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Abstract 
A new linear point design technique is presented for the 

determination of tuning parameters that enable the optimal 
estimation of unmeasured engine outputs such as thrust. The 
engine’s performance is affected by its level of degradation, 
generally described in terms of unmeasurable health parameters 
related to each major engine component. Accurate thrust 
reconstruction depends upon knowledge of these health 
parameters, but there are usually too few sensors to be able to 
estimate their values. In this new technique, a set of tuning 
parameters is determined which accounts for degradation by 
representing the overall effect of the larger set of health 
parameters as closely as possible in a least squares sense. The 
technique takes advantage of the properties of the singular 
value decomposition of a matrix to generate a tuning parameter 
vector of low enough dimension that it can be estimated by a 
Kalman filter. A concise design procedure to generate a tuning 
vector that specifically takes into account the variables of 
interest is presented. An example demonstrates the tuning 
parameters’ ability to facilitate matching of both measured and 
unmeasured engine outputs, as well as state variables. 
Additional properties of the formulation are shown to lend 
themselves well to diagnostics. 

Introduction 
In-flight estimation of unmeasurable turbofan engine 

outputs such as thrust is difficult because the values depend on 
the degradation level of the engine, which is often not known 
accurately. Degradation is generally defined in terms of off-
nominal values of health parameters such as efficiency and 
flow capacity, related to each major engine component. It is 
possible to estimate these health parameter deviations, given 
that there are at least as many sensors as parameters to be 
estimated. In standard engine installations, however, there are 
typically fewer sensors than health parameters, making accurate 
estimation impossible. An approach used in this situation is to 
select a subset of health parameters to estimate, assuming the 
others remain unchanged. If any of the unaccounted-for health 
parameters deviate from nominal, their effect will be captured 
to some extent in the estimated subset. As a result, the 
estimated values will no longer represent the true health 
parameter deviations. There are examples in the literature of a 
subset of health parameter “tuners” being used to reconstruct 
performance variables such as thrust (refs. 1 to 3), but this 
approach of health parameter subset selection is much better 
established as a diagnostic tool for gas path analysis (refs. 4 to 
6), where studies have determined which health parameters 

give good indications of certain faults for particular types of 
turbine engines (refs. 7 to 9). 

When a Kalman filter is used to estimate the subset of 
health parameters, the estimates of measured outputs will 
usually be good, i.e., the sensed outputs and the recreated 
values obtained using the health parameter estimates will 
match, even if the health parameter estimates themselves are 
inaccurate. However, good estimation of sensed outputs does 
not guarantee that the estimation of unmeasured outputs will be 
accurate. Since thrust is affected by the level of degradation, 
poor health parameter estimation can result in poor thrust 
reconstruction. It might be possible to determine a subset of 
health parameters that produces good thrust reconstruction even 
when all health parameters deviate, but this is a time-
consuming, empirical, trial-and-error process that gives no 
guarantee about the optimality of the result given the potential 
range of health parameter deviations and operating conditions. 

The main issue that affects the estimation accuracy is that 
the total influence of the health parameters needs to be 
approximated using fewer variables. The selection of a subset 
of health parameters is not a general approach to solving this 
problem as long as all health parameters may deviate. We 
would like to derive a set of tuning parameters (not necessarily 
a subset of health parameters) that is smaller in dimension than 
the set of health parameters, but retains as much information as 
possible from that original set. 

The following sections of this paper describe and formulate 
the thrust estimation problem mathematically, and then outline 
a new approach to the solution using singular value 
decomposition to obtain an optimal set of tuners. Following 
that, a concise design process is described that generates a set 
of optimal tuners at each operating (linearization) point, 
explicitly including all variables of interest; these tuners are 
incorporated into the Kalman filter to provide the optimal 
estimates. The technique is then demonstrated through an 
example. After the example, there is general discussion about 
the technique that covers other applications, such as its use as a 
diagnostic tool. Finally conclusions are presented. 

Nomenclature 
A, AAug, B, system matrices 
BAug, C, CAug,  
D, E, EAug, F,  
G, L, M, N 
e, w  noise vectors 
FAN Fan 
FG  Gross Thrust 
FN  Net Thrust 
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HPC High Pressure Compressor 
HPT High Pressure Turbine 
LPC Low Pressure Compressor 
LPT  Low Pressure Turbine 
LS  Least Squares (subscript) 
p  vector of health parameters 
P17  Bypass discharge pressure 
P25  HPC inlet pressure 
PS3  Combustor inlet static pressure 
Q, R noise covariance matrices 
q  vector of optimal tuners 
SMW12 Fan stall margin 
SMW2 LPC stall margin 
SMW25 HPC stall margin 
T25  HPC inlet temperature 
T3  Combustor inlet temperature 
T49  LPT inlet temperature 
TMHS23 LPC metal temperature 
TMHS3 HPC metal temperature 
TMHS41 HPT nozzle metal temperature 
TMHS42 HPT metal temperature 
TMHS5 LPT metal temperature 
TMBRNC Combustor case metal temperature 
TMBRNL Combustor liner metal temperature 
U  orthogonal matrix obtained using SVD 
U*  optimal transformation matrix 
u  vector of control inputs 
ui  ith column of U 
V  orthogonal matrix obtained using SVD 
V*  optimal transformation matrix 
vi  ith column of V 
VBV Variable bleed valve 
VSV Variable stator vane 
WF36 Fuel flow 
WR2A Total FAN corrected flow 
x  state vector 
xAug  augmented state vector 
XN12 Low-pressure spool speed 
XN25 High-pressure spool speed 
z   vector of auxiliary outputs 
δ  vector of health parameter-induced shifts 
Σ  singular value matrix obtained using SVD 
σi  ith singular value 

