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Abstract

The paper begins with a short overview of the recent work done in the Þeld of discontinuous reinforced
composites, focusing on the different parameters which inßuence the material behavior of discontinuous
reinforced composites, as well as the various analysis approaches undertaken. Based on this overview
it became evident, that in order to investigate the enumerated effects in an efficient and comprehensive
manner, an alternative approach to the computationally intensive Þnite-element based micro-mechanics
approach is required. Therefore an investigation is conducted to demonstrate the utility of utilizing the
generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the
elastic and elastoplastic material behavior of aligned short Þber composites. The results are compared
with 1) simulations using other micromechanical based mean Þeld models and Þnite element (FE) unit
cell models found in the literature given elastic material behavior, as well as 2) Þnite element unit cell and
a new semi-analytical elastoplastic shear lag model in the inelastic range. GMC is shown to deÞnitely
have a window of applicability when simulating discontinuously reinforced composite material behavior.

1 Introduction
Metal matrix composites (MMCs) have received considerable attention over the past 30 years due to

their attractive speciÞc strength, stiffness, fatigue and thermal properties[Clyne and Withers (1993)], [Kelly
and Zweben (Eds) (2000)], [Sinclair and Gregson (1997)], [Lloyd (1994)]. MMC materials can be gener-
ically classiÞed by their type of reinforcement, which consists of either continuous Þber (identiÞed herein
as CFMMC) or discontinuous particulate (termed herein as DRX) reinforcements. While both classes of
materials share common features at a fundamental level (e.g., matrix/reinforcement compatibility, interfa-
cial properties sensitivity, architectural interaction (reinforcement size, shape and packing) and property
optimization, at a practical level dramatic differences can and do exist. For instance, CFMMC typically
have exceptionally high strength and stiffness capabilities that are inherently strongly anisotropic; whereas,
DRX material properties are typically more isotropic in nature with lower speciÞc strength, yet have excel-
lent stiffness capability. Clearly, failure to appreciate and consider explicitly the appropriate reinforcement
morphology can result in inaccurate performance assessments, as elaborated upon in the next section. The
combination of good transverse properties, relatively low cost, high workability and reasonable increases in
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performance over monolithic metallic alloys have made discontinuous reinforced materials the most commer-
cially attractive system to date for many stiffness driven applications [Clyne and Withers (1993)], [Kelly and
Zweben (Eds) (2000)], [Miracle and Maruyama (2000)].
Although manufacturing issues and cost are probably the greatest impediments to the wide application of

these advanced materials, it is also clear that accurate design and life prediction tools are greatly needed to
facilitate the implementation of these developing materials. Although closure has not been reached regarding
the best models for use in design and life prediction, it has become evident that if a model is ever to serve a
purpose beyond that of basic research, it must fulÞll several primary requirements. These include a signiÞcant
level of accuracy on both the macro and micro scales, computational efficiency, and compatibility with the
Þnite element method. FulÞllment of these requirements allows a model to serve the composite developer
by enabling quick and easy variation of composite parameters for material development and optimization
purposes. Likewise, those who attempt to utilize composites in structural design are well served if the model
is compatible with the Þnite element method. The generalized method of cells (GMC), originally developed
by Aboudi (1991, 1995), is a good choice for implementation into modeling tools for advanced composites,
given the requirements described above. Particularly, whenever microÞeld as well as macroÞeld quantities
will be needed - as is the case when attempting to account for inelastic material behavior in MMCs.
GMC is a fully analytical micromechanics model for multi-phased materials with arbitrary periodic

microstructures. It provides pseudo closed-form multiaxial constitutive equations for such materials, and
allows straightforward implementation of physically-based viscoplastic deformation models, as well as arbi-
trary failure and damage models for each phase. Further, recent independent advances have simpliÞed the
implementation of GMC as an elemental constituent material model in Þnite element analysis [Arnold et al,
(1999)], and signiÞcantly increased the model�s computational efficiency [Pindera and Bednarcyk (1999)].
GMC has been implemented in the NASA Glenn Research Center comprehensive micromechanics analysis
code, MAC/GMC [Arnold et al, (1999)]. The code has many features that render it useful for design, de-
formation modeling, and life prediction for a wide range of materials. These features include the ability to
simulate general thermomechanical loading on composites whose geometries are represented by a library of
continuous and discontinuous repeating unit cells, a library of nonisothermal elastic/viscoplastic constitutive
models, fatigue damage analysis, yield surface analysis, laminate analysis, and interface modeling.
In the past, the various capabilities described above have been exercised extensively, however, the pre-

dominant material system examined has been that of the CFMMC [Aboudi(1996)], [Arnold, et. al. (1996)],
[Goldberg and Arnold (2000)], [Iyer et al. (2000)], [Bednarcyk and Arnold (2000a)], [Lissenden et al. (2000)],
[Bednarcyk and Arnold (2000b)]. Consequently, the primary objective of this current study is to assess the
applicability of GMC in predicting the elastic and inelastic (plastic) behavior of particulate reinforced com-
posites (DRXs). The literature indicates that DRX behavior is signiÞcantly inßuenced by various charac-
teristic parameters like Þber arrangements (staggered, non-staggered, cluster, random, packing type), Þber
volume fraction, Þber aspect ratios, Þber-matrix stiffness ratios and reinforcement type (cylinder, particle,
etc. ). A brief review of this is provided in the background section. Even though GMC is fully capa-
ble of modeling arbitrary multiphased composite architectures, to facilitate comparison with previous work
reported in the literature and limit the scope of this investigation, only one type of DRX is considered,
namely, the simulation of aligned short Þber composites with non-staggered cylindrical reinforcements and a
hexagonal packing arrangement. The need for such an assessment stems from the fact that although GMC
consists of analytical equations that are able to deal with both the homogenization and localization process
for composite materials in a very numerically efficient way, the method�s linear displacement Þeld assumption
in combination with the imposition of displacement and traction boundary conditions in an average sense,
gives rise to an inherent lack of normal and shear component coupling. This lack of coupling is such that
application of a global normal (or shear) stress Þeld will produce only a local normal (or shear) stress Þeld.
Consequently, for cases (e.g., DRX materials) in which the load transfer mechanism between phases (e.g.,
matrix and Þbers) is shear dominated, the lack of normal-shear coupling may become quite problematic.
In particular, in the case of an elastoplastic matrix regime placed between two short Þbers, GMC�s lack of
shear coupling requires both the Þber and matrix to carry the same normal stress component. This tends
to produce an overly compliant (soft) composite response. The results presented within demonstrate this
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fact, and more importantly characterize the window of applicability for the GMC method within the context
of discontinuously reinforced metallic composites. The introduction of an �artiÞcial� elastoplastic matrix
material between the particulate reinforcements, is proposed in an attempt to extend the applicability of
GMC. Although, providing more reasonable macro behavior, such a strategy still results in incorrect mi-
cromechanical stress Þelds within the unit cells, thereby limiting the usefulness of the current GMC model
when calculating failure or fatigue analyses.
With section 2, the paper begins by reviewing recent work done in the Þeld of short Þber composites so

as to reveal the key parameters inßuencing DRX material behavior. Section 3 then articulates the various
analytical and numerical approaches employed and compared in this paper. Finally, section 4 presents a
comparison of GMC results with other analytical and numerical results within the elastic and elastoplastic
range, respectively.

