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Abstract:  This study uses Monte Carlo simulation to examine the impact of nine 
sampling strategies on the finite sample performance of the maximum likelihood logit 
estimator.  Empirical researchers face a tradeoff between the lower resource costs 
associated with smaller samples and the increased confidence in the results gained from 
larger samples.  Choice of sampling strategy is one tool researchers can use to reduce 
costs yet still attain desired confidence levels.  The nine sampling strategies examined in 
this study include simple random sampling and eight variations of stratified random 
sampling.  Bias, mean-square-error, percentage of models that are feasibly estimated, and 
percentage of simulated estimates that differ statistically from the true population 
parameters are used as measures of finite sample performance.   
 
The results show stratified random sampling by action (loan approval/denial) and race of 
the applicant, with balanced strata sizes and a bias correction for choice-based sampling, 
outperforms each of the other sampling strategies with respect to the four performance 
measures.  These findings, taken together with supporting evidence presented in 
Scheuren and Sangha (1998) and Giles and Courchane (2000) make a strong argument 
for implementing such a sampling strategy in future fair lending exams.       
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I. Introduction 

Sample size and sampling strategy both affect the small sample bias of the 

maximum likelihood (ML) logit estimator and the precision of the subsequent estimates.  

Much work has been done showing that larger sample sizes reduce bias and increase 

precision.  However, relatively little is known about the rates of these improvements.  

Further, even less is known about how alternative sampling strategies affect bias and 

precision, or the rates of improvement in these measures gained from larger samples.  

Considering the resource constraints present in most empirical analyses, as well as the 

high costs of data collection and entry, researchers face important cost/bias and 

cost/precision tradeoffs when making sample size and sampling strategy choices.  

Understanding these tradeoffs, including the rates of change of these tradeoffs, is 

therefore important to achieving reliable results with minimum resource costs. 

This study uses Monte Carlo simulation to examine the sample-size dependent 

effects of nine sampling strategies on the small sample performance of the ML logit 

estimator.1  The nine sampling strategies include simple random sampling and eight 

variations of stratified random sampling based on proportional and balanced strata 

allocations.  Bias, mean-square-error (MSE), percentage of models that are feasibly 

estimated, and percentage of simulated estimates that differ statistically from the true 

population parameter are all used to measure small sample performance.  For each 

                                                           
1 A Monte Carlo simulation is a set of repeated trials of a partially random process and is used to 
characterize the process.  As a very simple example, suppose we have a random number generator with an 
unknown distribution.  To determine the characteristics of the distribution, we can take repeated draws and 
plot the results.    
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sampling strategy, the Monte Carlo simulation provides a stream of sample-size 

dependent estimates for each performance measure.  Comparing these simulated streams 

of performance measures across sampling strategies will indicate which sampling 

strategies are feasible in small samples, which strategy leads to the best small sample 

performance for the ML logit estimator, and what sample size is needed to achieve 

accurate and precise parameter estimates.  All of these Monte Carlo simulations are 

conducted in the context of a statistically modeled fair lending exam that the Office of the 

Comptroller of the Currency (OCC) conducted in 1998. 

The remainder of the paper is laid out as follows.  Section II provides a brief 

review of the literature.  Section III discusses the nine sampling strategies examined in 

the Monte Carlo simulations.  Section IV develops the data-generating and Monte Carlo 

processes.  Section V contains the results and section VI concludes the discussion. 

 

II. Background 

Statisticians and epidemiologists have been the leaders in studying sample-size 

calculations and their subsequent effects on hypothesis tests for multivariate estimators.  

