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Hydrogeology of a Biosolids-Application Site Near

Deer Trail, Colorado, 1993-99

By Tracy J.B. Yager and L. Rick Arnold

Abstract

This report presents hydrogeology data and interpretations
resulting from two studies related to biosolids applications at
the Metro Wastewater Reclamation District property near Deer
Trail, Colorado, done by the U.S. Geological Survey in cooper-
ation with the Metro Wastewater Reclamation District: (1) a
1993-99 study of hydrology and water quality for the Metro
Wastewater Reclamation District central property and (2) a
1999 study of regional bedrock-aquifer structure and local
ground-water recharge. Biosolids were applied as a fertilizer
during late 1993 through 1999. The 1993 Metro Wastewater
Reclamation District property boundary constitutes the study
area, but hydrogeologic structure maps for a much larger area
are included in the report. The study area is located on the east-
ern margin of the Denver Basin, a bowl-shaped sequence of
sedimentary rocks. The uppermost bedrock formations in the
vicinity of the study area consist of the Pierre Shale, the Fox
Hills Sandstone, and the Laramie Formation, parts of which
comprise the Laramie-Fox Hills hydrostratigraphic unit and
thus, where saturated, the Laramie-Fox Hills aquifer. In the
vicinity of the study area, the Laramie-Fox Hills hydrostrati-
graphic unit dips gently to the northwest, crops out, and is par-
tially eroded. The Laramie-Fox Hills aquifer is either absent or
not fully saturated within the Metro Wastewater Reclamation
District properties, although this aquifer is the principal aquifer
used for domestic supply in the vicinity of the study area. Yield
was small from two deep monitoring wells in the Laramie-Fox
Hills aquifer within the study area. Depth to water in these wells
was about 110 and 150 feet below land surface, and monthly
water levels fluctuated 0.5 foot or less. Alluvial aquifers also are
present in the unconsolidated sand and loess deposits in the val-
leys of the study area. Interactions of the deeper parts of the
Laramie-Fox Hills aquifer with shallow ground water in the
study area include a general close hydraulic connection
between alluvial and bedrock aquifers, recharge of the Cotton-
wood Creek and much of the Muddy Creek alluvial aquifers by
the bedrock aquifer, and possible recharge of the bedrock aqui-
fer by a Rattlesnake Creek tributary. Some areas of shallow
ground water were recharged by infiltration from rain or ponds,
but other areas likely were recharged by other ground water.
Data for shallow ground water indicate that ground-water

recharge takes less than a day at some sites to about 40 years at
another site. Depth to shallow ground water in the study area
ranged from about 2 feet to about 37 feet below land surface.
Shallow ground-water levels likely were affected by evapo-
transpiration. Ground water is present in shallow parts of the
bedrock aquifer or in alluvial aquifers in four drainage basins:
Badger Creek, Cottonwood Creek, Muddy Creek, and Rattle-
snake Creek. These drainage basins generally contained only
ephemeral streams, which flow only after intense rain.

Introduction

The Metro Wastewater Reclamation District (MWRD)
treats municipal sewage from the Denver area at their plant in
Denver, Colo. (fig. 1). Biosolids are solid organic matter recov-
ered from a sewage-treatment process that meet State and Fed-
eral regulatory criteria for a beneficial use such as soil amend-
ment or fertilizer (Colorado Department of Public Health and
Environment, 1998). In 1993, the MWRD acquired property
(about 15 square miles; fig. 2) on the eastern plains of Colorado
in Arapahoe and Elbert Counties east of Deer Trail, Colo.

(fig. 1). Beginning in late 1993, MWRD biosolids were trucked
from Denver about 75 miles east to MWRD property near Deer
Trail. The MWRD applied biosolids as an agricultural fertilizer
to nonirrigated farm land on their property. In 1995, the MWRD
traded some of their property (land that included Muddy Creek
in Elbert County); the resulting part of the original MWRD
property became known as MWRD’s central property (fig. 3).
In 1995, the MWRD also acquired additional property in the
same area: the MWRD’s north property (about 14.5 square
miles) and the MWRD’s south property (about 50 square miles)
(fig. 3). The MWRD property near Deer Trail is farmed; besides
biosolids, other fertilizers and pesticides could have been
applied to the property in the past. These applications are called
anthropogenic applications because materials of a chemical
nature were added to the site by humans.

Biosolids applications can affect soil and water quality.
When biosolids are applied to agricultural soil, soil quality
either can be improved by biosolids applications through
increased nutrients and organic matter or degraded through the
accumulation of excessive nutrients or trace elements (Berti and
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Jacobs, 1998). Applications of pesticides or fertilizer (including
biosolids) can affect the quality of water in the unsaturated
zone, ponds or streams, and alluvial and bedrock aquifers
(Freeze and Cherry, 1979).

Water quality at a biosolids-application site should not be
interpreted as representing effects from biosolids just because
biosolids are present at that site. Many of the chemical constit-
uents used as indicators of biosolids contamination (such as
trace elements) also can be contributed by geologic materials
(Drever, 1988). Other water-quality constituents (such as nutri-
ents and organic matter) attributed to biosolids also can be con-
tributed by other farming practices (Freeze and Cherry, 1979) or
by livestock grazed on the property. Water quality is not just the
result of chemicals added to the land surface but also is affected
by dissolution, precipitation, reaction, and transport of natural
and anthropogenic chemical constituents along the surface and
in the subsurface, depending on the flow path of the water.
Hydrology (the origin, quantity, transport rate, and flow path of
the water) is determined by climate and geology. Climate deter-
mines the timing, form, and amount of precipitation. The geol-
ogy of an area, combined with climatic features, produces the
landforms, which affect the occurrence and flow rate of surface
water. The geology of an area also determines the porosity and
permeability of the subsurface, which affect the flow of ground
water. In addition, the chemical constituents of the geologic
materials interact in the presence of water through a variety of
natural processes. Therefore, the chemistry of water in the
unsaturated zone, ponds, streams, and aquifers at a biosolids-
application site will be determined by complicated geochemical
reactions affected by geology, hydrology, microbiology, land
use, and anthropogenic applications. Thus, an interpretation of
the contribution of biosolids to water quality requires an under-
standing of the geology, hydrology, and land-use activities of
the site.

Previous studies provide some information about the geol-
ogy and hydrology of the MWRD property near Deer Trail,
Colo. Sharps (1980) includes the area in his geologic map.
Major and others (1983), Robson (1983, 1987), and Robson and
Banta (1987, 1995) include the area in their reports. Little
detailed information specifically for the MWRD property is
available, however.

In mid-1993, the U.S. Geological Survey (USGS) in coop-
eration with the MWRD began monitoring hydrology and water
quality on the MWRD property near Deer Trail. This study was
done to evaluate the combined effects of biosolids applications,
other land uses, and natural processes on the quality of shallow
ground water and water of the unsaturated zone. The study area
consisted of the 1993 MWRD property (fig. 2). Hydrology was
monitored from 1993 through 1998 by measuring ground-water
levels and precipitation. Water quality was monitored from
1993 through 1998 by sampling for inorganic and bacteria con-
stituents, with some additional sampling in 1999. In 1999, the
USGS began an expanded monitoring program (1999-2004), in
cooperation with the MWRD and the North Kiowa Bijou
Groundwater Management District, that built on the 1993-99
USGS monitoring program but included all three MWRD prop-

Introduction 5

erties (fig. 3) and expanded monitoring components. The objec-
tives of the expanded monitoring program were (1) to evaluate
the combined effects of biosolids applications, other land uses,
and natural processes on soils, crops, streambed sediments,
alluvial aquifers, and the bedrock aquifer by comparing chemi-
cal data to regulatory levels, to data from an unaffected (con-
trol) site, or to earlier concentrations from the same site
(trends); (2) to investigate the hydrology of the bedrock aquifer
in the vicinity of the MWRD properties; and (3) to monitor
biosolids for metals and radioactivity and to compare the
concentrations with regulatory levels. As part of the expanded
monitoring program, the geology of the area was evaluated to
identify aquifer materials, and hydrogeologic structure maps
were prepared.

Purpose and Scope

The purpose of this report is to present all hydrogeologic
data and interpretations from the first USGS monitoring pro-
gram near Deer Trail, Colo. (1993-99), and hydrogeologic
structure maps and some interpretations from the bedrock
ground-water monitoring component of the USGS expanded
monitoring program near Deer Trail (1999). The report also
summarizes the geologic history and the geologic and hydro-
logic setting of the area to provide a general understanding of
the geology and hydrology and how they interact in this area.
The 1993 MWRD property boundaries near Deer Trail are here-
inafter referred to as the “study area” (fig. 2); however, the
hydrogeologic structure maps encompass an area that contains
the study area (fig. 2) and all three MWRD properties (fig. 3),
and the summary of geologic history and geologic and hydro-
logic setting pertains to the entire area shown in figure 1. The
report includes geologic data (lithologic descriptions and core
textural analyses) and hydrologic data (depth to ground water
and climate data), as well as an interpretive discussion of hydro-
geology for the study area. The report does not include water-
quality data and interpretations, which will be provided in a
separate report.

The report has all data and supplemental information at
the back of the report in appendixes. Appendix I describes the
methods of data collection and construction of maps and hydro-
geologic sections. Appendix II contains hydrogeologic data
including lithologic descriptions, monitoring-well information,
measurements of monthly water levels for the monitoring
wells, continuous-recorder data for ground-water levels and
precipitation at two sites, continuous-recorder data for specific
conductance and water temperature at one ground-water site,
and data used to make the structure maps.
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Description of Study Area

The study area is located on Colorado’s eastern plains,
about 75 miles east of Denver and about 10 miles east of Deer
Trail (fig. 1). Soils in the study area generally are sandy or
loamy on flood plains and stream terraces, clayey to loamy on
gently sloping to rolling uplands, and sandy and shaley on
steeper uplands (Larsen and others, 1966; Larsen and Brown,
1971). Ground water is obtained from alluvial and bedrock
aquifers, discussed in a later section of this report. The geology
of the study area will be discussed in detail in a later section of
this report. The study area generally was vegetated during 1993
through 1999 except where the land surface was rock or where
farm fields were freshly tilled. Crops and prairie vegetation
dominated the landscape. Tree canopy was sparse and consisted
of primarily deciduous varieties like cottonwood trees located
along the southern parts of Muddy Creek and Cottonwood
Creek.

Topographic Features

Topographic features of the study area include flood
plains, valleys with incised channels, rounded hills, and cliffs.
Wide, flat flood plains are associated with Muddy Creek on the
west side of the study area. Valleys with incised channels are
present throughout the study area, but valleys on the east side
are shorter, steeper, and more incised than on the west side of
the study area. Rounded hills are characteristic of the northern
part of a long, north-south-trending ridge of the study area, but
cliffs are more characteristic of this ridge in the southern part.
Topographic contours of the study area are shown in figure 2.

Land Use

Land use in the study area historically was rangeland,
cropland, and pasture (U.S. Geological Survey, 1980b). Land
use in the study area during 1993 through 1999 mostly was
cropland. Four abandoned homesteads were present (Metro
Wastewater Reclamation District, 1993, written commun.
[map]), along with associated outbuildings, animal pens, and
shallow windmill-pumped wells that perhaps were used for
watering livestock. No one lived in the study area during 1993
through 1999, but people did live just across the road to the west
from monitoring well D13 (fig. 2). Some petroleum exploration

was done in the vicinity (Drew and others, 1979), but no oil or
gas production took place within the study area during 1993
through 1999. The study area in 1993-99 primarily was farmed
with some grazing. Biosolids were applied as a fertilizer. Farm
land in the study area was not irrigated; the primary crop was
wheat (Stevens and others, 2003). Cattle and sheep were the
primary domestic animals grazing this area. Wildlife in the
study area included pronghorn, deer, coyotes, herons, hawks,
owls, rodents, and turtles.

Climate

The climate in the study area is semiarid. Less than
20 inches of precipitation usually is received each year. Most of
the precipitation is received as rainfall in May or June and late
summer (usually July—August). Precipitation data for the study
area during 1996-98 are included in Appendix II. Air tempera-
tures ranged from about 0 degrees Fahrenheit October through
April to about 105 degrees Fahrenheit in July and August. The
study area often is windy; prevailing winds were from the
north during winter and from the west in summer. Average
annual pan evaporation in the study area for 194655 was about
70 inches (Robson and Banta, 1995, fig. 10).

Data Collection

Various approaches were used for the study. To character-
ize geology, published reports were reviewed, geophysical logs
from oil and gas exploration in the vicinity of the study area
were reviewed and correlated, lithologic descriptions from
other commercial exploration in the vicinity of the study area
were reviewed, boreholes were drilled and drill cuttings and
cores were examined, and surficial geology was examined in
the field. To characterize hydrology, published reports were
reviewed, monitoring wells were installed, ground-water levels
were measured, rain gages and temperature sensors were
installed, and dissolved-gas and chlorofluorocarbon samples
were collected and analyzed in 1998. To provide flood-crest
data, three crest-stage gages were installed in 1994; all three
crest-stage gages were dislodged by floodwaters during the first
summer of operation, and no data were collected.

USGS personnel collected data from numerous sources
and locations. Geologic data were collected from throughout
the area of plates 1 and 2 shown in figure 1. Most hydrologic
data were collected from monitoring-well sites, which are listed
in table 1 and shown in figure 2. All methods of data collection
are discussed in Appendix I.

The USGS installed 30 shallow monitoring wells and 3
deep wells in the study area. The shallow wells were installed
between 1993 and 1995 in the valleys for data collection to
evaluate the alluvial aquifers or shallow parts of the bedrock
aquifer. Alluvial aquifers are not continuous throughout the
study area but are present near stream channels and in paleo-
channels. Wells were located near MWRD property boundaries
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Data Collection 7

U.S. Geological Survey ground-water monitoring sites near Deer Trail, Colorado, 1993-99.

[G, ground-water hydrology; W, water quality; A, shallow-deep aquifer interactions; F, water-quality flow-path information; P, water quality at property boundary;
S, interactions between surface and ground water; V, aquifer spatial variability; Shallow well could be completed in bedrock aquifer or alluvial aquifer; U, USGS-
installed monitoring well; D, Continuous-recorder instrumentation; E, pre-existing well with windmill or other pump; MWRD, Metro Wastewater Reclamation
District (central property); R, owned by Metro Wastewater Reclamation District until late 1995, then owned by private resident]

. . _— Site Topo- Drainage
(ﬁS;ez) t?, ';: M:::;c;g:g Site type instal- graphic basin Pcr)svpne;:y County Location®
lation  setting (fig. 6)

D1 G EV Shallow U Upland Cottonwood MWRD Arapahoe T5S R58W S16 NE,SE
well draw Creek

D2 G, W EFV Shallow U,D Flood Cottonwood MWRD Arapahoe T5S R58W S15 SE,SW
well plain Creek

D3 G, W EPV Shallow U Flood Muddy Creek MWRD Arapahoe T5S R58W S17 NW.NW
well! plain

D4 G, W EV Shallow U Flood Muddy Creek MWRD Arapahoe T5S R58W S17 SE,SE
well! plain

D5 G, W ES,V Shallow U Flood Cottonwood MWRD Arapahoe T5S R58W S22 SE.NW
well plain Creek

D6 G, W EPV Alluvial U,D Flood Cottonwood MWRD Arapahoe T5S R58W S22 NE.NE
well plain Creek

D7 G, W EV Shallow U Flood Muddy Creek MWRD  Arapahoe T5S R58W S20 NW,SE
well? plain

D8 G, W EV Shallow U Flood Muddy Creek MWRD  Arapahoe T5S R58W S17 SE,SW
well? plain

D9 G, W EPV Bedrock U Upland Badger Creek MWRD  Arapahoe T5S R58W S16 NW,NE
well draw

D10 G, W EV Shallow U Stream Cottonwood MWRD Arapahoe T5S R58W S22 NW,SE
well channel Creek

D11 G EV Shallow U Flood Muddy Creek MWRD Arapahoe T5S R58W S16 SE,SW
well plain

Dlla G, W AFV Bedrock U Hilltop Muddy Creek MWRD Arapahoe T6S R58W S5 NE,NW
well

D12 G, W EV Shallow E Flood Cottonwood MWRD Arapahoe T5S R58W S15 SE.NW
well! plain Creek

D13 G, W FEPV Shallow U Flood Muddy Creek MWRD Arapahoe T5S R58W S32 NW,NW
well plain

D14 G, W EFV Shallow U Flood Muddy Creek MWRD Arapahoe T5S R58W S32 SW,NE
well plain

D15 G, W F, P, S,V  Shallow U Flood Muddy Creek R Elbert T6S R58W S5 NW,NW
well? plain

D16 G, W F S,V Shallow U Flood Muddy Creek R Elbert T6S R58W S6 SE,SE
well plain

D17 G, W EFV Alluvial U Flood Muddy Creek MWRD Elbert T6S R58W S5 SE.NW
well plain

D18 G EPV Shallow U Stream Muddy Creek R Elbert T6S R58W S6 SW,NE
well channel

D19 G, W EV Shallow U Upland Muddy Creek MWRD Elbert T6S R58W S5 NW,SE
well! draw
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Table 1.

U.S. Geological Survey ground-water monitoring sites near Deer Trail, Colorado, 1993-99.—Continued

[G, ground-water hydrology; W, water quality; A, shallow-deep aquifer interactions; F, water-quality flow-path information; P, water quality at property boundary;
S, interactions between surface and ground water; V, aquifer spatial variability; Shallow well could be completed in bedrock aquifer or alluvial aquifer; U, USGS-
installed monitoring well; D, Continuous-recorder instrumentation; E, pre-existing well with windmill or other pump; MWRD, Metro Wastewater Reclamation
District (central property); R, owned by Metro Wastewater Reclamation District until late 1995, then owned by private resident]

Site Site Monitoring . . Site Topo_— Dram:age Property . 3
(fig.2) type purpose Site type lns_tal- grap-hlc b_asm owner County Location
lation  setting (fig. 6)

D20 G, W EV Shallow U Flood Muddy Creek R Elbert T6S R58W S8 NW,NW
well plain

D21 G, W EPV Shallow U Flood Muddy Creek R Elbert T6S R58W S8 SW,SW
well plain

D22 G, W E PV Shallow U Flood Rattlesnake MWRD Elbert T6S R58W S3 SW,SE
well! plain Creek

D23 G, W ES,V Shallow U,D Flood Muddy Creek R Elbert T6S R58W S6 NE,NE
well? plain

D24 G, W A,F S,V Shallow U Stream Muddy Creek MWRD Arapahoe T5S R58W S17 NW,NE
well! channel

D25 G, W F P, S,V  Alluvial U Flood Muddy Creek MWRD Arapahoe T5S R58W S17 SWNW
well plain

D26 G, W EFV Shallow U Flood Muddy Creek MWRD Arapahoe T5S R58W S16 SW,SW
well! plain

D27 G, W EV Shallow U Flood Muddy Creek MWRD Arapahoe T5S R58W S20 SW,NE
well? plain

D28 G, W EV Shallow U Stream Muddy Creek MWRD Arapahoe T5S R58W S20 SE,SE
well? channel

D29 G, W AFV Bedrock U Hilltop Cottonwood MWRD Arapahoe T5S R58W S16 SW,SW
well Creek

D30 G, W F,P,S,V  Shallow U Stream Cottonwood MWRD Arapahoe T5S R58W S15 NE,SE
well? channel Creek

D31 G, W EFV Alluvial U Flood Cottonwood MWRD Arapahoe T5S R58W S15 NW,SE
well plain Creek

D32 G, W EFV Shallow U Stream Cottonwood MWRD Arapahoe T5S R58W S15 SE,NE
well! channel Creek

D33 G, W EFV Alluvial U Flood Cottonwood MWRD Arapahoe T5S R58W S22 NW,SE
well plain Creek

1Probably bedrock-aquifer well.
ZProbably alluvial-aquifer well.
3Location indicated by township, range, and section. The letters after the section number represent successive quarter subdivisions of

the section.



to evaluate the quality of ground water entering and leaving the
study area. Wells were located upgradient from property bound-
aries to evaluate chemical and hydrologic variability within
each alluvial aquifer. A windmill well installed before the study
began was included in the monitoring network from 1993
through 1998, although little was known about that well’s con-
struction, well-screen location, or drilling methods. Two of the
wells (D1 and D11) constructed in 1993 and one of the wells
(D18) constructed in 1994 were dry, despite their locations in
downgradient parts of stream valleys. These wells were
checked for water throughout the study period but remained
dry. Continuous recorders were installed at three shallow wells:
at D2 and D23 to provide detailed information about hydrologic
variability by recording water level, water temperature, and pre-
cipitation; and at D6 to provide detailed information about
hydrologic and water-quality variability by recording water
temperature and specific conductance. To provide ground-
water recharge and flow-path information, dissolved-gas and
chlorofluorocarbon (DG-CFC) samples were collected in
November 1998 at 10 shallow wells in the study area that had
chemical concentrations of concern or anomalous water quality
compared to other nearby wells. Data for DG-CFC samples are
listed in Appendix II. Two deep bedrock wells were installed by
the USGS in 1997 to evaluate the sandstone part of the bedrock
aquifer, interactions of the bedrock aquifer with the alluvial
aquifers, and the subsurface geology. The bedrock-well loca-
tions were planned to coincide with shallow-well locations at
D17 and D25, but drilling of the first bedrock well at the D17
location showed no discernible sandstone part of the bedrock
aquifer beneath the alluvial aquifer, so the bedrock wells (D11a
and D29) were installed on the ridges that had known sandstone
sequences. The monitoring wells were surveyed to a common
vertical datum (North American Vertical Datum of 1988, con-
verted to NGVD 209 for this report) to enable detailed compari-
son of water-level altitudes and direction of ground-water flow.
Monitoring-well locations are included in table 1 and figure 2.
Ground-water and well-construction data are provided in
Appendix II.