Problem Development 
For a linear point design or a piece-wise linear state 

variable model, the equations of interest are 
 

x Ax Bu Lp e
y Cx Du Mp w
z Ex Fu Np

= + + +
= + + +
= + +

�
 (1) 

 
where x is the vector of state variables, u is the vector of control 
inputs, y is the vector of measured outputs, and z  is the vector 
of auxiliary (unmeasurable or at least unmeasured) model-
based outputs. The vector p represents the engine health 

parameters, which induce shifts in other variables as the health 
parameters move away from their nominal values. The vector e 
represents white process noise with covariance Q, and w 
represents white measurement noise with covariance R. The 
matrices A, B, C, D, E, F, L, M, and N are of appropriate 
dimension. 

As the health parameter vector p is an unknown input to 
the system, we would like to be able to estimate it since it 
affects unmeasurable parameters such as thrust. The health 
parameters may be treated as a set of biases, and thus are 
modeled without dynamics. With this interpretation, we can 
represent equation (1) as 

 

[ ]

[ ]

0 0 0 Aug Aug Aug

Aug Aug

Aug Aug

x A L x B
u e A x B u e

p p

x
y C M Du w C x Du w

p

x
z E N Fu E x Fu

p

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + + = + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

= + + = + +⎢ ⎥
⎣ ⎦
⎡ ⎤

= + = +⎢ ⎥
⎣ ⎦

�
�

. (2) 

 
This new system has at least as many eigenvalues at the origin 
as there are elements of p (the eigenvalues of AAug are the 
eigenvalues of A plus an additional dim(p) zeros due to the 
augmentation). Once the p vector is appended to the state 
vector, it may be directly estimated, provided that the 
realization in equation (2) is observable. 

Using this formulation, the number of health parameters 
that can be estimated is limited to the number of sensors, the 
dimension of y (ref. 10). This is easily seen by examining the 
observability criterion (ref. 11), which states that for 
observability, the matrix [(λI-AAug)

T CAug
T]T must be full rank 

for each eigenvalue, λ, of AAug, i.e., 
 

{eig( )}, rank dim( )
Aug

Aug Aug
Aug

I A
A x

C

⎛ ⎞λ −⎡ ⎤
⎜ ⎟∀λ ∈ =⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

. 

 
Since the matrix AAug in equation (2) clearly has at least as 
many zero eigenvalues as there are health parameters, the 

observability criterion matrix reduces to 
TT T

Aug AugA C⎡ ⎤−⎣ ⎦  for 

each zero eigenvalue, implying that for observability, CAug must 
have at least as many rows (i.e., there must be at least as many 
sensors) as AAug has rows of zeros. 

Since there are usually fewer sensors than health 
parameters, the problem becomes one of choosing the best set 
of tuners for the application. This is addressed next. 

Problem Formulation 
In this work, the objective is to determine a tuning vector 

of low enough dimension to be estimated, that represents as 
much of the health parameter information as possible in a 
known way. This tuning vector should permit shifts in the 
variables of interest, caused by health parameter deviations, to 
be represented as closely as possible in a least squares sense. 
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We may define δ as the vector of shifts due to the health 
parameters, 

 

L
M p Gp
N

⎡ ⎤
⎢ ⎥δ = =⎢ ⎥
⎢ ⎥⎣ ⎦

. (3) 

 
Given that the number of elements in the tuning vector 

(tuners) is less than the number of health parameters, we know 
that, except for specific cases, the estimated tuners will not 
represent true health parameter values. Therefore, there is no 
reason to model the tuning vector as a subset of existing health 
parameters and, in fact, δ can be matched more closely without 
this constraint. The key is to find a matrix U* and tuning vector 
q that correspond to G and p in equation (3), of small enough 
dimension that the tuning vector can be estimated, and the 
product approximates δ in a least squares sense. That is, 

*ˆ , , ,n kGp U q p q k nδ = ≈ δ = ∈ ∈ <\ \  and  
 

ˆ ˆ( ) ( )T TJ = δ − δ δ − δ = δ δ� �  (4) 
 

is minimized. 
For the tuning vector q to contain as much of the 

information contained in p as possible, p is mapped into q 
through a transformation V* such that q=V*p where V* is full 
rank. Thus equation (4) becomes 

 
* *

* * * *

ˆ ˆ( ) ( ) ( ) ( )

( ) ( )

T T

T T

J Gp U q Gp U q

p G U V G U V p

= δ − δ δ − δ = − −

= − −
. (5) 

 
Since G may have rank as large as n (full rank) and the inner 
dimension of U*V* is only k, U*V* will not be full rank. Thus 
equation (5) may be rewritten in vector 2-norm notation, 

 
2* *

2* *rank( )

min
U V k

J U V p
=

= δ − . (6) 

 
Another interpretation of equation (5) is that we want to 
approximate G by a lower rank matrix through the 
minimization of the Frobenius norm (the square root of the sum 
of the squares of each matrix element), i.e., 

 
* *

* *rank( )
min

F
U V k

J G U V
=

= − . 

