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IMPACT OF DISSOCIATION AND SENSIBLE HEAT RELEASE ON PULSE
DETONATION AND GAS TURBINE ENGINE PERFORMANCE

ISABE 2001–1212
Louis A. Povinelli*

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract
A thermodynamic cycle analysis of the effect of sensible 
heat release on the relative performance of pulse 
detonation and gas turbine engines is presented. 
Dissociation losses in the PDE are found to cause a 
substantial decrease in engine performance parameters.

Introduction
The feasibility and demonstration of pulse detonation 
engines (PDE) have been investigated for over 50 years. 
Numerous publications have appeared describing the 
potential for this type of propulsion device. Kailasanath1

has published a recent comprehensive review that 
examines the application of detonation waves to 
propulsion devices. Reference 1, which includes 
100 citations, provides an excellent review of the 
analytical and experimental progress in the application of 
detonative phenomena to propulsion systems. Variations 
in performance estimates were systematically examined
and possible reasons for the observed variations were 
presented. 

A common approach for establishing PDE 
thermodynamic cycle performance has been to assume 
that a constant volume cycle (i.e., the Humphrey cycle) is 
a reasonable simulation.1,2 However, in a recently 
completed NASA-sponsored effort, Heiser and Pratt3 

employed closed form, algebraic solutions for the leading 
edge normal shock wave (Chapman-Jouguet) Mach 
number (MCJ) and entropy rise of the detonation wave. 
This enabled them to perform a PDE cycle analysis, and 
make a direct comparison with the Humphrey cycle and 
the Brayton cycle. 

The cycle analysis of Heiser and Pratt employs a generic 
non-dimensional heat release parameter, q , which is a 

function of the equivalence ratio and lower heating value 
of the fuel-air mixture. This heat release parameter was 
used to evaluate the relative performance of the PDE, 
Humphrey and Brayton cycles.3

Comparison of the cycle analysis predictions with engine 
data requires a specific evaluation of the sensible heat 
release, rather than the nominal values used in 

*Chief Scientist, Turbomachinery and Propulsion Systems Division, 
AIAA Fellow.

reference 3. Changes in gas properties and compositions 
need to be considered. This paper examines the effect of 
sensible heat release on the cycle performance. The 
results are examined in light of the high temperatures 
occurring during the detonation process. 

Analysis and Procedure

Current Air-Breathing Cycle Analysis
Since this paper builds on the analysis of reference 3, it is 
appropriate to describe those previous results. The amount 
of heat supplied, or heat added, during a cycle was 
defined, to a first approximation, as the product of the 
mass fuel-air ratio and the lower heating value of the fuel. 
This quantity was then normalized by cPTo, to give the 
non-dimensional heat release parameter,

q = f hLV/ cpT0 .

Typical values of q range from 5 to 10, and were used in 

reference 3 to evaluate the relative cycle performance 
parameters. Equivalent q values were used for the 

Brayton, Humphrey, and PDE cycles, assuming that all of 
the ideal engines operated with the same initial conditions 
and the same amount of heat added during their cycles. A 
result of their analysis is shown on a temperature-entropy 
diagram in figure 1. This result assumed isentropic inlet 
compression and nozzle expansion.

The corresponding thermal efficiency curves are shown in 
figure 2. For the selected parameters of figure 2, the 
Humphrey cycle closely simulates the PDE cycle. 
However, it was shown in reference 3, that with non-
isentropic component efficiencies, the Humphrey cycle 
remains high, whereas, the PDE cycle falls off 
significantly. The consequences of these changes is that at 
values of T3/T0 greater than 3, the Brayton cycle turns out 
to be a better simulation of the PDE than the Humphrey 
cycle.

The corresponding specific thrust (i.e., thrust per unit 
mass flow of air) is shown in figure 3 for 'q s of 5 and 10

and vehicle speed of zero.
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Figure 1. Temperature-entropy diagram for the ideal PDE, 
Humphrey and Brayton cycles, T3/To = 2, q = 5, γ = 1.4, 

from reference 3.

Figure 2. Thermal efficiency for q = 5, from reference 3.

