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ABSTRACT

An inverse dynamic equation for a flxible
manipulator is derived in a state form. By dwiding the
inverse system into the causal part and the antic wsa. part,
we can calculate torque in the time domain for a certain
end point trajectory, as well as trajectories cf all state
variables. The open loop control of the inverse dynamic
method shows an excellent re-ult in simulation. For
practical applications, a control strategy adapting feedback
tracking control to the inver: : dynamic feedforward control
is illustrated, and its good experimental result is presented.

1. Introduction

Flexible manipulators have been widely discussed
in the literatare recently. Most of these papers have
mentioned the flexible manipulator’s advantages such as
low mass to payload ratio, use of small actuators, and
high travelling speed. However, the inherent flexibility
of the manipulator makes its actual industrial application
difficult. In spite of its flexibility, a flexible manipulator
should have the capability to follow a given end point
trajectory for practical applications. This paper proposes
a simple inverse dynamic method which can make the
end point of a flexible manipulator accurately follow a
given trajectory without overshoot or residual vibration.

The feedback control regulating mettod, which
adds damping effect to the flexible structure is one of
typical methods used to suppress the structural vibration
of the manipulator in literature. By using joint and
strain feedback control, Hastings and Book 7
demonstrated good results in regulating the vibration.
Even though the feedback control is able to dampen the
residual vibration during settling time, their experiment
showed the undershoot, the overshoot, and the flexible
vibration in case of a step response. For a step input
command, these vibrating phenomena are inevitable with
the feedback control scheme because the feedback
control signal contains high frequency components,
which excite the system natural frequencies. Instead of
a step response, a smooth nominal trajectory can be
used as the joint reference command of tracking control.
However, the strain feedback tracking control requires
the desired trajectory values of flexible mode variables
which match the joint trajectory value. Because of
lacking flexible mode values, assigning zero values to the
desired values of flexible mode states has been
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acceptable for the nominal trajectory tracking control to
suppress the vibration during motion. In other words,
reference commands are given to the flexible
manipalator to follow the trajectcry like a rigid
manipulator. Even though the increase d damping by the
feedback control regulates the vibration, such unrealistic
commands cannot avoid the generation of the vibration.

To avoid the above feedback control problems,
De Luca and Siciliano {6] suggested a joint based
inversion control scheme. This method showed good
tracking result for a certain joint trajectory. However, it
couldn’t be extended for an end point trajectory
following control because of nonminimum phase system
characteristics. Oosting and Dickerson [8] demonstrated
a calculation method of the torque (o follow a smooth
trajectory for a simple lumped parameter two link
flexible manipulator.

To make the end point of a flexible manipulator
follow a given trajectory, Bayo {2] proposed a new
approach. For a given end point acceleration profile,
the required torque was calculated by solving the inverse
dynamic equation in the frequency domain through the
inverse fast Fourier transform. The inverse dynamic
system considering the end point acceleration as input
and the joint torque as output is a noncausal system
since the output (torque) must begin before the input
(end point acceleration) begins. Therefore, this inverse
dynamic method provides a noncausal solution torque
which acts before the tip moves, and after the tip stops.
In spite of excellent results, his method has a drawback
because it requires heavy computation for the
transformation of a dynamic model and an input
trajectory from the time domain to the frequency
domain and the inverse transformation of the output to
the time domain. To reduce such computation burden,
Bayo and Moulin [4] recently introduced the convolution
integral method to solve the inverse dynamic equation.

Asada and Ma [1] derived an inverse dynamic
equation by using assumed mode functions for a general
n-link case. As the transfer function of a flexible
manipulator between the input torque and the output
end point position is a non-minimum phase system, it
has some positive real value zeros. These zeros become
positive poles of the inverse dynamic system transfer
function. They cause the inverse system to be unstable
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if the inverse system output is restricted to causal
solutions. In the reference (1], they used rigid body
torque to show nonlinear effect without solving the
inverse dynamic equation.