 
The solution to both of these minimization problems is obtained 
using Singular Value Decomposition (SVD) (ref. 12), and we 
shall show that SVD leads to an optimal solution of the form 
U*V*. 

Singular Value Decomposition 
The Singular Value Decomposition (SVD) of any m×n 

matrix G, with m≥n, may be defined as 

TG U V= Σ  (7) 

where U and VT are orthonormal square matrices, m mU ×∈\ , 
n nV ×∈\ , and Σ is a matrix of the same dimensions as G, with 

the upper portion a diagonal matrix of the singular values of G 
and the lower portion all zeroes. That is 

 

1

2

0 0
0

0
0 0
0 0 0

n

σ⎡ ⎤
⎢ ⎥σ⎢ ⎥
⎢ ⎥Σ =
⎢ ⎥

σ⎢ ⎥
⎢ ⎥⎣ ⎦

"
#

# %
"
"

 

 
where σ1≥ σ2≥ …≥ σn≥ 0, UUT=Im, and VVT=In. 

Some algebraic manipulation shows that equation (7) is 
equivalent to 

 

1

n T
i i i

i
G u v

=
= σ∑  (8) 

 
where ui is the ith column of U and vi is the ith column of V 
( T
iv the ith row of VT). Equation (8) is called the rank one 

decomposition of G because G is represented by the sum of 
rank one matrices. 

If the rank of an m×n matrix H is k<n, its SVD is 
 

1 1 1 1

1 1

0
0 0

0
0 0

Tk
k k m k k n

k k

Tk
k k m k k n

T
k k k

H u u u u v v v v

U V

U u u V v v

U V

+ +

+ +

Σ⎡ ⎤ ⎡ ⎤= ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

Σ⎡ ⎤ ⎡ ⎤= ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
= Σ

" " … "
�	
 ��	�


" "

 

(9) 

 
where Uk

 consists of the first k columns of U, Vk consists of the 
first k columns of V, and Σk is the upper left diagonal k×k block 
of Σ containing the non-zero singular values. 

The linear least squares problem 
 

2

2
rank( )

min
H k

Hp
=

δ −  

 
can be solved using equation (9) as 
 

†

1

1 1

1

0
0 0

LS

Tk
k k m k k n

T
k k k

p H

V v v U u u

V U

−

+ +

−

= δ

⎡ ⎤Σ ⎡ ⎤= δ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦
⎣ ⎦

= Σ δ

" "  (10) 

 
where the pseudo-inverse of the non-square, non-full rank, 
block diagonal singular value matrix Σ in equation (9) is that 
matrix’s transpose with the non-zero block inverted. 
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Additionally, any full rank m×n matrix G, with m≥n, is 
most closely approximated in the Frobenius norm sense by a 
matrix H of rank k<n, i.e., 

 

rank( )

min
F F

H k

G H G H
=

− = − ,  

 
when H is given by 

  

 
1

k T T
i i i k k k

i
H u v U V

=
= σ = Σ∑ , (11) 

 
the first k terms of equation (8). 

The Frobenius norm is equal to the square root of the sum 
of the squares of the singular values of the matrix, (which is 
equal to the square root of the sum of the squares of each 

matrix element) so 2 2
1k nF

G H +− = σ + + σ"  is minimal 

since the singular values are ordered from largest to smallest 
and the difference consists of only the smallest ones. 

Thus, equations (9) and (11) are the same, and both imply 
equation (10). Moreover, the solution has the structure of the 
original U*V* formulation proposed in equation (5), even 
though this structure was not assumed in the derivation of these 
results, it simply falls out as a consequence of the SVD 
approach (see reference 12 or a similar text for derivations, 
proofs, definitions of norms, etc.). 

This demonstrates that using the SVD to obtain the U*V* 
formulation will indeed give the optimal approximation to δ in 
a least squares sense. The procedure for coming up with the 
optimal matrices and their use will be described next. 

Design Procedure 
The design procedure follows directly from the above 

derivation. 
1. For each linearization point, create G by stacking L, M, and 

N as in equation (3). The L and M matrices must be 
included for the accuracy of the Kalman filter estimates, 
the variables used to create N are left to the user’s 
discretion. 

2. Compute the magnitude of each row gi of G as gigi
T for 

scaling. Premultiply G by  
 

1

1 1 0 0
0 0

0 0

T

T
m m

g g
W

g g

−
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

% . 

 
This is important because there may be several orders of 
magnitude difference between the values in different rows 
of G, and, since the SVD minimizes the difference between 
the elements of G and U*V* in a least squares sense 
(Frobenius norm), all rows should be about the same 
magnitude to prevent the large matrix elements from 
dominating. Recognizing, however, that some variables 
need to be estimated more accurately than others, 

additional weights can be incorporated into the diagonal 
elements of W to account for this relative importance. This 
is all done after any other scaling or balancing used to 
develop the initial realization (eq. 1).  

