
James D. Schoeffler
Ohio Aerospace Institute, Brook Park, Ohio

Russell W. Claus
Glenn Research Center, Cleveland, Ohio

Engineering Analysis Using a
Web-Based Protocol

NASA/TM—2002-211981

October 2002



The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at 301–621–0134

• Telephone the NASA Access Help Desk at
301–621–0390

• Write to:
           NASA Access Help Desk
           NASA Center for AeroSpace Information
           7121 Standard Drive
           Hanover, MD 21076



James D. Schoeffler
Ohio Aerospace Institute, Brook Park, Ohio

Russell W. Claus
Glenn Research Center, Cleveland, Ohio

Engineering Analysis Using a
Web-Based Protocol

NASA/TM—2002-211981

October 2002

National Aeronautics and
Space Administration

Glenn Research Center



Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Trade names or manufacturers’ names are used in this report for
identification only. This usage does not constitute an official
endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

Available electronically at http://gltrs.grc.nasa.gov

http://gltrs.grc.nasa.gov


NASA/TM—2002-211981 1

Engineering Analysis Using a Web-Based Protocol

James D. Schoeffler
Ohio Aerospace Institute
Brook Park, Ohio 44142

Russell W. Claus
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

1. Abstract

This paper reviews the development of a web-based framework for engineering analysis.
A one-dimensional, high-speed analysis code called LAPIN was used in this study, but
the approach can be generalized to any engineering analysis tool. The web-based
framework enables users to store, retrieve and execute an engineering analysis from a
standard web-browser. We review the encapsulation of the engineering data into the
eXtensible Markup Language (XML) and various design considerations in the storage
and retrieval of application data.

2. Introduction

Most organizations seek to design and develop new products in increasingly shorter time
periods, ref. 1. At the same time, increased performance demands require a team-based
multidisciplinary design process that may span several organizations, ref. 2. One
approach to meeting these demands is to modify the traditional product design approach
by enabling rapid transfer of design information among team-members using a
combination of XML data transfers and the redesign of engineering applications. This
paper explores one such approach. We review the modification of an engineering
analysis simulation (Lapin) to allow execution over a network using web-based protocols.
This design enables users to store, retrieve and execute engineering analyses from a
standard web-browser.

Engineering analysis has traditionally involved the execution of Fortran codes by reading
input file(s) that contain initialization data (e.g. boundary conditions) for the calculation.
The results of the execution of these codes are subsequently stored in separate output
files. Sharing the results of these analyses has been problematic for both the original
engineer as well as the engineer’s design team members. Initially, there had to exist
some means by which the original engineer could disseminate the results with other
design team members. The design team members may then have had to perform some
manipulation of these results (i.e. “massaging”) in order to translate the data into a form
suitable for their own analyses. Failures in the two-step process of distribution and data
“massage” can occur and lead to anachronistic states in which out of date results and
design information were used in conjunction with the latest design analysis.



NASA/TM—2002-211981 2

The timely sharing of information is a major strength of the World Wide Web (WWW).
WWW protocols are designed to allow the presentation of information that can be
continuously updated. However, the file-based execution of Fortran codes does not
readily lend itself to this new approach. There is no clearly defined standard for input
and output data, thereby, making it difficult to share information between differing
computing platforms. The eXtensible Markup Language (XML) provides one
mechanism to address these problems. XML allows any data to be encapsulated in a
platform independent manner and provides a mechanism to develop a standard for input /
output data that can be shared with others. This XML data can then be passed to a web
server that executes the engineering analysis and provides an output XML stream to any
user on the network. Furthermore, these input and output streams may be stored in a
database, allowing both archival storage and retrieval of analysis data.

This paper reviews various design considerations for the conversion of engineering
applications toward a WWW-based protocol. We explore various options in the XML
encapsulation of input and output data. The design of data storage to provide high-
performance storage and retrieval is reviewed. Finally, we demonstrate web protocols for
data access and execution.

3. Lapin Application

Lapin is quasi-one-dimensional unsteady flow analysis for supersonic inlets, reference 3.
It is a Fortran application that requires an input dataset defining inlet geometry, initial
flow conditions and other numeric parameters to control the solution algorithm. These
input parameters are read by Lapin during execution and an output file is created
containing solution results. This process suggests a simple object structure as seen in
figure 1.

Lapin
HexDecimalMode

Input

Output

Geometry Control BoundaryConditions BoundaryLayerBleed

Figure 1. Overall Unified Modeling Language (UML) description of Lapin simulation data.



NASA/TM—2002-211981 3

Lapin objects are organized hierarchically such that they do not contain closed paths of
objects that reference one another. Many other aerospace applications objects exhibit a
similar hierarchic structure, differing only in the number of sub-objects and depth of the
sub-trees. The sub-objects associated with the Input object contain arrays of data. All
input arrays have the same maximum size and all output arrays also have the same
maximum size (but different from the input arrays). The total count of simple data
members in these 7 classes is 63, and the total count of arrays is 62:

Class Data Members Arrays
Lapin 7 None
Input None None
Control 16 4
Geometry 13 31
BoundaryLayerBleed 3 12
BoundaryConditions 14 4
Output 6 11

Representative numbers for array sizes are 20 for the input arrays and 200 for the output
arrays. The 62 data arrays represent a total of 1020 floats (51×20) for the short arrays and
2200 (11×200) for the long arrays or a total of 3220 floats.