In this paper, we introduce a new simple inverse
dynamic method, which relieves the calculation burden
considerably. With this method, we can calculate the
required torque in the time domain. In addition to that,
we can generate very natural trajectories of flexible
mode coordinates, which match the given end point
trajectory dynamically. These trajectories can be and are
used as reference commands of flexible coordinates for
feedback tracking control.

In following sections, we first describe a direct
dynamic model of a single link manipulator by using
assumed mode methods. And we derive an inverse
dynamic system equation from the dynamic model in a
state space form. By dividing the inverse system into the
causal part and the anticausal part, we can integrate the
inverse dynamic differential equation of each part
separately in the time domain. Next, this inverse
dynamic method is implemented on the single link
flexible manipulator in Fig. 1 through simulations. Its
results are compared with the output of other typical
control methods. Finally, the controller design with the
inverse dynamic method is presented, and its
experimental results are discussed.

2. Modeling

A single link flexible manipulator having planar
motions is described as shown in Fig. 1. The rotating
inertia of the servo motor, the tachometer, and the
clamping hub are modeled as the hub inertia Th. The
payload is modeled as the end mass Me. Even though
flexible beam damping exists, it is ignored in modeling.

tond Mass

\\\\* Tachomete:
\\?o:ontlolocox
- —

Torque

Fig 1. A single link flexible manipulator

To derive equations of motion of the
manipulator, we describe the position of a point on the
beam with a combination of 2 virtual rigid body motion
and flexible deflections using 2 Bernoulli-Euler beam
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model. The virtual rigid body motion is represented by
the motion of the moving coordinate which is attached
to the beam. The flexible deflections are described by
finite series of assumed modes with respect to that
moving reference frame. Defining the rigid body motion
is important because different mode shape functions
have to be used according to the choice of the rigid body
coordinate. Several authors {7,9] used the rigid body
coordinate which is attached at the base hub like a) of
Fig. 2, and used the clamp-free boundary condition
mode functions. Other authors {5] defined the rigid
body mode coordinate to pass through the center of
mass of the beam, and used pin-frec mode functions.
And others [1] let the rigid body coordinate pass through
the end point, and used the pin-pin mode functions. All
of these definitions for the rigid body mode can be valid
because appropriate mode functions,which satisfy the
geometric boundary conditions can be chosen for each
case.

J a) clamp-free

4 /

e} plu-pin

Fig 2. The kinematic descriptions of flexible manipulator
coordinates

In this paper, the rigid body mode coordinate
which passes through the end point of the beam is
selected, and the pin-pin mode functions are used to
describe deflections. In order to obtain a accurate
model with a small number of modes, we have
considered more accurate boundary conditions such as
the joint hub inertia and the end mass when we derive
the mode shape functions. For the inverse dynamic
model, two mode functions of pin,hub inertia-pin,end
mass boundary conditions are used. The reason why this
rigid body coordinate is selected is that the end point
position of the beam can be expressed by the rigid body
mode variable, and this simple representation of the end
point position makes the derivation of the inverse
dynamics equation easy.

The velocity of any point of the beam can be
expressed as follows.
r = xi+wf where w = w(x,0)

F = (g, Wli-wd i
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Then ¥ = (x4, +W)P + Wi}

- (xd,+W)? where w < X

The kinetic energy of a beam is obtainzd Jy tae
integration the velocity product term. Its s:cond term
generatzs centrifaga’ and coriolis forces in t1e d-namic
equation. In this single link case, the .econd

q'f velocity product term can be ussunied to be

negligible to provide a linearized model except in tlie
case of very high rotational speed.

As we can consider x as ¢y(x) and ¢/ as q,( .