One common approach develops a minimal sample-size formula from a general test 

statistic, which achieves an assumed set of desirable goals or criteria.  This test statistic is 

typically a function of a combination of the following: sample size, significance level, 

power, population distributions, and population parameters.  Using available information, 

estimates, and assumptions, values of all unknowns except sample size are specified and 

the formula is solved.  As an example, suppose we have a normally distributed random 

variable , which is the coefficient estimate from a logistic regression.  What sample β̂
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size is needed to detect an analyst-specified linear trend in the log odds ratio?  In other 

words, what sample size is needed to reject the null hypothesis that β  = β0 in favor of the 

alternative hypothesis that β > β0?  Following a typical analytical approach we could 

draw a sample, estimate , and compute the standard t-statistic, rejecting the null 

hypothesis if the t-statistic is greater than some critical value, Zα, 

β̂

ασ
ββ Z

n
>

−
/

ˆ

0

0      (1) 

The term σ0 is the variance of β if the null hypothesis is true and α denotes the size of the 

test, or the probability of rejecting a true null hypothesis.  Specifying values for β0 and α, 

and creating some measure for σ0, we can solve for n to calculate the minimal sample 

size needed to detect an analyst-specified linear trend in the odds ratio at the 100x(1-α) 

percent confidence level.  This exercise is typically taken a step further to incorporate the 

power of the test into the minimal sample-size formula to achieve a desired power and 

size.  The usual sample-size formula for a normal test statistic that takes into account both 

the size and power of the test statistic is, 
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where “1” subscripts denote values under the alternative hypothesis and Zρ is the critical 

value for a test with a power of ρ (Bull (1993)). 

Following this general approach, a number of researchers have constructed 

minimal sample-size formulas for variations of the logit model.  For example,  

Whittemore (1981) examined the logistic regression with small response probabilities; 
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Wilson and Gordon (1986) looked at the effects of confounding variables on minimal 

sample sizes in general linear models; Self and Mauritsen (1988) developed a minimal 

sample-size formula based on a score statistic used to conduct hypothesis tests for 

generalized linear models; and Bull examined multinomial logistic regression models 

with one categorical independent variable.2   

The usefulness of this approach depends mainly on the type of information that is 

available, since the minimal sample size formulas are typically based on much unknown 

information.  The three most important pieces are the sample size, the true population 

parameters, and the distribution of data.  If more than one of these is unknown, the 

applicability of these formulas to empirical analysis is somewhat diminished.  Further, 

other than that of Kao and McCabe, each of these studies looks only at the minimal 

sample size and not at the minimal sample allocation across strata.  This is an important 

shortcoming since the small sample properties of the ML logit estimator differ with 

simple random and stratified random-sampling approaches.   

Monte Carlo simulation is a second approach used to examine the effects of 

sampling on the small sample properties of multivariate estimators.  Unlike the first 

approach, however, much less has been done in this area.  Studies that have used Monte 

Carlo simulation to look at these sampling issues directly include Gordon et al. (1994), 

Breslow and Chatterjee (1999), Scheuren and Sangha, and Giles and Courchane.  Gordon 

et al. used Monte Carlo simulation to examine the small sample properties of the probit 

and logit estimator in the context of female labor supply decisions with simple random 

sampling.  The authors show that there is considerable variation in both the coefficient 

                                                           
2 Also see Daganzo (1980), Donner (1984), Hsieh (1989), Phillips and Pocock (1989), Rochon (1989), 
Dupont and Plummer (1990), and Kao and McCabe (1991). 
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and standard error estimates up to nearly 2000 observations.  In addition, for all 20 

simulations they present, there was at least one rejection of the null hypothesis that the 

simulated estimate was equal to the true population parameter, for all sample sizes up to 

12,000.  Breslow and Chatterjee examine nonparametric maximum likelihood estimation 

of the logistic regression in the context of the Wilms National Tumor Study.  They 

identify precision gains using this approach with a balanced-sampling scheme.  Scheuren 

and Sangha, and Giles and Courchane both look specifically at fair lending models and 

take similar approaches.  Scheuren and Sangha examine one data generating process 

(DGP) with two different sampling designs, while Giles and Courchane extend this to 

three DGPs and six sampling designs.  Both studies find evidence supporting the use of 

balanced stratified sampling by action and race of the applicant, where action refers to a 

bank’s underwriting decision on a credit application. 