4. Data Interchange Standard

Data standards are like a dictionary that provides a clear description of data semantics. In
other words, it is important that an application understands what a term like “length”
means and how it is described (e.g. units). For this report, we describe data standards that
are solely useable by a Lapin application. Input and output data values are defined for use
in the Lapin code. Of course, this is a demonstration that can be enlarged to allow
integration of multiple codes as long as a consensus data standard is developed.

For this report, input and output information are captured in an XML representation. The
representation is defined through a series of meta tags that describe any encapsulated
data, ref. 4. The design pattern of these tags is captured in a Document Type Definition
(DTD) or Extensible Stylesheet Language (XSL) document that can be used to test the
validity of any XML dataset. A valid XML dataset must follow the structure defined in
the DTD or XSL documents. Users with access to this specific DTD or XSL can parse a
valid XML representation to extract some or all of “self-documented” data.

In this report, the parsing of the XML document is done by C++ custom-programmed
applications that accessed the XML data using the Document Object Model (DOM),
ref. 5, as is more fully discussed in Section 4a. This data was then passed to a C++
wrapper that encapsulates the FORTRAN Lapin code.



NASA/TM—2002-211981 4

The design of meta tags used in XML typically follows an object structure such as the
one illustrated in Figure 1. However, a variety of design decisions must be made to
encapsulate the object structure within XML. Each of these decisions can affect the size
of the resulting XML representation of a Lapin object and the size of the representation is
important. Larger representations are undesirable because they increase storage needs and
may increase data transfer times between a client and the server.

Various XML design decisions include:

1. Choice of the length of the name used to identify each object, or data
member in the XML string.

2. Representation of a data member as an XML element or as an XML
attribute.

3. Format for the value of a data member of type integer or float in the XML
string.

4. Format of the individual values of an array of floats in the XML string.

Each of these design decisions in turn affects the length of the XML string representation.
Furthermore, each decision can also affect the generality of the design in the sense of its
applicability to other objects containing numerical data grouped into sub-objects.

For the Lapin analysis used in this study, the following design choices were made:

1. The number of data member names is small. Therefore, the name length has
little impact on the overall XML string size, so the Lapin objects and the XML
string use the same name. As a consequence, there is no need to invent new
names and then map them to the actual C++ objects that are used to parse the
XML . This implies that a name extracted from the XML string can be passed as
a string to the function building the Lapin C++ object (along with the value) and
hence the function becomes non-XML specific.

2. The use of attributes or elements for specification of data members has almost
no affect on the overall XML string size. Attributes are not used because the
XML schema would require an attribute name to be created for each attribute.
For the same reason, elements specific to each data member are not used. The
result is the use of a general element (with some name such as "DM") with the use
of one attribute to contain the data member name. The type is not stored as an
attribute implying that the Lapin function which creates the XML string or
receives data from the XML string decoder must associate the name and type
from knowledge of the data member of the actual objects. This must be done
anyway for error-checking purposes. Should the need arise to store the type, an
attribute can be added without making existing XML strings obsolete.

3. The XML string representing the application data is large, so there is a trade-off
between the utility of a readily readable ascii representation and a smaller,
unreadable data representation. The use of hex digits rather than decimal digits



NASA/TM—2002-211981 5

decreases the string size very significantly and was adopted for all numeric
variables (integers and floats). Attributes of the Lapin object are used to specify
the format’s numeric base, floating-point format, and byte order so that the string
can be used to build Lapin objects in other computers. It is then possible to
change numeric formats without adversely affecting much of the code for the
creation or decoding of XML strings should the circumstances dictate the need for
use of decimal digits.

A further consequence of this decision is that a text string is used for the value as
far as XML itself is concerned as opposed to an XML type such as "r4" which
knows that the value is an IEEE 801 format 4 byte float. Conversion then
becomes the responsibility of the Lapin functions creating and using the values in
the XML string.

4. Array values so dominate the XML string that all values were stored as fixed-
length hex strings. Thus, an array becomes a data member with a "single" value
which is a long string (e.g., 1600 characters for an array of 200 floats).

The Lapin object structure is shown in Figure 1 and the XML representation of
this structure is described in the following items.

1. The single outer XML element is called "Lapin". This object has three
attributes, which are global to all other XML elements. The attribute
"HexDecimalMode" determines whether the integers and floats and arrays are
specified in hex or decimal digits. Two other attributes, InputArraySize and
OutputArraySize, define the length of arrays in the input and output objects.

2. An element named "Input" is a sub-element of "Lapin". It contains sub-
elements named "class". Four such elements named "Geometry",
"BoundaryConditions", "Control", and "BoundaryLayerBleed" are the sub-
elements of “Input” object.

3. An element named "Output" is an optional sub-element of "Lapin" also. It is
optional so that a Lapin object may be created before a simulation is run and there
is no output data available. After the analysis has been run, the "Output” object
can be added to a newly generated XML string.

4. Elements corresponding to the 4 types of data elements are declared in the
schema. They are "DMI" for an integer data member, "DMB" for a boolean data
member, "DMF" for a single float data member, and "DMFA" for an array of
floats. Because an array is stored as a single string of hex or decimal digits, an
array is no different from any simple data member except for the size of the
representation. These data member elements are sub-elements of the various
Lapin objects and sub-objects containing data members.