Jet's introduce another variable y which represents the
total displacement of the point on the beam as shown in
Fig. 2.

y-xq,+w-xgt+ Y &a0
i-l
=Y 640440
i~0

i - - (Y 041
i-0

Thus the kinetic energy and the elastic potential energy
will written as

Then

LIPS L, sero0)?
T - [ yasiar + S1E-08

+ .l Wx=-11)2 + _1_ i (x=
2Mey(x Lo 2Jey (x-10y
- _l_ I. + )2 . l = / 0)d 2
2h 2 @4V + SIGE 6104)
« Lre(3 0,007 + 21T S04
2 i=0 2 i=0
K- -;-EI]; i pde - -%Elfo P
- Ler ' o
LI diar'ds

And the virtual work is expressed as

W = 10y (x-0.) = (Y ¢,0)3q,
i-0

= 2 Q8¢
0
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Therefore, the generalized force Q, is expressed as
follows:

Q-9

By using Lagrange s equaticas of mation, the dynamic

equation of a flezible maripulator is obtained with

generalized coordinates.

dor) _or v _
a, X,

e Q. i-G1l,..n

Ml + [Klq - [Bl*

where
» 00
pn-|° ] (K] - [0 K, -
B] )
(81 - 'l, q- {"r i=0,1,.n
pA[ 6 ()6 fx)dx
/ /
M=|" I, 4060 ij=0,.n
+ M, 606D
+ I, $AHOD
K, = Ef '$i0e wdx,  ij-1,.n

The mass and stiffness matrices are represented in these
general forms which are valid for different definitions of
rigid body modes. For the viscous friction of a joint, the
damping term is included. The dynamic equation can be
divided into a rigid body motion part and a flexible
motion part as follows:

M"’ M’/ r D" D"/ .r 0 0im, Br
7 N . *0 X - t (1)
Mr! MJ I D,, Dg '/ ! B/

where q, - q,; rigid body coord.,

q, - r'} ; flexible mode coord.

For a state space form, we obtain the following dynamic
equation.



. 0 I 0
X= X + 4 (2)
MK M™'D M'B

Y = [Clx + [F]*
where X= {q,.q,q',.q‘,}’
- {qo»ql»“'»‘io»qnn"‘lr
From now on, we call this dynamic equation the direct
dynamic equation to distinguish it from the inverse
dynamic equation which is derived at the next section.

3. Inverse dynamic equations

Base on the above the direct dynamic equations, we will
derive the inverse dynamic equation. Eqn. (1) can be
written in two parts.

[M” H’ * [M'ﬂq-l*[D nﬁr" (D 'qu./' (B,.]f (3)

(M 74,+ (M4 (D374, D [Kda, (&)
= [Bi<

From Eqn. (3), torque is give by

- BIM A, - (D, + (D) O

Substitution of above Eqn. (3a) to Eqn. (4) gives the
following relations between the flexible coordinates qg
and the rigid body coordinate q

(M4, -(D)d(K]a, = [B,14,*IB.Md, (s
where [M] - {[M,l—(B,][B,]"[MnJ}

(D] - {[DA-(BAIB)'(DJ)

K] - K

(8] - ([BAB)'[D,)-(DA")

[B,) - ([BJ(B)IM,)-M A"}

From Eqn. (4), the acceleration of flexible coordinates
are expressed as follows:

g, - -IMY"M TG, - MDA, (6)
~IM D M 'K day (Mgl (B

Substitute this Eqn. (6) to Eqn. (3), then we will get the
following Eqn.
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t = [ColaCMIF M4, +[F M, M

where  [Gl-{[B)-IM AMJ(B)}!
[C,1-(G1{~[M MK )}
(C}-(GIID - M JIMA (D)
[F,)-IGH(D,}-IM M3 (D A"}
[F)-IG([M,}-M JIMJ M7}

If Eqn. (5) and Eqn. (7) are represented in a state space
form, the inverse dynamic equations will be

Lt X, - lgdpT. 4, - 144
. 0 1 0 0
X - _ o _ 8
17 Mk, M;'D,[ " |M;'B, M'B,|" ®

t = [CpColX, + [FyFi )4,
X, - [A)X,+[B]q,

t - [C)X, + [Flq,

The inverse dynamic equation is obtained in this
simple form. By integrating this 1st order differential
equation, the required torque can be calculated for the
desired endpoint acceleration, and velocity, which are
expressed with the rigid body coordinate q. Even
though the inverse equation is derived in the simple
state space form, the inverse system matrix A; has
positive poles (which came from the positive zeros of the
transfer function of the direct dynamic system) as well as
negative poles. It seems to be impossible to integrate
that equation. However, if we relax the solution range
of that equation to include noncausal solutions, we can
obtain a unique stable solution.