3. Compute the SVD as in equation (7) from the scaled G, 
WG = (WU)ΣVT. 

4. Unscale WU by premultiplying by W -1. This brings the 
magnitude of each row back to its appropriate level and 
makes it compatible with the rest of the realization. 

5. Generate U* and V* by selecting only the k most significant 
terms of equation (8). At most, k will equal the number of 
sensors less the number of zero eigenvalues in the original 
A matrix. Incorporate the k×k singular value matrix into U* 
such that *

k kU =U Σ  and * T
kV V= . Thus 

 

( )

*

* * * *

*

ˆ

ˆ

ˆ

ˆ

T
k k k

L

M

N

L
G M G U V

N

LU
U V U V M

U N

⎡ ⎤
⎢ ⎥= ≈ = Σ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

= = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
where * * ˆ

LU V L L= ≈ , * * ˆ
MU V M M= ≈ , and 

* * ˆ
NU V N N= ≈ . Thus we have generated a common right 

factor for the approximation of all three matrices L, M, and 
N. 

6. Using the rows of U* that correspond to the original L, M, 
and N, set up the Kalman filter using the new augmented 
system equations 

 
*

*

*

00 0
L

M

N

x x BA U
u e

q q

x
y C U Du w

q

x
z E U Fu

q

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤= + +⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤= +⎢ ⎥⎣ ⎦ ⎣ ⎦

�
�

. (12) 
 

 
This system will generally be observable if q is of small 
enough dimension. 

Turbofan Engine Example 
A large commercial turbofan engine model linearized at a 

cruise operating point is used to evaluate the concept. The 
model has nine state variables, 10 health parameters, three 
control inputs, all shown in table 1, and seven sensors, shown 
in table 2. The auxiliary outputs of interest are shown in table 3. 
The linear model is used as the “truth” model for this example. 
It must be noted that for this work, the P25 measurement in the 
conventional sensor suite is replaced by P17. Without this 
substitution, thrust estimation is poor. This indicates that the 
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ability to estimate unmeasured outputs is strongly influenced by 
sensor location. The weights on net and gross thrust (step 2 in 
the design procedure) are doubled because of the relative 
importance of these auxiliary variables. The model is run open-
loop, so all control inputs remain at 0, i.e., they do not deviate 
from the trim value for the linear model and no actuator bias is 
present. All 10 health parameters are shifted randomly up to 
3 percent in the direction of degradation, and these shifts result 
in shifts in the measured variables. The linear truth model and 
Kalman filter estimator use the same A, B, C, and D matrices, 
but the truth model has all 10 health parameters entering 
through the L, M, and N matrices. The Kalman filter is set up 
using the system in equation (12) with a seven-element q 
vector. 

To demonstrate the optimality of the SVD-based tuner 
approach, it was compared to the Kalman filter approach that 
uses health parameter-based tuners. To make the comparison as 
meaningful as possible, the health parameter tuners were 
chosen specifically to be compatible with the metric used by 
the SVD approach (eq. 4). Structurally the Kalman filter is 
designed to estimate seven selected health parameter tuners 
(while assuming the others remain constant) and the 
corresponding columns of L, M, and N are retained. An optimal 
selection process based on orthogonal least squares (OLS) 
(refs. 13 and 14) is used to determine which health parameters 
to estimate. Briefly, the scaled G matrix (from step 2 in the 
design procedure, the same one as used for the SVD-based 
tuners) is multiplied by a random health parameter vector p 
whose 10 elements take on values from 0 to 3 percent in the 
appropriate direction (positive for the HPT and LPT flow 
capacities, negative for all others). OLS is used to choose the 
seven columns of G that best align with the shift vector δ = Gp. 
This is repeated thousands of times for different random p 
vectors and the results are tallied. The individual columns that 
are selected most often determine the health parameters that on 
average best capture the degradation-induced shifts. The most 
often selected columns are indicated by asterisks (*) in table 1. 
Of the 120 (10 choose 7) possible sets of columns, this exact set 
was selected about 9 percent of the time. 

TABLE 1.—STATE VARIABLES, HEALTH PARAMETERS, 
AND ACTUATORS 

State Variables Health Parameters Actuators 
XN12 FAN efficiency‡ WF36 
XN25 FAN flow capacity*‡§ VBV 

TMHS23 LPC efficiency*‡ VSV 
TMHS3 LPC flow capacity‡§  

TMBRNL HPC efficiency*‡  
TMBRNC HPC flow capacity*‡§  
TMHS41 HPT efficiency*‡§  
TMHS42 HPT flow capacity*‡§  
TMHS5 LPT efficiency  

 LPT flow capacity*§  

Results 
To demonstrate the ability of the optimal tuners to 

approximate a variety of health parameter-induced shifts well, 
all 10 health parameters are shifted randomly. The results 
 

TABLE 2.—SENSOR SETS AND SENSOR STANDARD 
DEVIATION (STD. DEV. AS % OF STEADY-STATE 

VALUES AT FULL POWER) 
Conventional Sensor 

Set 
New Sensor Set Standard 

Deviation (%) 
XN12 XN12 0.25 
XN25 XN25 0.25 
-------- P17 0.50 

P25 ------- 0.50 
T25 T25 0.75 
PS3 PS3 0.50 
T3 T3 0.75 

T49 T49 0.75 

TABLE 3.—AUXILIARY OUTPUTS 
TO BE ESTIMATED IN FLIGHT 

Auxiliary Outputs 
WR2A 

FN 
FG 

SMW12 
SMW2 
SMW25 

 
shown are for a representative random sequence, many 
simultaneous random shifts were performed at this operating 
point with similar results. Figure 1 shows the state variable 
estimation over a time sequence containing 10 such sets of 
random shifts. Generally the variables are reconstructed 
accurately with the exception of TMBRNC, combustor case 
metal temperature, which does not seem to have much of an 
effect on any other variables. 