2 Background: Factors Inßuencing DRX Materials
The early work on the principles of strengthening in composites reinforced with discontinuous Þbers,

whiskers or particulates carried out in the 1950�s and 1960�s is characterized by the use of relatively simple
models that do not explicitly take into account the actual inclusion distribution through interaction between
adjacent inclusions. Many models have been employed to study the effect of inclusion shape on the elastic
moduli, as well as subsequent inelastic response, and also the mechanism of stress transfer from the matrix
to a Þnite-length Þber. For instance, Eshelby�s analytical solution to the problem of an arbitrarily shaped
ellipsoidal inclusion embedded in an homogeneous material deformed by uniform tractions or displacements
at inÞnity has formed the basis for calculating the effective response of macroscopically homogeneous two-
phase composites using a number of approaches [Eshelby (1957)]. These approaches include the self-consistent
scheme which neglects the inclusion/matrix interaction in calculating stress Þelds in the inclusion phase [Hill
(1965)], and the Mori-Tanaka method (MTM) which takes this interaction into account in an approximate
fashion [Mori and Tanaka (1973)]. The problem of an array of ellipsoidal inclusions with different aspect
ratios embedded in an elastoplastic matrix can be treated using the Mori-Tanaka approach, as was done
by [Brown and Clarke (1975)] investigating the effect of inclusion shape on work hardening of metal matrix
composites. However, this method typically underestimates yielding and subsequent hardening effects due to
the use of mean stress and strain Þelds in the matrix phase, and treats all inclusion distributions on the same
footing so long as macroscopic homogeneity is preserved. Along similar lines, the so-called shear-lag analysis
has been employed to study the effectiveness of short Þbers as reinforcement using the strength-of-materials
approach to analyze stress Þelds around and within a Þnite-length Þber embedded in a surrounding matrix
[Dow (1963)]. While this type of analysis helps to identify shearing of the matrix as the primary mechanism
of force transfer from the matrix to the Þber, and thus the critical Þber length over which the axial stress is
introduced into the Þber from both ends, it is based on a very simpliÞed one-dimensional analysis of stress
Þelds which neglects the inßuence of morphology of surrounding Þbers, among other things.
Despite the relatively long history of modeling the response of discontinuous Þber composites, only

recently have systematic investigations of the effects of reinforcement shape and arrangement been initiated
for these types of composites. Inclusion of the third dimension in the analysis of the elastic and inelastic
response of discontinuous Þber composites increases the number of variables several fold relative to the
analysis of continuous Þber composites. Thus, in addition to the arrangement and shape of the reinforcement
in the plane transverse to the loading direction, variables associated with the planes parallel to the loading
direction were included. These variables include the Þber aspect ratio, Þber spacing in the vertical and
horizontal directions, those associated with the effect of Þber clustering, and the extent of overlap between
adjacent columns of Þbers. These added complexities typically require numerical solution procedures, such as
the Þnite-element analysis; particularly if complicated reinforcement shapes and arrangements are involved.
Finite-element investigations carried out in recent years have focused on separating the effects of inclusion

shape from the effects of inclusion packing array geometry on the overall elastic, elastoplastic and creep
behavior. Due to many different types of reinforcement employed in discontinuously-reinforced composites,
including whiskers, particulates, platelets as well as Þnite-length Þbers, extensive analyses of inclusion shape
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have been conducted for this class of composites. Examples of inclusion shapes investigated include spherical
particles, circular cylinders with different aspect ratios, truncated circular (octagonal) cylinders, double-cone
particles, and ellipsoidal or disk-like particles(platelets). Similarly, different packing arrays studied include
hexagonal arrangements of inclusions in the plane of loading distributed in either regular (aligned) arrays or
off-set (staggered) arrays in the planes parallel and perpendicular to the loading direction so as to model and
assess the inßuence of distribution randomness that is typical in DRX composites. Inclusions such as disk-
like particles arranged in packet morphologies have also been considered, as have clustered arrangements.
These investigations have been driven in large part by the wide range of inclusion morphologies that result
from current material processing techniques, as well as by the wide range of shapes available for the inclusion
phase.
In order to reduce the complexity of a three-dimensional Þnite-element formulation in analyzing the

response of discontinuous Þber, whisker or particulate composites, various idealizations of the unit cell have
been employed by a number of researchers (e.g. clusters of whiskers or cylindrical particles in the plane
parallel to the applied load have been modeled using a plane strain idealization of rectangular platelets).
This effectively reduces the problem to that of a continuously reinforced composite subjected to loading
in the plane perpendicular to the long Þber direction. The results of such analysis for rectangular cross-
sections with different aspect ratios in the plane of loading should be easily deduced from the early analysis
of continuously reinforced composites with rectangularly shaped Þbers [Ashton et al.(1969) ]. In the case of
a hexagonal array of inclusions in the plane transverse to the loading direction, the problem is often reduced
to an axisymmetric (i.e., two-dimensional) problem by approximating the unit cell using a circular cylinder
with different types of lateral boundary conditions to simulate the interaction with adjacent Þbers (i.e., unit
cells). Using this model, different Þber arrangements in the plane parallel to the applied load have been
investigated, with varying amounts of overlap between vertical columns of adjacent Þbers (e.g. [Christman
et al. (1989)], [Tvergaard (1990)], [Dragone and Nix (1960)], [Povirk et al. (1990)], [Yang et al. (1991)],
[Bao et al.(1991)], [Siegmund et al. (1992)]). In contrast to continuously reinforced composites, the inclusion
arrangement in discontinuously reinforced composites is inherently three-dimensional, so that the use of
plane models requires considerable caution. The results of fully three-dimensional Þnite-element analyses
of such periodic arrays are also available (e.g. [Levy and Papazian (1990)], [Weissenbek and Rammerstorfer
(1993)], [Abel et al.(1993)], [Weissenbek et al. (1993)]). They are, however rather restrictive in terms of
Þber arrangements and shapes, and tend to entail considerable computational costs. Both three-dimensional
and axisymmetric unit cell models have been used successfully for studying the nonlinear thermomechanical
behavior of aligned short reinforced composites.
The literature survey presented indicates signiÞcant inßuence of both inclusion shape and distribution on

the elastic, elastoplastic and creep response of discontinuous Þber composites. The extent of this inßuence for
a given Þber architecture depends on the inclusion content, inclusion/matrix material property mismatch, and
the direction of applied load with respect to the internal micro-structure. The inßuence of Þber architecture
on the response of DRX composites is signiÞcant and is based on a substantial number of investigations,
each of which was necessarily limited in scope due to the prevalent use of the Þnite-element approach in
modeling the response of the investigated architectures. Thus while a considerable body of knowledge
has been generated that sheds light on the effectiveness of different Þber architectures in strengthening
discontinuous Þber composites, considerably more systematic research is required to develop design guidelines
for optimization of material performance through Þber architecture manipulation.
However, it becomes clear, based on the above discussion, that in order to investigate the enumerated

effects in an efficient and comprehensive manner, including parametric studies involving Þber content and
material property mismatch variations, an alternative approach to the computationally intensive Þnite-
element based micromechanics approach is required. This is particularly true when inelastic (viscoplastic)
theories, which typically require computationally intensive integration algorithms, are employed to model
the response of metallic matrices. Therefore, the objective of this paper is to apply the computationally
efficient GMC method so as to determine its suitability for predicting the macroscopic response of aligned,
DRX materials.
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3 Modeling Approaches
All simulations conducted in this study consist of aligned short Þber composites, wherein the particulates

(wiskers) are idealized as non-staggered, cylindrical reinforcements, with a hexagonal packing arrangement.
Similarly other basic constraints imposed are as follows:

� The inclusion properties are assumed isotropic and linear elastic, while the matrix is taken to be
isotropic elastoplastic with isotropic hardening.The material data for both the inclusion and matrix
are treated as temperature-independent and isotropic.