To analyze the inverse system of a flexible
manipulator, first of all, let’s define several terms: a
causal system is the system of which output (impulse
response) always occurs after a input (impulse) is given.
An anticausal system, on the contrary, always has the
output (backwards impulse response) before a input is
given (impulse). A noncausal system is defined as the
synthesized system of a causal system and an anticausal

system.

In order to grasp the meanings of the above
definitions, we need to understand the physical
phenomena during the motion of a flexible manipulator.
If a certain torque profile is applied to the manipulator,
there is a unique motion of the end point. On the other
hand, if this unique motion of the end point is given as
a desired motion, we should be able to get that previous



torque profile by using the inverse dynamic equatiors.
In some cases, to make the end point follow a certain
trajectory profile, we have to preshape (prebend) the
flexible manipulator. Therefore, the requi-ed torque,
which ic necessawy to preshape it, has to be cpplied
before the end point starts to move. This meais that
the inverse sysiem has anticausal cha-acteristics.
Furthermore, wh::n the flexible maripulator : tops. sonie
torque should be applied to release the fexible
deflection after the e1d peint stops. Thit means that the
inverse system has a causal system characteristics, 100.
Thus, such ‘nverse systein can be called a nonzausil
system, which is composed of a causal systeia and
anticausal systen.. With this intuitive motivation, we
divide the inverse dynamic system into the causul part
and the anticausal part by using a similarity
transformation as follows.

[T}):Orthogonal transformation matrix
X, - [np,

- [T UPPIT

-1 L] 0
[n-A{1 - 0 A

: 5)  [4, O](P.] [B.
- + (9)
-‘ 0 Aun ac Bh: !
tc} -Ckw‘}
- + q
ac Fﬁ. ac "

T=1T. " T

"o

Fp
Fp

Such a coordinate change decouples the inverse
system into two subsystems of Eqn. (9). The new
variable P, represents the coordinate of the causal
system, ang the P, does that of the anticausal system.
In Eqn. (9), [F] matrix doesn’t have to be divided
equally. However, it has been done to make the causal
system and the anticausal system symmetric. If both
systems are symmetric and the acceleration profile is
skew symmetric, we don't have to integrate both parts.
As the output of one system is the same as the reflected
output of the other, the total output torque can be
obtained by adding one output itself and its reflection.

In general cases, both systems should be
integrated separately. For a given end point trajectory
G, p the causal part torque is obtained by integrating the
causal part inverse dynamic equations forward from the
initial time of the trajectory. However, the anticausal
system equations must be integrated backwards from the
final time of the trajectory. The interpretation of this
separate integration method to a convolution integral
gives good explanations about the backward integration.
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The total torque, which is the output of these equations,
‘s obtained by adding the both part tyrquss as shown in
Fig. 5.

As additional outputs, we cou‘d build the
reference trajectcry of the who'e flexible mode
coordinates of the direct dvnamic s;'stem from a rigid
body mode trajectory. As we can expect in Eqn. (9), the
spac: of the full state vector of the direct dynamic
system cen be divided into three stbspaces: the rigid
body coordinate subspace, the causal part flexible
coordinate subspace, and the anticausal part flexible
coordinate subspace. These subspaces are linearly
independent and orthogonal to another. The relations
of these spaces are illustrated in Fig. 3, and described by
the following Eqn. (10) when two flexible modes are
used.
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Pac Plexible

Coord.
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Fig 3. Dimensional analysis of state variables of flexible
manipulator dynamic equations

From the end point trajectory, the rigid body coordinate
trajectory q, is given, and the flexible coordinate
trajectories of P, and P,. are calculated from the
integration of Eqn. (¢). ‘ﬁms, the trajectories of the
whole states X can be obtained by using Eqn. (10).
These trajectory values can be used as reference
commands for feedback tracking control.
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4. Trajectory Generation

