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CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION

Noise and vibration generated by the rotating mechanical equipment including
geared drives have always been a problem in the implementation of new technology in
automobiles, rotorcrafts and industrial machines [1-6]. Recently, the need for reliable
vibration/noise prediction methods have been found to be crucial as faster and lighter
machines are being designed [6-8]. In most of these rotating systems, structure-borne
noise paths through bearings, which support the rotating shafts on flexible or rigid
casings, are dominant [5,6,9]. Hence, in order to obtain reliable mathematical
prediction of the overall dynamic system, a complete understanding of the vibration
transmission mechanism through bearings, and the role of bearings as a dynamic
coupler between the shaft and casing, is critical.

Current bearing models, based on ideal boundary condition or purely translational
stiffness element description, cannot explain how the vibratory motion may be
transmitted from the rotating shaft to the flexible casing and other connecting structures
in rotating mechanical equipment [10-15]. These simple models are only adequate for
the free and forced vibration analyses of the rotor dynamic system enclosed in a rigid
casing. For example, a vibrational model of a rotating system based upon the existing

bearing models can only predict purely in-plane type motion on the flexible casing plate,



given only the bending motion on the shaft. However, experimental results have shown
that the casing plate motion is primarily flexural or out-of-plane type [9,16,17]. This
paradox is essentially due to an incomplete understanding of the bearing as vibratory
motion transmitter in rotating mechanical equipment.

The main focus of this research is to clarify this issue quantitatively and
qualitatively by developing a new mathematical model for the precision rolling element
bearings, and extend the proposed bearing formulation to examine vibration
transmissibility in rotating mechanical equipment through several example cases of
bearing systems and geared drives. The superiority of the proposed model compared to
simple models is also demonstrated in these example cases. A typical shaft-bearing-
casing-mount system is shown in Figure 1.1. The rigid or flexible shaft may be
subjected to forces and/or torques and supported by a bearing on a flexibly or rigidly
mounted casing. Here, the vibration transmission is from the shaft to the casing and
mount through the bearing system. Figure 1.2 shows a typical rolling element bearing
subjected to forces and moments due to the rolling element deformation. The bearing is
free to rotate about the axis perpendicular to the bearing plane, and hence does not
transmit any dynamic moment about this axis. However, dynamic moments about the
other two orthogonal axis exist which have not been considered in simple bearing
models. Finally, a generic geared rotor system consists of a motor, spur gear pair,
flexible shafts, load, flexible couplings, rolling element bearings, flexible casing and
mounts as shown in Figure 1.3a is also considered. The system is excited by the gear
kinematic transmission error at gear mesh frequency. A single-stage rotor system with
rotating mass unbalance excitation as shown in Figure 1.3b is treated as a special case of

Figure 1.3a. Further description of each system will be presented in later chapters.
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1.2 LITERATURE REVIEW

Simple bearing models either assume ideal boundary conditions for the shaft or
time-invariant translational springs in the axial and radial directions [10-15]. The ideal
boundary conditions for the shaft are typically simply-supported for short bearings,
clamped for long bearings or free (for torsional motion only) [10-12]. Formulas for the
stiffness coefficients derived from the force-displacement relation commonly used by
bearing designers [18,19] are given by Harris [18], Gargiulo [14] and White [20]. In
1982 Rajab [21,22] realized the limitations of the simple models and philosophically
proposed two additional stiffness coefficients which couple the radial and rotational
bearing degrees of freedom, given radial and moment about the axis transverse to the
radial line of action. In 1988, Young [23] extended Rajab's [21] analyses to
include mean axial force while retaining other features of Rajab's model. This
resulted in bearing stiffness matrix of dimension 3.

Simple bearing models are widely used in vibration models of rotor dynamic
systems which typically exclude casing and mount dynamics, to calculate critical speeds,
dynamic stability, and responses due to shaft excitations such as mass unbalance and
gear transmission error [10-15]. In most cases, the vibration transmission through
bearings is not the primary issue, and thus the bearing models tend to be
simplified. None of the current models studied [20-22,24] can fully explain

vibration transmission through bearings in systems similar to Figure 1.1.



Publications on the modal analyses of geared drives and single or multiple stage
rotor systems indicate that very little has been reported directly on the force
transmissibility through bearings, and the dynamic effects of bearing, casing and
mounts on the internal rotating system [10-13,15,25-29]. A comprehensive review of
the available vibration studies of casing and mounts has been given by Lim and Singh in
1989 [6]. In these studies, the dynamic interaction between the casing-mount system
and the internal rotating system is often not incorporated, and in few instances when this
interaction is modeled, only purely radial and/or axial force on the bearings are included.
Such models still do not explain how the vibration is transmitted from the
shaft to the casing. A more comprehensive review of the relevant studies will be given

in each chapter.

1.3 SCOPE AND OBJECTIVES

A new mathematical model for the precision rolling element bearing in Figure 1.2
is developed and incorporated in linear time-invariant discrete and broad band vibration
models of Figures 1.1 and 1.3. This study proposes a comprehensive bearing stiffness
matrix of dimension 6 which explains the vibratory motion transmission through the
bearings and allows for the study of overall geared rotor system dynamics. The lumped
parameter and dynamic finite element techniques are used to develop the discrete
vibration models while statistical energy analysis method is used for the broad band
vibration models. Experimental validation is also included in each chapter, where the
driving point and cross point accelerance and mobility levels predicted by theory are

compared to experiments.



The specific objectives of this research are grouped as follows: bearing
stiffness formulation, bearing system studies, geared rotor system studies, and statistical
energy analysis. Each chapter is self sufficient since it is written in a journal paper style.

Accordingly, a detailed problem statement is also included in each chapter.

a. Bearing stiffness formulation: Since simple bearing models used in rotor dynamic
analyses are inadequate in explaining the role of bearing as a vibratory motion
transmitter, this study resolves this issue by proposing and developing a new rolling
element bearing stiffness matrix which is suitable for the analysis of the vibration
transmission through either ball or roller bearing. A numerical scheme is also developed
to compute the stiffness coefficients and indicate the existence of solutions to the
nonlinear algebraic bearing equations describing the bearing load-displacement
relationships. The proposed bearing model is partially verified by comparing with
published analytical and experimental results. In addition, the character of the bearing
stiffness matrix and its sensitivity to various bearing parameters will be discussed.

(Chapter II)

b. Bearing system studies: The specific objectives of this chapter are to incorporate the
proposed bearing matrix developed in Chapter Il in linear discrete vibration models of
the bearing system as shown in Figure 1.1 using lumped parameter and dynamic finite
element methods to compute the eigensolution and forced harmonic response, and to
evaluate the dynamic stability. The vibration transmission through bearing is also
predicted for several example cases considered previously [14,20,24] and an

experimental setup [17]. The advantages of the proposed formulation compared to the



simple models is demonstrated by comparing their predicted transfer functions. The
theory is also validated by comparing analytical predictions with experimental data on a

shaft-bearing-plate system. (Chapter III)

c. Geared rotor system studies: Current geared rotor system vibration models exclude

the effects of casing and mounts, and do not address the overall system behavior. The
objectives of this chapter are to incorporate the proposed bearing matrix in the discrete
vibration model of the generic geared rotor system of Figure 1.3 and conduct overall
system studies by calculating eigensolutions and forced harmonic responses with
emphasis on the prediction of vibration transmission through rolling element bearings.
The effects of casing and mount dynamics on the internal rotating system is also
evaluated. Example cases which include a single-stage rotor system with flexible shafts
supported by two identical rolling element bearings on rigid casing and flexible
mounts,and a spur gear pair with motor and load inertias attached to two flexible shafts
supported by four rolling element bearings on rigid or flexible casing and compliant or
massive mounts will be studied analytically and/or experimentally. Also, the advantages
of the proposed formulation as compared to simple models of geared drives will be

demonstrated. (Chapter IV)

d. Statistical energy analysis: At very high frequencies, the narrow band approach using
the lumped parameter or dynamic finite element model may not be adequate due to the
high structural modal density. To overcome this problem, statistical energy analysis
method is used to predict the vibratory energy transmission in and noise radiation from a

geared rotor system as illustrated in Figure 1.4a. The proposed bearing matrix is again
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incorporated in the vibratory energy model. In this method, only the mean-square
spatially averaged response over one third octave frequency bandwidths are predicted
which involves solution to a set of algebraic equations obtained through the vibratory
energy balance of each subsystem shown in Figure 1.4b. Several example cases
including a plate-cantilevered rectangular beam, circular shaft-bearing-plate system and a
geared rotor system are chosen to demonstrate the salient features of this technique.

(Chapter V)



CHAPTER 2
BEARING STIFFNESS FORMULATION

2.1 INTRODUCTION

Current rotor dynamic models describe precision rolling element bearings either as
ideal boundary conditions for the shafts [10-12], or as purely translational stiffness
elements [13-15]. Such simple bearing models may be adequate for the free and forced
vibration analyses of the rotor dynamic system enclosed in a rigid casing. But these
mathematical models cannot explain how the vibratory motion may be transmitted from
the rotating shaft to the flexible or rigid casing and other connecting structures. For
example, a vibration model of a system similar to Figure 2.1, based upon the existing
bearing models, can only predict purely in-plane type motion on the flexible casing plate
given only the bending motion on the shaft. However, experimental results have shown
that the casing plate motion is primarily flexural or out-of-plane type [9,16,17]. This
paradox is essentially due to an incomplete understanding of the bearing as vibratory
motion transmitter in rotating mechanical equipment including geared drives where
structure-borne noise paths through bearings are often dominant.

This chapter clarifies this issue qualitatively and quantitatively by developing a
new mathematical model for precision rolling element bearings. A schematic of a
generic system with a flexible shaft rotating at speed Q, and subjected to mean load

vector {f}sm={Fysm Twsm}> W =X, y, z, flexible casing and mount is shown in Figure

12
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2.1; the shaft is supported on one of the following bearings: deep groove ball bearing,
angular contact ball bearing, thrust ball bearing, straight roller bearing or taper roller
bearing. A new bearing stiffness matrix [K]y, will be proposed which is expected to
demonstrate a coupling between the shaft bending motion and the flexural motion of the
casing plate. It will be shown that the translational bearing stiffness coefficients
currently used in rotor dynamic models are a small subset of the proposed [Klpm-
Several example cases are employed to validate our theory. Our bearing model can be
easily incorporated in analytical or numerical models typically used for the dynamic

analyses - this will be the basis of Chapters III and IV of this report.

2.2 LITERATURE REVIEW

The ideal boundary conditions for the shaft have typically been assumed to be
simply-supported for short bearings, clamped for long bearings or free (in the torsional
mode only) [10-12]. In other cases, researchers describe the bearing as time-invariant
translational springs with stiffness coefficients ky,; and/or ky,, in the radial and axial
directions, respectively [13-15,20]. Formulas for such nonlinear stiffness coefficients
are given by Harris [18] and Gargiulo [14]; these are derived from the radial or axial
mean force-displacement equation commonly used by the precision rolling element
bearing designers [18,19]. Their derivations neglect the effects of radial clearance and
mean bearing force vector {f}py, on the load distribution and hence are applicable only
for constant load angle y; of 180 degrees. White refined these formulations by using a
finite difference approximation for the computation of stiffness coefficients for radial

ball and roller bearings, and by including the effects of radial clearance and force on the
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load angle y; [20]. Even with these refinements the mathematical model is still
incapable of predicting the total vibration transmission across bearings.

In 1982 Rajab [21], realized the limitations of the current simple theory and
philosophically proposed two additional stiffness terms kyrg and kpgg Which couple the
relative radial and rotational bearing displacements between the inner and outer rings,
given the mean radial load and moment about the axis transverse to the radial line of
action. In 1988 Young [23] extended Rajab's [21] analyses to include the mean
axial force F,,,, and then used a discrete summation over all of the loaded
rolling elements to obtain bearing forces and moment instead of the integral form
while still retaining other features of Rajab's model. This resulted in a 3x3
bearing stiffness matrix. Some of the salient features of Rajab's [21] and
Young's [23] models are summarized in Reference [22].

Experimental determination of the bearing stiffness coefficients has been strictly
limited to the translational coefficients ky,; and ky,,. A method for the measurement of
in situ bearing stiffness under oscillating loading conditions has been given by Walford
and Stone [30]. Recently, Kraus et al. [24] designed an in situ measurement test stand
to determine the translational bearing stiffness from measured vibration spectra, in
conjunction with the single degree of freedom system theory. They determined the
effect of preload, bearing release and rotational speed 2, on ky,y and ky,,. Their results

show that k., and ky,, are essentially linear and the effect of €2, is negligible when a

high preload is applied on the bearing.
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2.3 ASSUMPTIONS AND OBJECTIVES

Due to the following key differences, a separate formulation of [K]y,, for both ball
and roller type rolling element bearings is required: (i) ball bearings have elliptical
contacts and roller types have rectangular contacts between the inner race, rolling
elements and outer race when loaded, and (ii) the loaded contact angles a,; of the ball
types may change but a; in the roller type remains relatively constant [31]. Each bearing
is characterized by its kinematic and design parameters such as unloaded contact angle
O, radial clearance rp , effective stiffness coefficient K, for inner ring-single rolling
element-outer ring contacts, angular misalignment, preloads, radius of inner raceway
groove curvature center for ball type and bearing pitch radius for roller type [18,19,31].
It is expected that [K]p,, is given in terms of these parameters.

The mean bearing displacements {q}y, as shown in Figure 2.2 are given by the
relative rigid body motions between the inner and outer rings. The total bearing
displacement vector is given as {q}y={q}pm+{q(t))p, Where {q(t) }pa is the fluctuation
about the mean point {q}y,, during the steady state rotation. Accordingly one must
consider time varying bearing stiffness coefficients. However in our analysis, such time
varying bearing stiffness coefficients are neglected by assuming very small vibratory
motions i.e. {q}pa « {q}pm. and high bearing preloads. Consequently, only the mean
bearing loads and displacements are included in the derivation of [K],,. The basic
load-deflection relation for each elastic rolling element is defined by the Hertzian contact
stress theory [18,19,32], and the load experienced by each rolling element is described
by its relative location in the bearing raceway. Further it is assumed that the angular
position of each rolling element relative to one another is always maintained due to the

rigid cages and pin retainers. Secondary effects such as centrifugal forces and
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Outer Ring of raceway diamater dy,,

Inner Ring of raceway diameter d p;

Rolling Element of diameter D
y
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Q_b Mbym
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Figure 2.2 Rolling element bearing kinematics and coordinate system. Here the
following nomenclature is used: dp,, is the outer raceway diameter, dypy, 15

the bearing pitch diameter, dy; is the inner raceway diameter, y is the
angular position of rolling element, 8y is the mean translational
disp!acement, Bpm is the mean angular di.splaccment, Fybm 1s the mean
bearing force, and Mpyp 15 the mean bearing moment where w = X, y, z,

and p=x, y, are the directions.
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gyroscopic moments on the bearing are ignored as these effects are evident only at
extremely high rotational speeds. Tribological issues [32,33] are beyond the scope of
this study and hence our analysis assumes bearings to be unlubricated.

The specific objectives of this chapter are to: (i) propose and develop a new rolling
element bearing stiffness matrix [K]pn, which is suitable for the analysis of the vibration
transmission through either ball or roller bearing, (ii) develop a numerical scheme to
compute [K]pp, and discuss the existence of solutions to the nonlinear algebraic bearing
equations describing load-displacement relationships, (iii) verify our proposed model by
comparing its predictions with published analytical and experimental results [14,20,24]
for the translational stiffness coefficients kpyy, kpyy and kp,,, (iv) relate [Klpp, to
various kinematic and design parameters, and perform parametric studies to investigate
the effect of unloaded contact angle o, and preloads, and (v) characterize the nature of
[K]pm and recommend its usage. Finally it should be noted that dimensionless
parameters will not be used here as the metric units are invariably employed to specify

bearings [32].

2.4 BEARING LOAD-DISPLACEMENT RELATIONS

In this section, the relationships between the bearing forces {Fypm, Fybms Fabm)
and moments {Mypm, Mybm} transmitted through the rolling element bearing, and the
bearing displacements {q}p, as given in Figure 2.2 will be derived for both ball and
roller bearings. The mean applied loads {f};, at the shaft as given in Figure 2.1 and
bearing preloads generate the mean bearing displacements {q}y, and loads {f}bm-

These displacements {q)pp, are used to derive the resultant elastic deformation 3(y;) of
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the j-th rolling element located at angle y; from the x-axis. From the ball bearing

kinematics shown in Figure 2.3, SB(\pj) is

. AGW)-Aq o 85>0 N
sV =10 | 8y,<0 (2.1a)
Aly) = \/(5* )ij+(8’“)fj (2.1b)

(8),;=Agsin 0o+ (B) (8") ;= A cos @+ @) 2.1¢)

where A, and A are the unloaded and loaded relative distances between the inner a; and
outer a, raceway groove curvature centers. Similarly for the roller bearing kinematics

shown in Figure 2.4 for 0=0o, dr(y; is

(8)rj cos aj+ ) 2 sin ozj . 8Rj >0

= 2.2
8o (¥) {O 5,0 2.2)

Note that in equations (2.1) and (2.2) SBJ- <Oor SRJ- < 0 implies that the j-th rolling

element is stress free. In both equations (2.1) and (2.2), the effective j-th rolling
element displacements in the axial (5)zj and radial (S)rj directions are given in Figure 2.5

in terms of the bearing displacements {q}pm-

(8) ;= 8y +1;(B S0 (W) =By cosCy ) (2.32)

X

(S)U. =38, cos \yj + 8ym sin \yj - (2.3b)
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3¢
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Bearing Centerline >z

Figure 2.3 Elastic deformation of rolling element for non-constant contact angle o
given by the change in the distance between the inner a; and outer a,
raceway groove radius curvature centers due to the mean bearing loads or
displacements.
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I/
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Figure 2.4 Elastic deformation of rolling element for constant contact angle a; = o,
given by the change in the relative position of the inner and outer raceways
due to the mean bearing loads or displacements.
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Figure 2.5 Decomposition of the effective radial (8),; and axial (3),; deformations of
the j-th rolling element in terms of the mean bearing dispiacements {4 bm-
Here G is the bearing outer ring geometrical center.
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where 1 is the radial distance of the inner raceway groove curvature center for the ball

type or is the pitch bearing radius for roller type. Equations (2.1)—~(2.3) in conjunction
with the Hertzian contact stress principle [18,19,32] stated as follows yield the load-
deflection relationships for a single rolling element .

Q;=K,3, (2.4)

where Q; is the resultant normal load on the rolling element, and K, is the effective
stiffness constant for the inner race-rolling element-outer race contacts and it is a
function of the bearing geometry and material properties [18,19,31]. Note that the
exponent n is equal to 3/2 for ball type with elliptical contacts and 10/9 for roller type
with rectangular contacts. Previously, we have mentioned that the loaded contact angle
a; for the roller bearing remains unchanged from the unloaded position a,, but on the
other hand a; may alter in the ball bearing case. The sign convention is such that o is
positive when measured from the bearing x-y plane towards the axial z-axis as shown in
Figures 2.3 and 2.4, and negative otherwise. For the ball bearing of Figure 2.3, the

loaded contact angle oy is

A

o Sin oy +(d) 2i

tan (aj) = (2.5)

A, cosa,+ (S)U.

where (S)Zj and (S)rj are given by equations (2.3a) and (2.3b). Itis appropriate here to
note that Rajab [21,22] and Young [22,23] in their derivation of the bearing stiffness

model used an expression similar to equation (2.2) but with 8y =By =8;y,=r =0 in
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Rajab’s analysis and 8,,=Byp=r; =0 in Young's analysis for both ball and roller
bearings. Since always a,; is given by equation (2.5) irrespective of the formulation and
since equation (2.2) is valid only if a;=0,, their ball and roller bearings analyses are
in error. Expressions similar to equation (2.1)-(2.5) with minor differences
have also been used by Eschmann et al. [31], Jones [34] and Davis [35], but their
intentions were to calculate static bearing forces rather than to derive the bearing stiffness

models for vibration transmission analysis.

2.5 DEVELOPMENT OF BEARING STIFFNESS MATRIX [Klym

Our proposed bearing stiffness matrix [K]y,, is a global representation of the
bearing kinematic and elastic characteristics as it combines the effects of z number of
loaded rolling element stiffnesses in parallel given by Sj > 0. First, we need to relate the
resultant bearing mean load vector {f}y, to the bearing displacement vector {q}py,. This
can be achieved through vectorial sums Q; (5wm,Bpm; w=Xx,y,zand p=x,y)in
equation (2.4) for all of the loaded rolling elements which lead to the following bearing

moments { Mgy} and forces (Fypp, ) as follows

Moom] [ sinv))
/M = ' - , (2.6a)
ybmj zj’erjsm OLJ.{ cos b
zbm 0
xbm] . cos ocj cos \yj
J Fybm j — z Qj 1 cosaj sin \p}.j (2.6b)
J sin o,
zbm j
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Replacing Q; and @ in equation (2.6) in terms of {Sywm:Bpm} yields the following

explicit relationships between {f}py, and {q}pmy for ball bearings

|

|

I

n

bem] {J[A sin o, +(8) ] +[A, cosa +(8) ] }

|

ybm [ =K 2 .
b j J[A051n a0+(8)zj] +[A, cosao+(8)rj]
[ sin \yj]
1 {Agsin o+ ), i—cos Wji (2.7a)
0

F n
Xbm] {\/[A sin o +(6) ] +[A, cosa +(5) ] }
ybm [ = K Z

b ] \/[Ao sin ao+(8)zj] +[Aocosao+(8)rj]

[A, cos ao+(8)rj] cos Wj
[A, cos a0+(5)rj] sin \yj
[Agsin @+ (@) ]

(2.7b)

and similarly for roller bearings

[bem\ z [ sin Wj
iMybm r =K sin aoz T ((®) jcos g+ (8),; sin o) 1— COSWJT (2.8a)
Mme J . 0
[FXbm‘ ] cosmoc?swj ]
Fybm =K, Z (8) cos o, + (8) sin o } cos o  sin Wj (2.8b)
zbm J sin @,
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where (S)rj and (5)zj are functions of {Swm,ﬁpm} as defined by equation (2.3).
Approximate integral forms of equations (2.7a,b) and (2.8a,b) are often used instead of
the summation forms to eliminate explicit dependence on yj» especially in the case of
only one or two degrees of freedom bearings [18,32]. For instance Rajab [21,22] chose
the integral form representation but made a mathematical error in constructing the
integrand.

Now we define a symmetric bearing stiffness matrix [K]g, of dimension 6 from

equations (2.7a,b) and (2.8a,b) and by assuming that {q}ps « {q}bm

| awam awam ]
K] 9%, B, . 2.9)
= W, 1=X,y,2 .
bm aMwbm oM wbm
09. .
i 8lm aBlm _{q}bm

Here each stiffness coefficient must be evaluated at the mean point {q}y,. Explicit

expressions for the ball bearing stiffness are as follows; note that [K]y,,, is symmetric

i.e. kbiwzkbwi'

* 2
nA. )"
_ n 2 J Ij 2_ * 2
(Aj A_) cos \yj ___Aj_Ao +Aj ¢ )rj

z
=an 3
j

(2.10a)

kbxx Al

J
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2
nA, @)~
. ) 4] 2 * 2
. (Aj—Ao)“ sin W] cos WJ{_A——-XO_JF Aj - )rj
= ! (2.10b)

nA,
n * * J _
(AJ.—AO) ) )rj (6 )chos Wj{—A.—AO 1}

z
_ ) 2.10c
Kpxz=Kn 2 3 (2.10c)
) j
n . % * n Aj
- i . s -1
, rj(Aj A) © )rj (5 )stm ¥ cos ¥, AJ.—A .
_ 2.10d
Kpeo, =Kn Z 3 ( )
. j
0 nAj
_ * * 2 I N
2 T (Aj Ay @ )rj ® )Zj cos \|Ij 1 AJ.—A
kbxeyz K, z 3 (2.10e)
J .
}
* 2
nA (d).
_ n . 2 ) 1 2_ * 2
) (Aj A, sin v {———Aj TA, +Aj (d )rj}
= 2.10
kbyy—K“Z A (2.100
) j
n * %* nAJ
- in y,{—3——1
, (Aj Ay @ )rj (5 )zj sy, Aj‘Ao
- 2.10
Ky =Kn 2 3 (2.10g)
! j
n * * 2 nAj
2 I‘j (Aj—-Ao) (8 )rj (5 )ZJ sin WJ T‘\j——A;_l
_ 2.10h
kbyﬂx_K"zj: 3 (2.10h)

J
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z

k =K E
by© N &L 3
y ] Aj

* 2
nA.(0).
n J Z) 2 * 2
(Aj= 4o {A—.—A—+A ® >zj}

z j 0 j_ )
k,, =Kq 2 ; 2.10)
j A’
J
* 2
nA.(6 ).
_ n . ] Z) 2_ * 2
2 T (Aj A ) sin \pj {—————Aj_AO +Aj (5 )zj}
Ko = Kn 2 3 (2.10K)
X j A

i

* 2

nA.(d)".
_ n *2 J Z) L2
rj(Aj A coswj{(ﬁ )zj —Aj'Ao A.}

z
kK, o =K"Z 3 (2.10)
y i Aj
r * 2
nA. Q).
2 a A N2 i 42 k2
2 T (Aj A sin \yj{ Aj"Ao +Aj ® )zj}
K, o esznz_ 3 (2.10m)
x i A
J
2 n *\2 nAj(s*)ij
rj (Aj-—Ao) sin WjCOS \VJ (8 )Zj—'m —Aj

y A

Zz
; _ )
l\bexe _anj: 3 (2.10n)
J



29

A8
nA. .
2 _ n 2 -—___Z_J 2_ * 2

zz:rj (Aj A ) cos \yj Aj_Ao +Aj ¢ )zj
k =K (2.100)
beyey n ; A3.

