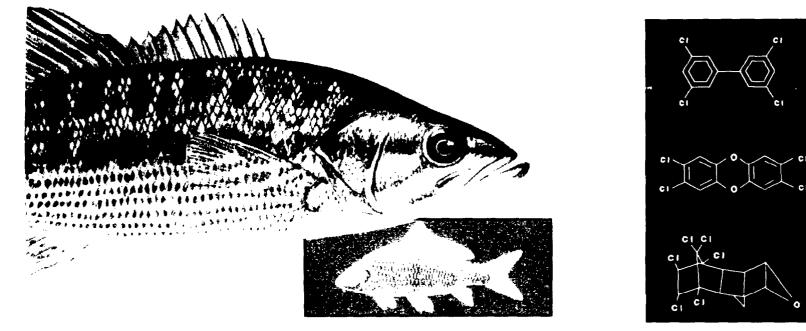
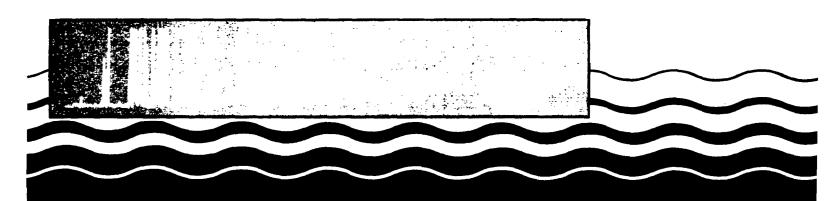
Click here for DISCLAIMER

Document starts on next page

United States Environmental Protection Agency

Water


on seut dolence and Technology (WH-551) Washington, D.C. 20460 EPA 823-R-92-008a September 1992



NATIONAL STUDY OF CHEMICAL RESIDUES IN FISH

Volume I

EPA 823-R-92-008a September 1992

2

National Study of Chemical Residues in Fish

Volume I

Office of Science and Technology Standards and Applied Science Division U.S. Environmental Protection Agency 401 M Street, SW Washington, DC 20460 This is the third printing (September 1993) of the National Study of Chemical Residues in Fish. All revisions listed on the errata sheet from the first printing have been incorporated into the text of Volumes I and II where appropriate.

Table of Contents

Chapter

VOLUME	V	Ο'	L	U	N	1E	I
--------	---	----	---	---	---	----	---

	LIST OF FIGURES	vii
	LIST OF TABLES	xi
	ACKNOWLEDGMENTS	xiii
	EXECUTIVE SUMMARY	XV
1	INTRODUCTION	1
	BACKGROUND	1
	GENERAL APPROACH	1
2	STUDY DESIGN AND APPROACH	3
	POLLUTANT SELECTION SCREENING PROCESS	3
	FIELD SAMPLING PROCEDURES	4
	Sample Collection	4
	Sample Handling/Preparation	6
	Fish Length and Weight Data	6
	ANALYTICAL PROTOCOLS	6
	Dioxins/Furans	7
	Other Xenobiotic Chemicals	10
	Mercury	12
	Quality Assurance/Quality Control (QA/QC)	12
	SITE SELECTION	15
3	DIOXIN AND FURAN RESULTS AND ANALYSIS	21
	PREVALENCE AND CONCENTRATION SUMMARY	21
	Toxicity Equivalency Concentration (TEC)	24
	Comparison of TCDD and other Dioxin/Furan Compounds	30
	GEOGRAPHICAL DISTRIBUTION	30
	SOURCE CORRELATION ANALYSIS	30
	Sources Located Near Highest Concentrations	30
	Concentration Comparison Between Site Categories	39
4	OTHER XENOBIOTIC COMPOUND RESULTS AND ANALYSIS	53
	PREVALENCE AND CONCENTRATION SUMMARY	53
	COMPOUNDS DETECTED AT MORE THAN 50 PERCENT OF THE SITES	57
	Total PCBs	57
	Biphenyl	60
	Mercury	64
	Pentachloroanisole	67
	1,2,3 and 1,2,4 Trichlorobenzene	70
	Pesticides/Herbicides	73

Table of Contents (Cont.)

<u>Chapter</u>			Page
	CON	APOUNDS DETECTED AT BETWEEN 10 AND 50 PERCENT OF THE SITES	91
		Hexachlorobenzene	91
		Pentachlorobenzene	96
		1.3.5 Trichlorobenzene Tetrachlorobenzenes	100 100
		Pesticides/Herbicides	100
	CON	MPOUNDS DETECTED AT LESS THAN 10 PERCENT OF THE SITES	122
	con	Octachlorostyrene	122
		Hexachlorobutadiene	122
		Diphenyl Disulfide	122
		Pesticides/Herbicides	125
	CON	MPARISON WITH NATIONAL CONTAMINANT BIOMONITORING	
		PROGRAM	1 29
5		IES SUMMARY AND ANALYSIS	131
		MMARY OF FISH SPECIES SAMPLED	131
	PRE	EVALENCE AND A VERAGE CONCENTRATION OF CHEMICALS	
		BY SPECIES	137
	HAI	BITAT AND FEEDING STRATEGY OF MOST FREQUENTLY	
		SAMPLED SPECIES	137
6		OF POTENTIAL HUMAN HEALTH RISKS	147
	ME	THOD OF ESTIMATING RISKS	148
		Dose-Response Assessment	148
		Exposure Assessment	148
		Risk Characterization	150
		RCINOGENIC RISK ESTIMATES	151
	NUI	NCARCINOGENIC RISKS	156
REFERE	ENCES		161
GLOSSA	RY		165
APPEND	DICES		
Α	LABORATO	DRY QA/QC PROCEDURES AND RESULTS	
	A-1		
	A-2	······,·······························	
		PCDD/PDCF in Fish	
	A-3		
		of Xenobiotic Chemical Contaminants in Fish	
В		AL DATA ANALYSES	
	B-1		
	B-2		
	B-3		
	B-4		
	B-5	in Volume II. Appendix D) Xenobiotics: Episode Numbers Used in Statistical Tests (also provided in	
	C-Q	VERODORCE: EDISORE LARDELE ORGANI DERIS (STRO DIOARCE IN	

Table of Contents (Cont.)