Figure 2 shows the output variables for the same sequence 
of health parameter shifts. These also demonstrate good 
matching, which is to be expected when using a Kalman filter. 

Figure 3 shows the auxiliary parameters. For all cases of 
health parameter shifts both estimators performed well. 
Because of the large gains on some of the auxiliary variables, 
the estimates needed to be low-pass filtered to attenuate the 
magnified noise level. The estimation performance on net and 
gross thrust and two of the three stall margins, as well as total 
fan corrected flow was consistently accurate. The only auxiliary 
parameter whose estimate was consistently poor is LPC stall 
margin, SMW2. Adjustment of the weighting matrix W in 
step 2 of the design procedure made little difference in the 
results. 

In an effort to obtain a better LPC stall margin estimate, 
new U* and V* were determined, this time using SMW2 as the 
only auxiliary parameter, i.e., N in equation (3) has only one 
row. If SMW2 requires different information than the other 
variables for accurate estimation, generating a new G matrix 
would result in a different SVD (the SVD of a matrix is unique) 
possibly prioritizing the tuners such that SMW2 could be 
reconstructed. Even with the new G matrix though, the 
estimation of SMW2 is poor. This may be due to the L and M 
matrices dominating the generation of the U* and V* matrices, 
but it is more likely a sensor placement issue (in fact, replacing 
P17 with P25 greatly improves the estimation of SMW2, even 
without additional weighting). 
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Figure 1.—State variables: scaled actual and estimates. 
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Figure 2.—Output parameters: scaled actual and estimates. 

0 20 40 60 80 100 120 140 160 180 200
−100

−50

0

W
R

2A

0 20 40 60 80 100 120 140 160 180 200
−1000

−500

0

500

F
N

0 20 40 60 80 100 120 140 160 180 200
−2000

−1000

0

F
G

0 20 40 60 80 100 120 140 160 180 200
−1

0

1

2

S
M

W
12

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

S
M

W
2

0 20 40 60 80 100 120 140 160 180 200
−4

−2

0

2

Time (sec)

S
M

W
25

Health Parameter−based Estimate
SVD−based Estimate
Actual

 
Figure 3.—Auxiliary parameters: scaled actual and filtered 
estimates. 

Likewise, a slight improvement in net and gross thrust 
estimation was achieved by the SVD-based tuners when the 
auxiliary parameters consisted of only those two variables. 

In order to compare the performance of the tuners 
statistically, runs containing a sequence of 400 simultaneous 
random shifts of all 10 health parameters were performed. After 
each set of shifts the engine simulation was allowed to reach 
steady state and data from each variable were gathered and 
averaged. This information was used to compute an average 
percent error for each variable in steady state over the entire 
sequence. The quantity was computed as 
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The comparison of the percent estimation error of the state 
variables, outputs, and auxiliary outputs based on this run for 
the two sets of tuners are presented in table 4, table 5, and 
table 6, respectively. It can be seen that both sets of tuners 
produce similar results in most cases, but where the error is 
relatively large (TMBNC in table 4 and SMW2 and SMW25 in 
table 6), the SVD-based tuners are significantly better. Results 
for the estimated degradation-induced shifts in each variable, 
δ = Gp (eq. 3), were similar. The value of the metric (eq. 4) for 
the scaled shifts in the two cases was 2.187 for the SVD-based 
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tuners and 6.016 for the health parameter-based tuners. It must 
be noted that minimization of the metric does not in itself 
guarantee minimization of the total least squares error without 
appropriate weighting in step 2 of the design procedure. In this 
example, the SVD-based tuners give a value of 42.6865 for the 
sum of the squared percent estimation error of the variables in 
table 4, table 5, and table 6, compared to 95.4661 for the health 
parameter-based tuners. 

