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A 0.46 meter diameter Hall thruster was fabricated andperformance tested atpowers up to 72 kilowatts. Thrusts up
to 2.9 Newtons were measured. Discharge specific impulses ranged from 1750 to 3250 seconds with discharge
efficiencies between 46 and 65 percent. Overall specific impulses ranged from 1550 to 3050 seconds with overall
efficiencies between 40 and 57 percent. Performance data indicated significant fraction of multiple-charged ions
during operation at elevated power levels. Cathode mass flow rate was shown to be a significant parameter with
regard to thruster efficiency.

Introduction

High power electric propulsion systems have been
shown to enable a number of missions including
missions to Mars and Earth orbital solar electric

power generation for terrestrial use. 1'2 These types of
missions require moderate transfer times and sizable
thrust levels resulting in an optimized propulsion
system specific impulse from 2000-3000 seconds
based on the available on-board power. Hall thruster
technology offers a favorable combination of
performance, reliability, and lifetime for such
applications based on the characteristics of state-of-
the-art systems. As a result, the NASA Space Solar
Power Concept and Technology Maturation Program
initiated preliminary strategic technology research
and development into high power Hall thruster
technology to enable space solar power systems and
other high power spacecraft.

High power Hall thruster technology for primary
propulsion applications was initially investigated in
the former Soviet Union and later Russia for

interplanetary missions. 3'4 Efforts conducted at the
FAKEL Design Bureau in Kaliningrad, Russia
culminated in the SPT-290. This thruster utilized a

290 mm outer diameter ceramic channel to ultimately
produce as much as 1.1 Newtons of thrust at
25 kilowatts of input power using xenon as the
propellant. Efforts at the Central Scientific Institute
for Machine Building (TsNIIMASH) in Korolev,
Russia resulted in the demonstration of a

100 kilowatt two-stage anode layer thruster
demonstrating a specific impulse of 8000 seconds
with a discharge efficiency of 80 percent using

bismuth as the propellant. Later a xenon fueled anode
layer thruster was tested at power levels up to
25 kilowatts demonstrating performance similar to
the SPT-290 at that power level. 5 More recently an
SPT-type thruster designated the T-220, which was
developed in the United States under contract to
NASA Glenn Research Center by TRW in
cooperation with Space Power Incorporated (who has
since become a part of Pratt & Whitney's Space
Propulsion and Chemical Systems Division), was
tested. 6 This thruster which has a 220 mm outer

diameter ceramic channel was originally designed to
produce 0.5 Newtons of thrust at 10 kW but has been
modified to produce in excess of 1 Newton of thrust
at elevated power levels]

Development of a Hall thruster capable of operating
at 2000-3000 seconds at power levels of 50 kilowatts
and above requires a thruster design which preserves
the physical processes required for efficient
ionization and acceleration of the propellant.
Important characteristics for preservation of these
processes include: discharge current density,
discharge chamber geometry, and magnetic field
distribution. 8 This paper describes the development
of a Hall thruster designed to operate at 50 kilowatts.
Test results including the effect of discharge voltage,
anode mass flow rate and cathode mass flow rate on

thruster performance are included.