VOLUME II

V

C	PROFILES OF BIOACCUMULATION STUDY CHEMICALS Dioxins/Furans: Dioxin: 2,3,7,8 Tetrachlorodibenzo-p-dioxin 1,2,3,7,8 Pentachlorodibenzodioxin Hexachlorodibenzodioxins Furans Other Xetobiotics: Biphenyl Chiordane Chiorpyrifos p,p'-DDE Dicofol Dieldrin Diphenyl Disulfide Endrin Heptachlor Heptachlor Heptachlor Heptachlor Epoxide Hexachlorobenzene Alpha-BHC (α - Hexachlorocyclohexane) Isopropalin Gamma-BHC (γ -Hexachlorocyclohexane) Mercury Methoxy chlor Mirex Nitrofen Nonachlor Octachlorosytrene Oxychlordane Pentachloroanisole Pentachloroanisole Pentachlorobenzene Pentachlorobenzene Pentachlorobenzene Pentachloronitrobenzene Pentachlorophenol Perthane Polychlorinated Biphenyls (PCBs) 1,2,3,4 and 1,2,3,5 Tetrachlorobenzene 1,2,4 Trichlorobenzene 1,2,4 Trichlorobenzene
	1,2,4 Trichlorobenzene
	1,3,5 Trichlorobenzene
	Trifluralin

VOLUME II (Cont.)

D DATA TABLES

- D-1 Site Description Matrix (also provided in Volume I, Appendix B)
- D-2 Dioxins/Furans: Episode Numbers Used in Statistical Tests (also provided in Volume I, Appendix B)
- D-3 Xenobiotics: Episode Numbers Used in Statistical Tests (also provided in Volume I, Appendix B)
- D-4 Dioxin/Furan Data by Episode Number Concentration And Detection Limits
- D-5 Xenobiotic Data by Episode Number
 - Set 1 Chemicals
 - Set 2 Chemicals
 - Set 3 Chemicals
- D-6 Information on Fish Samples
 - Percent Lipid
 - Sample Wet Weight
 - Number of Fish in Composite Sample
 - Sampling Date
- D-7 List of Confirmation Samples
- D-8 List of Duplicate Samples
- D-9 Comments Regarding Sample Analyses from EPA Duluth Laboratory
- D-10 Risk Information for Sites Having Composite Fillet Samples with Xenobiotic Data

List of Figures

Figure		Page
2-1	Schematic of laboratory procedures for dioxins and furans	8
2-2	Schematic of laboratory analytical procedure for other xenobiotic chemicals	11
2-3	Schematic of laboratory analytical procedure for mercury	13
2-4	Location of bioaccumulation study sampling sites	16
2-5	Location of targeted sites	17
2-6	Location of sites representing background conditions	18
2-7	Location of sites selected from a subset of the USGS NASQAN network	19
3-1	Summary of dioxins/furans detected in fish tissue	23
3-2	Cumulative frequency diagrams of concentrations of six dioxin congeners in fish tissue	25
3-3	Cumulative frequency diagrams of concentrations of six furan congeners in fish tissue	26
3-4	Cumulative frequency distribution of maximum calculated TEC values in fish tissue by percentile of sites	28
3-5	Toxicity equivalency concentrations (TEC) based on Barnes et al., 1989 method	29
3-6	Map showing geographical distribution of various concentration ranges of 2,3,7,8 TCDD in fish tissue	31
3-7	Map showing geographical distribution of various concentration ranges of 2,3,7,8 TCDF in fish tissue	32
3-8	Map showing geographical distribution of various concentration ranges of TEC in fish tissue	33
3-9	Example box plot with explanations of features	41
3-10	Box and whisker plot for 2,3,7,8 TCDD concentrations in fish tissue	42
3-11	Box and whisker plot for TEC concentrations in fish tissue	45
3-12	Box and whisker plot for 2,3,7,8 TCDF concentrations in fish tissue	46
3-13	Box and whisker plot for 1,2,3,7,8 PeCDD concentrations in fish tissue	47
3-14	Box and whisker plot for 1,2,3,7,8 PeCDF concentrations in fish tissue	48
3-15	Box and whisker plot for 2,3,4,7,8 PeCDF concentrations in fish tissue	49
3-16	Box and whisker plot for total HxCDDs concentrations in fish tissue	50
3-17	Box and whisker plot for total HxCDFs concentrations in fish tissue	51
4-1	Summary of other xenobiotic compounds detected in fish tissue	55
4-2	Total PCBs: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue	58
4-3	Box and whisker plot for total PCBs in fish tissue	61
4-4	Biphenyl: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue	63
4-5	Box and whisker plot for biphenyl in fish tissue	65
4-6	Mercury: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue	66
4-7	Box and whisker plot for mercury in fish tissue	68
· ·		~~

List of Figures (Cont.)

Figure		Page
4-8	Pentachloroanisole: a) cumulative frequency distribution and b) map of geographical	
	distribution of various concentration ranges in fish tissue	69
4-9	Box and whisker plot for pentachloroanisole in fish tissue	71
4-10	Cumulative frequency distribution of a) 1,2,3 trichlorobenzene and b) 1,2,4 trichloro- benzene in fish tissue	72
4-11	Map of geographical distribution of various concentration ranges for a) 1,2,3 trichloro- benzene and b) 1,2,4 trichlorobenzene in fish tissue	74
4-12	Box and whisker plot for 1,2,3 trichlorobenzene in fish tissue	75
4-13	Box and whisker plot for 1,2,4 trichlorobenzene in fish tissue	76
4-14	p,p'-DDE: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue	77
4-15	Box and whisker plot for p,p' -DDE in fish tissue	79
4-16	Cumulative frequency distribution of a) total chlordane, b) cis-chlordane, c) trans-chlordane, and d) oxychlordane in fish tissue	81
4-17	Cumulative frequency distribution of a) trans-nonachlor b) cis-nonachlor and c) total nonachlor in fish tissue	82
4-18	Map of geographical distribution of various concentration ranges for a) total chlordane and b) total nonachlor in fish tissue	83
4-19	Box and whisker plot for total chlordane in fish tissue	85
4-20	Box and whisker plot for total nonachlor in fish tissue	87
4-21	Box and whisker plot for oxychlordane in fish tissue	88
4-22	Dieldrin: a) cumulative frequency distribution and b) map of geographical distribution of various concentrations in fish tissue	89
4-23	Box and whisker plot for dieldrin in fish tissue	90
4-24	Cumulative frequency distribution of a) alpha-BHC and b) gamma-BHC (lindane) in fish tissue	92
4-25	Box and whisker plot for alpha-BHC in fish tissue	92 93
4-26	Box and whisker plot for gamma-BHC in fish tissue	94
4-20	Map of geographical distribution of various concentration ranges for a) gamma-BHC (lindane) and b) alpha-BHC in fish tissue	94 95
4-28	Hexachlorobenzene: a) map of geographical distirbution of various concentration ranges and b) cumulative frequency distribution in fish tissue	97
4-29	Box and whisker plot for hexachlorobenzene in fish tissue	98
4-30	Pentachlorobenzene: a) map of geographical distribution of various concentration ranges and b) cumulative frequency distribution in fish tissue. c) Cumulative frequency distribution of 1,3,5 trichlorobenzene in fish tissue	99
4-31	Box and whisker plot for pentachlorobenzene in fish tissue	101
4-31	Box and whisker plot for 1,3,5 trichlorobenzene in fish tissue	101