Among the desired trajectories of the manipulator
end point, the acceleration, and velocity profile are used
as input of the inverse dynamic equations. Theoretically,
the inverse dynamic equation can give a torque profile
for an arbitrary acceleration profile. However, as Bayo
mentioned in the ref. [3), it is important to apply the
acceleration profile which doesn’t produce high
frequency content of the torque. In this paper, several
constraints are applied for a desired acceleration profile
to get fast motion and no residual vibration. First, the
acceleration profile should not have too much high
frequency component. If the acceleration changes
sharply, the calculated torque profile will contain high
peak impulses. This impulse component of the torque
may excite natural frequencies of the flexible
manipulator. Moreover, it can saturate the actuator, or
it may be beyond the actuator bandwidth. Second, the
maximum acceleration limit should be chosen not to
saturate the actuator. Third, traveling time should be
minimum by using the full capacity of the actuator. This
third constraint makes the acceleration profile close to
a bang bang type which will result in unwanted high
frequency problems. Therefore, we have to select the
acceleration profile by compromising the profile
smoothness and the use the full capacity of the actuator.

Considering the above  constraints, the
acceleration profile of Fig. 4 was adopted. It is
composed of four 3rd-order polynomial parts and two
constant acceleration parts.

s} Accelerotion

500

max accelergtion
~2501
<9 case: Pel.2
&
~
<
= 0
w 0.0 0.8/ 1.0 12
3
<
-250

/

-500

Time ( sec )

%) ¢

veiocy Pozition

\ii /
29 / \ i “of

\ 4_J
) T2

]

Fig 4. Desired End Point Trajectory
a)Acceleration, b)Velocity, c)Position

The above first and third constraints can be
compromised by adjusting the parameter p. If p=0, the
profile will be the bang bang type. And, if p=0.25, the
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profile will be very smooth by being connected with 4
polynomials. In simulation and experiment, the case
p=02 is used.

5. Simulation of the inverse dynamic open loop control
and alternative control methods

In this section, we present simulation results to
illustrate the performance of the inverse dynamic
method. First of all, the total torque profile is
calculated from the causal part torque and the anticausal
part torque for a given end point acceleration profile as
shown in Fig. 5. And the desired trajectories of the
output such as joint angle, joint velocity and strains are
generated as in Fig. 6.

------ cavsal tgq

anticsusal tgq

total tq

Torque ( 1b-in )

tad Pr. metten

-20
Time { sec )

Fig 5. Calculation of torque with the inverse dynamic
method
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Fig 6. Trajectory generation by using the inverse
dynamic method: a) Joint angle, b) Strain at base, and
midpoint

The calculated torque was applied to the ideal flexible
manipulator model from which the inverse dynamic
model was derived. As the results are shown in Fig. 7,
the end point follows the desired trajectory exactly, and
no undershoot, no overshoot, nor noticeable residual
vibration occurs. However, the strain shows oscillations
after following the trajectory. It seems to be due to
numerical integration errors.

pmaTal PAGE IS
AF PCOR QUALITY



that a simple joint feedback PD controller performs
excellent tracking if it is combined with the inverse
dynamic feedforward control, and if the natural
trajectory of a joint angle is provided.

Joint Angle

0.6/
---- QOesired

Simulotion (openioop)
Experiment {closedloop)

Angle ( rod )

Joint Angle' O BS! rod
= End Point Pamilion: 40"

-0
8‘0 0.2 04 06 08 1.0 1.2 1.4 16 18 20 22
Time ( sec )

Stroin

0.0004,

0 0003}
- Desired
Simulation(apenioop)

< 0.00021
< ——— Expenment({ctosedioop)

~

£ 0.0001
<

& 00000

w
~0.0001F
-0 0002}

-0 0003

-0.0004 + = -
00 62 04 06 0B 10 12 14 16 18 20 22

Time ( sec )

Fig 10. Experimental results of the combined control of
the inverse dynamic feedforward control and the joint
tracking feedback control: a) Joint angle, b) Strain at
base