NASA/TM—2002-211981 6

5. Unlike some languages (e.g. the Unified Modeling Language –UML), the XML
specification does not permit the exact specification of number of sub-elements.
For example, a Lapin object has exactly 4 sub-objects. The schema specifies that
there are "1 or more" "Input" objects. This limitation of XML must be handled by
the Lapin object code which generates the string (it must generate exactly 4 input
objects) and the Lapin object code which decodes the XML string and generates
the Lapin C++ object (it must check that there are exactly 4 "Input" elements with
the proper names ("Geometry", etc.) before creating the Lapin C++ objects.

4a. Conversion of an XML string to a Lapin object -the parsing problem

The XML Document Object Model (DOM) was used to parse the XML representation to
provide the data values needed by the Lapin analysis (i.e. the Lapin object). C++ code
was used to both generate the XML representation of a Lapin object and for the parsing
of the XML representation to recreate the Lapin object. The design of the schema
assumed the specific Lapin class representation noted earlier. The Lapin C++ code was
structured to allow efficient coordination between the DOM object parsing of the XML
string and the use of the retrieved elements and attributes to create the Lapin object. A
helper object that paralleled the Lapin object provided efficient data structuring. The
XML helper object required a state-based control so that an element could be parsed in
depth (including sub-objects) and then the state of the parser would recognize completion
of that element and restore the state so that the next element at the higher level could be
parsed. This allowed, for example, the parser to discover that the Lapin object contained
sub-objects (Geometry, etc.), recreate those objects by interacting with the Lapin C++
classes, then continue parsing XML from the base Lapin object.

4b. Conversion of a Lapin object to an XML string

Each Lapin sub-object was designed to be able to generate XML elements and attributes
corresponding to its data members. All were generated as DOM objects. DOM objects
were connected in a tree that represented the structure of the Lapin object. The DOM
itself simply generates the XML string representation of the tree in order to create the
Lapin XML string. This is effective because of the extensive DOM error checking of the
data and structure legality via the Lapin schema (as captured in XSL).

5. Data Storage and Retrieval Design

Each XML dataset is intended to represent a single Lapin calculation with the Input and
Output data fields. This XML data can be stored in two different locations. On the server,
a SQL database was used to store the Lapin XML representations. A client browser can
query the database and perform a search based on user-defined characteristics, but the
data is stored on the server. On the client, XML strings can be stored in an Excel
spreadsheet as detailed in Section 5.3.

XML is used as the “linga franca” or common data language to store the Lapin
simulation data. Each external application that uses this information must transform



NASA/TM—2002-211981 7

between XML to the application-specific data format. XML is used as an intermediary to
avoid the need for direct translations from one application to another. The direct
translation approach would require N*N custom translators, whereas the use of XML as
an intermediary reduces this need to 2N.

Experiments run from the design discussed in this paper found that parsing an XML
string and creating the C++ Lapin object in memory takes approximately 125
milliseconds on a 300MHz Pentium. Creating an XML string from a C++ object in
memory takes approximately 180 milliseconds.

5.1 SQL Database Storage Considerations

A database representation is important for two reasons: persistence of specific objects
over a long time period and interactive examination and retrieval of objects. The
examination and retrieval of objects requires a retrieval language that can search the
database for objects satisfying specific criteria. Relational databases provide a standard
language, Structured Query language (SQL), that allows retrieval based upon (possibly)
complex boolean relationships involving the contents of as many data fields as desired.
The downside of this is the need to store all the data fields of all sub-objects of the
hierarchical object in tables in the database.

Representation of an object in a relational database is usually done by creating one table
in the database for every different class of object and providing one field for each data
member of that object-class. All instances of objects of that class then appear as a table
with one row per object-instance and each column representing the values of a given data
member of the class for each object instance. There are several complications however
as discussed in the following sections.

5.1.1 Representation of object key data as fields in tables

If individual sub-objects objects of a given hierarchical object are stored in separate
tables, it must be possible to determine for each object in each table the given base object
it is part of. This requires that a unique identifier or key be created for each base object
and stored as a field in each sub-object-table. To make the key readable by a user, a text
key was used in the test implementation. The key identified the creator of the object, the
date and time created, and a project name. Since the key must be stored in each table, it
would be desirable to have a shorter key but then would not allow a user viewing a sub-
object-table to associate each row with a specific base object.

5.1.2 Representation of array data as database "blobs"

A "blob" in database terms is simply an arbitrarily-sized data item whose internal
structure and data values are not known to the database software itself. The name comes
from the description "binary large objects". A blob is stored and retrieved as a unit and
may not be involved in a query. That is, a query may not refer to a value in a Blob to be



NASA/TM—2002-211981 8

used in selecting which items are retrieved. The blob element in a database table is
actually a pointer to the arbitrarily-sized data somewhere else in the database.

It would be possible to create a "blob" for each array in the object associated with the
table. The corresponding column name could be the name of the array in the object. This
results in a simple database design whose tables contain all the data for a sub-object in
one row. Alternatively, the database could be designed with a single "blob" containing all
62 arrays in one field of the base-object table. Either of these alternatives could be used
for retrieving array data and building the corresponding Lapin objects.