List of Figures (Cont.)

Figure		Page
4-33	Cumulative frequency distribution of a) 1,2,3,4 tetrachlorobenzene,	
	b) 1,2,3,5 tetrachlorobenzene, and c) 1,2,4,5 tetrachlorobenzene in fish tissue	103
4-34	Map of geographical distribution of various concentration ranges for	
	a) 1,2,3,4 tetrachlorobenzene, b) 1,2,3,5 tetrachlorobenzene, and c) 1,2,4,5 tetrachlorobenzene	
	in fish tissue	105
4-35	Box and whisker plot for 1,2,3,4 tetrachlorobenzene in fish tissue	106
4-36	Cumulative frequency distribution of a) mirex and b) chlorpyrifos in fish tissue	108
4-37	Box and whisker plot for mirex in fish tissue	109
4-38	Map of geographical distribution of various concentration ranges for chlorpyrifos in fish tissue	110
4-39	Box and whisker plot for chlorpyrifos in fish tissue	112
4-40	Cumulative frequency distribution of a) dicofol (kelthane), b) methoxychlor, and c) perthane in fish tissue	113
4-41	Map of geographical distribution of various concentration ranges for	
	a) dicofol and b) methoxychlor in fish tissue	114
4-42	Box and whisker plot for dicofol in fish tissue	115
4-43	Cumulative frequency distribution of a) trifluralin and b) isopropalin in fish tissue	117
4-44	Map of geographical distribution of various concentration ranges for a) trifluralin and b) isopropalin in fish tissue	118
4-45	Box and whisker plot for trifluralin in fish tissue	119
4-46	Box and whisker plot for isopropalin in fish tissue	120
4-47	Endrin: a) cumulative frequency distribution and b) map of geographical distribution of	
,	various concentration ranges in fish tissue	121
4-48	Box and whisker plot for endrin in fish tissue	123
4-49	Cumulative frequency distribution of a) octachlorostyrene, b) hexachlorobutadiene,	
	c) diphenyl disulfide, and d) nitrofen in fish tissue	124
4-50	Cumulative frequency distribution of a) heptachlor and b) heptachlor epoxide in fish tissue	126
4-51	Map of geographical distribution of various concentration ranges for a) heptachlor and b) heptachlor epoxide in fish tissue	127
4-52	Box and whisker plot for heptachlor epoxide in fish tissue	127
	• • •	120
4-53	Pentachloronitrobenzene: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue	130
6-1	Graphical tool for estimating upper-bound cancer risk of p,p'-DDE or equivalents for different fish consumption rates	158
6-2	Graphical tool for estimating upper-bound noncarcinogenic hazard index of p,p'-DDE	
	for different fish consumption rates	160

List of Tables

<u>Table</u>		Page
2-1	List of Target Analytes	5
2-2	Internal Standard Solutions Used for PCDD/PCDF Analyses and Xenobiotic Analyses	9
3-1	Summary of Dioxins/Furans Detected in Fish Tissue	22
3-2	1989 Toxicity Equivalency Factors	27
3-3	Location of Maximum Measured HxCDD and HpCDD Concentrations in Fish Tissue	37
3-4	Location of Maximum Measured HxCDF and HpCDF Concentrations in Fish Tissue	38
3-5	Mann-Whitney U Test Results for Dioxins/Furans Comparing Selected Source Categories	43
4-1	Summary of Xenobiotic Compounds in Fish Tissue	54
4-2	Summary of PCBs in Fish Tissue	59
4-3	Results of Statistical Tests for Selected Xenobiotics and Mercury	62
4-4	Results of Statistical Tests for Selected Xenobiotics (Pesticides/Herbicides)	80
4-5	Sites with Highest Concentrations of Chlordane-Related Compounds	84
5-1	Distribution and Feeding Strategy for Fish Species Collected	132
5-2	Average Fish Tissue Concentrations of Dioxins and Furans for Major Species	138
5-3	Detailed Summary of Occurrence of Prevalent Dioxins/Furans by Fish Species	139
5-4	Average Fish Tissue Concentrations of Xenobiotics for Major Species	140
5-5	Detailed Summary of Occurrence of Prevalent Xenobiotics by Fish Species	141
6-1	Dose-Response Variables Used in Risk Assessment	149
6-2	Estimates of Potential Upper-Bound Cancer Risks at Targeted Sites Based on Fillet Samples	152
6-3	Estimates of Potential Upper-Bound Cancer Risks at Background Sites Based on Fillet	
	Samples	153
6-4	Fish Tissue Concentrations Used to Estimate Cancer Risks	154
6-5	Number of Sites with Estimated Upper-Bound Risks	155
6-6	Estimated Upper-Bound Risks at Three Fish Consumption Rates Based on Fillet	
	Samples	157
6-7	Noncarcinogenic Hazard Index Values at Targeted and Background Sites Based on Fillet Samples	159

Acknowledgments

This report was prepared under EPA Contract No. 68-C9-0013. EPA Work Assignment Managers for the National Study of Chemical Residues in Fish (NSCRF) were Ruth Yender, Stephen Kroner, Richard Healy, Rod Frederick, Elizabeth Southerland, and Ryan Childs. This study required extensive effort and coordination of many people from EPA Headquarters, EPA Regions, and States. Planning and continuing oversight of the study were provided by the National Bioaccumulation Work Group identified below. EPA staff involved in the planning and initial phase of the study included Martin Brossman, Stephen Kroner, Alec McBride, and Charles Delos.