J

kbiefkbeiefo ; i=x,y,z (2.10p)

where (8*)zj’ (5*)rj and Aj are defined by equation (2.1). And the roller bearing

stiffness coefficients ky;y = kpwj are given explicitly as

z
_ 2 n-1 2
Ky, =K cos?ag > 8. cos?y, (2.11a)
J
n z n 1
_n 2 -1
Ky = 3 Kn c08 aoz Sg; Sin 2, (2.11b)
J
n z n-1
kbxz=—2—K“ sin 20LOZBRJ. cos ¥, (2.11¢c)
j
n Z n-1
kbxexzan sin 20(02 r SRj sin 2\|lj (2.11d)
j
n Z n-1
N - 2
kbxey— ansm ZaoerSRj cos \yj (2.11e)
j
PPVEE SEPUES
gy = 1K cos aoz Sp; Sin’V, (2.11f)
j
n z n-1
ky,,= 5 Kn sin 20,2, By, sin (2.11g)
j
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z n—-1

= i in 2
Kpyg = 3 Kasin 2a02j: r 8 sin?y, (2.11h)
z n-1
___n_ . - . .
kbyey— 4 K, sin 20(0% r; 8Rj sin Zu!j (2.117)
k. =nK,sin2a,y " @.11j)
bzz n 0 & Rj )
J
k. =nK,sin?a, Y r6% s 2.11k
bZex--n p SInca . rj Rj sin qu (2.11k)
J
Z n
- - in 2 -
kbzey— nK _ sin aofj; r,8p; cos .11
20 325 12
kbexex=nKnsm aoer SRj sin “ ¥, (2.11m)
J
n o 2 -l
=_ 1 in 2 TG
kbexey“ > Ky sin a0§ T, 8Rj sin 2\|lj (2.11n)
z 2 n-1
= in 2 - 2
kbeyey-—nKnsm 0(0§rj st cos \yj (2.110)
kbmz:kbeiez:O ; 1=X,y,Z (2.11p)

where SRj is defined in equation (2.2). It should be noted that all stiffness terms
associated with the torsional degree of freedom ,,, are zero due to the fact that an ideal
bearing allows free rotation about the z-direction. Also, the translational stiffness
coefficients ky;j, i=x,y,z for 8ym=8,m=Bxm=Bym=0, Sxm=82m=me=Bym=O or

8xm=dym=Pxm=Bym=0 are equivalent to the bearing stiffness coefficients commonly
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used by investigators [14,15,20]. The nature of these and other features of [K]py, will

be discussed later in Section 2.9.

2.6 NUMERICAL ESTIMATION OF [Klpm

The coefficients kp;y can be computed by one of the following two methods: L.
directly compute kp;y given mean bearing displacement vector {q}pm employing
equations (2.10a-p) and (2.11a-p), or IL numerically solve the nonlinear algebraic
equations described by equations (2.7a,b) and (2.8a,b) to obtain {q}py, from {f}pm,
and then evaluate kp;,, per method I. Note that {f}py, may be functions of the mean
shaft loads, bearing preloads, and shaft and casing compliances depending on the
configuration and flexibility of the rotating mechanical system. If the bearing system is
statically determinate, then {f}py, may be computed explicitly in terms of {f}gy, and
preloads using the force and moment equilibrium equations. Conversely for an
indeterminate system, appropriate field equations for the shaft and casing plate are
needed in addition to the equilibrium equations to obtain {f}py which must also include
shaft and casing compliances. Calculations of {f}pm and {q}pm in this case are
simultaneous, which may be extensive especially when the system is very flexible, and
may even require discretization using finite element or lumped mass technique.
However, in many real machines the in-plane stiffness of the casing plate which
supports most of the mean bearing load is much higher than the bending stiffness of the
shaft. Hence the casing in-plane stiffness term may be neglected without contributing
any large error to {f}py [18,31]. And only the Euler's beam equation for a statically
indeterminate shaft is used along with the nonlinear bearing load-displacement equations

(2.7a,b) and (2.8a,b).
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Method I is computationally direct and needs no discussion. But method II deals
with as many as 10 N nonlinear algebraic equations for N bearings if the casing
flexibility is neglected. One must choose an appropriate numerical method as the
nonlinear algebraic equations must be solved iteratively [36,37]. In addition, the
available numerical methods need a prior knowledge of the approximate location of the
solution vector being sought and hence one must be careful in interpreting the numerical
results. In this study, we adopted the Newton-Raphson method for its good
convergence characteristic {36,37]. To implement this method, equation (2.6) for each

bearing is rearranged as

H M im sin 17 0
{Hz} = Mme Zr Q smoc i1 -cosv, ={ 0 } (2.12a)

e g o =20
BRER R IRt

S zbm

(2.12b)

where Hj,Hj,...,Hs are functions defined for computational reasons. For an
indeterminate system, there are additional functions Hg,H7,...,Hy from the field
equations. Using Taylor's series, any function Hy in equations (2.12a,b) can be

expanded about the solution vector X = {q}y, for a statically determinate system and X

T . . . .
= {q}l‘;m, {f) Em] for a statically indeterminate system as follows by neglecting

second and higher order terms.
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V. oH
H (X+8X) = Hy (X) + Z_&_k 5X,- . k=1,2,3,...V (2.13)
j J

The solution for the incremental vector 8X can be obtained by setting H (X+8X) =0
per equations (2.12) and (2.13) which yields a set of linear algebraic equations. This
vector 8X is added to the previously computed vector X given by Hy(X) = 0 for the
next iteration until the convergence criterion, say that 8X is within a specified tolerance,
is satisfied. Our proposed numerical scheme can be summarized as follows: (i) guess
bearing displacement vector {q}pm and/or load vector {f} . (i) compute dX and check
against a specified tolerance, (iii) add 3X to the previous solution vector X and repeat
steps (i) and (ii) until the convergence criterion is satisfied. We have found that a few

initial guess trials are required in most cases to obtain reasonable results.

2.7 VALIDATION OF PROPOSED MODEL

In order to validate our theory we compare the translational stiffness coefficients of
the proposed bearing matrix [K]yy, with published analytical and experimental results
[14,20,24]. First we apply our theory to predict the nonlinear axial ky,, = kpzz(Ozm)
and radial kpg = kp(8ym) stiffnesses as shown in Figure 2.6. Our predictions are
found to be within 2% of Gargiulo's [14] formulas which are commonly used for both
ball and roller bearings.

For the second example case, we consider the ball bearings used by Kraus et
al.[24] for an in-situ determination of the bearing stiffness. Using their bearing design
parameters, we compute radial stiffness coefficient k., as a function of the axial preload

F,m- Excellent comparison between theory and experiment is seen in Figure 2.7.
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Figure 2.6 Comparison between the proposed theory and Gargiulo's formulas [ 14] for
axial ky,, and radial ky,, stiffness coefficients of ball and roller bearings.



35

120
)
=
[72]
2
2
&=
3=
7]
= 40]
< Proposed Theory
R O  Experiment (0 rpm)
A Experiment (1000 rpm)
0 , \
0 20 40 60

Axial Preload (kg)

Figure 2.7 Comparison between the proposed theory and the experimental results of
Kraus et al.[24] for k. as a function of the mean axial preload.
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Finally, we compare our results for the nonlinear radial stiffness ky,, with those
reported earlier by White [20] for both ball and roller bearings. We note discrepancies
in Figure 2.8 between our theory and White's results. In order to explain these we now
define ﬁbn using the finite difference approximation which was also used by White:
ﬁbrr ~ AFprm / Adim = Fyrm / (8q-11). Now a good match is evident in Figure 2.8
between our l’;br, values and the data given by White. However, the correct formulation
is obviously given by our proposed theory which is based on the analytical partial

derivatives Ky = OFp, / 98y, as the displacement 8, may be large.

2.8 PARAMETRIC STUDIES

The proposed matrix [K]pn, includes a coupling between the casing flexural
motion and shaft bending motion which is reflected by some of the dominant off-
diagonal, kbxey’ kyyo,- kpze, and kbzey’ and rotational diagonal, kyg, ¢, and kbgyey,
stiffness coefficients; these are labeled as 'coupling coefficients' for discussion
purposes. Such stiffness coefficients are investigated further by varying preloading
conditions and unloaded contact angle o, for both ball (set A) and roller (set B) bearings
whose design data are listed in Table 2.1.

The coupling coefficients given a constant mean radial displacement O, (radial
preload), as shown in Figures 2.9 and 2.10 for both ball and roller bearings
respectively, are found to increase as o, increases and reach a maximum when o, 18
near 90°. On the other hand, the radial translational stiffness coefficients in the x and y
directions are found to decrease as , increases. These observations imply that for deep
groove ball type or straight roller type bearing (o, = 0°) the radial stiffness coefficients

kpr are dominant, but for angular contact ball type or taper roller type bearing (o > 09
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Table 2.1 Design parameters for typical ball and roller bearings used for parametric

studies
Parameters Set A (ball type) Set B (roller type)
Load-deflection exponent n 32 10/9
Load-deflection constant K, (N/m™) 8.5E9 3.0 E8
Number of rolling element Z 12 14
Radial clearance r; (mm) 0.00005 0.00175
Pitch radius TT(mm) 19.65 21.25
Ao (mm) T 0.05 -

t  Unloaded distance between inner and outer raceway groove curvature centers (see

Figure 2.3)
tt Equivalent to 1 for roller bearings and 1j-Ao/2 for ball bearings given in equation

(2.3)
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Figure 2.9 Dominant stiffness coefficients of ball bearing set A for 0° < ., <90° and
given a constant mean radial bearing displacement 8,y = 0.025 mm.
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Figure 2.10 Dominant stiffness coefficients of roller bearing set B for 0° < o, < 90°
and given a constant mean radial bearing displacement 8, = 0.025 mm.
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the coupling terms are more significant. Note that in Figure 2.10, all the stiffness
coefficients are zero at o, = 90° for the roller type. This is due to the fact that in the
thrust roller bearing, radial flanges are included to resist the roller motion in this
direction which is not modeled here, and hence these stiffness coefficients must vanish.
In addition, thrust roller bearings are designed to carry axial loads [18,31]. On the other
hand, ball bearings have finite stiffness coefficients at o, = 90° due to the curvature of
the raceway which provide some resistance to the radial preloads. In general, the trends
in both ball and roller bearing stiffness properties are similar when each is subjected to
mean radial displacement or preload.

In the case when the bearings are subjected to mean axial displacement (axial
preload), as shown in Figure 2.11 for the ball type and Figure 2.12 for the roller type,
the number of nonzero stiffness coefficients are less than those seen for the radial
preload only. Again, it is observed that both ball and roller bearings display similar
trends. Over mid to high o, values, the coupling coefficients are found to be
significant. The translational stiffness coefficients are relatively constant except for the
axial stiffness which increases as «, increases. This is expected due to the inclination of
the rolling element line of contact from the x-y plane which increases elastic support in
the z-direction. At oty = 09, all the stiffness coefficients for roller bearings are zero as
there is no constraint in the axial direction. In real bearings such a constraint is provided
by the axial flanges [18,31], however this bearing is not designed to carry any axial
preload.

Results for the misalignment in ball and roller bearings simulated by specifying a
mean bearing angular displacement Bym are shown in Figures 2.13 and 2.14

respectively. The dominant stiffness coefficients are the same as those seen for the
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radial preload case. For ball bearings, most of the stiffness coefficients remain constant
for 0° < &, <90°. On the other hand, the stiffness coefficients for roller bearing have
trends similar to those found for the radial preload cases.

From the detailed parametric studies, it is concluded that the nature of [K]y,y, is
dictated by the bearing type, &, and preloads. Also, the coupling coefficients are not

negligible in most cases as assumed previously by many investigators.

2.9 CONCLUSIONS

Results of Section 2.8, which show similar trends for some of the cases, imply
that there may be a systematic approach to characterize the proposed bearing stiffness
matrix [K]p,. From the kinematic and geometrical considerations, it is always possible
to impose any bearing displacement vector {q}, which denotes relative rigid body
motions between the inner and outer rings as long as the rolling element is still within
the elastic deformation regime. On the other hand, an arbitrary application of {f}},, may
not produce a singular displacement response from the bearing due to its kinematic and
geometrical constraints. Hence, we compute [Klpp, and {f}p, by systematically
varying {q}pm. The results of all possible forms of [K]pp, are listed in Table 2.2 and
2.3 for ball and roller bearings respectively. Also included here are the current bearing
models which are based on the translational spring descriptions; these models do not
show any coupling. Note that the exact values of the stiffness coefficients are not given
as these depend on specific parameters; therefore only the dominant kpij terms are listed
for all possible bearing load configurations along with the corresponding {q)pm and o,
Also, note that not all combinations of the bearing loads are possible which complicates

bearing stiffness calculations further, especially for the numerical method II. Tables 2.2



Table 2.2 Comparison between the proposed and current ball bearing stiffness

coefficients.(p =x,y; i=x,y but i#p)

Mean
bearing’ T
loads

Mean bearing displacement

Dominant stiffness coefficients

A,

-

~=0°
o,=0

00<,<90°  ,=90° current!

proposedﬁ“f

Fpm

{f}m

8xm’sym
8pl'ﬂ’Bpl’l‘l

8pmvﬁ‘pm

8pm:szm:

Bim

Szmvam’

Bym

combinations of {q},

8pm:szm’ 8pm»szm’ k

Szm’me' Szm’me’

kxx’kyyvkzz,kexepkeyey’kzei

kxx’kyy’kzzvkexex’keyey’

kxey’kyex

kxx’kyyvkzz’kexex’keyey
kxx’kyyvkzz’kOxGX’kGyey’kiz
kxx’kyyvkzz’kexex’keyey’kzep

kxx’kyyvkzz’kexex’keyeys
kxy’kexey’kzeykzey

kxx’kyy’kzz’kexex’keyey’

kxex’kyey’kpz’kzei

kxkayy’kzz’kexﬁx’keyey’

kxy’kxzvkyz,kexey

kxx’kyy’kzzvkexe)vkeyey’

kxey’kye)vkpz,kzei

kxx,kyy,kzz,kgxex,keyey,
kxyskexey’kzex’kley

all non-zero except 6, terms

t  Ideal boundary condition models used to describe the bearing are not tabulated.

++ Here the subscript b which implies bearing has been omitted for brevity.

+++ All terms associated with 6, are zero because of the free rotation about the z axis.
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Table 2.3 Comparison between the proposed and current roller bearing stiffness
coefficients.(p =x, y; i=x,y but i#p)

Mean Mean bearing displacement Dominant stiffness coefficients

bearing!? - * N *

loads o,=0° 0%, <90° o =~90° current! proposed 1t

Fpm Spm - - kpp kbpp

Fum - 8zm - kppkz.z kxmkyy’kzz’kexex’keyey’
kxgy’kyex

Fym - - Szm ky kzz’kaBx’keyey

Fzm’Mpm - - 8zm’Bpm kz kzz,kexex,keyey,kzep

Fxvaym axm’sym - - kpp kXX’kyy’kXy

I:pmstm - 8pm’azm - l(ppakzz kxx,kyyakzz’kexex’keyey’

Min Bim kxey’kyeykpz’kzei

Fzm9Mxm’ - - Szm’me’ k’EL kZZ’kexex’keyey’kexey’

Mym Bym kzex’kzey

() m combinations of {q}, kppkzz  all non-zero except 6, terms

t  Ideal boundary condition models used to describe the bearing are not tabulated.
t+  Here the subscript b which implies bearing has been omitted for brevity.
t11 All terms associated with 0, are zero because of the free rotation about the z axis.
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and 2.3 should provide some insight to the solution of the nonlinear algebraic bearing
load-deflection equations which requires a prior knowledge of the type of solution
being sought as outlined earlier. In most practical problems, mean bearing loads are
typically known. This knowledge can be combined with Table 2.2 or 2.3 to formulate
the nonlinear load-deflection equations in the simplest form by deleting all of the zero

displacement terms.

Tables 2.2 and 2.3 show that the coupling coefficients kbxgy, Kpy0y Kbz kbzey’

kpg, 6, and kbeyey are found to be dominant in most of the ball bearing cases, and only

in some of the roller bearing cases. This is essentially due to the curvature of the
raceway in ball bearing which invariably causes the rolling element to orient itself such
that 0° < a; < 90° which generates ball loads in the z direction as well. However, in the
roller bearing case where o = 0, the same phenomenon does not occur when o, = 0°
or 90°, and the coupling coefficients are seen only when 0, # 0° or 90°. In fact for the
0° and 90° unloaded contact angle cases, the stiffness coefficients associated with x and
y directions and those associated with the z, 94, and Gy directions do not exist
simultaneously; the former is dominant when o, = 0 and the latter prevails when o, =
90°. Another case of interest here is the case when bearing loads are complex as given
by the last row in Tables 2.2 and 2.3 where all of the bearing stiffness coefficients
unrelated to the rotational degree of freedom 8, exist. Solution to these cases may
require a large number of iterations.

In summary, we have developed a comprehensive bearing stiffness matrix from
the basic principles which includes all possible rigid body degrees of freedom of a
bearing system. This matrix has been validated partially using several analytical and

experimental examples. Further validation of [Klpm is not possible as coupling
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coefficients are never measured [24,30]. Nonetheless, our theory is general in nature
and is applicable to even those configurations which may be different from the generic
case shown in Figure 2.1. Further research is required to incorporate tribological issues
[32,33] in this formulation. However the proposed stiffness matrix in its present form,
unlike the current models, is clearly capable of explaining the nature of vibration
transmission through bearings — this is the subject of Chapters III and IV of this

report, which will also include further comparisons between theory and experiment.



CHAPTER 1II
BEARING SYSTEM STUDIES

3.1 INTRODUCTION

Current bearing models [10-15] can not explain how the vibratory motion may be
transmitted from the rotating shaft to the casing and other connecting structures in
rotating mechanical equipment. For instance, experimental results [9,16,17] have
shown that casing plate motion for a system similar to Figure 3.1 is primarily flexural or
out-of-plane type given only the bending motion on the shaft. Using existing vibration
models, only in-plane type motions on the casing plate are obtained. Such limitations
associated with current bearing models have been discussed thoroughly in Chapter II of
this report. Also in Chapter II, a new mathematical model for the precision rolling
element bearings has been developed in order to clarify this issue qualitatively and
quantitatively.

This study extends the proposed bearing formulation and demonstrates its
superiority over the existing models in vibration transmission analyses. A schematic of
a generic system with a flexible shaft rotating at constant speed € ,, flexible casing and
mount is shown in Figure 3.1. The shaft is supported by a rolling element bearing
which is modeled by a stiffness matrix [K]p, of dimension 6 as proposed in Chapter II.

The excitations at the rotating shaft are given in terms of an alternating load vector

{f()}a = {Fjsa(t),Tjsa(t)}T = {f(t)}s— (f}sm; j=X,y,2, where Fjsa(t) and Tjsa(t) are the

51
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Figure 3.1 Schematic representation of the vibration transmission problem. Here the
flexible shaft is subjected to alternating forces Fjsa(t) and torques Tjg,(t)
where j = x, y or z, is the direction and subscript a implies alternating.
Also, 6 is the angular displacement and u is the translational displacement.
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alternating force and torque respectively, {f(t)}; is the total load vector of dimension 6,
(f}sm Tepresents the mean load vector, and superscript T implies the transpose. In the
vibration analysis, {f}¢y and bearing preloads are not included as they do not appear in
the governing equations of the linear vibration model but are used for computing [Klpny-
The effect of bearing coupling coefficients, which are off-diagonal and rotational
diagonal terms of [Klpp as described in Chapter II, on the eigensolution, forced
vibration, and vibration transmission through bearings is evaluated. Our theory will be
illustrated and validated through 3 physical system example cases; experimental

verification is also included.

3.2 LITERATURE REVIEW

The existing bearing models which assume either ideal boundary conditions [10-
12] for the shaft or translational stiffness elements [13-15] have already been discussed
in Chapter Il. Various formulas for estimating translational stiffness coefficients
commonly used by researchers have been compared with our proposed [Klpm
formulation. These simple bearing models are widely used in vibration models of the
rotor dynamic systems, which typically exclude casing and mount dynamics, to calculate
critical speeds, responses due to shaft excitations such as mass unbalance and gear
transmission error, and dynamic stability [10-15]. In most of these cases, the vibration
transmission through bearings is never or not the primary issue, and thus the
bearing models tend to be simplified. None of the current models studied [20-22,24]
can fully explain vibration transmission through bearings in systems similar to

Figure 3.1. In 1979 White [20] evaluated the rolling element bearing vibration transfer
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characteristics using a two degrees of freedom (DOF) vibration model of the system
shown in Figure 3.1. His formulation is based on only the radial bearing stiffness
coefficient kpy . He concluded that an increase in preload increases ky,, and system
natural frequencies. He also found that the effect of bearing nonlinearity is negligible at
higher preloads. In 1987 Kraus et al. [24] proposed a single degree of freedom model
for a similar physical system (with a very compliant mount) to estimate kpr from
measured vibration transmission spectra. In both of these studies, the coupling
coefficients of [K]y,, are not included.

In 1982 Rajab [21] philosophically proposed a bearing stiffness matrix which
consists of kyrr, kprg and kygg coefficients. Some of the key features of his model are
also summarized in Reference [22]. This model is in fact a subset of our [Klpm as
shown in Chapter II of this report. He incorporated his bearing model in a
system study using a commercial structural synthesis program [38]. However,
based on our study we have inferred that he incorrectly synthesized the system
model given the plate experimental modal data, shaft finite element model and
analytical bearing model. Moreover, an error was found when he converted kyre
and kygg coefficients to “effective stiffness coefficients" which he claimed to
couple the shaft bending motion to the plate out-of-plane motion. Also, this
method excludes the bearing rotational degree of freedom, which from our study

was found to be important.

3.3 ASSUMPTIONS AND OBJECTIVES
Linear discrete vibration models of the generic system shown in Figure 3.1 are

used to incorporate [K]py, and to characterize the vibration transmission through rolling
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element bearings. The stiffness coefficients of [K]yy, are evaluated using the analytical
expressions presented in Chapter II of this report. Effect of the gyroscopic

moment on the shaft dynamics is not included. Since the bearing system is statically
indeterminate, the direct stiffness formulation technique is used to obtain the system
governing equations as opposed to the flexibility formulation. The governing equations

for the system vibration model can be given in the matrix form as

IMI{G(t) } , + [CH{a() } , + [KI{a(D) ]} , = {f(D)}, 3.1

where [M], [C] and [K] are the system mass, damping and stiffness matrices

respectively, and {q(t)}, and {f(t)}, are defined as the generalized alternating

displacement and applied load vectors respectively. Due to the linearity of the vibrating

system, mean shaft loads {f}ym and preloads do not directly affect the dynamic
response of the rotating system and hence are excluded from equation (3.1). However,
{f}pm and bearing preloads are assumed to be constant to ensure a time-invariant [K]yp,
matrix which depends only on these mean loads or on the mean deflection operating
points. Accordingly, only the alternating shaft loads {f(t)}s, in Figure 3.1 which
represent typical machine excitation due to the kinematic errors, mass unbalances and
torque fluctuations are included in the forced vibration problem. The energy dissipation
associated with the rolling element bearings is assumed to be an energy equivalent
viscous damping matrix [Cly, = 0 [Klpy, where o is the Rayleigh damping matrix
proportionality constant. Dynamic instabilities due to the oil whirl phenomenon and
asymmetry of rotating elements [11,12] are clearly beyond the scope of this study and

hence are not considered here.