Neither alternative allows the use of array data in database queries nor does it allow the
user of the database to browse the database examining object data for the purpose of
deciding which objects to retrieve. The power of a relational database lies in its SQL
query capability. Hence these alternatives were not considered further since full query
capability involving data contained in input and output arrays is necessary. However
great advantage can be taken of a blob-field as discussed in the next section.

5.1.3 Representation of array data in array-size specific tables

Five of the six Lapin objects contain data arrays. SQL Server table columns must contain
a single named value. This implies that storing that data in the table would be roughly
equivalent to using separate data members for each element of each array. Since table
columns must be named, this requires the creation of a unique name for each array
element (e.g., the array name followed by its index). This approach results in tables with
many columns which is not itself a problem. However using the artificial column names
in a query makes queries involving these data items awkward to create.

Alternatively, each of the arrays would have to be treated as a separate object and stored
in a separate table. This leads to excessive time to access the database while storing and
retrieving an object.

An alternative appropriate to objects commonly used for aerospace simulations takes
advantage of the assumption that all input arrays commonly have the same maximum size
and all output arrays also have the same maximum size. The two sizes are quite different
however. In this alternative, array data is stored separate from the objects that contain the
data. Two additional tables are used, one for input data-arrays and one for output data-
arrays. One row of a table represents one array. Each table must have a column which
contains a key identifying the simulation object to which the array belongs and another
column identifying the name of the array. These tables are quite manageable. For the
common maximum sizes of 20 for input arrays and 200 for output arrays, the tables
contain 22 and 202 columns respectively. Column names can then conveniently be the
index value of the array element.



NASA/TM—2002-211981 9

5.1.4 Embedding the XML string in a table

Since the fundamental representation of an object is an XML string, it is possible to avoid
retrieving sub-objects provided that the XML string representing the object is itself stored
in the base object table. This was done in this representation for the purpose of providing
a much faster retrieval of objects from the database since only the single XML string
field must be retrieved because the entire object including sub-objects and arrays can be
created from it.

This approach allows queries to be as complex and complete as desired, but retrieval
remains simple because only one (long) string-field is retrieved. The alternative,
retrieving the data members of each object from its corresponding table, and then creating
the object in memory by storing the retrieved data values into the hierarchy of objects
would do the same thing. However, the XML string would then have to be generated
from the newly created object in memory. The retrieval of many fields from many tables,
finding the rows associated with a given object, and constructing the object that way is a
much more complex software task that significantly lengthens retrieval-time.

In practice, not all sub-objects are usually involved in the queries. In this case, it is not
actually necessary even to store those non-involved sub-objects in the database since the
XML string in the base object table is sufficient for complete recovery of the object.

The implementation discussed in this paper required 1 table per object and two tables for
the input and output arrays with the XML string stored in the base object table for a total
of 8 tables. The 6 sub-object tables contain 1 row per Lapin object. The input data array
contains 51 rows for each Lapin object and the output array 11 rows per Lapin object.

5.2 Performance of the transformations between XML strings and the relational
database

Two experiments were created for the purpose of getting insight into the performance of
the database portion of the transformation between representations.

1. Create a new empty database in which a user-selected number of objects are
created and stored in the database. Each object is stored in a row of multiple
tables, one per sub-object but with all arrays stored in one of two tables as
discussed above. The experiment allowed the option of storing the input and
output data vectors in order to determine the effect of the array-storage choice on
the response time.

2. Open an existing database created in the first experiment, retrieve a subset of
the stored data, and build the corresponding Lapin objects from the retrieved data.
Standard SQL queries are used. The result of a query is an array of pointers to the
retrieved simulation objects.



NASA/TM—2002-211981 10

The cost of retrieving all the data for the sub-objects including the array data directly
from the database varies from 2 to 4 seconds per object. This time includes retrieving the
data from 6 tables plus separate queries to the array storage tables to retrieve each of the
62 arrays, a total of 68 separate SQL server queries per object. This is a very inefficient
way to use a relational database.

Better design of the queries could significantly reduce the above retrieval times at the
cost of more complex transformation software helpers. However, the use of the stored
XML string to allow completely general queries with simple retrievals is so superior to
the direct retrieval of sub-object data that it is not worth considering. Parsing is faster
than querying.

The following table shows the storage and retrieval times for various number of Lapin
objects where the result of the general retrieval query actually retrieves only the XML
string. It does not include the time required to construct the Lapin object from the XML
string (this time is discussed below).

Number of Storage Time Retrieval Time Retrieval Time
Simulation Objects (seconds) (seconds) Per Object (secs)

1 2.7 0.69 0.690
5 3.8 0.76 0.153

25 14.1 1.63 0.065
50 24.9 2.66 0.043
75 37.7 3.61 0.048

100 49.3 4.82 0.048

Notice that storage time for an object includes the time to store all the data members of
the six objects and the XML string in six tables and to store the 62 arrays in the two array
tables and is approximately 0.5 seconds per Lapin object when multiple objects are stored
and around 1 to 3 seconds for a single object. The long times for storage of a single
object is due to SQL server's caching of internal data in anticipation of further queries of
a similar nature. Repeated single object queries then become faster.

Retrieval time varies from 69 milliseconds for 1 object to around 48 milliseconds per
object when many objects are retrieved. Thus retrieval is generally 10 times faster than
storage because of the retrieval of the XML string. Despite the size of the XML string
(around 31,000 bytes in these examples) the fast retrieval time is well worth the cost.