� The inclusions are axisymmetric, identical in shape and size and can be characterized by an aspect
ratio, ar, that relate the length of an inclusion to its diameter.

� Investigated model parameters are the Þber (inclusion) volume fraction (Vf = 0.2, 0.5), the Þber-matrix
stiffness ratio (sr = EF /EM = 3, 30) and the Þber aspect ratio (ar = l/d = 5, 15, 25).

� The inclusions and matrix are well bonded at their interface and remain that way during deformation.
Thus, we do not consider interfacial slip, Þber-matrix debonding or matrix micro-cracking.

� No time dependence (relaxation or creep) effects are included in the present analysis.

Note, obtaining experimental reference data for unidirectional short Þber composites appears to be problem-
atic, as it has not proved possible to produce physical samples with perfectly aligned Þbers. Consequently, in
this paper we avoid this additional complexity of orientation effect by using three-dimensional Þnite element
analysis of aligned short Þber composites as our reference standard, rather than experimental results.

3.1 Material Data

The material properties used for all calculations are given in Table 1. These properties are in the range
of typical Þber-reinforced engineering thermo-plastics (PMC�s - Material 1) and metal matrix composites
(MMC�s - Material 2), respectively. The following input data are needed for both components: Young�s
modulus E and Poisson�s ratio ν. The yield stress σY and the hardening modulus EH are needed for the
matrix material only.

Table 1: Prototypical material properties used for all calculations.

Material 1 (sR = 30) Material 2 (sR = 3)
Property Fiber Matrix Fiber Matrix
E (GPa) 300. 10. 300. 100.

ν 0.17 0.33 0.17 0.33
σY (MPa) - 20. - 200.
EH (GPa) - 0.1 - 1.0

3.2 Analytical Models

In the past, numerous analytical models have been examined in an attempt to determine the �best�
(see e.g., [Tucker and Liang (1999)], [Aboudi (1991)]) available analytical model for predicting the elastic
stiffness behavior of aligned short Þber reinforced composites relative to reference FEA-model represen-
tations. Analytical models considered, were models such as: the Mori-Tanaka method (MTM)[Mori and
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(c)(b)(a)

Figure 1: Sketch of inclusions-matrix shapes for the applied aligned short Þber composite models. (a) Mori-
Tanaka model, (b) Hashin-Shtrikman estimates of Ponte Castañeda and Willis, (c) GMC-model (ar = 5.0)

Tanaka (1973)], self-consistent models, bounding models (e.g., variable constraint model (VCM) and Hashin-
Shtrikman bounds and estimates), Halpin-Tsai equations and shear lag models (see Appendix B for details
of the elastoplastic extension used in this study). For example, the recent work of [Tucker and Liang (1999)]
recommended that the Mori-Tanaka model was the �best� choice for estimating the overall elastic stiffness
behavior of aligned short Þber composites.
In this study we will extend the scope of comparison to include the semi-analytical generalized method of

cells model (GMC) and compare GMC with the MTM, VCM, FEM results and Hashin-Shtrikman estimates
(HSE)1 of [Ponte Castañeda and Willis (1995)]. Benveniste (1987) has provided a particularly simple and
clear explanation of the Mori-Tanaka approach. Analytical bounds for the stiffness behavior can be obtained
from the variable constraint model (VCM), published by [Pedersen and Withers (1992)]. From a practical
point of view it is of interest that the lower (VCM) bound corresponds to the standard Mori-Tanaka results,
while the upper (VCM) bound can also be obtained from the Mori-Tanaka approach after a so called �color
inversion� (i.e., exchanging the roles of inclusion and matrix). These bounds obtained from the Mori-Tanaka
approach also correspond to the Willis bounds in the case of aligned inclusions, compare for example, [Weng
(1990)].
It is important to remember that the basic assumption of the Mori-Tanaka method is that the aligned

ellipsoidal inclusions are surrounded by coaxial aligned ellipsoidal matrix domains in which both ellipsoids
have the same aspect ratio (Fig.1a) and that each inclusion (Þber) within a concentrated composite sees the
average strain of the matrix. Consequently, the MTM provides only macro (average) Þelds and properties
and therefore lacks the ability to address adequately problems dominated by microÞeld quantities, such as
damage and inelastic behavior analysis. Alternatively, GMC allows both homogenization and localization of
the associated stress and strain Þelds (see Appendix A), thereby providing not only macro stiffness properties
but also local eigenstrain Þeld quantities. Note, that in the present investigation the GMC unit cell differs
from MTM as different Þber-unit cell aspect ratios (Figs.2 and 3) can be realized since the whole inclusion
(Þber) is surrounded by a matrix material layer of constant thickness (side-to-side and end-to-end distances
are equal) and labeled, e, subsequently. Because of this varying aspect ratio, HSE for the prediction of the
effective moduli of the elastic inhomogeneous material given in [Ponte Castañeda and Willis (1995)] are also
introduced (Fig.1b) to overcome the drawback of the original Mori-Tanaka method so that different Þber-unit
cell aspect ratios can be realized. Note, these Hashin-Shtrikman estimates correspond identically with the
Mori-Tanaka method for the case of aligned, coaxial inclusions with equal aspect ratios of the inclusion and
the surrounding matrix ellipsoids (see [Hu and Weng (2000)])

1Note, the Hashin-Shtrikman estimates differ from the Hashin-Shtrikman bounds, as [Ponte Castañeda and Willis (1995)]
and [Willis (1977)] removed the restriction of statistically isotropic overall material symmetry (used by both HS and Willis)
by separating the spatial distribution of inclusions from the inclusion shape. Also in the HSE, [Ponte Castañeda and Willis
(1995)] employed only a single reference material (e.g., the effective material like in self consistent models) instead of the two
used by [Willis (1977)].
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3.3 Generalized Method of Cells

Although, GMC is capable of analyzing any multiphased composite material with an arbitrary internal
microstructure and reinforcement shape (see Appendix A), the unit cell analyzed in this study is shown
in Fig. 2. Due to the periodic boundary conditions inherent to the GMC-model the whole RVE must be
modeled, instead of only a quarter of the unit cell (see the dashed rectangle in Fig. 2) as typically done
in the case of FEA representations where symmetric boundary conditions are applied. Apart from this

x3

x2

x1

fd /2

fl

b

a

c
e

Figure 2: Aligned short Þber GMC unit cell model, comprised of 338 subcells.

fact, the unit cell dimensions were chosen similar to the dimensions of the FE-model (see Fig. 3). The Þber
was approximated with more than one subcell (sufficient for the longitudinal stiffness behavior) in order to
reduce the error in the transverse response (i.e., the difference between E22 and E33) and better approximate
the targeted transversely isotropic response behavior resulting from a hexagonal packing arrangement. The
cross sectional area of the approximated Þber is taken equal to the cross sectional area of the actual circular
Þber. These conditions, together with the known Þber diameter, Þber volume fraction, and the distance, e
(see Fig. 3) suffice to determine the dimensions of the unit cell for each Þber aspect ratio ar=lf/df . All
GMC analyses were realized with the computer code MAC/GMC [Arnold et al.(1999)] developed at the
NASA Glenn Research Center.