TABLE 4.—PERCENT ERROR OF STATE 
VARIABLE ESTIMATES 

State Variables SVD-based Tuners Health Parameter-
based Tuners 

XN12 0.0318 0.0317 
XN25 0.0269 0.0267 

TMHS23 0.0129 0.0130 
TMHS3 0.0363 0.0363 

TMBRNL 0.0278 0.0306 
TMBRNC 0.4083 1.1256 
TMHS41 0.0300 0.0313 
TMHS42 0.0267 0.0274 
TMHS5 0.3208 0.1942 

TABLE 5.—PERCENT ERROR OF OUTPUT ESTIMATES 

Outputs SVD-based Tuners Health Parameter-
based Tuners 

XN12 0.0317 0.0318 
XN25 0.0286 0.0285 
P17 0.0634 0.0633 
T25 0.0859 0.0857 
PS3 0.1027 0.1027 
T3 0.0990 0.0990 

T49 0.0748 0.0748 

TABLE 6.—PERCENT ERROR OF AUXILIARY 
OUTPUT ESTIMATES 

Auxiliary 
Outputs SVD-based Tuners Health Parameter-

based Tuners 
WR2A 0.1081 0.0787 

FN 0.2704 0.2745 
FG 0.1225 0.1169 

SMW12 0.4348 0.3469 
SMW2 6.1605 9.3142 

SMW25 2.0326 2.6733 

Additionally, estimation performance was evaluated for 
comparable sequences of 400 random simultaneous shifts in all 
10 health parameters with six sensors and with eight sensors. 
For the eight-sensor case, P25 was added to the “new sensor 
set” of seven shown in table 2. The tuners used were the first 
eight health parameters, indicated by a (‡) in table 1, (LPT 
efficiency and flow capacity were not used), selected using 
OLS. As expected, the estimate of SMW2, which was poor 
with only seven sensors, was much more accurate, as was the 
estimate of TMBRNC. For eight sensors, the value of the 
metric for the SVD-based tuners was 2.0883 and 6.5243 for the 
health parameter-based tuners; this is essentially the same as for 
the seven sensor case, with the difference being attributed to the 
random factors of sensor noise and the health parameter shifts. 
The sum of the squared percent estimation error for the SVD-
based tuners was 6.0438 compared to 7.1943 for the health 

parameter-based tuners. For the six sensor case, the T3 sensor 
was removed from the “new sensor set” shown in table 2. The 
tuners used were the flow capacities of each component plus 
HPT efficiency, indicated by (§) in table 1, which were selected 
using engineering judgment. It was possible to get reasonably 
good matching of the auxiliary outputs with this set of tuners, 
but no set investigated produced accurate reconstruction of the 
state variables. The value of the metric for the SVD-based 
tuners in the six-sensor case was 9.4068 and 12.4667 for the 
health parameter-based tuners. The big increase in the metric 
values over the cases with more sensors indicates that 
significant information has been lost by approximating the G 
matrix by a rank six matrix. The relative size of the dropped 
singular values gives an indication of this. In this case, the sum 
of the squared percent estimation error for the SVD-based 
tuners was 53.8702 compared to 78.1314 for the health 
parameter-based tuners. 

Further Application of Tuners 
The example shows that the optimal tuner selection method 

obtained using SVD provides accurate estimates of most 
variables of interest, including auxiliary parameters such as 
thrust. The SVD formulation has several attractive properties 
that make its use in this application highly desirable beyond 
what has already been discussed. In addition to providing the 
least squares solution to the approximation of the shift vector δ, 
other features include 1) the approximation error to the matrix 
G is known; 2) fault detection is possible through the tuners’ 
ability to capture sudden shifts, even if the tuners do not 
correspond to individual health parameters; and 3) the 
orthogonality of the V matrix suggests a way to isolate a 
component fault, while at the same time some of the true health 
parameter shifts may be able to be reconstructed accurately, in 
some cases. The following sections provide more detail on each 
of these topics. 

Approximation Error of G 
Since 
 

1 1 1 1

ˆn k n nT T T T
i i i i i i i i i i i i

i i i k i k
G u v u v u v G u v

= = = + = +
= σ = σ + σ = + σ∑ ∑ ∑ ∑

 

(13)

 
the approximation error of G is the last term of equation (13), 
namely 

 

1

ˆ n T
i i i

i k
G G G u v

= +
= − = σ∑� . 

 

The error in the approximation of G depends on both the 
number of terms dropped in the approximation and on the size 
of the singular value in each dropped term. (Singular values 
give an indication of the linear independence of the columns of 
G, so if the singular values in the dropped terms are very small, 
not much information is lost, but on the other hand, if the 
columns of G are not linearly independent, the accurate 
estimation of the health parameters is impossible, regardless of 
the number of sensors.) The fact that the error is known allows, 
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for instance, the calculation of accuracy bounds on the health 
parameter-induced shifts, δ, and on the estimated variables 
themselves. 

The error introduced into the system equations (eq. 12) 
through the approximation of G represents modeling error. The 
process noise term, e, in the state equation, is used at least 
partially to represent model uncertainty, so a level can be 
established by multiplying the known approximation error G�  
by a range of degradation values p. Since the level of 
degradation is unknown a priori, it can be considered a random 
variable and thus so can Gp� . The covariance of this product 
could be used to help determine the process noise covariance 
matrix, Q, for the Kalman filter, which is often considered a 
design parameter.  

Fault Detection 
Even though the tuners do not represent individual health 

parameters, component faults can be detected by sudden shifts. 
The objective of fault detection in this context is to be able to 
distinguish an abrupt shift representing a fault, from the general 
“background level” of degradation caused by use and wear, 
represented by slowly varying q during normal operation. Since 
q = V*p, the shifts are mapped into q as long as they are not 
limited to the null space of V*, that is, as long as they do not lie 

completely within the span of 1

T

k nv v+⎡ ⎤⎣ ⎦" . However, since 

this space contains the least significant directions of possible 
shift (since only the smallest singular values are dropped) and 
the tuners will, in general, cut across rather than align with the 
influence of each health parameter, additional shifts due to 
faults ∆q=V*∆p will very likely be non-zero for any significant 
shift in an element of p. 