If the data arrays did not have to be stored in the database for querying purposes, the
storage time reduces considerably. A repeat of the above storage and retrieval
experiments in the case data arrays (both input and output) are not stored in the data base
yields the following results:



NASA/TM—2002-211981 11

Number of Storage Time Retrieval Time Retrieval Time
Simulation Objects (seconds) (seconds) Per Object (secs)

1 1.52 0.62 0.615
5 1.74 1.16 0.233

25 2.63 1.74 0.070
50 5.49 2.85 0.057
75 7.76 3.95 0.053

100 9.41 4.55 0.046

Retrieval times are about the same as expected since only the XML string is actually
retrieved. However storage times drop from the 2–4 second range to the 0.9–1.5 second
range, a decrease of 2 times for a single object to a decrease of 5 times for multiple
objects.

Since object creation from an XML string is approximately 125 milliseconds, the total
time to retrieve an object from the SQL server database and construct the corresponding
object in memory ranges from 170 milliseconds to 775 milliseconds per object.

5.3 Performance of the transformations between XML strings and Excel
spreadsheets

The Excel spreadsheet representation includes a worksheet for each sub-object that
contains the names and values of all data members as well as the array data members
formatted in a readable fashion. In addition, the XML string itself is embedded into a
hidden cell on the worksheet corresponding to the base object.

The transformation from an XML string to an Excel spreadsheet takes about 4 seconds to
load the Excel program and 25 seconds to parse the XML string and write the comment
and data cells into the spreadsheet. The actual workbook contains 6 separate sheets that
must be created, with a total of 3754 separate entries that have to be written to cells. The
elapsed time includes parsing the XML string, creating the pages, determining the
location on the sheet to write the next cell, and actually writing the cell. This includes all
data members and their names as comments, all arrays including their names and a
column of index values, the embedded XML string in a hidden cell, and the creation of
the 6 spreadsheets to hold the above data from the sub-objects. During the writing, the
spreadsheet is set to the non-update mode so that it does not attempt to redraw itself each
time a cell is changed.

The 25 seconds of elapsed time corresponds to an average write time per cell of 6.7
milliseconds for each of the 3754 cells. Considering that the program creating the
spreadsheet is in a separate process from the Excel process and that an automation
interface to Excel is being used, a multi-millisecond write time is usual. Note that this
corresponds to a write rate of 150 cells per second. The 3754 cells actually consist of 120
cells corresponding to titles, descriptions, and data of simple data members of each of the



NASA/TM—2002-211981 12

Lapin objects, 1210 cells for the input arrays' descriptions and data, and 2424 cells for the
output arrays' descriptions and data. Hence the writing time of Lapin data without arrays
takes about 1 second, the input arrays about 8 seconds, and the large output array data
about 16 seconds. These times were calculated from the average cell write time and were
not directly measured.

After a user change to the spreadsheet, the transformation from the spreadsheet to a new
XML string takes 15 seconds. This is faster because cells are read but not written except
for the embedded XML string that is changed to the new XML string representing the
data actually present in the Excel spreadsheet. Only cells containing data (not
descriptions) are read and these represent half of the 3754 cells. Note, that the elapsed
update time for half of the cells is 20% more than half of the elapsed write time for all the
cells. Hence, the Excel read time per cell is approximately the same as the write time per
cell.

Currently the Excel spreadsheet program is opened and no sheet is displayed until all 6
sheets have been created and written. This leaves the user staring at a blank sheet. The
apparent (but not actual) speed of the XML string to Excel spreadsheet representation
could be improved by about 5 to 1 if the base object worksheet were written first and then
displayed to the user while the other 5 sheets were being written in the background.

6. Web Protocols for Data Access and Execution

The process of encapsulating input and output data for a Lapin analysis calculation has
been reviewed in the previous sections. This section discusses how these XML strings are
used in a web-based environment. Merely capturing the input and output data in a
structured format is a first step in this process. The next step involves designing the
client/server interactions that clearly specify how these XML strings are used in the
execution of the Lapin application.

Figure 2 displays a conceptual picture of the client/server approach used in this study. In
a general sense, the client provides Lapin input data (in the form of XML strings) to the
server. The server parses the input data and controls the execution of the Lapin
application. Then the server provides an XML string that encapsulates the Lapin output
data to the client. The exact details of the interaction are described in the following
sections.



NASA/TM—2002-211981 13

Server

-Lapin Execution

-SQL Database

-Web Server

Client

-Web Browser

-Excel Spreadsheet

XM
L Inp

ut

W
eb

Page
s

XM
L Output

DB
que

ry
res

ult
s

Figure 2. Client/Server interactions for the Lapin application.

6.1 The Lapin Web application and the design of its active-server pages

The interaction with a user of the application starts with the user navigating to the server
site and the LapinWebApp.asp page using a standard browser (Internet Explorer or
Netscape Navigator). The execution of this page causes an Hyper Text Markup Language
(HTML) page to be sent to the user and displayed in the user's browser. The page
displays a form showing the state of the application (e.g., whether or not a lapin object
has been accessed) and the user's options (e.g., display a lapin object in an excel
spreadsheet). This is illustrated in Figure 3. The response of the user causes either a local
command or a remote command to be generated. A local command is one that is handled
entirely on the client computer whereas a remote command is one that is transmitted to
the remote server for handling.