Samples were collected by staff from EPA Regions and State agencies. The tissue preparation and chemical analyses were performed by staff, identified below, at EPA's laboratory in Duluth, Minnesota. This work was done under the direction of Nelson Thomas and Brian Butterworth. Assistance in methods selection and QA review was provided by Robert Kleopfer and Douglas Kuehl of EPA. Staff from the EPA Duluth laboratory also provided material for the methods section and QA/QC sections of the report. Data evaluations and preparation of the report were accomplished by the NBS Work Group, and their contractors. In addition, staff from other offices within EPA provided information for the chemical profiles, in particular, the Office of Pesticide Programs, Office of Toxic Substances, and Office of Drinking Water. Staff from these and other EPA offices reviewed the report and provided valuable comments, which have been incorporated into the report.

NSCRF Work Group

Daniel Granz	Region I ESD
Darvene Adams	Region II ESD
Gerry McKenna	Region II ESD
Bob Donaghy	Region III ESD
Jerry Stober	Region IV ESD
Pete Redmon	Region V ESD
Carl Young	Region VI ESD
Bruce Lattell	Region VII ESD
Tim Osag	Region VIII ESD
Doug Eberhardt	Region IX WMD
Bruce Cleland	Region X ESD
Dave Terpening	Region X ESD
Evan Hornig	Region X ESD
Elizabeth Southerland	OST/AWPD
Stephen Kroner	OST/AWPD
Martin Brossman	OST/AWPD
Ruth Yender	OST/AWPD

NSCRF Laboratory Staff

U.S. EPA

Brian Butterworth Douglas Kuchl

University of Wisconsin - Superior, Center for Lake Superior Environmental Studies

Executive Summary

This study, previously referred to as the National Bioaccumulation Study, or NBS, is a one-time screening investigation to determine the prevalence of selected bioaccumulative pollutants in fish and to identify correlations with sources of these pollutants. In addition, estimates were made of human health risks for those pollutants studied for which cancer potency factors and/or reference doses have been established. Human health risks were not estimated for dioxins and furans since the potency of these pollutants is the subject of an EPA review.

The study began in 1986 as an outgrowth of the U.S. Environmental Protection Agency's (EPA's) National Dioxin Study, a nationwide investigation of 2,3,7,8 tetrachlorodibenzo-p-dioxin (2,3,7,8 TCDD) contamination of soil, water, sediment, air, and fish. Some of the highest concentrations of 2,3,7,8 TCDD in the National Dioxin Study were detected in fish. EPA's concern that there may be other toxic pollutants bioaccumulating in fish was the primary reason for initiating the National Study of Chemical Residues in Fish. Additionally, this study is considered to be part of a response to a petition from the Environmental Defense Fund and the National Wildlife Federation in which EPA committed to conducting an aquatic monitoring survey of the occurrence of chlorinated dibenzodioxins and chlorinated dibenzofurans. Aquatic biota are being used frequently to determine whether substances are bioaccumulating, to detect acutely toxic conditions, and to detect stresses such as sublethal toxicity, particularly due to interactions among chemicals.

STUDY DESIGN AND APPROACH

The study design and approach for the National Study of Chemical Residues in Fish (NSCRF) focused on pollutant selection, field sampling procedures, analytical protocols (including Quality Assurance/Quality Control), and site selection. Chemicals were selected for analysis based on the potential of the compound to bioaccumulate in fish, the potential for human health effects, the persistence of the chemical in the environment, and the ability to detect the compound in fish tissue. An initial list of 403 pollutants was screened, resulting in a final list of 60 compounds for analysis. These compounds included 15 dioxins and furans, 10 polychlorinated biphenyls (PCBs), 21 pesticides/herbicides, mercury, biphenyl, and 12 other organic compounds.

Field sampling protocols called for the collection of three to five adult fish of the same species and of similar size at each site. Information about the samples was recorded, including the number of samples per composite and sampling date. Age and sex of the fish were not determined. Weight of the sample used for analysis and percent lipid were determined in the laboratory. Lengths and weights of the individual fish were not usually available. Sampling was not conducted during spawning or seasonal migration runs.

At most locations, both a composite sample of a bottom-feeding fish species and a composite sample of a game fish species were collected. Although 119 species were collected, most of the fish samples belonged to 14 different species; carp were the most frequently collected bottom feeder and largemouth bass were the most frequently collected game fish (Table 1). In a few cases, shellfish were collected instead of fish.

Species	Number of Sites Where Collected
Bottom Feeder Species	
Carp	135
White Sucker	32
Channel Catfish	30
Redhorse Sucker	16
Spotted Sucker	10
Game Species	
Largemouth Bass	83
Smallmouth Bass	26
Walleye	22
Brown Trout	10
White Bass	10
Northern Pike	8
Flathead Catfish	8
	_
White Crappie	7

TABLE 1 Most Frequently Collected Fish Species

Fish samples were analyzed at EPA's Environmental Research Laboratory (ERL) in Duluth, Minnesota. In general, the bottom feeders were analyzed as whole-body samples to determine the occurrence of the study chemicals and the game fish were analyzed as fillets to indicate the potential for risks to human health from fish consumption. Selected bottom feeders of the type often used for human consumption were analyzed as fillets at a small number of sites and used to evaluate human health risks. To analyze fish for the 15 dioxins and furans, ERL-Duluth refined and expanded the method for dioxin (i.e., 2,3,7,8 TCDD) analysis developed as part of EPA's National Dioxin Study. For 44 of the remaining 45 compounds, ERL-Duluth developed an analytical method specifically for this study. The remaining study compound, mercury, was analyzed using EPA's standard analytical techniques.

Sites were selected for the study by EPA Regional and State staff. Sites consisted of 314 locations thought to be influenced by a variety of point and nonpoint sources (referred to as targeted sites), 39 locations from the USGS National Stream Quality Accounting Network (NASQAN), and 35 sites representative of background levels (Figure 1). Targeted sites included locations near pulp and paper mills, refineries using the catalytic reforming process, Superfund sites, former wood preserving operations, other industrial sites, publicly owned treatment works (POTWs), and agricultural and urban areas. Because the study was initiated as a follow-up to the National Dioxin Study, many of the targeted sites selected were those thought to be producers of dioxins (e.g., pulp and paper mills using chlorine for bleaching).