This study follows the second approach to studying sampling issues and extends 

the current research in three directions.  First, it extends the number of sampling 

strategies to nine, looking at five of the six from Giles and Courchane plus simple 

random sampling, proportional sampling by race, proportional sampling by action, and 

the actual sampling used for the fair lending exam.  The Kao and McCabe sampling 

approach with balanced race is the one approach from Giles and Courchane not included 

here.3  Second, this study extends the performance results of the ML logit estimator to 

smaller samples.  The smallest samples examined in the simulations by Gordon et al., 

Breslow and Chatterjee, Scheuren and Sangha, Giles and Courchane are 734, 1142, 400, 

                                                           
3 The Kao and McCabe formulation is developed on a premise of stratification of the outcome only.  Since 
it is not clear how this approach, or formulation, would change if stratification by race was considered as 
well, I allow the racial strata sample sizes to independently vary and do not examine Kao and McCabe 
sampling with balanced race.   
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and 400, respectively, while the smallest sample examined in this study is 50.  This is 

important since many empirical analyses use samples with fewer than 400 observations.  

As one example, of 16 statistically modeled fair lending exams the OCC has conducted 

since 1995, only six had samples larger than 400 applications, and five of these six 

examined more than two racial groups.  With this precedence for sample size, along with 

knowledge of the resource constraints the OCC faces, performance results for smaller 

samples would be more useful to their statistically modeled fair lending program.  Third, 

this study examines changes in performance measures for shorter sample intervals.  For 

example, Giles and Courchane examine samples of size 400, 1200, and 2400.  In contrast, 

this study examines all sample sizes from 50 to 1600 by 12.  This will provide a better 

indication of the rates of improvement in bias and precision with larger samples, and will 

identify the minimum sample size needed to achieve precise results with a desired level 

of confidence.         

 

III. Sampling Strategies 

This section describes the nine sampling strategies examined in the Monte Carlo 

simulation.  The first sampling strategy, simple random sampling, is the easiest to 

understand and apply.  On average, simple random sampling yields a sample reflecting 

the true population distributions, with the likelihood of this occurring increasing with the 

sample size.  For smaller samples, however, there is an increased risk that the model 

cannot be estimated because of limited variation in either the dependent or independent 

variables.  In addition, the ML logit estimates will be less precise with simple random 
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sampling than for any of the second general group of sampling strategies, which employ 

stratified random sampling.   

Stratified random sampling is most beneficial when the data are homogenous 

within strata and heterogeneous across strata.  By incorporating information about the 

distributions of the data, one can potentially increase the precision of the estimates with 

fewer observations.  This study analyzes eight variations of stratified random sampling.  I 

consider three general levels of stratification: action, race, and action and race.  For each 

of these three stratifications, I look at proportional and balanced sampling schemes.  For 

proportional sampling, the sample strata sizes have the same proportions as the 

population strata.  For balanced sampling, each sample strata contains an equal number of 

observations.  Thus, two variations for each of the three stratifications yields six stratified 

random sampling strategies.  The seventh stratified random sampling strategy follows 

Kao and McCabe who estimate strata sizes for stratified random sampling by action by 

minimizing the expected misclassification rates, or expected error regret (EER).  This 

method provides a measure of strata allocation that lies between the extremes of 

proportional and balanced stratified random sampling.  Unfortunately, there are currently 

no analogous techniques for stratification by race, or action and race.  For the model used 

in this study, the EER was minimized for a sample with 62.5 percent approvals and 37.5 

percent denials.  This compares with 87.8 percent approvals and 12.2 percent denials in 

the population.  The eighth and final stratified random sampling strategy is the one used 

during the actual exam.  OCC staff examined two racial groups for this exam and used 

stratified sampling by action and race to create a sample with 54.9 percent race 1 

approvals, 15.1 percent race 1 denials, 16.9 percent race 2 approvals, and 13.0 percent 
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race 2 denials.4  Including this approach provides a nice comparison of how alternative 

sampling strategies might have affected the results for this exam.       