Apparatus

A photograph of the NASA-457M 50-kilowatt
laboratory Hall thruster is shown in figure 1. The
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thruster,whichhasa457mmouterdiameterceramic
dischargechamber,injectsxenonpropellantintothe
rearof thechannelthroughaseriesof holeslocated
alongtheinnerandouterwallsof theannular
metallicanodelocatedattherearofthechannel.The
cathode,whichhasbeenpreviouslydescribed,9was
locatedonthethrustercenterline.
A magneticfieldisestablishedacrosstheexitplane
of thedischargechamberthroughtheuseof two
concentricelectromagnets.Eachelectromagnetcan
beindependentlypowered.Theelectromagnetsalong
withmagneticpolesandscreensformthemagnetic
circuit.Thedesignof themagneticcircuitwas
optimizedthroughtheuseof acommercialthree-
dimensionalmagneto-staticcomputercode,Magnet6
byInfolytica.Thefieldlinetopographyemployedin
theNASA457Mis qualitativelysimilarto the
plasmalensdesignoftheNASA173M.1°Following
fabricationof the thrustertheresultsfromthe
magneticmodelwerecomparedwith magnetic
intensitiesmeasuredwitha3-axisGaussmeter.The
measuredandcalculatedradialandaxialcomponents
of themagneticfieldareshownin figure2. The
channeldepthnormalizedtheaxialdistanceandboth
theradialandaxialmagneticfieldcomponentswere
normalizedby themaximumvaluesrespectively.
Theinnerradialmagneticfieldstrengthwasslightly
higherthancalculatedwhichalsoaffectedthe
centerlineradialfieldstrength.Thisdifferencewas
attributedto uncertaintyin thepropertiesof the
materialusedinthispartofthemagneticcircuit.
Thethrusterwastestedin a cryogenicallypumped
cylindricalvacuumchambermeasuring5 metersin
diameterby20metersinlength.Thisfacility,which
hasbeendescribedin detailpreviously,l° was
modifiedfor this test.A cylindricaltestport
measuring2 metersin diameterby 2.5metersin
lengthwasmountedalongthemajoraxisofthetank
witha2-meterisolationvalvebetweenthetestport
andthemainvolumeofthetank.A photographofthe
testfacilityis shownin figure3. Theeffective
pumpingspeedof the test facility in this
configurationwas700,000literspersecond.Thiswas
determinedbasedonthexenonmassflowrateand
thetankpressuremeasuredbehindthethruster.Asa
result,thehighestbackgroundpressurewas2x 10.5
Torrataxenonflowrateofjustover1standardliter
perminute(SLPM).Thispressureisstillbelowthe
maximumrecommendedvaluefor performance
testingof 5x 10.5Torr. 11 A laboratory xenon feed

system, required auxiliary power supplies, and a data
acquisition system were located adjacent to the test
port on an elevated deck platform that was also
modified for these tests. The discharge power supply
was a remotely located three phase commercially

available unit with a rated output of 100 Amperes and
2000 Volts. An output filter consisting of a 21mF
capacitor located between the anode and cathode was
used. The thrust produced by the NASA-457M was
measured using an inverted pendulum design thrust
stand fabricated specifically for these tests. The thrust

stand was designed based on a thrust stand used in
previous evaluations of Hall effect thrusters. 12'13
Conceptually the thrust balance was identical to the

previous design except for modifications necessary to
accommodate the increased mass and currents. The
thrust stand can be seen beneath the thruster in the

photograph in figure 4. Due to the large thermal
mass of the NASA-457M thruster no attempts were

made to establish complete thermal equilibrium prior
to measuring performance data. The thruster was

typically operated for approximately an hour to allow
not only the thruster discharge chamber to warm up,
but to also allow the thrust stand to equilibrate with
the operating thruster. Following this warm up
period performance data was taken. Thrust stand

calibrations, conducted by applying a series of one
hundred gram weights, were conducted before and
after each series of test data.

Results and Discussion

The NASA-457M was tested over a range of input
powers from 9 to 72 kilowatts by varying the anode
mass flow rate from 15 to 93 mg/s and the discharge
voltage from 300 to 650 Volts. All these data are
presented in an appendix at the end of this paper.
Over this range of operating conditions thruster
operation was stable. Thrust is plotted as a function
of discharge power for five different discharge
voltages in figure 5. For each voltage the maximum
current corresponded to approximately 110 Amperes.
This maximum resulted from the maximum current

capacity of the discharge power supply. As can be
seen from the figure, thrust varied linearly with
discharge power for a given discharge voltage. At
650 Volts a thrust of 2.9 Newtons was measured at

111 Amperes. There was no evidence of thermal

limitations at this power level although it was noted
that the anode was glowing upon shutdown. While

this has been observed with other thrusters operating
at nominal operating conditions at shutdown, this was
not observed at powers up to 50 kW with the NASA-
457M. Operation at voltages above 650 Volts was

investigated but was not adequately characterized due
to voltage isolation problems within the thruster.
Modification of the isolation scheme is currently

underway which should allow for operation up to at
1000 Volts for future testing.

