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Abstract – In this paper, novel low loss, wide-band coplanar
stripline technology for RF/microwave integrated circuits is
demonstrated on high resistivity silicon wafer. In particular,
the fabrication process for the deposition of spin-on-glass
(SOG) as a dielectric layer, the etching of microvias for the
vertical interconnects, the design methodology for the
multiport circuits and their measured/simulated character-
istics are graphically illustrated. The study shows that circuits
with very low loss, large bandwidth and compact size are
feasible using this technology. This multilayer planar
technology has potential to significantly enhance
RF/microwave IC performance when combined with  semi-
conductor devices and microelectromechanical systems
(MEMS).

I. INTRODUCTION

Recently, silicon/silicon germanium (Si/SiGe) based
technology has emerged as a viable approach for integrating
analog, RF and digital functions on a single integrated
circuit (IC) needed for advanced wireless communications
systems [1]. The Si/SiGe technology also has the advantage
of low cost since the devices and circuits are fabricated
using established silicon CMOS processes. The above ICs
are now being introduced in products with more functions
in a small volume, involving greater circuit/function
integration. To accomplish this goal, multiport three-
dimensional interconnects are needed.

In this paper, we present several new design concepts for
low loss, wide bandwidth multiport integrated circuits on a
high resistivity (HR) silicon wafer. The multiport circuits
are made of small sections of coplanar stripline (CPS) or a
junction formed by the intersection of several CPS
interconnects printed at two levels separated by a thin layer
of spin-on-glass (SOG) and connected by metallized vias.
The CPS has the advantage of eliminating backside
processing due to its uniplanar nature and allows simplified
vertical integration by the use of metallized vias.
In addition, CPS allows easy integration of other
transmission media, such as, slotline, finite width coplanar
waveguide (FW-CPW) and micro-CPS [2] for greater
design flexibility. The SOG has the advantage of low
dielectric constant  [3] and hence low parasitic coupling
capacitance. In addition, the SOG planarizes the circuit,
facilitating vertical integration [4]. The HR silicon wafer

                                                            
1NASA Glenn Research Center, QSS, Inc., Cleveland, Ohio 44135
2Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974.
3University of Michigan, Radiation Laboratory, EECS Department,
    Ann Arbor, Michigan 48109–2122.

(r > 3000 W  cm) has the advantage of lowering signal
attenuation in addition to improving isolation between
adjacent circuits. In the following sections, first, the
fabrication process is briefly explained. Next, design
considerations, measured insertion loss, return loss and
isolation are presented for: (a) a two-port CPS overpass
with vertical interconnect, (b) a three-port CPS T-junction
with vertical interconnect and (c) a four-port CPS
crossover. The results are discussed extensively. The
numerical simulations are carried out using the CST
Microwave Studio™*. In the simulations, the CPS
conductors are assumed to be perfectly conducting. In
addition, the silicon substrate as well as the SOG layer are
considered as perfect dielectrics.

II. INTERCONNECT FABRICATION

The first step is the fabrication of the buried strip
conductors using titanium/gold on the HR silicon wafer.
These conductors are fabricated using a lift-off process. The
thickness of the metal is about 0.8 mm. Next, a thin insulat-
ing spacer layer to support the elevated strip conductors is
built-up to the required thickness by multiple spin-coats.
Accuglass® 512 SOG of thickness h1 about 2.0 mm is used
as the dielectric spacer layer. Third, the vias for the vertical
interconnect is patterned using photoresist and dry etched in
a fluorocarbon-based plasma. As a last step, the elevated
strip conductors are fabricated using titanium/gold by a
second lift-off process. This step also metallizes the via
holes to ensure electrical continuity between the buried and
elevated strip conductors. The thickness of the elevated
strip conductor is about 2.0 mm. The cross-section of the
CPS is shown in Fig. 1.

