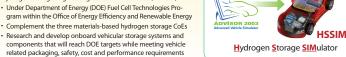


Objectives

vehicle viability

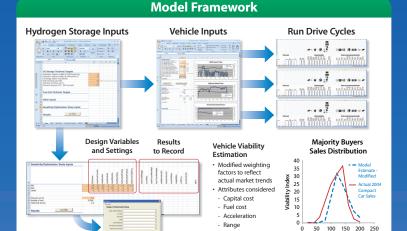
Background


Evaluation of Hydrogen Storage System Characteristics for Light-Duty Vehicle Applications

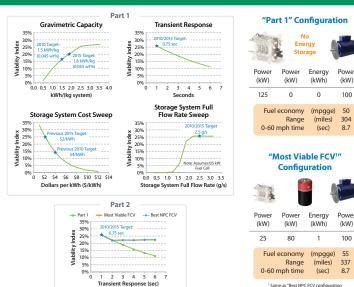
Matthew Thornton, Kristin Day, Aaron Brooker - National Renewable Energy Laboratory

Objectives and Approach

Technical Targets



Hydrogen Storage SIMulator


ICE Power (kW)

DOE Onboard Hydrogen Storage System Targets Considered				
Storage Parameter	Units	2010	2015	
System gravimetric capacity	kWh/kg	1.5	1.8	Referenced previous 201 target of \$2/kWh for this analysis
Storage system cost	\$/kWh	TBD	TBD	
Peak discharge rate	(g/s)/kW	0.02	0.02	
Transient response (10% - 90%)	sec	0.75	0.75	

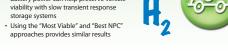
Fuel Cell Power System Targets Considered:				
Characteristic	Units	2005	2010	2015
Energy efficiency @ 25% of rated power	96	60	60	60
Energy efficiency @ rated power	%	50	50	50
Specific power	W/kg	500	650	650
Cost	\$/kW	100	35	25
Transient response (10% - 90%)	sec	2	1	1

Results

Experiment Design and Assumptions

Design of Experiments

Part 1: T	arget sensitiv	rities for fixe	ed compone	nt sizes
	Gravimetric	Transient	Cost	Full Flow


	(kWh/kg)	(sec)	(\$/kWh)	(g/s)/kW
Minimum	0.5	1	\$1.00	0.0025
Maximum	3.5	6	\$12.00	0.025
Levels	7	6	12	10

Part 2: Target sensitivities capturing component sizing interactions ESS Fuel Cell Moto ESS Peak Gravimetri Capacity (kWh/kg) Energy (kWh) Peak Pov (kW) ak Po Powei (kW) (kW) Minimum 0.5 25 25 20 0 Maximum 175 200 80 5 3 Levels 10 8 4

Attribute	Units	Conventional Vehicle ¹	Fuel Cell Vehicle
Fuel converter power	kW	126	125
Electric motor power	kW	-	100
Battery power	kW	-	-
Battery energy	kWh	-	-
Glider mass	kg	914	914
Frontal area	m ²	2.16	2.16
Coefficient of drag	-	0.28	0.28
Wheel radius	m	0.282	0.282
Tire rolling resistance	-	0.008	0.008
Fuel economy ²	mpgge	25.9	49.9
Range	miles	479	304
0-60 mph time	sec	8.6	8.7
Capital cost ³	s	19,395	27,419

Conclusions

- · Estimated the sensitivity of hydrogen storage system improvements on vehicle viability
- Decreasing fuel cell power and increasing battery power can help preserve vehicle

The authors thank the U.S. Department of Energy's Fuel Cell Technologies Program within the Office of Energy Efficiency and Renewable Energy for funding and support. This presentation does not contain any proprietary, confidential, or otherwise restricted information. Presented at the 18th World Hydrogen Energy Conference, 16-21 May 2010, Essen, Germany • NREL/PO-540-48120 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Same as "Best NPC FCV configu