3.4 Finite Element Models

The Þnite element unit cell analyzed consisted of an identical periodic, three dimensional non-staggered
array of Þbers (similar to that idealized with GMC) with the corresponding dimensions shown in Fig. 3. The
unit cell dimension were chosen such that b would be proportional to a (i.e., b = βa) through the constant
β. In the case of hexagonal packing, β =

√
3, and the distance between neighboring Þber ends (end-to-end

distance, equal to c− lf in Fig. 3) was set to the closest distance between two Þbers (side-to-side distance,
equal to e in Fig. 3).

These conditions, together with the Þber diameter and volume fraction, suffice to determine the dimension
a, b and c for the repeating volume element (RVE) to be analyzed. Note that a new unit cell and its
corresponding 3D mesh are generated for each Þber aspect ratio (l/d) and Þber volume fraction (vf ).
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Figure 3: Example representative volume element and Þnite element unit cell for aR = 5.0 and VF = 0.2

Stiffnesses within the elastic and plastic range of these unit cells were calculated using [ABAQUS (1998)].
Fully integrated, Þrst order, solid elements2 were used, as this element type does not suffer from volumetric
locking, which is critical for accurate elastoplastic calculations. The mesh discretization containing 13,300
elements employed is shown in Fig. 3. This mesh density is approximately three times Þner than that used
by [Weissenbek and Rammerstorfer (1993)] and was shown during the course of this work (by convergency
studies) to be sufficiently accurate for both elastic and inelastic analysis. Modeling of only one eighth of the
whole RVE (depicted on the left) was achieved due to the use of appropriate symmetric boundary conditions.
For example, when considering axial or transverse loading, symmetry requires all faces of the unit cell to
remain plane. Consequently, to determine E11 and ν12 the normal displacements of the front (x1 = 0), left
(x2 = a/2) and bottom (x3 = 0) faces of the unit cell were Þxed. Then a master node was deÞned (the
intersection point of the back, right and top face) and linear constraint equations applied on the back, right
and top face such that the normal displacements of all nodes (except the master node) on these faces were
set equal to the normal displacements of the master node. The tangential displacements on all faces were left
unconstrained. The average (marco) stress was then computed from the reaction force of the master node
divided by the cross-sectional area normal to the reaction force of the investigated unit cell. Similarly, the
average (macro) strain was computed by dividing the displacement of the master node by the corresponding
length of the unit cell. For convenience, a one Newton load was applied to the unit cell.
Analogous conditions were used to load the unit cell in the x2-direction to determine E22 and ν23.

The Þfth and Þnal independent material parameter for transversal isotropic material, the longitudinal shear
modulus G12, could also be determined using the unit cell shown in Fig. 3, assuming the appropriate periodic
boundary conditions were applied to each face. This more complicated analysis was not undertaken at this
time.

4 Results

4.1 Elastic Material Behavior

All of the analytical micromechanics theories used in this study predict full transversely isotropic prop-
erties. Transverse isotropy about the x1 axis implies that the stiffness behavior is the same for any loading

2 In [ABAQUS (1998)] this is the element known as C3D8.
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direction in the 2-3 plane; consequently, this not only requires that E22 = E33, but also that

G23 =
E22

2(1 + ν23)
. (1)

Therefore, only Þve independent stiffness constants (e.g., E11, E22, ν12, ν23 and G12) need be determined for
the case of transverse isotropy. Periodic unit cells with hexagonal packing should be transversely isotropic
as there are six planes of symmetry. However, since periodic boundary conditions were not applied to the
FE unit cell, we were unable to obtain G12 from the FE investigations. Consequently, we will limit our
comparison for the various approaches to the prediction of E11, E22, ν12 and ν23 only.
Results of the normalized axial modulus (x1- direction, scaled by the matrix modulus) obtained from the

VCM-model (MTM-model), Hashin-Shtrikman estimates, GMC-, and FE-model are shown in Fig. 4 (DRX
like materials with a lower stiffness ratio, e.g., sr = 3) and Fig. 5 (PMC like material, with a higher stiffness
ratio, e.g., sr = 30) for numerous Þber aspect ratios and two Þber volume fractions, a low (vf = 0.2) and
a high (vf = 0.5). The Hashin-Shtrikman-, GMC- and FE-models were evaluated only at discrete aspect
ratios; whereas, the VCM-result were computed for many different aspect ratios and thus displayed with a
solid line. Note, for high stiffness ratios only the lower VCM-bound (which corresponds to the MTM) was
plotted. From Figs. 4 and 5 it is apparent that the inßuence of Þber aspect ratio on E11 is signiÞcant (Max.
error of 35%) for a composite with a high stiffness ratio whereas relatively insigniÞcant (Max. error of 3%)
for materials with a low stiffness ratio. In both cases the Hashin-Shtrikman estimate lay as expected within
the upper and lower VCM bounds. The GMC- and FE-results are partially out of the Mori-Tanka based
VCM-bounds due to the different inclusion topology (ellipsoidal versus cylindrical). Generally speaking,
the GMC-model underestimates the longitudinal stiffness, particularly for high stiffness ratios, although the
trend is captured quite nicely. Alternatively, for materials with low stiffness ratios, good agreement between
GMC and Hashin-Shtrikman estimates as compared with FE-results are observed given a wide range of
aspect ratios and Þber volume fractions.
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Figure 4: Comparison of axial modulus ratios for sr = EF
EM

= 3

The physical reason for the difference between the FEA-results and those of GMC can be inferred from
Fig. 6, where the longitudinal stress distributions for a load in the x1-direction are shown. In both FEA
analyses shown in Fig. 6, the geometry, boundary conditions, and applied forces are the same. Only the
stiffness ratio between matrix and Þber constituent material is different. Evidently, these stress contours
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Figure 5: Comparison of axial modulus ratios for sr = EF
EM

= 30

indicate that an increase in the stiffness ratio leads to a decrease in the matrix loading and conversely to
an increase in the Þber loading (see maximum and minimum stress values). Similarly, the difference of the
�mean� matrix stress in the volume of material between the two Þber ends as compared with the �mean� Þber
stress becomes greater as the stiffness ratio is increased. Considering, the GMC representation, the stresses
are constant and equal along a longitudinal Þber-matrix row. Therefore the error for lower stiffness ratios
is decreased, yet when the stiffness ratio increases so too does the error. Figure 6 also gives an explanation
as too why the GMC stiffness results are slightly under the FE-results in Fig. 4, as the GMC assumptions
lead to an unloading of the �stiff� Þber and to an additional loading of the �soft� matrix.