NASA/TM—2002-211981 14

Figure 3. A view of the client browser screen upon initial contact with the server.

Local commands must be supported by application code on the user's machine. Examples
in this application are the following:

1. Read an XML string encoding a lapin object from a local file.
2. Write the current lapin object XML string to a local file.
3. Display the current lapin object in an Excel spreadsheet.
4. Retrieve a lapin object from data in an Excel spreadsheet.

All of these local commands are most efficiently processed on the user's client
workstation. The local lapin objects allow changes to values in a local spreadsheet that
may be submitted for another run of the Lapin code.

Remote commands are supported at remote server machines (one or more) so that it is not
necessary for a user to have complex applications installed on the user's local machine.
Examples of remote applications are the following:

1. Read the keys of lapin objects stored in a database (SQL server). [As was
described in Section 5.1.1, the key describes: the creator of the object, the
date and time created, and a project name.]

2. Retrieve the lapin object from a key retrieved from the database.
3. Store the current lapin object into the SQL server database.
4. Transmit the current lapin object's XML string description to the server

where the Lapin application code resides and run the analysis code.

The database commands are more naturally remote commands so that results of lapin
object analysis runs can be centrally stored for retrieval and examination by many users.



NASA/TM—2002-211981 15

Similarly, the analysis code often must reside on a secure server and therefore is not
available to install on each user's machine.

In all cases of both local and remote commands, an HTML page is returned to the user
with application state and options set to those currently meaningful. Figure 4 shows the
returned HTML page after executing the remote command that accesses the SQL Server
database and returns an XML string containing the keys of all lapin objects currently
stored in the database. The user could select one of these keys and execute another
remote command to return the corresponding lapin object in the form of an XML string.

Figure 4 HTML page displaying typical results from a user request.

6.1.1 Handling of the User Interface "Submit" button

Figure 3 shows the appearance of the initial HTML page displayed so that the user may
enter data and select a command for execution. After the user has entered whatever data
is needed for a command (e.g., a file name and path) and selected the checkbox
corresponding to the command to be processed (e.g., "retrieve XML from a file"), the
following sequence of actions take place.



NASA/TM—2002-211981 16

For each of the checkboxes displayed on the form in sequence

if the checkbox is checked (selected)

call the corresponding action subroutine
in the case of a local command, the action subroutine
processes the command whereas in the case of
a remote command, it calls ProcessXMLCommand
to navigate to a remote ASP page to process
the command.

write the hidden variable values to the form
the values of the variables are copied into the form variables
that are in turn used in the generation of the returned ASP page.

actually submit the form for processing

Once submitted, an ASP response page is generated and displayed. The checkboxes are
actually radio buttons so that only one may be clicked at any time. Clicking a second
automatically unselects the first.

6.1.2 The round-trip from user data entry through receipt of the response of a
command

The user interacts with a dialog displayed within the user's browser. The user has the
option of entering data (e.g., a file name where a lapin object is located), browsing to the
file location to pick from a list of files, and even editing information displayed in data-
entry areas on the form. The user makes his/her choice of command from a set of radio-
buttons each describing an available command, and clicks the 'submit' button to initiate
the command.

The response to the submit button click determines whether the command is local (and if
so carries it out locally). Local commands may use ActiveX controls but these must be
available on the local machine. For example, file read and write controls are available
through standard operating systems such as Windows and are used to read and write files
of interest to the user on the local machine. Controls for generating and parsing XML
strings also are standard under Windows. The implementation here used custom ActiveX
controls for converting Lapin objects to XML data and for displaying Lapin objects in
Excel spreadsheets and retrieving modified data from an Excel spreadsheet.

If the command is remote, the following sequence of actions take place.

1. An XML command string is generated that encodes the desired command
and all the data needed to carry out the command. For example, the
command to run the Lapin analysis program requires specification of input
data. All of this data is stored in individual objects within a
C++ Lapin object that is not suitable for transmission to a remote server.



NASA/TM—2002-211981 17

Hence an XML string is generated from the Lapin object and this
represents the input data. In the current application, this string is
approximately 30,000 bytes in length and is a complete XML string.
It is embedded into the command XML string as a single data item
using the XML CData code. This causes an XML processor to read
the entire string as data (and ignore its XML tags embedded in that data).

2. The XML command string is sent as data to the remote server where it is
translated by an Active-Server Page (ASP), ref. 6.

3. A Visual Basic script parses the components of the command string. These
components are the command name, and each parameter needed by the
command. In the case of the command to run the Lapin analysis code, the
name is "RunLapinF" and only a single parameter is supplied, the entire
Lapin XML string. The XML string appears to be a single data item in the
command string because of the use of the CDATA tag.

4. An ActiveX object appropriate to the particular command is created by
Visual Basic scripts in the ASP page and a method (member function) of
that object called passing the parameter data extracted from the command
string.

5. The specific ActiveX object generally extracts the individual data items
from the arguments passed to the function and prepares the data for the
actual carrying out of the command. In the case of the RunLapinF
command, the parameter is an XML string that encapsulates a large
amount of data needed by the lapin analysis code. The XML string
is processed by the XML processor, a Lapin object is created, and all
the encapsulated data is used to initialize the lapin object and its 4 sub-
objects. The C++ Lapin object is then used to move the data into the
appropriate variables used by the Lapin analysis code. This is Fortran
code and all of its input data is stored in a large block data statement.