TABLE 7.—HEALTH PARAMETER SHIFTS 
REPRESENTING COMPONENT FAULTS 

Time (sec) Health Parameters Shift 
0-20 FAN efficiency -3% 
20-40 FAN flow capacity -3% 
40-60 LPC efficiency -3% 
60-80 LPC flow capacity -3% 
80-100 HPC efficiency -3% 
100-120 HPC flow capacity -3% 
120-140 HPT efficiency -3% 
140-160 HPT flow capacity 3% 
160-180 LPT efficiency -3% 
180-200 LPT flow capacity 3% 

 
To demonstrate this, component faults of 3 percent 

magnitude were injected, sustained for 20 seconds, and 
removed, in succession through each of the 10 health 
parameters (efficiency then flow capacity for each component 
in the order shown in table 1), as shown in table 7. Figure 4 
shows the estimated tuners during this sequence of shifts. As 
the health parameters shift, the tuners generally shift as well, so 
changes can be determined and thus faults can be detected. The 
fan efficiency fault is hard to determine as the tuner shifts that 
correspond to it are small, but several tuners clearly shift in  
 

Figure 4.—Estimated q signals and V*p, demonstrating fault 
detection. 
 

response to a fault in fan flow capacity. When looking at all 
tuners together, it is reasonably clear in most cases when a fault 
has occurred. Different sets of tuners result from different 
weightings of the G matrix (step 2 of the design procedure), 
and it is possible to have at least one of the SVD-based tuners 
align well with an actual health parameter. 

One thing that is clear from figure 4 is that in this example, 
the elements of q are tracked accurately, and this is a 
consequence of the procedure used to select them. This is not 
the case in general when the tuners are modeled as actual health 
parameters. Figure 5 shows the Kalman filter estimates of the 
health parameter-based tuners with the same input sequence as 
in figure 4. In figure 5, the tuners clearly indicate abrupt shifts 
due to faults, but often do not match the health parameters they 
represent because of the influence of unmodeled health 
parameters. Techniques exist to select the health parameters for 
estimation that are least affected by the umodeled health 
parameters and sensor uncertainty (refs. 15 to 18). From a 
diagnostics point of view this is fine, but there is no guarantee 
that those health parameters will facilitate good reconstruction 
of auxiliary parameters such as thrust. 

The ability to estimate the state and auxiliary variables in 
the presence of actuator bias is not addressed here. From 
equation (1) it is clear that the effect of actuator bias is no 
different than that of health parameter shifts, so as long as the 
tuners can capture this effect, the results should not deteriorate 
significantly. As with component degradation and faults, 
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Figure 5.—Estimated health parameter-based tuners. 
 
constant actuators biases should be generally represented by the 
elements of q, and any sudden actuator shifts due to bias should 
be captured as shifts in the elements of q. 

Fault Isolation 
By construction, the vector of estimated tuners *q̂ V p≈ , 

(since G is not perfectly recreated by U*V*, the estimated q will 
not exactly equal V*p, even in a noise-free environment) and 
the columns of V are orthonormal. Of course V is a square n×n 
matrix and V* is k×n, but if k is close to n, in some cases V*TV* 
≈In. The implication of this is that * ˆTV q p≈ , so even if the 
magnitude of the shift is not determined accurately, the shift 
might be able to be isolated to the affected health parameters 
(or at least the affected component) by identifying those 
elements of the * ˆTV q  vector with the largest shifts. Analysis of 
the V* matrix will determine the feasibility of the approach on a 
case by case basis. 

It is interesting to note that the * ˆTV q p≈  approximation is 
actually the least squares estimate of p from equation (3). This 
is clear from the fact that  

 
*

† 1 *

ˆ ˆ ˆ

ˆ ˆ ˆ

T
k k

T
LS k k k

U q U q Gp U V p

p V U U q V q V q−

δ = = Σ ≈ = Σ

⇒ = Σ Σ = =
 (14) 

 

0 20 40 60 80 100 120 140 160 180 200
−0.05

0

0.05

F
A

N
 E

ff
F

au
lt 

S
ig

na
l

0 20 40 60 80 100 120 140 160 180 200
−0.05

0

0.05

F
A

N
 F

lo
w

F
au

lt 
S

ig
na

l

0 20 40 60 80 100 120 140 160 180 200
−0.05

0

0.05

LP
C

 E
ff

F
au

lt 
S

ig
na

l

0 20 40 60 80 100 120 140 160 180 200
−0.05

0

0.05

LP
C

 F
lo

w
F

au
lt 

S
ig

na
l

0 20 40 60 80 100 120 140 160 180 200
−0.05

0

0.05

H
P

C
 E

ff
F

au
lt 

S
ig

na
l

0 20 40 60 80 100 120 140 160 180 200
−0.05

0

0.05

H
P

C
 F

lo
w

F
au

lt 
S

ig
na

l

0 20 40 60 80 100 120 140 160 180 200
−0.05

0

0.05

H
P

T
 E

ff
F

au
lt 

S
ig

na
l

0 20 40 60 80 100 120 140 160 180 200
−0.05

0

0.05

H
P

T
 F

lo
w

F
au

lt 
S

ig
na

l

0 20 40 60 80 100 120 140 160 180 200
−0.05

0

0.05

Time (sec)