56

The specific objectives of this chapter are to: (i) incorporate the proposed bearing
matrix [K]ym, developed in Chapter II of this report, in the linear discrete vibration
model of the rotating mechanical equipment as described by equation (3.1) using both
the lumped parameter and dynamic finite element methods, (ii) evaluate the dynamic
stability of the proposed bearing system model using the Liapunov's second method,
(iii) calculate eigensolution and forced harmonic responses, and predict vibration
transmission through rolling~ element bearings for three example cases, (iv) demonstrate
the advantages of our formulation over the existing models by Kraus et al. [24] and
White [20], and (v) validate the proposed theory by comparing analytical prediction with

experimental data on an analogous system.

3.4 SYSTEM GOVERNING EQUATIONS
3.4.1 Method A: Lumped Parameter Model

The proposed bearing matrix [K]y,,, can be easily implemented in equation (3.1).
Note that, the coupling coefficients of [K]y, provide the capability to predict casing
rigid body angular 8jc,(1), j=x,y,z, and translational ujc,(t) motions given only the
unidirectional transverse shaft forces. Hence we can couple the shaft motions to the
motions of a casing of a system similar to Figure 3.1 but with rigid shaft and rigid
casing using a lumped parameter model. The bearing preloads can now be included in
the mean shaft load vector (f}y, by a direct vector addition as the rigid shaft can be
assumed to be a single lumped mass for this purpose. An alternating displacement

}T

vector (q®)a= ({a(1)) 5. (a(1)) g5}, is defined where {q(1)}sa = {ujsa(0)8jsa(®)} "

and {q(t)}ca = {ujca(t),ejca(t)}T, J=x,y,z, are the shaft and casing alternating
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displacement vectors respectively. The governing equations of motion for this generic

vibration model with DOF = 12 are given by equation (3.1) with

[M] (0] [K] -[K]
[M]=[ s } : [K]=|: bm bm ](3.2a,b)

(0] [M] -1 K]+ (KD
[C] [K] {t(D} {{f(t)} sa} (3.2¢,d)
=0 ; = LC,
a {0}
[ kbxx kbxy kbxz kbxex kbxf)y 0]
kbyy kbyz l(bye,‘ kbyﬂy 0
k k k 0
[K] - — bzz blex bzey (3.26)
kbexex kbe,‘ey 0
symmetric k 0
beyey
L 0]

where the stiffness matrices [K]y,, and [K], pertain to the bearing and mount
respectively, and the matrices [M]g and [M],, are diagonal shaft and casing mass matrices
respectively; each matrix of dimension 6. Specific examples of this method along with

the eigensolution and forced response studies will be presented in Sections 3.7 and 3.8.

3.4.2 Method B: Dynamic Finite Element Formulation

Consider the dynamic finite element method of incorporating [K]y, in equation
(3.1) especially when shaft and casing plate are elastically deformable over the
frequency range of interest. This method is different from the lumped parameter

formulation of Section 3.4.1 which assumes non-compliant shaft and casing. For
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example, if the flexible casing plate is considered to be very large compared to the
bearing dimensions, then the bearing nodal point on the shaft can be coupled to only one
bearing nodal point on the plate as shown in Figure 3.2a. Accordingly, the present form
of [K]pm 1s implemented in the finite element model as a generalized stiffness matrix like
the lumped parameter model. On the other hand, when the flexible casing plate
dimensions are finite and of the order of bearing dimensions, then several bearing nodal
points are considered as shown in Figure 3.2b. The discretization philosophy here
assumes that a relative displacement vector, given by the difference between the
averaged displacement vector of bearing nodal points on the plate and the displacement
vector of a bearing nodal point on the shaft, is equivalent to the actual rigid body bearing
motion. Accordingly, we divide the bearing stiffness coefficients equally among all the
generalized stiffness elements connecting the bearing nodal points on the plate to a single
bearing nodal point on the shaft. In the limit, where all the bearing nodal points on the
plate are collapsed to a single nodal point, [K]yq, is recovered as in the first method.
Our finite element formulation uses conventional structural elements typically available
in commercial software programs [39] — this will be illustrated in Section 3.9, Other

features of this method are similar to those discussed earlier in Section 3.4.1.

3.4.3 Other Methods

Alternate methods of incorporating [Kly, in equation (3.1) such as finite
difference which is similar to method B, flexibility, component mode synthesis and
transfer matrix formulations are also possible. In the flexibility formulation, the bearing
flexibility matrix can be obtained by inverting a subset of the bearing stiffness matrix

[KJpms Which excludes zeroes corresponding to 6, angular direction from [K]p,. In the
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Figure 3.2 Discretization method for implementation of [K]ym in finite element model
of a system similar to Figure 3.1. Here {q()}sa and {q(1)}c, are the
alternating shaft and plate displacement vectors at bearing location
respectively. Subscript a implies alternating component.
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transfer matrix method, the field matrix [T],, for a bearing can be easily related to

[K] bms-

{q(t)} {q()} -1
{f S"}:m {{f }m} : [T]b=[ L] [K]bmsJ (3.3a,b)

where {{q(t)) g, (F()) ) " and {{q(0)} &, (£()}%, )T are now the state vectors
at bearing locations on the shaft and casing plate respectively. Equation (3.3) can now
be integrated with transfer matrices of the shaft and plate which are well documented in
References [40,41]. Direct application of these alternate methods [40-43] are beyond
the scope of this paper and are left for further research.

3.5 BEARING SYSTEM STABILITY

The stability of the proposed linear, non-gyroscopic model of a bearing system
similar to Figure 3.1, which is governed by equation (3.1) with {f()}, = {0}, can be
determined using several techniques such as Liapunov's stability method, Routh-
Hurwitz criteria, or from the direct evaluation of system eigenvalues. Here the
Liapunov's second method is used for its simplicity when applied to such a vibration
model [44,45]. If the system matrices [M], [C] and [K] of equation (3.1) are always
symmetric and positive definite, then the system is asymptotically stable per Liapunov.
The first condition is directly satisfied since [M], [C] and [K] are symmetric. Further,
since [M] is diagonal and consists of only positive entries, it is clearly positive definite.

For [K], the positive definite test can be performed by evaluating its principal minor
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determinants which is demonstrated here for the generic lumped parameter model.

Consider the decomposition of [K] given by equation (3.2) into a product of 3 matrices
K] =[ [ [0]] e, o [[1] - [1]] 54
-1 (1] (0] [K], (o] (1] :

where the square submatrix [0] of the appropriate dimension consists of only zero

entries, [I] is an identity matrix of the same dimension, and [K]pp, and [K]y have been
defined in Section 3.4.1. The determinant of [K] is the product of the determinants of

the three matrices on the right hand side of equation (3.4)

K = | (K], || (K] (3.5)

If ' [K] ' >0, w,j = 1,2,...,P and P = 1,2,..,12, [K] is positive definite. Other
wj

principal minor determinant with P<12 can be obtained by excluding the stiffness
coefficients which are not entries in the principal submatrix of equation (3.5). Since
| [ K1 = kvxkvykvzkvoxkvey kve, > 0, it implies that equation (3.5) is positive

only if . [K] b ) is positive. We may recall that [K]yy, has zero entries in the last row
m

and in the last column corresponding to torsional 6, angular direction which forces the
bearing system to be semidefinite. Now define a new matrix [K]ymg of dimension S as
a subset of [K],, with these zeroes excluded. If [Klpms has positive principal minor
determinants, then this system is dynamically stable because it will consist of stable
oscillations superimposed on the mean shaft rotational motion €, # ,(t). Further, it

follows that [Clyys Which is proportional to [K]yy is also positive definite if [Klpps is
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positive definite. The resulting equation obtained from the expansion of the determinant
of [K]pms in terms of its entries kpyj, W,j=1,2,3,4,5, is given as follows in terms of the

stability functions ®;, j = 1,2,3,4.

|[K]b | = 2 04(55,34,45,35) {kpps D4(11,23,12,13)0+kp14 $4(22,13,12,23) )+
ms
2 04(44,35,45,34) [kpps P4(11,23,12,13)+kpys D4(22,13,12,23)}+

2 ©4(24,35,25,34) (kp1s P4(25,13,23,35)+kp1s D4(12,34,24,13)) —
kp1s kp22 kp3a ©3(14,35,15,34) + kypa kpps kp1a ©3(23,35,33,25) +
2 ky14 D4(25,45,24,55) D4(13,23,12,33) + { ki1 kios )2 kpzs +
D1(1,2) ®»(45,34,35,44,55) + D;(1,3) D,(45,24,25,44,55) +

kp1s P1(2,3) D3(14,45,15,44) + k1 { ©4(24,35,25,34) )2 +
{kp14)? { kp23 ©3(23,55,35,25) — kyap ©1(3,5) } +

®,(4,5) { kpyy ©1(2,3) + ©(23,13,12,33,22) } +

2 k15 D4(24,45,25,44) D4(23,13,12,33) +

2 k15 ©4(14,25,15,24) D4(23,34,24,33) (3.6a)

2
(Dl (WI’WII ) = kaIWI kanWH - {kaIWH} (36b)
2 2
Co(WLWILWILWIV,WV) = 2Ky Kpwyy KpwiKbwyy { Kpwi } —Kbwy, {kbwII }° 3.60)
O3 (WLWILWILWIV ) = 2Kpw; Kbwy; = Kbwyy Kowgy (3.6d)

D4 (WEWILWILWIV ) = Kbwy Kbwyp - Kbwyy Kbwyy (3.6¢)

where wj, j = LILILIV,V, are the dummy variables and each Wwj may represent either a

single number or a set of two numbers in equation (3.6a). The principal minor

determinants of [K]ppms can also be derived from equation (3.6) by excluding the
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appropriate stiffness coefficients which are not entries of the particular principal
submatrix. Hence, the bearing system is stable if each principal minor determinants
derived from equation (3.6) is positive. The stability of the proposed bearing model
given in Chapter II of this report can now be verified using these conditions.
Inequalities associated with the stability criteria for these models are summarized in
Tables 3.1 and 3.2 for ball and roller bearings respectively. These inequalities arise due
to the fact that we are yet to impose any restrictions on these stiffness coefficients. In
Chapter II of this report, these stiffness coefficients are given as functions of
bearing kinematic and design parameters, and hence any coefficient can not assume an
arbitrary value as it is related uniquely to other coefficients through these parameters.
Extensive numerical studies performed over a wide range of these parameters have
indicated that the bearing models proposed in Chapter II are indeed stable provided the
preloads are sufficiently large to avoid the clearance non-linearity. Figures 3.3-3.5
illustrate examples of these bearing system stability studies for precision rolling element
bearings whose design data are given in Table 3.3. In all of these figures, the stability

functions @; given in Tables 3.1 and 3.2 are found to lie within the stable region.

3.6 SYSTEM RESPONSE

The eigensolution of the linear, non-gyroscopic undamped system, formulated by
setting {f(t)}, = {0} and [C] = [0] in equation (3.1) given by method A or B, yields real
valued natural frequencies wj, j=1,2,3,..., and the modal matrix [U] = [{¢};, {6}2,

wes {9}y, -..] for the stable system. Since the system is proportionally damped, the

modal damping ratio is Cj =0 0)12/2 and the damped natural frequency is
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Table 3.1 Bearing system stability criteria for the proposed ball bearing model
(=xorl,yor2; p=xorl,yor2 but p#j)

Proposed bearing model® Stability criteria’
see Table 2.2
kxkayy’kzz’kexepkeyey’kzep ¢1(3’p+3) >0
kxx’kyy’kZZ’kexex’k9y9y9kx9y’ky9x (DI(I,S) >0; d)l(2,4) >0
KyxoKyyKzz:Kox00-Koyoy always stable
kxx’kyy’kzz’kex(-)pkeyﬂy’kpz (Dl(p’3) >0
kxx,kyy,kzz,kexex,keyey,kxy, 2,(1,2)>0;9,(3,4)>0;
kexey,kzex,kzey k33P;(4,5)+P»(4 53 4,3544,55) >0
KxxKyy:Kzz.Kox0x:K0y0yKx0x: k11k22<D1(3-4)+kj32_kppk44+k142k22k33 >0;
kyey’kavkzep (Dl( 13)>0;

(k330 (1,4)D,(2,5)D5(p p+3,+3 j+3,p p4 4,5 5)}-
(ki3 k3 ps3}2 - {@5(j j+3,p p,1 1,2 2,§+3 j+3)} > 0

kxx,kyy,kzz,kexex,keyey,kxy, D,4,5>0;9,1,2)>0;
kxz,kyz’kexey kyp ©4(1,2)+9,(23,12,13,22,33)>0
kxx’kyy’kzz’kexepkeyey’kxﬁy! (Dl(p’j+3) >0 ’ ¢1(ja3) >0 >
kyex,ka’kzep kjj®;(3,p+3)+®,(3 p+3,j 3,j p+3,3 3,p+3 p+3) > 0
all non-zero except 6, terms l [K] I >0
bms

T Here the subscript b which implies bearing has been omitted for brevity.
1 Stability functions @; and @, are defined by equations (3.6b) and (3.6¢) and Dy is

: 2
given by @5 ( W, wiL, Wi, WivsWv ) = (Kpw;} Kbwy = kbwp; Kowyy kowy,
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Table 3.2 Bearing system stability criteria for the proposed roller bearing model
(j=xorl,yor2; p=xorl,yor2 but p#j)

Proposed bearing model® Stability criteria’T
see Table 2.3
k;; always stable

kxx’kyyvkzz’kexex’kByOy’kxeyvkyex
kzz’kOxGX’kByOy
k72 Kox0xK0y0yK20j
kyxokyy-Kxy

kxx’kyy’kzz’kexex’keyey'kxﬁy’

kyex-Kjz kz0p

kzz-Koxox-Koy0ykox0yKz0x-Kz0y

all non-zero except 9, terms

®,(1,5)>0; 9,24 >0
always stable
D,(3,j+3) >0
9,(1,2)>0

D,(p.j+3)>0; D1(i,3)>0;
kjj<Dl(3,p+3)+<D2(3 p+3,j 3.j p+3.33,p+3 p+3) >0

,34)>0;
k33®P,(4,5)+@,(4 5,3 4,35,44,55) >0

l[K] | >0
bms

+  Here the subscript b which implies bearing has been omitted for brevity.
t1 Functions @, and @, are defined by equations (3.6b) and (3.6¢)
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Figure 3.3 Plot of stability criteria functions for ball and roller bearings subjected to
mean bearing radial deflection 8,,,. (a) S1 = ®,(2,4) and S2 = D,(1,3).
(b) S3 =kp11 ©4(3,5) + ©,(35,13,15,33,44).
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Figure 3.4 Plot of stability criteria functions for ball and roller bearings subjected to
mean bearing axial deflection 8,p,. Here, S1=®,(2,4) and S4 = ®(1,5).
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Figure 3.5 Plot of stability criteria functions for ball and roller bearings subjected to
mean angular misalignment Bym. (@) S1=®;(2,4) and S2 = P,(1,3). (b)
S3 =kyp1; €,(3,5)+P,(35,13,15,33,44)
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Table 3.3 Design parameters for typical ball and roller bearings used for system studies

Parameters Ball type Roller type
Load-deflection exponent n 312 10/
Load-deflection constant K (N/m") 1.0 E9 1.0 E8
Number of rolling element Z 12 14
Radial clearance r; (mm) 0.00005 0.00175
Pitch diameter (mm) 40.05 38.00
Ao (mm) T 0.05 -
Unloaded contact angle o, 40° 15°

+ Unloaded distance between inner and outer raceway groove curvature centers
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given by W= coj f1- CJ? . Free vibration response due to the initial conditions is
not considered as only the steady-state particular solution corresponding to sinusoidal or
periodic load vector {f(t)}, is of primary interest. Define excitation by the Fourier series
expansion as (f(t)}, = Ep: {f}ap el®pt where Wp = pWy, W, is the fundamental

frequency, and {f},p, is the complex Fourier coefficient load vector. The steady-state

particular solution {q(t)}, is given by the normal mode expansion technique [40,42,43]

as
T
: {0).(f}
10 Lt J ap
=[U Plip. = ; p=1,2... (3.7a,b

An alternate approach would be to assume the harmonic solution for the alternating
displacement as {q(t)}, = z {q}ap el®pt, Substituting this and {f(t)}, definition into
Y

equation (3.1), we get

@ =Adj[-cof,[M]+MK]{f} A iaics
Alap ’[— cof,[M] + MK]:H ® ’ P

(3.8a,b)

where the operator Adj refers to the adjoint of the dynamic stiffness matrix. Features of
this method are summarized in References [40,42,43]. Since the vibration transmission
across the bearing is the primary issue, we now define sinusoidal load transmissibility

R(pw) terms between two arbitrary locations I and II as
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Ifwla(wp)l

(w, )= 7 ow,j= 1,2,...,6 (3.9
P |ijIa(mP)|

Rf . f

wla " jlla
where fy,1, and fjp, are components of the dynamic load vectors at two arbitrary
locations I and II respectively. The accelerance A(wp) and mobility V(wp) transfer
functions with motion at location I due to an alternating force or torque ijIa applied at

location II on the shaft are

A o (oy)= I(zwla(mp)l (3.10a)
Quiar | fima (©p) |
V((op)=i—(})—-A(0)p) L wyj= 12,6 (3.10b)

P

where fiwl a 1S @ component of the acceleration vector at location I. Other frequency

response functions can also be defined in a similar manner [40,42,43].

3.7 EXAMPLE CASE I: RIGID SHAFT AND PLATE SYSTEM
3.7.1 Vibration Models

Consider the mechanical system shown in Figure 3.6a which is assumed to be
freely suspended or softly mounted such that [K], = [0]. A ball bearings (see Table
3.3) with constant axial preload is supporting a short rigid shaft subjected to a mean
torque T,¢m # T,om(t) and a sinusoidal radial force Frgy(t) = Frgay ei®ot applied very
close to the bearing. A lumped parameter model with DOF = 12 is proposed in Figure
3.6b. Conversely, the same system has also been analyzed by Kraus et al. [24] using a

simple vibration model with DOF = 1 as shown in Figure 3.6c with only k.
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Free boundary condition
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Figure 3.6 Example case I: freely suspended rigid shaft, ball bearing and rigid plate

systemn subjected to alternating radial force F,(t) applied at the shaft. (a)
(b) Proposed multi-degree of freedom vibration model
with DOF = 12. (¢) Simple model by Kraus et al. [24] with DOF = 1.

Physical system.
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coefficient. The bearing stiffness matrix for an axially preloaded ball bearing in Figure

3.6b has non-negligible stiffness coefficients kpyx, Kpyys Kpzzs Kbogo, kbeyey, kbxey
and kyyg, which are functions of the mean axial preload as given in Chapter II of this
report. The system matrices of equation (3.2) can be modified for this case by
suppressing other bearing stiffness coefficients and [K],. It can be easily observed
from equations (3.1) and (3.2) that 5 sets of uncoupled differential equations exist. The
simplest three sets are homogeneous and pertain to the rigid body torsional motions
6,,(t) of the shaft and casing, and axial vibration u,,(t) of the shaft-casing system which
are of no interest here. The remaining two sets are almost identical and associated with
either {u,(a(t),f)ya(t)}T or {uya(t),em(t)}T degrees of freedom for rigid shaft and casing.
If the coordinate system is chosen such that Fig,(t) line of action coincides with the x-
axis, then the steady-state solution to the set of differential equations in terms of
{uya(t),exa(t))T is trivial. Hence, the problem reduces to a semi-definite vibration
system with DOF = 4. Accordingly, rewrite [M]g, [M] and [K]pp, in equation (3.2) in

terms of the displacement vector (q(t)}, = {uxsa(t),Gysa(t),uxca(t),Byca(t)}T as

mg 0 . mc() . bxx bxey
[M]S=[ 0 Is] ,[M]c=[ 0 Ic] ; [K]bm K K (3.11)

First two eigenvalues corresponding to the rigid body motions in x and Gy directions are
zero. The dimension of equation (3.11) is further reduced to DOF = 2 by defining
relative motions Sy,(t) = uyga(t) — Uxca(t) and Pya(t) =Byg,(1) — Bycq(t) which turn out to

be the bearing rigid body motions.
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ya

Ymmg 0. Sxa 8xa 8xa _{YmFxsa([)}
[ 0 VIIsHB }+[C]B +[K]bm{ﬁ = 0 (3.12a)

=wmFm; W T+r, > [lC=elKl (3.12b)

It may be noted that purely translational 8,,(t) model by Kraus et al. [24] shown in
Figure 3.6¢ constitutes a subset of equation (3.12) with kpxgy = 0. Eigensolution of

equation (3.12) with [C]=[0] yields the following natural frequencies ®; and modes

(0};

B,tB,
127 [ 2ym gy 1, B1=Ymmskb9y9y+yllskbxx (3.132,b)
2 2
B,= (Ymmskbe 0 _YIISkaX) + 4 mm Yk e (3.13¢)
y'v y
T 1
{¢}1 2: 2{ 1, B3} (3.14a)
’ _\/‘ymms+yIIsB3
Ymmskbeyey—YxlskbxxiBz
B = (3.14b)
3 2”11‘bxey

On the other hand, the eigensolution of the single degree of freedom system is given by

[k A T
('1\)2 = Ymbgs and { (D}l = {_\/—Y—i;m_s } where subscript 2 and superscript # are

chosen to indicate that this solution essentially estimates w, and {¢}, in equations
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(3.13) and (3.14). Since ©, does not include kbxey and kbeyey’ ®, < 0y as evident
from Table 3.4 for 3 different axial preloads. This natural mode is dominated by 8,,(t)
as indicated by equation (3.14). And, the first mode {¢} which is predominantly

Bya(®) is also affected by the axial preload.

Table 3.4 Bearing stiffness coefficients and undamped natural frequencies (Hz) of
example case 1t

Proposed model Simple

Axial Bearing stiffness coefficients (DOF =2) model

preload . L — . - (DOF=1)

Faom(M)  kpxx N/m) Koz (N) - kpg o, (Nm) g 1) AP
115 1.84 E7 -3.05 E6 1.36 E4 156 372 341
190 2.13 E7 -3.12 E6 1.70 ES 191 395 367
285 243 E7 -3.09 E6 2.02 ES 221 416 392

+ Other system parameters are: mg=10.0kg, =0.025kgm?, Y, =0.4,Y,=0.3,0=1E-6s.
S m S

3.7.2 Bearing Transmissibility
The forced harmonic response of equation (3.12) can be obtained using the

dynamic stiffness approach given by equation (3.8)
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) ot
(kbeyeyk_ “’OYIIS) T Fysar®

(kbeyey7L - “’%‘(115)(1‘1»9(7L ~ O3 fm S) "(kbxeyl)

(3.15a)

Bxa(t) = 2

ot
—-kbxey}\' Tm Fxsale
B ()= 5 (3.15b)

" (kbeyey)"_m%YlIS)(kbxx?"_w%Ymms)_(kbxey}\')

It can be seen from equation (3.15) that F, ,(t) not only excites d,,(t) but Bya(t) as well,
which is not predicted by Kraus et al. [24]. The steady-state solution for this
simple model is given by the following; compare it with equation (3.15a).

ot

Yy F e
m—ral (3.16)
(kbxx;" - cooym ms)

gxa([) =

Both models are used to determine the load transmissibility magnitude terms R(w,)
which are computed using {8xa(t),Bya(t)}T, [K] and [C]. Dynamic bearing force F,y,(t)

and moment My,(t) magnitudes excited by the shaft force Fyg,(t) are given by force

transmissibility RE 11 Fxs,(@0) and moment transmissibility RMyba’Fxsa(O)o)
respectively.
Yoo/ (1+6%@2)? B +(1+ c%w?) B
vV o 4 o 5
R (3.17a)

(0, =
F F 0
xba’ " =xsa 2 2.2 2.2
J(1+o wy,) B4+(1+c (oo)(B5+B6)+B7
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2 2 2..2
ymyllsmo \/z1+c (oo)kbxey

Ry 5 (0Q= —— — (3.17b)
yba’ " xsa [(1+0°0%) B,+(+o mo)(B5+B6)+B7
2 2
B =(k k. -k ) (3.17¢)
4 ( beyey bx x bx()y
B =wlv 1.k [k vIl.o2+2k> . -2k, k (3.17d)
5 0o YI S 7 bxx bxx YI $7°0 bx 6 y bxx  bO y 0 y :

.2 2, 2
B =057 mekyy o (kbe o Tom 05+ 2K5 o =2k, ko 9) (3.17¢)
yy yy y y'y

- 4 w2
B, = 200 Ymm ¥ I { 2kmkbeyey 05 (T sk g + Y Skbeyey)} +

o? y,m L {ymm o Iscof')—2kbx9y(l - 0203%)} (3.171)

Only the force transmissibility, as given below, is predicted by the simple model [24];

compare it with equation (3.17a).

kbxx Ym A / (1 + 020)%)

F,.F (P~ J : = - (3.18)
(k bxx ~ Pom™ S) + ( kbxx(oo-)

A
R

Figure 3.7 compares equations (3.17) and (3.18). Our model predicts higher

Rpxba,pxsa(mo) and ®, than the simple model due to the additional constraints imposed
by [Klpm- Also, it is clear that the simple model can not predict dynamic moment
transfer through the bearing. The bearing transmissibility functions R(ey) predicted by

our model for 3 different axial preloads are shown in Figure 3.8. Note that the resonant
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10°

R1(proposed)

Bearing Transmissibility

250 500

Excitation Frequency (Hz)

Figure 3.7 Bearing transmissibility spectra waba,pxsa(coo) for example case I. Here,
R1: force transmissibility with f,p, = Fxpa and R2: moment transmissibility
with fypa = Myp,, as predicted by our model with DOF = 2 and the simple

model by Kraus et al. [24] with DOF = 1.
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Figure 3.8 Effect of mean axial preload on the bearing transmissibility spectra
R¢ (coo) defined by equation (3.17) for example case I. (a) Force

wbarF'
transm1551b111ty with fypa = Fxpa- (b) Moment transmissibility with fwba =

Myba-
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amplitudes vary depending on the amount of axial preload and the resonant frequencies

increase with increasing preloads as expected.