 

IV. Monte Carlo Simulation  

This section outlines the Monte Carlo simulation procedure, as well as the DGP 

used to create the simulated population data.  The main drawback of using Monte Carlo 

simulation is that the results necessarily depend on the underlying DGP assumptions.  

Because of this, I take a case study approach and develop a DGP that creates a simulated 

population closely reflecting the characteristics of one specific fair lending exam 

previously conducted by the OCC.  At a minimum, then, conclusions can be drawn with 

some certainty about how different sampling strategies would have affected this exam's 

model results.  Caution must be exercised, however, in generalizing these results to other 

analyses.  

The OCC estimated the following model for this exam,        

                            = β0 + β1LTVi + β2DTIi + β3Scorei +  
*
iDenied

                                            β4Derogsi + β5Publici + β6Racei + εi           (3) 
 
where Denied* = Unobserved continuous latent variable measuring the probability of  
      being denied credit,  
 LTV = 0/1 Indicator conveying the loan-to-value > the policy cutoff, 
 DTI = Continuous debt-to-income ratio, 
 Score = 0/1 Indicator conveying the credit score > the policy cutoff, 
 Derogs = 0/1 Indicator conveying applicant does not have clean credit, 
 Public = 0/1 Indicator conveying at least one public record, and  
 Race = 0/1 Indicator conveying minority status. 
 
The variable "denied" is the observed 0/1 counterpart to denied*.  With this model as the 

basis for the DGP, I attempted to re-create the following population characteristics: 
                                                           
4 Dietrich (2001) summarizes the sampling approach the OCC uses for its statistically modeled fair lending 
exams, and presents specific population and sample sizes for this exam. 
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•  Means and variances of explanatory variables 
•  Differential creditworthiness by race 
•  Correlations of explanatory variables 
•  Size 
•  Racial distribution of originations 
•  Parameters explaining the probability of being denied 

 

For this exam, the OCC used choice-based sampling, stratifying by action and race.  

Using these sample strata sizes, along with the actual population strata sizes, one can 

construct consistent estimates of the population means and variances of the explanatory 

variables by race.  Using these estimated means as cutoffs, I take random draws with 

replacement from a uniform distribution (U) to construct the five discrete explanatory 

variables.  Different cutoffs are used to capture racial differences for LTV, Score, Derogs 

and Public found in the sample data.  For the continuous variable DTI, I use random 

draws with replacement from a normal distribution (N) using the estimated population 

means and variances.  Differences in means and variances by race are incorporated into 

the construction of DTI as well.5  Data was generated for 2635 applicants with race 0 and 

325 with race 1 to match the actual population data for the exam.  Table 1 presents the 

moment estimates of the actual population that were used in the DGP process and the 

summary statistics of the resultant simulated population.  The simulated population 

characteristics are relatively close to the true population in all instances. 

The population correlations among explanatory variables are difficult to recreate 

since they involve a joint distribution of six variables.  Therefore, the correlations were 

allowed to vary independently of the DGP.  However, random draws creating the 

explanatory variable data were repeated until the correlation matrix of the simulated  

                                                           
5 Except for a small percentage of applications with unusually high DTI values, the exam sample of DTI is 
approximately normally distributed. 
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Table 1: DGP and Simulated Population Data (N=2960) 
 LTV DTI Score Derogs Public 
Race = 0      
   DGP U(0.335) N(34.093,62.218*) U(0.684) U(0.147) U(0.283) 
   Mean 0.341 33.810 0.676 0.143 0.277 
   Standard     
   Deviation 

0.474 8.369 0.468 0.350 0.448 

      
Race = 1      
   DGP U(0.572) N(35.486,73.047*) U(0.265) U(0.206) U(0.580) 
   Mean 0.575 35.759 0.231 0.231 0.631 
   Standard      
   Deviation 

0.495 7.942 0.422 0.422 0.483 

        
Total       
   Mean 0.367 34.024 0.627 0.153 0.316 
   Standard     
   Deviation 

0.482 8.345 0.484 0.360 0.465 

* This value denotes the variance of the distribution. 
 

population was qualitatively equal to the correlation matrix of the exam sample.     Table 

2 presents both of these correlation matrices.  Although the correlations are categorically 

smaller for the simulated population, the direction of correlation is the same for all 

variable pairs.   