Figures 7 and 8 illustrate the normalized transverse modulus results obtained from the various analytical
and numerical methods considered. Here as one would expect, the Þber aspect ratio has little, if any,
effect on the transverse modulus Also, in general the GMC results compare favorably (maximum error of
approximately 5%) with the FE-results throughout. For both stiffness ratios, the Hashin-Shtrikman estimates
are equal to the lower VCM bound (which in turn are equal to the original MTM-results). Noteworthy is the
fact that the GMC-results are much closer to the FE-results for the case of high stiffness ratios, low aspect
ratios, and high Þber volume fractions than the other analytical estimates. Similarly, as observed for the
longitudinal stiffness the qualitative trend of the FE results is better captured by GMC.
To help explain this observation, we examine the calculated transverse stress distribution obtained from

FEA, as shown in Fig. 9. Note, only the case for the low stiffness ratio (sr = 3) is shown in Fig. 9 as
the FE-results for the higher stiffness ratios appear similar. Relative to the FE-results for the longitudinal
loading case, the difference in the �mean� matrix stress of the volume of material between the two Þbers
in the loading direction and that of the �mean� Þber stresses for the transverse loading case are small.
Consequently, the inaccuracy caused by having similar stress states in a given row or column of subcells
within GMC is small; thus explaining the lack of inßuence the stiffness ratio has on the GMC predictions
relative to those determined using an FEA unit cell.
Figures 10 and 11 show a comparison of the axial Poisson�s ratios based on the various evaluation methods.

Again the comparison between FEA and GMC results are quite favorable, irrespective of aspect ratio and
stiffness ratio; the difference being approximately a maximum of 5.2%. Again, the GMC results follow the
qualitative trend of the FE-results much better than either the Hashin Shtrikman estimates or MTM-results,
especially for the case of high stiffness ratios and low Þber aspect ratios.
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Figure 8: Comparison of transverse modulus ratios for sr = 30
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Figure 11: Comparison of axial Poisson ratios for sr = 30

Similarly, results for the in-plane Poisson�s ratio ν23 appear in Figs. 12 and 13. Once again, in general
the GMC results are slightly above those produced with FEA. The Hashin-Shtrikman estimates being closer
to the FE-results than the GMC results. The discrepancy between methods being more evident with higher
Þber volume fraction than higher stiffness ratios. Even so, the maximum error between the GMC predictions
and those of FEA is at most 4.8%.

4.2 Elastoplastic Material Behavior

In this section the elastoplastic stiffness behavior of aligned short-Þber composites will be analyzed using
primarily the GMC and the Þnite element method. A comparison of the resulting predictions should conÞrm
whether or not the GMC is capable of accurately simulating the elastoplastic stiffness behavior of DRX
materials. Additionally, results obtained from a semi-analytical elastoplastic shear lag model (see Appendix
B) are included as well to help illuminate any differences between the methods. The investigated model
parameters are similar to those of the elastic investigation, with the exception that only two Þber aspect
ratios (ar = 5 and 25) are examined. Furthermore we restrict ourselves to the case of longitudinal (x1−
direction) loading so as to allow the inclusion of shear lag results.
Figure 14 shows the effective longitudinal stress-strain curve produced by the GMC (dotted and dashed

line), FE unit cell (solid line), and shear lag (symbols) models for the special case of Vf = 0.2, ar = 5, sr = 3.
Clearly, a large difference in the longitudinal stiffness response exists, depending upon the analysis method
employed, with the GMC model predictions being signiÞcantly softer. The question before us is whether or
not the lack of shear coupling inherent in the GMC method is the primary cause for the softer elastoplastic
behavior. To address this question, we introduced a semi-analytical shear-lag-model (and shear-free model) as
described in Appendix B. A comparison of the shear-lag (open circles) and shear-free (open square symbols)
models with those of FE and GMC are also shown in Fig. 14.

Evidently, the 8-subcell (1 Þber subcell surrounded by 7 matrix subcells) GMC results and the shear-free
model results agree extremely well; whereas, those determined using the elastoplastic shear-lag model agree
with those coming from the FE unit cell model. Consequently, it may be concluded that:

1. The difference between the GMC- and FE-simulations is directly related to the lack of normal-shear
coupling inherent in the GMC formulation.
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Figure 14: Comparison of FE-, GMC-, Shear-lag-, Shear-free-model results (sr = 3, Vf = 0.2, ar = 5)

2. The standard (without any modiÞcations) GMC-model is not well suited for predicting the elastoplastic
response behavior of DRX materials, as the GMC-model predicts an overly soft plastic response.

3. The semi-analytical elastoplastic shear-free and shear-lag models introduced in Appendix B appear
fully capable of predicting both the GMC- and FEA-results. The primary disadvantage of this shear-
lag model being its �uniaxial� nature, that is, it can only provide the effective modulus (response) in
a single direction.

In addition to the pseudo-square3 Þber (8-subcell) GMC representation (dotted line) in Fig. 14, the
typical (338 subcell) circular Þber unit cell (dashed line) is shown in Fig. 14. Clearly, a discretization effect
is observed and is a result of the piecewise plastiÞcation of the matrix subcells between the two Þber ends
in the case of the Þner GMC-model. This effect results in a softer response within the initial plastic range
(i.e., from 0.2 - 0.5% strain range). After plastiÞcation of all matrix subcells the effective hardening slope of
both GMC unit cells are essentially the same.
To verify the above conclusions, simulations with other aspect ratios, volume fractions and stiffness ratios

were conducted with the results being displayed in Figs. 15 - 18. The semi-analytical shear-free model is not
shown in these Þgures as its results always agreed with the GMC (pseudo square) simulations. The Þtting
parameter ψ of the semi-analytical shear-lag-model is found to be only a function of the Þber volume fraction
i.e. ψ = ψ(Vf ) and takes a value of approximately 2 for Vf = 0.2 and approximately 2.5 for Vf = 0.5. The
dashed lines in all Þgures represent the effective stress-strain response of the standard circular GMC-model.
All Þgures conÞrm the above conclusions.

Some characteristic features of the effective Þnite element stress-strain curves in Figs. 15 - 18 are evident;
for example, increasing either the aspect ratio or volume fraction signiÞcantly hardens the composite response,
particularly for high stiffness ratio materials. The elastoplastic stiffness response may be partitioned into
three ranges. Figure 19 shows these ranges as a function of effective longitudinal strain.
Range 1, delineates the domain where linear elastic behavior is manifested. This is followed by range 2

in which a large variation in the hardening slope takes place and range 3 in which approximately a constant
3 In GMC the geometry of the subcell representing the Þber is square; however in actuality since all Þelds are taken at the

centroid of the subcell only the ratio of subcell to total length is important, no corners are felt. Thus the square Þber is really
a pseudo-square.
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Figure 15: Comparison of FE-, GMC- and Shear-lag-model results for sr = 3 and Vf = 0.2
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Figure 17: Comparison of FE-, GMC- and Shear-lag-model results sr = 30 and Vf = 0.2
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Figure 18: Comparison of FE-, GMC- and Shear-lag-model results sr = 30 and Vf = 0.5
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Figure 19: Semi-analytical shear-lag model, characteristic ranges and number of yielded truss elements
(sr = 3, Vf = 0.2, ar = 5)