Access to the monitoring sites in the study area was chal-
lenging due to a lack of roads and the rough terrain. Muddy con-
ditions, large sand dunes, and large desiccation cracks in the
ground occasionally prevented access to monitoring sites. In
addition, access to the study area was restricted by the property
owners (both MWRD and local landowners) beginning in 1995.
Generally, the USGS was not allowed access to the monitoring
sites if the surrounding field was tilled or planted. These access
restrictions resulted in limited data collection and temporal gaps
in the data sets.

Hydrogeology

The study area is located in the Colorado Piedmont Section
of the Great Plains physiographic province in northeastern Col-
orado about 75 miles east of the Rocky Mountains. The study
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area overlies the Denver Basin, an asymmetrical, bowl-shaped
geological structure (fig. 4) that covers approximately

60,000 square miles in parts of Colorado, Nebraska, Wyoming,
and Kansas and reaches a maximum depth of about 13,000 feet
near the city of Denver (Rocky Mountain Association of
Geologists, 1972). The basin is composed of Phanerozoic-age
sedimentary bedrock layers overlying a basement of Precam-
brian-age igneous and metamorphic rock. Bedrock layers dip
steeply into the basin along the western margin and dip gently
inward along the eastern, northern, and southern margins of the
basin. Near the study area, the Denver Basin is approximately
9,000 feet deep (Robson and Banta, 1987, sheet 1), and bedrock
layers dip gently to the northwest. Although many geologic for-
mations, ranging in age from Pennsylvanian to Late Cretaceous,
are present in the Denver Basin in the vicinity of the study area,
only the uppermost geologic materials are likely to be used for
water supply or affected by land use. Therefore, only the upper
formations of the Denver Basin and overlying surficial units are
considered in this report. The geologic and hydrologic charac-
teristics of these formations are described in the following
sections and summarized in figure 5.

Geology

An overview of geology is included in this report to pro-
vide the reader with an understanding of how the study area is
part of a larger geologic system, the Denver Basin. Therefore,
this description includes the study area (fig. 2) as well as the
surrounding area (figs. 1 and 3). Geology can be described in
terms of history and lithology. Geologic history is the story of
how the rocks were formed and changed over time. Lithology is
the description of the rock characteristics in the geologic forma-
tions.

History

This discussion of the history of formations present in the
study area is based primarily on work published by Hunt
(1954), Rocky Mountain Association of Geologists (1972),
Trimble (1980), Tweto (1980), Robson and Banta (1987), and
Sonnenberg and Bolyard (1997). The history of the geologic
materials of interest in the study area begins with the deposition
of the Pierre Shale during Late Cretaceous time (about 78 mil-
lion years ago [Kiteley, 1978, sheet 1]). The Pierre Shale was
formed by the accumulation of sediments in a shallow sea that
stretched from the Gulf of Mexico to the Arctic Ocean and from
central Utah to the Mississippi River. The Fox Hills Sandstone
was deposited as a sandy shoreline along the margin of this sea.
Inland from the shoreline of the Fox Hills Sandstone were mate-
rials deposited in a lush delta plain that became the Laramie
Formation. Decaying vegetation in poorly drained swamps
within the delta plain became coals and lignitic shales in the
Laramie Formation.

Beginning about 68 million years ago, major uplift (part of
the Laramide Orogeny) occurred in the area of the present-day
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Rocky Mountains. As the mountains were uplifted, the sea
retreated, and the Precambrian-age rocks and overlying sedi-
mentary rocks east of the mountains were warped downward to
form the Denver Basin (fig. 4). The sediments of the Pierre
Shale were successively covered by the sediments of the Fox
Hills Sandstone and the Laramie Formation as the shoreline
regressed and delta plain sediments were deposited over the
former sea bottom. Intermittent rates of uplift and differing rates
of basin subsidence during this time caused the sea to retreat
and advance several times before finally retreating completely.
This cycle of regression and transgression is recorded in the
alternating layers of shale and sandstone in a transition zone
near the top of the Pierre Shale. Other sediments derived from
the erosion of the Rocky Mountains were deposited on top of
the Laramie sediments and became the Arapahoe and Denver
Formations and the Dawson Arkose (figs. 4 and 5).

During late Tertiary time, between 5 and 10 million years
ago, continued uplift caused the environment to change from
one of deposition to one of erosion, and many of the previously
deposited sediments were incised by streams and removed by
erosion. In the vicinity of the study area, the Dawson Arkose
and Denver and Arapahoe Formations were completely
removed by erosion, and only a little of the Laramie Formation,
part of the Fox Hills Sandstone, and the Pierre Shale remain in
the study area near the surface (fig. 4).

Quaternary-age glaciation in the mountains followed and
eroded the granite and other igneous, metamorphic, and sedi-
mentary rocks of the Rocky Mountains west of the study area.
As the glaciers melted, large loads of sediments derived from
the eroding mountain rocks were carried and deposited in
streams draining the east side of the Rocky Mountains. These
sediments were carried onto the plains by streams, and the fine-
grained materials were blown by the wind and deposited in
thick blankets of loess on top of the eroded Denver Basin for-
mations. After deposition, these sediments were further eroded
and redeposited by wind and streams. In the vicinity of the study
area, the geologic materials that resulted from these glacial and
postglacial periods are the Pleistocene- and Holocene-age
Peoria Loess and alluvium (Sharps, 1980). Modern streams and
winds continue to remove and redeposit loess and alluvium, as
well as new sediments formed from the continuing erosion of
the Laramie Formation, Fox Hills Sandstone, and Pierre Shale.
The topography of the study area generally has been shaped by
processes occurring within the past 2 million years.

Lithology

Bedrock units present near the land surface in the vicinity
of the study area are of Late Cretaceous age and consist of the
Pierre Shale, Fox Hills Sandstone, and Laramie Formation
(figs. 4 and 5). In the study area, sandstone layers are the units
most resistant to erosion and commonly occur as ridges and hill-
tops. Shale layers weather easily to clay at the land surface and,
therefore, commonly are not readily apparent in outcrop. In this
report, “outcrop” (or in verb form, “crops out”) refers to the part

of geologic formations that appears at land surface, and “sub-
crop” refers to bedrock covered only by surficial deposits such
as soil, loess, or alluvium.

The Pierre Shale crops out and subcrops east of the study
area (figs. 2 and 4) and consists of dark gray shale with layers
of limonitic siltstone and fine-grained sandstone. The Pierre
Shale is about 4,200 feet thick in the vicinity of the study area
(Sharps, 1980). Approximately the upper 200 feet of the Pierre
Shale is interbedded with siltstone and sandstone and becomes
increasingly sandy toward the top of the formation, forming a
gradational contact with the overlying Fox Hills Sandstone.

The Fox Hills Sandstone crops out and subcrops in the
study area (fig. 4) and consists of 60 to 130 feet of massive,
yellow-orange to tan, poorly consolidated, fine-grained sand-
stone with layers of claystone and well-cemented sandstone.
Thin lenses of lignitic (coal-rich) shale, large iron- and calcite-
cemented concretions, and trace fossils of burrows are present
within the formation. Resistant layers in the Fox Hills Sand-
stone form caprocks along the crests of some hills of the study
area. Within the study area, the sandstone layers containing
fossil burrows commonly are well cemented and therefore
among the most resistant parts of the formation. One such layer
crops out and forms the ridge near well D11a (fig. 2). The Fox
Hills Sandstone is conformably overlain by the Laramie Forma-
tion in areas where the Laramie Formation has not been
removed by erosion.

The Laramie Formation crops out and subcrops west of the
study area (fig. 4) and in the upland areas along the eastern mar-
gin of the Muddy Creek drainage basin. The Laramie Formation
has a total thickness of about 300 to 350 feet west of the study
area, but the thickness generally is less than this in the study
area because much of the formation has been removed by ero-
sion. Regionally, the Laramie Formation consists of an upper
part that is composed predominantly of shale and siltstone with
lenses of sandstone and coal and a lower part that is composed
predominantly of sandstone interbedded with shale and coal
(Robson and Banta, 1987). In the vicinity of the study area, the
Laramie Formation was found to be predominantly fine
grained, consisting of brown to gray shale containing lenses of
sandstone, lignitic shale, and coal.

Unconsolidated sediments in the vicinity of the study area
consist of Peoria Loess, windblown sand deposits, and allu-
vium. The Peoria Loess generally is Pleistocene in age with
some materials of Holocene age and covers the bedrock in much
of the study area (Sharps, 1980). The loess is covered by mod-
ern soil horizons and may be interbedded with buried soil hori-
zons (Muhs and others, 1999). More detailed information about
the Peoria Loess is described by Muhs and others (1999). The
maximum observed thickness of unconsolidated sediments that
include the Peoria Loess in the vicinity of the study area is about
50 feet near well DO (fig. 2). In the study area, the loess consists
of fairly homogeneous tan to brown windblown clay and silt
derived from weathered bedrock and older alluvium. Wind-
blown sand deposits probably are Pleistocene to modern in age
and were less than 1 foot thick in the cores obtained from drill-
ing at or near wells D6, D9, D25, D31, and D33 (fig. 2). Like



the Peoria Loess, the windblown sand deposits are derived from
weathered bedrock and alluvium. Alluvium at the site probably
is Pleistocene to Holocene in age. The alluvium is present in
paleochannels and along the flood plains and bottoms of larger
stream valleys, sometimes beneath the Peoria Loess. Alluvium
was less than 1 foot thick in the cores obtained from drilling at
or near wells D6, D9, D25, D31, and D33 (fig. 2). The compo-
sition and texture of the alluvium are not homogeneous but
range from pink, white, and gray arkosic sands and gravels
derived from igneous and metamorphic rock of the Rocky
Mountains to dark yellowish gray to tan clay, silt, and sand
locally derived from sedimentary rocks.

Hydrology

An overview of hydrology is included in this report to pro-
vide the reader with an understanding of the hydrologic system.
Hydrology refers to the amount and movement of water in the
study area, including precipitation (snow and rain), humidity,
surface water, and ground water. Natural processes that can
affect a hydrologic system include precipitation, runoff, transpi-
ration, evaporation, infiltration, ground-water flow, and seep-
age. Anthropogenic processes that can affect a hydrologic
system include ground-water pumping, surface-water impound-
ment, diversion, and irrigation, although no irrigation or diver-
sion took place in the study area from 1993 through 1999.

Most of the precipitation in the study area is in the form of
rain (precipitation data are included in Appendix II). Although
the study area receives snow between October and April, snow
accumulation is diminished by the frequent winds in the study
area, which can drift the snow, and solar radiation, which can
melt the snow or even sublimate it. Most rain is received in the
summer during mid-July through August, and sometimes in
spring during May or June. The presence, duration, and
intensity of rain varied across the study area (compare July—
September data from the D2 location with data from the D23
location) and with time (compare 1997 data with 1998 data
from the same location). The spatial variability in precipitation
data (Appendix II) indicates that much of the rain originated
from localized rather than regional thunderstorms.

Much of the rain that falls in the study area runs off the
land surface into streams. The hills and valleys of the study area
form four drainage basins: Badger Creek, Cottonwood Creek,
Muddy Creek, and Rattlesnake Creek (fig. 6). All four drainage
basins are part of the larger South Platte River drainage basin
(Seaber and others, 1987; U.S. Geological Survey, 1974). Sur-
face water can be supplied by precipitation, runoff, springs, or
ground-water seeps or can be lost to the unsaturated zone or
ground water by infiltration. Short segments of some of the
streams in the vicinity of the study area are intermittent and
flow only at certain times of the year; but in general, the streams
are ephemeral and flow only after intense rain. Streams flowed
in or out of the study area from 1993 through 1999 only after
intense rain. Ponds were present in valleys of the study area dur-
ing 1993-99; most ponds were impoundments created by deten-
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tion structures. Floodwaters (especially in July and August)
deposited sediments and filled in some existing ponds or
scoured out depressions and formed new ponds. A pond that
was present near well D5 in 1993 and 1994 gradually dried up
and filled in by 1997. In August 1996, a large, shallow pond was
observed east of well D25 (fig. 2); in late 1997 through 1998,
the ponded area near D25 was drained and regraded by the
MWRD, and smaller ponds formed behind check dams that
were installed between wells D8 and D25. Only a few ponds
were consistently present in the study area from 1993 through
1999; larger ponds, such as in Cottonwood Creek east of well
D30, Muddy Creek between wells D20 and D21, and Rattle-
snake Creek south of well D22, were fairly stable and routinely
supported aquatic bird and plant communities. The ponds that
were present year round likely were recharged by ground-water
seepage and indicate a hydraulic connection between surface
water and shallow ground water in the study area.

Intense rainfall in the study area washed surface materials
off the hillslopes and usually caused streamflow and flooding.
After floodwaters receded, horizontal lines of flood debris were
observed about 5 feet above the streambed in some of the
steeper valleys such as Cottonwood Creek in July and August.
Flood debris deposited along hillslopes in valleys contained
topsoil and much plant material, but biosolids in flood debris
are difficult to detect by visual inspection and were not
observed by the USGS.

Some of the precipitation in the study area was evaporated,
and some of the precipitation was consumed by plants through
absorption and root uptake and then transpired. The term for
these combined processes is evapotranspiration. The study area
in general is not wooded, but cottonwood trees were present in
some valleys including along the southern parts of Muddy
Creek and Cottonwood Creek. Other vegetation in the study
area included prairie grasses, wetland plants in some flood
plains, and agricultural crops. Uptake and transpiration likely
were more prevalent in flood plains where ground water is
closer to the land surface and vegetation is denser. Plants uptake
the most water from soils and shallow ground water during day-
light during their growing season, which is usually spring and
summer for grasses and deciduous trees but also winter for
some varieties of wheat. Phreatophytes such as cottonwood
trees draw water directly from the water table, causing poten-
tially substantial losses of ground water through uptake and
transpiration. Evaporation occurs year round but is highest dur-
ing the clear, dry, sunny days of summer. Evapotranspiration
represents natural and possibly substantial losses of water in the
study area.

Some of the precipitation in the study area infiltrated the
land surface, percolated through the unsaturated zone, and
recharged the ground water. Precipitation can directly recharge
ground water by percolation through porous rock outcrops or
through the unsaturated zone. Precipitation can indirectly
recharge ground water by producing streamflow or pond water
that infiltrates. Ground-water discharges include seepage to
streams, evapotranspiration, and pumping from wells. Ground-
water flow between aquifers can be a discharge for one aquifer
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Figure 6. Drainage basins in the study area.

and a recharge for another aquifer. In the study area, two types
of aquifers are important: bedrock aquifers and alluvial aqui-
fers. Deep ground water commonly is part of the bedrock aqui-
fer. Shallow ground water can be either a shallow part of the
bedrock aquifer or an alluvial aquifer. For this report, “deep”
ground water refers to a depth to ground water greater than

50 feet, and “shallow” ground water refers to a depth to ground
water less than 50 feet. Ground water can be confined or uncon-

0

I | |
I I I

0 2 KILOMETERS

-

fined. Confined ground water is under pressure significantly
greater than atmospheric, and its upper limit is the bottom of a
bed of substantially lower hydraulic conductivity than that of
the geologic material in which the confined water occurs
(Lohman and others, 1972). Unconfined ground water has a
water table, which means the ground-water surface is at atmo-
spheric pressure (Lohman and others, 1972). Ground water of
the study area generally is unconfined. The following sections



of this report discuss the hydrology of the bedrock and shallow
aquifers in detail, and recharge processes are further discussed
in the subsequent “Aquifer Interaction” section.

Bedrock Aquifer

Rock formations that contain sufficient saturated perme-
able material to yield significant quantities of ground water to
wells are called bedrock aquifers (Lohman and others, 1972).
The shallowest bedrock aquifer in the vicinity of the study area
is the Laramie-Fox Hills aquifer (figs. 4 and 5), which is the pri-
mary water-supply aquifer and has a saturated thickness of as
much as about 200 feet in the vicinity of the study area (Robson
and others, 1981; Robson and Banta, 1995). Ground water in
this bedrock aquifer is present in the pore spaces between the
grains of sand or particles, not in large fractures or large voids.
The Arapahoe, Denver, and Dawson aquifers (figs. 4 and 5) are
important sources of ground water in other parts of the Denver
Basin, but the geologic units that comprise these aquifers are
eroded away in the study area (fig. 4). Ground water also is
present in bedrock layers deep below the Laramie-Fox Hills
aquifer, but this ground water is separated from the Laramie-
Fox Hills aquifer by 5,000 to 6,000 feet of very low permeabil-
ity Pierre Shale and other fine-grained Cretaceous-age rocks
(Robson and Banta, 1987, sheet 1), which limit hydraulic inter-
action between the Laramie-Fox Hills aquifer and the deeper
ground water. Therefore, discussion of bedrock aquifers in this
report is limited to the Laramie-Fox Hills aquifer.

At full saturated thickness, the Laramie-Fox Hills aquifer
includes discrete sandstone units in the lower part of the
Laramie Formation and all of the Fox Hills Sandstone (figs. 4
and 5). Locally, the aquifer also may include sandstone and silt-
stone beds in the transition zone (upper part) of the Pierre Shale.
Coal seams present in the Laramie Formation are considered to
be above the top of the aquifer (fig. 5). The predominantly fine-
grained composition of the upper part of the Laramie Formation
acts as a confining layer above the Laramie-Fox Hills aquifer
where the aquifer is fully saturated in the central part of the
Denver Basin west of the study area. In the vicinity of the study
area, the geologic formations that comprise the Laramie-Fox
Hills aquifer are only partially saturated, and the aquifer is
unconfined. The Laramie-Fox Hills aquifer potentially includes
parts of three formations because saturated sandstones in the
lower part of the Laramie Formation and in the transition zone
of the Pierre Shale commonly have direct hydraulic connection
with the Fox Hills Sandstone.

By definition, “Laramie-Fox Hills aquifer” refers to the
geologic layers that are sufficiently saturated to yield signifi-
cant quantities of water to a well; the term does not refer just to
the geologic layers of the three formations described in the pre-
ceding paragraph. In this report, the full sequence of geologic
layers that have the potential to be saturated with water and
form the aquifer, whether or not the layers actually are satu-
rated, is called the Laramie-Fox Hills hydrostratigraphic unit
(LFH-HU); only the saturated part of the LFH-HU is the aqui-
fer. Throughout much of the Denver Basin, the LFH-HU is fully
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saturated and confined beneath overlying bedrock layers, so the
term “Laramie-Fox Hills aquifer” can be used interchangeably
with the term, “Laramie-Fox Hills hydrostratigraphic unit”
(LFH-HU). However, where the LFH-HU crops out along the
margins of the Denver Basin, the LFH-HU is dry or not fully
saturated, so the aquifer either is not present at all or is thin and
unconfined (Robson, 1983; Romero, 1976). Because not all of
the LFH-HU is saturated in the vicinity of the study area, it is
important to distinguish between the aquifer and the hydro-
stratigraphic unit.

Location and Extent

The location and extent of the Laramie-Fox Hills aquifer
in the vicinity of the study area determines aquifer interactions,
areas of the aquifer that could be affected by biosolids applica-
tions, and the amount of available ground-water resources. This
information has not been defined in detail for the study area by
previous investigations. Moreover, historical delineations may
be outdated because the location and extent of the aquifer can
change as water levels in the aquifer fluctuate over the years.
Characterization of the location and extent of the aquifer within
the LFH-HU requires many test wells drilled into the LFH-HU;
this well coverage was not available in the vicinity of the study
area. However, the location and extent of the Laramie-Fox Hills
aquifer can be approximated from the presence of the LFH-HU
with more detailed information provided by three monitoring
wells, D9, D11a, and D29.

The presence of the LFH-HU is determined by the outcrop
and subcrop areas, thickness, and structure of the LFH-HU.
Outcrops of the Laramie Formation and Fox Hills Sandstone in
the vicinity of the study area previously have been described
and mapped by Dane and Pierce (1936), Romero (1976), and
Sharps (1980). The regional structure and extent of the
Laramie-Fox Hills aquifer previously have been mapped by
Romero and Hampton (1972), Romero (1976), Robson and oth-
ers (1981), and Van Slyke and others (1988). This information
for the LFH-HU, however, is not provided in detail for the
vicinity of the study area. Therefore, in 1999, the LFH-HU in
the vicinity of the study area was mapped in detail to provide
more information about the possible location and thickness of
the Laramie-Fox Hills aquifer. The LFH-HU in the vicinity of
the study area was mapped (pls. 1 and 2) using data from geo-
physical logs (pl. 3), lithologic logs, field observations, and
available geologic maps and reports. Mapping methods are
described in Appendix 1.

Areas where the Laramie Formation continuously crops
out or subcrops could have confined ground water and substan-
tial ground-water resources, such as the western part of the
mapped area (pls. 1 and 2). Areas where the LFH-HU crops out
or subcrops have unconfined ground water, and the Laramie-
Fox Hills aquifer is thin or absent. Areas where the Pierre Shale
crops out or subcrops could have little ground-water resources.
Areas where the LFH-HU is visible at land surface (outcrop
areas) and areas where the LFH-HU is covered by soil, loess, or
alluvium (subcrop areas) were mapped as a single unit of
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undifferentiated outcrop-subcrop area in plates 1 and 2. All of
the central MWRD property (the study area) and the north
MWRD property overlie the outcrop-subcrop area of the LFH-
HU or the Laramie Formation, but only the western edge of the
south MWRD property overlies the outcrop-subcrop area of the
LFH-HU. The LFH-HU is not present in much of the MWRD
south property (pls. 1 and 2). The LFH-HU outcrop-subcrop
area is an irregular pattern in the vicinity of the study area

(pls. 1 and 2). Width of the outcrop-subcrop area ranges from
about 1 mile at places in the southern part of the mapped area to
about 11 miles in the north. The irregular pattern of the outcrop-
subcrop area primarily is caused by the topography of the land
surface rather than by the configuration of the LFH-HU.
Topographic relief in the northern part of the mapped area gen-
erally is less than in the southern part of the area, resulting in a
wider outcrop-subcrop area in the north.