RESULTS

Prevalence and Concentration

Many of the investigated pollutants were frequently detected in the fish samples from the targeted sites. Seven of the 15 dioxin/furan compounds and 15 of the other 45 compounds were detected at over 50 percent of the sites (Tables 2 and 3). The two most frequently detected dioxin and furan compounds were both found at 89 percent of the sites; these compounds are 1,2,3,4,6,7,8 heptachlorodibenzodioxin (HpCDD) and 2,3,7,8 tetrachlorodibenzofuran (TCDF). These compounds were also detected at the highest concentrations; HpCDD at 249 picograms per gram (pg/g) or 249 parts per trillion by wet weight (ppt) and TCDF at 404 parts per trillion (ppt). The average concentrations of these two compounds were substantially lower at 10.5 and 13.6 ppt, respectively. The dioxin compound considered to be the most toxic, 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), was found at 70 percent of the sites at a maximum concentration of 204 ppt and an average concentration of 6.89 ppt. Only two of the 15 dioxin/furan compounds analyzed were detected at fewer than 20 percent of the sites.

Toxicity equivalent concentrations (TECs) of dioxins/furans were calculated to facilitate comparison of fish tissue contamination among sites. TEC represents a toxicity weighted total concentration of all individual congeners using 2,3,7,8, TCDD as the reference compound. EPA's interim method was used to determine TEC (Barnes, et. al., 1989). This is referred to in the report as the Toxicity Equivalency Concentration (TEC) value, sometimes called TEQ (toxicity equivalents).

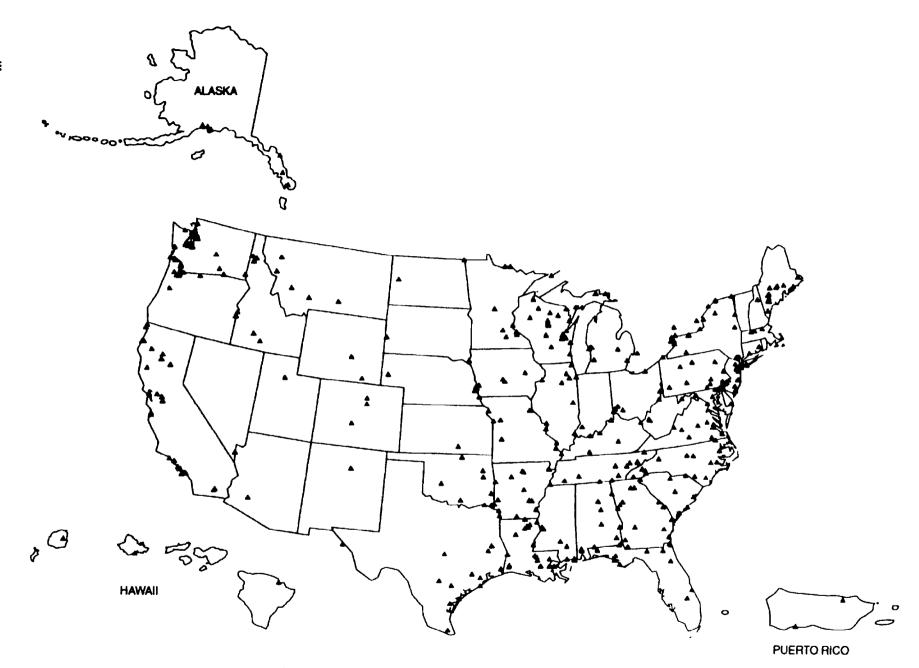


Figure 1. Location of bioaccumulation study sampling sites.

			Concentration	
	Percent of	pg/g or ppt by wet weight		
Chemical	Sites Detected	Max	Mean	Medlan
Dioxins				
1,2,3,4,6,7,8 HpCDD	89	249	10.5	2.83
2,3,7,8 TCDD	70	204	6.89	1.38
1,2,3,6,7,8 HxCDD	69	101	4.30	1.32
1,2,3,7,8 PeCDD	54	54.0	2.38	0.93
1,2,3,7,8,9 HxCDD	38	24.8	1.16	0.69
1,2,3,4,7,8 HxCDD	32	37.6	1.67	1.24
Furans				
2,3,7,8 TCDF	89	404	13.6	2.97
2,3,4,7,8 PeCDF	64	56.4	3.06	0.75
1,2,3,4,6,7,8 HpCDF	54	58.3	1.91	0.72
1,2,3,7,8 PeCDF	47	120.0	1.71	0.45
1,2,3,4,7,8 HxCDF	42	45.3	2.35	1.42
2,3,4,6,7,8 HxCDF	32	19.3	1.24	0.98
1,2,3,6,7,8 HxCDF	21	30.9	1.74	1.42
1,2,3,4,7,8,9 HpCDF	4	2.57	1.24	1.30
1,2,3,7,8,9 HxCDF	1	0.96	1.22	1.38
TEC*	N/A	213	11.1	2.80

TABLE 2Summary of Prevalence and Concentrationfor Dioxins and Furans

* TEC represents the sum of toxicity-weighted concentrations of all dioxins and furans relative to 2,3,7,8 TCDD.