The reduction in thrust with increasing voltage at a
given power level was accompanied by a
corresponding increase in specific impulse. This is

NASA/TM--2002-211887 2



shownin figure6wherespecificimpulseisplotted
versusdischargepower.Dischargespecificimpulse
rangedfrom approximately1750secondsto
3250seconds.Theoverallthrusterspecificimpulse
includingthecathodemassflowrateandmagnet
powerrangedfrom1550secondsto 3050seconds.
Whileoverallspecificimpulseandefficiencyare
reported,it shouldbenotedthatnoattemptswere
madeto optimizethelaboratorymodelcathodeor
magneticcircuit for efficientoperation.The
dischargespecificimpulseat a givenvoltage
comparesfavorablywith other state-of-the-art
thrusters.Forexampleat300VoltsanSPT-100hasa
dischargespecificimpulseof 1750seconds14and
thecomparablysizedhighvoltageSPT-1thruster
providedbetween2250and 2500secondsat
500Volts. 15 The functional dependence of specific

impulse with discharge voltage was considered in
more detail by Hofer where experimental data were
compared with various predicted values. 16 These

predictions suggest as discharge power increased
above 20 kilowatts or the discharge current increased
above 30 Amperes that the effect of multiple-charged

ions becomes significant.

The variation of discharge current versus anode mass
flow rate is shown in figure 7. The dependence is

linear for anode mass flow rates below approximately
70 mg/s. Above this mass flow rate the discharge

current increased more rapidly with increasing anode
mass flow rate. This increase in current at high
anode mass flow rate was the result of either an
increase in the electron or ion current contribution to

the discharge current. The corresponding specific

impulse and higher density within the channel
suggest that this effect is due to additional ion current
from multiple-charged ions.

The effect of multiple charged ions on specific
impulse was previously considered when Hofer
predicted 100 Amperes at 88.8 mg/s and 500 Volts
with a 2768 second specific impulse for a multiple-
charged plasma. For a singly charged plasma
100 Amperes at 101 mg/s and 500 Volts with a
2622 second specific impulse was predicted. The
measured anode mass flow rate at 500 Volts and

100 Amperes was 86.4 mg/s at just less than
2750 seconds, which agrees favorably with the
multiple-charged prediction. This prediction and

other predicted values of specific impulse are shown
in figure 8 versus discharge voltage for an anode
mass flow rate of 86.4 mg/s. Experimental data are
also included.

During the course of this investigation the effect of
cathode flow rate on thruster performance was also
considered. Previously the sensitivity of cathode
mass flow rate on thruster operation was considered

in detail for a 4.5 kW Hall thruster. 17 As was pointed

out in this prior investigation, the coupling of the
plasma produced in the hollow cathode with the
plasma produced
channel is not

complicated than
simple external
magnetic fields.

in the Hall thruster discharge
fully understood and is more

running a hollow cathode with a
anode due to the presence of
Figure 9 shows the cathode-to-

ground voltage as a function of discharge current for
three different cathode flow rates. As can be seen

from the figure, for each cathode flow rate the

cathode-to-ground voltage varied linearly with
discharge current with the voltage becoming more
negative with increasing current.

For comparison purposes, this cathode was tested
independent of the Hall thruster with an external
anode at a mass flow rate of 2 mg/s. 9 For currents
between 50 and 100 Amperes the coupling voltage
was between -10 and -13 volts. This suggests that

the additional voltage required to couple the plasma
from the cathode to the plasma from the Hall thruster
was associated with electron transport across the
applied magnetic field. As such, this additional

voltage represents a thruster loss mechanism since a
larger portion of the voltage applied between the
cathode and anode is needed for cathode coupling
leaving a smaller portion of the total applied voltage
for ion acceleration.