3.8 EXAMPLE CASE II: RIGID SHAFT AND PLATE SUPPORTED ON
FLEXIBLE MOUNTS

3.8.1 Vibration Models

The physical system of example case I is modified to include flexible mounts, [K],
# [0], and mean radial shaft force Fig # Frgn(t) and Fpg(t) = Frsalei“’ot as shown in
Figure 3.9a. The ball bearing (see Table 3.3) is also preloaded in the axial direction.
This is modeled using lumped parameter theory with finite mount stiffness ccefficients
kyj» j =X, ¥, 2, 0y, 6y or 0, as illustrated in Figure 3.9b. Since the rigid shaft
assumption still holds, Frgy, = Frp 1 applied directly on the bearing in a manner similar
to the axial preload. The bearing matrix [Kly,, in Figure 3.9b has non-negligible
stiffness coefficients kyyy, kbyy» Kpzz» kbexex, kbeyey, kbxey, kbyex kpxz and kbzex
which are functions of the mean bearing load vector {f}y,= {f}p, or the mean bearing
displacement vector {q}yy = {q}gm - {q)em s given by Chapter II of this report.
Conversely, White [20] has investigated this problem using a simple model with DOF =
2 as shown in Figure 3.9¢c. It may be noted that his bearing system model did not
include the effect of axial preload.

Like example case I, the governing equations (3.1) and (3.2) can be modified and
reduced to 4 uncoupled sets of differential equations. The first two sets associated with
Bysa(t) and By.4(1) are homogeneous. The third set is similar to equation (3.11) but with

x and y subscripts interchanged, and two mount stiffness coefficients kyy and kyg,

included. However,it is still homogeneous and therefore has only trivial steady-state
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Figure 3.9 Example case II: rigid shaft, ball bearing and rigid plate system supported
by flexible mounts and subjected to alternating radial force Fyg,(t) applied at
the shaft. (a) Physical system. (b) Proposed multi-degrec of freedom
vibration model with DOF = 12. (c) White's vibration model [20] with
DOF = 2.

2
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solution. The final set corresponds to {q},(t) = {uye(1), u,sa(0), Gysa(t), Uyea(t), ugzcq(t),

Byca(t)}T with [M],, [M],, [Klpm and [K], of equation (3.2) reduced to

mg 0 0 m, 0 0
Ml ={ 0 mgO ; M _={0 mg0 (3.19a,b)
0 0 I 0 0 I,
bx Kb kbxey ky O 0
(K =| %o Kow Ko, | 5 K =| O Ke 01 gyecg
. k k. . k y 0 0 ke
y
bx()y szy b0,6,

The vibration model by White [20] may be formulated by retaining only two equations
corresponding 10 uyg,(t) and uyc,(t) and excluding all bearing and mount stiffness
coefficients except for kpy, and kyy .

Analytical eigensolution of the undamped system is not possible since it requires
solving for the zeroes of a 6-th order polynomial in 2. Therefore, this problem is
solved numerically using an eigenvalue routine [42]. Using the same system parameters
as in example case I with 3 different F,,,, natural frequencies and modes are found as
given in Tables 3.5b and 3.5c for both our and White's models. Corresponding bearing
mean loads {Fxbm»szm:Mybm]T and relevant bearing stiffness coefficients computed
using the method derived in Chapter II are listed in Table 3.5a. Tables 3.5b and 3.5¢
indicate that only the first and fifth modes of our mode] are predicted by White's model;
here superscript # is again used to denote estimation based on the simple model. The
first natural frequency w; predictions by both models are very similar. But (O
prediction, whose mode is similar to the second mode of example case I, indicates a few

discrepancies. White's model also underestimates this natural frequency due to the
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Table 3.5 Results of example case I ¥

(a) Computed bearing mean loads and stiffness coefficients

Shaft Bearing loads 1 Bearing stiffness coefficients

mean load — x .- . .
Fysm Fzbm Mybm Kpxx Kpxz kbxey Kpzz kbzGy kbeyey
(N) (N) (Nm) (Nm) @©/m) @) @®Nm) @) ([Nm)

44 198 0.62 2.26E7 5.84E7 -2.90E5 8.50E7 -3.10E3 1.71E4
94 216 1.16 2.64E7 1.14E7 -2.33E5 8.55E7 -1.36E4 1.72E4
122 229 1.38  2.93E7 1.40E7 -1.98E5 8.60E7 -2.19E4 1.74E4

(b) Undamped natural frequencies (Hz)

Mean Proposed model (DOF=6) Simple model (DOF=2)
shaftload . . . .
FiomM™) 0 @ 03 04 05 O ® ®s
44 93 100 111 287 350 607 97 321
94 96 100 115 300 351 614 97 345
122 97 100 117 308 364 620 98 362
(b) Modes of vibration T

Proposed model (DOF=6) Simple model (DOF=2)

— —

(0} (0}, (0}  {6}s {o}s {0}s  {6h  {@}s

0.217 0.031 -0.030 -0.130 0.180 0.044 0.218 0.229
-0.035  0.203 0.003 0.022 -0.036 0.236

1.648  0.084 5966 -0.354 -1.245 -0.068

0.171 0.084 -0.071 0.107 -0.139 -0.031 0.187 -0.178
-0.027  0.194 0.008 -0.018 0.028 -0.165

0.167  0.009 0917 4.648 3295 0.073

+  Other system parameters are: mg=10.0 kg, 1;=0.025 kgm?, m=15.0 kg,
1.=0.03 kgm?, 0=1E-6 s, kyx=1E7 N/m, k,,=1E7 N/m, kxgy=1 E5 Nm.

t+ Fypm = Fxsm
+++ These are for mean shaft load Fygm = Fxpm = 94 N.
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incomplete bearing stiffness model employed. Here again our predicted modes include

Sxa» 8,4 and Bya displacements of shaft and casing components which are not

considered by White's model.

3.8.2 Frequency Response
The forced harmonic response solution is also determined numerically using the

dynamic stiffness approach outlined in Section 3.6. Driving point (with j = s) and cross

point (with j = ¢) accelerance spectra A (w,) are given in Figure 3.10 with Qwja =

QWjansa
Uyja, Uzja OF Oyj, for both models. Here, we observe that White's [20] model
overestimates the magnitudes of the accelerance and can not predict, unlike our model,

axial u,,(t) and Gya(t) angular motions on the shaft and casing. Figure 3.11 shows the

bearing transmissibility spectra waba,

F,,(@o) for fypa = Fypa, Fyxq or Mypa which
indicate that transmissibilities corresponding to F,,, and Myba are not predicted using

White's model. Such loads also serve as mechanisms for vibration transmics.on

through the bearing to the casing, in addition to F,y,. The mount transmissibility

spectra wava’pxsa(o)o) as shown in Figure 3.11 indicate that F,,, and Myy, are also

transmitted to the mounts in addition to Fy,, due to casing motions in x, z and 0y
directions. The effect of mean radial bearing force Fyp, on the load transmissibilities
R(w,) through the bearing is shown in Figure 3.12 for 3 different mean loads. We
again observe that the resonant amplitudes and frequencies are mean load dependent
through [K]py,. Similar trends show that an increase in mean load raises the resonant

frequencies although the effects are not as pronounced as those found in example case L.
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Iigure 3.10 Accelerance spectra Aqw'a’Fxsa(mo) for example case II as predicted by our

formulation and White's model [20]. (a) Driving point accelerance with
Quwja = Uxsa- (b) Cross point accelerance with Gyja = Uxca: (c) Accelerance
With qyja = Uzg, for shaft and qyja = Uzca for casing. (d) Accelerance with
Awja = Oysa for shaft and quj, = Oy, for casing.
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Figure 3.11 Bearing Rf, barFyca@o) and mount Rf, varFyeq(Wo) transmissibility spectra
for example case II as predicted by our formulation and White's model
[20]. (a) Bearing force transmissibility with fwba = Fxba- (b) Mount force
transmissibility with f,,,, = Fxy,. (c) Force transmissibility with fwba =
F,pa for bearing and fy,,, = F,,, for mount. (d) Moment transmissibility
with b, = My, for bearing and f,,,, = My, for mount.
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Figure 3.12 Effect of the mean radial bearing force Fypp, on the bearing transmissibility
spectra waba’pxsa((oo) for example case II. (a) Force transmissibility with
fwba = Fxba- (b) Force transmissibility with fyp; = F ;. (¢) Moment
transmissibility with fy,pa = Myp, -
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3.9 EXAMPLE CASE 1II: EXPERIMENTAL STUDY
3.9.1 Physical setup

The final example case examines the experimental setup of Lin [17] as shown in
Figure 3.13a. This system is similar to Figure 3.1 and consists of a 159mm long x
25mm diameter non-rotating shaft supported by two rolling element bearings of 25mm
bore x 51mm outer diameter. One is supported on a rectangular plate of approximate
dimensions 762mm x 457mm x 9mm and the second is rigidly connected to the base.
The plate is also bolted to a massive base structure. Excitation force Fyg which consists
of a mean Fygy = 445N via a preloaded spring and an alternating Fyg,(t) component
applied transversely at the free end of the shaft using a vibrating shaker. Driving and
cross point accelerance spectra are measured at the shaft and on the plate respectively.

Further details of this experiment are summarized in Reference [17].

3.9.2 Bearing Analysis

Initially, only the static analysis is performed to obtain [K]y,,, for this experimental
system using the method proposed in Chapter II of this report. The static analysis
neglects plate flexibility; this assumption is valid since the bearing mean loads are
sufficiently low and do not deflect the plate. The shaft-bearing system is statically
indeterminate as shown in Figure 3.13b. The mean force Fygpy on the shaft produces
mean bearing load vector {f}y, = {O,Fybm,szm,bem,O}T which depends on the
mean bearing displacement vector {q)pm = {O,Sym,ﬁzm,ﬁxm,O}T. The proposed
bearing matrix [K]py, includes stiffness coefficients kyyy, Kpyy» Kpzzs koo, 6, kbeyey,

kbxey’ Kpye,» Kbyz and kp,, which are direct functions of {q}pp,. In contrast, the
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conventional bearing models include only kyyy, kpyy and ky;, coefficients. From Figure

3.13b, the force and moment equilibrium equations for this system are

Fybym * Fybym — Fysm = 0 (3.20a)
Mybym + Mybym — Fyp,ml1 + Fysm(li + ) =0 (3.20b)
Fbym + Fabym =0 (3.20¢)

Since the shaft-bearing system is statically indeterminate, bending theory for the shaft

and rigid body motion constraint in the z direction are used to estimate stiffness

coefficients
EI 8y, — EI8y,m + Fybym(13/6) + Myp,m(12/2) =0 (3.21a)
El szm —EI Bxlm + I:yblm(llz/z) + Myblmll =0 (3.21b)
8z;m—8z,m=0 (3.21c)

Additionally, 6 nonlinear algebraic equations defined by the mean bearing load-
displacement relations as given in Chapter II are required. These nonlinear algebraic
equations are solved using Newton-Raphson method [36,37]. Since mean loads on
each bearing are sufficiently large, the bearing stiffness coefficients for both bearings are

almost identical, as listed in Table 3.6 along with other system parameters.
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Table 3.6 Design and estimated parameters for two identical rolling element bearings
used in example case 1II

Load-deflection exponent n=3/2 Ao'=0.05 mm kpz2=1.72E8 N/m
Load-deflection constant K;=6.92E9 N/m" /y=41 mm kbxey=-2.56E5 N
Number of rolling element Z=10 [;=84 mm kpyp,=3.52E5 N
Radial clearance r; =5.0E-5 mm kpxx =1.44E8 N/m kyp.0,=4.02E5 N
Pitch diameter=38.1 mm kpyy =3.69E8 N/m  kyg,,=4.19E4 Nm
Unloaded contact angle 0g,=0° kpy,=2.04E8 N/m kb9y9y=1.02E4 Nm

t Unloaded distance between inner and outer raceway groove curvature centers

3.9.3 System Study

We incorporate the proposed rolling element bearing stiffness matrix [K]yp, in a
finite element model which includes shaft and plate dynamics, using the formulation
given in Section 3.4.2. The finite element model shown in Figure 3.13c is implemented
with a commercial software [39]. The shaft component is modeled using 2 noded
Timoshenko beam elements with axial degrees of freedom in addition to the bending
motion. The plate model is constructed using 4 noded quadrilateral plate elements with
shear deformation and rotary inertia effects. Each node has 3 translational and 3
rotational degrees of freedom. Four generalized stiffness matrices corresponding to the
first bearing, each matrix being equivalent to 1/4 [K]yp, are used to couple the single
shaft node to 4 plate nodes. The second bearing connects one end of the shaft to a

grounded node. The boundary conditions for the plate along the perimeter are chosen to
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be a combination of ideal clamps, uy,(t) = Uya(t) = u,5(1) = Ox,(1) = By,(1) = 0,,4(1) =0,
and simple-supports u,,(t) = 0 as shown in Figure 3.13c in order to represent the
physical model as much as possible. Here, the energy dissipation is assumed to be
given by the modal damping ratio { = 0.03. A sinusoidal force Fyg,(t) = Fysalei‘”ol is
applied at one end of the shaft to simulate the experiment.

Over the frequency range of 400Hz to 2000Hz, Figure 3.14 compares the driving

point accelerance spectra A, g (®y) = U ysa/Fysa. The simple theory shown here

Uysalysa

represents the conventional way of modeling bearings while the other features are
exactly the same as in proposed model. Our predictions match measured spectra very
well. Conversely, the simple model predicts slightly higher accelerance amplitude and

lower resonant frequency in the vicinity of 800Hz due to the incomplete bearing model

used. Cross point accelerance spectra A, Fysa(mo) = U gcq/Fysa are shown in Figures
3.15a and 3.15b where u ,, is measured for 2 different locations on the plate as shown
in Figure 3.13c, and excitation Fyg,(t) is once again applied transversely at the shaft.
Here, each predicted accelerance spectrum has been averaged over 4 points in the
immediate vicinity of the measured location. Reasonable comparisons between the
proposed model and experiment are seen. Here, the discrepancies are primarily due to
physical setup complexities and the limitations associated with the finite element model
in describing some of these. In Figure 3.15, the simple model is not included because it
predicts exactly zero out-of-plane or flexural motion of the plate. Next, the cross point
mobility level Ly is defined by averaging mean square mobility spatially over the entire
plate and over a frequency bandwidth Aw. This level is directly related to the structure-

borne noise or vibratory energy transmitted through the bearing.



93

10°
—~ 10"
[=74)
=
s
s
2
=
o7
3 ol v
s 100/ ———  Proposed Model

’
7 Simple Model
‘‘‘‘ Experiment [Lin]
10" !
0.4 1.2 2.0

Frequency (kHz)

Figure 3.14 Driving point accelerance spectra A o F Sa(000) yielded by the proposed
model, simple model and experiment by Lin [17] for example case IIL



94

10’
o)
3
Py
=
2
‘c
%D
b
107" N — Proposed Model
————— Experiment [Lin]
10° *
00.4 1.2 2.0
Frequency (kHz)
(@
10
5B
<
>
=
)
=
107/ ———  Proposed Model
L Experiment [Lin]
107 !
00.4 1.2 20
Frequency (kHz)
(b)
Figure 3.15 Cross point accelerance spectra A Fysa((oo) yielded by the proposed

Uzcar
model and experiment by Lin [17] for example case III. In this case, the

simple model predicts zero response U, at the plate. (a) Point C1 (see
Figure 3.13c). (b) Point C2 (see Figure 3.13c¢).



95

L
_ 2 _ 1 U zca zca
LV =10 log 10{ < VZCa >} =10 log 10{———2 5,50 ZZR{——————F* ]}

Aw S xsa xsa

dB re <V2> ¢ = 1.0m2/N2s2 (3.22)

where ( )* implies the complex conjugate, S is the plate surface area and Re{ } implies
the real part of the complex number. Table 3.7 compares Ly predictions by proposed
and simple models with experimental data. It can be seen from this table that the
proposed model predicts the experiment quite well and the simple model fails to predict
any plate vibration. We can therefore conclude that our model is indeed valid for

vibration transmission analyses.

Table 3.7 Predicted and measured cross point mobility level Ly as defined by equation

(3.22)
1/3 Octave band Experiment (dB) Proposed Simple
center frequency (Hz) [Lin] model (dB) model (dB)
400 -102 -105 -co
500 -92 -96 -oo
630 -95 -94 -00
800 -88 -97 -0
1000 -87 -95 -c0
1250 -97 -108 -o0
1600 -108 -115 -oo

2000 -106 -107 -00
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3.10 CONCLUDING REMARKS

A new mathematical model for precision rolling element bearing has been
developed and incorporated in linear system dynamic models using lumped parameter
and finite element modeling techniques for the vibration transmission studies of a
generic single shaft-bearing-plate system. Stability studies indicate that the bearing
system is dynamically stable for most of the practical designs. Through 3 example cases
including one experimental study, we have shown that our proposed vibration model is
clearly superior to the models currently available in the literature. The current models
tend to underestimate the resonant frequencies and force/moment transmissibilities, and
overestimate the accelerance amplitudes as compared to our models. The proposed
model also predicts how the vibratory bending motion on the shaft is transmitted to the
casing, illustrated through coupling coefficients of the proposed bearing stiffness matrix
[Klpm- Finally, the forced response trends indicated that increase in the mean bearing
loads increases system resonant frequencies. We are extending this model to predict
vibration transmission in rotating equipment with multiple shafts, bearings and gears.
Other applications are evident as our theory is general in nature. However, it is
restricted to linear systems. Bearing non-linearities are being examined in a parallel

study [46].



CHAPTER IV
GEARED ROTOR SYSTEM STUDIES

4.1 INTRODUCTION

The focus of this chapter is on the dynamic analysis of geared rotor system shown
in Figure 4.1 which includes a spur gear pair, shafts, rolling element bearings, motor,
load, casing and flexible or rigid mounts. For this purpose, discrete vibration models
are developed and used to predict vibration transmission through bearings. Also, the
effects of bearing, casing and mount dynamics on the internal rotating system dynamic
characteristics are investigated. Traditional analysis approaches [15,25-29] in the gear
dynamics area concentrate on the internal rotating system and exclude dynamic effects of
casing and flexible mounts. Moreover, simple bearing models are typically used which
assume either ideal boundary conditions on the shaft or translational spring elements.
Some of the limitations associated with current bearing models have been discussed
thoroughly in Chapters II and III of this report. For instance, simple bearing
formulations can not explain how the vibratory motion may be transmitted from the
rotating shafts to casing and support structures, and moreover can not predict the effects
of bearing, casing and mount dynamics on the internal rotating system adequately.
Chapter II of this report also presents a new mathematical model for the precision
rolling element bearings to clarify this issue qualitatively and quantitatively, and Chapter

111 utilizes the proposed bearing stiffness matrix [Klpy formulation to analyze the

97
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Figure 4.1 Schematic of a geared rotor system with flexible shafts and rigid spur gear
and pinion, and supported by 4 rolling element bearings on a flexibly
mounted casing. The shaft at the motor end is driven at mean speed Q
which in turns drives the load at mean speed Q L This physical system 1s
symmetric about a plane intersecting both the driving and driven shafts.
The y axis is assumed parallel to the gear mesh line of action in the pressure
angle direction at mesh point. This schematic is used for example case Il
and IIIL.
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vibration transmission problem in a generic shaft-bearing-casing-mount system. Our
bearing formulation has already been validated through several example cases.

This study extends the proposed bearing formulation of Chapters II and III to
examine vibration transmissibility in rotating mechanical equipment through two generic
systems which are a spur gear pair drive and a single-stage rotor system with rolling
element bearings as shown in Figures 4.1 and 4.2 respectively. It should be noted that
Figure 4.2 can be treated as a special case of Figure 4.1 - this will be illustrated later.
The physical systems are assumed to be driven at mean speed Q, = Q ,, in Figure
4.1 and Q, in Figure 4.2; subscript M refers to the motor end. Each shaft is supported
by two identical rolling element bearings which are modeled as stiffness matrices [K]pp,
of dimension 6 as proposed in Chapter II of this report. These generic systems may
be excited by motor and/or load torque fluctuations, rotating mass unbalances or gear
kinematic transmission error e(t) [29,47]; here e(t) is defined as the deviation of the
relative gear-pinion angular position from its relative ideal location. Typical excitation at
the shaft is defined by an alternating load vector {f(t)}s, = {Fjsa(t),Tjsa(t)}T ={f()}s—
{0} sms J=X,Y,Z, where Fjsa(t) and Tjsa(t) are the alternating force and torque respectively,
{f(1)}4 is the total load vector of dimension 6, {f} 4, represents the mean load vector,
and superscript T implies the transpose. In the case of the geared drive, {f(t)}¢, consists
of e(t) at the mesh point. Additionally, in the case of the single-stage rotor system,
transverse forces Fyq,(t) and Fysa(t) due to mass unbalances are of interest. Note that in
the dynamic analysis {f}gy, and bearing preloads are not included as they do not appear
in the governing equations of the linear vibration model but are used for computing

[Klpm. Other effects such as bearing coupling coefficients, motor and load inertia, and
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Figure 4.2 Schematic of the single stage rotor system with flexible shaft rotating at
mean speed €2, and supported by 2 identical rolling element bearings on a
flexibly mounted rigid casing. This physical system is symmetric about a
plane intersecting the shaft axial axis and parallel to the x-z plane. This
schematic is used for example case I.
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casing and mount dynamics are considered as the emphasis is on the overall system

behavior.

4.2 LITERATURE REVIEW

The available literature on bearing models commonly used for internal rotor and
gear dynamic analyses has already been discussed in Chapters II and III of this
report. Although there are numerous publications [10-13,15,25-29] on the modal
analyses of geared drives and single or multiple-stage rotor systems, very little has been
reported directly on the force transmissibility through bearings, and the dynamic effects

of bearing, casing and mounts on the internal rotating system.

4.2.1 Casing and Mount Dynamics

A comprehensive review of the available vibration studies of casing and mounts,
without the internal rotating system, has been given by Lim and Singh in 1987 [6].
Other related publication not included in Reference [6] are by Gaul and Mahrenholtz [48]
in 1984, and Smith [49] in 1988 who have developed lumped parameter models of
flexible machine foundations, excluding the internal rotating system dynamics. Their
studies report rigid body translational and rotational vibration responses of the casing
when excited by forces and/or moments. However, these studies are not specifically
directed towards geared rotor systems, and dynamic interactions between internal
rotating system and casing-mount system are not incorporated. In addition, Lim et al.
[50] in 1989 have also performed a dynamic finite element analysis of a helicopter

gearbox excluding the internal rotating system. Results again show that casing rigid
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body vibration modes are dominant over the lower frequencies for a flexibly mounted

casing, but numerous casing plate elastic modes are observed at higher frequencies.