TABLE 3

Summary of Prevalence and Concentration

for 45* Other Bioaccumulative Compounds

	Percent of	Concentration ng/g or ppb by wet weight Max Mean Median			
Chemical	Sites Detected				
<u>entanta</u>	Sites Detected		.viean	Median	
DDE	99	14000	295	58.3	
Mercury	92	1800	260	170	
Biphenyl	94	131	2.7	0.64	
Total PCBs	91	124000	1890	209	
Nonachlor, trans	77	477	31.2	9.22	
Chlordane, cis	64	378	21.0	3.66	
Pentachloroanisole	64	647	10.8	0.92	
Chlordane, trans	61	310	16.7	2.68	
Dieldrin	60	450	28.1	4.16	
Alpha-BHC	55	44.4	2.41	0.72	
1,2,4 Trichlorobenzene	53	265	3.10	0.14	
Hexachlorobenzene	46	913	5.80	ND	
Gamma-BHC	42	83.3	2.70	ND	
1,2,3 Trichlorobenzene	43	69.0	1.27	ND	
Mirex	38	225	3.86	ND	
Nonachlor, cis	35	127	8.77	ND	
Oxychlordane	27	243	4.75	ND	
Chlorpyrifos	26	344	4.09	ND	
Pentachlorobenzene	22	125	1.18	ND	
Heptachlor Epoxide	16	63.2	2.19	ND	
Dicofol	16	74.3	0.98	ND	
1,2,3,4 Tetrachlorobenzene	13	76.7	0.47	ND	
Trifluralin	12	458	5,98	ND	
1,3,5 Trichlorobenzene	11	14.9	0.12	ND	
Endrin	11	162	1.69	ND	
1,2,3,5 TECB	9	28.3	0.34	ND	
Octachlorostyrene	9	138	1.71	ND	
1,2,4,5 TECB	9	28.3	0.33	ND	
Methoxychlor	7	393	1.32	ND	
Isopropalin	4	37.5	0.46	ND	
Nitrofen	3	17.9	0.17	ND	
Hexachlorobutadiene	3	164	0.57	ND	
Heptachlor	2	76.2	0.35	ND	
Perthane	1	5.12	0.03	ND	
Pentachloronitrobenzene	1	15.5	0.09	ND	
Diphenyl Disulfide	1	3.24	0.02	ND	

* The number of compounds shown here is 36; the difference is the result of grouping 3 individual PCB compounds with 1 to 10 chlorines. Five of the PCBs were found at concentrations above 50 percent; the remainder were found between 3 and 35 percent.

In general, the maximum and average concentrations for the other 45 compounds are 1,000 to 10,000 times greater than those for dioxins and furans (Table 3). Of these 45 compounds, the most frequently detected pollutant was DDE, found at over 98 percent of all sites sampled. This compound is a metabolic breakdown product of DDT, which was a widely used pesticide and is extremely persistent in the environment. Other compounds detected at more than 90 percent of the sites were mercury, total PCBs, and biphenyl. The high prevalence of mercury results partly from its many industrial uses including use in batteries, vapor lamps, and thermostats; as a fungicide in some exterior water-based paints; and as a cathode in the electrolytic production of chlorine and caustics. Mercury also occurs in the natural environment in both inorganic and organic compounds and is discharged to the atmosphere from natural processes (e.g., degassing of volcanos) and from the burning of fossil fuels. As with DDT, PCBs are very persistent in the environment and, until 1977 when they were essentially banned, were widely used as dielectric fluids in transformers and capacitors. Total PCBs in this study refers to the sum of the concentrations of compounds with 1 to 10 chlorines. Concentrations of specific Aroclors or mono-ortho substituted compounds were not determined in this study. The high number of low-concentration biphenyl samples (88 percent below 2.5 ppb) most likely results from degradation of PCBs. The high-concentration samples appear to be associated with various industrial uses such as heat transfer fluid, dye carriers, and hydraulic fluid.

PCBs were detected at the highest concentration, with a maximum value of 124,000 nanograms per gram (ng/g) or 124,000 parts per billion by wet weight (ppb), and an average concentration of 1,890 ppb. The next highest compound was DDE, with a maximum and average concentration of 14,000 ppb and 295 ppb, respectively. All of the remaining 34 compounds were found at much lower concentrations than DDE.

Prevalence was compared with the most recent (1984) results from the National Contaminant Biomonitoring Program (NCBP), which was formerly part of the National Pesticide Monitoring Program. The NCBP was initiated in 1964 to determine how organochlorine compound levels vary over geographic regions and change over time. In this program, fish were sampled at 112 sites throughout the United States and these samples were analyzed for 19 organochlorine chemicals and 7 metals. The NSCRF analyzed 15 of these 19 organochlorine compounds and mercury. In the NSCRF, 11 compounds were found at greater than 50 percent of the sites. Eight of these were also analyzed in the NCBP, and seven compounds were found at greater than 50 percent of the sites. The results from these two studies track closely for the common pollutants analyzed.

Source Correlation Analysis

Concentration comparisons between selected source categories were made using various statistical tools including a box and whisker plot. The categories used were background sites, sites selected from the USGS NASQAN network, sites near Superfund locations, sites near pulp and paper mills that use chlorine for bleaching, sites near other types of pulp and paper mills, sites near former or existing wood preserving plants, sites near industrial or urban areas, sites near industrial areas that include refineries with catalytic reforming operations, sites that could be influenced by runoff from agricultural areas, and sites near POTWs. These categories were selected based on probable sources of pollutants. Background sites were selected to provide a comparison with areas

relatively free of point and nonpoint source pollution. Sites where multiple source categories could have affected fish contamination levels were not used for the box plots or other statistical tests. For example, sites in the chlorine paper mill category that were also near Superfund sites, other paper mills, or reefineries were not used for the dioxin/furan box plots.

Pulp and paper mills using chlorine to bleach pulp appeared to be the dominant source of 2,3,7,8 TCDD and 2,3,7,8 TCDF. Statistical comparison, using Kruskal-Wallis tests and Mann-Whitney U tests show that sites near pulp and paper mills using chlorine have significantly higher concentrations of 2,3,7,8 TCDD than all other source categories. These statistical tests also show the same results for 2,3,7,8 TCDF with the exception that fish contamination levels near sites in the Superfund category marginally met the statistical test criteria for being similar. Analysis of the five sites with the highest 2,3,7,8 TCDD and 2,3,7,8 TCDF concentrations also show that pulp and paper mills using chlorine are dominant sources of these compounds at four of these sites.

Statistical correlation analyses were less definitive for the other dioxins/furans in that results showed no dominant source for any of these chemicals (i.e., a source from which fish contamination levels were significantly higher than all other sources). A review of dioxin/furan data limited to median concentrations alone shows that Superfund sites are highest for penta-furans, paper mills using chlorine are highest for penta- and hexa-dioxins, and refinery/other industry sites are highest for hexa-furans.