Values of ψ (equal to T3/T0) correspond to isentropic 

mechanical compression ratios represented by 
( )1

γ
γψ −

, 

or to ram compression equal to: M0 = 2( 1) ( 1)ψ γ− −
(see reference 3). With the background of the results of 
reference 3 presented above, we are now prepared to 
address the issues of the present paper, namely, the 
determination of the non-dimensional heat release, q , for 

specific fuels and engine operating conditions. In 
addition, we will examine the effect of dissociation on the 
sensible heat release available for thrust.

10~ =q

5~ =q

Figure 3. Specific thrust (lbf-s/lbm) of PDE and Brayton 
cycles for Vo = 0, γ = 1.4, from reference 3.

Heat Release Parameter
The detonation properties can be obtained using the 
method of Zeleznik and Gordon4 and the CEA code of 
McBride and Gordon.5,6 Pratt7 has developed a useful 
application code, EQL, based on references 4 to 6, which 
is used in this study to determine the sensible heat release, 
hPR. The non-dimensional heat release, q , is determined 

from the relationship:

q = f hPR/cpT 0 (1) 

hPR in equation (1) is determined from an energy balance 
for the overall reaction process, where the relationship 
between the enthalpies of formation of each species and 
the heating value of the fuel are determined from an 
energy balance:8

hPR = (Hreactants )298 – (Hproducts )298

where; Hr or Hp are defined as the summation of the 
products of all species and their standard heats of 

formation, i.e., 0
298

1

NS

f
i

n h∆
+
∑ .

EQL may also be used to compute the Chapman-Jouget 
(CJ) parameters for a given fuel-air mixture at the inlet 
exit conditions (point 3 in figure 1); and q may be 

determined from equation (2) for a given ψ :3,9,10

2 2( 1) 1 [( 1) 1] 1C J

q q
M γ γ

ψ ψ
= + + + + + − (2)
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The resulting q from equation (1) was used to perform 

cycle calculations for the PDE. In the case of the Brayton 
cycle, the sensible heat calculated from EQL was also 
used. Dissociation losses in the Brayton cycle may be 
recovered in the recombination process during 
turbine/nozzle expansion. In a similar fashion, some PDE 
recombination may occur during nozzle expansion. 
However, since practical PDE nozzles are not well 
defined, recombination in both cycles is not considered in 
this paper.

Results

Sensible Heat Release
Calculations, using EQL, were initially performed for a 
stoichiometric mixture of propane and air at standard 
pressure and temperature and ψ =1. The resulting values

for the detonation process were:

MCJ = 5.32, T4/T0 = 9.43, P4/P0 = 17.6, cp=.358 BTU/lbm 
°R, γ =1.25 and hPR = 16,508 BTU/lbm fuel. 

q was then calculated using equation (1), yielding a value 

of 5.5.

In a corresponding fashion, an hPR value of 18,572 
BTU/lbm fuel and a q value of 6.3 were determined for 

the normal (Brayton) combustion process. The sensible 
heat release associated with the detonation is seen to be 
11 percent lower than that for the normal deflagration 
process. The temperature reached during deflagration was 
4080 R whereas with detonation it was 5056 R. Inspection 
of the chemical species following reaction shows that the 
amount of intermediate products were substantially 
greater for the detonation process. The amount of CO, 
NO, OH, and H was 2 to 4 times higher than the 
deflagration process; and the HO2 was 12 times higher. 
With the higher amount of intermediate species, it is 
reasonable to attribute the lower hPR to the dissociation 
losses occurring during the detonation process.

Cycle Calculations
For comparative purposes the cycle code developed in 
reference 3 is used to evaluate the performance of the 
relative cycles. It is noted that the cycle analysis is based 
on constant gas properties and an ideal equation of state. 
It assumes that all particles of fuel and air undergo the 
identical detonation process. The results are only a 
measure of the maximum ideal performance available. 
The cycle analysis cannot generate information relative to 
practical aspects of a propulsion system, such as weights 
of the system, number of moving parts (simplicity) and 
costs. Those issues must rely on tests of specific 
components.