4.2.2 Gear Dynamics

Current gear dynamic models include only the internal rotating system and simple
bearing models, and typically exclude casing and mount flexibilities [15,25-29]. In few
instances casing and mounts have also been included , but restricted to cases where only
purely radial and/or axial force on the bearing, and unidirectional vertical/horizontal rigid
body motion on the casing are modeled, as summarized in Reference [6]. Such models
still do not explain how the vibration is transmitted from the gear mesh to
the casing and into the machine foundation as witnessed in previous experiments

[9,16,17].

4.2.3 Rotor Dynamics

Similar to the geared rotor models, most of the existing rotor dynamic models
concentrate on the internal rotating system and address issues related to stability, critical
speeds and rotating mass unbalance response [10-13]. But a few investigators have
included support flexibility models [51-53). For instance Lund and Wang [51] in 1986
proposed an impedance matching approach to reduce the large degrees of freedom
(DOF) required in such models. Using one example case, they reported that support
foundation has little influence on the internal rotor resonances, but then cautioned that
this might not be true for other systems. Vance et al. [52] in 1987 incorporated
measured support foundation parameters in a transfer matrix model of the rotor dynamic

system, and concluded that the omission of support flexibility may miss some of the
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rotor critical speeds of interest. Earles et al. [53] in 1988 reported, based on a finite
element model of the support foundation, that the rotor critical speeds shift by including
support flexibility. In all of the above mentioned studies, the overall dynamic behavior
of the rotor system is only investigated partially. Moreover, only a subset of journal

bearing [K]pm coefficients is included which can not predict completely the vibration

transmission through bearings.

4.3 ASSUMPTIONS AND OBJECTIVES

Linear discrete vibration models of the geared and single-stage rotor systems
shown in Figures 4.1 and 4.2 are used to incorporate [K]yp, similar to Chapter III. The
stiffness coefficients of [K]yy, are evaluated using the analytical expressions presented
in Chapter II. Each rotating shaft is modeled as an Euler beam in the lumped parameter
model and as a Timoshenko beam in the dynamic finite element model but the effect of
the gyroscopic moment on the shaft dynamics is not included. The casing is assumed to
be rigid in the lumped parameter model and flexible in the dynamic finite element model.
The rigid casing assumption is valid for many practical designs as it may be massive and
the rotating speeds may be sufficiently low to avoid significant elastic deformation. The
governing equations for both discrete vibration models can be given in the general

matrix form as

IMI{G(t) } , + [CHat) } , + [KI{q(D) } , = {f(1)}, (4.1)

where [M], [C] and [K] are the system mass, damping and stiffness matrices

respectively, and {q(t)}, and {f(t)}, are defined as the generalized alternating
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displacement and applied load vectors respectively. Like Chapter III of this report,
{f}pm and bearing preloads are also assumed constant to ensure a time-invariant [K]ppy,
matrix. Energy equivalent viscous damping matrix [C]y, = 6 [Klp, is assumed for the
energy dissipation mechanism in the bearing where ¢ is the Rayleigh damping
proportionality constant. Other features of the proposed theory given in Chapter III of
this report are retained.

The specific objectives of this study are to: (i) incorporate the proposed bearing
matrix [K]pm, developed in Chapter II, in discrete vibration models of generic geared
system of Figure 4.1 as described by equation (4.1) using lumped parameter and/or
dynamic finite element method, (ii) conduct overall system studies by calculating
eigensolutions and forced harmonic responses, (iii) evaluate the effects of casing and
mount dynamics on the internal rotating system, and predict vibration transmission
through bearings, (iv) examine the following 3 example cases: I. single-stage rotor
system with flexible shaft supported by two identical rolling element bearings on rigid
casing and flexible mounts as shown in Figure 4.2, II. spur gear pair system with motor
and load inertias attached to two flexible shafts supported by four rolling element
bearings on flexibly and rigidly mounted rigid casing as shown in Figure 4.1, and III.
case II with flexible casing and rigid mounts, and (v) demonstrate the advantages of our

formulation over the existing vibration models.
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4.4 THEORY
4.4.1 Method A: Lumped Parameter Model

4.4.1.1 Equations of Motion

Both physical systems shown in Figures 4.1 and 4.2 are discretized using lumped

parameter technique to yield equation (4.1) through the Lagrange's equations of motion

[45].
OE.. OE dE. 9E.. OE. _
ii—[ T _ .U]— T, YU, _C F . w=123.. (42
dt{ 9q,, 94y 9q,, 99y 94, ¥

where E; and Ej is the kinetic and potential energies respectively,
EC=-%—{Q}T[C]{(1} is the Rayleigh's dissipation function and IEW is the
generalized force. The total system potential energy Eyy and kinetic energy Ey are
obtained by adding the energy of each system component which are derived in
subsequent sections. Equation (4.2) when applied to Figure 4.1 will lead to equation

(4.1). It is then rearranged in terms of the following {q} to obtain the partitioned

system matrices

T
T
{q(t)}a={{u(t)}:a{u(t)}ml e e T et} @

[M]=DIAG{{m}1; (m) | (1) g A1)} {1}:} (4.3b)
[K]y, [Kl, (Kl
[K] =| [Kl,, [Kl,, [Kl, ;. [Cl=06[K] (4.3¢)

[K];, [Kl;, [Klg,
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where {6(t)}g, (subscript R indicates rotor) consists of the alternating angular
displacement of all rotors including gears, motor and load; {m}T and {I}T are the
lumped mass and inertia row vectors respectively; and the operator DIAG{ } transform

the row vector into a diagonal matrix with components of the vector corresponding to
. . T .

the diagonal elements. The stiffness sub-matrices [K] wj= [K] jwer Wi = 1, 2, 3,

consist of the appropriate terms corresponding to the partitioned {q(t)},. For example,

[K]y; couples {{u(t) }:a {u(t) }L }T degrees of freedom to itself, and [K];, provides

a coupling between { {u(t) }:a {u(t) }L }T and {{6(()}1};a CIE) }'; }T degrees of

freedom.

Now assume that the rotary inertia of each shaft lumped mass is negligible. The
system matrices given in equation (4.3) are therefore simplified by eliminating {6(t)},
degrees of freedom from {q(t)}, in equation (4.3a). The resulting mass and stiffness

matrices are
v = 1aG { tm) T )T | (0} (07} (4.42)

(K], - [K] ,[KI;[Kl;,  [K],~ [K],[K]4[K],,

1

[K] = - -
[K],, ~[K],;[K] 3; [Kl;,  [Kl,, —[K],[K];5[K] 4,

(4.4b)

This analytical lumped parameter formulation will be used for example cases I and 1I. It
may be noted that if the effect of the rotary inertias is required, equation (4.3) can be

used instead.
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4.4.1.2 System Kinetic Energy

A flexible shaft of length Lg with rigid rotor of mass mg is subdivided into ng
number of segments of equal length L, = Ly/ng with lumped masses at both ends of each
segment as shown in Figures 4.3a and 4.3b for a single-spur gear mesh geared drive
and single-stage rotor system respectively. Each lumped mass has 3 translational and 3
rotational degrees of freedom as illustrated in Figure 4.3c. The total system kinetic

LT .
energy Ep is given by % {q} [M]{q}. The mass matrix [M] is diagonal and consists

of the lumped masses and inertias.

4.4.1.3 Shaft Stiffness Matrix

Using the direct stiffness approach, the stiffness matrix [K]f; of dimension 12

corresponding to the alternating displacement vector {q(t) }eSa = {uxj(t), Uy;j +1(0), uyj(t),

Uyis1(0, Uzj(1), Uzj41(0), Byj(D), Byjy1(D), B5j(D), Oxjy1(D), B,5(0), 92j+1(t)}T, of a generic

shaft segment is given by

[

(K ]
[K]Z= uu-s ub's (4.5)

e
[KGO]S

and the non-zero elements of [K uu]es, [Ku e]z =] Keu]csT and [K of dimension

e
99] s

6 are given by the following equations (4.6), (4.7) and (4.8) respectively.

3
ki1 =kpp = kg =kag = —kjp = —kp; = —k34 = k43 = 12EI/L}, ;

kss = ke = —ksg = —kgs = AE/L, (4.6)
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Figure 4.3 Lumped parameter model of the flexible shafts with rigid rotors. Each shaft
is supported by 2 identical bearings on both ends. (a) Internal rotating
system of a typical geared rotor system of Figure 4.1. (b) Internal rotating
system of a typical single-stage rotor system of Figure 4.2. (c)
Discretization of a shaft segment and the degrees of freedom associated with
each lumped mass.
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2
ki1 =—kgp =k33 =—kgq =kjp = —kg; =k3s = ~kg3=6 EI/L (4.7)

ki1 =k =k33=kgs =4 EIfL, ;
ki2 =ko1 =k3g =kg3 =2ElfL, ;
kss = ke = —ksg = —kgs = GI/L (4.8)

where E is the modulus of elasticity, G is the shear modulus of elasticity, I is the
moment of inertia, and J is the polar moment of inertia of the shaft. The lumped

stiffness matrix [K]g corresponding to {q(t)}sa = {ux;j(0), uyj(t), ug;(1), Gyj(t), B;(0),
Glj(t)}T, j = 1,2,3,... for the shaft is constructed by the superposition of all [K]Z
matrices and merging terms associated with each degree of freedom.

[Kuu]s [KUO]S
[K]S_[[Keu]s [KGO]S “2)

T . .
The non-zero elements of [Kuu]S’ [K =[K eu] s and [Kee]s of dimension 3(ng+1)

u9]s

are similarly given by the following equations (4.10), (4.11) and (4.12) respectively.

3
kjp=kp= k3ns+1,3ns+l = k3ns+2,3ns+2 =12 EI/L e

k33 = l(3ns+1,3ns+1 = AE/Le (4.10a)

Ky+3,wp = Kwpwe3 = —12 El/ Li ; owp = 1,2,4,578,....3n-1 (4.10b)
Kyywyy = 24 E1/ Lz . wp = 4,5,7,8,10,11,...,3n-1 (4.10c)
K3y = Kwypwyps3 = ~AE/Le 3 Wi =3,69,....3ng (4.10d)
kypywy = 2 AEfLe 5 wiy =6.8,12,...3ng (4.10¢)
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2
kjj=kp= “k3ns+l,3ns+1 = _k3ns+2,3ns+2 =6 EI/ Le (4.11a)

~Kyps3wy = Kwpwprs =6ELE 5wy = 12,4,578,...3n¢1 4.11b)

ki1 =k22 = k3ng+1,3n6+1 = K3ngs2,3ng42 = 4 ElfLe 5

k33 = K3ngs1,3nge1 = GI/L¢ (4.12a)

Kup+3,wy = Kwpwpe3 =2 EIfL. ; w;=124578,..3n-1 (4.12b)
Kypwy =8 ElfLe 5wy =4578,10,11,...,3ns-1 (4.12¢)
Kyype3.wg = Kwypwype3 = ~G3/Le 3 wir = 3,69....,3n; (4.12d)
Kwiywy =2GI/Le § wiv = 68,12,...,3ng (4.12¢)

Note that here [K]y is only for a shaft, of dimension 6(ng+1). The same formulation
should be applicable to a geared system with multiple shafts where each shaft stiffness

matrix is still given by [K]s. Accordingly, the shaft potential energy Eyjq is given as

EUS=%{q};[K]S{Q}sa (4.13)

Formulations for the motor and load rotary inertias, and flexible coupling torsional

stiffness will be given in the later sections on example cases.

4.4.1.4 Gear Mesh Stiffness Matrix
For the generic geared rotor system with a spur gear pair, the driving and driven
shafts are coupled via a linear, time-invariant spur gear mesh stiffness k;, # ky(t). Now

we define the gear mesh coupling stiffness matrix [K]y, as follows where coupled
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torsional and translational motions of the gear and pinion are defined by uyGa(t),

uypalt), 8,Ga(V), ezPa(t)}T

i K x kpdg : ]
h h 2 2
_k " B kpdg kKpdp
h h 2 2
K], = 2 4.14
h kpdg kpdg kpdo _ kpdpdg @19
2 4 4
2
) k. d, kpydp k,ddg k,dy
T T2 2 7} 4 ]

where dg and dp are the gear and pinion diameters respectively; subscript G and P refer
to gear and pinion respectively. Here, the y axis is taken to be parallel to the gear mesh

force which is along the pressure angle direction at the mesh point. The potential energy

EUh in this case is

r

¥Ga |

=1 yPa
EUh—i{uyGa’uyPa’ezGa’ezPa}[K]h{ ( (4.15)

Ga

O O = £

. zPa J

4.4.1.5 Flexible Mount Stiffness Matrix

The flexible mounts are represented by a diagonal stiffness matrix [K],
corresponding to {q(t)}., which consist of effective stiffness coefficients Ky, W =X, y,

z, O, By, 6. This modeling procedure assumes that no coupling exists between the
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casing rigid body degrees of freedom due to the flexibility of the mounts. Accordingly,

one has

1 T
EUvzf{Q}m[K]v{Q}m (4.16)

4.4.1.6 Bearing Stiffness Matrix

The proposed bearing stiffness matrix [K]p, corresponding to the bearing degrees
of freedom {Swa(t),Bwa(t)}T, W = X, ¥, Z, has been formulated in Chapter II. The

corresponding potential energy Eyy, is
E, =118 R (4.17)
0= 2 { Bwap B } (K B '

Here, {Swaj(t),Bwaj(t)}T may be expressed in terms of {q(t)},j and {q(t)}., through a
coordinate transformation for the j-th bearing located at E i= {xj, ¥j> z;} from the
casing center of mass. For the geared rotor system, four bearings are denoted by j = 1,
ng+1, ng+2 and 2ng+2 as shown in Figure 4.3a, while for the single-stage rotor system
two bearings are denoted by j = 1 and ng+1 as shown in Figure 4.3b. Assuming the

small angle approximation, {8waj(t),Bwaj(t)}T for the j-th bearing is

(-1 0.0 0 00 100 0 z,-y]
0-10 0 000 10-z 0 x
wajl | 0 0-1 0 00 00 1 y -x. 0 (@ g 418
wa j 0 00-1 000O0O0OT1 0 0 ca
0 00 0-1000O0C O 1 0
L 000 0 0-1 000 0 0 1,
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4.4.2 Method B: Dynamic Finite Element Formulation

The dynamic finite element technique of incorporating [K]yp, in equation (4.1) is
employed especially when the casing plate is elastically deformable over the frequency
range of interest, as discussed previously in Chapter III. In this method, [Klpg, is
implemented in the dynamic finite element model as a generalized stiffness matrix. This
stiffness element provides the only coupling between the flexible shaft and casing at the
appropriate nodal points on both components corresponding to the bearing locations.
Additionally, the gear mesh stiffness ky, in Figure 4.1 behaves like a linear translational
spring. Since the coupling between torsional and transverse shaft vibrations is due to ky
only, the corresponding portion of the stiffness matrix is also given by equation (4.14).
Our finite element formulation uses conventional structural elements typically available
in commercial software programs [39] for the shaft, casing plate and mounts — this will
be illustrated for example cases I, Il and III. Other features of this method are similar to

those discussed earlier in Section 4.4.1.

4.4.3 Other Methods

Alternate techniques of formulating the geared rotor system dynamic problems
such as finite difference (which is similar to method B), flexibility, component mode
synthesis and transfer matrix formulations are also possible. It may be noted that
Berman [54] has philosophically proposed application of the component mode synthesis
to geared problems. Other researchers [40,41] have utilized the transfer matrix method
in the rotor dynamic problems. However, such models need to be modified or extended

in order to solve the overall dynamic problems discussed in this research. Direct
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application of these alternate methods [40-43,54] are beyond the scope of this

report and are left for further research.

4.5 EXAMPLE CASE I: SINGLE-STAGE ROTOR SYSTEM WITH
RIGID CASING AND FLEXIBLE MOUNTS

4.5.1 Vibration Models

Consider the single-stage rotor system shown in Figure 4.2 where two axially
preloaded identical deep groove ball bearings support a flexible rotating shaft; see Table
4.1 for bearing parameters. The shaft is assumed to be subjected to a mean torque T,q,
# T,sm(t) and harmonic excitation forces {Fy¢,(t) = Fysa1(€2,) eiflt, Fysa(t) = Fysa1(€2)
ei(QZ""ﬂ)}T due to the rotating rotor mass unbalance. The rotor is fixed to the center of
the shaft which coincides with the rigid casing centroid. The shaft is assumed to be
transversely decoupled from the motor and load due to the flexible torsional couplings.

A lumped parameter model with ng+2 lumped masses is developed according to

the theory given in Section 4.4.1. The bearing stiffness matrix for an axially preloaded

ball bearing has significant stiffness coefficients kyxyx, kpyy: kpzz, koo, 0, kbeyey, kbxey
and kyy, which depend on the mean axial preload. Since there is no external F,,(t)
force on the system and no coupling between the torsional and transverse motions of the
shaft, the dynamics associated with (uzsaj(t),uzca(t),ezRa(t)}T degrees of freedom (here
subscript j is a dummy index to identify the shaft lumped masses) are decoupled from
the others and have trivial steady-state particular solution. The system matrices of
equation (4) can now be simplified by suppressing such degrees of freedom. Also, it
can be easily observed from equations (1) and (4) that 2 sets of uncoupled differential
equations exist. One set has {q(t)}, = {u,(saj(t),u,(ca(t),(3yRa(t),(9yCa(t)}T which are

excited by Fyq,(t) and the other set consists of {q(t)}, = {uysaj(0), uycalt), Bxralt),
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Table 4.1 Design parameters for deep groove ball bearings used for example cases ¥

Load-deflection exponent n 32
Load-deflection constant K, (N/m") 7.5 E9
Number of rolling element Z 12
Radial clearance r; (mm) 0.005 - 0.02
Pitch diameter (mm) 38.5
A, (mm) 11 0.0625
Unloaded contact angle 0, 230-47°

+ These bearings are currently being used in a NASA gear test facility [55]. Also see

example cases II and IIL
++ Unloaded distance between inner and outer raceway groove curvature centers.
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G)m,(t)}T with Fysa(t). The steady-state solution to these two sets will always result in
the synchronous whirling motion of the internal rotating shaft. However, since the two
sets of equations are similar and independent, only one set is considered in the following
analysis. Hence, the problem reduces to a 2 dimensional vibration system with DOF =
ng+4 which consists of a flexible shaft with rigid rotor vibrating transversely and
coupled to a rigid casing and a flexible mounts through two bearings. Accordingly, [M]

in equation (4.4) is rewritten in terms of the alternating displacement vector {q(t)} a=

{Uxsai(D-Uxca(D),ByRa().8yca(®)) T as

[M] = DIAG (m e me T, (4.19)

¢’ “yR’ YC}

where m and I are the lumped mass and inertia about the y axis respectively, and the

subscript e refers to the shaft segment. To define [K] in equation (4.4), the nonzero

elements of (K} » (K12, [K]5, (K3, [K]13 and [K];5 are given by equations (4.20),

(4.21), (4.22), (4.23), (4.24) and (4.25) respectively.

3
ki = Kng+1,nge1 = 12 EI/L et Koxx Kne+2ng+2 = kyx + 2 kpxx

knS+2,1 = kns+2,ns+1 = kl,ns+2 = kns+1,ns+2 = —Kpxx (4.20a)
3

Kwpet,wy = Kwpwpe1 = =12 EI/LG 5 wp=1,23,..ng (4.20b)

Kyywy = 24 El/ Li ;owi = 2,3,...,ng (4.20c)

2
Kngp1 = —kKn42,1=6 EI/L c kns+2,2 =(z; + Zng+1) kpxx +2 kbxf)y ;

Kip = -2 kpxx - kbxey ; kns+1,2 = "Zng+1 Kpxx — kbx9y (4.21)
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k] 1= 8 EI/Le o k22 = kvey+2 kb9y9y+ (Z% + Z%\ S+1)kbxx + (Zl+2ns+1) kbxey (4.22)

l(1,115/2 = kl,ns/2+1 =2 EI/Le >

ka1 =~Z1 Kuxe, ~kb6,6, 5 K2.ng = ~Zngr1 Koxy ~Kboy8, (4.23)

2 .
k11 = —kng1ng = 6 EI/L+ Kpcgy 5 Kngs2,1 = Kngs2ng = —Kbxe,
2
Kny/2+1.ng2+1 = Kng241ng2 = 6 EI/ LG (4.242)
2
ki2 = ~Knge1ng-1 = ~Kng2ng2-1 = Kng2e2ng2e2 =6 EIfL 5 ng>2  (4.24D)

2
ka-—l,Wm =_ka—1,WHI—2 =—kwm+ns/2,wm~—2+ns/2 = kwm+ns/2,wm+nsj2 =6 EI/L e )

ng>6, wyp = 3,4,...,ng/2 (4.24c)

kll = kns'ns =4 EI/Le + kbgyey (4.25a)

Kyivwiy = 8 EI/'Le ; ng>2, wiy = 2,3,..,n-1 (4.25b)
Ky, wy—1= 2El/L, ; Kyy—1wy = 2 EI/Le ;

ng>2, wy = 2,3,...,ng (Wy # ng/2+1) (4.25¢)

Due to the symmetric nature of [K], [K] Wi = [K] j'fv' The generalized load vector

{(f(©}a = {0,..., Fxsa(t), 0,...} consists of only the x component of the rotor mass
unbalance force. The other set of linear governing equation may be obtained by
interchanging subscripts x and y in the above formulation. Our proposed vibration
model can also be readily reduced to the conventional rotor dynamic models, excluding
the gyroscopic moment, internal structural damping, dissimilar bearings and other

secondary effects, by retaining only kpyy, Kpyy and kg, in our bearing formulation.
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4.5.2 Eigensolution

The natural frequencies w; and modes ¢; of Figure 4.2 with system parameters
given in Table 4.2 are obtained numerically. Initially, we check for ; convergence rate
as shown in Figure 4.4. through w4 and w5 by varying the number of shaft segments
ng; it may be noted that wy, @, and w3 behave like w4, and wg trend is very similar to
ws. Beyond ng = 4, there are no noticeable changes in the natural frequencies. These
predictions are now compared with two simple lumped parameter vibration models and a
dynamic finite element model (FEM) in Table 4.3. One of the simple models excludes
the effect of casing and flexible mounts, and both employ a conventional bearing model
with only ky,, incorporated as described earlier in Section 4.5.1. The dynamic finite
element formulation models the flexible casing constructed with four noded quadrilateral
plate elements — a description of the methodology will be presented later in example case
HI. Our proposed theory and FEM are in excellent agreement with each other as the
deviations are within £4% for first 6 natural frequencies. The corresponding mode
shapes ¢; are shown in Figure 4.5. Note that for each mode in the x-z plane given here,
there is a complementary mode in the y-z plane which will have the same natural
frequency if kvy=kvx, kv6x=kv0y and Ixc=ch. Using the exactly same parameters,
results obtained from two simple models are also compared in Table 4.3. The simple
model with casing and mount dynamics included predicts lower natural frequencies as
compared to our prediction except for o 5; here the symbol A implies estimation using a
simple formulation. This model gives a rough approximation for most of the modes, as
evident from Table 4.3. Further, the simple model without casing and mounts can not

predict all the modes below 2 kHz. In addition, & 3 shifts while other modes remain
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Table 4.2 System parameters of example case I: single-stage rotor system shown in

Figure 4.2
Rotor mass mg (kg) and inertia IyR (kgmz) 5.0, 1.24E-2
Shaft mass mg (kg) and length Lg (m) 1.03, 4.2E-1
Casing mass m; (kg) and inertia I,; (kgm?) 148, 4.27
Shaft flexural rigidity EI (Nm?) 1.626E3
Bearing axial preload F,p, (N) 238

Koxxr Koxoy kbo, o, ¥ 1.37E8, —1.96E6, 4.27E4
kyxr kv, 4.0ES8, 1.8E7

t Computed kyy,; as proposed in Chapter II. Only relevant bearing coefficients are
listed.

Table 4.3 Comparison of natural frequencies in Hz for example case I

Simple Models

Proposed ’
Mode Theory FEM A%  withoutcasing  with casing A%

1 97.2 97.2 0.0 69.5 69.4 28.6
2 262 262 0.0 not predicted 262 0.0
3 309 309 0.0 297 294 4.9
4 332 334 0.6 not predicted 329 1.5
5 1405 1365 -2.9 1442 1443 -5.7
6 1755 1690 -3.8 1452 1453 14.0

A% =100 x (FEM — Proposed Theory) / FEM
Ay% =100 x (FEM — Simple Model) / FEM
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Figure 4.4 Natural frequencies 04 and w5 versus the number of shaft segments, ng for
example case L.
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Figure 4.5 First 6 mode shapes of example case I: single-stage rotor system including
rigid casing and flexible mounts.
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nearly the same. These observations are consistent with the findings reported earlier
[51-53].

