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Abstract

Three forms of the high-frequency asymptotic Green's function for Lilley's equation are reviewed and

compared to the exact solution over a wide range of Strouhal numbers. The asymmetric approximation,

which applies to sources away form the jet axis, and the quasi-symmetric approximation, which is arrived

at by making a near-axis source assumption, are both obtained for parallel round jets from a formal

Fourier-transform solution. The ray-theory solution, which is the only high-frequency approximation that
can be applied to more general mean flows, follows from a WKB ansatz and is shown to be closely related
to the asymmetric approximation. The comparisons show that the best overall prediction of the exact

Green's function is given by the asymmetric approximation which remains accurate down to a Strouhal

number of 1/2. The close relationship between the asymmetric and ray-theory approximations suggests

that the high-frequency asymptotic Green's function for more general mean flows would be similarly
successful.

1 Introduction

The prediction of jet noise has been an area of continuous interest over the last half century and has become increas-

ingly important in recent years due to stricter noise regulations placed on the commercial aircraft industry. The need
for quieter jet engines has led to several noise abatement techniques such as the placement of tabs and chevrons at the

nozzle exit in order to alter aerodynamic sound generation through enhanced mixing. Accurate and robust prediction

tools are instrumental in the design of more efficient noise-suppression devices.

Noise generation in jets is generally regarded as a by-product of the unsteady features of the flow and, in many sit-

uations of practical interest, the dominant feature is turbulent mixing. Jet mixing noise emanates from both fine-scale
turbulence and the unsteady motions of large-scale coherent structures. The contribution from the latter component is
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usually most important at shallow angles off the downstream axis (especially in supersonic jets) and is often success-

fully predicted using either an instability-wave based approach or a large eddy simulation. It is this noise source that is

most directly impacted by mixing enhancement devices since they tend to breakup the large structures at the expense

of creating more fine-scale turbulence.

The present investigation is concerned with the mixing noise due to fine-scale turbulence which dominates the

spectra away from the downstream jet axis. This component is most often analyzed by employing the acoustic analogy

and assuming that the noise generating eddies are compact and behave as convected acoustic sources. The sound
field is then governed by Lilley's equation which describes the acoustic propagation on a specified mean flow due

to multipole-type sources. The source distribution is, in general, modelled using appropriate space-time correlation
functions.

Solutions to Lilley's equation are typically constructed by introducing a Green's function. This allows the mean-
flow refraction effects to be determined independent of the source distribution and limits the empiricism inherent

in the acoustic analogy to the source modelling problem. Despite the linear nature of Lilley's equation, accurate

numerical determination of the associated Green's function for an arbitrary mean flow is still a major undertaking

[1] and consequently much attention has been focused on the simplifications to be gained by use of high-frequency

asymptotics [2, 3, 4].

The high-frequency limit arises when the acoustic wavelength of the aerodynamic noise is much shorter than the

characteristic length scale of the mean flow. For simple round jets, this is usually the case within the first several jet

diameters downstream of the nozzle exit where the mixing layer is thin and the turbulence intensity is at its peak.

The high-frequency noise can be further increased by the presence of mixing enhancement devices. As a result,

high-frequency asymptotic approximations to the Green's function for Lilley's equation form the backbone of many

jet-noise prediction schemes, eg. the so-called MGB computer code [5] and its derivatives.

For arbitrary mean flows, the high-frequency solution to Lilley's equation is described in terms of the ray-theory

of acoustics [4]. However, it is often reasonable to assume, for high Reynolds-number jets of practical interest,

that the mean flow is both locally parallel and axisymmetric - even jets issuing from tab and chevron nozzles are

known to become axisymmetric within 4 to 5 diameters downstream of the nozzle exit. When the locally parallel and

axisymmetric assumption is made, three different closed-form expressions for the high-frequency Green's function for

Lilley's equation are found in the literature. Goldstein [6] developed an approximation for the Green's function by

restricting attention to sources located several acoustic wavelengths off the jet axis and determining the high-frequency

asymptotics of the formal Fourier-transform solution available for parallel round jets. Balsa [2, 5] also obtained an

expression for the high-frequency Green's function from the formal Fourier-transform solution but did so by assuming

that the source lies near the jet centerline. Finally, Goldstein [3] presented a closed-form ray-theory solution for

parallel round jets.

The goal of limiting the empiricism in jet-noise prediction schemes to the source modelling problem will be

achieved only when the high-frequency asymptotics provide an accurate approximation of the exact Lilley's equation
Green's function. Adequate agreement between the exact source directivity and a high-frequency approximation for
Strouhal numbers as small as one has been demonstrated in some limited circumstances by Tester and Morfey [7] using

a ray-theory solution for polar angles outside the zone of silence of a round jet and by Scott [8] for a two-dimensional

isothermal flow with a piecewise constant mean shear. The primary objective of the present paper is to determine the

relative success of the above three high-frequency approximations for parallel round jets by comparing them to the

exact order-one frequency solution over a wide range Strouhal numbers and far-field observation angles. In doing so,

the relationships between the different solution forms will be revealed and the potential success of the high-frequency

approximation for more general mean flows will be discussed.

The general problem defining the Lilley's equation Green's function for a uni-directional transversely sheared

mean flow is presented in section 2 where the formal Fourier-transform solution available for parallel round jets is

given. The high-frequency asymptotic behavior of that formal solution is considered in section 3 where the approxi-

mations corresponding to the analyses of Goldstein [6] and Balsa [2, 5] are summarized. Appendices A and B provide

the details of those analyses with the former correcting an error in the derivation of Goldstein [6]. A comparison of

the two high-frequency approximations with the exact order-one frequency Green's function is given in section 4. It
is shown there that the best over all prediction of the exact result is provided by the corrected expression of Goldstein

which is referred to here as the asymmetric high-frequency approximation and which remains accurate down to a

Strouhal number of 1/2. The Balsa expression is referred to as the quasi-symmetric high-frequency approximation
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andisshowntobeatitsbestwhenappliedtothering-sourcedirectivityinwhichcaseit becomescoincidentwiththe
asymmetricapproximationatsufficientlylargepolaranglesoffthedownstreamjetaxis.

Theray-theorysolution, which is reviewed for a uni-directional transversely sheared mean flow in Appendix C, is

shown to be closely related to the asymmetric high-frequency approximation in section 5 where the generalization to

complex rays in the zone of silence is also considered. In section 6, local modifications to the ray-theory solution near

the caustic and branch point are constructed and a composite solution is presented. The composite ray-theory solution

is shown to provide a good approximation to the asymmetric high-frequency solution over the entire range of Strouhal

numbers considered and from this result it is inferred that the high-frequency approximation for more general mean

flows (i.e. mean flows that are non-axisymmetric and/or non-parallel) would be reasonably accurate down to Strouhal
numbers as small as 1/2.

2 Formulation

Interest here is in the acoustic propagation on a parallel, doubly infinite jet for which the mean flow is given by

u = it(y, z), p = p(y, z), c = e(y, z), p = constant, (1)

where u, p, c and p are the velocity, density, sound speed and pressure, respectively and (1) is an exact solution to

the inviscid, non-heat-conducting equations of motion. The Cartesian coordinates x = {x, y, z } are chosen such that

x is aligned with the direction of the mean flow and the unit vector i is in that direction. The mean-flow profiles are

required to approach constant ambient values,

_ 0, P ---* fio_, c ---*cc_,

as v/'y2+z2----+ O0.

Assuming a calorically perfect ideal gas, the linearized equation governing the acoustic propagation on (l) is [9]

LII = -_ _ - W._zV H + 2_2_rfi._ 7 /-/ = /', (2)

where H denotes the acoustic pressure fluctuation normalized by tSO2,

D 0 0

- +_OxDt Ot

is the convective derivative relative to the mean flow and t denotes the time. The term/" represents the acoustic source

distribution and is given by

D V Of
r = D--/ "'f - 2v_. Ox ' (3)

when this quantity is produced by a fluctuating force per unit volume. In the absence of temperature fluctuations,

Lilley's equation [10] is obtained by replacing f with the quadmpole source distribution f = _7.(v ® v) where v is

the velocity fluctuation relative to the mean flow and ® denotes the tensor product.