The last stage of the DGP is to specify values for the β's in equation (3) and 

generate the dependent variable.  The objective here is to construct a simulated 

population data set that has the same distribution of approvals and denials found in the 

true population and also yields the true population parameter values when estimating 

equation (3).  The first step to achieving this objective is to determine unbiased and 

consistent estimates of the true population parameters.  A natural place to start is with the 

actual exam estimates, but this is complicated by bias introduced from choice-based 

sampling and a small sample size.  Using choice-based sampling by action and race, as 

was done for this exam, introduces bias into the constant and race coefficients.  Scott and 
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Table 2: Correlation Matrices 

Correlation Matrix for the Actual Exam Data (N=284) 
 LTV DTI Score Derogs Public Race 
   LTV 1.000      
   DTI 0.027 1.000     
   Score -0.080 -0.212 1.000    
   Derogs -0.056 0.161 -0.350 1.000   
   Public 0.100 0.145 -0.417 0.358 1.000  
   Race 0.181 0.088 -0.395 0.121 0.297 1.000 

Correlation Matrix for the Simulated Population Data (N=2960) 
   LTV 1.000      
   DTI 0.000 1.000     
   Score -0.037 -0.045 1.000    
   Derogs -0.023 0.027 -0.022 1.000   
   Public 0.015 0.039 -0.077 0.021 1.000  
   Race 0.152 0.073 -0.288 0.076 0.238 1.000 
 

Wild (1986, 1991, 1997) provide a correction for this bias, which can be used to obtain 

consistent estimates of each of these parameters.  Small sample bias is more problematic.  

Although approximations for small sample bias with a ML logit estimator are available, 

they depend on the true population parameter and are therefore of little use here.6  

Therefore, I simply take the Scott and Wild bias-corrected coefficients as the true 

population parameter values.   

The next step is to use these parameter values along with equation (3) and random 

draws from a logistic distribution to create the simulated dependent variable.  

Unfortunately, these parameter values will not result in the true population distribution of 

approvals and denials since the simulated correlation matrix of explanatory variables 

differs from the exam sample correlation matrix.  Due to these smaller correlations, I 

adjust the parameters for LTV and race to achieve the desired distribution of approvals 

and denials while still retaining the qualitative characteristics of the actual exam 
                                                           
6 See Amemiya (1980) and MacKinnon and Smith (1998) 
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estimation results.  To match the true population size and racial distribution of 

originations exactly, I first construct a simulated population of 50,000 observations with 

approximately the distribution of approvals and denials desired and then use random 

sampling by action and race to pare this simulated dataset down to the final simulated 

population data set containing exactly the desired characteristics.  Table 3 presents the 

actual exam estimates, the bias-corrected and correlation-adjusted β values used in the 

DGP, and the parameter estimates and racial distribution of originations using the final 

simulated population data.  The simulated β values are taken as the true population 

parameters for the Monte Carlo simulation. 

 
 Table 3: Data Generating Process (DGP) and Simulated Population Data (N=2960)  
                  ε ~ Logistic(0, 3.295) 
        
                                        Approved                Denied 
                  Race = 0             2353                      282 
                  Race = 1               246                        79 
 
 Constant LTV DTI Score Derogs Public Race 
Actual exam β's  -6.542 -0.398 0.129 -1.301 0.516 0.666 0.361 
DGP β's   -6.350 -0.198 0.129 -1.301 0.516 0.666 0.184 
Simulated β's -6.597 -0.153 0.136 -1.411 0.657 0.519 0.195 
 

The Monte Carlo simulation process using this simulated population data consists 

of five steps. 