We examine the effect of casing mass m (and inertia Iyc e m¢) while retaining
other parameters of Table 4.2. The fundamental frequency ; (first transverse mode of
the shaft-rotor system) and w3 (second transverse shaft-rotor mode) are quite insensitive
to m.. On the other hand, w5 and wg are proportional to (mc)'l/ 2 fora light-weight
casing given by m /(mg+mpg) < 1, but are invariant for m;/(mg+mpg)> 1 as shown in
Figure 4.6a. The converse is seen for W, and w4 which are nearly constant for
m¢/(mg+mpg) < 1, but are proportional to (mc)'”2 for m /(mg+mg) > 1. These results
imply that the single degree of freedom approximation can be applied to w5 and wg in
the region where m/(mg+mg)< 1, and similarly to @, and @y in the other region.

Next, we vary mount stiffness coefficients ky, (and kyg_ = L2 kyx) to simulate
VX vey s Bvx

the effect of mount flexibility on the system. Here ws and wg are found to be unaffected
by kyx due to the fact that the corresponding modes are predominantly shaft bending
motion type as shown in Figure 4.5. Figure 4.6b indicates that ®; and w3 are
proportional to (kvx)”2 for soft mounts (kyx/kpxx << 1) but are insensitive to ky for

172

stiff mounts (k\,x/kb,(x >> 1). Conversely, 0, and w4 are proportional to (ky,)"'“ for

stiff mounts but remain nearly invariant for soft mounts. Similarly, each mode in its
appropriate region can be assumed to behave like a single degree of freedom system. In
Figure 4.6b, unlike Figure 4.6a where only one transition point at m ;=mg+mpg exists, 2
transition points are found. These are located below and above k‘,x/kkJXX =1, and
increase with increasing shaft and bearing stiffnesses.

Now, we examine the range of bearing preload F,py, from 100 to 5000N on ;. It

is seen that o; increases with increasing Fpy, due to an increase in the magnitudes of the
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Figure 4.6 Effect of casing mass m, normalized with respect to shaft and rotor masses,
and mount stiffness ky, normalized with respect to kpxx on system natural
frequencies o; for example case L.
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bearing stiffness coefficients kyy,;j as shown in Table 4.4 for the two extreme Fy,,
values; this observation is similar to those found earlier in the bearing system studies of
Chapter III. Note that ®; is the most insensitive to F,pp, and w3 and @y show a
moderate variation. But w; increases by about 45% due to larger bearing motions as
compared to wy, W3 and w4 modes. The remaining two modes of interest are also
affected significantly as large motions across the bearings are again found in these
modes. Unlike the trends associated with variations of m, and k., here each ©;
approaches an upper bound solution, as shown in Figure 4.7 for w,, if F,p, is

sufficiently high to stabilize magnitudes of Kpwj terms.

Table 4.4 Effect of bearing preload Fpp,, on ®; (Hz) for example case I

Preload szm N) O3] Wy w3 Wy W5 g

100 89.4 262 305 331 1366 1706
5000 130 263 321 346 1855 1968
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Figure 4.7 Effect of bearing preload Fy,p, on w; for example case 1.
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4.5.3 Transmissibility

The forced harmonic response due to the rotating rotor mass unbalance force
Fyaa(®) = Fyaa1(€2,) et is obtained using the dynamic stiffness technique given earlier
in Chapter III. Also, recall from Chapter III the definition of sinusoidal load
transmissibility functions R(£2,) between two arbitrary locations I and II with load

veetors fi,15(t) and fipj(t) as R(Q,) = lfwla(QZ) I/I ijIa(QZ) where in this case

fjna(t) = Fysa(1). The bearing force Rg | g (Q,) and moment Ry Q)

yba’Fxsa
transmissibility spectra are compared in Figure 4.8 for our formulation and simple
model, given the same system of Table 4.2, both models differ only in [K]yn,

formulation. Note that the results presented are for only one bearing due to symmetry of
the problem. We observe that the simple model predicts lower Rpxba,pxsa(Qz) than

proposed model except in the vicinity of ®;. On the other hand, RMy Fxsa(Qz) is not

ba>
predicted at all by the simple model. This component of the bearing transmissibility

spectra is primarily due to coefficients kbxey and kbeyey which are obviously not

included in the simple model. Our predictions also show that higher modes over 250-
350 Hz contribute significantly to the bearing transmissibility which are not seen in the
force transmissibility spectra yielded by the simple model.

Now we compare the mount load transmissibility in Figure 4.9. We observe that

F.. (Q,) spectra predicted by both

the trends of mount force transmissibility Rvaa’ sa

models are similar, although the simple model predicts slightly lower amplitudes above

;. The simple model again can not predict the moment transmission R Myva’Fxsa(QZ)

across the mounts. Unlike the bearing transmissibility spectra, here the effects of ¢3

and ¢4 on Ryy g (£,) are more significant than ¢; and ¢,. This is mainly due to

yvas® xsa

the large angular motions on the casing for ¢3 and ¢4.
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Figure 4.8 Bearing transmissibility for example case I. (a) Force transmissibility
RFxba,Fxsa(Qz)- (b) Moment transmissibility RMyba’Fxsa(QZ) which is not

predicted by simple model.
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Figure 4.9 Mount transmissibility for example case I. (a) Force transmissibility
F, . (£2;). (b) Moment transmissibility Ryy g ().
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Figure 4.10 Effect of mount stiffness kyy on the force transmissibilities for example
case I. (a) Bearing. (b) Mount.
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Figure 4.11 Effect of casing mass m, on the force transmissibilities for example case I.
(a) Bearing. (b) Mount.
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Next, we investigate the effects of m¢ and kyyx on the bearing and mount
transmissibilities. Figure 4.10a shows that essentially the same bearing transmissibilities
are obtained for three ky values. In the case of the mount transmissibility as shown in
Figure 4.10b, the amplitudes in general decrease with lower kyy except near resonances.
The casing mass m, also does not affect the bearing transmissibility significantly as
shown in Figure 4.11a. The mount transmissibility amplitudes increase with lower m
as shown in Figure 4.11b except near resonances again. It may be noted that similar

trends are observed in the bearing and mount moment transmissibility spectra.

4.6 EXAMPLE CASE II: GEARED ROTOR SYSTEM WITH RIGID
CASING AND FLEXIBLE MOUNTS

4.6.1 Bearing Analysis

Now consider the geared rotor system in Figure 4.1 with flexibly mounted rigid
casing whose bearing and other system parameters are given in Tables 4.1 and 4.5
respectively. Four ball bearings which support the two shafts are subjected to identical
mean axial displacement 8,n,. The spur gear pair drive is driven by a mean torque Tygy
# T,m(t) which also generates mean radial bearing force Fypmj and moment Myp ;.
The stiffness matrix [Klpy, for each bearing under these loads has significant
coefficients kpxx, Kpyy: Kpzzs Kbo, 0, kbeyey, kbxey’ Kpyo, Kpyz and kp,g,. A set of
governing nonlinear algebraic equations, consisting of 3 bearing load-displacement
relations for each bearing as given in Chapter II and from the shaft bending theory is

given by

bemwl =TzsmLs/ @ dG)_?-EI(szme"'mewH'*?’ (Symwl_symwn)/ Ls)/ Lg

-M ; for wi=ng+1 if wi=1, and wy=2n¢+2 if wi=ng+2. (4.26)

bemwn= xbmwy >
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Table 4.5 System parameters of example case II: geared rotor system shown in Figure

4.17
Gear and pinion masses mp = mg (kg) 0.5
Gear and pinion rotary inertias I,g=Iyp,I,g=I,p (kgm?) 1.5E-4, 3.0E-4
Number of gear/pinion teeth 28
Gear/Pinion Pressure Angle (degrees) 20°
Shaft mass mg (kg) and length L (m) 2.8, 2.54E-1
Casing mass m, (kg) rotary inertias I..,I,. (kgm?) 77, 1.5, 19
Shaft flexural rigidity EI (Nm?) 1.25E4
Effective Torsional Stiffness krppkpp (Nm/rad) 6.05E3, 2.45E4
Motor and Load inertia Iy, I 1.00E-1, 3.35
Gear mesh stiffness ki, (N/m) 1.0E8
Mean axial bearing displacement J,,,, (N) 6.00E-4
Mean input torque T, (Nm) 72
Kpyy- Kbye,: kb o, 11 9.7E8, 6.0E5, 1.0E6
kyy, kyg,, kv, 9.0E8, 1.4E7, 2.4E7

t  The internal rotating spur gear pair is currently being used in a NASA gear test
facility [55].
Tt Only relevant bearing stiffness coefficients are tabulated.
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Due to the physical symmetry, we assume dymy,; = Symwy; 2nd Bxmw; = “Pxmwy; Which

simplify the nonlinear algebraic equation set for each bearing to
Mypm = Tzsm LS/ @8 dG) —-2El me/Ls ’ Fybm = Tzsm/dG (4.27)

where M,y and Fyyp, are expressed in terms of a constant 8,p,, and variables &y, and
Bim. Solution to these 2 equations may then be used to compute kpij(82m:Oym-Bxm)

directly.

4.6.2 Vibration Models

A lumped parameter model of Figure 4.1 is developed in accordance with Section
4.4.1. Each shaft is divided into ng number of segments as shown in Figure 4.3a. The
system matrices of equation (4.4) are simplified by neglecting the longitudinal shaft
motion and casing rigid body degrees of freedom u,c,(t), Uxca(t) and Byc,(t). Both
driving and driven shafts are assumed to be coupled to the motor and load respectively
through flexible torsional couplings. Therefore, only the motor I;np and load I,; rotary
inertias are considered, and the exterior portion of the shafts beyond the flexible
couplings are modeled as purely torsional stiffness elements which are then combined
with the flexible coupling stiffnesses. The system is excited by the static transmission
exrror e(t) at the mesh point which generates gear and pinion force Fy(t) = ky, e(t), parallel
to the line of action, and torque Thg(t) = 1/2dgkpe(t) or Tpp(t) = 1/2dpkpe(t), about the
axial z-axis. The mass matrix [M] in equation (4.4a) in terms of {q(1)} = {uysaj(t),

uyca(t)’ exGa(t)’ ezGa(t)’ exPa(t)’ ezPa(t)’ ezMa(t)’ ezLa(t)’ exca(t)’ 9zca(’()}T is
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[M] = DIAG {mgejumye LG LG L Lp Lo L Ixeo Loc ) (4.28)

The matrices K1y [K]y0, [Kly3, [Klyg, [K],3 and [K]35 define the symmetric [K] of

dimension 2ng+ 11 in equation (4.4b). Nonzero elements of [K],, of dimension 2ng+3

arc

3
kns+2,ns+2 = k2ns+2,2n5+2 =k = kns+1,ns+1 =12 EI/ L.+ kbyy (4.29a)
3
kwl+1,WI = kwl,wl+1 =-12 EI/L e )

3
kw1+ns+2,wl+ns+l = kw1+ns+l,wl+ns+2 =-12 EI/L e 3 wr=123,.2ng (4.29b)

3

3
k =24EI/L ; Kupengtlwypenge1 = 24 EI/LY

WIILWII
WIL = 2,3,...0/2,0/2+42,...,ng (4.29¢)
3 3
kng2+1ng2+1= 24 EI/Lg +kyy 3 kanpipangme2 =24 EI/L, +ky ;

Kng/241,3ng2+2 = Kange2,ng241 = ~Kn 3 kongi3ongs3 = dkpyy +kyy 5 (4.29d)
kwm,2ns+3 = k2ns+3,wm = _kbyy s wi = 1, ng+1, ng+2, 2ng+2 (4.29¢)

The nonzero elements of [K],, of 2ng+3 rows and 8 columns are

2
K3ng2-1,1 = Kang243,1 =kng23 =Kng2423 =6 EI/L¢ ; konge37 = 4kpy, ;

~kng2+1,2 = Kang2422 =kn/(2dG) 5 Kng2+14 = ~K3ng242.4 = kn/(2dp) (4.30a)
kw ,7=_kby9x+zw kbyy ; kW 8= Xw kbyy ; wm=l,ns+1,ns+2,2ns+2 (430b)
m m 111 I

The nonzero elements of [K], 5 of 2ng+3 rows and 2ng columns are
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ki1 =kpg2nge1 =6 EI/Li +kpyo, 3 Kng+l,ng = K2ng+2,2ns = —6 EI/Li +kpyo,
k30242 30241 = ~K3ng241,3ng/2 = Kng/241,ng241 = ~Kng/241ng/2 =6 EI/ Li ;
Kong+3,1 = Kangs3.ng = Kangt3.n5+1 = Kange3 2ng = —Kbye, (4.31a)
kip= _k"s+1’ns—1 =Kng2ng/2-1= kn5/2+2,ns/2+2 = Knge2n542 = 6 EI/L2e ’
—Kong+2,2ns-1 = ~K3ng/2+1,3ng/2-1 = k3ng/243,3ng/242 = 0 EI/ ch » Ng>2 (4.31b)

2

e

_kWIV ,le—l=kwlv,wlv+1=kwlv+n5/2+l ,lens/2+ 1 =_kww+ns+l,wlv—1+ns=6 EI/ L

2
kwIV+nS+l,ww+1+ns='kw1v+ns/2+l,ww+ns/2-lzkww+3n3/2+2,w[v+3ns/2+l=6 EI/ Le s

2
_kWIV+3“s/2+2»WIV+3“s/2“1 =6 EI/L e s nSZ6 sy Wy = 2,3,...,1’18/2—1 (431C)

where nonzero elements given by equations (4.31b) and (4.31c) exist only if ng>2 and

n>6 respectively. The nonzero elements of symmetric [K],; of dimension 8 are

2
ki1 =kz3=8EI/L, ; kpp=kpm+knd/4 : kos=—krm : kag=-k1L ;

2
kqg=krL+kndp /4 i kg =kez=-kndgdp/4 ; kss=krm ; kes=KkrL ;

k77 = 4koa,0, + 2 (2)" Koyy +kve, 3 Kgg =kvo, + 2 (x)" knyy 432

where kTp, and kT are the effective torsional stiffnesses due to shaft and torsional
coupling respectively at load and motor ends, and the summation X is over the 4 ball
bearings denoted by j = 1, ng+1, ng+2, 2ng+2. The nonzero elements of [K]3 of 8

rows and 2ng columns are

K1ng2 = K1 ng2+1 = K33ng2 = K3 3ng2+1 = 2 EI/Le (4.33a)

k7,WV =+ ZWHI kbyex - kngex ; k8,WV = _XWHI kbyex ;
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wi=1(wy=1),ng+1(wy=ng),ng+2(wy=ng+1),2n4+2(wy=2ny) (4.33b)
Finally, the nonzero elements of symmetric [K]33 of dimension 2ng are

kyjp = kns,ns = kns+1,ns+1 = k2ns,2ng =4 EI/Le + kbeyey (4.34a)
Kyypwyp = Kngrwypngrwyy = 8 EIfL, ; ng>2, wyp=2.3,..n4 (4.34b)

kWVH,WVH—l = kWVH—'l,WVH = an+an,ns+WVH-1 = 2 EI/LC ’
Kngrwyp-lngtwyy = 2 EYLe 5 02, Wy = 23,0 (Wyg # ng/2+1)  (4.34c)
As discussed earlier, our proposed vibration model again differs from the conventional
spur gear pair dynamic models essentially due to [K]y,, formulation. The simple model

with casing and mount dynamics can be obtained from our proposed model by retaining

only kaX’ kbyy and kbzz in [K]bm-

4.6.3 Eigensolution

The natural frequencies ®; and modes ¢; of Figure 4.1 with system parameters
given in Tables 4.1 and 4.5 are computed using the proposed theory, a dynamic finite
element model, and the simple theory with and without casing and mounts. The FEM
model includes casing flexibility — this will be described later in example case II. Our
proposed theory differs from FEM by less than +4% for the first six ; and is within
+10% for w7 and wg as shown in Table 4.6a. The corresponding natural modes are
described in Table 4.6b. Simple models in general predict lower natural frequencies and

deviate substantially except for w; and w3. The simple model without any casing
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Table 4.6 Eigensolution of example case I

a. Comparison of natural frequencies ®; in Hz

Simple Models

Proposed * )

Mode ¢;  Theory FEM A% without casing with casing A%
1 0 0 0.0 0 0 0.0
2 31.0 31.0 0.0 29.8 29.1 6.1
3 480 480 0.0 not predicted 480 0.0
4 526 525 -0.2 not predicted 510 2.9
S 563 564 0.2 not predicted 560 0.7
6 790 760 -3.9 666 650 14.5
7 1147 1093 -4.9 837 809 26.0
8 1208 1100 -9.8 694 681 38.1

A% = 100 x (FEM — Proposed Theory) / FEM
A% = 100 x (FEM — Simple Model) / FEM

b. Summary of mode shapes

Description

00 1 O W bW N e

Motor-gear-pinion-load system rigid body torsional motion

Motor-gear-pinion-load system torsional motion

Casing rigid body rotational motion 0,.,

Casing rigid body translational motion uy,

Casing rigid body torsional motion 0,,

First shaft coupled transverse-torsional motion

Second shaft coupled transverse-torsional motion

Shaft transverse motion
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dynamics as outlined here is in excellent agreement with the results reported by
Kahraman et al. [15]. This provides further validation for our theory.

The effect of casing mass m,, (and inertias I, I, o m) is shown in Figure 4.12a
for w3, 05 and w;. Here w, and wg are unaffected by m¢. On the other hand, w3 is
always proportional to (mc)'”2 except when m./(mg+mg+mp) << 1. This
proportionality feature, similar to the single degree of freedom theory, is also seen for
w7 and wg for a lightweight casing, and w4 and w5 for a massive casing. It may be
noted that the trends of wg and wy are similar to @, and wg respectively although they
are not included in Figure 4.12a. Unlike example case I where the transition point is at
m./(mg+mg+mp) = 1, two transition points are observed here due to the effects of the
gear, pinion and casing rotary inertias.

The effect of mount stiffness kyy (and kyg,, kyg, > kyy) on w; is given in Figure
4.12b. We again find that ®, and wg are not affected by a variation in kyy. Also, two
transition points are found which separate a region of constant @; from the region where
; o< (k\,y)l/2 for some of the natural frequencies. Here wg is similar to w5 which is
proportional to (k\,y)l"2 for stiff mounts but is insensitive to kyy for softer mounts. The
converse is seen for w, with a lower transition point. On the other hand, wg o< (kvy)ll2
in the region between the two transition points, and is constant elsewhere. Finally, w3
is seen to be always increasing with kyy.

The eficct of mean bearing displacement 8, is summarized in Table 4.7 for two
extreme J,, values. Only the natural frequencies associated with the shaft transverse
and/or torsional motion are sensitive to d,p, or preloads F, (8, ). The rate of
increase for w; is high for low d,m» but the rate decreases with a higher J,, as observed

earlier in example case I due to the stabilization of ky;.
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Figure 4.12 Effect of casing mass m; (normalized with respect to shaft and gear
masses) and mount stiffness ky, (normalized with respect to kyy,) on the
system natural frequencies w; for example case IL
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Table 4.7 Example case II: effect of mean bearing displacement 8, on ®; (Hz)

8,bm (mm) o) ) w3 o) ws W w7 g
0.06 0 29.9 480 520 562 764 852 852
1.00 0 31.0 480 526 563 791 1180 1215

4.6.4 Transmissibility Spectra

The response due to the static transmission error excitation e(t) at the mesh point is
computed using the same dynamic stiffness technique used for example case I. Here,
only the fundamental harmonic of e(t) at mesh frequency wy, is included. All

transmissibility functions are normalized with respect to the magnitude of the gear mesh

force F(t) = ky, e(t). Figure 4.13a and 4.13b compare the bearing force prba,ph(coh)

and moment Rbea,Fh(Cl)h) transmissibility spectra as predicted by our formulation and

simple model. It may be noted that the transmissibility spectra for all four bearings are
similar. Although simple model compares reasonably well with our proposed theory for
RFybath(mh)’ it is not capable of predicting Rbea’Fh(wh)’ as also seen previously. In
the case of the mount transmissibility shown in Figure 4.13c, only the net moment
M, a(t) is transmitted. The resultant vertical force Fyva(t) and moment My ,(t) are
negligible due to the force and moment cancellations at the mount feet. The Fourier
spectrum of the normalized dynamic transmission error p(t) = [yp(t)-
yG(D+(dpBp(1)/2)—(d05(1)/2)] fe(t) is shown in Figure 4.13d. Only two modes, oy

which is predominantly torsional vibration of the shafts and ¢g which is a coupled
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Figure 4.14 Mount transmissibility studies for example case IL. Effect of (a) casing
mass mg, (b) mount stiffness kyx and (c) mean bearing displacement O,;m
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transmissibility prba’ph(mh), (b) bearing moment transmissibility
RM, ;.. F;(@h)> and (c) normalized dynamic transmission error p(wy,) for
example case II.
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transverse-torsional mode, affect p(wy,) significantly. The sixth mode produces a higher
p(wy) amplitude at @y, than ¢,. Additionally, the simple theory underestimates p(wy,) as
compared to the proposed model.

The effects of m, kyx and J,,, on the transmissibility spectra and p(cwy,) are given

in Figures 4.14 and 4.15. Mount transmissibility RMZ‘,,,Fh(“)h) is lower for a heavier

casing, more compliant mount and higher §,;, as shown in Figure 4.14. In addition,
the effects of m, and k,, on Ry, , . F; (®@h) are more prominent than those of d,m- The
bearing transmissibility spectra and p(wy,) are affected only by 8, as shown in Figure
4.15, and are virtually insensitive to m; and k,, for the parameters given in Tables 4.1
and 4.5. Vibratory force and moment transmission through the bearing are slightly
lower for a larger §,, due to the additional constraint provided by higher ky,j values on
the rotating shafts. Conversely, normalized dynamic transmission error p(@y,) increases

if a larger bearing preload is specified.

4.7 EXAMPLE CASE III: GEARED ROTOR SYSTEM WITH RIGIDLY
MOUNTED FLEXIBLE CASING

4.7.1 Physical Setup

The final example case examines the NASA gear test facility as shown in Figure
4.16 [55]. The system parameters are equivalent to those in Tables 4.1 and 4.5 except
for the flexible steel casing of approximate dimensions 0.33 x 0.28 x 0.25 m and plate
thickness of 0.006m. Rigid mount feet attach the four corners of the bottom casing plate
to a massive foundation. High precision gear and pinion are used which are identical
with 0.006m facewidth, 0.089m diameter and 1:1 ratio. Four axially preloaded high
precision deep groove ball bearings are being used to support 0.03m diameter shafts of

length 0.254m on the flexible casing. The input and output shafts are only coupled
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Figure 4.16 Example case III: (a) Schematic of the NASA gear test facility. (b) N
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torsionally to the rest of the gear test facility through flexible couplings, and the geared
system is driven by a 149kW DC motor. Vibrational level at various positions on the
casing plate are measured using PCB 303A and Endevco 2271 accelerometers over the
operational speed range of 2250-5750 rpm which corresponds to the gear mesh

frequency wy, range of 1050-2683 Hz.

4.7.2 Vibration Models
A dynamic finite element model of Figure 4.16b is developed using a commercial

software [39] as outlined in Section 4.4.1. The magnitudes of kpij» which are included
in the FEM model through a 6 dimensional generalized stiffness matrix element, are
computed using the two nonlinear algebraic equations (4.27) which neglect the static
clastic deformation of the casing plate. The shafts are modeled using 2 noded
Timonshenko beam elements with axial degrees of freedom capability. Four noded
quadrilateral plate elements with shear deformation and rotary inertia effects are used to
construct the flexible casing. The shafts and torsional couplings exterior of the test
gearbox are modeled as torsional stiffness elements only, and the gear, pinion, motor
and load are incorporated in the FEM model using generalized mass and inertia
elements. Gear mesh coupling between the gear and pinion is described by a generic
stiffness matrix of dimension 6, similar to [K],,. Free rotational 0,,(t) boundary
condition is specified at the motor and load inertias, while ideally clamped uy,,=0,,,=0,
W=X,y,z, boundary points at the corner of the bottom plate are assumed to simulate the
rigid mount feet.