The LFH-HU structure contours in plate 1 provide an esti-
mate of the altitude of the base of the Laramie-Fox Hills aquifer
if the LFH-HU is at least partially saturated. The LFH-HU
structure contours in plate 2 provide an estimate of the altitude
of the top of the Laramie-Fox Hills aquifer if the LFH-HU is
fully saturated. A comparison of the structure-contour altitude
with land-surface altitude will indicate depth below land sur-
face. The structure contours indicate that the maximum depth
below land surface to the top or bottom of the Laramie-Fox
Hills aquifer is in the northwest part of the mapped area (pls. 1
and 2). The LFH-HU dips to the northwest at an average incli-
nation of about 40 feet per mile (pls. 1 and 2) over most of the
mapped area. In the northern part of the mapped area, broad
folds are present in the structure of the LFH-HU, and the LFH-
HU dips in a more westerly direction. Locally, dips range from
about 30 to 60 feet per mile.

The difference in the top and base LFH-HU structure-
contour altitudes (pls. 1 and 2) provide an estimate of the thick-
ness of the Laramie-Fox Hills aquifer if the LFH-HU is fully
saturated. The total thickness of the LFH-HU ranges from about
240 to 360 feet in the vicinity of the study area, primarily as a
function of changes in lithology at the top and base of the hydro-
stratigraphic unit. The LFH-HU is less than 200 feet thick in
parts of the study area, however, because part of the LFH-HU
has been eroded. A gradual facies change occurs in the
LFH-HU from the northeast to the southwest across the south-
ern part of the mapped area as sediments that compose the base
of the unit become more fine grained. The facies change results
in a decrease of about 30 feet in the thickness of the LFH-HU to
the southwest, but because the change in thickness is gradual
and is less than the contour interval of the map, structural con-
tours for the base of the LFH-HU were drawn continuously
across the change.

Hydrologic Properties

Various published reports provide information about the
hydrologic properties of the Laramie-Fox Hills aquifer
(Romero, 1976; Robson and others, 1981; Major and others,
1983; Robson, 1983, 1987). Saturated thickness of the aquifer

in the vicinity of the study area likely is 200 feet or less (Robson
and others, 1981; Robson and Banta, 1995; Robson, 1987, fig.
6). The aquifer yields about 5 to 250 gallons per minute
(Romero, 1976; Major and others, 1983) but yields as much as
900 gallons per minute in a few places in the Denver Basin far-
ther west (Romero and Hampton, 1972). Hydraulic conductiv-
ity is a measure of the relative ease with which a porous material
transmits water. Robson (1983, fig. 7) reported that hydraulic
conductivity averages about 6 feet per day in the study area and
was measured at 7 feet per day at one location in the study area.
The storage coefficient of a confined aquifer is the volume of
water the aquifer releases or stores per unit surface area per unit
change in head. The storage coefficient of the Laramie-Fox
Hills aquifer is estimated to be about 0.0002 or less in the study
area but is as much as 0.0004 in deeper parts of the basin (Rob-
son, 1983, fig. 17). Water-level data for the aquifer from 1978
indicated a potentiometric-surface altitude in the study area that
ranged from about 5,200 to 5,300 feet above NGVD 29 and
indicated the general direction of ground-water flow in the
study area was from south to north with a component of flow to
the east (Robson and others, 1981, fig. 8).

Because hydrologic data for the Laramie-Fox Hills aquifer
within the study area were sparse, one shallow bedrock well
was constructed in 1993 (well D9; fig. 2), and two deep bedrock
wells were constructed in 1997 (wells D11a and D29; fig. 2).
These monitoring wells were intended to provide hydrologic
and water-quality information for the sandstone part of the bed-
rock aquifer (the upper and likely more permeable part of the
LFH-HU). A shallow borehole was drilled near the north
boundary of the study area into the Fox Hills Sandstone where
the formation begins to transition into shale. This borehole
yielded water from the lower 5 feet of the formation, was com-
pleted as monitoring well D9 (fig. 2), and was screened at about
49 to 59 feet below land surface. A borehole that was drilled
through the sandstone ridge north of well D17 yielded water
from the lower 10 feet of approximately the same part of the for-
mation about 4 miles southwest of well D9. This borehole was
completed as monitoring well D11a and was screened at about
110 to 120 feet below land surface. Another borehole yielded
water from the lower 4 feet of approximately the same part of
the formation about 1 mile south of well D9, was completed as
monitoring well D29, and was screened at about 145 to 155 feet
below land surface. Well information is listed in table 1 and
Appendix II. The other USGS monitoring wells in the study
area (fig. 2, table 1, and Appendix II) are shallow (less than
about 58 feet deep), but some of these wells likely are com-
pleted in the bedrock aquifer (table 1). All shallow wells will be
discussed in the next section, “Shallow Aquifers.”

Water levels were measured monthly and water-quality
samples were collected quarterly at the bedrock monitoring
wells, D9, D11a, and D29. Depth to water in feet below land
surface was about 55 at well D9, 110 at well D11a, and 150 at
well D29; these water levels represented maximum observed
depth to water in the study area. Water levels fluctuated only
about 1 foot at well D9, 0.25 foot at well D11a, and about
0.5 foot at well D29 (Appendix II). These water-level data



indicate unconfined conditions and a potentiometric altitude of
5,160 feet above NGVD 29 at well D9, 5,261 feet above NGVD
29 at well D11a, and 5,214 feet above NGVD 29 at well D29.
These data are similar to those shown by Robson and others
(1981). Well D9 is completed in the LFH-HU, but at a place
where much of the upper part of the Fox Hills Sandstone is
eroded away, and the well does not yield sufficient ground
water to be considered the Laramie-Fox Hills aquifer. Yield
from the other two bedrock monitoring wells also was relatively
small; the wells were easily pumped dry at about 0.25 gallon per
minute or less. At these monitoring locations, the Laramie-Fox
Hills aquifer was only partly saturated. Wells D9, D11a, and
D29 do not fully penetrate all 240-360 feet of the LFH-HU
(pls. 1 and 2); these wells penetrate only the Fox Hills Sand-
stone interval in the upper part of the LFH-HU (pl. 3) above the
shaley part of the LFH-HU (fig. 5 and pl. 3). Within the upper
sandstone interval of the Laramie-Fox Hills aquifer, saturated
thickness was less than 10 feet (about 10 percent) at well D11a
and less than 5 feet (about 5 percent) at well D29; the aquifer
likely is hydraulically continuous for about another 250 feet of
depth below these wells (pls. 2 and 3), but yield is likely to be
even less in the lower part of the aquifer because the more sha-
ley part of the aquifer generally has less permeability. Water
levels in these wells and other wells completed in the bedrock
aquifer (tables 1 and I1.3) indicate a component of ground-water
flow to the north in the study area and recharge to the bedrock
aquifer along the main ridge of the study area. Additional
bedrock wells would be needed to further assess the extent,
saturated thickness, and ground-water flow directions within
the Laramie-Fox Hills aquifer in the study area.

Shallow Aquifers

The remaining monitoring wells (fig. 2, table 1) are com-
pleted in either alluvial aquifers or shallow parts of the bedrock
aquifer where depth to water is less than about 50 feet. The loca-
tion and quantity of alluvium commonly were not determined as
part of this study, so both bedrock and alluvial aquifers are
included in this discussion of shallow ground water. Lithologic
and well-completion information for the shallow wells are pro-
vided in Appendix II.

A number of alluvial aquifers are present, are associated
with the stream network in the study area, and are of limited
extent. For the purposes of this report, unconsolidated (un-
cemented) sediments and gravels in current or historical stream
channels or flood plains that yield significant quantities of
ground water to wells are called alluvial aquifers, regardless of
whether wind or water deposited the sediments. Geologic infor-
mation from the boreholes of the two hills containing wells
D11aand D29 indicate that saturated alluvium and loess are not
present continuously on or beneath all hills of the study area, so
alluvial aquifers are discrete and associated with streams. A thin
alluvial aquifer was observed in the upper part of Badger Creek
at the location of well D9 at about 28 feet below land surface,
but this ground-water zone was not monitored. Alluvial aquifers
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are present in the Muddy Creek and Cottonwood Creek valleys,
although not all loess and alluvium deposits in the valleys are
saturated, even in streambeds. Wells D1, D11, and D18 were
constructed in stream valleys but were dry whenever checked
for water level after 1993. In contrast, wells D6, D17, D25,
D31, and D33 yielded at least 0.2 gallon per minute and are
known to be completed in loess or alluvial aquifers because
boreholes at these locations were cored. Wells D15, D23, and
D30 likely are completed in alluvial aquifers because the well
depths are 23 feet or less, and the wells are located in downgra-
dient parts of relatively large drainage basins. Wells D3, D4,
D19, D22, D24, D26, and D32 likely are completed in shallow
parts of the bedrock aquifer because these wells are screened
below the probable extent of the alluvial deposits.

Depth to shallow ground water in the study area ranged
from about 2 feet below land surface at well D23 to about
37 feet below land surface at well D3. Water levels commonly
were lowest between June and early July, and water levels
commonly were highest between late July and December
(Appendix II).

Water-table contour maps indicate generalized, horizontal
hydraulic gradients. Water-level data measured October 3—4,
1996, in the shallow wells were contoured for the study area.
The resulting water-table map (fig. 7) indicates that steeper
hydraulic gradients coincide with steeper topography in the
study area. The map also indicates that a component of ground-
water flow is down valleys. Well coverage was not sufficient to
determine if another component of ground-water flow is per-
pendicular to the valley floor down the hill slopes. Water-level
data for well D22 were not contoured in figure 7 because the
well D22 data indicated an improbable flow path if considered
part of the water table. Water-level data for well D24 were not
contoured in figure 7 because the well D24 data indicated an
improbable hydraulic gradient if considered part of the water
table. Hydraulic connection between the bedrock and alluvial
aquifers will be discussed in the next section, “Aquifer Interac-
tion.”

Water levels in the shallow wells fluctuated differently.
Water levels fluctuated most in summer and least in winter, and
water levels fluctuated most in the shallower wells and least in
the deeper wells (Appendix IT). Monthly water-level data for the
shallow monitoring wells and continuous-recorder data for
wells D2 and D23 illustrate this point. Well D2 is located in a
small, steep valley incised in the shaley part of the LFH-HU, the
transition zone of the Pierre Shale, and had water levels ranging
from about 8 to 10 feet below land surface. Well D23 is located
in a longer, flatter valley incised in the sandier part of the LFH-
HU compared to well D2 and had water levels ranging from
about 1.5 to 5.5 feet below land surface. Both sites were vege-
tated but not wooded, and ponds usually were present during
1993-98 within 20 feet of both sites. Comparison of continu-
ous-recorder data for wells D2 and D23 provides detailed infor-
mation about water-level fluctuations at hourly, daily, and
seasonal time scales.
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Hourly water-level data can indicate daily hydrologic
cycles affecting ground water. Hourly data for a 5-day period
during the (A) summer and (B) winter are shown in figure 8 for
well D2 and figure 9 for well D23. Comparing these four graphs
shows that water levels were slightly higher in the winter than
in the summer, and evaporation affects ground water at these
two sites less in winter. Winter water levels at wells D2 and D23
fluctuated about 0.05 foot or less during the 5-day period shown
in figures 8 and 9, whereas summer water levels at wells D2 and
D23 fluctuated more and indicated a distinct diurnal pattern.
Evapotranspiration has a 24-hour cycle and is a more dominant
process during summer when air temperatures are warm. Sum-
mer water levels at both wells have a 24-hour cycle that indi-
cates evapotranspiration, although the 24-hour cycle at well
D23 is more pronounced and typical of diurnal evapotranspira-
tion fluctuations. Evapotranspiration is more likely to affect
ground water in the vicinity of well D23 than D2 because the
water table is closer to the land surface at D23 and is more avail-
able to plant roots and more likely to be affected by changes in
surficial temperatures and humidity. The timing of the diurnal
cycles in the data can indicate whether evapotranspiration is
taking place close to the monitoring well or farther away. If
evapotranspiration takes place close to the well, water levels
would decline throughout the hot, daylight hours, then rise dur-
ing the cool, dark, night hours. If evapotranspiration takes place
farther from the well, the diurnal cycle could be offset. At both
wells, the summer water levels declined through the daylight
hours and were lowest from about 8 p.m. to midnight, which is
consistent with evapotranspiration taking place near the well.

The relation of recharge to precipitation is apparent when
precipitation and water-level data are compared at a seasonal
time scale. Water levels and precipitation data during and after
the rainy season from the continuous recorders are shown in
figure 10 for well D2 in 1997 and figure 11 for well D23 in
1996. In general, water levels at both wells were declining
before the rainy season began in July. The water-level data indi-
cate that the first rains did not recharge the aquifers; rain that
infiltrated did not sufficiently saturate the unsaturated zone to
recharge ground water. Additional rainfall in late July 1997 at
D2 or late August 1996 at D23 did infiltrate and recharge shal-
low ground water. The magnitude of water-level increase did
not always correlate with the magnitude of precipitation, indi-
cating that preceding conditions affect whether the portion of
the precipitation that infiltrates the ground surface recharges the
ground water (wet preceding conditions) or remains in the soil
zone (drier preceding conditions). The lag in water-level
response to precipitation during this period was less than one
week at both wells and often within one day, indicating that
ground water often recharges soon after infiltration. Water lev-
els rose and stayed fairly high at well D23 throughout October,
but water levels declined again at well D2 in September. Loca-
tions such as D2 and D23 where ground-water recharge is
nearly simultaneous with rainfall may be most susceptible to
ground-water contamination from anthropogenic applications.

A possible relation of recharge to precipitation is apparent
when specific-conductance, water-temperature, precipitation,
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and water-level data are compared at a seasonal time scale. Spe-
cific-conductance and water-temperature data from well D6
were paired with precipitation records from nearby well D2 for
1998 (fig. 12) to examine ground-water recharge. The slight
decline in specific conductance at well D6 in late summer and
fall is consistent with dilution of major ions and coincides with
increased ground-water temperature (fig. 12) and increased
water level (Appendix II). This relation indicates that warm
summer rains or ponds can recharge the ground water in the
vicinity of well D6 from about 8 days to several months after
large rainfall accumulations.

Another concept related to ground-water recharge is flow
paths. The pathway that water takes to reach the aquifer and the
pathways that water in the aquifer travels are known as ground-
water flow paths. Flow paths affect the amount of water that is
recharged, the timing of ground-water recharge, and the amount
of time water travels within the aquifer. Where the water in the
aquifer originates, what processes affect that water, and what
properties and chemistry are characteristic of that water are
related to flow paths. The likelihood that ground water is con-
taminated by the application of agricultural chemicals or biosol-
ids at the land surface largely is determined by ground-water
flow paths. Dissolved-gas and chlorofluorocarbon (DG-CFC)
data provide some flow-path information. DG-CFC’s are
present in air, trapped in the water that infiltrates through the
subsurface, and isolated from the atmosphere when the water
enters the saturated zone. Some DG-CFC’s can stay unchanged
in the ground water after recharge and sometimes can be used
as tracers, or indicators, of ground-water recharge history and
flow paths. The theory supporting the use of DG-CFC'’s as trac-
ers, as well as the specific sampling and analytical methods and
interpretive calculations, is explained by Busenberg and Plum-
mer (1992), Busenberg and others (1999), Heaton (1981),
Heaton and Vogel (1981), Heaton and others (1983), Plummer
and Friedman (1999), Stute and Schlosser (1999), Stute and
others (1992), and Wilson and McNeill (1997). Descriptions of
USGS DG-CFC applications also are provided on the Internet
(http://water.usgs.gov/lab/cfc/ and http://water.usgs.gov/lab/
dissolved-gas/, accessed October 2001).

Ground-water recharge information indicated by the 1998
dissolved-gas sampling for the study area (table 2) includes cal-
culated recharge water temperature, suggested recharge source,
and recharge altitude calculated from thermodynamic equilib-
rium principles applied to gas concentrations in ground-water
samples. Comparison of ground-water temperature during dis-
solved-gas sampling with the apparent recharge temperature
(fig. 13) can indicate whether the recharge water likely was
warmer than ground water as in the case of recharge from sum-
mer rain or ponding, about the same temperature as ground
water as in the case of recharge or flow from other ground
water, or colder than ground water as in the case of recharge
from ponds during the spring or fall (Plummer and others,
2001). The dissolved-gas results indicate that recharge sources
in the study area vary, but of the wells selected for DG-CFC
sampling, well D6 yielded the only ground-water sample that
indicates recharge directly from precipitation or perhaps warm
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Table 2. Ground-water recharge information indicated by dissolved-gas data collected at selected

wells near Deer Trail, Colorado, 1998.

[Temperature in degrees Celsius; Alt. Ft., altitude in feet above NGVD 29; dissolved-gas data and calculated information are
in table IL.5 in the back of the report; the uncertainty of the calculated recharge temperatures is less than 2 degrees Celsius;
dissolved-gas sampling and analytical methods and calculations are described by Busenberg and others (1999), Heaton (1981),
Heaton and Vogel (1981), Heaton and others (1983), Plummer and others (2001), Stute and Schlosser (1999),

Stute and others (1992), and Wilson and McNeill (1997)]

. . Temperature Suggested recharge Estimated
Sampling location
and date Sample, Calculated source recharge
field recharge (fig. 13) (Alt. Ft.)

D5 11/19/98 12 11.2 Pond or other ground water 5,217
D5 11/19/98 12 11.1 Pond or other ground water 5,217
D6 11/24/98 12.9 15.5 Rain or warm pond 5,217
D6 11/24/98 12.9 15.6 Rain or warm pond 5,217
D9 11/17/98 16.5 12.0 Cold pond or snowmelt 5,225
D10 11/19/98 13.2 11.5 Cold pond or snowmelt 5,220
D13 11/18/98 11.9 11.0 Pond or other ground water 5,264
D14 11/24/98 12.4 12.3 Other ground water 5,264
D17 11/18/98 14.3 11.0 Cold pond or snowmelt 5,264
D17 11/18/98 14.3 10.8 Cold pond or snowmelt 5,264
D24 11/17/98 12.8 12.6 Other ground water 5,200
D24 11/17/98 12.8 13.0 Other ground water 5,200
D25 11/18/98 13 99 Cold pond or snowmelt 5,160

(summer) ponding (table 2). These results are consistent with
the interpretation of the continuous-recorder data for well D6
(fig. 12). The estimated recharge altitudes (table 2) are approx-
imate but reasonable for the study area.

Ground-water recharge information indicated by the 1998
chlorofluorocarbon (CFC) sampling for the study area is listed
in table 3 and includes the apparent ground-water recharge date
and the degree of apparent mixing of old pre-1940 water and

young post-1940 water during recharge. Old water does not
contain CFC’s, and this generally is water recharged before
1940. Young water contains detectable CFC concentrations,
and this generally is water recharged after the 1940’s to 1950’s.
CFC data for DG-CFC-sampled wells in 1998 indicate apparent
ground-water recharge dates from 1993-98 at well D9 to about
1955-60 at well D25. Of the ground water sampled, only sam-
ples from well D9 and possibly well D24 appear to have been
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O] [9)] cooling after
T D 16 recharge, as
< w n B from rain or warm
T oc 1 14 d h
OS5 w pond recharge
% =0 12 r
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Figure 13. Comparison of sample temperature with calculated recharge
temperature for selected wells near Deer Trail, Colorado, based on 1998

dissolved-gas data.
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Table 3. Ground-water recharge information indicated by chlorofluorocarbon data collected at selected wells near Deer

Trail, Colorado, 1998.

[Temp., temperature; Alt, altitude; °C, degrees Celsius; ft, feet above NGVD 29; a range of recharge dates are listed to indicate amount of uncertainty
in the calculated dates; chlorofluorocarbon sampling and age-dating methods from Busenberg and Plummer (1992, Plummer and Busenberg (1999),

and Plummer and others (2001)]

Calculated Calculated Apparent mixing of
Well  Sampling recharge apparent ground-  Certainty PP 9
name date water recharge of age old and young ground
(OC) (ft) date
D3 11/17/98 11.0 5,217 1970-74 High Possibly
D5 11/19/98 11.1 5,217 1975-80 High No
D6 11/24/98 15.6 5,217 1961-69 Moderate' Yes*
D9 11/17/98 12.0 5,163 1993-98 Low? Possibly
D10 11/19/98 115 5,220 1982-87 High No
D13 11/18/98 11.0 5,264 1970-74 High Slight
D14 11/24/98 12.3 5,264 1970-75 High No
D17 11/18/98 11.0 5,264 1964-68 High Slight
D24 11/17/98 12.6 5,200 1989-95 Low Possibly
D25 11/18/98 9.9 5,160 1955-60 Moderate? No

TResults indicate mixing of old ground water, such as bedrock ground water, with younger water. The age of the older
fraction likely is older than calculated, and the age of the younger fraction likely is younger than calculated.

ZWell was pumped dry during sampling, which could introduce modern levels of chlorofluorocarbons into the sample
and make the sample appear to be more recently recharged than actual.

3Sample contained methane, which means the chlorofluorocarbon amounts likely have been microbially decreased
since recharge, so actual age is more recent than calculated by the model. A tritium analysis is needed to confirm this age.

4Ratios of chlorofluorocarbons indicate that at least 50 percent of this water is young (post-1940).

recharged during the 1990’s, although the D9 sample may have
been affected by modern air when the well was pumped dry dur-
ing sampling. Pumping the well dry can introduce modern air
into the sampling tubing and yield a recharge date more recent
than actual. Ground water in the other sampled wells appears to
have been recharged during the 1950’s through 1980’s (table 3),
which was before biosolids applications to the study area.
Ground water at some of the sites sampled for DG-CFC’s, how-
ever, may be old ground water such as from the bedrock aquifer
mixing with young ground water such as from recent recharge
or alluvial aquifers. The use of DG-CFC data to indicate mixing
of bedrock and alluvial water is discussed in the following sec-
tion, “Aquifer Interaction.”