 

Step 1:  For each of the nine sampling strategies, draw an initial total sample of size 50  

  using the particular sampling approach.  Then estimate the model for each  

 sample and save the results.  
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Step 2: Augment each of the nine initial samples with 12 additional observations,  

 using the particular sampling strategy, sampling without replacement from  

 the remaining population data.  For simple random sampling, this simply entails  

 adding 12 observations randomly chosen from the remaining population.  For  

 proportional sampling, the number of observations added to each stratum is  

proportional to the population stratum sizes.  Non-integer increments are 

rounded to assure the sample is increased by 12.  For balanced sampling, three  

 observations are added to each sample strata.  Once a particular population  

 strata limit is reached, observations are added to the remaining strata in a  

 balanced manner.  For example, if strata 1 has reached its population limit,  

 strata 2–4 are increased by four instead of three.  Similarly, if two strata  

 have reached their population limit, the remaining two strata are increased by  

 six.  Finally, the sample strata for the Kao and McCabe and actual exam  

 sampling strategies are increased by the originally determined proportions.   

 Similar to balanced sampling, when population strata limits are reached, the 12  

 additional observations are allocated among the remaining sample strata using  

 the originally determined proportions.  The model is then estimated using these  

 nine newly augmented samples, and the results are saved.   

 

Step 3: Repeat step 2 until the sample size reaches 1600.  The coefficient and standard  

 error estimates for all of the sampling strategies will converge to the population  

 values as the sample size approaches the population size.  However, due to  

 resource constraints, it is unlikely that any fair lending exam will ever examine  
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 more than 1600 observations.  Once the sample size reaches 1600, there will be  

 nine streams of estimates, one for each sampling strategy going from sample  

 sizes of 50 to 1600 by 12. 

 

Step 4: Repeat steps 1–3 10,000 times to create 10,000 streams of estimates for  

 each of the nine sampling strategies. 

 

Step 5:  For each of the nine sampling strategies, calculate sample-size dependent  

  streams for each of the four performance measures.  This entails creating means  

  of coefficient estimates, means of MSE estimates, percentages of models that  

  could not be estimated, and percentages of rejections of the hypothesis that the  

 simulated estimate equals the true population parameter.  

 

V. Monte Carlo Simulation Results 

Graphs 1–4 present all of the Monte Carlo simulation results.  The first question 

of interest for this study is what sampling strategies are feasible for an ML logit estimator 

at small sample sizes.  As one measure of feasibility, graph 1 presents the percentage of 

models that could not be estimated at each sample size for each sampling strategy.  A 

model was deemed unable to be estimated if one or more coefficients could not be 

estimated.7  Since the likelihood function for the logit estimator is concave, this is not a 

problem of convergence, but simply one of lack of variation.  For example, with a 

particular sample, an indicator explanatory variable may have fewer values of 1 than 

there are parameters in the model.  If this problem is isolated to variables available prior 
                                                           
7 Models with large and unstable estimates were considered able to be estimated.  
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to sampling, one could simply redraw the sample if the number of observations included 

in the initial sample for any of these variables is less than the expected number of 

parameters in the model.  Problems could still occur, however, since the variation of data 

gathered after sampling may be small as well.  In addition, redrawing samples until 

achieving one with sufficient variation is essentially making the case for using an 

alternative sampling strategy.   

As graph 1 shows, simple random sampling and the proportional stratified random 

sampling strategies have the highest failure rates for small samples, while the balanced 

strategies have the lowest failure rates.  This is what one would expect given the small 

number of population denials for race=1 (79) and the fact that balanced sampling 

includes larger numbers of these applications in the sample with more certainty than 

either simple or proportional stratified random sampling.  This highlights one reason for 

using stratified random sampling over simple random sampling.  A second item of note in 

graph 1 is that the inability to estimate models is basically eliminated for all sampling 

strategies by samples of size 200. 