Since (2) is linear, the solution for an arbitrary source distribution can be obtained through superposition of
solutions to

L [Gw(xlxs)'e-i_tlj = D-tD [_25(x _ ws)e_i_t] ' (4)

where w is the frequency, xs is the source position, 5 is the Dirac delta function and G_ denotes a reduced Green's

function. It is common practice to include the convective derivative D/Dt in the inhomogeneous term of the reduced

Green's function equation because doing so simplifies the subsequent computation of the acoustic field when attention
is restricted to the first term in (3) - the so-called self-noise term. It should be noted however that use of (4) does not

limit the form of F since the reduced Green's function G;_ocorresponding to the right-hand side,

_2_(x - xs)e -i_t,
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isrelatedtoG_ by

where the subscript s denotes evaluation at the source position.

When the mean flow depends only on the radial coordinate in the y-z plane r -- _ + z 2, a formal solution for

G_ can be obtained by reducing (4) to a system of linear ordinary differential equations. Following Goldstein [6], the
reduced Green's function is written as

1 +oc /::G_(xlXs) : _ Z em(_-_) Gn(rlrs;_'k:l)e-ikx(z-Z_)dkl' (6)

where _ -- arctan(z/y) is the azimuthal angle in the y-z plane. The Fourier coefficients G,_ are determined by

r dr \e 2dr n/ + k_( q52-t_2)- _ Gn- ra 2 , (7)

where _b_ (1 + _M)/a, ko =- _/_o¢, r; =_ ka/ko, a - _/_ is the local sound speed normalized by its ambient value

and M - _2/g_ is the local Mach number based on the ambient speed of sound.

Equation (7) must be solved subject to the conditions that G,_ remains bounded at r = 0 and behaves like

an outgoing wave as r ---* c_. The solution satisfying these conditions can be expressed in terms of two linearly

independent homogeneous solutions to (7), say Wl and w2, as follows [11]

for ,- > (8)

where

- (rl ) -

is the Wronskian, a prime denotes differentiation with respect to r and the w 3 have been chosen such that

wl _ constant x r-½e ik° lv/YSy_-_2r.,as r ---+oc, (9)

w2 _ constant x r Inl, as r ---+0. (10)

Only the r > rs form of Gn is given since primary interest is in the behavior of the solution in the far field.

The homogeneous solutions w 3 must be determined numerically in general. However, when the frequency is
sufficiently large, the equations become simple enough to be solved analytically. The high-frequency limit has the

additional benefit of 'cutting-off' any spatially growing instability waves which appear as discrete eigensolutions to
(7).

3 High-frequency, far-field approximation

The high-frequency limit describes the situation wherein the wavelength of the acoustic field, 1/ko = _/_J, is

much shorter than the characteristic length scale of the mean flow, viz. the jet radius

1 f0C_u(r)" 1 f0_dr,= - (11)

where Mj is a jet Mach number which is taken here to be the ratio of the axial velocity to the local speed of sound at

the jet centerline. Since the mean flow is parallel in the present analysis, the streamwise wavelength 1/kl scales like

1/ko and the high-frequency limit can therefore be expressed mathematically as

w ka

co_ k0 -'-+ co. with = t_ = O(1),

where it has been assumed, for simplicity, that the mean-flow quantities M, a and rj are all order one.
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Inmanytechnologicalapplications,one is only interested in the behavior of the acoustic field at remote distances

(in terms of the characteristic mean-flow length scale) from the aerodynamic noise sources. The so-called far-field

behavior is most conveniently expressed by introducing polar coordinates in the x-r plane,

0= rcco ( )
with the origin at the source point, and considering the limit as R _ ec.

Using (9), it can be shown that the integrand in (6) has a point of stationary phase at

= -cos0 + O(R-a),

as R _ oo. The integral over kl can then be approximated using the method of stationary phase [11] with the result
that

/jj Gn (rlrs ; w, kl )e-ik, ( )dkl

~ { 2_k0sin:0'_t wl(rl - cos0)w_(rsI- cos0) ikoRCOS20
\ iR ] r_ ----_os0) e , (12)

as ko, R _ oc.

The asymptotic approximation for G_ is completed by determining the high-frequency behavior of wl and w2.

To facilitate this, new dependent variables vl and v2 are introduced as follows

wj(r I-eosO)= _v3(r ) for j=1,2,

where now _ = (1 - McosO)/a. Substituting into (7), (9) and (10) shows that the v 3 must satisfy

2 2
v" + (koQ n + 8)v = 0 (13)

subject to

where

V 1 ----*constant x e xk°rsinO, as r ---*_, (14)

v2 --* constant x r½ +1_1, as r --* O, (15)

rQ_(r) - v/r2q 2 - (n/ko) 2, q(r) =- v/q5 2 - cos 2 0, (16)

s(_)- r k _ j + _ ' (17)

and the square roots in (16) are chosen such that they have positive imaginary parts for negative arguments. Introducing
vl and v2 into (12) and the result into (6) leads to

as ko, R _ oc, where

G_(xlxA_(xlxA
as(1-MscosO) '

(18)

eikoR

Q_o(ZlXs) -- 4rrR' (19)

corresponds to the reduced free-space Green's function when both the source and far-field observation points lie in the

same azimuthal plane,

7_w(XlXs)-- +_Z \(2k°sinO) ½ vl(r)v2(rs)einA_-ik°Rsin2Oirrr----_s-V ' (20)
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A_ -- _ -- _s and V =--vlv_ - v_v2 is the Wronskian which, in view of (13), is independent of r.

Before the high-frequency asymptotic solutions to (13) can be constructed, the scaling of the azimuthal wavenum-

bern with k0 must be considered. The summation in (20) suggests the need for uniformly valid approximations to vl
and v2 for all n. However, the dominant behavior of Gw in the limit as/co --_ oc is determined by a relatively small

number of azimuthal modes centered about a critical value of n and it suffices to construct asymptotic solutions to (13)

based on the ko scaling of that critical value.

When the distance between the source and the jet axis is sufficiently large (i.e. several factors of l/k0), the result-

ing acoustic field is asymmetric and the critical azimuthal wavenumber behaves like the streamwise wavenumber and

scales with k0. This scaling was considered by Goldstein [6] and will be referred to as the asymmetric, high-frequency

approximation. As the source moves closer to the jet axis the acoustic field becomes increasingly axisymmetric and
eventually the critical value of n scales like 1/rj. The near-axis source problem was analyzed by Balsa [2, 5] and will

be referred to here as the quasi-symmetric, high-frequency approximation.

Solutions to (l 3) using the asymmetric, high-frequency scaling,

n=O(k0) as k0--,oc,

were constructed by Goldstein [6] however the bounded solution used in that analysis (equation (6.61) of reference

[6]) is in error. The correct asymptotic solutions for vl and v2 are given in Appendix A. Using those results in (20)
leads to

T¢w _,_=-o_Z ko rsQ_(rs) ] Ai[rM(rs)]einA_+ik°(¢_-Rsin2°)' (21)

as k0, R --_ cx_, where

T"
3 Qn(r)dr, 2- , = 0,

5

Ai denotes the Airy function and the cube root in the definition of tin is taken such that _n X 0 for r _ r6.
Solutions to (13) using the quasi-symmetric, high-frequency scaling,

n=O(1) as ko-_e%

are given in Appendix B. Substituting (59) into (20) yields

7q_----- O(3

i//_17rk CH(I>_ k c'_j (k.g _einAp--,koRsm:O
V I_ 0q n t, 0q) n_, u,_s] (22)

as k0, R _ oc, where

_(r) = q(r)dr = @(r) - _0(0),

H_1) and Jn denote the Hankel and Bessel functions of the first kind, respectively, and the quantity under the square

root in (22) has been simplified by making the approximation _s _ r_q_ which was also used in reference [5] and

becomes increasingly accurate as rs _ O.

One of the advantages of the quasi-symmetric approximation is that the sum over n in (22) can be evaluated in

closed form. Using Graf's addition theorem [12], one can write

+oc

Z H_)(k°_)J_(k°_s)ei_A_ = Ho_) ( k°v/_2 + _2 _ 2_cosA_),
rt_-- O_

which, when substituted into (22), leads to

7"_._ "_ e ik°(¢-Rsin2 0-5_ cos £x_), (23)

as k0, R _ oc, where H_ _ has been replaced by its large argument behavio_since _ _ oc in the limit R --_ cx_.
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Figure 1.

0o

_=M _-_- = a

1

Mean-flow profiles (25) and (28) with Mj = 0.9 and TR = 3.