Thermal Efficiency 
The thermal efficiency and specific thrust are shown 
in figure 4a and 4b for the Brayton and PDE cycles. 
The parameters used for these calculations were 
those corresponding to the EQL results discussed above 
in the Sensible Heat Release section. For a PDE 
using propane/air with an equivalence ratio 
ϕ =1 (ϕ =[fuel/air]actual / [fuel/air]stoichiometric), and a 

temperature ratio ψ of 1, γ =1.25, q = 5.5, cp = .358 

BTU/lbm °R. For the Brayton cycle, the q = 6.3 at ϕ =1.

Figure 4a. Thermal efficiency, [(heat supplied-
heat rejected)/ heat supplied], V0 = 0, 

1.25,γ = stoichiometric propane-air.

Figure 4b. Specific thrust (lbf-s/lbm), V0=0, γ =1.25, 

stoichiometric propane-air.
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The thermal efficiency for the PDE cycle is seen to be 
equal to that in figure 2. This correspondence is due to the 
slightly higher value of q used with propane-air, a higher 

γ value, a higher cp and a higher reference temperature 

than those used in reference 3. The specific thrust is 
shown in the following figure.

The significant feature of figure 4b, as compared to 
figure 3, is that the PDE thrust/air flow crosses over the 
Brayton cycle curve at temperature ratios slightly above 
2. This result is due to the lower sensible heat release 
available in the PDE cycle.

Maximum heat release
EQL was further run to determine the propane/air ratio for 
the largest sensible heat release. The value was an 
equivalence ratio of 1.1, with a sensible heat release, q , 

of 5.63 for the detonation process and 6.38 for the 
deflagration process. Use of these values yielded a small 
increase in the level of the specific thrust curve, and the 
crossover point between the PDE and Brayton curves 
shifted a small amount to a higher temperature ratio, 
occurring at a ψ value of 2.3. This result is shown in 

figure 5.

Fuel Type
Various hydrocarbon mixtures were investigated to 
ascertain the sensible heat release in a detonation 
condition. Virtually all of the CxHy combinations have q

values ranging from 6.3 (Acetylene, C2H2) to 5.3 
(methane, CH4). Using a q of 6.3 for the PDE and the 

corresponding deflagration q value of 7.37, gives the 

result shown in figure 6.

Figure 5. Effect of maximum heat release on specific 
thrust (lbf-s/lbm), V0 = 0, γ = 1.25,ϕ =1.1, propane/air.

The overall levels of specific thrust for both cycles are 
higher than the previous results with propane. However, 
the point at which the thrust of the PDE becomes equal to 
the Brayton value (crossover point) is seen to remain at a 
value of 2.25, as observed with the propane result shown 
in figure 4.

Calculations were also carried out using stoichiometric 
hydrogen/air. The q values are 5.5 for detonation, and 6.8 

for deflagration. The results are plotted in figure 7. The 
crossover point on specific thrust occurs at about 2.

Figure 6. Specific thrust (lbf-s/lbm), stoichiometric 
acetylene/air, V0 = 0, γ = 1.26.

Figure 7. Specific thrust (lbf- s/lbm), stoichiometric 
hydrogen/air, V0 =0, γ = 1.24.
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Specific Fuel Consumption
The specific fuel consumption was determined from the 
mass flow rate of fuel per unit of thrust:

SFC = 

0

.fm f
FF

m

= (3)

Calculations for stoichiometric propane/air are shown in 
figure 8.

It is noted that the ideal PDE cycle has lower fuel 
requirement per pound of thrust from static thrust 
conditions up to a temperature ratio of 2.25. Beyond that 
point, the PDE values cross over the Brayton, and become 
slightly lower. The largest differences occur at the lower 
temperature ratios; that is below 2.25.

Specific Impulse
The specific impulse, ISP (defined as the thrust per unit 
mass flow of fuel), for the stoichiometric propane/air 
mixture is shown in figure 9. Again, the ISP for the PDE 
exceeds that of the Brayton cycle up to a temperature ratio 
of 2.25, at which point it falls below the Brayton cycle.

Figure 8. Specific fuel consumption (lbm/hr-lbf) for 
stoichiometric propane/air, γ =1.25, V0 =0.

Forward Velocity Effect
The effect of forward speed is determined in accordance 
with the following relationship:3

2
0 00

0

1
2 pth

c

F
V qc T V

m g
η = + −  (4)

Computations for 1000 and 2000 ft/s are shown in figures 
10a and 10b.

