPRESSO	OR INLEI CO.	NDITIONS	, SIAGE		,		
W	act 1	RPM act	Pt		Tt	'POTS	POTH	AeroBl
	28.40	27289.000	200.	887 1	212.503	1.100	0.90	0.980
7-7		DDW	G3300		O	I.D.	MDI AD	THK
W	3 18	RPM cor 17848.609	GAMM2 1 '	A 382	0 260	'K 53 349	82 UU NBLAD	0.030
	3.10	17010.003	 .	302	0.200	33.313	02.00	0.030
R	OTOR LEAD	DING EDGE C	ONDITION	S, STAGE		7		
	R1	Stator 0.00 0.00 0.00	Alfa	C1	CU1	Cm1	Abs MACH	
TIP	4.65	0.00	-0.02	683.27	-0.24	683.27	0.41	
MEAN	4.37	0.00	-0.02	621.16	-0.21	621.16	0.37	
HUB	4.07	0.00	-0.02	559.04	-0.19	559.04	0.33	
	BetaFlo	o BetaBla	de Incid	U 1	W1	Ps1	Ts1 F	Rel Mach
TIP	58.31	52.10 53.00	6.21	1106.55	1300.70	179.46	1175.31	0.78
MEAN	59.16	53.00	6.16	1040.27	1211.79	182.88	1181.46	0.72
HUB	60.04	53.80	6.24	969.47	1119.28	186.35	1187.61	0.66
	ROTOR EX	IT CONDITION	NS, STAG	E	7			
ъэ	owiol	THK	NoroP1					
		0.030						
0.	10	0.030	0.930					
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	4.58	826.13	547.75	618.44	1721.39	0.48		
MEAN	4.28	813.61	535.13	612.86	1717.06	0.47		
HUB	3.97	836.11	563.38	617.81	1713.53	0.49		
	U2	W2 822.79	W112	Mach R	el2 Ws1/V	W2		
TIP	1090.45	822.79	542.70	0.48				
MEAN	1020.07	781.52	484.95	0.46	1.67			
HUB	944.47	781.52 725.89	381.09	0.42				
	D+0	22	D-0	m+0	mn.	m - 0	7550	
m T D	251.41	PR 1.25	PS4	1204 42	1 00	154 1240 E2	0.04	
MEYM	251.41	1.25	215.10	1204.43	1.00	1249.33	0.92	
MEAN	251.40	1.25 1.25	210.03	1290.32	1.07	1243.27	0.93	
пов	250.00	1.25	213.42	1234.33	1.07	1236.13	0.93	
	Alfa	2 Beta FLO	Beta BL	ADE Devi	at Slip	F. Diff Fo	ct Solidity	7
TIP	41.53	41.27 38.35	37.00	4.27	0.93	0.54	1.22	
MEAN	41.13	38.35	34.00	4.35	0.93	0.52	1.30	
HUB	42.36	31.67	27.00	4.67	0.93	0.53	1.39	
ST	AGE EXIT	CONDITIONS	, STAGE		7			
ard	F LOSS	Effic	Pdi	sch	PR	TR	Ns	Ns nondim
	0.05	0.868	249.	360	1.241	1.071	148.36	1.150
						-		
Del En	thalpy	Del_H/U^2 0.470	GHP	Rey	nolds#			
558	713.00	0.470	896.	684 584	503.813			

7

	COMPRESS	OR INLET C	ONDITIONS	, STAGE		8		
W		RPM act 27289.000						H AeroBl 900 0.980
W		RPM cor 17247.789				'R 53.349		D THK 000 0.030
R	OTOR LEA	ADING EDGE	CONDITIONS	S, STAGE		8		
MEAN HUB	4.10 3.81 3.50 BetaFl	Stator 0.00 0.00 0.00 0.00 BetaBl 54.00	-0.02 -0.02 -0.02 ade Incid	562.70 511.55 460.39	-0.19 -0.18 -0.16	562.70 511.55 460.39	0.32 0.29 0.26	Rel Mach
MEAN	60.60	54.50 55.00	6.10	907.75	1042.12	235.03	1277.59	0.60
	ROTOR EX	XIT CONDITI	ONS, STAGI	Ε	8			
	axial 28	THK 0.030	AeroBl 0.950					
TIP MEAN HUB	6.70 6.70	C2 1286.38 1281.72 1281.17	1137.24 1149.70	601.22 566.57		0.70 0.69		