4 Comparison of exact and asymptotic solutions

Comparisons of the high-frequency, far-field approximations to the exact solution for the reduced Green's function

are most easily carried out in terms of G_. It follows from (5) and (18) that

iG_(xlxs) iG.,(xlxs)_._(xlxs)

Gw(xlxs) "_ w(1 - MseosO) "_ was(1 - MscosO) 2 ' (24)

as k0, R _ cxz,where 7Z_: is given by (21) or (23) for the asymmetric or quasi-symmetric approximation, respectively.
The exact solution for G_ is obtained numerically using the adjoint Green's function scheme given by Tam and

Auriault [ 13]. The interested reader is referred to that reference for the details.

The mean-flow Mach number profile used in the comparisons is

_(r) M(r)

_(r) a(r)
-Mjsech2(2r), (25)

and it follows from (l 1) that the jet radius rj = 1/2. The profile is shown in figure 1 for a jet Mach number Mj = 0.9.

Two different profiles are considered for the sound speed ratio a. The first corresponds to an isothermal jet which,

in view of the ideal-gas result

_"= _, (26)

has a constant speed of sound and therefore

a(r) = 1, (27)

where '7 is the ratio of specific heats, N is the gas constant and T is the mean static temperature. The second profile is

obtained from (26) and the Crocco-Busemann law and is given by

a2(r) = 1 + 1 + M_ _jj_ lvi It) - M2(r), (28)

where

TR = (1 + __IMj2) Tjy_ _

NASA/CR----2003-212089 7
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Turning point functions for an isothermal jet at various 0.

is the ratio of the stagnation temperature at the jet centerline to the ambient temperature. In the results presented here,
-7 = 1.4, _ = 287.06J/kgK and T_ = 290K. The a profile obtained from (25) and (28) with Mj = 0.9 and TR = 3

is shown in figure 1.

In deriving the asymmetric, high-frequency approximation (21), it was assumed (see Appendix A) that, for each
order-k0 value of n, (13) has one simple turning point r6 corresponding to a zero of Q2. Figure 2(a) is a. plot of r2q 2

for various polar angles/9 using (25) and (27) with Mj -- 0.9. Similar curves are obtained for hot jets with a given by
(28). Since the zeroes of Q2 are determined by solutions to

r2q 2 = (rt/k0) 2, (29)

figure 2(a) shows that the tuming-point assumption made in Appendix A holds for 0 < O _< 150 provided n/ko _ O.
For 0 > 150, multiple turning points are possible for certain values of n/ko. This behavior can be accounted for by

making appropriate modifications to the analysis in Appendix A, however these upstream angles are usually of no

practical interest and will not be considered here.
The curves in figure 2(a) show that the turning-point assumption of Appendix A is violated when n = 0 and

0 _> 58 in which case (29) has no real solution for r5 (see also figure 2b). Since the azimuthal wavenumber scaling

n = O(ko) clearly does not apply to the n = 0 term in (20), it would seem that this term must be evaluated using
the n = O(1) scaling of the quasi-symmetric approximation. However, if the convention that r5 = 0 when Q2,_has

no zeroes is adopted (as is done for r,, in Appendix B), it can be shown that (54) and (59) agree at n = 0 by simply

replacing the functions Ai, H(01) and Jo appearing in these expressions by their large argument behaviors. The same
proof also applies when Q2 has a zero provided the simplifying assumption r5 - rs >> ko 2/3 of Appendix B is made.

It therefore follows that the results of Appendix A remain valid even when n = 0.
The quasi-symmetric analysis of Appendix B is based on the assumption that (56) has at most one simple turning

point r_, corresponding to a zero of q2. Figure 2(b) is a plot of q2 for various angles 8 and the same isothermal mean-

flow profiles used in part (a). Again, similar curves were found for heated jets. It is clear from the figure that q2 has

one simple zero for 0 < O < 58 and none for 8 _ 58. At O _ 58, q2 has a higher-order zero at r = 0 which was not

accounted for in the analysis of Appendix B. The effect of this omission is highly localized and, apart from a small

neighborhood of 0 ,-_ 58, the turning point assumption of Appendix B is satisfied for the entire range of polar angles
considered here.

When comparing the exact and asymptotic solutions for G_, it is convenient to work in terms of the ratio G_/Q_

since this quantity becomes independent of the radial parameter R in the high-frequency, far-field limit. Figures 3-6

NASA/CR--2003-212089 8
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Figure 3. IG,_/6_ I x 104 for an isothermal jet with rs = 0.75 and St = 2. Solid lines, asymmetric approximation; dashed lines,

quasi-symmetric approximation; symbols, exact solution. (a) A_ = 0; (b) A_ = 30, dot-dashed line, composite ray solution; (c)
A_ = 90; (d) A_fl = 120.

show [G;_/G_] as a function of the polar angle O for various values of the Strouhal number,

w 2rj ko rd
St --

27r 5_a(O)Mj -- 7r a(O)Mj"

Parts (a-d) of each figure correspond to azimuthal-angle parameters A_ of 0, 30, 90 and 120. The asymmetric and

quasi-symmetric approximations arc indicated by the solid and dashed lines, respectively, and the symbols correspond

to the exact solution. The asymmetric approximation given by (21) was evaluated by summing the convergent series

in the azimuthal wavenumber n from -N to +N where N varied from 11 at St = 2 down to 4 at St = 0.25. The

results in figures 3--6 were computed for a point source at rs = 0.75 using a mean flow given by (25) and (27) with

Mj = 0.9.

Figure 3 shows excellent agreement between the asymmetric approximation and the exact result for all A_. The

level of agreement tends to diminish as St decreases but remains fairly good down to St = 0.5, cf. figure 5. At

the smallest Strouhal number (cf. figure 6), the asymmetric approximation, although no longer in good quantitative

NASA/CR--2003-212089 9
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agreement, does still correctly predict the trends of the exact solution - a peak near 0 = 60 with a steep drop off for

0 < 60 and a more gradual decline for 0 > 60.

Figures 3-6 show that, at 0 = 90, both the asymmetric and quasi-symmetric approximations remain in near perfect

agreement with the exact solution for all St. At 0 = 90, the mean-flow refraction effects for an isothermal jet vanish as

can be readily verified from the expression for _. It is interesting to note that this exceptional case is captured equally

well by both high-frequency approximations despite their differences in assumed azimuthal wavenumber scaling.

Considering the quasi-symmetric approximation, "the most striking feature revealed by figures 3-6 is the failure

to predict the oscillatory behavior of the exact solution in the range 30 < 0 < 60. This is due in large part to the

assumption introduced in reference [2] (and used in Appendix B) that the no-turning-point form of G_ adequately

approximates the Green's function when rs > r_ > 0. It can be seen from figure 2(b) that (56) has a turning point

that lies between the source position rs = 0.75 and the jet axis when 30 < 0 < 60. By neglecting the turning point,

the quasi-symmetric approximation does not allow for ray-interference effects which are primarily responsible for the

oscillations in the exact solution. The issue of interference is discussed in more detail in section 6 where the ray-theory

approximation of the Green's function is considered.

The figures also show that, in the range 0 < 30, the quasi-symmetric approximation tends to over predict [G_/G_[

NASA/CR--2003-212089 10
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when Aqo < 90 and under predicts this quantity when A_ > 90. For 0 > 60, the agreement between the quasi-

symmetric approximation and the exact solution actually improves as St decreases. This surprising behavior, which

was also noted by Balsa [2], is probably due to the increase in acoustic length scale with decreasing Strouhal number

which, for a fixed source position, makes the solution appear more axisymmetric. It should also be noted that the

ray-interference effects near 0 = 60 diminish as St decreases and this too improves the agreement with the exact
solution.

When modelling the acoustic-source distribution F for use in a noise prediction scheme, it is usual to assume

that the sources are sufficiently compact so that only the absolute value of G_ appears in the resulting formulae.

Nevertheless, it may be of some interest to see how well the high-frequency, far-field approximations predict the phase

of G_/G_. This quantity is plotted in figure 7 at St = 1 for various A_ and the same mean flow used for figures 3-

6. The curves show that overall the asymmetric approximation is better than the quasi-symmetric approximation at
predicting the exact result. The quasi-symmetric approximation is at its best when A_ < 90 and 0 > 45.