effective hardening slope is observed. More detailed investigations into the ßow behavior show that at the
beginning of range 2 the matrix material between the two Þber ends begins to yield Þrst (see Fig. 19, point
1). After which the whole matrix yields (point 2). During the longitudinal loading step the matrix from the
side-to-side region tries to move to the end-to-end region. This material ßow leads to a considerable shear
loading of the side-to-side matrix interphase (between Þber and matrix). In the plastic range large shear
deformations of the interphase start at the Þber ends (point 3), then grow over the Þber and prevent any
additional loading of the Þber. In the case of the semi-analytical shear-lag-model this means that one by
one each non-linear truss element will start to yield. All trusses are plastic at point 4 (see Fig. 19), which is
the beginning of range 3. Note, the stair-stepped dashed line in Fig. 19 indicates the piecewise yielding of,
altogether, Þve truss elements.
Based on these results, the question remaining is whether the GMC can be appropriately modiÞed in

order to predict accurately the elastoplastic behavior of DRX materials. Considering why the GMC fails,
it becomes clear that if the matrix between the two Þber ends yields, the Þber is no longer capable of
carrying any additional load beyond the matrix since both the matrix and Þber have the same stress state.
This continuity of speciÞc stress components along a given row or column of subcells is a direct result of the
inherent lack of normal and shear coupling with GMC. Given this fact, a simple modiÞcation to GMC would
be the introduction of an artiÞcial matrix material for all subcells within the region between the two Þber
ends. This new artiÞcial matrix material must be chosen so that the resulting effective stress-strain curve
produced corresponds with the reference data (be it experimental or analytical). Of course this strategy
possesses the drawback that the obtained micro-mechanical GMC stress state is no longer based on any
physical meaning; i.e., fracture, damage or fatigue analyses could no longer be performed conÞdently when
using the modiÞed GMC-results, as the microÞeld quantities would be even more questionable than before.
As a Þrst attempt, the artiÞcial matrix material was assumed to behave as purely elastic, with the

associated Young�s modulus of the artiÞcial matrix material being that of the matrix itself. Clearly, such an
assumption results in the overestimation (at least well within the plastic range) of the elastoplastic response
curve as illustrated in Fig. 20. This response prediction is non-conservative. In contrast, it is shown that the
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Figure 20: Comparison of FE-, GMC-, and GMC-modiÞed simulations (sr = 3, Vf = 0.2, ar = 5).

standard GMC-model provides a lower bound (conservative response prediction) for the effective elastoplastic
behavior, thus suggesting that an artiÞcial bilinear elastoplastic material might provide a more accurate
simulation. For such a material deÞnition, four material parameters would be required as input; they are
1) Poisson�s ratio, 2) Young�s modulus, 3) yield stress, and 4) the plastic hardening slope. With the yield
stress and hardening slope being the best candidates for modiÞcation from that of the matrix material, since
the elastic range is already accurately predicted, the parameters (E,ν) can be taken to be that of the matrix
material. Here we restrict ourselves to the modiÞcation of the hardening slope alone (keeping the yield
the same as the of the matrix) and thereby attempt to obtain the unknown artiÞcial hardening slope E∗H
from the consideration of a simple one dimensional spring model (with each spring corresponding to a given
subcell) which is shown in Fig. 21.

The following discussion is limited to range 3 in Fig. 19 (i.e., the range where the effective hardening
slope is approximately constant). Assume an incremental load, ∆F, is applied to the spring assemblage in
Fig. 21. This results in an incremental displacement, ∆u, that depends on both the geometry and material
properties of the spring assemblage, that is,

∆F =
1

lf
EfAf

+
l−lf
E∗
HAf

+
1
l

EH(A−Af )
∆u, (2)

where A is the total cross sectional area of the considered unit cell and Af the Þber cross sectional area.
EH and E∗H are the hardening slope and artiÞcial hardening slope, respectively. Alternatively, the global
longitudinal stiffness behavior can be described by

∆F =
EeffH A

l
∆u (3)

where EeffH is the effective longitudinal hardening slope. The combination of Eqs. (2) and (3) , and the
introduction of the following abbreviations,

sfr,H =
Ef
EH

, seffr,H =
EeffH

EH
, lr =

lf
l
, Vf =

Af lf
Al

(4)
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lead to the Þnal equation for the artiÞcial hardening slope:

E∗H
EH

=
sfr,H(1− lr) seffr,H +

Vf
lr
− 1

Vf (
sfr,T
lr
− 1) + lr(1− seffr,H )

. (5)

Note, the only unknown in this equation is the effective longitudinal hardening slope EeffH which for example
may be determined from the semi-analytical shear-lag model (see Appendix B) or obtained from some other
reference data.
A comparison of the FE-, GMC-, GMC-bilinear-modiÞed-model response histories are shown in Figs. 22-

25. Evidently, as one might expect, the GMC-model, modiÞed by using an artiÞcial bilinear matrix material
deÞnition in the intermediate subcell, results in a more accurate longitudinal simulation than the previous
standard GMC-model (see Fig. 14 and that modiÞed using an artiÞcial elastic matrix material deÞnition).
With this approach, reasonably accurate results can be produced when range 2 is small, typically for high Þber
aspect ratios and low stiffness ratios. Alternatively, for situations involving high stiffness ratio materials,
low volume fractions and high aspect ratios (e.g., ar = 25, see Fig. 24) simulations using the modiÞed
GMC approach give the largest error. This is due to the fact that these conditions induce the smallest area
(highly loaded) subcell between Þbers and thus maximizes the ßow between inclusions; thereby producing
the most compliant overall response. Clearly, only a small difference exists between FE and GMC results in
the extensive plastic range. This is due to the Þtting procedure utilized for the simple spring model. Note
that, again all response histories are conservative when compared with FEA simulations.
More detailed studies were not performed at this time using a more complex artiÞcial matrix material

deÞnition, since the actual usefulness of such an ad-hoc approach is debatable due to the lack of any real
physical meaning. Furthermore, a new higher order GMC theory (appropriately termed - high Þdelity
GMC), which provides the necessary normal and shear coupling, has recently been developed by [Aboudi et.
al.(2001)]. This new formulation, although more computationally demanding than the standard or modiÞed
GMC (but signiÞcantly faster than the FEA approach) should provide the required balance between speed
and accuracy when attempting to simulate DRX material behavior. Consequently, further analysis using
the GMC will be reserved until later when the theoretical extension of the present elastic continuously
reinforced high Þdelity GMC version (see [Aboudi et. al.(2001)]) to that of discontinuous and inelastic
material behavior, is accomplished.
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Figure 22: Comparison of FE- and GMC-modiÞed model (sr = 3, Vf = 0.2)
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Figure 23: Comparison of FE- and GMC-modiÞed model simulations (sr = 3, Vf = 0.5)
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Figure 24: Comparison of FE- and GMC-modiÞed model simulations (sr = 30, Vf = 0.2)
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Figure 25: Comparison of FE- and GMC-modiÞed model simulations (sr = 30, Vf = 0.5)
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5 Conclusions
This paper has focused on evaluating the predictive ability of the generalized method of cells, in the