                                                            
*Registered Trademark of CST of America, Inc., Wellesley, MA.
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Figure 1.—Coplanar stripline (CPS) on a HR-silicon 
   wafer with a SOG layer on top, h = 400 �m, 
   �r = 11.7, h1 = 2 �m, �r1 = 3.1.
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III. DESIGN, RESULTS AND DISCUSSIONS

The design considerations for the via hole and probe pads
for each of the aforementioned interconnects are as follows:
each via is symmetrically located on the strip conductor and
has a diameter (d) which is a function of the strip width
(W). A via pair is designed as a small section of a vertical
balanced transmission line with characteristic impedance
Z0(via) = 50 W . The Z0(via) is related to the diameter (d),
separation between vias (S1) and the dielectric constant of
the medium surrounding the via (er1) through the
expression:

Z0(via)  = (60/sqrt(er1))cosh–1(N)

where N = 0.5[(2S1/d)2-2].

The probe pads are about 100¥100 mm in size for
compatibility with the signal-ground RF probes for on-
wafer characterization. In all of the measurements the
parasitics associated with the probe pads and the 700 mm
long lines between the pads and the circuits are
de-embedded using on-wafer CPS Thru-Reflect-Line (TRL)
calibration standards. The coplanar stripline circuits
investigated here are uniplanar in construction and hence do
not have a ground plane on the opposite side of the wafer.
Therefore, the wafer is supported on a Styrofoam™ block,
instead of the regular metal vacuum chuck, in the RF probe
station while measuring the S-parameters.

A. Two-port CPS overpass with vertical interconnect:

This circuit is shown in Fig. 2. The characteristic
impedance Z0(CPS) is 50 W . The length of the overpass is
>(2W+S) to ensure a clear passage below for a 50 W line.
The measured (de-embedded) and simulated insertion loss
(S21) and return loss (S11) are shown in Fig. 3. The S21 and
S11 are better than –0.5 and –22.0 dB, respectively. The S21

includes losses due to the 216 mm long CPS overpass and
the vias at either ends. The loss in the 216 mm line is
0.08 dB at the center frequency of 10.0 GHz [4]. Hence the
loss per via pair is about 0.21 dB. The numerical
simulations of this circuit show that the insertion loss is
negligibly small and the return loss is better than –35 dB
across the 3 to 18 GHz frequency range.

B. Three-port CPS T-junction with vertical interconnect:

A schematic and a microphotograph of the circuit are
shown in Figs. 4(a) and 4(b), respectively. From the
microphotograph it is seen that the width of the elevated
strip conductor is reduced by symmetrically notching out a
rectangular portion of the strip at the location of the overlap
with the buried strip conductor. The notch compensates for
the parasitic parallel plate capacitance at the overlap region.
The characteristic impedance Z0(CPS) of each arm is = 50 W.
No attempt was made to match the junction in the initial

investigation. Contrary to a conventional slotline
T-junction, the new circuit can provide equal phase at both
output ports.

The measured (de-embedded) and simulated insertion loss
(S21 and S31) at the two output ports and the input return loss
(S11) are shown in Fig. 5. It is observed that the power
output from ports 2 and 3 are unequal but it is within
–3.0±0.5 dB over the frequency range of 8.5 to 9.5 GHz.
The phase of S21 and S31 differ by 20∞  at the center
frequency f0 = 9.0 GHz. The above insertion loss includes
the losses associated with the right angle bend integrated at
the output ports of the circuit to facilitate in-line
characterization using straight CPS TRL calibration
standards and RF probes. The numerical simulations show
that the power output from ports 2 and 3 (S21 and S31) are
about –3.5 dB and the return loss (S11) is about –9.5 dB
across the frequency range of 1 to 18 GHz.