Aquifer Interaction

Interactions between the bedrock and alluvial aquifers are
an important part of ground-water flow paths and affect con-
taminant transport. Bedrock ground water can be recharged
from overlying aquifers in the deeper parts of the Denver Basin,
which causes ground-water flow outward toward the basin mar-
gins (fig. 14). Bedrock ground water also can be recharged by

alluvial ground water or provide recharge to alluvial ground
water, depending on the hydraulic gradient between the aquifers
(fig. 14). Where alluvial aquifers or surface water recharges
the bedrock aquifer, surficial contaminants could be transported
to the bedrock aquifer. Where the bedrock aquifer recharges
alluvial aquifers, surficial contaminants are unlikely to be
transported to the bedrock aquifer. Flow paths and hydraulic
gradients are not permanent, however; additional ground-water
withdrawals such as pumping from new wells can reverse the
hydraulic gradients and change flow paths. Hydrologic and
hydrogeologic data for the study area are not sufficient to indi-
cate all specific flow paths between the aquifers but enable
some general flow-path inferences. Altitudes of water levels in
bedrock wells D11a and D29 were similar to those in nearby
shallow wells, indicating a close hydraulic connection between
the bedrock aquifer and alluvial aquifers at these locations. A
detailed comparison of water-level altitudes indicates that a
component of ground-water flow in these parts of the bedrock
aquifer could be toward the alluvial aquifers. Aquifer interac-
tion in the study area is further explored through four hydrogeo-
logic sections (figs. 15 and 16).
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Figure 14. Ground-water movement (from Robson and others, 1981, fig. 7).

Section E-E' (fig. 16) shows Muddy Creek and Cotton-
wood Creek drainage basins and indicates that the alluvial aqui-
fer in Cottonwood Creek probably receives recharge from the
Laramie-Fox Hills aquifer because water-level altitudes
decrease away from the ridge where well D29 is located. The
bedrock aquifer in the vicinity of well D29 lies beneath a rem-
nant section of the Laramie Formation, but data from well D29
indicate that the aquifer is unconfined at this location with only
a few feet of water in the sandstone above the shaley units.
Bedrock ground water at this location could be recharged by
rain infiltration on the hill and from other bedrock ground water
that flows northward in the aquifer. Well D1 could be dry
because no alluvial aquifer is present at that location, and the
well is screened above the bedrock aquifer. Well D12 is a wind-
mill well drilled by landowners before 1993. The well had low
yield; this well pumped dry during sampling when pumped at
0.3 gallon per minute. Well D12 could be completed in a shal-
low part of the bedrock aquifer because water levels in that well
were below the likely altitude of the base of the alluvium at that
location. From well D12, the water table slopes eastward
toward wells D31 and D30 before the ground water flows off
the MWRD property. The alluvium in the lower part of
Cottonwood Creek receives water from the bedrock aquifer.
Well D31 was constructed in a cored borehole and is completed
in Cottonwood Creek alluvium that is incised into the LFH-HU
in the transition zone of the Pierre Shale. Well D25, on the other
hand, is completed in the extensive flood-plain deposits of
Muddy Creek alluvium that are incised into the sandstone part
of the LFH-HU. Therefore, in the vicinity of wells D25, D30,
and D31, the alluvial aquifers likely are in close hydraulic con-

nection with the bedrock aquifer, and the bedrock aquifer likely
contributes at least some ground water to the alluvial aquifers.
Section F-F' (fig. 16) shows Muddy Creek and Rattle-
snake Creek drainage basins. The line of section follows the
stream valleys (fig. 15). The section also includes well D25 but
shows the entire alluvial aquifer from D28 to D25 that underlies
the tributary valley to Muddy Creek where these wells are
located. The water table could be continuous between wells
D22 and D28, but no water-level data were available for that
area. If a water table is present in the LFH-HU under the hill as
in section E-E', then the bedrock aquifer in the LFH-HU outcrop
area of the hilltop could be contributing ground water to the
alluvial aquifer in the lower part of the tributary valley to
Muddy Creek that contains wells D25 and D28. The lower part
of this valley contains alluvium that is incised into the sandstone
part of the LFH-HU. The bedrock ground water in the lower
part of this tributary valley to Muddy Creek likely is hydrauli-
cally connected with the alluvial ground water. Well D22,
however, is located in a small, steep Rattlesnake Creek valley
incised into the Pierre Shale transition zone within the LFH-
HU. The small, steeply sided shape of this valley makes it
unlikely to contain thick alluvial deposits; the water-level alti-
tude in well D22 is beneath the probable base of the alluvium.
In addition, the water-level altitude in well D22 is below that of
a downgradient pond in the same valley. Therefore, well D22
probably is completed in a shallow part of the Laramie-Fox
Hills aquifer. Surface water, when present in this part of Rattle-
snake Creek, could infiltrate and recharge the bedrock aquifer.
Section G-G' (fig. 16) shows the Muddy Creek drainage
basin. This section is entirely within the wide, flat Muddy Creek
flood plain. Alluvial deposits probably are extensive in this



28 Hydrology of a Biosolids-Application Site Near Deer Trail, Colorado, 1993-99

103°55'30" 103°54' 103°52'30" 103°51'
(| L M= = EXPLANATION
) \ARIRNT / ] R Study area
E == E' Cross section
- — Property-ownership boundary
% after 1995
39°37'30" =1 D30 g Monitoring wells
39°36' [+ 7
39°34'30"
39°33' |y
IR cEERN

Contour elevations generated from DEM data
Datum is NGVD of 1929

1 2 MILES
1 J

I I
1 2 KILOMETERS

o T O

Figure 15. Locations of hydrogeologic sections E-E’, F-F, G-G’, and H-H'.



29

Hydrogeology

" H-H pue ‘,9-9°4-4‘3-3 suonoas a16ojoaboipAq -g| ainbi4

DOTTVIISAHIOTD
HLIM TTdM SVO ANV TIO S
NOILLDHS SSO¥D F
AVAN ALV IOdVILXH

OH-HATHHL TTHM DNIIOLINOW |
40 HAISN'IOXE TVHS H¥¥Eld NOLLOAS SSO¥D

LINN - IV TTdM DNIIOLINOW m_m
LL X NOILYH3I99VX3 TVIILHIA OIHdVIOLLVILSOYAAH STIH XOA-HINVIV'T E

Sadd YAV OIDOT10dD  — ——
NH-HATHHL 40

IWNIANTIV E

H3LINOTIN L g0 0 HAISNTOXH NOLLVINIOAd dINVIVT
| | |
_ _ _ NOLLVNVT1dXH
TN L 70 0
G| ainbiy ur uMmoys uop9as Jo adeI|
006"t 006"t
- dy, _
L AH-HAT . — —
000G e = = B — 0006
- — = 1 7
L . n
— =
oot's [ —lool's @
A T w T = m
I Q o m R ! e
- u > = m T m
. F3 ©|0o© ol - , oz
00¢'s |M z S| z m_loomm m
RS % wn|l O | S 1 —
- pag =z S — o
S D O 1| o w ~ 1 — N
= —H|A " m m
—Q o) o= m Mz z < Q1 — ©
00g's & sZ2 =2 9 Hep s <
— M W o o = = z2 m nvaa | -
— o o z 2w (%) N I —
— % m N ﬁ ﬁ < 1 ol =~
C I a3
1334 NISVE oz z 9 [ 1334
7 AOVNIVIA NAHAD AOOMNOLLOD 3 Lo NISVE HOVNIVIA AT AAAIN o
' Py
§5
)
N
©



Hydrolgeology of a Biosolids-Application Site Near Deer Trail, Colorado, 1993-99

30

6¢ AADN 3IA0QYV 1334

panuiuo)—H-H pue ‘,9-9‘ 4-4‘,3-3 suonaas aibojoaboipAy gL aunbi4

DOTIVOISAHAOAD
HLIM TTHM SYO ANVTIO 6L
NOLLOAS SSO¥O T
AVAN QALY TOdVALXA |
(QH"HATHHL d TTM ONTIOLINOWN I
40 AAISNIOXA ATVHS H¥AAId b
NOILLOES SSOMO
LINA LV TTEM ONIIOLINOW T
OIHAVOLLYALSONAAH STIH XO&-AINVIVT  NH-HAT
SAAg YTV JID0TOAD  —  ——
NH-HATEHL 40
AAISIOXE NOLLYWAOL EINVavT | D waanTy [
NOLLVNVIdXH

00L'Y

LL X NOILVH399VX3 TVIILYIA

H3LINOTIN L G0

JIN L Z/\

00L'Y

008’y
006’
000'S
ooL‘s

00Z's

6¢ AASN
Jn08v 1334

NOILO3S NI dN3d

Gea l1sm

BN - ————— - -

/
NH-H41 Jo doj

T
I
! palejodelx 3 | om
| Iz
I I O
| Iz
| w
= [ m s
S = s s
= 3 s & e 32
O O
E 223
w Q
NISVE ADVNIVIA XTAAYD AAANNW
HILANOTN L

LU ——————-

008t
006’
000°S
ooL‘s

00Z's

00€’S

00t's

NOILO3S NI dN3d
6LIDI -~~~

0¢a l1sm
Lea (1em

G0

LL X NOILVHI99VX3 TVIILHIA
0 9 J ERIAN

000°S
00L'S
00Z's
00€'s
oov's

005's
1334
o

cealism

| _ na
| | m
m AR-HAT0 M_oZ_&m_ﬂ"am:xm m m
|
L ;5
: g 3¢ T g8
= S o
] 5

NISVE AOVNIVIA ANVNSHTLIVY NISVE HOVNIVIA NAHID XAd NN

000'S

ooL‘s

00Z's

._._
m
25
| |
@ E“ m I I MV
z | ‘ os]
z g 5 ! ' Hooe's 5
b= z z I I ©<
P n! o = ~—] 00%'G m
sf 83 § @
3 4 wwL 55 £ doog's
- O == — =
9z o2 o< o 133
N [} N
~ o1 h&

6¢ AADN 3IA0QV 1334



3

Hydrogeology

6¢ AADN 3IN08YV 1334

panuiuo)—: H-H pue ‘,9-9°‘4-4‘,3-3 suonoas aibojoaboipAq ‘gL ainbi4

NOLLOAS SSO¥D MVAN m_m
ALV IOdVILXH TTdM ONIFJOLINON .
AH-HATHHL 40 NOLLDAS SSO¥D IV TTdM DNIFMOLINOW m_m
HAISNTOXE ATVHS TH¥Ald I TTEM TTTINANIA LLHM
LINN OTHAVYDIIVYILS I Boqﬁwﬁm@wﬁmmwwo LU LL X NOILY4399VX3 T¥IILYIA
“OYdAH STTIIH XOd-dINVIVT E
OH-HAT FHL 40 SAdd YAMAVIA DID0T0dD _— YILANOTIY | 50 0
FAISNTOXE NOLLYINNO HINVIV'T B WOIAQTTY ! _ : I : |
NOLLVNV1dXd I o 0
G| 84nBly Ul UMOYS UOIIBS JO IBI|
000's 000's
00L's — ooL's
— M
- m
a m
7 —
o T ooz's >
002's |- -| 00z's &
C ] <
C ~<_ m
6 [ é i T o0e's Z
00€'S |- ; S1aer sorem ! | ooe's Z
C | | ] <
L | | _| W)
L m | _ Z | M | > N
0ov's [ e _ o o | S ! —] oov's ©
- g s = < | -
- N 3 NH-H41 40 doL : 0 ! ol 4
L - ! ms s = T s _
C ! Ss 3 = 83 5 7
00g's = Sg o ¥ Tg = — oog’s
1334 © @ ~ 5 B 1334
H H

NISVE HOVNIVIA MAAYD ANVNSHTLLVY NISVE ADVNIVIA XTI XAANN



32 Hydrogeology of a Biosolids-Application Site near Deer Trail, Colorado, 1993-99

large valley, which appears mostly to be incised in the sand-
stone part of the LFH-HU. The alluvial aquifer associated with
Muddy Creek probably is hydraulically connected with the
Laramie-Fox Hills aquifer. The proximity of Muddy Creek to
the confined part of the Laramie-Fox Hills aquifer to the west
(Robson, 1987) indicates a possible eastward component of
bedrock ground-water flow toward Muddy Creek (as shown in
fig. 14). If the confining pressure in the west is sufficient to pro-
duce upward vertical flow gradients from the bedrock aquifer
toward the alluvial aquifer, the bedrock aquifer would not be
affected by alluvial ground water or by anthropogenic applica-
tions such as biosolids in the vicinity of Muddy Creek. How-
ever, additional bedrock-aquifer wells would be needed to
determine whether upward flow gradients are present. Yields
from Muddy Creek wells D3, D25, D13, D17, and D20 were
higher than yields from well D21, which was pumped dry dur-
ing sampling (pumping at about 0.25 gallon per minute for
about 45 minutes). The lesser yield from well D21 can be
explained if well D21 is completed in a shaley part of the LFH-
HU and the other Muddy Creek wells are completed in alluvium
(D13, D17, D20, and D25) or the sandy part of the LFH-HU
(D3), as shown in figure 16.

Section H-H' (fig. 16) shows parts of the Muddy Creek and
Rattlesnake Creek drainage basins. As mentioned previously,
Muddy Creek alluvium probably is incised into the sandy part
of the LFH-HU, whereas the part of Rattlesnake Creek in the
vicinity of well D22 is incised into the shaley part of the LFH-
HU. This view of well D22 again supports the ideas that allu-
vium in the small valley where well D22 is located is thin and
that this well is completed in the shaley lower part of the bed-
rock aquifer; streamflow in this small valley could recharge the
bedrock aquifer and introduce surficial contaminants. The base
of the alluvium of the valley containing well D18, a dry well,
probably is above the bedrock aquifer; streamflow in the small
valley could recharge the bedrock aquifer and introduce surfi-
cial contaminants. Well D19 also is completed deeper than the
probable base of the alluvium and could be completed in the
bedrock aquifer. The water table could be continuous and
reflect topography between wells D19 and D22, but few water-
level data were available for that area.

Chlorofluorocarbon (CFC) data also can be used to evalu-
ate aquifer interaction. CFC data indicate that ground water
recharges slowly near wells D3, D5, D6, D13, D14, D17, and
D25, but ground water recharges rapidly near wells D9 and
D24. If all CFC concentrations are in the dateable range and
CFC-113 concentrations indicate much younger ages than the
CFC-11 and CFC-12 data for a single sample, then old, pre-
1940 water probably is mixing with young, usually post-1940
water at each site (Plummer and Busenberg, 1999). Of the wells
where DG-CFC sampling was done in 1998 (table 3), only CFC
data from well D6 all are in the dateable range and are consis-
tent with binary mixing of young water with old, pre-1940
water. If old, pre-1940 water mixes with young water that
recharged after 1950, ratios of the CFC concentrations can be
used to estimate the age of the young fraction and to determine
the percentage of young water in the mixture (Plummer and

Busenberg, 1999). The CFC concentration ratios for the sample
from well D6 indicate the young fraction makes up at least 50
percent of the ground-water mixture (table 3). This result is con-
sistent with the short delay between time of precipitation and
time of recharge indicated by the continuous-recorder data.
CFC data from wells D3, D9, and D24 are not all in the dateable
range but indicate possible mixing of old ground water with
young ground water (table 3). Old ground water probably is
water from deeper parts of the bedrock or alluvial aquifers and
is characteristic of long flow paths. Young ground water prob-
ably is recharged locally and is characteristic of short flow
paths. Sampling more wells in the study area for DG-CFC’s
could further define flow paths and ground-water recharge in
the study area, and future resampling of some wells for DG-
CFC’s could confirm apparent ages of ground water and general
flow paths presented in this report.

Thus, some shallow monitoring wells in the study area
probably yield water from shallow bedrock, some shallow wells
yield water from alluvium, and some shallow wells yield
mixed-aquifer water. Figures 14 and 16 and table 3 indicate
that, throughout the study area, the bedrock and alluvial aqui-
fers generally are in close hydraulic connection. In some
valleys, such as those containing wells D18 and D22, alluvial
aquifers likely are not present or are thin and above the ground-
water level of the bedrock aquifer (shown on the far right side
of figure 14); streamflow or the alluvial aquifer could recharge
the bedrock aquifer because flow gradients are downward. In
many valleys, however, the alluvial aquifer likely is within an
erosional channel incised into the LFH-HU, and the bedrock
aquifer could recharge the alluvial aquifer where upward flow
gradients exist. These interpretations indicate that contaminants
at the land surface could eventually affect water quality in the
alluvial aquifers and shallow parts of the bedrock aquifer
recharged by infiltrating precipitation or surface water, but con-
taminants likely would not affect the deeper parts of the bedrock
aquifer in the vicinity of the study area. Production wells in the
bedrock aquifer, however, could induce ground-water flow
from the alluvial aquifers to the bedrock aquifer and, therefore,
increase the effect of land-surface contaminants on the bedrock
aquifer. More detailed hydrologic and geologic information
would be needed to further define alluvial/bedrock aquifer
interactions and other components of ground-water flow.

Summary

The study area is located on the eastern margin of the Den-
ver Basin, a bowl-shaped sequence of sedimentary rocks. In the
vicinity of the study area, the uppermost rock formations are
highly eroded and consist of the upper part of the Cretaceous-
age Pierre Shale, the Fox Hills Sandstone, and the lower part of
the Laramie Formation. These geologic units were deposited in
a marine or near-shore environment and comprise the Laramie-
Fox Hills hydrostratigraphic unit (LFH-HU) and, where satu-
rated, the Laramie-Fox Hills aquifer. The Laramie-Fox Hills



aquifer is the only Denver Basin bedrock aquifer present in the
vicinity of the study area and so is used for domestic supply.
The LFH-HU is present beneath the entire study area and much
of the Metro Wastewater Reclamation District (MWRD) prop-
erties near Deer Trail and dips about 40 feet per mile to the
northwest. The LFH-HU is not present in the eastern two-thirds
of the MWRD’s south property, which is underlain by Pierre
Shale. The LFH-HU crops out or subcrops in much of the study
area.

Within the study area, the LFH-HU does not yield suffi-
cient water throughout to be called an aquifer. Depth to bedrock
ground water was about 55 feet below land surface at well D9
in the upper part of the Badger Creek drainage basin, but yield
from this well was insufficient to consider this ground water an
aquifer. Where present, the bedrock aquifer generally is uncon-
fined and has little saturated thickness and yield in the study
area. Two monitoring wells were constructed on hills and were
completed in the sandstone upper part of the Laramie-Fox Hills
aquifer. Water levels in these two wells fluctuated about
0.5 foot or less and were about 110 and 150 feet below land sur-
face during the 11 months of record. Depths to water in these
wells were the maximum measured in the study area. Potentio-
metric altitude calculated from water levels in the two monitor-
ing wells was about 5,261 feet above NGVD 29 at well D11ain
the southern part of the study area and about 5,214 feet above
NGVD 29 in well D29 in the northern part of the study area.
Saturated thickness of the upper, more permeable part of the
Laramie-Fox Hills aquifer was about 5 to 10 feet at these well
locations; yield was about 0.25 gallon per minute or less. Water
levels in these wells and other wells completed in the bedrock
aquifer indicate a component of ground-water flow to the north
in the study area and recharge to the bedrock aquifer along the
ridge. Additional wells would be needed to further assess the
extent of the bedrock aquifer, saturated thickness, and direc-
tions of flow in the study area.

Ground water also is present in shallow parts of the bed-
rock aquifer or in alluvial aquifers in four drainage basins: Bad-
ger Creek, Cottonwood Creek, Muddy Creek, and Rattlesnake
Creek. These drainage basins generally contained only ephem-
eral streams, which flowed only after intense rain. Most of the
precipitation in the study area was in the form of rain and was
received during late summer. Depth to shallow ground water
ranged from about 2 feet below land surface at well D23 in the
alluvium of Muddy Creek to about 37 feet below land surface at
well D3. Water levels fluctuated more in shallow wells than in
deep wells. Water levels commonly were lowest during June
through early July and highest during late July through Decem-
ber. Shallow ground-water levels likely were affected by evapo-
transpiration, especially during summer. Evapotranspiration
likely takes place close to wells D2 and D23. Hydrologic data
indicate that a component of ground-water flow for the shallow
aquifers is down valleys and generally follows topography. The
level of shallow ground water of the bedrock aquifer and allu-
vial aquifers generally represents the water table in the study
area.

Summary 33

Ground-water recharge of the shallow aquifers is variable
in space and time. Continuous-recorder data indicate that at
least some of the shallow ground water is recharged quickly
after rain—commonly within a day at wells D2 and D23 and
within months at well D6. The magnitude of water-level
increases does not always correspond to the amount of rainfall,
however, because recharge likely depends on preceding mois-
ture conditions in the unsaturated zone. Hydrologic and dis-
solved-gas data indicate that some areas of the shallow aquifers
were recharged by infiltration from rain or ponds, whereas other
areas likely were recharged by other ground water. Chlorofluo-
rocarbon data for selected wells indicate that apparent ground-
water ages ranged from 1 year or less at one site (D9) to about
40 years at another site (D25).