Natural frequencies and modes predicted by a similar FEM model have already

been verified by comparison with experimental modal analysis in an earlier publication
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by us [50]. Hence, eigensolutions will not be discussed here. But, it may be noted that
the conventional geared rotor dynamic models with simple bearing models and without
casing dynamics are not valid for high excitation frequencies (beyond the first casing
plate elastic mode). For the forced response study, only the fundamental harmonic wy,
of the static transmission error excitation e(t) = 3.5 sin(wyt) pm computed from the gear
tooth profile and geometry [46]. About 110 dynamic degrees of freedom are selected to
minimize computational effort while still maintaining sufficient accuracy. Modal

damping ratio { = 0.05 is assumed over the frequency range of interest.

4.7.3 Casing Response

Several locations on 3 different casing plate surfaces as shown in Figure 4.17 have
been chosen for the experimental validation of our theory. Figure 4.18 compares
predicted and measured mean square acceleration spectra at @y Over 0 kHz to 4 kHz
even though measurements have been conducted only between 1 kHz to 3 kHz. In
general, good agreement is found between experiment and theory. Some discrepancy is
observed above 2.4 kHz which is due to the limitation of the FEM model in the high
modal density regime. It may be noted that the simple theory which utilizes only
conventional bearing models cannot predict flexural vibration of the casing plate as
shown in Figure 4.18. A broad band vibratory energy comparison is achieved by
averaging the mean square value of the acceleration over one-third octave bands, L4 in

dB per unit frequency bandwidth Aw, which is defined as follows

1 (AA ")
L,,dB =10 log [(m) > Re {——2——H <A r=10g2  (4.35)

Aw <A">
ref
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Figure 4.17 Measurement locations on the casing plate for example case TII.
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Figure 4.18 Comparison of casing flexural vibrations for example case 11l with &, =
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where A* implies the complex conjugate of the acceleration. Our predictions are within
+5.0 dB of the measured values as shown in Table 4.8.

The sensitivity of results to [K]p, is evaluated next. Recall that [K},, is
computed based on the knowledge of the mean axial displacements 8,, applied to the
bearings. This parameter has been assumed to be a constant in our analysis although its
exact value for the NASA experimental setup is not known. Using 2 reasonable values
of 8,5, we obtain a range of acceleration spectra in Figure 4.19. Almost all the
experimental data are now within this range. This explains experimental scatter
observed in Figure 4.18 as experimental 8,,, may vary slightly from one steady-state
speed to another during testing.

In example case 11, we found that only a few coefficients in [K]y, are necessary
depending on the excitation. Accordingly, we had used only Kpyy kpyox and kpg,oy-
But in the present FEM model of case III, we must include the entire symmetric [K]pp,
matrix of dimension 6 with no simplification at all. Now if we omit the off-diagonal
term kbxgy which is not directly excited by e(t) in the y-direction of Figure 4.1 while still
retaining other ky;; coefficients, no significant changes in our predictions are seen.
Similarly, if the off-diagonal terms ky,, and ky,,¢, Which are related to the shaft axial
degrees of freedom are also neglected, predicted acceleration spectra vary slightly.
However, if kpyg, and kpg, g, Which constraint the bending motion of the shaft excited
by e(t) are assigned zero values per simple theory, zero out-of-plane acceleration levels
are observed. This confirms that the vibration transfer through the bearings, from the
shaft bending motion to the casing flexural motion, is highly dependent on these two

terms.
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Table 4.8 Comparison of L5 (dB) for example case IIL.

Center Location in Figure 4.17
Frequency (Hz) - - )

18(a) 18(b) 18(c)
1250 Theory -3.0 -13 -4.5
Experiment -2.0 -17 -8.4
1600 Theory -5.5 -7.0 -11
Experiment -10 -8.1 -14
2000 Theory -11 -5.4 2.1
Experiment -10 -7.4 0.0
2500 Theory -3.0 0.5 5.9

Experiment -7.3 -1.0 4.0
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4.8 CONCLUDING REMARKS

A generic geared rotor system model has been developed using lumped parameter
and dynamic finite element techniques which incorporates a new mathematical model for
precision rolling element bearings proposed earlier in Chapter II. This system oriented
model includes internal rotating system, rolling element bearings, flexible torsional
couplings, motor and load, flexible or rigid casing, and compliant or massive mounts.
The discrete shaft model excludes the effect of gyroscopic moment, but includes
torsional, flexural and longitudinal motions. In example cases I and II, only flexural
and torsional motions are predicted. The effects of mount stiffness, casing mass and
bearing preload on the overall dynamic behavior have been investigated through 3
example cases of single-stage rotor and geared rotor systems excited by rotating mass
unbalance at shaft frequency and kinematic transmission error excitation at mesh
frequency respectively. The results indicate that our proposed model is more accurate
than conventional models given in the literature. For instance, we are able to
predict bearing and mount moment transmissibilities and improve casing flexural
vibration prediction significantly using our theory; measurements made on case III
validate our formulations partially. Conversely, the conventional models are unable to
account for any bearing moment transmissibility, and consequently predict zero flexural
response on the casting.

Natural frequencies of the example case III geared rotor system increase with
higher mount stiffness and bearing preload, and lower casing mass. Transition mass
and stiffness points which separate regimes of a natural frequency diagram are
predicted. Through extensive parametric studies, we find that bearing transmissibilities

may be reduced by using a higher bearing preload. However, this may result in higher
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dynamic transmission error for the spur gear pair, mostly due to the coupled flexural-
torsional motion. Mount transmissibility is affected by changes in casing mass, mount
stiffness and mean bearing axial displacement, but bearing transmissibility is most
sensitive to the mean bearing axial displacement. Similar conclusions can be drawn
regarding the other two example cases.

Our theory, though restricted to the linear and time-invariant dynamic system, is
comprehensive. It can be used for analysis as well as design studies of other rotating

mechanical systems with multiple shafts and gear pairs or multi-staged rotors.



CHAPTER V
STATISTICAL ENERGY ANALYSIS

5.1 INTRODUCTION

It has been shown in Chapters II-TV, using classical lumped parameter and dynamic
finite element techniques, that the proposed bearing model is more accurate than
existing models for predicting vibration transmission through bearings in a geared rotor
system. Although the proposed model has been shown to be reliable up to a moderately
high frequency, it is conceivable that this model is inadequate at very
high frequencies where the modal density is high. Classical vibration models do not
predict modes accurately in this frequency regime, and even if it is possible to do so by
employing closely spaced nodal points, such models require a significantly large
computational effort. Moreover, the vast amount of predicted response spectra at many
spatial points would be difficult to interpret. Accordingly, asymptotic or statistical
methods must be adopted; typical techniques include the statistical energy analysis [56-
60], asymptotic modal analysis [61-63] and asymptotic analysis using infinite system
impedances [64].

This study concentrates on the development of a broad band vibratory energy
transfer model for a geared rotor system with the proposed bearing model using the
statistical energy analysis (SEA) method. This method has been applied successfully to

a wide variety of structural dynamic and acoustic systems with large number of modes

155
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[56-60,65-69]. However several unresolved research issues still exist [57,61,62,70,
71]. The specific objectives of this study are to: (i) conduct modal analysis of a geared
rotor system with flexible casing and mounts, (ii) investigate the feasibility of applying
SEA to this problem, (iii) analyze the following 4 example cases using SEA: I. a plate-
cantilevered rectangular beam, II. case I with circular shaft-bearing system replacing the
cantilevered beam, IIl. a circular shaft-bearing-plate-mount system, and I'V. a simple
geared rotor system, and (iv) perform parametric studies to examine the characteristics
of vibratory energy transfer through bearings, and mean square vibroacoustic response
of the casing. The first and second example cases are revised and extended versions of
a study performed by Lyon and Eichler [56,58]. The later two example cases are taken
from Chapters III and IV where these systems have been studied at low frequencies.

Experimental validations are also included.

5.2 MODAL ANALYSIS OF GEAR CASING AND MOUNTS

Analytical and experimental modal analyses of a real gear casing and mounts have
been conducted to investigate the feasibility of using SEA. Natural frequencies 107 and
modes ¢; are calculated using a commercial finite element method (FEM) program [39],
and predictions for a rigidly mounted, stiffened gearbox are verified by the experimental

modal analysis (EMA).

5.2.1 Finite Element Model
The rectangular gearbox as shown in Figure 5.1a is approximately 0.254m x
0.279m x 0.330m (10.0in x 11.0in x 13.0in), and all of its plates are 0.006m (1/4 in)

thick made of 1020 steel except the regions near the bearings which are 0.025m (1.0in)
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thick. There are four circular holes for the bearings, two at each side plate supporting
the shafts. Figure 5.1b illustrates the 0.254m (10.0in) tall flexible mount frame which
is constructed from eight 0.006m (1/4 in) thick, 1020 steel angle beams with three
different lengths. Fuselage sheet, as shown in Figure 5.1b, is attached horizontally to
the flexible mount structure. The casing is supported at each corner of the base plate for
all mounting conditions, and the mounts are attached to a rigid foundation.

Two FEM models of the rectangular gearbox without its spur gears set, shafts and
bearings are developed for the rigidly and flexibly mounted casings. These FEM
models consist of four-noded quadrilateral plate elements with bending and membrane
capabilities for the housing and attached fuselage, and two-noded shaft element with
shear deformation and rotary inertia capabilities for the flexible mount skeleton and
housing plate stiffeners. The boundary conditions are: (i) zero displacements and
rotations at each corner of the base plate for the rigid mount, and (ii) similar conditions
at each foot of the flexible mount. The interfaces between adjacent housing plates are
assumed to be continuous. About 100 dynamic degrees of freedom are specified to
reduce computational effort while still maintaining sufficient accuracy. Natural

frequencies are computed up to at least 4 kHz to cover the gear mesh frequency regime.

5.2.2 Experiments and Model Validation

Modal experiments have been performed on a NASA high precision gearbox with
the spur gear set, shafts, and ball bearings installed. An approximate configuration of
the NASA gearbox is shown in Figure 5.2. The nominal dimensions of the gear
housing have been given in the previous section. The variable center distance gear-shaft

pair is supported by four ball bearings. Four side plates and a base plate are welded
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together while the top plate is bolted to the side plates. The housing plates are stiffened
internally, and the gear housing system is mounted rigidly to a massive foundation.
Dynamic transfer functions are obtained only on the exterior of the gear casing structure
using the GENRAD 2515 system [72]. For these experiments, 154 measurement points
have been selected in the direction transverse to the plane of the casing plates with the
reference point being approximately near the center of the top plate to avoid nodal points
of interest. Natural frequencies and modes are then estimated using the MODAL PLUS
program [73]. Here, the exponential method has been used to extract modal parameters
and generate analytical functions for the transfer functions, while the circle fit method
has been used to construct the modal vectors.

Figure 5.3 compares predicted and measured ®j, and FEM is found to be in good
agreement with EMA. For each mode ¢;, two simplified illustrations are shown in
Figure 5.3: (i) mode shape of the three visible plates ,and (ii) mode shape of the three
nonvisible plates in an approximate isometric view. The higher modes, not shown here,
are also given by similar combinations of plate flexural motions. Comparison between
theory and experiment for the higher modes is made on the basis of number of modes
within each one-third octave bands over 500-4000 Hz in Figure 5.4a, because of the
high number of participating modes observed. The results again indicate that FEM is in

good agreement with EMA.

5.2.3 Parametric Studies
The rigidly mounted gear housing is observed to possess only the elastic modes of
the casing plates. On the other hand, FEM model of the flexibly mounted gear casing

indicates that the first six modes are translational and rotational rigid body modes of the
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the casing as shown in Figure 5.5; for example, ®1 = 54 Hz corresponds to the casing
vibrating in the Y-direction as shown. In addition, o; are considerably lower, by
approximatcly one order of magnitude as compared to those of the rigidly mounted gear
casing. These rigid body vibration modes result from the complex elastic deformations
of the flexible mount skeleton and fuselage sheet. The casing plate natural frequencies
are also lowered, especially the first few, when the box is mounted flexibly. Figure
5.4b compares the number of modes of the flexibly mounted gear casing to that of the
rigidly mounted one. High modal counts above 1 kHz are seen.

The introduction of gear casing plate stiffeners as shown in Figure 5.2 does not
change the nature of the mode predictions. Also, the natural frequencies for this case
only vary slightly; lower modes are affected more by the stiffeners than the higher ones.
Note that the numbers of modes in each 1/3 octave band over 400-4000 Hz range remain

nearly the same as evident from Table 5.1.

Table 5.1 Number of modes for the stiffened and unstiffened gearboxes mounted

rigidly.
1/3 Octave Band Center
Frequency (kHz) 04 05 063 08 1.0 1.25 1.6 2.0 25 3.15 4.0
Stiffened o 1 2 3 1 5 7 6 10 11 11

Unstiffened 1 3 2 1 2 0 8 7 11 10 11
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Figure 5.5 Rigid body modes of the flexibly mounted gearbox as predicted by FEM.
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5.3 JUSTIFICATION FOR USING SEA
5.3.1 Modal Densities

Analytical and experimental modal analyses of the NASA gear casing clearly show
that modal density tends to be high at higher frequencies. Although the analysis is
restricted to a gear casing system, it is reasonable to assume that similar results are valid
for other rotating mechanical system housings. Accordingly, SEA can be used
justifiably.

Next, consider the modal densities of a shaft or beam ng and rectangular plate ng,

given for bending motion with simply-supported boundary conditions [56]

p nh2 2
nsst S35 . __is 3pC(1—u ) (5 1)
4El @ ° MeTH AT E '

where p is the material density, A is the plate surface area, Lg is the shaft length, E is
the modulus of elasticity, I is the area moment of inertia of the shaft, ® is the
bandwidth center frequency, h is the plate or shaft thickness, . is the Poisson’s ratio,
and the subscripts s and ¢ denote shaft and plate respectively. For typical numerical
values given later in Section 5.4 we find that: (i) ng = 0.227, and (ii) ng = 0.012 at 100
Hz, ng = 0.004 at 1000 Hz and ng = 0.002 at 4000 Hz. Note that n¢c >> ng as expected.
Although the shaft has a fairly low number of modes in the frequency range of interest,

SEA is still valid since the plate modal density n, is very high.
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5.3.2 Literature Review

A majority of publications are on the application of the SEA procedure to
dynamic systems with high n such as structural-acoustical interactions in a fuselage
[56,65,74], sound transmission through panels [60], and vibratory energy transmission
in mechanical equipment [56]. Of interest here are analytical or experimental estimation
of SEA parameters for simple structural systems described by a flat plate, a cylinder
and/or a shaft [56,58,59,66]. In these studies, structural connections are often assumed
rigid such as in the ideally welded case.

Lyon and Eichler [56,58] in 1964 and Lyon and Scharton [59] in 1965 developed
analytical expressions for the coupling loss factor 1] in several connected structures,
such as a plate bonded to a cantilevered beam [56,58]. Here 1 was derived assuming a
semi-infinite beam attached to an infinite plate and by further assuming that only a
dynamic moment coupling at the joint can describe the motion/force transmission
phenomenon. This problem is re-examined in this study and is then extended to a
circular shaft-bearing-plate-mount system. In addition, Lyon and Eichler [56,58] also
developed SEA models of two structures inter-connected through a single (scalar)
stiffness element. Typical examples include two longitudinal rods connected via a linear
stiffness element, two discrete masses coupled by a linear spring, and a plate attached to
a single degree of freedom resonator [56]. A similar analysis on the longitudinal
vibration of linearly coupled rods was performed by Keane and Price [69] in 1987.
Loss factors of typical line or point connected structures such as a plate welded to a
cylinder, cross beams and two perpendicular plates bolted or welded together, have been
calculated assuming ideal rigid joints [56,58,59,75,76]. But a compliant bearing system

problem is yet to be analyzed.
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5.4 EXAMPLE CASE I: COUPLING LOSS FACTOR OF PLATE-
CANTILEVERED BEAM SYSTEM

First, we attempt to rework the plate-cantilevered beam problem of Lyon and
Eichler [56,58] as shown in Figure 5.6. Only flexural motions of the plate and beam are
considered in this case. Accordingly, Lyon and Eichler [56,58] developed an
expression for the coupling loss factor ng. which describes the vibratory energy transfer

between the beam(s) and the plate(c) due to a moment coupling at the joint

2
Z

C

Z.+Z

2
_ (2p SIA‘SK SC S)
Nsc(@) = wm

1
Re[—z—:) (5.2)

S

where k=" I /A is the radius of gyration, c="\ E/p; is the wave speed, m is the mass

and Re( ) implies the real part of a complex variable. The driving point moment
impedances for the plate Z; and beam Zg are [58,77]

2.2
ASKScSk

(O]

16phex 3 P

Z (o) = P Z (@)= S(1-i)  (53)

(o(l—f:—ti—ln(k hy))

c's

where k is the wavenumber and h is the plate or beam thickness. Here, note that Zg of
equation (5.3) differs from Lyon and Eichler's expression [56,58] in the sign of the
imaginary part which is probably a typographical error. They assumed that IZ |>>[Z,
K=K, Cc=C. and ps=p., and simplified equation (5.2) to yield a frequency invariant
expression for Mg as

Nsc = Ws/(4Ls) (5.4)
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wheré W, and L are the beam width and length respectively as shown in Figure 5.6.
However, our calculations indicate that |Z I>|Z| but not 1Z|>>|Zy| for the parameters
used by Lyon and Eichler [58], as shown in Figure 5.7a. Using equation (5.2), N is
recomputed and compared with the approximate model given by equation (5.3) in Figure
5.7b. Experimental results given by Lyon and Eichler are also plotted in Figure 5.7b. It
can be seen that our calculation is better than earlier prediction. At low frequency, a
discrepancy is observed between theory and experiment which is primarily due to the
low modal density in this regime. The presence of a low natural frequency may be due
to the compliant epoxy bond between the beam and plate. However, above the
threshold frequency where many modes participate, shown as a vertical line in Figure
5.7b, the slope of the least square straight line fit on the experimental data is nearly the

same as the predicted M.

5.5 EXAMPLE CASE II: COUPLING LOSS FACTOR OF CIRCULAR
SHAFT-BEARING-PLATE SYSTEM

Next, we modify Figure 5.6 by inserting a ball bearing between the circular shaft
(which replaces the beam in Figure 5.6) and the rectangular plate. Again, a semi-infinite
shaft and an infinite plate are assumed. For SEA, we reduce the system to a plate
subsystem and a shaft-bearing subsystem. The coupling loss factor N is still given by
equation (5.2), but Z¢ must be modified to account for the compliant bearing.

Consider a shaft with boundary conditions shown in Figure 5.8. The bearing end
is subjected to zero transverse velocity vyg,(1,2=07)=0 and a sinusoidally varying
moment sta(t,z=0‘)=staei“". Here, z=0" refers to the junction point between bearing
and plate, and z=0% is the junction point between the bearing and shaft. In the

frequency domain, using the definition of bearing force vector
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{f ((o)}b=[K]bm{V(co)}b/i0) in terms of the velocity vector {v(w)}, and the proposed
bearing stiffness matrix [Klpm, Vysa(®,2=07)=0 is shown to be equivalent to
Fysa(@,09)=(kpy 0 /Kb6,8,Mxsa*Vysa(@ 0" { (kiya, /Kne,0,%Kbo, 6, Kbyy } / (iw).

The governing equations for My¢,(®,z) and Fysa(m,z) of the shaft in terms of vysa(u),z)

are
2 3
El, d Vv, El, d" Vg
M, =-—>—2= ;. F=—2—2 (5.5)
10 dz 2 y 10 dz3
In general, the bounded solution for vysa((x),z) is
Vysal®,2) = { by e KsZ + bye The? ) (5.6)

Using equations (5.5) and (5.6), we enforce the boundary conditions for the shaft at
z=0"% to obtain the following closed form solution for the coefficient vector

(b}={by,by}T.

K ( K2
(V]
by0 . . ® by®
K —iokg-——1k, -
oM,  b8,0, Ekg{ 7 *bo,0,
b, = + M
1 2 2 xsa
EI k? 2ik
EIK (1 +i)-2ik. + ki
S
byy kbexex
2
wk k
byex . o byex
—m)ks—-———— k -
Kpo.o Ek 2| P Ky g
xVx S xVx
b,= > M, (5.7)
2ik
Elk S (1+i) -2ik .+ b0,
o %
S
Y Ky e,
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Hence, the bearing-shaft impedance Z is then given by

k
M__ (w,0) b9,0,
Z (0)= —=2 = (5.8)
dvysa N dvysa N
—(®,07) Kpvo Vya(® 0 +kpg o —5—(©,07)
io+ . Vi =
Xsa

Although M, , appears in equation (5.8), Z; is independent of the magnitude of M,
dv

ysa

dz
Using equations (5.2), (5.7) and (5.8), Ny is computed for several bearings

(o, 0+) are linearly proportional to M,q, in equation (5.5).

since Vyga(®,0%) and

whose stiffness coefficients are tabulated in Table 5.2. Figure 5.9 compares these
where the material and geometrical properties of the shaft and plate are equivalent to
those used by Lyon and Eichler [56,58] in example case I. For a very soft bearing, Z
is dominated by the bearing parameters, and hence |Z |>>IZ is valid. This implies that
TN reduces to the frequency invariant expression given by equation (5.4) as shown by
set A in Figure 5.9. On the other hand, ng for a rigid bearing (say set B or C) is
typically smaller than Mg, for a soft bearing given by A. The extreme values of ng, as
kyij or bearing preload becomes very large, depend on the relative magnitudes of the
bearing stiffness coefficients as shown in Figure 5.9 for sets D and E. Such deviation
for a stiff bearing from set B is primarily due to the presence of off-diagonal stiffness
coefficient such as kpyg,. However it is found that ng for most stiff bearings will

approach set E in Figure 5.9 which is obviously identical to the prediction for the

example case I using equations (5.2) and (5.3).
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Figure 5.9  Coupling loss factor 1 . used in example case II for various bearing
stiffness coefficients listed in Table 5.2.
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Table 5.2 Typical bearing stiffness coefficients of Figure 5.9 for example case IL

Set kpyy (N/m) kpye, (N) kpe, 8, (Nm)
A Very Compliant Bearings (ky;j < 1E3)

B 1ES SE4 2E4

C SES 8E4 5E4

D 1E8 1E7 1E6

E 1E8 3E7 1E7

5.6 EXAMPLE CASE III: A CIRCULAR SHAFT-BEARING-PLATE
SYSTEM

5.6.1 Theory

Consider a circular shaft-bearing-plate-mount system similar to example case II but
with a shaft of finite length as shown in Figure 5.10a. Note that this system has been
analyzed earlier using the deterministic vibration modeling technique for low frequency
response. Recall the unconstrained end of the non-rotating circular shaft is subjected to
a harmonically varying force Fys(t) = Fysaei‘m + Fysm, where Fygp is the mean force.
From Chapter III, we know that the longitudinal and torsional motions of the shaft, and
the in-plane vibration of the plate can be neglected. Hence, the shaft bending vibration
and plate flexural motion are of interest here. Also, the previous deterministic vibration
models indicate that the coupling between these two motions is mainly due to the
dynamic moment at the bearing provided the longitudinal shaft vibration is not excited.
Accordingly, two subsystems which can be easily identified using SEA are the

transverse modes of the shaft-bearing system and the flexural modes of the plate-mount
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Figure 5.10 Example case III: (a) schematic of the circular shaft-bearing-plate-mount
system and (b) A SEA model of the shaft-bearing-plate-mount system.
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system as shown in Figure 5.10b. We now proceed to derive M. governing the
vibratory energy flow between these two subsystems using the driving point junction
impedance method suggested by Lyon [56].