In the case of round jets, it is often also assumed that the strength and orientation of the sound sources that make up

/" are independent of the azimuthal angle. The sound field emitted by such a source distribution is then axisymmetric

NASA/CR--2003-212089 11
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and, at fixed axial and radial positions, can be characterized by a ring-source directivity factor which is defined here as

7) _ G,_ d_s, _ w2a2(1 _ MscosO)4 _ [T_._12d_s,

as ko, R _ oo. It follows from (21) that

+Tr +o_

~ ko _ _';'r_,_(,-_< (30)_0_(_) ' ' "'
IT

n_--O0

for the asymmetric approximation, and from (23) that

+_ ]_ "_ I0(2koIm_s) _ (3)
27re-2kolm_ 27re-2kolm(_ 1

for the quasi-symmetric approximation, as k0, R ---* oo, where I0 denotes the modified Bessel function of the first kind

and zero-th order and a subscript a indicates evaluation at the turning point r = r_. The approximation introduced

NASA/CR--2003-212089 12



l (a)

o

--71"

i i

7r . I/I/I IIII

o

/llf t/I /_

i

0 30 60 90 120 150 0

(b)

I . I I r _

/
/

/ //

I /

_ ////

!

III

_ II

0 /I

0 0 ii

0 /I

30 60 90 120 150
0

Figure 7. arg(G_/G_) for an isothermaljet with r_ = 0.75 and St = 1. Solid lines, asymmetricapproximation;dashed lines,
quasi-symmetricapproximation;symbols,exactsolution.(a) A_ = 0; (b) A_ = 30; (c) A_ = 90; (d) A_ = 120.

on the right-hand side of (31) corresponds to a leading-order composite expansion for the ring-source directivity and

puts the quasi-symmetric approximation in agreement with the relation used in the so-called MGB computer code of
reference [5].

The ring-source directivity factor is plotted as a function of polar angle 0 in figures 8-11 for Strouhal numbers

St = 2, 1, 0.5 and 0.25. Parts (a) and (b) of each figure correspond to the mean flow given by (25) and (27) with

Mj = 0.9 but differing source positions, rs = 0.5 and 0.75, respectively. Similarly, parts (c) and (d) show results at

r8 = 0.5 and 0.75, respectively, for the heated jet'given by (25) and (28) with Mj = 0.9 and TR = 3.

The figures show that the agreement between the asymmetric approximation and the exact result is excellent at

St = 2 and remains good down to St = 0.5. Even at St = 0.25, the approximation does a fair job at predicting the

exact result for 0 > 60 which corresponds to the range where the jet noise is dominated by fine-scale turbulence in

many technological applications. At the two largest Strouhal numbers, the level of agreement shows no sensitivity to

changes in the source radius or mean-flow temperature profile. A sensitivity to the source radius becomes apparent at

the two lowest St but only in the range 0 < 60. This may indicate an increased importance of the n = 0 term in (30)

as the source moves toward the jet center line.

NASA/CRB2003-212089 13
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The agreement between the quasi-symmetric approximation and the exact solution is best when 0 > 60 regardless

of St. In this range of 0, the quasi-symmetric and asymmetric ring-source approximations are nearly coincident - a

result that is not simply fortuitous. By approximating the sum in (30) with a Riemann integral [11], replacing Ai by

its large (negative) argument behavior and determining the large- k0 behavior of the resulting integral, it can be shown

that the right-hand side of (30) becomes 2rr as k0 ---+ c_ when rs - r6 >> ko 2/_ which is in exact agreement with the

quasi-symmetric approximation (31).

For 0 < 60, the quasi-symmetric approximation is never very good, primarily because of a consistent over

prediction of the 0 at which D is a maximum. This may indicate the increased importance of asymmetric effects when

the Green's function problem possesses a turning point. A conjecture that is supported by the fact that the agreement

in the downstream range 0 < 90 appears to be worse for the heated jet which, it turns out, has a broader range of

0 where a turning point arises in the Green's function problem. The improvement in overall agreement between the

quasi-symmetric approximation and the exact result observed with decreasing St in the point-source comparison is not

apparent in the ring-source comparison which suggests that the point-source observation may be strongly dependent

on the azimuthal angle parameter Aqo.
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5 Connection to Ray theory

The comparisons of the previous section show that, for parallel round jets, the asymmetric, high-frequency ap-

proximation is in good agreement with the exact Lilley's equation Green's function over a wide range of Strouhal

numbers. One would like to demonstrate a similar level of agreement between the exact and high-frequency asymp-

totic solutions for more general mean flows. Unfortunately, when the mean flow is neither axisymmetric nor parallel,

the problem governing the acoustic propagation can no longer be reduced to a system of linear ordinary differential
equations by Fourier analysis and an asymptotic analysis of the type described in section 3 is no longer possible. Nev-

ertheless, analytic progress can still be made for more general mean flows by considering the high-frequency limit.

The corresponding asymptotic solutions are then described in terms of the ray theory of acoustics [3, 4].

The ray-theory solution of (4) for the uni-directional trarlsversely sheared mean flow (1) is summarized in Ap-

pendix C. It is implicitly assumed, when constructing this solution, that the length scale of the acoustic field is order

1/ko in all directions. Consequently, the ray-theory approximation (77) is expected to be closely related to the asym-

metric approximation (21).

In order to demonstrate the connection between (21) and (77), the latter result must be specialized to an axisym-

metric mean flow as done by Goldstein [3]. Introducing the mean-flow profiles M(r) and a(r) into (78) shows that

NASA/CR--2003-212089 15
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rs (_) is constant along each ray. If (70) and (71) are then used to eliminate Ooc in favor of 0 in the remaining equations,

they become, to the required order of accuracy,

which must be solved subject to

÷ = -4-[Q(rl_.) + Rsi.o

s± = .._ + q2(rl_,.) - sin2O, J
(32)

r = rs, _9 = _s, S± = 0,

at _- = 0, where u. =_ rsqs sin(A - Ts) = rs (_),

rQ(rtu. ) = v/req2 _ _2, (33)

a dot denotes differentiation with respect to the ray parameter T and use has been made of (75) in arriving at the

definition of u.. The order 1/R term in the ÷ equation must be retained because it leads to an order-one contribution

in the far-field behavior of S±. The branch cuts of Q are specified below. For the present, attention will be restricted
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to the case where u, is purely real which, it turns out, implies Q2/> 0 along the rays. A necessary (but not sufficient)

condition for u, to be purely real is that the source be located such that q2 /> 0.

The choice of sign in the ÷ equation of (32) is a function of the initial condition,

÷=qscos(A-_s) at v=O,

as well as the number of zeroes of Q encountered along a ray trajectory r(r). It is assumed here (in agreement with

the turning-point assumptions made in Appendices A and B) that rQ is a monotonically increasing function of r with

at most one simple zero. rQ will then be non-zero and r will increase monotonically with _- for rays initially directed

away from the jet centerline, i.e. -rr/2 < A - _s < 7r/2. These solutions, for which the positive sign in (32) applies,

will be referred to as direct rays. For rays initially directed toward the jet centerline, i.e. rr/2 < A - qo_ < 37r/2, but

which eventually reach the far field, r initially decreases with increasing r until r = r6 where Q vanishes. Once this

occurs, r begins to increase with r and the sign in (32) must change from negative to positive. These solutions will be

referred to as indirect rays.
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In view of the preceding discussion, the solutions to (32) can be written as

, _ rZQ(riu.) ;

S_, = u, Ag_ + ff(riu, ) q= _(rslu,) - Rsin2 O - R_ +R,

where

(34)

(35)

/o
¢(rJu.) _ Q(rlu.)dr, Q2(ralu. ) = 0, (36)

5

and the upper (lower) signs in (34) and (35) apply to the direct (indirect) rays. Notice that ra cancels out of both the

A_ and S± solutions when the upper set of signs are chosen. Substituting these results into (77) yields

--!

7-4_ .._ +rsQ(rs lu, elk° [_'"A_+¢(fl_.)_:¢(,. I_.)-nsi'3 0], (37)

as k0, R ---* c_, where du, = +rsQ(rs lu,)dA follows from the definition of u,.

The connection between (37) and (21) is established by showing that the former result is nothing more than the

leading-order, large-k0 approximation of the latter. This is done by using the Poisson sum formula [ 14] to rewrite (21)
as

7"4_ .-_ 2k0 rsQ(rs lu) Ai[rl(rs lu)]e ik°i_m'+¢('l')-ns'n: °]du, (38)
rtq_-

as ko; R _ oo, where o_m _ Ag_ + 27rrn,

- - ,

and Q(rlu) and _(rlu ) are given by (33) and (36) with u. replaced by u.