The effect of large cathode-to-ground coupling
voltages on thruster discharge efficiency is shown in
figure 10. These data show that the smaller the
cathode-to-ground voltage the higher the discharge
efficiency (and overall efficiency as can be seen in
the data tables). This substantiates the conclusion that

large cathode-to-ground voltages were indicative
of an energy loss mechanism associated with
poor cathode coupling. The data also indicate a
peak discharge efficiency of near 65 percent at
around 500 Volts. The efficiency decreases with
increasing voltage above this value. This is consistent
with past investigations into high voltage Hall
thruster operation. 15'is

Conclusions

A 0.46 m outer diameter Hall thruster was fabricated

and performance tested at powers up to 72 kilowatts.
These tests demonstrated the efficacy of scaling Hall
thrusters to high power suitable for a range of future
missions. Thrusts up to nearly 3 Newtons were
measured. Discharge specific impulses ranged from
1750 to 3250 seconds with discharge efficiencies
between 46 and 65 percent. Overall specific impulses
ranged from 1550 to 3050 seconds with overall
efficiencies between 40 and 57 percent.
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Performance data suggested a significant fraction of

multiple-charged ions during operation at elevated

power levels. This conclusion was supported by

previous performance predictions by Hofer and the

functional dependence of discharge current with

anode mass flow rate.

An investigation into the effect of cathode flow rate

on thruster operation was conducted. Cathode mass

flow rate was shown to be a significant parameter

with regard to thruster efficiency. It was also

demonstrated that the coupling voltage between the

cathode and thruster anode was significantly different

than that measured with the cathode operating to a

planar external anode.
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Figure 1: Photograph of the NASA-457M high power Hall thruster
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Figure 2a: Measured and predicted radial magnetic field strength
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Figure3: Photograph test facility showing new test port.
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Figure 4: Photograph of thruster mounted on thrust stand in test port.
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7OO