Interactions of the deeper parts of the bedrock aquifer with
shallow ground water include a general close hydraulic connec-
tion between alluvial and bedrock aquifers. Hydrologic and
hydrogeologic data for the study area are not sufficient to indi-
cate all specific flow paths between the aquifers but enable
some general flow-path inferences. These data indicate that
general ground-water flow paths in the study area could be from
the deeper parts of the Denver Basin outward toward the basin
margins, from the bedrock aquifer toward the alluvial aquifers,
from alluvial aquifers toward the bedrock aquifer, or from the
land surface downward through the unsaturated zone into the
bedrock or alluvial aquifers. Where the alluvial aquifer
recharges the bedrock aquifer, surficial contaminants could be
transported to the bedrock aquifer. Where the bedrock aquifer
recharges alluvial aquifers, surficial contaminants are unlikely
to be transported to the bedrock aquifer. Future production
wells could reverse the hydraulic gradient between the aquifers,
however, and increase effects from land-surface contaminants
on the Laramie-Fox Hills aquifer. Some alluvium or streamflow
in the study area such as near Rattlesnake Creek probably
recharges the bedrock aquifer, but the bedrock aquifer likely
provides recharge to the alluvial aquifers associated with
Muddy Creek and Cottonwood Creek. Chlorofluorocarbon data
indicate that water follows a long flow path to recharge ground
water near wells D3, D5, D6, D13, D14, D17, and D25, but fol-
lows a short flow path despite a thick unsaturated zone to
recharge ground water near wells D9 and D24. Old ground
water apparently is mixing with younger ground water in the
vicinity of well D6, and possibly at wells D3, D9, and D24.
More wells in the study area would need to be sampled for dis-
solved gases and chlorofluorocarbons to further define flow
paths and ground-water ages in the study area, and resampling
of some wells in the future would help confirm apparent ages of
ground water and general flow paths presented in this report.
These data could be used to better evaluate relative susceptibil-
ity of the aquifer to contamination from surface infiltration in
different parts of the study area.
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Methods of Data Collection and Construction of Maps and Hydrogeologic Sections

Introduction

Geologic and hydrologic data were collected from the study area during 1993 through 1999. Geologic data in this report include
lithologic descriptions and core data (Appendix I1). Geologic data used but not included in the report consist of geophysical well
logs from oil and gas exploration and lithologic logs from titanium exploration (these data were not collected by the USGS). The
information from these logs that was used to make plates 1 and 2 is shown in figure 11.7 (Appendix I1). Hydrologic data in this
report include ground-water level, precipitation, and water temperature measurements (Appendix I1). Data for
chlorofluorocarbons and dissolved gas in ground water are also included (Appendix I1). Methods of data collection followed
USGS protocols whenever possible.

Geologic Data

Lithologic descriptions (table 11.2 in Appendix 11) were compiled from driller’s notes prepared during the 1993-95 drilling of the
monitoring wells, from descriptions of cores or drill cuttings from the boreholes during 1995-97 well drilling, and from
geologists’ observations of outcrops at the study area in 1997-99. Samples of alluvium from cores obtained when wells D31 and
D33 were drilled in 1995 were analyzed for texture using a hydrometer at a USGS research laboratory in Denver, Colorado.
Data for these core samples are listed in table 11.4 in Appendix 1. Geophysical well logs on file with the Colorado Oil and Gas
Conservation Commission from oil and gas exploration and lithologic logs from USGS drilling in the vicinity of the study area
were used to prepare structure-contour maps and hydrogeologic sections (pls. 1-3; figs. 15 and 16). A geophysical well log for
USGS monitoring well DTX8 (drilled in 1999) also was considered in preparing the structure-contour maps (pls. 1-3; figs. 3 and
11.7).

Hydrologic Data

Ground-water monitoring wells were constructed according to standard USGS methods. The monitoring wells were surveyed
thoroughly by professional surveyors to a common vertical datum to enable detailed comparison of water-level altitudes.

Ground-water levels were measured monthly in USGS monitoring wells during 1993-98 using standard USGS methods (Garber
and Koopman, 1968); data are listed in table 11.3 in Appendix Il. Monthly water-level measurements were made September
1993 through May 1995 using a steel tape (Garber and Koopman, 1968, p. 2-6; Driscoll, 1986, p. 549-550). Monthly water-
level measurements were made June 1995 through September 1998 and in July 1999 using vinyl-coated electric tapes. Water-
level measuring equipment was checked regularly in the office and compared against each other about once a year in the field as
a measure of variability of the equipment.

Continuous recorders were installed at two well locations (D2 and D23) during 1994 and 1995. Water level was recorded at
these sites by automatic digital recorders (ADR’s), machines attached to floats (Garber and Koopman, 1968, p. 15) that punched
a paper tape hourly (Buchanan and Somers, 1982, p. 5-7). The tapes were then read into a computer, which translated the values
into water-level measurements. In May 1996, the ADR’s were replaced by electric digital recorders (EDR’s). The EDR’s
enabled multiple parameters to be monitored and logged at the same site, so rain gages were added to the well sites at wells D2
and D23. Precipitation was measured continuously at each EDR site by a tipping-bucket type rain gage mounted on a ground-
level cement pad. A plastic collection-container rain gage (mounted on a 6-foot post) provided a second, discrete measurement
of rainfall, but these data were recorded manually during site visits. Water level depth (depth below land surface, in feet) was
determined at each EDR from floats. The EDR’s were upgraded in January 1997 to data-collection platforms (DCP’s), which
had various sensors to continuously monitor rainfall, air temperature, water temperature, and ground-water levels at the two well
locations, D2 and D23. The DCP’s provided more extensive information about the hydrology in this area (including the response
of ground water to climate) and data that could be viewed remotely (such as from the Denver office) to enable enhanced
troubleshooting of the equipment. Water-level, water temperature, air temperature, and precipitation values were recorded every
hour from the DCP sites during 1997-98. The DCP data were transmitted every 4 hours from satellites to the USGS and were
available to the public on the Internet. Water level at each DCP site was determined using a submersible pressure transducer
(Garber and Koopman, 1968, p. 16-18; Driscoll, 1986, p. 552); precipitation was determined using the tipping-bucket rain gage
and collection-container rain gage. Water temperature was measured continuously at each DCP with a thermistor submersed in
the well. Air temperature was to be measured by a thermistor enclosed in a heat shield mounted on a post, but these instruments
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malfunctioned and did not provide accurate data. Status of the instrumentation and accuracy relative to manual field
measurements was checked during onsite visits at least once per month from 1995 through 1998.

Specific conductance and ground-water temperature were continuously monitored at well D6 from 1996 through 1998 by use of
submersible sensors cabled to a CR-10 data logger. The conductance sensor was calibrated or checked periodically with
standard solutions. These sensors were inspected during monthly site visits, and data were downloaded approximately monthly
from the data logger. The resulting data are provided in figures 12 and 11.6 (Appendix II). Large periods of missing record in
these data were the result of flooding in the nearby drainage that also flooded the continuous-recorder instrumentation.

Ground-water sampling of selected wells took place in November 1998 for dissolved gases and chlorofluorocarbons; data are
listed in tables 1.5 and 11.6. Equipment and methods used for this sampling are described by Busenberg and others (1999),
Plummer and Friedman (1999), Stute and others (1992), and Wilson and McNeill (1997). A description of sampling equipment
and methods, as well as the USGS applications of the resulting data, also are provided on the Internet (http://water.usgs.gov/lab/
cfc/ and http://water.usgs.gov/lab/dissolved-gas/, accessed in January of 2001). These samples were shipped to a USGS research
laboratory in Virginia for analysis. Data and a calculations spreadsheet containing equations were provided by the research
laboratory after analysis.

Quality-Assurance Methods

Quality-assurance methods routinely were used by the USGS in the collection of data from the study area. These methods
included replicate field measurements, checking and calibration of equipment, participation in performance-evaluation
programs, USGS internal project reviews, and data verification. All equipment was checked regularly and, if calibration was
possible, calibrated in the field or office. All equipment used to collect study-area data was kept in locked USGS facilities.
Sharing of this equipment with other sites was minimal to decrease the chance of cross-contamination from other sites.

Maps and Hydrogeologic Sections

Geophysical well logs on file with the State from oil and gas exploration, lithologic logs from titanium exploration and USGS
drilling, and field observations in the vicinity of the study area were used to prepare the structure-contour maps (pls. 1 and 2) in
1999. A geophysical well log for USGS monitoring well DTX8 (drilled in 1999) also was considered in preparing the structure-
contour maps (pls. 1-3; figs. 3 and 11.7). An example of how geophysical well-log data were used in this report is provided in
plate 3.

Geophysical logs from more than 300 oil and gas wells were interpreted to map the altitudes of the top and the base of the LFH-
HU in the subsurface at a scale of 1:50,000. The top of the LFH-HU generally is discernible in the geophysical logs for the area
by a sharp increase in resistivity (pl. 3) that is interpreted to be the top of a thick sandstone sequence in the Fox Hills Sandstone.
Sharp increases in resistivity above the thick sandstone sequence are interpreted as coal seams and are not mapped as part of the
LFH-HU. In some places, broad resistivity increases above the thick sandstone sequence are interpreted as discrete channel
sandstones in the lower Laramie Formation and are included as part of the LFH-HU. The base of the LFH-HU was selected on
the geophysical logs as the point below which resistivity becomes relatively uniform and low (pl. 3). This point is interpreted as
the base of the transition zone of the Pierre Shale. Where the LFH-HU is near the land surface and within the interval of the
well’s surface casing, the LFH-HU is not recorded in the geophysical log because the casing interferes with some types of
geophysical signals. In these cases, the altitudes of the top and base of the LFH-HU were estimated by correlating marker beds
below the casing shown on the geophysical logs. The top of the D sandstone member of the Pierre Shale (Kiteley, 1978) was the
principal marker bed used to estimate the altitude of the LFH-HU (pl. 3). Because of uncertainties associated with mapping the
LFH-HU in the subsurface and in outcrop, structural contours were drawn for the top and base of the unit by using the
preponderance of data rather than rigidly honoring every data value.

Inferences from the geophysical logs that were used to construct the structure-contour maps were then field checked in 1999 by
examining road cuts and outcrops (shown on pl. 2 as a filled triangle symbol) in the vicinity of the study area. The presence of
thin, discontinuous siltstone and sandstone layers in outcrops were interpreted as part of the Pierre Shale transition zone (part of
the LFH-HU) and were used to help define the eastern limit of the LFH-HU. The base of the LFH-HU generally was not
discernible in outcrop because of the transitional nature of the lithology between the LFH-HU and the rest of the underlying
Pierre Shale. The top of the LFH-HU is easily identifiable in outcrop in some places by a prominent, well-cemented sandstone
layer that contains abundant trace fossils of burrows and lies below a coal seam. In other places, the top of this unit is not easily
identifiable because a well-cemented sandstone layer is not evident at the top of the LFH-HU or is present at one or more
horizons below the top of the LFH-HU. Mapped areas of the LFH-HU, Laramie Formation, and Pierre Shale shown on plate 2
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include both outcrop areas (no unconsolidated material above the bedrock at the surface) and subcrop areas (unconsolidated
materials such as loess and alluvium unconformably overlie the bedrock). Outcrop areas were not differentiated from subcrop
areas for this mapping effort because the presence and thickness of the overlying unconsolidated deposits varied throughout the
mapped area, and subscrop data were limited. Mapped areas of the LFH-HU commonly were defined by intersecting the top and
base contours of the LFH-HU with the topography of the land surface as represented by county maps (U.S. Geological Survey,
1976, sheet 3; U.S. Geological Survey, 1980a, sheet 2). Data from lithologic logs of mineral-exploration borings and water
wells, field observations, and existing geologic maps and reports were correlated to data from geophysical logs to further
delineate or check mapped outcrop-subcrop areas. The accuracy of the LFH-HU outcrop areas delineated on plates 1 and 2
generally is limited by the accuracy of the structural contours and the accuracy of the topographic maps used to derive the
outcrop areas, as well as by the lack of detailed data about occurrence and thickness of loess or alluvial deposits in the vicinity
of the study area.

Geophysical well logs on file with the Colorado Oil and Gas Conservation Commission from oil and gas exploration and
lithologic logs from USGS drilling in the vicinity of the study area also were used to prepare hydrogeologic sections (figs. 15
and 16). Water levels, screened interval, and lithology for all the USGS monitoring wells were compared with geophysical logs
from oil and gas wells in the vicinity of the study area. The sandstone-shale boundary observed during drilling of wells D11a
and D29 was used as the upper marker bed (fig. 16) because this boundary also was apparent on some geophysical logs (pl. 3).
A sharp increase in the resistivity apparent on most geophysical logs in the lower part of the LFH-HU was used as a second,
lower marker bed (pl. 3, fig. 16) to project structure across the sections in figure 16. Water-table information shown on these
sections was extrapolated from USGS monitoring-well data (Appendix 11). Gaps or queries in the water table shown in figure 16
resulted from a lack of information in some areas.
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Appendix 11
Hydrogeologic Data
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64 Hydrogeology of a Biosolids-Application Site near Deer Trail, Colorado, 1993-99

Table 1l.2. Lithologic descriptions for U.S. Geological Survey monitoring wells near Deer Trail, Colorado, 1993-98.

Well D1

(Description from driller’s notes)

Depth Below
Land Surface

Source

Description of Material

0 -3 feet Surficial drill cuttings Top soil is light-brown clay mixed with silt.
3 — 8 feet Surficial drill cuttings Very hard, silty, dry clay.
8 — 13 feet Surficial drill cuttings Same material.
13 — 15 feet Surficial drill cuttings Little easier drilling from 11.5 to 13 feet; otherwise same material.
Well D2
(Description from driller’s notes)
E:f;hsﬁ:?:; Source Description of Material
0 -3 feet Surficial drill cuttings ~ Top soil is light-brown clay mixed with silt.
3 -8 feet Surficial drill cuttings  Soft clay at 3 feet.
8 — 13 feet Surficial drill cuttings ~ Same material.
13 — 18 feet Surficial drill cuttings ~ Very easy drilling; water at 14—15 feet.
18 — 23 feet Surficial drill cuttings ~ No change; saturated silty clay.
Well D3
(Description from driller’s notes)
I_D:r?;hsﬁﬂ:; Source Description of Material
0 -3 feet Surficial drill cuttings Medium-brown, dry, silty clay.
3 — 8 feet Surficial drill cuttings Tighter at 4 feet; same material; a little damp.
8 — 13 feet Surficial drill cuttings Hard, dry, silty clay; darker brown color.
13 — 18 feet Surficial drill cuttings At 15.5 feet, getting harder—more silt.
18 — 23 feet Surficial drill cuttings Soft at 18.5-19 feet; a little perched-water zone.
23 — 28 feet Surficial drill cuttings Tighter at 23.5 feet; a little silty clay; damp.
28 — 33 feet Surficial drill cuttings Moist, fine-grained sand; very hard at 28 feet; loose at 31 feet.
33 — 38 feet Surficial drill cuttings Soft, moist, fine-grained sand; very loose; water at 35-35.5 feet.
38 — 43 feet Surficial drill cuttings Saturated fine sand.
43 — 48 feet Surficial drill cuttings No change.
Well D4
(Description from driller’s notes)
I?:r?c:hsgﬂ:cl Source Description of Material
0 - 3 feet Surficial drill cuttings Topsoil is a light-brown, silty clay.
3 — 8§ feet Surficial drill cuttings Bone-white clay; very dry and hard.
8 — 13 feet Surficial drill cuttings Soft, dry, silty clay grades to sand or fine-grained sand; light-brown and dark-
yellow color.
13 — 18 feet Surficial drill cuttings Hard clay; return of a lot of fine-grained yellow and light-brown sand.
18 — 23 feet Surficial drill cuttings Same material.
23 — 28 feet Surficial drill cuttings No change.
28 — 32 feet Surficial drill cuttings Softer from 29-31; water at 31 to 32 feet; hard, black clay at bottom.
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Table 11.2. Lithologic descriptions for U.S. Geological Survey monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

Well D5
(Description from driller’s notes)
I_Daer?;hsﬁﬂ:; Source Description of Material
0 -3 feet Surficial drill cuttings Dry, tan, silty, powdery clay.
3 — 8 feet Surficial drill cuttings Silty clay; moist at 7 feet.
8 — 13 feet Surficial drill cuttings Very moist; soft, silty clay.
13 — 18 feet Surficial drill cuttings Water at 15 feet; saturated silty to sandy clay.
18 — 23 feet Surficial drill cuttings Saturated sandy silt.
23 - 27 feet Surficial drill cuttings Same material.
Well D6
(Description from driller’s notes)
E:ﬁ;hsﬁﬂ:(l Source Description of Material
0 -3 feet Surficial drill cuttings Dry, silty, powdery, light-brown clay.
3 — 8 feet Surficial drill cuttings Silty clay; moister at 7 feet.
8 — 13 feet Surficial drill cuttings Water at 10 to 11 feet; wet silty clay.
13 — 23 feet Surficial drill cuttings Saturated, silty, sandy clay.
Test Borehole About 15 Feet Southeast of Well D6
(Description from geologist’s notes)
I_Daer?;hsﬁﬂ:; Source Description of Material
0—27.5 feet Core Damp, brown clayey loam or loamy clay with thin zones of wet, clay-rich,
medium-brown silt containing a few small pebbles, coal fragments, or semi-
lithified shale fragments; stiff, plastic, moist, brown clay at about 13 feet. More
wet at about 13.8, 14, and 18 feet. Many sugary white crystal pods throughout.
27.5—28 feet Core Wet, brown-gray-orange-white angular to subrounded gravel and sand in brown
loam.
28—28.5 feet Core Dry, gray, interbedded silt and shale.
28.5—30 feet Core Dry, dark-gray shale.
Well D7
(Description from driller’s notes)
E:ﬁ;hsﬁﬂ:(l Source Description of Material
0 -3 feet Surficial drill cuttings Dry, tan, silty clay.
3 — 8 feet Surficial drill cuttings Same material; at 7.5 feet changes to moist silty clay.
8 — 13 feet Surficial drill cuttings Very easy drilling; water at 9-10 feet; saturated silty clay and fine sand.
13 — 18 feet Surficial drill cuttings Same material.
18 — 23 feet Surficial drill cuttings Saturated silty clay and fine-grained sand.
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Table I1.2. Lithologic descriptions for U.S. Geological Survey monitoring wells near Deer Trail, Colorado, 1993-98.—Continued
Well D8
(Description from driller’s notes)
E:ﬁ;hsﬁﬂ:; Source Description of Material

0-2.5 feet Surficial drill cuttings Tan, dry, silty clay.

2.5-17.5 feet Surficial drill cuttings A little moist at 6.5 feet; turning to a black silty clay.

7.5 -12.5 feet Surficial drill cuttings Water at 8-8.5 feet water; saturated fine silty clay and sand.

12.5-17.5 feet Surficial drill cuttings Saturated silty clay to fine sand.

17.5 — 22 feet Surficial drill cuttings Same material.

Well D9
(Description from driller’s notes)
I?:r?c:hsﬁrefl:c‘:’; Source Description of Material

0 -3 feet Surficial drill cuttings Moist topsoil of silty clay.

3 — 8§ feet Surficial drill cuttings Drier silty clay.

8 — 13 feet Surficial drill cuttings More fine sand and clay, less silt; moist at 8.5 feet.

13 — 18 feet Surficial drill cuttings Same material as above.

18 — 33 feet Surficial drill cuttings Less clay; finer sand.

33 — 43 feet Surficial drill cuttings Fine sand, little clay.

43 — 48 feet Surficial drill cuttings Tighter at 45 feet; hard, fine, sandy clay.

48 — 53 feet Surficial drill cuttings Moist, fine sand.

53 — 58 feet Surficial drill cuttings Water at 55 feet; wet, fine, silty sand.

58 — 63 feet Surficial drill cuttings Harder drilling beginning at 62 feet.

Test Borehole About 15 Feet Northeast of Well D9
(Description from geologist’s notes)
I_D:r?;hsﬁﬂ:; Source Description of Material

0 - 19 feet Core Dry, brown silty loam or very fine-grained sand with some thin clay-rich zones.

19 — 24 feet Core Damp, brown clayey loam containing a few small sandstone pebbles at the top and
grading downward into more clay. Semi-lithified clay at about 24 feet.

24 —48.5 feet Core Damp, brown clayey loam or loamy silt containing tiny coal fragments and thin
coal layers at 32—34 feet. Some sugary white crystal pods at 29 feet. Some semi-
lithified sandstone pebbles at about 36 and 48 feet. Generally more sandy at
about 48 feet. Outside of core barrel wet from 27.5-28.5 foot interval.

48.5 — 53.5 feet Damp, brown, fine-grained sand and silt grade into gray silt that contains many
large smears of black at 50-51 feet and orange at 51.5-53.5 feet. Contains large,
hard, sub-angular siltstone fragments and softer rounded sandstone fragments.

53.5-57.5 feet Core Damp, soft, loamy sand with sandstone pebbles at 5455 feet. Colors are gray,
brown, yellow, black, and orange in a striped or smeared pattern.

57.5 - 60.5 feet Core Dry, crumbly, interbedded silt, clay, and shale. Colors are gray, brown, yellow,

black, and orange in a striped pattern.
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Table I1.2. Lithologic descriptions for U.S. Geological Survey monitoring wells near Deer Trail, Colorado, 1993-98.—Continued
Well D10
(Description from driller’s notes)
E:ﬁ;hsﬁﬂ:; Source Description of Material
0 -3 feet Surficial drill cuttings Dry; tannish silty clay.
3 — 8 feet Surficial drill cuttings Same material; very soft, moist, silty clay at 6 feet; water at 7 — 7.5 feet.
8 — 13 feet Surficial drill cuttings Saturated fine sandy silt.
13 — 18 feet Surficial drill cuttings Saturated fine sandy silt.
Well D11
(Description from driller’s notes)
E:f;hsﬁ:?:; Source Description of Material
0 -3 feet Surficial drill cuttings Powdery, light-brown, silty clay.
3 -8 feet Surficial drill cuttings No change; same material, but a little tighter and harder at 6 feet.
8 — 13 feet Surficial drill cuttings A little moist; silty clay at 11 feet.
13 - 13.5 feet Surficial drill cuttings Hard drilling at 13 feet.
Well D11a
(Description from geologist’s notes; <, less than; %, percent)
E:ﬁ;hsﬁﬂ:; Source Description of Material
0 — 35 feet Air rotary cuttings Fine-grained, beige, friable, calcareous quartz sandstone with few small (<1/4
inch) iron concretions; calcareous bioturbations.
35 - 175 feet Air rotary cuttings Fine-grained sandstone (same as above) with 20 — 80% clay in drill cuttings;
brown.
75 — 100 feet Air rotary cuttings Fine-grained, soft, beige, friable, sandstone and silt.