The second and third questions of interest for this study are which sampling 

strategy yields the best small sample performance for the ML logit estimator and how 

large of a sample is needed for sufficient confidence in the results.  Graphs 2, 3, and 4 

provide evidence to answer each of these questions.  Graph 2 presents the simulated 

streams of sample-size dependent estimates of race.  The horizontal line indicates the true 

population value and the vertical line shows the sample size drawn for the actual exam.  

In addition to the original nine sampling strategies, I also present Scott and Wild, bias- 
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 Graph 1: Percent of Models Unable to be Estimated 
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 Grap  
h 2: Simulated Estimates of Race  

Proportional action/race 

smpsize 
50 250 500 750 

-.35 
-.15 
.05 
.25 
.45 

S.W. Prop. action/race*

smpsize 
50 250 500 750 

-.35 
-.15 
.05 
.25 
.45 

Balanced action/race 

smpsize 
50 750 1500 

-2 

-1 

0 

1 
S.W. Bal. action

smpsize 
50 

/race 

250 500 750 
-.35 
-.15 
.05 
.25 
.45 

Actual action/race 

smpsize 
50 250 500 750 

-.35 
-.15 
.05 
.25 
.45 

S.W. Actual action/race

smpsize 
50 250 500 750 

-.35 
-.15 
.05 
.25 
.45 

Proportional race 

smpsize 
50 250 500 750 

-.35 
-.15 
.05 
.25 
.45 

Balanced race 

smpsize 
50 250 500 750 

-.35 
-.15 
.05 
.25 
.45 

Proportional action 

smpsize 
50 250 500 750 

-.35 
-.15 
.05 
.25 
.45 

Balanced action  

smpsize 
50 250 500 750 

-.35 
-.15 
.05 
.25 
.45 

Kao and McCabe  

smpsize 
50 250 500 750 

-.35 
-.15 
.05 
.25 
.45 

Simple random  

smpsize 
50 250 500 750 

-.35 
-.15 
.05 
.25 
.45 

           

* Scott and Wild (1986, 1991, 1997) data abbreviated as “S.W.”
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corrected results for the samples stratified by action and race using proportional, 

balanced, and actual strata proportions.  Further, except for balanced sampling by action 

and race, which shows considerably higher bias than the other sampling strategies, all of 

the graphs have the same scale for ease of comparison, and only go to a sample size of 

750.8  A sample size of 750 is slightly larger than that drawn for any past fair lending 

exam conducted by the OCC, and resource constraints would make larger samples 

infeasible.   

There are four items of note in graph 2.  First, proportional sampling by action, 

and possibly bias-corrected balanced sampling by action and race show the least small-

sample bias and quickest convergence to the true population parameter.  Balanced 

sampling by action, proportional sampling by race, Kao and McCabe sampling, and 

simple random sampling all perform fairly strongly as well.  Second, the results for 

balanced sampling by action and race differ considerably from the results for the other 

sampling strategies.  The shape of the balanced action/race graph is a result of the sample 

augmentation process used in the Monte Carlo simulation.  Each of the larger directional 

changes occurs when a population strata level is reached (79, 246, and 282) and the 

subsequent sets of 12 observations are allocated to the remaining strata.  This result is 

relevant for current fair lending exams, since in some cases one or two strata are 

increased, independent of the overall sampling strategy, to reach 50 observations.  This 

graph indicates that these increases may have a larger impact than one might expect.  

Third, the Scott and Wild bias correction has a considerable effect for balanced sampling.  

This is what one would expect, considering that balanced sampling by action and race is 

                                                           
8 The graphs for proportional random sampling by race, proportional random sampling by action, and 
simple random sampling all start at 98 since estimates for smaller samples were much larger than any of the 
other sampling strategies making comparable axes impossible. 
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the most biased of all of the sampling strategies.  Choice-based sampling with 

proportional strata allocation will not introduce any additional bias to the small sample 

bias of the ML logit estimator so nothing is gained by applying the Scott and Wild bias 

correction there.  Similarly, the bias correction also shows little effect on the actual 

sample drawn since the strata allocations are nearly proportional.  However, for all of 

these sampling strategies, there will be precision gains from applying the bias correction, 

which we will see later.  Finally, except for balanced sampling by action and race and 

balanced sampling by race, each of the sampling strategies provides a good estimate of 

the true population parameter by 284 applications, the sample size used for the actual 

exam.  It also appears that fewer applications could have been examined using alternative 

sampling strategies.  