6. The Lapin analysis code is started and it simply reads data from its block
data variables and executes to produce output data also in variables in its
block data area.

7. The output data is then packed into arrays and variables within the C++
Lapin output sub-object.

8. The updated lapin object then generates a new lapin XML string that
contains not only the original input data, but also the newly generated
output data.

9 A response XML string is then generated. It includes tagged error
information and the CDATA-tagged updated Lapin XML string.

10. The response string is returned to the ASP page that generated
the command and its components extracted.

11. If the error information component indicates a failure, an error message
is generated to be returned to the user.

12. If the error information component indicates success, the Lapin XML
string is extracted and stored in a variable to be returned to the user.

13. An HTML page updated according to the new state and including the
command response returned to the user.



NASA/TM—2002-211981 18

6.2 Key aspect of the design: maintenance of the state of the application

Web applications pass HTML and ASP web pages back and forth between the user at the
local machine and the server machines where remote applications are run. Web
applications are intrinsically state-independent in that there is no automatic maintenance
of global data from one page to another. However it is almost always necessary to pass
data from the one page to the other and to return data from a remote machine. In addition
to data, state information must be passed along with data specific to a command and also
returned with the command response. This permits maintenance of the state of the
application between interactions. For example, initially, there is no current lapin object so
the user's options are few. Later on, there may be a current lapin object and hence the
user's options are different. In this design, a set of variables that determine the state of the
application are maintained on the HTML pages as values of form variables that are
transmitted to the server, updated there, and returned on the new HTML page sent back
to the user. These form variables are invisible to the user but used by the page to
determine how to proceed. For example, the HTML page returned to the user from a
remote server contains script (commands) that check the values of the hidden variables to
determine exactly what information should be displayed to the user for the current state
of the application. The result is that the user sees a state-dependent display that changes
after each command selected by the user.

6.3 The XML Command specification

The command sent from the user to a remote server has the following specification:
<XML version="1.0">

<LapinCommand>
<CommandName>name</CommandName>
<Parameter1> data </Parameter1>
......................................................
<Parametern> data </Parametern>

</LapinCommand>

For example, the command to store a Lapin object into the SQL database must pass the
XML string as a parameter. The command is:

"<lapin_command>"
"<XMLstringToDB>"

"<lapin_xml_string>"
"<![CDATA[" & LapinXMLString & "]]>" _

"</lapin_xml_string>"
"</XMLstringToDB>"

"</lapin_command>"

The parameter, 'lapin_xml_string' is actually a string of length 30K bytes. It is treated as
the value of a single tag by enclosing it in the CDATA form shown. Only one parameter
is used with this command.



NASA/TM—2002-211981 19

Once the server ASP page is activated, it extracts the XML command string, parses it and
checks that it is a command by looking for the "LapinCommand" tag. It then extracts the
value of the "CommandName" tag and processes the command using a Visual Basic
script specific to the particular command. That script understands the number and types
of parameter data that must be present, extracts those parameters, error checks the
parameter data, and then creates the appropriate ActiveX control and passes the data to
the control by calling a method on its interface. The ActiveX control returns command-
specific data through the output variables of the interface methods or error data in case of
failure of the command.

The following script shows how the data received from the user is processed and the
XML parsed and checked:

'Create XMLDOM object, and load XML data from client
Set docReceived = CreateObject("Microsoft.XMLDOM")
docReceived.load(Request)

set RootNode = docReceived.documentElement
' RootNode is the root element of a tree
‘ containing the XML received in the form of a DOM tree
' Test for the kind of tree (node type) and use that
' and the XML tree to get the data to be handled.
receivedXML = docReceived.xml
Dim RootNodeName 'the name of the message
RootNodeName = RootNode.nodeName
' test for message type from client
If NOT RootNodeName="lapin_command" then

ReturnXMLerror RootNodeName , "illegal lapin command"
End If

The lapin command is processed differently for each supported command. The command
to store a Lapin object into the SQL database is processed as follows:

elseif commandNodeName = "XMLstringToDB" then
'parameter1 is the xml-string
Set parameter1 =

commandNode.selectSingleNode("//lapin_xml_string")
if (err.number<>0) then

ReturnXMLerror "601"," Command 'XMLstringToDB' is
missing parameter 'lapin_xml_string' "

end if
parameter1Value = parameter1.firstChild.text

xml_result = LinkXMLobj.LapinXMLtoSQL( parameter1Value)
if (err.number <> 0) then

ReturnXMLerror "620", " Command 'XMLstringToDB' failed
for key '" & parameter1Value & "' " & err.number & " " &
err.description

else
ReturnXMLsuccess(xml_result)



NASA/TM—2002-211981 20

Note that the ActiveX object used to handle this command is 'LinkXMLobj' and the
particular method called is 'LapinXMLtoSQL. This example shows how the data returned
is changed into an XML string by scripting functions.