Anode Cathode

Discharge Discharge Discharge mass mass
voltage, current, power, flow, flow,

Volts Amperes Watts mg/s mg/s
300 34 10287 35.2 5.0

300 35 10383 35.2 2.5

300 36 10661 35.2 5.0

299 40 11880 40.4 5.0

298 41 12150 40.4 2.5

304 41 12480 40.4 2.5

301 41 12411 40.4 5.0

300 46 13740 45.8 5.0

302 47 14183 45.8 2.5

298 47 14012 45.8 2.5

301 47 14168 45.8 5.0

301 53 15974 51.3 5.0

300 53 16031 51.3 2.5

299 54 16010 51.3 5.0

300 58 17453 56.9 5.0

300 59 17622 56.9 5.0

299 60 18078 56.9 2.5

300 63 18971 62.6 7.5

300 65 19459 62.6 5.0

300 68 20290 62.6 5.0

299 71 21275 68.4 7.5

301 71 21481 68.4 7.5

300 72 21494 68.4 5.0

300 78 23422 74.3 7.5

300 79 23754 74.3 7.5

300 86 25894 80.3 7.5

301 88 26543 80.3 7.5

298 96 28587 86.4 7.5

300 99 29780 86.4 7.5

302 111 33454 92.7 7.5

Appendix: Data Table

Total Discharge

Total specific specific

power, Thrust, impulse, impulse, efficiency efficiency

Wa_s mN seconds seconds

11348 617 1567 1790

11483 614 1662 1781

11606 613 1557 1778

12961 701 1572 1766

13052 696 1653 1755

13735 721 1711 1817

13385 709 1590 1786

15010 812 1629 1807

15116 787 1661 1752

15015 798 1684 1776

15164 806 1617 1793

16999 904 1637 1796

16985 876 1660 1741

17358 930 1683 1847

18772 1005 1655 1801

18675 1005 1655 1801

19071 974 1671 1745

19643 1155 1679 1881

20542 1103 1663 1796

21664 1145 1726 1864

22400 1261 1694 1879

22829 1285 1726 1915

22596 1231 1710 1835

24701 1401 1746 1922

24901 1390 1732 1907

27194 1519 1763 1928

27707 1528 1774 1939

29923 1629 1767 1921

30970 1696 1840 2000

34663 1903 1937 2093

Total Discharge Cathode-to-ground

voltage,

Volts

0.42 0.53 -14.6

0.44 0.52 -37.9

0.40 0.50 -15.1

0.42 0.51 -17.3

0.43 0.49 -46.9

0.44 0.51 -45.6

0.41 0.50 -15.5

0.43 0.52 -17.9

0.42 0.48 -51.3

0.44 0.50 -45.4

0.42 0.50 -16.5

0.43 0.50 -19.9

0.42 0.47 -57.7

0.44 0.53 -18.9

0.43 0.51 -18.8

0.44 0.50 -21.5

0.42 0.46 -65.6

0.48 0.56 -11.4

0.44 0.50 -22.7

0.45 0.52 -22.8

0.47 0.55 -11.7

0.48 0.56 -11.6

0.46 0.52 -25

0.49 0.56 -12.4

0.47 0.55 -12.1

0.48 0.55 -12.8

0.48 0.55 -12.6

0.47 0.54 -12.9

0.49 0.56 -13.1

0.52 0.58 -13.7
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Appendix: Data Table (concluded)