A significant decrease in specific thrust is observed as the 
forward speed is increased. In figure 10a, the maximum 
value has dropped from 210 (figure 4b.) to a value of 175, 
and at 2000 ft/s the maximum specific thrust decreases to 
a value of 150 lbf-s/lbm. The PDE thrust advantage 
diminishes to zero at a temperature ratio of about 2.25.

Since ram compression occurs with forward flight speed, 
the value of ψ must be larger than 1. For a V0 = 1000 ft/s 
the minimum value of ψ is about 1.2. Hence, the specific 
thrust advantage of the ideal PDE over the range of ψ is 
substantially reduced. At 2000 ft/s the minimum value of 
ψ is approximately 1.5 and no significant specific thrust 
advantage remains for the PDE cycle.

Figure 9. Specific Impulse (s) for stoichiometric 
propane/air, V0 =0.
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Figure 10a. Specific thrust per unit mass flow (lbf-s/lbm), 
V0 = 1000 ft/sec, 1.25γ = , stoichiometric propane/air.

Figure 10b. Specific thrust per unit mass flow (lbf-s/lbm), 
V0 =2000 ft/s, 1.25γ = , stoichiometric propane/air.

Performance at T3 /T0 =1 Operating Point
The importance of the reduced sensible heat release can 
also be demonstrated in any of the figures shown in this 
paper. For example, in figure 4b, which is the result for a 
static condition (V0 =0), the Brayton cycle will perform as 
well as the PDE cycle with a ψ (= T3 /T0) of only 1.3. 

This value corresponds to a compressor pressure ratio of 
only 2.5. In figure 10b, which presents the result for a 
forward velocity of 2000 ft/s, equivalent specific thrust is 
again obtained for the Brayton cycle with a temperature 
ratio of only 1.3.  

Conclusions
The sensible heat release in both a detonation cycle 
engine (PDE) and a deflagration cycle engine (Gas 
Turbine) was determined using an equilibrium 
calculation. The sensible heat was then used in a 
thermodynamic cycle analysis to determine the maximum 
theoretical performance achievable. Based on those 
results, it was concluded that the significantly higher 
temperatures present in the detonation engine lead to 
dissociation losses that are 10 percent higher than in the 
turbine engine. Accounting for only the dissociation loss, 
the thermal efficiency of the ideal PDE remains 
significantly higher than the turbine engine cycle. The 
thrust per unit mass flow for the PDE also is greater than 
the Brayton cycle up to temperature ratios of 2.25. 
Beyond that number, the PDE value crosses over the 
Brayton value and remains slightly lower throughout the 
range. The specific fuel consumption is also lower than 
the gas turbine up to a temperature ratio of 2.25. And the 
specific impulse of the PDE exceeds that of the Brayton 
cycle up to a temperature ratio of 2.25.

Propane/air mixtures with equivalence ratios of 1 and 1.1 
were used in this study. The specific thrust for both ratios 
showed no significant difference. Specific thrust was also 
calculated for acetylene/air and hydrogen/air mixtures, 
with the same general levels and trends.

The effect of forward flight speed was shown to reduce 
the specific thrust level significantly as well as the 
difference in value between the PDE and Brayton cycles. 
From a performance point of view, the PDE thrust, 
SFC and ISP benefits are the highest at low temperature 
ratios (i.e., less than 2) but are substantially diminished at 
higher velocities. At a flight speed of 2000 ft/s the 
specific thrust advantage of the PDE no longer exists.

It is noted that PDE performance at low velocities is ideal 
for producing static thrust.

Finally, it is noted that the PDE may have other practical 
engineering advantages over a gas turbine engine, 
i.e., simplicity, fewer moving parts, lighter weight and 
lower cost. In order to realize these benefits, a number of 
issues are being addressed currently. These include the 
effects of high temperature and high internal flow velocity 
on heat transfer and viscous losses as well as fatigue and 
leakage issues related to cyclical operation and valving. 
These attributes and concerns were not addressed by the 
cycle analysis presented in this paper and must await 
practical demonstration.
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