7. Conclusion

The proposed inverse dynamic method provides
the simple way to generate the required torque profile
in the time domain. Due to the simple computation
method, the implementation to the interactive control
became easy. Generation of the natural flexible
coordinate trajectories is quite useful for feedback
control. And the characteristics of flexible coordinates
were newly interpreted with causal and anticausal
concepts. The feedforward control using the inverse
dynamic method shows good tracking performance with
a simple joint feedback controller. In other words, this
inverse method can relieve the use of many sensors, or
feedback calculation burden such as observer

reconstruction.
Although several advantages of this method are
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mentioned, this inverse dynamic method is limited to
linear systems. In order to be applied to a multi-link
flexible manipulator, this method should be combined
with a nonlinear compensation technique.
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Fig 7. Simulation of the open loop contro wit1 the
inverse dynaraic method

To demon.trate the excellence of this method, we
compare the resu't with those of other typical me:hod:.
In Fig. 8 (curve u), the result of a collocated joirt PD
controller for a step input command is den:onstrated.
As we can expect, the feedback of position error
generates very high peak torque at the beginuing, and it
excites the system natural frequencies. Hence, it
requires relatively long settling time. It also shows the
undershoot and the overshoot of the end point position.

End Point Pasition

60
50
o

30

Displ. (in}

20

Desired
S/ —— Step input

B — = Nominal troj.
i soos lnverse m. trof

'8 02 04 06 08 1.0 1.2 1.4 16 1.8 20 22
Time (sec )

Fig 8. Comparison of typical control methods: a) Joint
feedback control with a step input b) Full state
feedback tracking control with nominal trajectory )
Full state feedback tracking with the inverse dynamic
method trajectory

As a typical alternative method, a nominal joint
trajectory tracking control can be used to improve the
response instead of a step input. This tracking control
is demonstrated with the very smooth nominal position
trajectory which is the same as the end point position
trajectory. Desired flexible coordinate values were set

to zero, ¢, - 0, 4, - 0 . The feedback gain was

selected by LQ method, and the full state feedback was
used. Even though the response is better than that of
step input joint feedback case, it still has overshoot and
requires settling time. This poor tracking response is
due to the unnatural commands which assigns zero
values to the flexible coordinate commands. If we give
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the natural flexible mode trajectcries. which was
cbtained from the inverse dynamic method. we can
anticipate better response. As it is shown in Fig. 8
{curve ¢), by assigning the ratur:l flexible mode
rajectory, good tracking performance was achieved.

6. Experiment

Although the open loop control with the inverse
dynaraic method showed the good results with an ideal
model, it produced large positioning errors with the real
system, which has siscous aad couloinb friction at the
joint. Therefore, a joint feedback control loop was
added to give robustness to the feedforward control of

‘the inverse dynamic method. A friction compensation

also was added to cancel the friction effect as shown in
Fig. .

The above combined control scheme of the
inverse dynamic feedforward control and the feedback
control was implemented to the experimental single link
flexible manipulator, which “as 47 inch long arm and a
0.1 1b end mass. It was driven by an Inland D.C. servo
motor with a current amplifier. For a fast real time
control, A Micro Vax Il was used with 12 bit A/D and
D/A boards. The off line calculation of a trajectory and
a torque profile was also performed in the Micro Vax
interactively.

vd Inverse Bpd Pr. Trajactoly
d ° ‘ Uemaeration
U yonamics
Xea ,Xoev, Xop
Plant
gYd-Y
x ‘%% Flexible [+ =Y
Menipulator i

rricetio
Compen .

Fig 9. The control scheme of the experiment

By applying the precalculated torque and
compensate the friction, and using the feedback of the
tracking error at the joint, the excellent resuit of Fig. 10
was obtained. The flexible manipulator could stop
without any overshoot or any residual vibration after it
moved 40 inches (48.76 degrees) within less than 1
second. In the strain signal, there exists rough jerk
which could be vanished by using more smooth
acceleration profile.

Unfortunately, as the end point position sensor was not
attached to the system, the end point position couldn’t
be measured directly. However, the end point tracking
performance can be estimated by joint angle tracking
result, and the strain on the beam base tracking result.
In experiment, only joint angle, and joint velocity signals
were used for feedback. The experimental results show
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