Results for the other 45 chemicals studied also showed no single dominant source for any of these chemicals. Although these compounds showed no dominant source, a number of observations can be made from review of the data. Two such examples involve pesticides and PCBs. A comparison of 15 agricultural and 20 background sites for 10 of the pesticides evaluated showed no significant differences between these categories. This same comparison for four other pesticides (DDE, nonachlor, chlordane, and gamma-BHC (lindane)) showed that fish contamination levels were significantly higher at sites near agricultural sources. The median PCB concentration for the 20 background sites was below detection compared with values of 213 to 525 ppb for industrial/urban sites, paper mills using chlorine, refinery/other industry sites, nonchlorine paper mills, and Superfund sites.

HUMAN HEALTH RISK ESTIMATES

Potential upper-bound human cancer risk from consumption of fish was estimated using fillet samples for 14 compounds for which cancer potency factors are available (Table 4). Human health risks were not calculated for dioxins/furans, due to the current review of the potency of these chemicals. Most of the fillets were game fish, but fillets from a few bottom feeders that are consumed by humans were also included. Fillet data were available at 182 sites for mercury and 106 sites for the remaining chemicals. The risk estimates were performed using standard EPA risk assessment procedures and assumed lifetime exposure. Upper-bound cancer potency factors, and fish consumption rates of 6.5, 30, and 140 g/day were used.

The highest estimated lifetime human cancer risk levels are associated with total PCBs. The cancer risk exceeded 10^{-4} at 42 sites for total PCBs for a fish consumption rate of 6.5 g/day (Table 4). The second highest cancer risk was associated with dieldrin where six sites had estimated cancer risks greater than 10^{-4} for a 6.5-g/day fish consumption rate.

Potential noncarcinogenic effects on human health were estimated for the 21 compounds for which reference dose (RfD) values were available. Hazard indices based on a fish consumption rate of 6.5 g/day exceeded a value of 1 (meaning adverse health effects may occur) at a small number of sites due to total PCBs, mirex, and combined chlordane when the maximum fillet concentrations were used in the analysis. No indices were exceeded when the mean or median concentrations were used. Combined chlordane is the sum of the concentrations of cis- and trans- chlordane, cis- and trans-nonachlor, and oxychlordane.

STUDY LIMITATIONS

The risks presented in this report represent a national screening assessment and not a detailed local assessment of risks to specific populations. Such detailed risk assessments would consider the number of people exposed and incorporate local consumption rates and patterns. Furthermore, a detailed assessment would require a greater number of fish samples per site than collected for this screening study. Additionally, this study does not address all the bioaccumulative pollutants that may be present in surface waters.

One of the original intents of the NSCRF was to further investigate dioxin/furan concentrations in fish; consequently, the selection of sites was biased toward sites where these compounds might be found. The intent of the source correlations was to identify potential sources, in addition to pulp and paper mills using chlorine, for either dioxins/furans or the other study compounds.

TABLE 4 Number of Sites with Estimated Upper-Bound Risks

TARGETED SITES

	No. of Sites with Fillet Data	RISK LEVEL (Cumulative)				
Chemical		10-6 (>1 in 1,000,000)	10-5 (>1 in 100, 000)	10-4 (>1 in 10,000)	10-3 (>1 in 1,000)	
PCBs	106	89	79	42	10	
Dieldrin	106	53	31	6	0	
Combined Chlordane	106	44	10	0	0	
DDE	106	40	10	0	0	
Heptachlor Epoxide	10 6	9	2	0	0	
Alpha-BHC	106	11	1	0	0	
Mirex	106	8	2	0	0	
НСВ	106	5	0	0	0	
Gamma-BHC	106	0	0	0	0	
Heptachlor	106	0	0	0	0	
Dicofol	106	0	0	0	0	
Hexachlorobutadiene	106	0	0	0	0	
Pentachloroanisole	106	0	0	0	0	
Trifluralin	106	0	0	0	0	

BACKGROUND SITES

Chemical		No. of Sites with Fillet Data	10-6 (>1 in 1,000,000)	10-5 (>1 in 100, 000)	10-4 (>1 in 10,000)	10-3 (>1 in 1,000)
PCBs		4	1	1	0	0
DDE		4	1	0	0	0
Basis:	1)	Used EPA (i.e., uppe	r-bound) cancer poten	icy factors.		

(i.e., upper-oo 2) Used consumption rate of 6.5 grams/day.

3)

Used average fillet concentrations at the few sites with multiple samples.

Combined chlordane is the sum of cis- and trans-chlordane isomers, cis- and trans-nonachlor isomers, and oxychlordane.

BACKGROUND

This report presents the results of the U.S. Environmental Protection Agency's (EPA's) National Study of Chemical Residues in Fish (NSCRF), previously referred to as the National Bioaccumulation Study (NBS). The study was initiated in 1986 as an outgrowth of EPA's National Dioxin Study. The National Dioxin Study was a 2-year, nationwide investigation of 2,3,7,8 tetrachlorodibenzo-p-dioxin (2,3,7,8 TCDD) contamination in soil, water, sediment, air, and fish. Some of the highest concentrations of 2,3,7,8 TCDD discovered in the environment during that effort were detected in fish. EPA's concern that there may be other pollutants with properties similar to 2,3,7,8 TCDD bioaccumulating in fish was a primary reason for initiating the NSCRF. Additionally, in response to a petition from the Environmental Defense Fund and the National Wildlife Federation, EPA committed to conducting an aquatic monitoring survey of the occurrence of chlorinated dibenzodioxins and chlorinated dibenzofurans. Aquatic biota are frequently being used to determine whether substances are bioaccumulating, to detect acutely toxic conditions, and to detect stresses such as sublethal toxicity, particularly due to interactions among chemicals.

The objectives of this one-time screening investigation were to determine the prevalence of selected bioaccumulative pollutants in fish and to identify correlations with sources of these pollutants. In addition, estimates were made of human health risks for those pollutants studied for which cancer potency factors and/or reference doses have been established. Human health risks were not estimated for dioxins and furans since the potency of these pollutants is the subject of an EPA review.

Bioaccumulation is the uptake and retention of chemicals by living organisms. Aquatic organisms such as fish are exposed to pollutants through contaminated water, sediment, and food. A pollutant bioaccumulates if the rate of intake into the living organism is greater than the rate of excretion or metabolism. This results in an increase in the tissue concentration relative to the exposure concentration in the ambient environment. Consequently, analysis of fish tissue can reveal the presence of pollutants in waterbodies that may escape detection through routine monitoring of water alone. Contaminants detected in fish not only indicate pollution impact on aquatic life and other wildlife (i.e., through biomagnification up the food chain), but also can represent a significant route of human exposure to toxic chemicals through consumption of fish and shellfish.