Anode Cathode Total Discharge

Discharge Discharge Discharge mass

voltage, current, power, flow,

Volts Amperes Watts mg/s

403 25 9904 24.9

399 30 12016 30.0

400 35 14164 35.2

401 36 14399 35.2

403 37 14885 35.2

401 41 16561 40.4

404 43 17485 40.4

401 48 19349 45.8

397 50 19815 45.8

401 58 23080 51.3

400 61 24446 56.9

401 65 26159 62.6

399 74 29377 68.4

402 80 32144 74.3

402 89 35653 80.3

402 99 39697 86.4

501 20 9912 20.0

499 25 12517 24.9

499 31 15382 30.0

499 36 17950 35.2

500 37 18293 35.2

502 37 18570 35.2

501 42 21092 40.4

501 43 21497 40.4

500 44 22218 40.4

502 45 22649 40.4

500 50 25030 45.8

501 51 25601 45.8

504 59 29757 51.3

499 60 30064 51.3

500 65 32269 56.9

499 66 33154 62.6

497 76 37646 68.4

500 81 40484 74.3

499 90 44737 80.3

500 100 50120 86.4

500 100 50120 86.4

601 15 8956 15.1

599 20 12108 20.0

598 25 15075 24.9

599 30 17964 30.0

602 35 21056 35.2

600 40 24256 40.4

600 46 27637 45.8

600 52 31119 51.3

599 58 34431 56.9

599 64 38415 62.6

601 71 42777 68.4

600 79 47468 74.3

600 88 52680 80.3

602 97 58594 86.4

600 98 58500 86.4

599 108 64915 92.7

651 15 9706 15.1

650 20 13006 20.0

651 25 16022 24.9

652 29 19157 30.0

650 35 22562 35.2

650 41 26370 40.4

651 47 30811 45.8

651 53 34151 51.3

650 58 37878 56.9

650 65 42088 62.6

649 72 46915 68.4

649 80 51644 74.3

649 88 57242 80.3

649 99 63956 86.4

649 111 71963 92.7

mass Total

flow, power, Thrust, impulse, impulse, efficiency efficiency

specific specific Total Discharge Cathode-to-ground

voltage,

mg/s Wa_s mN seconds seconds Volts

2.5 10800 514 1911 2103 0.45 0.54 -24.4

2.5 13084 619 1942 2104 0.45 0.53 -31.7

5.0 15255 753 1912 2184 0.46 0.57 -14.4

2.5 15556 766 2072 2220 0.50 0.58 -40.5

2.5 16286 710 1921 2057 0.41 0.48 -48.3

5.0 17747 857 1922 2160 0.46 0.55 -17.4

2.5 18762 903 2143 2276 0.51 0.58 -46.8

5.0 20643 1010 2025 2247 0.49 0.58 -17.7

2.5 21055 992 2093 2207 0.48 0.54 -49.9

5.0 24442 1157 2095 2299 0.49 0.57 -19.5

5.0 25784 1258 2071 2253 0.50 0.57 -21

7.5 26867 1405 2044 2289 0.52 0.60 -11.4

7.5 30743 1538 2065 2292 0.51 0.59 -11.7

7.5 33446 1688 2103 2315 0.52 0.60 -12.4

7.5 36971 1815 2106 2303 0.51 0.57 -12.8

7.5 41050 2031 2204 2395 0.53 0.60 -13

2.5 10641 470 2131 2398 0.46 0.56 -19.2

2.5 13462 601 2233 2457 0.49 0.58 -24

2.5 16476 743 2330 2524 0.51 0.60 -31.7

5.0 19078 875 2220 2536 0.50 0.61 -14

5.0 19483 907 2301 2628 0.53 0.64 -13.8

2.5 19765 902 2442 2615 0.55 0.62 -42.4

5.0 22304 989 2220 2494 0.48 0.57 -16.8

5.0 22709 1062 2382 2676 0.55 0.65 -14.5

2.5 23323 1016 2412 2561 0.52 0.57 -42.2

2.5 23942 1062 2521 2677 0.55 0.62 -49

5.0 26341 1170 2346 2602 0.51 0.60 -17.5

2.5 26742 1166 2460 2595 0.53 0.58 -50.9

2.5 30932 1346 2550 2674 0.54 0.59 -53.1

5.0 31435 1358 2459 2698 0.52 0.60 -19.7

5.0 33631 1474 2428 2641 0.52 0.59 -21.2

7.5 33898 1617 2352 2633 0.55 0.63 -10.9

7.5 39028 1776 2385 2647 0.53 0.61 -11.7

7.5 41806 1930 2405 2648 0.54 0.62 -12.4

7.5 46074 2081 2415 2641 0.54 0.60 -12.8

7.5 51483 2330 2528 2747 0.56 0.63 -13.1

7.5 51483 2314 2511 2728 0.55 0.62 -13.1

5.0 10022 371 1881 2504 0.34 0.51 -11.6

5.0 13190 518 2113 2642 0.41 0.55 -13.6

5.0 16174 657 2237 2686 0.45 0.57 -14.4

5.0 19080 806 2347 2738 0.49 0.60 -14.6

5.0 22191 945 2400 2741 0.50 0.60 -15.4

5.0 25408 1090 2446 2748 0.51 0.61 -15.7

5.0 28801 1265 2538 2815 0.55 0.63 -16.5

5.0 32295 1398 2532 2778 0.54 0.61 -17.2

7.5 35626 1565 2477 2804 0.53 0.62 -10.2

7.5 39625 1735 2523 2826 0.54 0.63 -10.7

7.5 43996 1923 2583 2866 0.55 0.63 -11.2

7.5 48699 2121 2642 2909 0.56 0.64 -11.7

7.5 53923 2314 2685 2936 0.57 0.63 -12.2

7.5 59792 2524 2738 2976 0.57 0.63 -12.7

7.5 59755 2540 2756 2995 0.57 0.64 -12.7

10.0 66127 2778 2758 3055 0.57 0.64 -13.6

5.0 10599 398 2017 2684 0.37 0.54 -13.3

5.0 13920 541 2208 2761 0.42 0.56 -13.4

5.0 16953 688 2343 2813 0.47 0.59 -13.7

5.0 20115 834 2429 2834 0.49 0.60 -14.2

5.0 23541 969 2459 2809 0.50 0.59 -14.8

5.0 27368 1129 2534 2847 0.51 0.60 -15.2

5.0 31826 1288 2584 2866 0.51 0.59 -16.4

7.5 35231 1458 2527 2897 0.51 0.61 -9.7

7.5 38982 1621 2565 2904 0.52 0.61 -10.1

7.5 43213 1791 2605 2917 0.53 0.61 -10.6

7.5 48058 1983 2664 2956 0.54 0.61 -11.2

7.5 52840 2184 2722 2996 0.55 0.62 -11.6

7.5 58454 2409 2796 3057 0.57 0.63 -12.1

7.5 65182 2661 2888 3138 0.58 0.64 -12.8

10.0 73201 2950 2929 3245 0.58 0.65 -13.9
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