LP
T

 E
ff

F
au

lt 
S

ig
na

l

0 20 40 60 80 100 120 140 160 180 200
−0.05

0

0.05

Time (sec)

LP
T

 F
lo

w
F

au
lt 

S
ig

na
l

Estimate
Actual

 
 

Figure 6.—Fault signal *ˆ ˆTp V q≈  and actual health parameter 
shift, demonstrating fault isolation. 
 
where †Σ  is the transpose of Σ with the square singular value 
block inverted. Note that once U is unscaled in step 4 of the 
design procedure it is no longer orthonormal, so U -1 rather than 
UT is used in equation (14). 

Figure 6 shows the recreated set of health parameters using 
*ˆ ˆTp V q≈ . It is clear that shifts in certain variables are easily 

isolated while others are mapped back as shifts smeared across 
more than one health parameter. For this example, it seems that 
health parameter shifts in the high-pressure shaft components 
(HPC and HPT) are easier to isolate than those on the low-
pressure shaft. For instance, the plots for FAN efficiency and 
LPT efficiency are very similar, meaning that it would be hard 
for a diagnostic system to distinguish between them. Efficiency 
and flow capacity of the LPC are clearly interrelated, with one 
being nearly the opposite of the other; for cases such as this, 
one might constrain the problem by assuming that efficiency 
and flow capacity corresponding to a single component shift 
together, somewhat simplifying the isolation logic. The issue 
always exists of simultaneous shifts in the health parameters of 
multiple components confounding the problem. 

It is interesting to compare the results in figure 6 with 
those in figure 5, which shows the Kalman filter estimates of 
seven health parameter-based tuners. The quality of the 
reconstruction is similar in that the same three parameters 
(FAN flow capacity, HPC efficiency, and HPT flow capacity) 
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were estimated accurately in both cases and those estimates 
corrupted by unmodeled shifts in health parameters were the 
same in both cases, but the approach demonstrated in figure 6 
has the benefit that the remaining three health parameters are 
reconstructed as well, albeit corrupted by shifts in other 
variables. One observation is that the reconstruction of each of 
these remaining health parameters (FAN efficiency, LPC flow 
capacity, and LPT efficiency) is strongly related to the 
reconstruction of some other health parameter, underscoring the 
lack of observability. Still, a diagnostic system might be able to 
use this information to isolate faults. 

If actuator bias, ubias, were to be added on top of the health 
parameter deviations, it would certainly make the fault isolation 
task more challenging. An approach to address this is to define 
G such that  

 

bias bias

L B
p p

M D G
u u

N F

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥δ = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

. 

 
This explicitly accounts for actuator bias, but the increase in the 
number of columns of G means that the U*V* approximation 
will be less accurate, since the size of q is fixed. A consequence 
of this is that V*TV* is further from In (in the sense of the 
Frobenius norm) and thus the [pT ubias

T]T≈V*Tq approximation 
is not as good as when fewer faults are accounted for. 

Conclusions 
A new optimal linear point design approach to determine 

engine deterioration tuning parameters that enables the accurate 
reconstruction of unmeasured engine outputs was presented. It 
was designed specifically for the case where there are too few 
sensors to estimate the true engine health parameters. The 
tuning parameters are determined using singular value 
decomposition, which was shown to generate the best 
approximation to the influence of the full set of health 
parameters in a least squares sense, using a set small enough to 
be estimated. A concise design procedure to generate the tuners 
was described. An example demonstrated that the method 
worked well in reconstructing the unmeasured parameters of 
interest. It was shown to perform better against its metric than a 
health parameter-based Kalman filter specifically designed for 
the metric used, and it will generally result in a smaller total 
squared estimation error with appropriate weighting 
incorporated into the metric. This highlights the freedom 
inherent in the SVD-based approach as a result of the 
weighting, while the selection of possible subsets of health 
parameters for tuners is limited. Still, the choice of weights in 
the SVD approach is not arbitrary since the variables interact, 
and allowing poor state estimation, for instance, will ultimately 
hurt the accuracy of the auxiliary variables. It was also shown 
that the ability to estimate well is sensitive to sensor placement. 
As a side benefit of the estimator formulation process, the 
tuners have desirable properties for diagnostics because of the 
orthogonal decomposition. In particular, the reconstruction of 
the complete set of health parameters compares favorably to the 

estimation of only a subset by a health parameter-based Kalman 
filter. The effect of actuator bias was not investigated with 
respect to the optimal tuners determined for health parameter 
degradation, however a consistent approach to account for it 
explicitly was proposed. 

Areas of future research involve the generation of bounds 
on the accuracy of the low rank matrix approximation and their 
effect on estimation, the continuity of the SVD for piece-wise 
linear implementations, and further investigation into the fault 
detection and isolation properties of the SVD formulation. 
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