Since the rectangular plate dimension is much larger than the bearing dimension,
the plate is again assumed infinite. Consider the vibrational power flow Il from the
shaft-bearing subsystem (subscript s) to the plate (subscript ¢), due to the uniform
external Gaussian random force over a frequency bandwidth Aw with center frequency

@,

E () Ec(co)) (5.9)

nsc(m) =wnsc(w) ns(w) ( ns((l)) - nc(m)
where n; and E; (j = s, c) refer to subsystem modal density and total vibratory energy

respectively. Since the plate is assumed to be reasonably well damped and geometrically

large, equation (5.9) is approximated assuming nc>>ng Or E /n.<<Eg/ng to yield

Mg (w)

For the shaft, Eg= mS<V§> where my is the shaft mass and <V§> is mean square shaft

transverse velocity averaged over Ao and shaft length Lg. Using the expression for Iy
given by Lyon and Eichler [58] as discussed in the previous section, T in terms of Z
and Z is identical to equation (5.2) which is rewritten here for the circular shaft case as

Z

N
ZC+ZS

(5.11)

4 EI 1
N (W)= oL Re(—z—]
S C
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For an infinite steel plate of thickness h,, the point moment impedance Z.. is given by

equation (5.3); it is rewritten as

Zc(w)=—~—°2;{l ——k d )} ; kd << 1 (5.12)

The shaft-bearing impedance Z in equation (5.11) is derived next by solving the
boundary-value problem for the system shown in Figure S.11a. The free end of the
shaft has a vanishing dynamic shear force Fysa(®,2=L()=0 and bending moment
Mysa(®,2=Lg)=0. The bearing end is similar to Figure 5.8. Following the same

argument used previously for example case II will lead to the two boundary conditions

described by Myg,(®,2=0%)=M,,, and F ,(®,z=0*) = (kbxey/kbe 9 )sta
Vysa(@,0% ){(kbxey/kbeyey) beyey‘kbxx } / (iw). Governing equations are still given
by equation (5.5), but the solution for vysa((o,z) is assumed to be of the following form

(771
vysa(tz) = { by e ~iksz 4 b, ¢ sz 4 bye “KsZ + bye ksz ) (5.13)

Using equations (5.5) and (5.13), the boundary conditions yield the following algebraic

problem

[B1(b) = Myg { knya,/kpaeox i0/(EIK), 0, 0 T (5.14)
< Qf
5
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Figure 5.11 Boundary conditions for example case III: finite shaft-bearing system.
(a) Moment applied at the bearing end. (b) Force applied at the free end.
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The nonzero elements of coefficient matrix [B] of dimension 4 are

k> k>
B o=dlEmlom, +—2r|iB =Ll Endon, 42|
11~ © s byy = k g VIO s byy  k ’
b9,6, b0, 0,
2 2
i 3 byO, | . i 3 by,
B.=--|Ek.-k, +4-——|; B, =—|-Ek.-k, +-——>—1;
) D 14-® s” b
13 byy kbexex Yy kbexe,

“BoooBoeBao] : Bo.oiB. cie—ks : B. <iB . c—ieiksLs -
By1=Byy=-Bp3=-Byy=1 ; Byy=-iByy=ie Vs ; Byy=iByy=—ieltss ;

B33=_B43=_e—ksLs : B34=B44=eksLs (5.15)

Both [B] and {b} = {by, by, b3, b4}T can be easily obtained numerically. The bearing-
shaft impedance Zg is still given by equation (5.8).

The same procedure may be applied to obtain the driving point force impedance for
a harmonically varying transverse force Fy,(1,z=0). Note that the origin is redefined at

the forcing point as shown in Figure 5.11b for convenience. The boundary conditions
dv

ysa

dz

These conditions at z=—L; can be rewritten for z=—L; like the previous case to obtain

are Fysa(w,z=0)=Fysa, M, sa(0,2=0)=0, vysa((u),z=—L's)=0, and (o, — L;)=O.

dv
sta(m’z=—LS)=—(kb9xex Tysa(w, - L: ) +kbyexvysa(wa'—Lz))/(im) ’
dv e, .
Fya(®,2=-Lg)=(kpyo, sz—(m, —LY) + kpyyvysa(@-L) /(o) (5.16)

These prescribed boundary conditions again yield a set of algebraic problem similar to

Equation (5.14). The nonzero elements of the coefficient matrix [B] of dimension 4 are
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By, =By =Bjp=Byy=-Bj3=iBy3=-Byy=-iBy =-10;

B31=(—jkskbexex+kby9x+EIk§)clk‘L’ :
B32=(jkskbexex+kby9x+EIki)c—ik’L’ ;
B33=(—kskbexex+kbyex—E1k§)ck,L, ;
B34=(kskb9xex+kbyex—EIk§)e—ksLs ;
B41=(ikskbyex——kbyy—iEIkz)cik,L‘ ;
B42=(—ikskbyex—kbyy+iEIki)e—ik’L’ :
B43=(kskbyex—kbyy+EIk2)ek'L’ :
B44=(-kskby9x—kbyy—Elki)e'k’L' (5.17)

The right hand side vector {b} of the algebraic problem is {O,Fysaw/(EIkg),O,O}T.
Force impedance at the driving point is then given by Zs(co,z=0)=Fysa/vysa(o),O).
Accordingly, the input power is Ilg= (1/2) Fisa Re{(l/Zs)*} where Re{ } is the real
part of the complex variable and ( )" implies the complex conjugation.

We can now compute the vibratory energy transfer I through the bearing and

steady-state subsystem energy levels Eg and E; by applying the energy balances to both

subsystems shown in Figure 5.10b; here n¢g =N ng/ne.

[nsmsc(w) =1 ¢ (@) }{Es(m)}_{ns/w} (5.18)
—T]SC(UJ) nc+ncs(m) Ec((l)) B 0
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E (o) = I_Is(nc"'ncs) )
ST oMM NNt N M)
I-]‘SnSC
E o(6) = G oMy ¥ o (5.19)

Since E = m <V2>, the following velocity levels may be obtained at any center

frequency o from either equation (5.18) or (5.19)

2
<Ve> _my (_h(_‘”)_J (5.20)
<V§> e\ Nc+M (@)

5.6.2 Validation and Parametric Studies

In order to validate our SEA formulation, we compare the mean square mobility
level of the plate with experimental data reported earlier in Chapter III. Note that
although all nonzero bearing stiffness coefficients ky;j are computed and given in Table

3.6, only kyyy=3.69ES8, kpye,=3.52E5 and kyg,g,=4.19E4 are used as they appear to

be the most significant ones according to the proposed theory. Using equation (5.19),
<V§> is computed and compared with experimental results in Figure 5.12. Theoretical
predictions for three values of dissipation loss factor g=n#n4(®) are given since the
choice of structural damping is critical to the SEA analysis. It can be seen from Figure
5.13 that the experimental data are approximately bounded by 1,=0.0003 and Nns=0.03.
Here 7 is also assumed to be frequency invariant which may not be valid in the
experiment. Accordingly, comparison between theory and experiment is deemed to be
excellent.

Further comparison between theory and experiment can be made for the case of a

semi-infinite shaft considered in the example case II. Using equations (5.2), (5.7) and
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Figure 5.12 Comparison between theory and experiment [17] for example case III with
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Figure 5.13 Comparison between theory and experiment [17] for example case II1.

Here theory considers a semi-infinite shaft.
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(5.8) for N, the mobility levels are computed and are found to be given by straight
lines as shown in Figure 5.13. These lines represent the asymptotic behavior of the
system when the shaft is very long i.e. Ly = oo. Also, note that Figure 5.13 is
consistent with the trends reported by Lyon and Eichler [58] for the plate-cantilevered
beam problem. Again, most experimental data are bounded within the range given by
M = 0.0003 to 0.03.

Consider the finite shaft length L=1.32 m of high modal density ng. In Figure
5.14 m is compared for a finite shaft and semi-infinite shaft. It can be seen that the
result for the semi-infinite shaft follows the average values of the finite shaft.

Next, the effect of bearing preload or stiffness coefficients on the mean-square
velocity response of the plate-mount system is evaluated. Equation (5.20) is used to
predict the curves shown in Figure 5.15 while keeping other system parameters the
same. The bearing coefficients used in this analysis are from Tables 3.3 and 3.4. Three
bearing preloads used here are 115N, 190N and 285N which are referred to as low,
medium and high preloads. We observe minor changes with preload except in the

vicinity of 4 kHz.
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Figure 5.14 Predicted coupling loss factors 1. for a semi-infinite and a finite shaft in

example case 111.
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Figure 5.15 Effect of bearing preload on the normalized casing plate response (example
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5.7 EXAMPLE CASE IV: A GEARED ROTOR SYSTEM
5.7.1 Assumptions

As the final case, we investigate a generic geared rotor system with 4 bearings as
shown in Figure 5.16a. This system is not only a natural extension to example III, it
can also be treated as an approximate model of the NASA gear test facility in Figure 5.2,
for gearbox details, refer to Chapter IV. The intent of the SEA analysis is to predict
asymptotic casing plate response and radiated sound pressure from the gearbox, on an

order of magnitude basis. Accordingly, the following assumptions are made:

1. Consider the case of 4 identical rolling element bearings and 2 identical shafts
carrying gears.

2. The vibratory source associated with the static transmission error excitation is at the
gear mesh. The net exchange of energy through the gear mesh coupling is
neglected and the vibratory energy is assumed to flow outward from the gear mesh
source to the casing through shafts and bearings. The source is assumed to be far
away from the bearings.

3. Only shaft bending vibration is coupled to the casing plate flexural motion.
Torsional modes are not included since they are relatively low in number compared
to the shaft bending modes. In steady-state, both shafts have equal amount of
vibratory energy (E;) associated with their bending motions which are uncoupled
from the external motor and load.

4. The portion of torsional vibratory energy which is transmitted to the load is
incorporated in the dissipation loss factor (1) of the shaft-bearing subsystem.

Here 4 is assumed to be given by ng=yn #n(®) where n.#n.(®) is the loss
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Figure 5.16 Example case IV: (a) a generic geared rotor system with casing and mounts
and (b) boundary conditions for a finite shaft-bearing system.
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factor of the casing; y is expected to be higher than one due to additional losses at
the bearings and load.

5. Bearing dimensions are assumed to be much smaller than the wavelength on the
casing plate. Also, bearings are not expected to be exchanging vibratory energy.

6. Modal densities of shaft ng and casing plate n, are given by equation (5.1).

7. A diffuse vibration field is assumed for the external casing-mount system. The
energy dissipation mechanism for this system includes acoustic energy radiated

from the plate in addition to the structural damping.

Application of the SEA principle will result in 2 subsystems, one internal
consisting of 2 shafts and 4 bearings and one external consisting of 2 casing plates and
mounts similar to Figure 5.10b. The internal subsystem in this case can store the total
vibratory energy of 2 shafts. Vibratory energy transfer as viewed through Figure 5.10b

represents the algebraic sum of the energy transfers through 4 bearings.

5.7.2 Coupling Loss Factor

The coupling loss factor 15 between the internal (shafts-bearings) and external
(casing) systems is derived, based on the formulation given by equations (5.11) and
(5.12). This implies that vibratory energy transfer is associated with only the dynamic
moment at the bearing, and the casing plate is infinite with respect to the bearing
dimensions. The driving point impedance of the shaft Z is derived next given the
boundary conditions shown in Figure 5.16b. At the left bearing end (z=0"),

Vysa(®,2=07)=0, and M, ,(®0,z=0")=M,, which are equivalent to M, sa(@,2=0%)=M, ,,
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and Fysa(m’0+)=(kbyex/kbexex)sta+Vysa(m’O+) { (kbyBJ kbexex)2kb6x6x_kbyy } / (iw).

The other bearing end at z=L; with zero translational and angular velocities is described

atz=L_ as
dv ysa _ i -
sta(w’zst)_—"’(kbOxex _—dz_(m’ Ly )+kby6xvysa((°'Ls)) / (i) ;
dv ysa _ A )
Fysa(@2=L=—(Kpyo, —omr (@, L3) + KoyyVysa(@.LD) /(i) (5.21)

Using equations (5.5) and (5.13), the above boundary conditions are evaluated to
formulate an algebraic problem of the type given by equation (5.14). The nonzero

elements of the coefficient matrix [B] are

{ L2 oy 2
B =L1|EK3-i +il_(b_ye_x . B =L|-EK3-ik, + Huye, ;
1 © ] byy kbex()x 12 © S byy kbexex
( K2 K2
B cdilpmdok +—2% 0, p =di|-Exl-ok 4 AT I
13 @ k s byy kbexex 4 © $  Tbyy kbexe,

By1=Bpy="By3=-By=1 ; .
: 2 KL,
By, = (~jkokyg o +ky o +EK) e :

_ 2. kL,
By (Kgkyp o +yg +EIKS) e :
2 _ksLs .
Biy=(— kg oty ke :
k
B, =(kk +k._ . —Ek2)r

6.6 " " byd,

B, = (ik gk, o —k ~iEIk e
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. 3 kL,
By =(-ikgky o —ky +iElk)e :
3. -kL,
Byy=(kgey o ~ky +Ek)e :
B =(-kk k Elk > ) e sl
4= (T kKpg — byy " Elk )€ (5.22)

X

The right hand side vector {b} of equation (5.14) is Mysa{ kbyex/kbexgx,
T
im/(EIkz),0,0} , and the shaft impedance Zg is evaluated numerically using equation

(5.8).

5.7.3 Vibroacoustic Response

Consider the total energy dissipation by the casing as the sum of the energy terms
associated with structural damping dissipation and energy escape via sound radiation.
Hence the total dissipation loss factor N for the casing of area A and mass m is

z,A_.G ()
M@ =1t == (5.23)

where z, is the characteristic impedance of the surrounding medium, and o, is the
radiation efficiency of the casing. In this analysis, two radiation efficiency models are
used: (1) o) = 1.0 for an ideal radiator as for many gearboxes the measured radiation
efficiency has been found to be close to unity [78], and (ii) 6, for a simply-supported
rectangular plate [79]. Several investigators have used G, successfully in SEA

applications {60,66,67].



193

Since this SEA model is very similar to the one developed for example case III,
solutions given by equations (5.19) and (5.20) are still valid here provided the existence

of multiple paths, as opposed to only one path in example case I1I, is recognized. The

mean-square velocity levels of the shafts-bearings system <V§> and casing-mount

system <Vz> are

<Vis(w)= T (er ) ;
° _msm(nsncT+4ncTnSC+4nsn°S) ’
411 . m
<Vis(w)= S5 (5.24)

mcm(nsn CT+4n s +4n M cs)

Power injected into the system is developed by examining the internal static transmission
error excitation e(t):eh(m)ei‘”‘. For the spur gear pair, the gear mesh frequency
w(rad/sec)=Ny€2,n/30 where Ny is the number of gear teeth and Q,54(rpm) is the
driven shaft speed. By definition, the input power by the gear mesh elastic force
Fy, (D =kpe(t)=ep(@)el® is given by IT(@)=1/2 (kpep)? Re{(1/Z@))*}. Ata very high
frequency, it is reasonable to assume that the boundaries of the shafts do not affect the

gear mesh source regime. Hence the infinite shaft assumption should hold.
Accordingly, Z¢ can be obtained analytically using the driving point shaft impedance

given in Reference [77]; however, the gear mass mg must be included.

Z () =2pAcg (1+i)+iom, (5.25)

Sound power W radiated from the casing is computed using the following equation

where A, is the total casing surface area
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W() =z, A < V(@) > 6 () (5.26)

Assuming a source directivity Q(w) associated with geared system mounting condition,

the sound pressure level Lp (dB re 20uPa) in the far field at distance r from the casing is

(w) 4
Lp(w) = Lw(w)+ 10 log 10(31“"2 + R(w)) (5.27)

where R(o))=&S/(1—&) is the room constant, &((o) is the average absorption

coefficient, S is the room surface area and Lyy (dB re 1.0pW) is the sound power level.

5.7.4 Experimental Validation and Parametric Studies

The SEA formulation for this example case is verified by comparing results with
vibroacoustic responses measured on the NASA gearbox [55]. A detail description of
the experimental setup and its system parameters have been given in Chapter IV.
Additionally unweighted L, at r = 0.38 m, directly above the surface of the top cover
casing plate as shown in Figure 5.2, has been measured with a B&K type 2230 sound
level meter. Predicted and measured L, are compared in Figure 5.17a for y=10, 6,=0,
and bearing preload 8,,,=0.04mm. The second term in equation (5.27) is dominated by
Q/(4nr?) since 4/R << Q/(4rr2) in this case due to o = 1.0 and room surface area S
being very large. Predictions are found to be within £10dB of the measured values for

typical structural dissipation loss factor 0.004<n.<0.04. Figure 5.17b shows the

comparison of spatially averaged mean-square casing acceleration level ((1)2<V(2:>)

between theory and experiment. Experimental curve represents the averaged value of

the measurements made at 3 casing plate locations (top plate, side plate with
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Figure 5.17 Comparison between theory and NASA experiment [55] for example case
IV (y=10, Q=2, 6.=07, 8,m=0.04mm). (a) Sound pressure level L,
(b) Spatially averaged casing acceleration.



196

bearings and side plate without bearings). Again, predicted acceleration spectra, which
are similar to that found for the sound level, are found to be in reasonable agreement
with the measured spectrum given the appropriate values of 1. and y. In general, we
observe that the response level decreases with increasing .. Also, comparisons
suggest that 1 in this system may be frequency dependent.

Next we vary y but keep 11.=0.02 constant in Figure 5.18. Comparison between
theory and measurements also indicates that y=10 is the best fit for the experimental data
especially at the higher frequencies. Here, radiation efficiency 6., and bearing axial
preload 9,,,=0.04mm have been specified.

Now we investigate the effects of casing plate radiation efficiency o, and bearing
preload or mean axial displacement ., on L,. Figure 5.19 compares 61 and 6.
Based on the comparison with experiment it seems that the radiation efficiency of the
NASA gearbox is better modeled with 6 although the measured L, curve is mostly
between O and G, curves. Differences between 6 and G, are significant ai lower
frequencies, but the variation never exceeds 10dB over the entire frequency range of
interest. It may be noted that since the acoustic energy radiated W(w) is significantly
smaller than the energy dissipated by the system, virtually no change is found in the
predicted casing acceleration spectra by varying 6. The effect of bearing preload on Lp
is shown in Figures 5.20a and 5.20b for 0 and o respectively. Figure 5.20
indicates that Lp is lower when the bearing preload is increased. A similar effect is seen
for the casing acceleration level which is consistent with the deterministic model

prediction of Chapter I'V.
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5.8 CONCLUDING REMARKS

The vibration transmission through bearing has been analyzed using the SEA
technique. A new procedure has been developed to compute the coupling loss factor
which relies on the solution of the boundary value problem at the bearing-casing
interface. This scheme incorporates the bearing stiffness matrix developed earlier as a
part of the deterministics vibration models in Chapters II-IV. Experimental validations
verify the proposed theory even though a very simple model for the geared rotor system
has been presented. A more detailed SEA model including energy sharing between

subsystems is required to analyze this system. This is left for future research.



CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

6.1 SUMMARY

A new precision rolling element bearing model is proposed for the analyses of the
vibration transmission through bearings and overall system dynamics in rotating
mechanical equipment including geared rotor systems. Current bearing models, based
on either ideal boundary conditions or purely translational stiffness element description,
can not explain how the vibratory motion may be transmitted from the rotating shaft to
the casing and other connecting structures in rotating mechanical equipment. For
example, a vibration model of a rotating system based upon the existing bearing models
can only predict purely in-plane type motion on the flexible casing plate given only the
bending motion on the shaft. However, experimental results have shown that the casing
plate motion is primarily flexural or out-of-plane type. Chapter II clarifies this issue
qualitatively and quantitatively by developing a new mathematical model for the
precision rolling element bearings from basic principles. A comprehensive bearing
stiffness matrix [K]p, of dimension 6 is proposed which clearly demonstrates a
coupling between the shaft bending motion and the flexural motion on the casing plate.
A numerical scheme which involves a solution to nonlinear algebraic equations is
proposed for the estimation of the stiffness coefficients given the mean bearing load

vector. And, a second method which requires the direct evaluation of these stiffness
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coefficients given the mean bearing displacement vector is also discussed. Some of the
translational stiffness coefficients of the proposed bearing matrix have been verified
using available analytical and experimental data. Further validation of [K]y, is not
possible as coupling coefficients are never measured. Also, parametric studies on the
effect of unloaded contact angle, preload, or bearing type are included. These results
lead to a complete characterization of the bearing stiffness matrix.

Chapter III extends the proposed bearing stiffness formulation and demonstrates
its superiority over existing models in vibration transmission analyses for a generic
single shaft-bearing-plate-mount system. The bearing stiffness matrix [K]yp, is
incorporated in discrete system models using lumped parameter and finite element
modeling techniques. Shaft, plate and mount flexibilities are also included in such
models. The stability issue associated with the proposed bearing model is addressed
analytically using Liapunov's stability method and the system is found to be dynamically
stable provided the preloads are sufficiently high. Eigensolution and forced harmonic
response to the following rolling element bearing system example cases are obtained
using our formulation and results are compared with the predictions yielded by the
current vibration models: L. rigid shaft and plate system freely suspended, II. rigid shaft
and plate supported on flexible mounts, and III. an experimental setup consisting of a
flexible shaft, two ball bearings, a rectangular plate and the supporting structure.
Analytical results indicate that our proposed model is indeed capable of predicting plate
rigid body angular motion or plate flexural motion as excited by shaft motion. Such
predictions are not observed in simple vibration models. Also, lower degrees of
freedom models, developed by several previous investigators tend to underestimate the

resonant frequencies and force or moment transmissibilities as compared with our multi-
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degree of freedom models. Comparisons between our model and the available
experiments have been found to be reasonably good.

The overall dynamics of a geared rotor system which includes a spur gear pair,
shafts, rolling element bearings, prime mover and load (attached to the geared rotor
system through flexible torsional couplings), rigid or flexible casing, and compliant or
massive mounts is studied in Chapter IV. Linear time-invariant, discrete dynamic
models of a generic geared rotor system with proportional viscous damping are
developed using lumped parameter and dynamic finite element techniques which are then
used to predict the vibration transmissibility through bearings and mounts, casing
vibration motion, and dynamic response of the internal rotating system. The proposed
bearing formulation is also included. Each rotating shaft is modeled as an Euler beam in
the lumped parameter model and as a Timoshenko beam in the dynamic finite element
model, but the gyroscopic moment is not included. Eigensolution and forced harmonic
response studies due to rotating mass unbalance or kinematic transmission error
excitation for the following example cases are obtained using our formulation and
compared with simple models currently available in the literature and/or experiment: 1. a
single-stage rotor system with flexibly mounted rigid casing consisting of two bearings
as a special case of the geared rotor system, II. a spur gear pair drive supported by four
bearings installed in a flexibly mounted rigid casing, and III. an experimental setup
consisting of high precision gear and pinion, and four identical rolling element bearings
contained in a flexible casing mounted rigidly on a massive foundation. In example
cases II and I1I of Chapter 1V, the gear mesh stiffness is assumed to be linear and time-
invariant. Analytical predictions show that our theory is indeed capable of predicting

bearing and mount moment transmissibilities in addition to the force transmissibilities.
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Also, flexural vibrations of the casing plate are predicted well as our theory is in good
agreement with measurements made on case III of Chapter IV; such predictions are not
seen in simple models.

In Chapters II-1V, the deterministic vibration models of geared rotor system with
proposed bearing stiffness matrix incorporated have been shown to be reliable up to
moderately high frequencies. But these models are inadequate at very high frequencies
when the modal density is high. Classical vibration models usually do not predict
modes accurately in this frequency regime, require large computational effort and
produce spectra at many spatial points which are difficult to interpret. Accordingly, we
have used the statistical energy analysis (SEA) method to predict the mean-square
vibratory response of internal and external subsystems in a geared rotor system. The
feasibility of applying SEA to this system is also investigated by performing modal
analysis of a gearbox. Four example cases are analyzed using SEA: 1. a plate-
cantilevered rectangular beam, IL. case I with circular shaft-bearing system replacing the
cantilevered rectangular beam, III. a circular shaft-bearing-plate-mount system, and IV a
simple geared rotor system. In the first two example cases, we have revised and
extended Lyon and Eichler's plate-cantilevered rectangular beam problem [56,58] to
improve the coupling loss factor prediction and to formulate the vibratory energy
transfer problem through rolling element bearings. The third and final example cases
compute the system response spectra and compare them with measurements. Good
agreement is found between theory and experiment provided proper values of the
dissipation loss factors and bearing preloads are used. The NASA gearbox radiation

efficiency is found to be nearly unity at higher frequencies.



6.2 FUTURE RESEARCH
Several areas of potential research problems based on the present study of the

vibration transmission through bearings, are identified as follows:

1. Analyze vibration transmission through hydrodynamic bearings, using the
proposed work on rolling element bearings. Develop an experimental methodology
to estimate the bearing stiffness matrix and transfer properties. Also, develop
bearing diagnostic techniques using vibration transmission theory proposed in this

dissertation.

2. Extend the proposed overall geared rotor system vibration model with spur gears to
helical, bevel and worm gear drives. Develop vibration models using the proposed
bearing model to analyze multiple transmission paths. Improve gear diagnostic

procedures using analytical bearing transfer properties.

3. Refine the current statistical energy analysis formulation of a generic geared rotor
system to investigate the vibratory energy transfer among smaller subsystems and
to include the effects of rotating shaft torsional modes. Generate analytical and
experimental schemes to predict coupling loss factors for typical shaft-bearing-plate
system. Finally, establish gearbox design methodology for reduced airborne and

structure-borne noise.
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