Since the argument of the square root in (33) can now be negative (or even complex when the u integration of
(38) is performed in the complex plane), the branch cuts of Q must be made explicit. In the present context, it is clear

that Q is simply a generalization of the function Q_ defined by (16) where the square root was chosen so that it has a

positive imaginary part for negative (real) arguments. The appropriate generalization of this choice to arbitrary values
of u is

rQ(r it/) = v/ir2q 2 - u2i ei½[arg(rq--u)+arg(rq+u)] t .
(39)/with i-- 77r < arg(rq + u) < _Tr

The branch cuts of Q(rs lu) in the complex u plane are shown in figure 12. It is worth noting here that

lim _ --[ko(P(rs)] ½ ,

where 9)(r) -- 1/r(r2q2) ', which shows that the integrand in (38) remains bounded at the branch points of Q(rs lu).

The integral in (38) is evaluated asymptotically in the limit k0 -* oc using the method of steepest descents [l l]
which requires making the ko dependence of the integrand explicit. The Airy function Ai can be replaced with its

large argument behavior along the entire real u axis except in the small order ko _/3 neighborhoods of the branch

points zhrsq_. Thus

{7_(j ) - i7"45+) + 7_(J ) for q_ > 0,7"_w'_ T_(w-) for qs2<0,
(40)

as k0, R _ c_, where

+_ fc [ ik0 .] ½ eiko[a_u+¢(,.lu)_:_(r_lu)_Rsin20]du ' (41)
-- (_) [ 27rr_Q(rslu) J

rgt = -- O0
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Figure 12. Branchcutsof Q(rsl v) inthe complex v plane. (a) q2 > O,C (+) lies between ±rsqs where it overlaps C('-); (b) qs2 < O.

and T¢(_×) is given by the right-hand side of (38) but with the integration done over the contour C (×). The contours
C (-), C (+) and C <×) are shown in figure 12.

For the present, it will be supposed that the dominant behavior of (38) is not determined by _(_×). This exceptional

case is considered in the following section. Applying the method of steepest descents to (41) yields

O_ ] -½ ei(_+¼rr)eikO[am.u.+<(,.iv.):F<(rsiv.)_Rsin2 O] (42)__ r,Q(r, lv.) _ j

as k0 _ _, where

, '] ,--_Tr</3----arg ]0%b/Ov.)_ <_ _re,

m. and v. are determined by the saddle-point condition

(/;/)ore-.. = A W + 27rm. = ¢(v.) - :F , (43)
, , r_Q(TI,.,.)

and the. subscript is reused in order to emphasize the connection with the ray-theory solution.

It is immediately evident that the ray solution (34) and the saddle-point condition (43) are merely different versions

of the same relation. The latter result determines v, as a, possibly multi-valued, function of/k W. Multiple solutions

for v, at a fixed A Ware accounted for by the summation in (42) and indicate different rays reaching the same far-field

observation point. The ray solution (34) determines /kW as a single-valued function of v, so no special treatment is

needed for rays that reach the same far-field position. The 2rrm, factor in (43) allows for the possibility that _b falls

outside the range [-rr, +Tr].
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Equations (34) and (43) also imply that O_/Ou, = O_/Ou,. If u, is purely real as assumed when deriving (37),

_p is also purely real and the amplitude factor in (42) can be rewritten as

0¢ -½ ei(f_+ ¼7r) rsQ(rs[tj,)_u.r_Q(r_lu.) 0_--_ =

It then follows that _(_-) corresponds to the direct-ray solution given by the upper signs in (37) and the indirect-ray

solution will correspond to -i_(_ +) provided

e-i½7r.
-_s ?(_sl_.) b-Z_*

The above condition removes the ambiguity in the phase of (37) when the lower signs are taken. The -7r/2 phase shift

is a consequence of the indirect ray having passed through the caustic at r = r_ before reaching the far field. The shift

is left undetermined in the ray-theory solution described in Appendix C and, in general, must be obtained through a

local analysis near the caustic [15].

The above results clearly establish the connection between the asymmetric, high-frequency solution (21) and

the ray-theory solution (37) when u, is purely real. Since the location in the complex u plane of the saddle point

determined by (43) is not restricted (other than as required by the method of steepest descents), (40) and (42) show

how (37) can be generalized to complex rays. The technique of applying the method of steepest descents to a classical

high-frequency solution in order to guide the generalization of a ray-theory result to complex rays is well known
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[16, 17]. Less well known are the methods for developing a complex ray theory when no classical high-frequency

solution is available as, for example, in the case of the uni-directional, transversely sheared, mean flow considered in
Appendix C. A survey of available approaches for doing just this is given by Chapman et al. [18].

6 Evaluation of ray-theory solution

In arriving at the large-k0 approximation of 7_ :F) given by (42), it was implicitly assumed that the integrand in

(41) can be analytically continued into the complex u plane so as to allow integration along a contour that is (at least

locally) coincident with the steepest descent paths intersecting at u,. When u, is complex, care must be taken during
the evaluation of (42) because r_ is then also complex and the integration of Q in the definition of ff must be done

along a contour in the complex r plane. For each point along that contour, Q has branch cuts in the u plane determined

by (39). The r-integration contour must therefore be chosen such that these branch cuts leave a region of analyticity

in the complex u plane that contains both u, and the real axis. Figure 13 shows example contours in the complex r

plane used for the evaluation of ((rlu,) + ((rslv.) and ((rlu.) - _(rslu,) as well as the corresponding regions of
analyticity in the complex v plane.

Figure 14 contains a plot of the saddle point v, determined from (43) as a function of polar angle 0 for A_ = 60,

rs = 0.75 and the mean flow given by (25) and (27) with Mj = 0.9. The direct (indirect) ray solutions, which

correspond to the upper (lower) signs in (43), are indicated by a A ([]). The real and imaginary parts of u, are denoted

by the open and closed symbols, respectively.

The figure shows that the complex solutions for u, are confined to the range 0 < 39.5. These solutions describe the

so-called zone of silence where a significant reduction in the sound radiated to the far field results from an exponential

decay in kw. Notice that the boundary of the zone of silence does not coincide with the value 0 _ 30.67 where

q_ = 0 (cf. figure 2b). Just outside the zone of silence is a range of 0 where multiple (real) solutions for v, are found.

These multiple solutions occur when different rays reach the same far-field observation point and give rise to ray-

interference effects which can be either constructive or destructive depending on the relative phases of the solutions.

The ray-interference region extends to 0 _ 58 beyond which q2 has no turning points (cf. figure 2b) and only direct-ray
solutions are found.

Also shown in figure 14 is the location of the branch point rsqs along the real u axis. The real part of u, intersects
this curve at 0 ._ 37.5 with the result that the solution type changes from a complex direct ray (0 < 37.5) to a complex

indirect ray (0 > 37.5). The change in solution type is a consequence of the phase shift in Q(r_ ]u,) that occurs as
u, crosses the branch cut issuing from rsq_ (cf. figure 12a). The asymptotic approximation (42) remains valid for u.

arbitrarily close to the branch cut (but outside the order ko _/3 neighborhood of rsqs) because the contribution to the

large-k0 behavior of (41) obtained by deforming the v-integration contour around the branch point is of higher order.

The purely real solutions for u, are also affected by an encounter with the r_qs curve with the result that the

indirect-ray solution (0 < 42) changes to a direct-ray solution (0 > 42). The change in solution type occurs as r6 and r_

become coincident and corresponds to the change that occurs in (34) as A- _ passes through rr/2. The approximation
of 7_,., given by (42) becomes invalid near this point because 1.,, moves into the order/c o _/3 neighborhood of a Q (r_ [p, )
branch point. The dominant behavior of (38) is then determined by _×) rather than _-) or _+). The appropriate

asymptotic behavior of _ is found by applying the method of steepest descents to (38), where the integration is done
over the contour C (×), with the result that

7-_x),. _ [ rsQ(rslD) O(b ]-½hi[rl(rslD)]e,heiko[A_+¢(rlS)_Rsin:O]
J

as k0 _ _, where

-½7r </3 -- -arg [(i0_/0_)½] _< ½7r,

and _ is determined by the saddle-point condition

_ Ddr= - ,

(44)

(45)

(46)

Figure 14 reveals another change in solution type which also leads to a local breakdown in the large-/Co approx-

imation given by (42). This occurs at the zone of silence boundary 0 _ 39.5 where the complex indirect-ray saddle
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point changes into a pair of real indirect-ray solutions. At the point of bifurcation, u, becomes a saddle point of

higher-order for which

0_
-- O, (47)

Or,

with the consequence that the right-hand side of (42) becomes unbounded. Equation (47) impfies a zero in the Jacobian

determinant J introduced in Appendix C and therefore the appearance of a caustic [3], i.e. an envelope of real ray

trajectories. The breakdown is restricted to indirect-ray solutions because they are the only ones that encounter a

caustic before reaching the far field.