100 — 120 feet
120 — 140 feet

Windmill well drilled by landowners before 1993: U.S. Geological Survey pulled pump and cables from this well in 1993 before sampling.

Air rotary cuttings
Air rotary cuttings

Beige to orange, soft, friable sandstone; water near 120 feet.

Gray to dark-gray shale with some tiny anhedral pyrite crystals near 125 feet;
denser shale at 134 — 140 feet.

Well D12

No lithologic information available.

Well D13
(Description from driller’s notes)
I?:r?c:hsgﬂ:cl Source Description of Material
0 - 3 feet Surficial drill cuttings Silty, powdery clay; moist at 1.5 feet with black and dark-brown fine sand; light-
gray fine sand at 3 feet.
3 — 8 feet Surficial drill cuttings Saturated, fine-grained sand; water at 4.5 to 5 feet.
8 — 15 feet Surficial drill cuttings Same material as above.
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Table I1.2. Lithologic descriptions for U.S. Geological Survey monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

Well D14
(Description from driller’s notes)
I?:r?c:hsﬁrefl:c‘:’; Source Description of Material
0 -3 feet Surficial drill cuttings Dry, fine, silty sand.
3 — 8§ feet Surficial drill cuttings Trace of clay at 3.5 feet; moist at 5 feet; more silty clay at 6 feet, then sandy clay.
8 — 13 feet Surficial drill cuttings Saturated fine sand; water table at 10 — 11 feet.
13 — 18 feet Surficial drill cuttings Same material.
18 — 23 feet Surficial drill cuttings No change; saturated fine sand.
Well D15
(Description from driller’s notes)
E:ﬁ;hsﬁﬂ:; Source Description of Material
0 — 3 feet Surficial drill cuttings Dark-brown, silty sand; moist at 1 feet; dark clay at 1.5 feet; hard dry clay at 2 feet;
moist clay at 3 feet.
3 — 8§ feet Surficial drill cuttings Moist, silty clay; dark brown clay at 4 feet.
8 — 13 feet Surficial drill cuttings Medium-brown silty clay; water table at 12 — 13 feet.
13 — 18 feet Surficial drill cuttings Saturated, dark-gray silty sand with little clay.
18 — 23 feet Surficial drill cuttings Same material.
Well D16
(Description from driller’s notes)
E:ﬁ;hsﬁﬂ:; Source Description of Material
0 -3 feet Surficial drill cuttings Dry, silty clay balls; moist at 3 feet.
3 — 8 feet Surficial drill cuttings Very moist clay; silty at 5 feet with a little perched-water zone.
8 — 13 feet Surficial drill cuttings Medium-brown silty clay with a hard clay bed at 9.5 feet.
13 — 18 feet Surficial drill cuttings Saturated, fine-grained sand; water at 13 feet.
18 — 23 feet Surficial drill cuttings Wet, fine-grained sand; trace of clay lenses.
Well D17
(Description from driller’s notes)
E:f;hsﬁ:?:; Source Description of Material
0 -3 feet Surficial drill cuttings Black silty sand; more clay at 1.5 feet grading into light-brown fine sand at 2 feet.
3 — 8 feet Surficial drill cuttings Trace of gravel at 6.5 feet; moist, fine sand from 7-7.5 feet.
8 — 13 feet Surficial drill cuttings Saturated, fine-grained sand; water at 10 feet.
13 - 20 feet Surficial drill cuttings Same material as above.
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Table ll.2. Lithologic descriptions for U.S. Geological Survey monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

Well D18
(Description from driller’s notes)
I?:r?c:hsﬁrefl:c‘:’; Source Description of Material
0 -3 feet Surficial drill cuttings Dry, silty, clay balls.
3 — 8§ feet Surficial drill cuttings Fragments of yellow sandstone at 4 — 6 feet; very thin layers.
8 — 12.5 feet Surficial drill cuttings Tighter at 10 feet; medium brown clay getting moist at 11.5 feet; hard drilling at 12
feet.
Well D19
(Description from driller’s notes)
E:ﬁ;hsﬁﬂ:(x Source Description of Material
0 -3 feet Surficial drill cuttings Black fine-grained sand; trace of clay at 2 feet; light-brown sand at 2.5 feet.
3 — 8 feet Surficial drill cuttings Same material as above; moist at 8 feet.
8 — 13 feet Surficial drill cuttings Trace of gravel at 8.5 feet; black stringer of fine-grained sand at about 11-12 feet,
then back to light brown fine sand.
13 — 18 feet Surficial drill cuttings Clay bed at 14 feet; dark silty clay balls.
18 — 23 feet Surficial drill cuttings Saturated fine sand; water at 17—18 feet.
23 — 28 feet Surficial drill cuttings Same material as above.
Well D20
(Description from driller’s notes)
I?:r?c:hsgﬂ:c‘:: Source Description of Material
0 - 3 feet Surficial drill cuttings Medium-brown silty sand to dark-brown sand; clay balls at 2 feet.
3 — 8 feet Surficial drill cuttings Moist, silty, sandy clay at 3.5 feet; a trace of gravel at 5 feet; very soft gray clay at
about 8 feet.
8 — 13 feet Surficial drill cuttings Saturated sand with a little gravel; water at 9 — 10 feet; same material.
13 — 20 feet Surficial drill cuttings Silty sand with a little gravel; saturated.
Well D21
(Description from driller’s notes)
E:f;hsﬁ:?:; Source Description of Material
0 -3 feet Surficial drill cuttings Silty powdery clay and sand.
3 — 8 feet Surficial drill cuttings Light-brown fine-grained sand with clay; moist clay and a trace of gravel at 6 feet;
very moist at 7 feet.
8 — 13 feet Surficial drill cuttings Gray silty sand with water at 8-8.5 feet; saturated fine sand at 10 feet.
13 — 18 feet Surficial drill cuttings Stringers of clay and sand; black organics at 15—18 feet (black as coal) which have

no smell.
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Table Il.2. Lithologic descriptions for U.S. Geological Survey monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

Well D22
(Description from driller’s notes)
Depth Below _— .
Land Surface Source Description of Material
0 -3 feet Surficial drill cuttings Medium-brown silty sand; light tan silt.
3 — 8§ feet Surficial drill cuttings Gravel at 5 feet; moist silty clay at 7 feet.
8 — 13 feet Surficial drill cuttings Moist, dark-brown silty clay; trace of gravel at 11.5-12 feet.
13 — 18 feet Surficial drill cuttings Medium-brown clay.
18 — 23 feet Surficial drill cuttings Silty clay and fine-grained sand; gravel at 19 feet.
23 — 28 feet Surficial drill cuttings Fine sand and clay getting drier and tighter.
28 — 33 feet Surficial drill cuttings Very dark-gray to black, dry clay.
33 — 37 feet Surficial drill cuttings Hard drilling at 37 feet.
Well D23
(Description from driller’s notes)
Depth Below i .
Land Surface Source Description of Material
0 - 3 feet Surficial drill cuttings Hard, dry, silty clay; moist silty clay at 2 feet.
3 — 8 feet Surficial drill cuttings Moist, dark-gray silty clay.
8 —13.5 feet Surficial drill cuttings Silty, sandy clay; water at 8.5 — 9 feet.
Well D24
(Description from driller’s notes)
Depth Below - .
Land Surface Source Description of Material
0 -3 feet Surficial drill cuttings Sandy silt.
3 —41 feet Surficial drill cuttings Sandy clay.
41 — 58 feet Surficial drill cuttings Clayey sand.
Well D25
(Description from driller’s notes)
Depth Below . .
Land Surface Source Description of Material
0—3.5 feet Surficial drill cuttings Sandy silt.
3.5 - 23 feet Surficial drill cuttings Clayey sand; water at 15 feet.
Test Borehole About 15 Feet South of Well D25
(Description from geologist’s notes)
Depth Below . .
Land Surface Source Description of Material
0—7 feet Core Damp, medium-brown, silty loam with some fine-grained sand grains; more clay
at about 1 foot and 5-6 feet.
7—38.5 feet Core Wet, dark-brown loamy clay with some grains of coarse sand becoming drier and

more mottled after about 7.5 feet.
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Table 11.2. Lithologic descriptions for U.S. Geological Survey monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

Test Borehole About 15 Feet South of Well D25 —Continued

(Description from geologist’s notes)

8.5—14 feet Core Damp, brown clayey loam with thin zones of wet, clay-rich, medium-brown silt
containing a few small pebbles, coal fragments, or semi-lithified shale frag-
ments.

14—19.8 feet Core Wet, medium-brown clay loam grading downward into loamy sand that contains
angular and sub-angular rock fragments.

19.8—23.5 feet Core Damp, gray, well-sorted fine-grained sand and silt having distinct orange hori-
zontal banding.

Well D26
(Description from driller’s notes)
Depth Below - .
Land Surface Source Description of Material
0 - 12 feet Surficial drill cuttings Sandy silt.
12 — 42 feet Surficial drill cuttings Clayey sand.
Well D27
(Description from driller’s notes)
Depth Below - .
Land Surface Source Description of Material
0 - 6 feet Surficial drill cuttings Sandy silt.
6 — 23 feet Surficial drill cuttings Clayey sand.
Well D28
(Description from driller’s notes)
Depth Below . .
Land Surface Source Description of Material
0 -5 feet Surficial drill cuttings Sandy silt.
5 — 28 feet Surficial drill cuttings Clayey sand.
Well D29
(Description from geologist’s notes)
Depth Below - .
Land Surface Source Description of Material

0 -5 feet Air rotary cuttings Uniform brown sandy loam.

5—15 feet Air rotary cuttings Brown, fine-grained loamy sand with soft chunks of friable, beige sandstone.

15 — 25 feet Air rotary cuttings Beige, fine-grained, friable sandstone; calcareous with chunks of bioturbated sand-
stone near 15 feet and brownish-orange lithified sandstone near 20 feet.

25 - 30 feet Air rotary cuttings Hard, dark, gray-brown shale.

30 - 75 feet Air rotary cuttings Interbedded beige, soft, friable sandstone with orange-brown and harder red-
brown sandstone; friable dark brown shale from 35-38 feet.

75 — 85 feet Air rotary cuttings Black friable shale and gray clay.
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Table 1l.2. Lithologic descriptions for U.S. Geological Survey monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

Well D29 —Continued

(Description from geologist’s notes)

85 — 125 feet
125 — 153 feet

153 — 180 feet

Air rotary cuttings

Air rotary cuttings

Air rotary cuttings

Inter-bedded beige friable sandstone and gray clay with shale fragments.

Inter-bedded soft, orange, silty sandstone with gray clay and gray-black shale;
formation has water somewhere in this zone.

Gray-black shale.

Well D30
(Description from driller’s notes)
I_Daer?;hsﬁﬂ:; Source Description of Material
0 -1 feet Surficial drill cuttings Sandy silt.
1 -9 feet Surficial drill cuttings Clayey sand; wet at 8 feet.
9 —19 feet Surficial drill cuttings Sandy clay.
Well D31
(Description from geologist’s notes)
E:ﬁ;hsﬁﬂ:(l Source Description of Material
0—4.5 feet Core Dark-brown, clay loam with angular sand grains; some bedding and sub-angular to
rounded grains near 4.5 feet.
4.5 -9 feet Core Water at 8.5-9 feet; medium-brown clay loam with some black organic-rich
streaks; no strong sulfide smell; fairly well-sorted; anhedral gypsum.
9 — 14 feet Core Wet, clay-rich, medium-brown silty loam; black reducing organics; some sub-
angular granitic sand grains and rounded pebbles from 12-14 feet.
14 — 19 feet Core Wet, medium-brown clay loam with angular sand fragments to loamy sand.
19 — 24 feet Core Wet, medium-brown clay loam with pebbles grading into dry gray and black clay.
Well D32
(Description from driller’s notes)
I_D:r?;hsﬁﬂ:; Source Description of Material
0 -3 feet Surficial drill cuttings Sandy silt
3 -21 feet Surficial drill cuttings Clay
21 - 38 feet Surficial drill cuttings Clayey sand
Well D33
(Description from geologist’s notes; <, less than)
I?:r?c:hsﬁrefl::: Source Description of Material
0 —4 feet Core Dry, medium-brown sandy loam with abundant white roots at surface and coarse
sand at about 1 foot.
4 — 8 feet Core Dry, dark-gray, fine-grained sandy loam with some hard clay.
8 — 13 feet Core Dry, light-brown clay loam with thin (<1 inch) sandy beds interlayered; fine-
grained sandy loam with sub-angular grains; wet granitic sands at 12-13 feet.
13 — 18 feet Core Wet, medium-brown sandy loam; sub-angular granitic grains and clay-rich zones
with black organic debris.
18 — 23 feet Core Very wet, fine-grained clay-rich silty loam.
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Table 1.3 Monthly water-level and precipitation data for monitoring wells near Deer Trail, Colorado, 1993-98.

[Date includes time of measurement if that information is available and is of the format month/day/year military time; ft. bmp, feet below measuring point;
Precip., monthly precipitation as measured in a plastic collection-type gage; --, not measured]

Well D1 Well D2 Well D3 Well D4 Well D5
pate ML Date "L fnones pate ML Date M pate ML

9728193 4000 _ 9/28/93 2700 10/1/93 740

10/4/94 dry  10/4/94 12.93 —  9/29/94 4013 9/29/94 2741 10/3/94 16.20
1220 1418 0930 1449 1408

11/25/94 dry  11/25/94 12.53 — 1125094 4019 11/25/94 2743 11/25/94 14.77
1400 1340 0815 0854 1320

12/12/94 dry  12/12/94 12.55 — 12/12/94 4016 12/12/94  27.50  12/12/94 14.93
1505 1450 1105 1124 1441

1/30/95 dry  1/30/95 12.57 — 1730095 4014 1/30/95 2755 1/30/95 15.26

3/20/95 dry  3/20/95 12.44 — 320095 40.16  3/20/95 27.61  3/20/95 15.28

4/11/95 dry  5/1/95 12.42 — 471195 4015 4/11/95 27.60  4/11/95 15.28

5/1/95 —~ 5195 12.42 — 51195 4017 5/1/95 2766 5/1/95 15.39

6/22/95 — 62295 - — 612295 —  6/22/95 2735  6/22/95 -

7/12/95 — 712095 - — 7112095 — 12095 2725 7/12/95 -

9/20/95 — 972795 12.98 —  920/95 4025 9/22/95 2730 9/27/95 14.37
1400 0930 1300 1111

10/30/95 dry  10/30/95 12.71 — 103095 4020  10/30/95 2734 10/30/95 14.51
1259 1154 0840 0922 1121

11/30/95 dry  11/30/95 12.52 —  11/3095 4017 11730095  27.32  11/30/95 14.73
1457 1537 0745 0910 1409

12/13/95 dry  12/13/95 12.75 — 1271495 4016 12/13/95 2735  12/13/96 -

1135 1308 1350

1/25/96 dry  1/25/96 12.50 —  1/25/9 4012 1/25/96 2736 1/25/9 15.04
1135 1150 1425 1450 1220

2/6/96 dry  2/6/96 12.46 — 2069 4017 2/6/96 2742 2/6/96 15.11
1435 1446 1205 1140 1505

2/21/96 — 21229 12.54 —  2/21/9 4017 2/21/96 2746 2/22/96 15.19
0734 0756 0734 0833 1040

3/5/96 —~ 379 12.56 —~ 3069 40.18  3/6/96 2755  3/8/96 15.31
1235 1215 1020 0808

4/4/96 dry  4/4/96 12.47 —  4/496 40.17  4/4/96 2754 4/4/96 15.39
0945 0955 1210 1225 1005

5/2/96 dry  5/2/96 12.28 —~ 51219 40.19  5/2/96 2748 51296 15.31

6/13/96 —~ 6129 12.44 275 6/13/96 4021  6/14/96 2757  6/13/96 15.50
0808 1242 0815 1305

713196 dry  7/3/96 12.27 22 739 4022 7/3/96 — 7739 15.59
1005 1036 1350 1105

8/7/96 —~ 879 11.33 498  8/7/96 4023 8/7/96 —~ 819 -
1617 1430 1415 1750

8/21/96 — 8219 11.43 —  8/21/9 —  8/20/96 — 812219 15.19
1356 1110

9/11/96 dry  9/11/96 11.49 205 9/11/96 —~  9/11/96 —  9/11/9 15.03
1015 1035 1110

10/3/96 —~ 10739 11.67 19 1039 ~  10/3/96 —  10/3/96 14.90
0810 1105

11/7/96 — 11779 11.76 026  11/8/96 ~  11/8/96 —  11/8/96 15.02

1105 900
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Table 1.3 Monthly water-level and precipitation data for monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

[Date includes time of measurement if that information is available and is of the format month/day/year military time; ft. bmp, feet below measuring point;
Precip., monthly precipitation as measured in a plastic collection-type gage; --, not measured]

Well D1 Well D2 Well D3 Well D4 Well D5
e WALl oo Welewh P oy Wemleel oy Wamieel gy, Welie
12/3/96 dry 12/3/96 11.90 -- 12/3/96 40.07 12/3/96 27.08 12/3/96 15.09
915 950 1205 1242 1027
1/7/97 dry 1/7/97 11.80 -- 1/7/97 40.01 1/7/97 27.03 1/7/97 15.16
942 1002 1157 1247 1049
2/4/97 dry 2/4/97 11.81 0.07 2/4/97 39.98 2/4/1997 27.09 2/4/97 15.36
1118 1023 1249 1537 1136
3/6/97 dry 3/6/97 11.82 0.19 3/6/97 39.95 3/6/97 27.08 3/6/97 15.43
941 1000 1448 1127 1031
4/7197 dry 4/7197 11.91 0.27 4/7197 39.93 4717197 27.08 4/8/97 15.55
1135 1117 1235 1410 1221
5/8/97 -- 5/8/97 12.08 0.46 5/8/97 3991 5/8/97 27.15 5/8/97 15.65
1059 1059 1352 1300 1122
6/3/97 -- 6/3/97 12.20 1.50 6/3/97 39.82 6/3/97 27.09 6/2/97 15.67
0758 0758 1348 1308 1302
712197 dry 712197 11.98 2.9 712/97 39.67 712197 27.04 712197 15.64
0913 0846 1525 1135 0941
8/7/97 -- 8/7/97 11.88 4.9 8/7/97 39.66 8/7/97 - 8/7/97 --
1300 1300 1625 1200 1200
8/27/97 - 8/27/97 11.87 1.59 8/25/97 39.76 8/26/97 26.84 8/26/97 15.58
0833 0833 0815 1025 0822
10/02/97 -- 10/02/97 12.32 1.05 10/02/97 39.76 10/02/97 26.10 10/02/97 15.30
1003 1003 1405 1320 1041
11/19/97 -- 11/19/97 11.86 0.45 11/17/97 39.70 11/17/97 -- 11/18/97 15.35
0815 0815 1235 0800 1310
12/17/97 dry 12/17/97 11.88 0.14 12/17/97 39.42 12/17/97 26.18 12/17/97 15.46
1015 1031 1216 1350 1113
1/8/98 dry 1/07/98 11.86 -- 1/6/98 39.71 1/6/98 - 1/8/98 15.42
1504 1025 1207 1200 1257
2/12/98 dry 2/12/98 11.88 -- 2/12/98 39.67 2/12/98 26.36 2/12/98 15.65
0826 0854 1130 1243 0944
3/4/98 dry 3/4/98 11.78 -- 3/4/98 39.64 3/4/98 26.38 3/4/98 15.65
0719 0739 1102 1206 0937
4/14/98 -- 4/14/98 11.70 -- 4/16/98 39.63 4/16/98 -- 4/15/98 15.72
1200 1040 0724 1200 1038
5/5/98 -- 5/5/98 11.82 0.11 5/5/98 39.58 5/5/98 26.47 5/5/98 15.73
1656 1656 1727 1146 1610
6/11/98 -- 6/11/98 12.38 0.62 6/11/98 39.55 6/11/98 26.50 6/11/98 15.84
0855 0855 1644 1402 1204
7/16/98 - 7/16/98 12.96 0.6 7/16/98 - 7/15/98 - 7/15/98 15.99
0830 0830 1200 1200 1247
8/4/98 -- 8/4/98 11.86 4.45 8/4/98 39.51 8/4/98 26.64 8/4/98 15.35
0843 0843 1045 1119 0905
9/1/98 -- 9/1/98 11.99 -- 9/1/98 39.49 9/1/98 26.60 9/1/98 15.29
0940 0940 1115 1136 1012
10/1/98 dry 10/1/98 12.17 0.75 10/1/98 39.47 10/1/98 - 10/1/98 --
1037 1056 1453 1200 1200
Min 11.33 Min 39.42 Min 26.10 Min 7.40
Median 12.17 Median 40.04 Median 27.30 Median 15.35
Max 12.98 Max 40.25 Max 27.66 Max 16.20




Table I1.3  Monthly water-level and precipitation data for monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

[Date includes time of measurement if that information is available and is of the format month/day/year time; ft. bmp, feet below measuring point; Precip.,

monthly precipitation as measured in a plastic collection-type gage; --, not measured]
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Well D6 Well D7 Well D8 Well D9 Well D10

ome el pue  WAmleel gy, Wemlwe gy Veslem gy Waiem

10/1/93 8.10 9/28/93 13.00 9/28/93 9.00 10/5/93 58.00 10/1/93 11.94

10/3/94 9.90 9/29/94 13.29 9/29/94 10.96 10/4/94 5791 10/3/94 11.95
1735 1607 1212 0950 1605