context of discontinuously reinforced composite (DRX) material behavior; speciÞcally aligned short Þber
composites. GMC simulations were compared with: i) simulations using other micromechanical based mean
Þeld models and Þnite element (FE) unit cell models found in the literature for the elastic range, as well
as ii) Þnite element unit cell model and a new semi-analytical elastoplastic shear lag model in the inelastic
range. Results indicated that the GMC is fully capable of accurately analyzing the elastic behavior of DRX
materials. However, in the case of inelastic behavior, the standard GMC approach, due to the inherent lack
of normal-shear coupling, was shown to be unsuitable for predicting the longitudinal elastoplastic behavior
of aligned short Þber reinforced composites. However, a simple modiÞcation of the GMC-model, through
the introduction of an �artiÞcial� bilinear matrix material deÞnition within the subcell(s) residing between
inclusion (Þber) ends was shown to improve the overly conservative GMC predictions within the elastoplastic
regime signiÞcantly. This ad-hoc modiÞcation to the GMC unit cell deÞnition would allow reasonably
accurate multiaxial simulations to be made. The case when both the stiffness and Þber aspect ratios are
high being the least accurate. Finally, it was shown herein that an elastoplastic shear lag model can
provide identical uniaxial results to that of the FE unit cell calculations. For truly consistent and accurate
results it is recommended that a high Þdelity micromechanics approach be used when examining inelastic
discontinuously reinforced composite behavior.
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6 Appendix A: Generalized Method of Cells Formulation
GMC can predict the elastic and inelastic thermomechanical response of both continuous and discontin-

uous multiphased composite materials with an arbitrary internal microstructure and reinforcement shape.
It is a continuum-based micromechanics model that provides closed-form expressions for the macroscopic
composite response in terms of the properties, size, shape, distribution, and response of the individual con-
stituents or phases that make up the material4 . These constituent materials can be represented using any
elastic and/or inelastic deformation and life (e.g., continuum damage mechanics fatigue model) model. The
periodic nature of composites typically allows identiÞcation of a repeating unit cell that can be used as a
building block to construct the entire composite. The properties of this unit cell are thus representative of
the properties of the entire assemblage once the subcell dimensions and appropriate subcell materials are
selected. Thus, unidirectional long-Þber composites, short-Þber composites, porous materials and laminated
materials can all be modeled as special cases.

6.1 Model Description

Consider a composite material with a periodic structure whose repeating volume element consists of
Nα ×Nβ ×Nγ rectangular parallelepiped subcells. The volume of each one of the subcells is dαhβ%γ , where
α, β and γ are running indices: α = 1, . . . , Nα ; β = 1, . . . Nβ ; γ = 1, . . . , Nγ , in the x1 , x2 and x3 -
directions, respectively. The total volume of the repeating volume element is dh% where d = Nα

α=1 dα ,
h =

Nβ

β=1 hβ , % = Nγ

$=1 %γ . In Fig. 26, an example is shown for a repeating volume element with Nα = 2,
Nβ = 3 and Nγ = 3.
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Figure 26: Triply periodic repeating unit cell, illustrating subcell dimension nomenclature.

By an approximate micromechanical analysis of the detailed interactions of the subcells of the repeating
volume element, overall constitutive relations which govern the effective behavior of the multiphase elasto-
plastic composite, can be established. This analysis relies on the requirements that static equilibrium of the
materials in the various subcells are ensured, and that continuity of the displacements and tractions between
neighboring subcells within the repeating volume element, as well as between neighboring repeating volume
elements is satisÞed on an average basis.

4Note, each of the subcells can be comprised, in general, by an elastic-viscoplastic temperature -dependent material.
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As the average behavior of the composite is sought, it is sufficient to consider a Þrst order theory in which
the displacements u(αβγ)i in the subcells are expanded linearly in terms of the distances from the center of
each subcell, i.e., in terms of the local coordinates x̄(α)1 , x̄(β)2 , and x̄(γ)3 . Thus, the Þrst order expansion in
the subcell (αβγ) is represented as,

u
(αβγ)
i = w

(αβγ)
i (x) + x̄

(α)
1 φ

(αβγ)
i + x̄

(β)
2 χ

(αβγ)
i + x̄

(γ)
3 ψ

(αβγ)

i i = 1, 2, 3 (A-1)

where w(αβγ)i (x) are the displacement components at the center of the subcell, and φ(αβγ)i , χ(αβγ)i and
ψ
(αβγ)
i are micro-variables that characterize the linear dependence of the displacement u(αβγ)i on the local
coordinates x̄(α)1 , x̄(β)2 , x̄(γ)3 . In Eq. (A-1) and the sequel, repeated Greek letters do not imply summation.
Note that due to the linearity of Eq. (A-1) , static equilibrium of the material within the subcell (αβγ) is
ensured.
The components of the small strain tensor are given by

*
(αβγ)
ij =

1

2
(∂iu

(αβγ)
j + ∂ju

(αβγ)
i ) i, j = 1, 2, 3 (A-2)

where ∂1 = ∂/∂x̄
(α)
1 , ∂2 = ∂/∂x̄

(β)
2 and ∂3 = ∂/∂x̄

(γ)
3 .

The volume averaged total strains and stresses in the composite are expressed, respectively, as

*̄ij =
1

dh%

Nα

α=1

Nβ

β=1

Nγ

γ=1

dαhβ%γ *̄
(αβγ)
ij (A-3)

and

σ̄ij =
1

dh%

Nα

α=1

Nβ

β=1

Nγ

γ=1

dαhβ%γ σ̄
(αβγ)
ij (A-4)

with the relationship between the averages of the stress σ̄(αβγ)ij , total strain *̄(αβγ)ij , inelastic strain *̄I(αβγ)ij ,

and thermal strain *̄T (αβγ)ij = α
(αβγ)
ij ∆T ( where α(αβγ)ij is the coefficient of thermal expansion tensor, and ∆T

is the temperature deviation T − TR from a reference temperature TR) being given by the classic Hookean
constitutive equation

σ̄
(αβγ)
ij = C

(αβγ)
ijk$ (*̄

(αβγ)
k$ − *̄I(αβγ)k$ − *̄T (αβγ)k$ ) (A-5)

where C(αβγ)ijk$ is the elastic stiffness tensor of the material.
It has been shown ([Paley and Aboudi (1992)] and [Aboudi(1995)]) that by employing the displacement

and traction continuity conditions at the interfaces between the subcells of the repeating volume element,
and at the interfaces between neighboring repeating volume elements, it is possible to eliminate the micro-
variables and obtain, via a smoothing operation (homogenization), a set of continuum equations that model
the overall behavior of the multiphase short-Þber composite. This was achieved by establishing relationships
which connect the microstrains at the subcells to the total overall macrostrains in the composite via the
appropriate concentration tensors, A and D.

6.2 Overall Thermomechanical Constitutive Law

Given these concentration matrices, A(αβγ) and D(αβγ), expressions for the average total strain and
stress, respectively, in each subcell can be constructed; that is,

!̄(αβγ) = A(αβγ)!̄+D(αβγ)(!Is + !
T
s ) (A-6)

and
σ̄(αβγ) = C(αβγ) A(αβγ)!̄+D(αβγ)(!Is + !