An expression for O_b/Ou. can be derived by using (39) and the defining equation for re to show that

a,. ,'=Q_I_'.) r2Q(,'l_'.) o,- L,'_ '
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oqr_

Ou, -- 2u, r_(rd),

where (P(r) -- 1/r(req2) '. Using these results when differentiating (43) with respect to u. leads to

0_..) OO rs
1 + 2u2,r_P'(r)d r -t- 2u2_P(%) (48)

,-2Q(,-I-.) ,-_Q(r_l..)'

where the singularity at r = r6 is integrable.

A large-k0 approximation of 7"_ +) can be constructed when the saddle point u. approaches a zero of O_b/Ou. by

using the procedure outlined in appendix G of reference [19]. The integrand is expanded about the midpoint _ rather

than the saddle point u. when applying the method of steepest descents where _ is determined by

Oev
( )=0, at u=P.

Notice that, in view of (48), _ is independent of A_. The resulting asymptotic approximation is

7¢(,+) .._ [,r_Q(r_lp) ] ½ [__ r_g_ffu_ji2_ko02¢ ] -½ Ai(gl)ei_eiko[A_oo+¢(rlo)+¢(rolv)_Rsin2 O] (49)

as ko --* oc, where

1 [ ]-_Tr </3---- -arg (02_b/Op2) _ _< ½rr,
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1,,_- -k0[O(D) - _,_] 0p 2 j ei'.

and O(p) is given by (43) with v, replaced by P.

Figure 15 is a plot of IG_/G_] as a function of polar angle 9 for Strouhal number St = 2 and A_ = 60. The solid

line corresponds to the asymmetric high-frequency approximation (21). The dotted line corresponds to the ray-theory
solution given by (40) and (43). Results based on the near-branch-point solution (44) and the near-caustic solution

(49) are indicated by the dot-dashed and dot-dot-dot-dashed lines, respectively. The curves were computed using the

same mean flow and point source location as figure 14.

Comparing the dotted and solid curves shows that the ray solution is in good agreement with the asymmetric

approximation over most of the 0 range including 0 _< 30 which is well inside the zone of silence where the rays are

complex. The discrepancy near 0 = 58 is most likely due to the failure of the ray-theory solution to correctly describe

the disappearance of the indirect-ray contribution (cf. figure 14). The ray-theory result could probably be improved

by constructing a local solution that accounts for the higher-order zero in Q that emerges for the indirect-ray solution

near 0 = 58. A similar explanation likely applies for the discrepancy near 0 = 150 since an additional indirect-ray

solution (with m. = -1) appears in the range 0 _> 150.

Figure 15 also shows that the ray solution breaks down at the zone of silence boundary 9 _ 39.5 as expected.

It is interesting to note that (42) remains bounded (although not in particularly good agreement with the asymmetric

approximation) at 0 _ 42 where u, equals the branch point value r_qs because, as can be shown from (48),

lim r_Q(rslv,) O_b 2 2
2 _ 2 _ = +2rsqs_(rs)'

11. _r s qs

where again the upper (lower) sign corresponds to the direct (indirect) ray solution.

Comparing the dot-dashed, dot-dot-dot-dashed and solid curves shows that the local solutions (44) and (49) bring

the ray-theory result into closer agreement with the asymmetric approximation and hence the exact solution in their
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respectiveregionsofapplicability.Inthe range 35 < 0 < 50, the near-caustic solution (dot-dot-dot-dashed line) yields

better agreement with the asymmetric approximation than does the near-branch-point solution. One might then expect

that a composite solution formed from (40) and (43) together with the near-caustic solution (49) should produce good

agreement with the asymmetric approximation over the ranges of 0 and A_ of interest. However, as A_ decreases,

the near-branch-point solution becomes the better approximation in the vicinity of the zone of silence boundary and a

different approach to constructing a composite ray-theory solution will be taken here.

Figure 16(a) contains a plot of 0 as a function of Aqo where 0 is defined as the value of the polar angle 0 at which

the indirect-ray saddle point satisfies both (43) and (47), i.e. the value at which u, = D. The 0 curve therefore marks

the zone of silence boundary in 0-A_ space. As A_ _ 0, 0 approaches 30.67 which is the value of 0 at which q2

vanishes. As Aqo increases, 0 also increases indicating that the zone of silence grows as the azimuthal angle between

the far-field observation point and the source point increases.

Figure 16(b) shows plots of the indirect-ray saddle point u, (which is equivalent to _ here) and the location of the

branch point rsqs along the real u axis as functions of A_p at the zone of silence boundary. It is clear from the figure

that P eventually moves into the order ko 2/3 neighborhood of a Q(rslu,) branch point as A_ becomes sufficiently
small. When this occurs, the near-caustic approximation (49) must be reworked in order to account for the presence of

both a branch point and a higher-order saddle point. Rather than deriving yet another local approximation for _, the
approach taken here is to modify the near-branch-point approximation (44) by shifting the solution to (45) as follows

= u - Z3lo=_ +signO)) r_qs[o=#.

Thus 1) coincides with the Q(rs lu,) branch point when 0 = 0. If the integrand in (38) is expanded about I) rather than

t_when the method of steepest descents is applied the following expression is obtained

7"¢._×) _ [right-hand side of (44)] × exp i _>_- j,
(5O)

as ko _ e¢, where _ is given by (46) and all occurrences of _ must be replaced by/_ in the above result.

The dot-dashed line in part (b) of figures 3-6 corresponds to a composite ray solution for IG;_/G_ Iat A_ = 30

formed from outer and inner expansions given by (40) and (50), respectively. A multiplicative composite form was

used when r/(rs It)) > 0 and an additive form otherwise [20]. The figures show that the composite ray solution does an

adequate job of extending (40) through both the branch point and caustic at all St. Apart from the discrepancies near

0 = 58 and 150 discussed above, the composite solution is in fairly good agreement with the asymmetric approxima-

tion (and hence the exact result) down to St = 0.5. The disagreement near 0 = 58 and 150 tends to spread over a

wider 0 range as St decreases which supports the conjecture that a local large- k0 solution could improve the ray-theory

result in these regions. It is interesting to note, however, that the composite ray solution gives a better prediction of
the exact result near 0 ----58 as 5't decreases which may indicate that the asymmetric approximation over emphasizes
the ray interference effects when St is small. At St = 0.25, the composite ray solution continues to accurately predict

the asymmetric approximation inside the zone of silence, but, outside the zone of silence, it predicts a more gradual

decline in IG_,/_7.,I with 0 which puts the ray-theory result in better agreement with the exact solution.

A determination of the level of agreement between the exact and high-frequency asymptotic Lilley's equation

Green's function for more general mean flows would require using the methods of reference [ 18] to extend the analysis

of Appendix C to complex rays and then supplementing those results with local solutions of the sort described in

reference [15] near any caustics or branch points. Such a program will not be undertaken here. Instead, it may be
inferred from the success of the composite ray solution at predicting the asymmetric approximation that the level of

agreement between the exact and high-frequency asymptotic solutions for more general mean flows would be similar
to that shown in figures 3-11 between the exact solution and the asymmetric high-frequency approximation.

7 Conclusions

It has been shown that, for parallel round jets, the asymmetric high-frequency approximation, which applies to

sources away from the jet axis, provides the best overall prediction of the exact Lilley's equation Green's function and

remains accurate for Strouhal numbers as small as 1/2. The quasi-symmetric high-frequency approximation, which
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is arrivedatbymakinganear-axissourceassumption,wasfoundto be most successful when applied to the ring-

source directivity and gives a good approximation of the exact ring-source result at all Strouhal numbers considered

provided the polar angle from the downstream axis is sufficiently large. In this range of angles, an equivalence of the

quasi-symmetric and asymmetric ring-source approximations was demonstrated.