11/25/94 9.16 11/25/94 13.40 11/25/94 10.61 11/25/94 57.49 11/25/94 11.85
1314 0900 0845 1430 1259

12/12/94 9.26 12/12/94 13.42 12/12/94 10.64 12/12/94 57.52 12/12/94 11.89
1428 1138 1115 1527 1416

1/30/95 9.43 1/30/95 13.42 1/30/95 10.65 1/30/95 57.63 1/30/95 11.95

3/20/95 9.30 3/20/95 13.38 3/20/95 10.65 3/20/95 57.72 3/20/95 11.90

4/11/95 9.30 4/11/95 13.38 4/11/95 10.60 4/11/95 57.72 4/11/95 11.86

5/1/95 9.00 5/1/95 13.27 5/1/95 10.66 5/1/95 57.80 5/1/95 11.77

6/22/95 -- 6/22/95 12.82 6/22/95 10.34 6/22/95 57.46 6/22/95 --

7/12/95 - 7/12/95 12.67 7/12/95 10.47 7/12/95 - 7/12/95 --

9/20/95 8.63 9/22/95 - 9/22/95 10.74 9/28/95 56.76 9/27/95 11.76
1430 1100 1305 1003

10/30/95 9.02 10/30/95 - 10/30/95 10.53 10/30/95 56.83 10/30/95 11.81
1039 0914 1311 1023

11/30/95 9.13 11/30/95 - 11/30/95 10.56 11/30/95 56.88 11/30/95 11.80
1420 0845 1707 1400

12/13/95 9.20 12/13/95 - 12/13/95 10.59 12/15/95 56.93 12/12/95 11.79
1120 1102 1505 1310

1/25/96 9.37 1/25/96 - 1/25/96 10.57 1/25/96 57.01 1/25/96 11.84
1040 1445 1410 1010

2/6/96 9.33 2/7/96 12.51 2/6/96 10.61 2/6/96 57.06 2/6/96 11.83
1405 0935 1135 1220 1345

2/22/96 9.43 2/21/96 - 2/21/96 10.59 2/22/96 57.05 2/22/96 11.86
0916 0818 1105 1017

3/7/96 9.60 3/5/96 - 3/5/96 10.58 3/7/96 57.19 3/8/96 11.82
1105 0815 0745 1015

4/4/96 9.35 4/4/96 12.53 4/4/96 10.47 4/4/96 57.24 4/4/96 11.83
1035 1255 1220 0915 1025

5/2/96 8.57 5/2/96 - 5/2/96 10.44 5/2/96 57.25 5/2/96 11.80

6/11/96 8.24 6/13/96 - 6/11/96 10.63 6/14/96 57.40 6/12/96 11.80
1105 0907 0822 1225

7/3/96 8.42 7/3/96 - 7/3/96 - 7/3/96 57.40 7/3/96 11.83
1115 0935 1220

8/7/96 7.49 8/7/96 11.92 8/7/96 - 8/7/96 57.48 8/7/96 11.79
1649 1322 1415 1740 1752

8/22/96 7.78 8/20/96 12.09 8/20/96 - 8/21/96 57.47 8/22/96 11.70
0830 0900 0800 1000

9/11/96 7.33 9/11/96 12.00 9/11/96 8.58 9/11/96 57.55 9/11/96 11.54
1055 1555 1605 0955 1100

10/3/96 7.44 10/4/96 11.84 10/3/96 - 10/3/96 57.53 10/3/96 11.45
0957 1141 1135 1049

11/7/96 7.90 11/7/96 11.73 11/7/96 -- 11/6/96 57.52 11/7/96 11.48
1245 1011 1425 1410
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Table 1.3 Monthly water-level and precipitation data for monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

[Date includes time of measurement if that information is available and is of the format month/day/year time; ft. bmp, feet below measuring point; Precip.,
monthly precipitation as measured in a plastic collection-type gage; --, not measured]

Well D6 Well D7 Well D8 Well D9 Well D10

owe Voo ome Mmoo Wamleel g Wamleel g, Wemle

12/3/96 8.25 12/3/96 11.68 12/3/96 9.10 12/3/96 57.58 12/3/96 11.46
1043 1438 1222 1147 1032

1/7/97 8.40 1/7/97 11.72 1/7/97 9.15 1/7/97 57.62 1/7/97 11.50
1035 1222 1228 930 1041

2/4/97 8.54 2/4/197 11.79 2/4197 9.09 2/4/197 57.65 2/4/97 11.49
1124 1516 1523 1238 1129

3/6/97 8.49 3/6/97 11.84 3/6/97 9.20 3/6/97 57.48 3/6/97 11.52
1049 1155 1134 922 1036

4/8/97 8.56 417197 11.87 417197 9.32 4/8/97 57.55 4/8/97 11.53
1159 1354 1420 1237 1210

5/8/97 8.69 5/8/97 11.90 5/8/97 9.46 5/8/97 57.62 5/8/97 11.53
1139 1604 1309 1027 1128

6/2/97 8.68 6/3/97 11.92 6/3/97 -- 6/3/97 57.58 6/2/97 11.51
1315 0823 1200 1151 1324

712197 8.00 712197 -- 712197 -- 712197 57.62 712197 11.57
1008 1200 1200 1057 1021

8/7/97 7.25 8/7/97 -- 8/7/97 -- 8/7/97 57.58 8/7/97 --
1400 1200 1200 1450 1200

8/27/97 6.39 8/27/97 -- 8/27/97 -- 8/25/97 57.63 8/26/97 11.19
1240 1200 1200 1150 0943

10/02/97 6.30 10/2/97 -- 10/02/97 9.10 10/02/97 57.66 10/02/97 11.09
1053 1200 1421 0921 1107

11/19/97 6.77 11/18/97 -- 11/19/97 8.66 11/17/97 57.57 11/18/97 10.98
1240 0900 0753 0805 1030

12/17/97 7.04 12/17/97 10.89 12/17/97 8.63 12/17/97 57.59 12/17/97 11.02
1103 1345 1227 0955 1147

1/07/98 6.84 1/7/98 -- 1/07/98 8.53 1/06/98 -- 1/8/98 10.96
1205 1200 1225 0850 1440

2/12/98 7.05 2/12/98 10.95 2/12/98 8.61 2/12/98 57.59 2/12/98 10.99
0930 1322 1151 1111 0951

3/4/98 6.41 3/4/98 10.98 3/4/98 8.54 3/4/98 57.54 3/4/98 10.97
0832 1141 1115 1045 0923

4/15/98 5.86 4/15/98 4/14/98 8.34 4/15/98 57.57 4/15/98 10.87
1043 1200 1107 0715 0916

5/5/98 6.29 5/5/98 11.04 5/5/98 8.55 5/5/98 57.53 5/5/98 10.87
1616 1205 1246 1714 1546

6/11/98 7.19 6/11/98 11.40 6/11/98 11.40 6/11/98 57.55 6/11/98 10.88
0949 1437 1437 1222 1149

7/16/98 8.04 7/16/98 -- 7/15/98 9.91 7/16/98 57.59 7/15/98 10.88
1033 1200 1118 1224 1415

8/4/98 6.70 8/4/98 11.10 8/4/98 8.41 8/4/98 57.61 8/4/98 10.60
0920 1241 1107 1032 0909

9/1/98 7.05 9/1/98 10.87 9/1/98 8.90 9/1/98 57.59 9/1/98 10.56
1027 1202 1122 0928 1016

10/1/98 7.55 10/1/98 10.80 10/1/98 -- 10/1/98 -- 10/1/98 10.60
0851 1538 1200 1200 1000

Min 5.86 Min 10.80 Min 8.34 Min 56.76 Min 10.56

Median 8.40 Median 11.90 Median 10.44 Median 57.55 Median 11.54

Max 9.90 Max 13.42 Max 11.40 Max 5791 Max 11.95
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Table 1.3 Monthly water-level and precipitation data for monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

[Date includes time of measurement if that information is available and is of the format month/day/year time; ft. bmp, feet below measuring point; Precip.,

monthly precipitation as measured in a plastic collection-type gage; --, not measured

1

Well D11a Well D12 Well D13 Well D14 Well D15
Date b Date o Date b Date o Date o
(Well 11a not installed 1074794 35.72 10/3/94 715 10/3/94 12.45 9730/94 810
until October 1997) 1240 0930 0815 0801
11/25/94 35.69 11/25/94 7.18 11/25/94 1221 11/25/94 6.80
1350 0959 1008 1020
12/12/94 35.69 12/12/94 7.18 12/12/94 12.27 12/12/94 6.76
1500 1158 1206 1218
1/30/95 35.69 1/30/95 7.12 1/30/95 12.37 1/30/95 6.50
3/20/95 35.69 3/20/95 7.01 3/20/95 12.30 3/20/95 6.15
4/11/95 35.67 4/11/95 6.95 4/11/95 12.27 4/11/95 6.14
5/1/95 35.68 5/1/95 6.82 5/4/95 12.53 5/1/95 5.74
6/22/95 - 6/22/95 6/22/95 12.29 6/22/95 4.96
7112195 - 7/12/95 7.33 7/12/95 12.14 7/12/95 5.52
9/20/95 35.50 9/25/95 8.02 9/25/95 11.39 9/25/95 —
1020 1000 1100
10/30/95 35.46 10/30/95 771 10/30/95 11.44 10/30/95 6.05
1249 1330 1337 1354
11/30/95 35.43 11/30/95 741 11/30/95 11.45 11/30/95 5.40
1501 1024 1039 1055
12/12/95 12/13/95 7.37 12/13/95 11.47 12/14/95 5.38
1246 1414 0845
1/25/96 35.40 1/25/96 7.19 1/25/96 11.51 1/25/96 5.21
1125 1550 1545 1400
2/6/96 35.42 2/6/96 7.15 2/6/96 11.50 2/6/96 5.42
1430 0950 0940 1005
2/22/96 35.45 2/21/96 7.10 2/21/96 11.56 2/21/96 521
0839 1006 1020 1040
3/5/96 35.43 3/6/96 7.06 3/6/96 11.65 3/6/96 5.10
0855 1135 0950 1308
4/4/96 35.44 4/4/96 6.83 4/4/96 11.58 4/4/96 4.52
0940 1340 1335 1350
512196 35.46 5/2/96 6.70 5/2/96 11.47 5/2/96 4.44
6/13/96 35.46 6/13/96 6.96 6/13/96 - 6/12/96 5.00
0820 0814 1421
713196 35.49 713196 6.33 713196 11.10 713196 5.51
0958 1430 1440 1450
8/7/96 35.45 8/7/96 5.35 8/7/96 10.46 8/7/96 6.39
1530 1210 1150 0830
8/20/96 35.46 8/20/96 5.55 8/20/96 10.53 8/21/96 6.62
0855 1318 1420 1337
9/11/96 35.43 9/11/96 5.16 9/11/96 10.22 9/11/96 6.32
1010 1530 1525 1515
10/3/96 35.42 10/4/96 5.59 10/4/96 10.38 10/4/96 6.30
0910 1105 1050 1032
11/6/96 35.39 11/7/96 5.96 11/7/96 10.55 11/8/96 6.27
1200 1320 1305 1434
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Table 1.3 Monthly water-level and precipitation data for monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

[Date includes time of measurement if that information is available and is of the format month/day/year time; ft. bmp, feet below measuring point; Precip.,
monthly precipitation as measured in a plastic collection-type gage; --, not measured

Well D11a Well D12 Well D13 Well D14 Well D15
e Vel e Wlewh gy Welew gy Wemled gy Weled
12/3/96 35.37 12/3/96 5.90 12/3/96 10.59 12/3/96 6.05
910 1511 1519 1528
1/7/197 35.32 1/7/97 5.84 1/7/97 10.68 1/7/97 5.88
946 1320 1316 1332
2/4/97 35.33 2/4/97 5.70 2/4/97 10.88 2/4/97 5.74
1113 1502 1451 1441
3/6/97 35.34 3/6/97 5.69 3/6/97 10.80 3/6/97 5.32
934 1425 1419 1406
4/7197 35.33 4/8/97 5.84 4/8/97 10.90 4/8/97 4.95
1136 1013 1005 1022
5/8/97 35.30 5/8/97 6.12 5/8/97 10.92 5/8/97 4.94
1039 1431 1423 1544
6/3/97 35.24 6/2/97 6.55 6/2/97 10.99 6/3/97 5.65
1141 0916 0747 1443
712/97 35.24 712197 6.98 712197 10.98 772197 6.37
0903 1445 1438 1420
8/7/97 -- 8/7/97 - 8/7/97 - 8/7/97 4.51
1200 1200 1200 1605
8/26/97 -- 8/26/97 - 8/25/97 11.03 8/25/97 5.19
1200 1200 1058 1354
10/02/97 35.15 10/02/97 7.09 10/02/97 10.45 10/02/97 5.88
0946 1502 1454 1458
11/18/97 -- 11/17/97 6.38 11/17/97 10.55 11/20/97 5.31
1100 1034 1255 0814
12/17/97 112.79 12/17/97 34.97 12/17/97 6.22 12/17/97 10.55 12/17/97 5.05
0909 1020 1435 1430 1447
1/8/98 112.87 1/8/98 34.87 1/6/98 6.04 1/6/98 10.57 1/8/98 4.60
1020 1515 1300 1136 1239
2/12/98 113.01 2/12/98 34.87 2/12/98 5.93 2/12/98 10.60 2/12/98 4.48
1025 0837 1340 1348 1404
3/4/98 112.79 3/4/98 34.84 3/4/98 5.70 3/4/98 10.60 3/4/98 4.19
0956 0725 1244 1250 1301
4/13/98 113.01 4/13/98 4/13/98 5.40 4/15/98 10.55 4/14/98 3.83
0745 1100 1056 0713 0728
5/5/98 112.78 5/5/98 34.78 5/5/98 5.99 5/5/98 10.46 5/5/98 4.60
1336 1645 1047 1057 1032
6/11/98 112.85 6/11/98 -- 6/11/98 7.08 6/11/98 10.50 6/11/98 5.59
1255 0845 1515 1523 1626
7/14/98 112.87 7/14/98 -- 7/14/98 8.23 7/14/98 10.78 7/16/98 6.59
0852 1200 0948 0754 0751
8/4/98 113.04 8/4/98 -- 8/4/98 791 8/4/98 11.01 8/4/98 --
0945 0900 1226 1220 1200
9/1/98 112.97 9/1/98 -- 9/1/98 8.80 9/1/98 11.49 9/1/98 5.84
0841 1000 1219 1214 1301
10/1/98 112.80 10/1/98 -- 10/1/98 - 10/1/98 - 10/1/98 6.67
1409 1200 1200 1200 1516
Min 112.78 Min 3478 Min 5.16 Min 10.22 Min 3.83
Median 112.87 Median 35.43 Median 6.83 Median 11.00 Median 5.52

Max 113.04 Max 35.72 Max 8.80 Max 12.53 Max 8.10
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Table 11.3 Monthly water-level and precipitation data for monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

[Date includes time of measurement if that information is available and is of the format month/day/year time; ft. bmp, feet below measuring point; Precip.,

monthly precipitation as measured in a plastic collection-type gage; --, not measured]
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Well D16 Well D17 Well D18 Well D19 Well D20

Dt WalerLevel, pate  WaterLevel, pate  WaterLevel, bate LZE.:% pate  WaterLevel

9730/9% 859 9/20/94 1200 9/13/9% dry 973094 2230 9/3009% 10.11
1150 1800 1250 1419

11/25/94 701 112594 1207 11/25/94 dry  11/25/94 2216 11/25/9 9.35
1054 1104 1040 115 1124

12/12/94 7.25 12/12/94 12.06 12/12/94 dry 12/12/94 22.19 12/12/94 9.31
1251 1300 1244 1305 1312

1/30/95 707 130095 1203 1/30095 dry  1/3095 2209 1530095 8.94

3120095 702 32095 11.97 32095 dry  3/20095 2207 3120095 8.92

4111095 707 411195 1192 4/11/95 dry 41195 2208 4/11/95 8.88

5/1195 ~ 5195 1190 5/1/95 dry  5/195 2234 5/195 8.90

6/22/95 537 6/22/95 1128 6/22/95 dry 6022095 2222 6/22/95 871

7/12/95 657 /12095 113 7/12/95 712095 2222 7/12/95 8.63

9126/95 758 9/28/95 1082 9/26/95 dry  9/26/95 2219 926195 8.87
0900 1530 0824 1048 1212

10/30/95 746 10/3095 1086 10/30/95 dry 103095 2220 10/30/95 8.80
1418 1449 1439 1432

1130095 682 113095 1085 1130095 dry 113095 2215 1130095 8.68
1148 1319 1140 1304 1220

12/14/95 708 12/13/95 ~ 12113095 dry  12/12/95 ~ 1212095 8.72
1335 1135 1124

1/25/96 708 11259 1093 1/25/9 dry  1/25/9 2218 1/25/96 8.65
1435 1300 1135 1245 1325

216196 731 20609 1094 2069 dry  2/6/9 2219 2/6/96 8.64
1030 1100 1050 1240 1300

2/21/96 710 22119 ~ 2219 ~ 2219 ~ 22109 8.63
1055 1150

37196 709 37719 3% ~ 379 ~ 379 8.65
1157 1020

414196 657 4/4/96 1091 4/4196 dry 414096 2024 4/419 8.54
1410 1125 1405 1130 1140

512196 ~ 5129 1069 5/2/9 ~ 51209 2216 5/2/9 8.42

6/12/96 577 6/13/96 ~ 6/139 ~ 6/13/96 ~ 61209 8.39
1247 1009

713196 702 7309 1020 7/3/9 dry  7/309 2203 /39 8.78
1605 1255 1555 1300 1315

8/7196 818 8/7/9 1034 8/7/9 8779 2199 8/7/9 9.33
0924 1839 0945 1833 0952

8/21/96 835 8/22/96 1050 8/2219 ~ 82219 2197 82209 9.63
1030 0847 1240 1240 1348

9111/96 871 9/11/96 1064 9/11/96 dry  9/11/9 2182 9/11/96 9.86
1455 1420 1510 1425 1435

10/4196 865  10/4/96 1078 10/4196 ~ 101496 2175 10/419 9.54
0935 0828 0840 0840 0900

11/8/96 858  11/6/96 1085 11/6/96 ~ 11/6/9 2178 11619 931
1155 855 1135 1135 1309
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Table 1.3 Monthly water-level and precipitation data for monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

[Date includes time of measurement if that information is available and is of the format month/day/year time; ft. bmp, feet below measuring point; Precip.,
monthly precipitation as measured in a plastic collection-type gage; --, not measured]

Well D16 Well D17 Well D18 Well D19 Well D20

Date  WaterLovel pate  WaterLevel pate  WaterLevel Date LX:E.:L pae  WalerLevel,

12/3/96 8.38 12/3/96 10.85 12/3/96 dry 12/3/96 21.79 12/3/96 9.18
1547 1131 1605 1127 1535

1/7/97 8.27 1/7/97 10.86 1/7/97 dry 1/7/97 21.82 1/7/97 9.09
1351 1128 1415 1125 1337

2/4/97 8.08 2/4/97 10.89 2/4/97 dry 2/4/97 21.87 2/4/97 9.02
1430 1220 1400 1217 1416

3/6/97 7.84 3/6/97 10.89 3/6/97 dry 3/6/97 21.91 3/6/97 8.94
1314 1240 1353 1237 1254

4/8/97 7.78 4/8/97 10.92 4/8/97 -- 4/8/97 21.95 4/8/97 8.94
1056 1124 1120 1120 1101

5/8/97 7.77 5/8/97 10.97 5/8/97 -- 5/8/97 22.00 5/8/97 8.95
1450 1228 1222 1222 1456

6/3/97 7.76 6/3/97 11.00 6/3/97 -- 6/3/97 22.02 6/3/97 8.92
1418 1230 1106 1106 1408

712197 8.27 712197 11.06 712197 dry 712197 22.00 712197 9.30
1355 1308 1300 1325

8/7/97 -- 8/7/97 11.14 8/7/97 -- 8/7/97 -- 8/7/97 --
1200 1555 1200 1200 1200

8/28/97 -- 8/25/97 10.93 8/25/97 -- 8/25/97 -- 8/25/97 --
1200 0840 1200 1200 1200

10/02/97 6.57 10/02/97 10.82 10/02/97 -- 10/02/97 19.45 10/02/97 9.08
1551 1221 1214 1214 1533

11/20/97 5.86 11/17/97 10.71 11/17/97 - 11/17/97 - 11/20/97 8.75
1005 0800 0900 0900 1106

12/17/97 5.76 12/17/97 10.60 12/17/97 -- 12/17/97 20.19 12/17/97 8.69
1508 0920 0927 0927 1510

1/8/98 5.24 1/6/98 10.56 1/8/98 - 1/8/98 20.28 1/7/98 8.63
1300 0913 1146 1146 1513

2/12/98 4.79 2/12/98 10.51 2/12/98 - 2/12/98 20.43 2/12/98 8.60
1436 1035 1042 1042 1450

3/4/98 491 3/4/98 10.47 3/4/98 -- 3/4/98 20.48 3/4/98 8.55
1340 1014 1021 1021 1347

4/14/98 -- 4/14/98 10.32 4/14/98 -- 4/14/98 -- 4/16/98 8.41
1200 0931 1200 1200 1212

5/5/98 5.46 5/5/98 10.20 5/5/98 -- 5/5/98 20.66 5/5/98 8.52
0930 1345 1356 1356 1007

6/11/98 6.19 6/11/98 10.20 6/11/98 -- 6/11/98 20.72 6/11/98 8.84
1618 1300 1307 1307 1555

7/16/98 -- 7/14/98 10.53 7/14/98 -- 7/14/98 20.73 7/14/98 --
1200 1121 1228 1228 1200

8/4/98 -- 8/4/98 10.48 8/4/98 -- 8/4/98 20.64 8/4/98 8.80
1230 0952 0956 0956 1200