The script that called the ActiveX control's method understands the arguments returned
but must then change that data into a response XML string. The scripting functions are:

Sub ReturnXMLerror(ErrorLabelString, errorMessage)
On Error Resume Next
Set LinkXMLobj = Nothing
responseXML = "<?xml version='1.0'?><lapin_command_response>" &_

"<errorcode>" & "<![CDATA[" & ErrorLabelString & "]]>" & "</errorcode>" &_
"<errormessage>" & "<![CDATA[" & errorMessage & "]]>" & "</errormessage>" &_
"</lapin_command_response>"

if err.number <> 0 then
Response.End

end if
Response.Write responseXML
Response.End

End Sub

sub ReturnXMLsuccess(xml_result)
On Error Resume Next
Set LinkXMLobj = Nothing
responseXML = "<?xml version='1.0'?>" & _
"<lapin_command_response>" &_
"<errorcode>NoError</errorcode>" &_
"<XMLdata>" & "<![CDATA[" & xml_result & "]]>" & "</XMLdata>" &_
"</lapin_command_response>"

if err.number <> 0 then
Response.End

end if
Response.Write responseXML

Response.End
Exit Sub

End Sub

Notice that the return XML string is generated by simply concatenating strings containing
the various XML tags and the data. Note that the success return function again returns the
XML string of the Lapin object encapsulated in the CDATA statement.

6. 4 List of functions for client-side processing

The client ASP page (LapinWebApp.asp) uses several functions for error detection and
utility purposes.

A function used for error tracing is: “ExtractLeadingXML.” This function searches for
the XML tag ‘lapin_command_response’ and extracts an XML string from the CDATA



NASA/TM—2002-211981 21

statement associated with this tag. This XML string must be embedded within a CDATA
statement since an XML string is not a legal entity within another XML string. Both the
response XML string (that comes from the server) and the embedded XML string can
then be checked for legality.

“CheckXMLresponse” takes an XML response string and checks its XML format. It is
used simply for error detection.

“CheckXMLparses” function does the actual XML legality check by making sure that the
XML string may be parsed. A complete Document-Object-Model tree is created as part
of the legality checking.

7. Summary

This paper has reviewed various design considerations for the conversion of an
engineering application (Lapin) toward a WWW based protocol. The conversion of a
Fortran code to allow web execution and data storage was found to be practical in
concept and in practice. The use of XML for the encapsulation of input and output data
was efficient and facilitated software development.

The design of data storage was critical to provide high-performance storage and retrieval.
Data retrieval times could vary as much as a factor of five depending on how the data
storage is configured. To achieve good data retrieval performance, only a few “high-
level” or meta-data members were used for querying through the database. Array data
values (the majority of the information) were stored in “blobs” that were keyed to the
appropriate meta-data.

The use of a Lapin XML string as a common data source for all applications was efficient
and minimized the number of custom data translators that were created. Experiments run
from the design discussed in this paper found that parsing an XML string and creating the
C++ Lapin object in memory takes approximately 125 milliseconds on a 300MHz
Pentium computer.

8. Conclusion

Conversion of a Fortran-based engineering analysis (Lapin) into web-based analysis
server has been demonstrated. Using XML to define application specific data allowed a
unified representation that eased the process of transferring data between various
applications. This was demonstrated by storage in a searchable SQL database and Excel
spreadsheet. In the future, the XML encapsulated definitions could be used to allow
so-called, “Smart” agents (or applications) to find needed information for a large scale
simulations such as the Numerical Propulsion System Simulator, reference 7.



NASA/TM—2002-211981 22

References

1. Smith, Preston, and Reinertsen, Donald G., “Developing Products in Half The
Time,” International Thomson Publishing, Inc., 1995.

2. Schrage, D.P., Gordon, M., “Management Issues and Techniques in Concurrent
Engineering,” AIAA 92–4206, August, 1992.

3. Varner, V.O, Martindale, W.R., Phares, W.J., Kneile, K.R., and Adams, J.C.,
“Large Perturbation Flow Field Analysis and Simulation For Supersonic Inlets,”
NASA CR–174676, September 1984.

4. Homer, A., “XML IE5”, Wrox Press Ltd, 1999.
5. http://www.w3.org/DOM/
6. Powers, Shelley, “Developing ASP Components,” O’Reilly and Associates,

March 2001.
7. Claus, R.W., Evans, A.L., Lytle, J.K., and Nichols, L.D., “Numerical Propulsion

System Simulation,” Computing Systems in Engineering, Vol. 2, No. 4,
pp. 357–364, 1991.



This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA  22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC  20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio  44135–3191

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC  20546–0001

Available electronically at http://gltrs.grc.nasa.gov

October 2002

NASA TM—2002-211981

E–13651

WU–704–40–13–00

28

Engineering Analysis Using a Web-Based Protocol

James D. Schoeffler and Russell W. Claus

Software engineering; Object-oriented programming; Mechanical engineering

Unclassified -Unlimited
Subject Category: 61 Distribution:   Nonstandard

James D. Schoeffler, Ohio Aerospace Institute, 22800 Cedar Point Road, Brook Park, Ohio 44142; Russell W. Claus,
NASA Glenn Research Center. Responsible person, Russell W. Claus, organization code 5880, 216–433–5869.

This paper reviews the development of a web-based framework for engineering analysis. A one-dimensional, high-speed
analysis code called LAPIN was used in this study, but the approach can be generalized to any engineering analysis tool.
The web-based framework enables users to store, retrieve, and execute an engineering analysis from a standard
web-browser. We review the encapsulation of the engineering data into the eXtensible Markup Language (XML) and
various design considerations in the storage and retrieval of application data.

http://gltrs.grc.nasa.gov