Graph 3 presents MSE results, which take into account the estimated standard 

errors.  Similar to graph 2, a horizontal line indicates the true variance of the race 

parameter and a vertical line indicates the actual sample size used for the exam.  In 

addition, the Scott and Wild results for proportional and actual sampling by action and 

race are combined with their uncorrected counterparts, and all scales are now equivalent.  

The bias-corrected balanced sampling by action and race again appears to perform well 

relative to the remaining sampling strategies, with balanced sampling by race, Kao and 

McCabe, and the other two bias-corrected approaches close behind.  Looking at the bias-

corrected results, we now see the efficiency gains mentioned earlier.  For proportional 

sampling by race and action, MSE equals 1.88 at a sample size of 110.  With the bias 

correction, MSE equals 1.18, a 37.2 percent decrease.  Looking finally at sample size, the 
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 Graph 3: Simulated MSE for Race   
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* Scott and Wild (1986, 1991, 1997) data abbreviated as “S.W.” 
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 Graph 4: Non-Rejection Percentage of 
H0: Estimated Race Coefficient Equals the True Population Value 
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* Scott and Wild (1986, 1991, 1997) data abbreviated as “S.W.”
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actual sample again appears to have been suitable, but smaller samples might have been 

sufficient.   

Graph 4 shows, for each sampling strategy, the percentage of times I could not 

reject the null hypothesis that the estimated race coefficient equals the true population 

value at the 95 percent confidence level.  The point of statistics is to estimate some 

unknown population value.  This graph shows how well each of the sampling strategies 

performs on this point.  Bias-corrected balanced sampling by action and race is clearly 

superior on this count, reaching a success rate of just over 90 percent by 284 applications.  

Proportional sampling by action and race, and both actual and bias-corrected actual 

sampling by action and race all perform second best.  Each of this second group 

performed poorly in graph 2 because of the high variance of estimates, not because of a 

systematic bias.  Their relatively high success rates at predicting the true population value 

suggest the lower precision is not necessarily a problem.  Other than balanced sampling 

by action and race, which is highly biased, simple random sampling, proportional random 

sampling by race and proportional random sampling by action all performed worst on this 

performance measure.  As for sample sizes, other than the bias-corrected balanced 

sampling by action and race, the results do not build high levels of confidence in the logit 

results until 600 or 700 observations. 

 

VI.  Conclusion 

 Given the resource constraints faced by most empirical analyses, it is important to 

identify sampling and estimation techniques, which produce unbiased and precise 

parameter estimates at minimal resource cost.  This study examines how nine sampling 
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strategies affect the small sample performance of the ML logit estimator in the context of 

a fair lending exam the OCC conducted in 1998.  The results indicate that balanced 

sampling by action and race with a bias correction for choice-based sampling 

outperforms all of the other sampling strategies.  Bias and MSE are both low and 

converge quickly to zero and the population variance, respectively.  Further, the 

percentage of models able to be estimated at small samples is high and the percentage of 

rejections of the null hypothesis that the estimated coefficient for race equals the true 

population value is low.  A second important result of this study is that the sample size 

used for the actual exam appears to have been adequate to accurately estimate the true 

population value.  However, a smaller sample size could have been used to achieve the 

same outcome with the bias-corrected balanced sampling approach.   

All of the results presented in this study are based on Monte Carlo simulation and 

are therefore dependent on the assumptions of the DGP.  However, these results, taken 

together with similar findings in Scheuren and Sangha, and Giles and Courchane, provide 

ever-increasing evidence for using balanced sampling by action and race with a 

correction for choice-based sampling for future fair lending exams.      
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