The ray-theory solution was shown to be closely connected to the asymmetric high-frequency approximation and

this close association was used to guide a generalization of the ray-theory result to complex rays. When combined

with appropriate local solutions near the caustic and branch point, the ray-theory solution was found to be in good

agreement with the asymmetric approximation and hence the exact result for the Lilley's equation Green's function.

This finding was used to infer the potential for success of the high-frequency asymptotic Green's function for more

general (i.e. non-axisymmetric and/or non-parallel) mean flows.

The numerical results presented here apply to stationary sources embedded in a subsonic parallel round jet and are

restricted to flow situations where Lilley's equation contains at most one simple turning point. The generalization to

multiple and/or higher-order turning points would require modifying the WKB analysis given in Appendix A but this

is straight-forward and presents no great difficulty other than algebraic. The only impediment to applying the results

of the present analysis to supersonic flows is the possibility of encountering a zero in the denominator of (24) when

the source is located such that Ms > 1. This singularity can however be 'removed' by the techniques developed by

Ffowcs Williams [21]. Extension to sources convecting in the mean-flow direction can be made by simply introducing

an appropriate Galilean transform into (4).

It was noted that development of a uniformly valid high-frequency asymptotic Green's function for more general

mean flows would involve extending the ray-theory analysis of Appendix C to complex rays and then supplementing

those results with appropriate local solutions near any caustics or branch points. Although mathematically possible,

the result of such an approach may not lend itself well to implementation in a jet-noise prediction scheme because the
Green's function would then be given as a function of the initial ray direction rather than the orientation of the far-field

observation point. One possible resolution to this difficulty may be the direct numerical integration of the Eikonal

equation (61) and the amplitude equation (62).

REFERENCES

[1] C. K. W. TAM and N. N. PASTOUCHENKO 2002 American Institute of Aeronautics and Astronautics Journal 40,

456--464. Noise from fine-scale turbulence of nonaxisymmetric jets.

[2] T. E BALSA 1976 Journal of Fluid Mechanics 74, 193-208. The far field of high frequency convected singulari-

ties in sheared flows, with an application to jet-noise prediction.

[3] M. E. GOLDSTEIN 1982 Journal of Sound and Wbration 80, 499-522. High frequency sound emission from

moving point multipole sources embedded in arbitrary transversely shear mean flows.

[4] P. A. DURBIN 1983 Journal of Sound and Vibration 91,519-525. High frequency Green function for aerody-

namic noise in moving media, Part I: general theory.

[5] R. MANI, P. R. GLIEBE and T. F. BALSA 1978 FAA-RD-76-79-II. High velocity jet noise source location and
reduction.

[6] M. E. GOLDSTEIN 1976 Aeroacoustics. New York: McGraw-Hill.

[7] B. J. TESTER and C. L. MORFEY 1976 Journal of Sound and Vibration 46, 79-103. Developments in jet noise

modelling - Theoretical predictions and comparisons with measured data.

[8] J.N. SCOTT 1979 American Institute of Aeronautics and Astronautics Journal 17, 237-244. Propagation of sound

waves through a linear shear layer.

[9] M. E. GOLDSTEIN 1984 Annual Review of Fluid Mechanics 16, 263-285. Aeroacoustics of turbulent shear flows.

[10] M. E. GOLDSTEIN 2001 Journal of Fluid Mechanics 443, 231-236. An exact form of Lilley's equation with a

velocity quadrupole/temperature dipole source term.

[1 l] C. M. BENDER and S. A. ORSZAG 1978 Advance Mathematical Methods for Scientists and Engineers. New
York: McGraw-Hill.

[12] M. ABRAMOWITZ and I. A. STEGUN 1964 Handbook of Mathematical Functions. Washington, D.C.: National
Bureau of Standards.

NASA/CR--2003-212089 26



[13]C.K.W.TAMandL.AURIAULT1998Journal of Fluid Mechanics 370, 14%174. Mean flow refraction effects

on sound radiated from localized sources in a jet.

[14] G. E CARRIER, M. KROOK and C. E. PEARSON Functions of a Complex Variable. New York: Hod Books.

[ 15] R. N. B UCHAL and J. B. KELLER 1960 Communications on Pure andApplied Mathematics 13, 85-114. Boundary

layer problems in diffraction theory.

[16] B. D. SECKLER and J. B. KELLER 1959 Journal of the Acoustical Society of America 31, 192-205. Geometrical

theory of diffraction in inhomogeneous media.
[17] B. D. SECKLER and J. B. KELLER 1959 Journal of the Acoustical Society of America 31,206-216. Asymptotic

theory of diffraction in inhomogeneous media.

[18] S. J. CHAPMAN, J. M. H. LAW, J. R. OCKENDON and R. H. TEW 1999 Society for bldustrial and Applied

Mathematics Review 41, 417-509. On the theory of complex rays.

[19] D. S. JONES 1986 Acoustic and Electromagnetic Waves. Oxford: Clarendon Press.

[20] M. VAN DYKE 1975 Perturbation Methods in Fluid Mechanics. Stanford: Parabolic Press.

[21] J. E. FFOWCS WILLIAMS 1963 Philosophical transactions of the Royal Society of London. Series A 255,469-

503. The noise from turbulence convected at high speed.

A Asymmetric, high-frequency approximation

In this appendix, high-frequency asymptotic solutions for vl and v2 are constructed using the azimuthal wavenum-

ber scaling n = O(ko). The solution forms are strongly dependent on the turning points of (13) which are determined

by the zeroes of Q_. It follows from (16) that

/ -(n/k°T)2 as T 0,

( sin20 as r _ oo,

and therefore that (13) always has at least one turning point with the present scaling of n.

For isothermal, subsonic jets with monotonically decreasing Mach number profiles, it can be shown [6] that Q_

has at most one simple zero for 0 < 0 _< 90. The situation becomes complicated for more general jet profiles and for

polar angles in the range 90 < 0 < 180 due to the possibility of multiple and/or higher-order turning points which

then depend on the detailed shape of the mean-flow profiles. In order to keep the analysis as simple as possible, it will
be assumed here (as well as in Appendix B) that (13) has at most one simple turning point. The present analysis can,

if necessary, be extended to more complicated situations by making some straight-forward modifications to the results

given here.

Let r6 denote the single n-dependent turning point of (13) then the general solution

{ IQ,d-½ (A-e -ik°_n + B-elk°¢n), r_ -- r >> ko _-,
V '_ .4Ai(_,_) +/3Bi(f/,_), Ir - ral = O(ko_), (51)

IQ,_I-½ (A+e_k°¢_ + B+e-ik°¢_), r- r5 >> ko _ ,

as k0 ---+cx_,follows from WKB theory [11], where

-- x(r - r), d Q2 r=re) ½x- k0: 

fT ?_
_(r) __ Q_(r)dr, 2 = o,

6

and Ai and B i denote Airy functions in the notation of reference [ 12]. The constants A +, B +, ,4 and/_ are related by

2A- = _ A = A+ei¼ '_ + B+e-i_ ", (52)
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B- = (_ko ) ½B = A+e-i¼r_ + B+e '¼'_, (53)

which ensure matching between the limiting forms in (51).

Applying the outgoing-wave condition (14) to (51) shows that B + = 0. The corresponding solution can then be
written as

vl (,_) ~ Q?_½ (r)A_+e ik<°(T),

as k0 ---+oo, where attention is restricted to the v - ra >> ko 2/3 behavior since that is all that is required in (20).

The bounded condition (15) requires that B- = 0. In this case, only the value of the corresponding solution at

r = rs appears in (20). However, the location of the tuming point r6 relative to rs varies with both 0 and n and it is

therefore convenient to express the v2 solution in the uniformly valid composite form

[ ½

v2(rs) ~ A;
L

as ko --* oo, where

= - ,
with the cube root defined such that 7/,_ _ 0 for r <> r6.

Since the Wronskian V is independent of r, the r - r6 >> ko 2/3 behavior of vl and v2 can be used to show that

V - vlv_ - vlv2' ". -i2koA+A_e i¼",

as k0 _ oo. Combining this result with the expressions for vl (r) and v2(rs) given above leads to

V Q.(r_)Q_(r)
AJ[rl_(rs)]e ik°¢_(r), (54)

as k0 ---+oo.