T
s )− (!̄I(αβγ) + *̄T (αβγ)) (A-7)
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in terms of the uniform overall strain !̄ (the applied macrostrain) and the subcell inelastic and thermal

strains, where

A =
AM

AG

−1
0
J

, D =
AM

AG

−1
AM

0

and AM involves the elastic properties C(αβγ) of the subcell material, AG the geometric dimensions of the
repeating cell only, and J is a matrix containing the imposed average (composite) strains. Note, A(αβγ)

and D(αβγ) are square matrices of 6NαNβNγ order. Similarly, notice that the same matrices D
(αβγ) are

operating on both the inelastic and thermal strains of the subcells.
It was shown by Dvorak and Benveniste (1992) and Dvorak (1992) that for any representative volume

element under a uniform overall strain !̄ and temperature change ∆T , which contains a piecewise uniform
distribution of thermal and inelastic Þelds (eigenstrains) associated with the applied loading !̄ , the averages
of the local strains can be expressed in terms of the mechanical and eigenstrain concentration tensors. These
tensors depend on the local elastic moduli, and on the shape and volume fraction of the phases and are
therefore constant. Equation (A-6) is consistent with this representation of the average subcell strain, where
the constant mechanical and eigenstrain concentration tensors are given by A(αβγ) andD(αβγ), respectively.
Consequently, the following effective elastoplastic thermomechanical law of the composite can be estab-

lished
σ̄ = B∗(!̄− !̄I − !̄T ) (A-8)

where the effective elastic stiffness tensor, B∗, of the composite is given by

B∗ =
1

dh%

Nα

α=1

Nβ

β=1

Nγ

γ=1

dαhβ%γC
(αβγ)A(αβγ) (A-9)

and the composite inelastic strain tensor is deÞned as

!̄I =
−B∗−1
dh%

Nα

α=1

Nβ

β=1

Nγ

γ=1

dαhβ%γC
(αβγ)(D(αβγ)*Is − !̄I(αβγ)) (A-10)

and the average thermal strain tensor as

!̄T =
−B∗−1
dh%

Nα

α=1

Nβ

β=1

Nγ

γ=1

dαhβ%γC
(αβγ)(D(αβγ)!Ts − !̄T (αβγ))) (A-11)

with subcell inelastic, *Is, and thermal, *
T
s , strains being deÞned as:

!Is = (!̄
I(111), . . . , !̄I(NαNβNγ)) (A-12)

!Ts = (!̄
T (111), . . . , *̄T (NαNβNγ)) (A-13)

The effective coefficient of thermal expansion vector, α∗ of the composite, is given by

α∗ = !̄T /∆T (A-14)

The above micromechanically established overall thermo-inelastic constitutive law (A-8) is valid for any
type of thermomechanical loading (i.e., any combination of normal, shear and thermal loadings). A signiÞcant
advantage of this constitutive law stems from the fact that it does not rely on any symmetry conditions that
may exist under certain types of applied loadings. Thus in the implementation of this law, the question as
to whether such symmetry conditions exist or not is irrelevant.
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7 Appendix B: Semi-analytical Axisymmetric Elastoplastic Shear
Lag Model

Given the elastoplastic investigations under taken in this study, a simple shear-lag model for aligned
short Þber composites is introduced. As mentioned in the background section, shear lag models were the
Þrst micromechanics models considered for aligned short-Þber composites. Despite some serious theoretical
ßaws (e.g., the ability to predict only the longitudinal modulus E11 within the elastic range), shear lag models
have enjoyed enduring popularity; probably due to their algebraic simplicity and their physical appeal. In
this paper, we have purposefully limited our investigation to the longitudinal elastoplastic stiffness behavior
so that the proposed modiÞed shear lag model can be appropriately utilize.
Following Cox (1952), the shear lag analyses are focussed on a single Þber of length lf and radius rf ,

which is encased in a concentric cylindrical shell of radius R. Such a conÞguration then leads to the key
assumption of a shear lag model, which is that the shear stress between Þber and matrix (τrz, r,ϕ, z . . .
cylindrical coordinate system) is proportional to the difference in displacement between the Þber surface and
the outer matrix surface, i.e.,

τrz(z) =
H

2πrf
w(R, z)−w(rf , z) (B-1)

where H is a constant and can be written as

H =
2πGm

ln(R/rf )− 1 . (B-2)

It remains to choose the radius R of the outer matrix cylinder. Several choices have been used (see e.g. [Tucker
and Liang (1999)]). For our purposes it appears most realistic to let R be equal to a radius corresponding
to the width of the FE or GMC unit cell. The above equations are based on a one-dimensional analysis of
a Þber surrounded by a matrix layer (i.e., the Poisson effects are neglected (taken to be zero)) and assumes
linear elastic material behavior. To extend this analysis into the elastoplastic regime of aligned short Þber
composites, the existing shear-lag model must be modiÞed so as to:

1. account for elastoplastic material behavior and

2. the appropriate Poisson effect.

The elastoplastic material behavior is simply introduced by replacing Gm by the plastic tangent shear
modulus GH (�shear hardening slope�) and an incremental formulation of Eq. (B-1), i.e.,

dτrz(z) =
H

2πrf
dw(R, z)− dw(rf , z) (B-3)

with

H =
2πGH

ln(R/rf )− 1 . (B-4)

This new �shear hardening slope� can then be obtained from the Prandtl-Reuss-equation. For a pure
shear load in the r-z-plane this equation can be written as

d*rz =
1

2Gm
dτrz +

3

2

dτrz
τrzEH

τrz (B-5)

and leads Þnally to the shear hardening slope

GH =
dτrz
d*rz

= ψ
GmEH

EH + 3Gm
= const (B-6)
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Figure 27: Sketch of the semi-analytical shear lag model

where GH is constant because EH is a constant. Note, within the plastic range a Þtting parameter ψ is
also introduced. This Þtting parameter will account for effects which can not be captured by such a simple
model.
The Poisson effect is taken into account by considering an axisymmetric model (shown in Fig. 27 using

an exploded view) with appropriate boundary conditions on the concentric cylindrical matrix shell.

The model posses the following characteristics:

1. The cross section of the axisymmetric model is divided into four regions (I, II, III, IV ). Further,
regions III and IV are subdivided into three subregions each, e.g., IIIa, IIIb, IIIc and IV a, IV b,
IV c (see Fig. 27).

2. Within all regions only normal stress is allowed (i.e., shear stresses are zero) such that rectangular
cross sections of individual regions remain rectangular after loading.

3. The longitudinal stress are constant within regions I and II and are piecewise constant within regions
III and IV (i.e., constant within each subregion).

4. The points 1-1�, 2-2�, etc. are connected with non-linear truss elements which characterize the shear
forces between the Þber and the matrix.

5. The stiffness behavior of each non-linear truss element, i, is based on Eq. (B-1), and follows from

F ithruss = τrz 2πrf l
i
τ = H w(R, z)−w(rf , z) liτ = Citruss w(R, z)−w(rf , z) (B-7)

where, e.g., for i = 1, l1τ is the distance between points 1 and 2 in Fig. 27 and represents a kind of
shear-inßuence length for truss 1. C1truss represents the stiffness of truss 1 between points 1-1�. The
material behavior of the truss element is bilinear and is characterized by a �yield force� (which is based
on Tresca�s yield condition for pure shear within the interface) and can be written as

F itruss,Y =
σY
2
2πrf l

i
τ (B-8)
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as well as by a stiffness hardening slope which can be written as

Citruss,H = ψH l
i
τ . (B-9)

The number of introduced truss elements depends on the desired aspect ratio. For ar = 5 three truss
elements were used, whereas for ar = 25 six trusses were applied.

6. Finally, in addition to the symmetry conditions shown in Fig. 27, symmetry is also required on the top
and right outer surface of the axisymmetric model (see Fig. 27).

The introduced semi-analytical shear lag model is solved numerically using the Þnite element method.
The so called semi-analytical shear-free model is obtained by assuming that the truss elements are

characterized by zero stiffness. Such a model represents a standard GMC-model.
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