	0.70			302.12 2	013.31	0.05	
	U2	W2	Wu2	Mach Rel2	Ws1/W2		
TIP	1595.55	755.98	458.31	0.41			
MEAN	1595.55	720.96	445.85	0.39	1.54		
HUB	1595.55	716.82	444.42	0.39			
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2
TIP	455.63	1.83	330.98	1574.88	1.21	1442.97	0.84
MEAN	483.37	1.94	352.20	1577.91	1.22	1446.95	0.92
HUB	486.92	1.95	354.91	1578.25	1.22	1447.40	0.93

	Alfa2	Beta FLO	Beta BLADI	E Deviat	Slip F.	Diff Fct	Solidit
TIP	62.14	37.32	20.00	17.32	0.85	0.75	1.50
MEAN	63.77	38.20	20.00	18.20	0.85	0.74	1.61
HUB	63.96	38.32	20.00	18.32	0.85	0.70	1.76

STAGE EXIT CONDITIONS, STAGE

DIFF LOSS	Effic	Pdisch	PR	TR	Ns	Ns nondim
0.17	0.828	453.331	1.818	1.215	55.924	0.434

Del Enthalpy Del_H/U^2 GHP Reynolds# 1828923.63 0.718 2935.257 554689.563

OVERALL EXIT CONDITIONS; ALL 8 STAGES

Del Enthalpy GHP EFFICIENCY PR TR 6760649.50 10850.2324 0.7961 30.8389 3.0405

References

- 1. Johnson, Wayne; Yamauchi, Gloria K.; and Watts, Michael E.: NASA Heavy Lift Rotorcraft Systems Investigation. NASA/TP–2005-213467, 2005.
- Snyder, C.: Gas Turbine Characteristics for a Large Civil Tilt-Rotor (LCTR). AHS 65th Annual Forum & Technology Display, Grapevine, Texas, 2009.
- 3. Veres, Joseph: Axial and Centrifugal Compressor Mean Line Flow Analysis Method. AIAA–2009–1641, 2009.
- Reid, L.; and Moore, R.D.: Design and Overall Performance of Four Highly Loaded, High Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor. NASA TP-1337, 1978.

- 5. Steinke, Ronald J.: Design of 9.271-Pressure-Ratio Five-Stage Core Compressor and Overall Performance for First Three Stages. NASA TP–2597, fig. 22, 1986.
- 6. Holloway, P.R., et al.: Energy Efficient Engine High Pressure Compressor Detail Design Report. NASA CR–165558, 1982.
- 7. Balje, O.E.: Turbomachines: A Guide to Design Selection and Theory. John Wiley & Sons, New York, NY, 1981.

	REPOR	Form Approved OMB No. 0704-0188						
data needed, and compl- burden, to Department o Respondents should be control number.	eting and reviewing the collect f Defense, Washington Headq	mate or any other aspect of t Reports (0704-0188), 1215 J	ions, searching existing data sources, gathering and maintaining the his collection of information, including suggestions for reducing this efferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. a collection of inf					
1. REPORT DATE 01-08-2009		2. REPORT TY Technical Me			3. DATES COVERED (From - To)			
4. TITLE AND SU Compressor Stu		vil Tilt Rotor I	Engine Requirements		5a. CONTRACT NUMBER			
					5b. GRANT NUMBER			
					5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S) Veres, Joseph, P	<u> </u>				5d. PROJECT NUMBER			
					5e. TASK NUMBER			
					5f. WORK UNIT NUMBER WBS 877868.02.07.03.01.02.02			
National Aerona	ORGANIZATION NAM outics and Space Add desearch Center at L 44135-3191		8. PERFORMING ORGANIZATION REPORT NUMBER E-16952					
	MONITORING AGENC autics and Space Ada C 20546-0001		D ADDRESS(ES)		10. SPONSORING/MONITOR'S ACRONYM(S) NASA			
					11. SPONSORING/MONITORING REPORT NUMBER NASA/TM-2009-215641			
Unclassified-Un Subject Categor Available electro	ies: 02 and 07 onically at http://gltr	rs.grc.nasa.gov	vace Information, 443-757-5802					
13. SUPPLEMEN	TARY NOTES							
14. ABSTRACT A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4 percent. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors' conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.								
15. SUBJECT TEI Compressor; Tu	RMS rbomachinery; Aero	odynamics						
16. SECURITY CL	ASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF	19a. NAME OF RESPONSIBLE PERSON STI Help Desk (email:help@sti.nasa.gov)			
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U	UU	PAGES 33	19b. TELEPHONE NUMBER (include area code) 443-757-5802			