B Quasi-symmetric, high-frequency approximation

In this appendix, the high-frequency solutions to (13) are constructed using the azimuthal wavenumber scaling
n O(1). Equations (16) and (17) show that 2 2= koQ n and S then become of equal order as r becomes sufficiently small.

The disordering of (13) is dealt with, as in reference [2], by introducing an inner region where

=--kor = 0(1).

The corresponding equation for v is given to the required order of accuracy by

which has the general solution

-2 d2v
+ - + ¼] = 0,

v _ V_ [-4Jn(_)+ BH(n_)(_)] , (55)

as ko --+ oc, where _ _= q(0)g and Jn and H_ ) denote the Bessel and Hankel functions of the first kind, respectively.

When r is order one, the solution to (13) is determined, to the required order of accuracy, by

v" + k2q2v = O, (56)

which can, of course, be solved using WKB theory [ 11 ]. The particular form of the solution depends on the number

and nature of the turning points determined by the zeroes of q2. As in Appendix A, it will be assumed here, for

simplicity, that the v equation has at most one simple turning point.
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First,supposethat(56)hasaturningpointat r = r,_ >> 1/ko where the notation r_ is used to distinguish the

zeroes of q2 from the n-dependent zeroes of Q_. The solution to (56) is then given by (51), (52) and (53) with n set
equal to zero. Matching that result with (55) as g --_ O(ko) (noting that _ is purely imaginary) requires

v/_A- = e--i(k0_a--½nTr)fi_, V/'_/3 - -- _i2ei(ko_a--½n_)_,

where

7'
_(r) _ q(r)dr,

and a subscript a is used to indicate evaluation at r = r,_.

Applying the outgoing-wave condition (14) shows that B + = 0 from which follows

vl(r),._A+ (2_)½H(nl)(kOC_)e--l(k°_--½ nTr), (57)

as k0 _ oc, where attention is restricted to the r - ro >> ko 2/3 behavior since that is all that is required in (20) and

the Hankel function has been introduced (without loss of generality) in order to facilitate the application of Graf's
addition theorem [12] in section 3.

The bounded condition (15) requires/3 = 0 and the corresponding expression for v2 (rs) depends on the location

of r,, relative to rs. Reasoning that the quasi-symmetric approximation is only appropriate when r_ << 1, Balsa [2]
employed the simplifying assumption that r_ - rs >> ko 2/3, i.e. that the source is always closer to the jet axis than the

turning point. Using this assumption, v2 (rs) can be expressed as

v2(rs) _ A2 (kO_s_ ½Jn(kO_s), (58)

as k0 _ o0. It should be noted that for any given value of rs there will be, in general, a range of 0 for which rs > r,,

and, consequently, for which the above expression is invalid. The implications of this failure are discussed in section

4 where comparisons with the order-one frequency solution for the reduced Green's function are given.

Unlike the situation encountered in Appendix A, it is possible, with the present scaling of n, that the equation

governing v has no turning points. When this is the case, the solution to (56) is given as

v ,-_ q-½ (A+e _k°¢° + B+e-ik°¢°),

as k0 _ oo. Matching with (55) as g _ O(ko) (noting that _ is now purely real) requires

_A + = (fi_ + 2/_)e-i½ n_r, ix/_B + = iAei½ n_r.

Expressions for vl (r) and v2(r_) can be derived by applying the boundary conditions (14) and (15) as done above.

It turns out that the final expressions are in exact agreement with those given by (57) and (58) if the convention that
r¢ = 0 when q2 has no zeroes is adopted.

The r-independent Wronskian V can be evaluated using the r - r,, >> ko 2/_ behaviors of vl and v2 and is given,

for the one- and no-turning point solutions, by

V -- VlV_ - v_v2 ,,_ -ik0 A+fi.2e -i(a°_-½n_),

as k0 _ co. Combining this result with the expressions for vl (r) and v2(rs) given above leads to

U ._ -_ \q_q/ U_)(ko_)Jn(ko_), (59)

as ko --_ _.
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C Ray-theory approximation

In this appendix, the high-frequency solution to (4) obtained from ray theory is reviewed. Following the matched
asymptotic analysis given by Durbin [4], the solution to (4) for the uni-directional, transversely sheared mean flow (1)
is

G,_(xlms) _ _(x)A(xlxs)e lk°s(_l_s), (60)

as k0 _ cx_,where the Eikenol S satisfies

the amplitude function A satisfies

and here • -- (1 - A¢i.s)/a.

42 - Is[ 2 = 0, s-- VS, (61)

Xr.[(s+iM_)A 2] =0, (62)

The first-order partial-differential equation (61) is reduced to the coupled system of ordinary differential equations,

i M _=s+ -- , s=Iv.(_2), S=s.x. (63)
a

along the rays x(7-) by the method of characteristics, where 7- is a parameter that varies continuously along the ray, a

dot indicates differentiation with respect to 7- and K7± is the gradient operator in the y-z plane. Equations (63) must

be solved subject to initial conditions at the source,

(64)x = x,, 5z = a_{cosp, sinpcosA, sinpsinA}, S = O,

at T = 0, where the free parameters # and A determine the initial ray direction relative to the Cartesian coordinate

system {x, y, z} and it follows from (61) and (63) that

(65)- 2 _ M2 sin 2 #.O's 2 =a s

The amplitude function A is found by solving (62) subject to matching with a near-source solution. It follows from

the analysis of reference [4] that

A(xtx,)-1 (a_jn#) ½47ra_ _ -- ' (66)

where

j _ O(x, y, z) (67)
0(7-,_, ix)

is the Jacobian determinant.

When attention is restricted to the far-field behavior, the solution (60) can be simplified by noting that the rays

x(r) become straight lines in the absence of a mean flow. Thus, in the far field, the approximation,

(68)x ,,_ xs + Roo {cos 0oo, sin 0_cos _o_, sin 0_sin ¢_ }

can be introduced, where R_ is the distance between the far-field observation point and the source point and 0_ and

¢_ are the far-field polar and azimuthal angles measured from axes passing through the source point and aligned with
the x and y directions, respectively. It is important to note that _, 0o¢ and R_ are not equal to qo, 0 and R of sections

2 and 3 but approach these quantities in the far field, i.e.

rs

¢_ ,-_ F + -_ csc 0 sin Aqa + ..., (69)

rs

0_ "_ 0 + _cos0 (1 - cos AW) +-.., (70)

Ro_ "_ R + rssin0 (1 - cosA_) + ..., (71)
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asR _ cc.

It follows from (61) and (63) that/_oo = 1 which can then be used when inserting (68) into (67) to obtain

J --_R_sin 0o_
o(,,A) '

as Rcc ---, oc. Since (63) implies that the quantity i.8 is constant along each ray, (64) and (68) show that

i.8 = a2s°s cosp - -Ads = cos0o_,

and furthermore, in view of (65), 0_ = 0_ (p) and

An additional consequence of (73) is

d0oo 2 3 •

sin0ec--d-fi-_ = as(r s sin#.

2sin 2# _ cos 20_,O"s _--- --

which follows directly from the Eikenol equation (61). The Eikenol itself has the far-field behavior

s ~ Roo+ sl(zlxs),

(72)

(73)

(74)

(75)

(76)

as R_ ---* ec, where

/0S_ - (8.5_ - sin 20oc)dT

remains bounded as R_ ---* ec and x± = {V, z} denotes the ray vector in the y-z plane.
Substituting (74) into (72) and the result into (66) yields the far-field approximation for A which when substituted,

together with (76), into (60) leads to (18) and (19) where now

"F_w"_ \ OA ] eik°(S±+!%¢-R)' (77)

as k0, R ---* co, and use has been made of the far-field relations (69)-(7 I).

For the purposes of the present investigation, it is convenient to restate (63) and (64) in terms of the cylindrical

coordinates {x, r, _} of section 2. The ray equations in the y-z plane are then

(¢.)2 = ,p2 _ cos 2 0o_ - s (_')2. rio = s (_')
• ' (78)

J(rJ(_)) = ½o(¢2)/o_, s. = _)_ + (÷)_- _i__0_,

which must be solved subject to

r = rs, qo = qOs, s (_) = as sin p sin(A - qos), S± = O,

at T = 0, where rs (_) = OS/O_.
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