Figure 2.—CPS overpass with vertical interconnects, 
   W = 54 �m, S = 4 �m, d = 45 �m and L = 216 �m.
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Figure 3.—Measured (de-embedded) and 
   simulated insertion loss (S21) and return 
   loss (S11) of CPS overpass.
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C. Four-port CPS crossover with vertical interconnect:

A schematic and a microphotograph of the circuit are
shown in Figs. 6(a) and 6(b), respectively. The simulated
characteristics using FDTD technique are presented in [4].
In this paper, the experimentally characterized results are
reported. The measured (de-embedded) and simulated
insertion loss (S21) and return loss (S11) of the in-line ports
are better than –0.5 and –30.0 dB, respectively (Fig. 7). The
measured (de-embedded) and simulated isolation (S31)
between the orthogonal ports is better than –45.0 dB up to
8.0 GHz and is –22.0 dB at 18.0 GHz (Fig. 8). The
numerical simulations show that insertion loss (S21)
negligibly small and the return loss (S11) is better than
–45 dB across the 1 to 18 GHz frequency range. The
isolation (S31) is also better than –45 dB across the same
frequency range. Since this interconnect has low loss and
excellent isolation, it has potential applications in the
construction of multilayer CPS circuits [5] and MEMS-
based actuators for reconfigurable antennas [6].

Figure 4(a).—CPS T-junction with vertical interconnects, 
   W = 40 �m, S = 3 �m, d = 45 �m and L = 243 �m.
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Figure 4(b).—Microphotograph of CPS T-junction.

Figure 6(a).—CPS Vertically interconnected overpass, 
   with crossover W = 40 �m, S = 3 �m, d = 33 �m and
   L = 243 �m.
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Figure 6(b).—Microphotograph of CPS overpass with
   crossover.
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   (S11) of CPS T-junction.
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IV. CONCLUSIONS

A novel low loss wide bandwidth multiport integrated
circuit technology suitable for applications at RF/
microwaves has been proposed. These CPS multiport
circuits have small dimensions compared to the wavelength
of operation, resulting in low parasitics. Consequently these
circuits have an almost ideal performance with low loss,
good impedance match, good isolation and large band-
width. As examples, a two-port CPS overpass with vertical
interconnect, a three-port CPS T-junction with vertical
interconnect and a four-port CPS crossover with vertical
interconnect have been presented. The results presented
demonstrate the potential of the proposed approach in
enhancing Si/SiGe RF/microwave IC performance.

V. REFERENCES

[1] J. Browne, “SiGe Technology Makes Practical Advances,”
(Special Report), Microwaves & RF, vol. 38, no. 10, pp. 121–126,
Oct. 1999.

[2] K. Goverdhanam, R.N. Simons, and L.P.B. Katehi, “Micro-
Coplanar Striplines-New Transmission Media for Microwave
Applications,” 1998 IEEE MTT-S Inter. Microwave Symp., Dig.,
vol. 2, Baltimore, Maryland, pp. 1035–1038, 1998.

[3] Accuglass“ 512 Spin-on-Glass (SOG), Product Bulletin, Allied-
Signal Inc., Planarization and diffusion products, 1090 S. Milpitas
Blvd., Milpitas, California 95035.

[4] K. Goverdhanam, R.N. Simons, and L.P.B. Katehi, “Novel Three-
Dimensional Vertical Interconnect Technology for Microwave and
RF Applications,” 1999 IEEE MTT-S Inter. Microwave Symp., Dig.,
vol. 2, Anaheim, California, pp. 641–644, 1999.

[5] L.P.B. Katehi, J.F. Harvey, and K.J. Herrick, “3-D Integration of
RF Circuits Using Si Micromachining,” IEEE Microwave Magazine,
vol. 2, no. 1, pp. 30–39, March 2001.

[6] R.N. Simons, D. Chun and L.P.B. Katehi, “Microelectro-
mechanical Systems (MEMS) Actuators for Antenna Recon-
figurability,” 2001 IEEE MTT-S Inter. Microwave Symp., Dig.,
vol.1, Phoenix, Arizona, pp. 215–218, 2001.

Figure 7.—Measured (de-embedded) and simulated
   insertion loss (S21) and return loss (S11) of CPS 
   overpass with crossover.
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Figure 8.—Measured (de-embedded) and simulated
   coupling (S31) of CPS overpass with crossover.
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