9/1/98 6.85 9/1/98 10.83 9/1/98 -- 9/1/98 20.58 9/1/98 9.51
1238 0850 0855 0855 12.32

10/1/98 7.71 10/1/98 11.19 10/1/98 dry 10/1/98 20.69 10/1/98 --
1334 1415 1305 1419 1200

Min 4779 Min 10.20 Min 19.45 Min 8.39

Median 7.12 Median 10.86 Median 21.99 Median 8.87

Max 8.71 Max 12.07 Max 22.34 Max 10.11
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Table 1.3 Monthly water-level and precipitation data for monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

[Date includes time of measurement if that information is available and is of the format month/day/year time; ft. bmp, feet below measuring point; Precip.,
monthly precipitation as measured in a plastic collection-type gage; --, not measured]

Well D21 Well D22 Well D23 Well D24 Well D25
Water Water Water Precip., Water Water
Date Level, Date Level, Date Level, . Date Level, Date Level,
ft. bmp ft. bmp ft. bmp inches ft. bmp ft. bmp
10/3/94 11.20 10/3/94 19.81 9/30/94 6.92 -- (Well D24 not (Well D25 not
1050 1215 0950 installed until May installed until May
1995) 1995)
11/25/94 9.70 11/25/94 19.61 11/25/94 5.20 --
1134 1212 1034
12/12/94 9.55 12/12/94 19.61 12/12/94 5.18 -
1319 1352 1227
1/30/95 9.18 1/30/95 -- 1/30/95 4.99 --
3/20/95 9.08 3/20/95 -- 3/20/95 5.01 --
4/11/95 9.02 4/11/95 -- 4/11/95 4.81 --
5/1/95 8.86 5/1/95 -- 5/1/95 5.03 --
6/22/95 9.38 6/22/95 19.34 6/22/95 -- -- 6/22/95 -- 6/22/95 11.16
7/12/95 10.06 7/12/95 19.29 7/12/95 5.36 -- 7/12/95 -- 7/12/95 11.40
9/26/95 -- 9/25/95 -- 9/25/95 5.41 -- 9/28/95 22.42 9/22/95 12.12
1323 0800 0825
10/30/95 -- 10/30/95 -- 10/30/95 5.03 -- 10/30/95 22.55 10/30/95 12.22
1408 0853 0905
11/30/95 9.59 11/30/95 -- 11/30/95 4.95 -- 11/30/95 22.72 11/30/95 12.22
1233 1119 0800 0830
12/12/95 9.46 12/12/95 -- 12/15/95 5.06 -- 12/14/95 22.80 12/13/95 12.24
1410 0905 1050 0829
1/25/96 9.11 1/25/96 -- 1/25/96 4.59 -- 1/25/96 22.97 1/25/96 12.25
1340 1414 1420 1435
2/6/96 9.02 2/7/96 18.90 2/6/96 5.53 - 2/6/96 23.02 2/6/96 12.27
1305 1100 1015 1210 1130
2/21/96 9.05 2/21/96 -- 2/21/96 4.94 -- 2/21/96 23.08 2/21/96 12.29
1136 1110 0920 0805
3/7/96 9.07 3/7/96 -- 3/7/96 4.98 -- 3/6/96 23.12 3/5/96 12.25
0907 1340 1350 1138
4/4/96 8.99 4/4/96 18.95 4/4/96 4.96 -- 4/4/96 23.23 4/4/96 12.24
1145 1105 1400 1205 1215
5/2/96 8.89 5/2/96 5/2/96 4.91 -- 5/2/96 23.35 5/2/96 12.05
6/12/96 9.56 6/12/96 18.90 6/12/96 4.82 3.61 6/14/96 23.52 6/11/96 11.9
1126 1435 0830 1100 1118
7/3/96 10.60 7/3/96 -- 7/3/96 5.48 1.40 7/3/96 23.55 7/3/96 9.88
1320 1545 1345 1400
8/7/96 10.97 8/7/96 -- 8/7/96 5.64 1.01 8/7/96 22.84 8/7/96 7.64
1015 1415 0855 1442 1404
8/21/96 11.12 8/23/96 18.80 8/21/96 5.83 -- 8/21/96 -- 8/20/96 --
0820 0805 1223
9/11/96 11.39 9/11/96 18.69 9/11/96 5.17 2.06 9/11/96 -- 9/11/96 6.38
1445 1140 1505 1620
10/4/96 10.75 10/4/96 18.65 10/4/96 4.78 1.42 10/4/96 -- 10/4/96 6.52
0915 0802 0954 1215
11/6/96 10.06 11/6/96 18.62 11/8/ 4.61 0.22 11/8/96 -- 11/8/96 7.67
1435 910 1996 834

1315
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Table 1.3 Monthly water-level and precipitation data for monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

[Date includes time of measurement if that information is available and is of the format month/day/year time; ft. bmp, feet below measuring point; Precip.,
monthly precipitation as measured in a plastic collection-type gage; --, not measured]

Well D21 Well D22 Well D23 Well D24 Well D25
b Water Water Water Precip., Water Water
ate Level, Date Level, Date Level, . Date Level, Date Level,
ft. bmp ft. bmp ft. bmp inches ft. bmp ft. bmp
12/3/96 9.64 12/3/96 18.56 12/3/96 4.50 0.07 12/3/96 22.31 12/3/96 8.09
1540 1113 1558 1155 1620
1/7/97 9.36 1/7/97 18.54 1/7/97 4.39 -- 177197 2243 177197 8.57
1341 1114 1400 1147 1207
2/4/97 9.19 2/4/97 18.56 2/4/97 4.51 0.02 2/4/97 22.54 2/4/97 8.85
1423 1204 1322 1243 1256
3/6/97 9.06 3/6/97 18.55 3/6/97 4.50 0.19 3/6/97 22.65 3/6/97 9.03
1303 1224 1333 1455 1440
4/8/97 9.03 477197 18.55 4/8/97 4.60 0.12 4/8/97 22.80 477197 9.23
1106 1030 1045 1246 1330
5/8/97 9.06 5/8/97 18.57 5/8/97 4.72 0.53 5/8/97 22.93 5/8/97 9.43
1507 1209 1527 1340 1405
6/2/97 -- 6/2/97 18.45 6/3/97 4.95 0.87 6/3/97 2297 6/2/97 9.63
0910 1428 1334 1036
712197 10.72 712197 18.43 712197 6.18 1.65 712197 23.05 712197 8.95
1337 1210 1409 1535 1505
8/7/97 - 8/7/97 - 8/7/97 5.29 4.26 8/7/97 23.18 8/7/97 9.22
1200 1200 1520 1630 1615
8/25/97 -- 8/25/97 -- 8/26/97 4.99 0.90 8/25/97 23.18 8/27/97 7.72
1200 1200 1249 1020 0818
10/02/97 10.75 10/2/97 -- 10/02/97 4.95 1.11 10/02/97 23.18 10/02/97 7.62
1540 1200 1521 1355 1413
11/20/97 -- 11/17/97 -- 11/20/97 4.43 -- 11/17/97 23.19 11/19/97 8.12
1130 1000 0820 1020 0927
12/17/97 9.00 12/17/97 -- 12/17/97 4.41 0.40 12/17/97 23.25 12/17/97 8.34
1519 1000 1450 1207 1232
1/7/98 8.80 1/7/98 - 1/8/98 4.29 - 1/8/98 - 1/8/98 8.39
1359 1200 1218 1200 0812
2/12/98 8.73 2/12/98 -- 2/12/98 -- 2/12/98 2341 2/12/98 8.6
1459 1200 1200 1120 1137
3/4/98 8.71 3/4/98 -- 3/4/98 4.40 0.41 3/4/98 23.45 3/4/98 8.62
1353 1200 1311 1052 1122
4/16/98 -- 4/16/98 18.13 4/16/98 4.53 -- 4/16/98 -- 4/16/98 8.7
1200 1233 1008 1200 0732
5/5/98 8.70 5/5/98 18.04 5/5/98 4.60 -- 5/5/98 23.63 5/5/98 8.71
0945 1507 0841 1720 1259
6/11/98 9.77 6/11/98 18.04 6/11/98 5.21 -- 6/11/98 23.71 6/11/98 9.1
1545 1325 1604 1650 1458
7/14/98 11.09 7/15/98 18.18 7/16/98 5.87 0.65 7/16/98 -- 7/16/98 9.86
1350 0844 1443 1200 0924
8/4/98 -- 8/4/98 18.19 8/4/98 4.09 4.30 8/4/98 23.70 8/4/98 8.19
1300 1007 1149 1038 1052
9/1/98 -- 9/1/98 18.20 9/1/98 4.80 -- 9/1/98 22.60 9/1/98 7.83
1200 0906 1249 1104 1142
10/1/98 11.05 10/1/98 -- 10/1/98 5.05 0.69 10/1/98 22.25 10/1/98 8.45
1348 1200 1232 1443 1213
Min 8.70 Min 18.04 Min 4.09 Min 22.25 Min 6.38
Median 9.37 Median 18.57 Median 4.95 Median 23.05 Median 9.03
Max 11.39 Max 19.81 Max 6.92 Max 23.71 Max 12.29
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Table 1.3 Monthly water-level and precipitation data for monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

[Date includes time of measurement if that information is available and is of the format month/day/year time; ft. bmp, feet below measuring point; Precip.,

monthly precipitation as measured in a plastic collection-type gage; --, not measured]
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Well D26 Well D27 Well D28 Well D29 Well D30
e VLl o Weelewh gy Wasleoh gy Weeleo gy, Wewmled
6/22/95 -- 6/22/95 12.93 6/22/95 15.66 (Well D29 not installed 6/22/95 --
until November
1997)
7/12/95 -- 7/12/95 12.91 7/12/95 15.63 7/12/95 --
9/22/95 37.40 9/22/95 -- 9/25/95 15.47 9/20/95 6.95
1400 0830 1300
10/30/95 36.81 10/30/95 -- 10/30/95 15.48 10/30/95 6.59
0929 0952 1224
11/30/95 36.53 11/30/95 -- 11/30/95 15.49 11/30/95 9.39
0931 0959 1521
12/14/95 36.70 12/13/95 -- 12/15/95 15.53 12/15/95 6.42
0835 1135 0910 1336
1/25/96 36.77 1/25/96 -- 1/25/96 15.49 1/25/96 6.25
1455 1135 1525 1055
2/6/96 37.21 2/7/96 12.82 2/7/96 15.53 2/6/96 6.19
1145 0950 0915 1415
2/21/96 37.07 2/21/96 2/21/96 15.57 2/22/96 6.27
0851 0942 0856
3/6/96 37.23 3/7/96 3/5/96 15.55 3/5/96 6.21
0820 1330 1305
4/4/96 37.18 4/4/96 12.83 4/4/96 15.58 4/4/96 6.22
1230 1310 1245 0930
5/2/96 3691 5/2/96 -- 5/2/96 15.59 5/2/96 6.23
6/14/96 37.07 6/13/96 -- 6/11/96 15.57 6/12/96 6.40
0930 1258 1110
7/3/96 - 7/3/96 -- 7/3/96 15.34 7/3/96 6.27
1420 1100
8/7/96 -- 8/7/96 11.75 8/7/96 15.04 8/7/96 5.43
1415 1333 1258 1631
8/20/96 -- 8/20/96 11.47 8/20/96 14.99 8/21/96 5.41
1129 1248 1015
9/11/96 -- 9/11/96 10.55 9/11/96 14.71 9/11/96 5.22
1600 1550 1045
10/4/96 -- 10/4/96 10.94 10/4/96 14.74 10/3/96 5.19
1153 1130 0938
11/7/96 - 11/7/96 11.26 11/7/96 14.84 11/7/96 5.32
1125 824 840
12/3/96 35.12 12/3/96 11.40 12/3/96 14.83 12/3/96 5.28
1247 1435 1456 1021
1/7/97 35.07 1/7/97 11.54 1/7/97 14.89 1/7/97 5.14
1242 1224 1217 1029
2/4/97 35.17 2/4/197 11.66 2/4/97 14.95 2/4/197 5.06
1532 1519 1512 1120
3/6/97 34.78 3/6/97 11.71 3/6/97 15.00 3/6/97 5.07
1122 1201 1112 1025
4/7/197 34.70 4/7/97 11.79 4/7/197 15.02 4/7/197 5.21
1429 1400 1344 1158
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Table 1.3 Monthly water-level and precipitation data for monitoring wells near Deer Trail, Colorado, 1993-98.—Continued

[Date includes time of measurement if that information is available and is of the format month/day/year time; ft. bmp, feet below measuring point; Precip.,
monthly precipitation as measured in a plastic collection-type gage; --, not measured]

Well D26 Well D27 Well D28 Well D29 Well D30

Date oyt Date -yt Date -y i Date -y i Date b

58197 3478 578197 11.88 S/8197 15.06 578197 541
1254 1609 1558 1115

6/3/97 34.75 6/3/97 11.97 6/3197 15.08 6/2/97 5.04
1302 0938 0655 1100

712197 34.80 712197 — 712197 15.05 712197 522
1125 1200 1145 0930

8/7/97 - 8/7/97 - 8/7/97 - 8/7/97 4.60
1200 1200 1200 1345

8/26/97 34.35 8/26/97 - 8/26/97 - 8/25/97 4.95
0835 1200 1200 1340

10/02/97 33.62 10/2/97 - 10/02/97 14.68 10/02/97 5.24
1312 1200 1439 1031

11/19/97 - 11/18/97 11.24 11/18/97 14.76 11/19/97 475
0900 0745 0941 1010

12/17/97 33.70 12/17/97 11.21 12/17/97 14.73 12/17/97  154.44 12/17/97 475
1350 1406 1304 0945 1005

1/8/98 - 1/7/98 11.16 1/7/98 14.71 1/8/98 154.10 1/6/98 471
1200 1045 0840 1430 1357

2/12/98 33.81 2/12/98 11.20 2/12/98 14.71 2/12/98 154.54 2/12/98 4.70
1231 1303 1215 1100 0912

3/4/98 33.81 3/4/98 11.23 3/4/98 14.73 3/4/98 154.22 3/4/98 4.60
1222 1156 1134 1036 0808

4/16/98 4/13/98 11.19 4/13/98 14.71 4/14/98 154.29 4/13/98 4.59
1200 0919 0710 0740 1125

5/5/98 33.96 5/5/98 11.17 5/5/98 14.68 5/5/98 154.21 5/5/98 491
1156 1134 1224 1536 1638

6/11/98 33.99 6/11/98 11.48 6/11/98 14.64 6/11/98 154.27 6/11/98 5.40
13.53 1424 1413 1233 0932

7/16/98 - 7/15/98 11.88 7/15/98 14.57 7/14/98 154.39 7/15/98 6.30
1200 0951 0803 1127 1318

8/4/98 34.19 8/4/98 11.01 8/4/98 14.32 8/4/98 154.65 8/4/98 5.07
1115 1245 1251 1023 0858

9/1/98 34.03 9/1/98 11.22 9/1/98 14.20 9/1/98 154.45 9/1/98 5.40
1130 1157 1142 0922 1005

10/1/98 - 10/1/98 11.31 10/1/98 14.09 10/1/98 154.30 10/1/98 5.53
1200 1544 1532 1434 1024

Min 33.62 Min 10.55 Min 14.09 Min 154.10 Min 459

Median 34.94 Median 11.44 Median 15.00 Median 154.30 Median 5.30

Max 37.40 Max 12.93 Max 15.66 Max 154.65 Max 9.39




Table 1.3  Monthly water-level and precipitation data for monitoring wells

near Deer Trail, Colorado, 1993-98.—Continued

[Date includes time of measurement if that information is available and is of the format

month/day/year time; ft. bmp, feet below measuring point; Precip., monthly precipitation as
measured in a plastic collection-type gage; --, not measured]

Well D31 Well D32 Well D33
Date ey Date fir ey Date oy

6/22195 - 6/22195 - 6/22195 -

7112195 - 7112/95 - 7/12/95 -

9/20/95 6.87 9/28/95 27.87 9/27/95 14.94
1130 1053 0835

10/30/95 6.86 10/30/95 27.81 10/30/95 15.04
1211 1055 1011

11/30/95 7.05 11/30/95 27.77 11/30/95 15.03
1512 1437 1351

12/15/95 7.15 12/13/95 27.80 12/12/95 15.09
1148 0845 1005

1/25/96 733 1/25/96 27.80 1/25/96 15.10
1110 1030 0955

2/6/96 7.36 2/6/96 27.77 2/6/96 14.98
1425 1355 1335

2/22/96 747 2/22/96 27.82 2/22/96 15.13
0821 0933 0958

3/5/96 7.43 3/7/96 27.85 3/8/96 15.14
1140 0935 0820

4/4/96 7.35 4/4/96 27.87 4/4/96 15.14
0935 1040 1020

512196 6.81 512196 27.92 512196 14.95

6/12/96 6.49 6/13/96 27.99 6/12/96 15.07
1010 1045 1315

713196 6.38 713196 28.01 713196 15.11
1050 1235 1230

8/7/96 5.11 8/7/96 28.09 8/7/96 14.89
1553 1811 1800

8/21/96 5.55 8/20/96 28.06 8/22/96 14.84
1215 1250 1240

9/11/96 5.77 9/11/96 28.14 9/11/96 14.69
1020 1120 1115

10/3/96 5.98 10/3/96 28.13 10/3/96 14.76
0850 1018 1040

11/7/96 6.26 11/7/96 - 11/8/96 14.81
955 1020

12/3/96 6.38 12/3/96 28.16 12/3/96 14.83
1015 1049 1036

1/7/97 6.51 1/7/97 28.15 1/7/97 14.84
953 1055 1045

2/4197 6.46 214197 28.17 2/4197 14.81
1108 1143 1132
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Table 1.3  Monthly water-level and precipitation data for monitoring wells
near Deer Trail, Colorado, 1993-98.—Continued

[Date includes time of measurement if that information is available and is of the format
month/day/year time; ft. bmp, feet below measuring point; Precip., monthly precipitation as
measured in a plastic collection-type gage; --, not measured]

Well D31 Well D32 Well D33
e Vel pue  VeEleeh oy Weelew

3/6/97 6.35 3/6/97 28.18 3/6/97 14.81
946 1058 1039

4/7197 6.32 4/8/97 28.20 4/8/97 14.79
1152 1156 1215

5/8/97 6.53 5/8/97 28.24 5/8/97 14.77
1044 1147 1133

6/3/97 6.33 6/2/97 28.20 6/2/97 14.68
1023 1342 1330

712197 6.41 712197 28.27 712197 14.66
0825 0955 1030

8/7/97 6.22 8/7/97 - 8/7/97 -
1330 1200 1200

8/27/97 6.17 8/26/97 28.28 8/26/97 14.25
1030 1215 1325

10/02/97 6.46 10/02/97 28.21 10/02/97 14.34
1024 1126 1114

11/18/97 -- 11/18/97 28.01 11/18/97 14.34
1100 0815 1135

12/17/97 6.09 12/17/97 27.96 12/17/97 14.32
1056 1139 1152

1/6/98 - 1/7/98 27.89 1/8/98 14.33
1200 1340 1448

2/12/98 6.06 2/12/98 27.84 2/12/98 14.40
0905 0922 0957

3/4/98 5.39 3/4/98 27.80 3/4/98 14.40
0801 0815 0924

4/13/98 -- 4/13/98 -- 4/13/98 --
1200 1200 1200

5/5/98 4.97 5/5/98 27.76 5/5/98 14.36
1707 1630 1557

6/11/98 5.88 6/11/98 27.78 6/11/98 14.30
0926 0940 1155

7/15/98 - 7/15/98 27.79 7/15/98 14.47
1200 1108 1450

8/4/98 - 8/4/98 27.78 8/4/98 14.50
0900 0924 0913

9/1/98 -- 9/1/98 27.78 9/1/98 14.58
1000 1052 1020

10/1/98 6.25 10/1/ -- 10/1/98 14.70
1159 1998 1012

1200
Min 4.97 Min 27.76 Min 14.25
Median 6.38 Median 27.94 Median 14.80

Max 7.47 Max 28.28 Max 15.14




Table 11.4. Textural data for core samples collected from D31 and D33 boreholes during drilling near

Deer Trail, Colorado, May 1995.

[ft bls, feet below land surface; ft. bmp, feet below measuring point; %, percent; --, no data]

APPENDIXES

.?;gﬁ’é;i Sample  SampledsB  sampiedare  SUP  wSana  wciy % i Sample
D31 Core 0-0.17 5/4/95 soil 52 15 33 clay loam
D31 Core 0.17-1.7 5/4/95 soil 48 19 33 loamy

sand
D31 Core 1.7-2.4 5/4/95 soil 48 17 35 clay loam
+ sand
D31 Core 5.0-6.0 5/4/95 alluvium 49 21 30 clay loam
D31 Core 6.0-7.0 5/4/95 alluvium 49 12 39 clay loam
D31 Core 8.0-9.0 5/4/95 alluvium 52 12 36 clay loam
D31 Core 9.0-11.7 5/4/95 alluvium 60 18 22 clay-rich
silty
sand
D31 Core 11.7-12 5/4/95 alluvium 60 16 24 silty sand
D33 Core 0-0.33 5/5/95 soil -- -- -- sandy
loam
D33 Core 0.75-2.25 5/5/95 soil - - - loamy
sand
D33 Core 2.25-3.0 5/5/95 soil -- -- -- loamy
sand
D33 Core 4.5-5.0 5/5/95 alluvium -- -- -- sandy
loam
D33 Core 5.0-5.5 5/5/95 alluvium -- -- -- clayey
sand
D33 Core 9.0-12.0 5/5/95 alluvium -- -- -- loamy
sand

T'Core obtained from split-spoon auger during drilling of the borehole for the monitoring well.
2 Textural analysis from hydrometer data provided by James Tindall, U.S.Geological Survey
Unsaturated Zone Field Studies.

3 From geologist's description of core.
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