GENERAL APPROACH

Composite fish samples were collected primarily in 1987 at 388 locations nationwide and analyzed for concentrations of 60 contaminants by EPA's Environmental Research Laboratory (ERL) in Duluth, Minnesota. EPA's Office of Science and Technology personnel, Regional Coordinators, and State personnel selected the sampling sites. Locations selected included targeted sites near potential point and nonpoint pollution sources; background sites in areas relatively free of pollution sources; and a small subset of sites selected from the U.S. Geological Survey's (USGS) National Stream Quality Accounting Network (NASQAN) for nationwide coverage. Targeted sites included areas near significant industrial, urban, or agricultural activities. Over 100 sampling sites near pulp and paper mills using chlorine to bleach pulp were added to the study after results of the National Dioxin Study indicated a correlation between 2,3,7,8 TCDD occurrence in fish and proximity to pulp and paper mill discharges. Some samples collected from the National Dioxin Study sites were reanalyzed as part of this study to obtain information on concentrations of pollutants other than 2,3,7,8 TCDD.

EPA Regional Coordinators managed the collection of composite samples, accomplished primarily by State agencies. In general, a representative bottom-feeding species, whole-body composite sample was collected and analyzed for each site to determine general occurrence of each contaminant in any portion of the fish. A representative game fish fillet composite sample was analyzed at a limited number of the study sites, usually where whole-body concentrations were high, to indicate the potential risk to human health from consumption of the edible portion. A few bottom-feeding species composite samples were also analyzed as fillets and used to estimate human health risks.

Target analytes were selected on the basis of their potential to bioaccumulate, human toxicity, and analytical feasibility. Hundreds of potential chemicals of concern were screened for inclusion in the study. The final list of 60 contaminants included 15 chlorinated dibenzodioxins and dibenzofurans and 45 other xenobiotic chemicals, primarily polychlorinated biphenyls. and chlorinated organic pesticides. The final list did not represent a comprehensive list of all bioaccumulative pollutants of concern.

Three methods were employed for laboratory analyses. ERL-Duluth refined and expanded the method for dioxin analysis developed for the National Dioxin Study to include 14 polychlorinated dibenzodioxins and polychlorinated dibenzofurans in addition to 2,3,7,8 TCDD. ERL-Duluth developed a second method specifically for this study to measure concentrations of 44 of the other xenobiotic study analytes. Mercury was analyzed separately from the other study chemicals using EPA's standard analytical techniques. This chapter provides an overview of the development of the design and analytical approach for this national study of chemical residues in fish. Prior to undertaking the study, a Work/Quality Assurance Project Plan (U.S. EPA, 1986a) was prepared that described the overall goals for the study, the data quality objectives, and the Quality Assurance/Quality Control (QA/QC) procedures to meet the objectives. This study, to a large extent, built upon experience gained during the multimedia EPA National Dioxin Study (U.S. EPA, 1987b), which investigated contamination from 2,3,7,8 tetrachlorodibenzo-p-dioxin (2,3,7,8 TCDD). Unlike the National Dioxin Study, however, this study was intended to screen for a wider range of chemicals with high potential to bioaccumulate in fish (or shellfish) tissue. Consequently, new or modified analytical methods had to be developed. ERL-Duluth was responsible for developing and verifying the analytical methods, determining compliance with precision and accuracy targets, and achieving minimum detection limits to meet the objectives of the study.

POLLUTANT SELECTION SCREENING PROCESS

A screening process was undertaken by EPA to select the pollutants for the study. Four hundred and three chemicals were initially identified as candidate study compounds. Sources from which these chemicals were identified included:

- 1. List of priority pollutants. Priority pollutants are the 126 pollutants derived from the 65 classes of compounds listed in Clean Water Act section 307(a).¹ Some of the priority pollutants were included on the screening list for this study based on their potential human health or aquatic life effects and exposure potential (Tobin, 1984).
- 2. Pesticides detected in effluents from pesticide manufacturing plants (Dorman, 1985).
- 3. The Carcinogen Assessment Group's (CAG's) List of Chemicals Having Substantial Evidence of Carcinogenicity (U.S. EPA, 1980b).
- 4. Semivolatile organic compounds identified by the Office of Toxic Substances in 1980 to be in human adipose tissue (U.S. EPA, 1980c).
- 5. Chemicals considered by the International Agency for Research on Cancer (IARC) to have substantial evidence of carcinogenicity (evaluated after CAG 1980 list was completed).
- 6. National Toxicology Program (NTP) chemicals classified as carcinogens in Annual Reports on Carcinogens (NTP, 1982a,b).

¹ Specific pollutants are listed in 44 FR 34393 (1979), as amended by 46 FR 2266 (1981), and 46 FR 10723 (1981).

- 7. Clean Water Act 4(c) Program pollutants, other than priority pollutants, identified in industrial and POTW effluents as nonbiodegradable.
- 8. Additional suggestions from Agency experts.

The resulting list of candidate chemicals was first screened for bioaccumulation potential. Compounds with calculated or experimental Bioconcentration Factors (BCFs) greater than 300 were selected because they have greater potential to bioaccumulate and because the projected human exposure from fish consumption would be greater than the projected exposure from drinking water. The list of chemicals was further screened based on human toxicity, exposure potential, persistence in the aquatic environment, and biochemical fate in fish. For example, compounds that are quickly hydrolyzed or metabolized were identified and eliminated from further consideration. Finally, screening of the remaining chemicals was undertaken with regard to analytical feasibility by chemists at ERL-Duluth. Chemicals presenting significant analytical difficulties, such as not being amenable to generalized isolation procedures, were removed from the list. For example, low recovery from the silica gel column eliminated chlorbenzilate, triphenyl phosphate, and trichloronate. Kepone was deleted due to inconsistent mass spectral response.

A final list of 15 dioxin and furan congeners and 45 other xenobiotic chemicals resulted from the screening process (Table 2-1). The 2,3,7,8 substituted dioxins and furans were selected for analysis due to their toxicity. For these analytes, maximum target detection levels were determined based on potential fish tissue concentration levels of concern, i.e., those associated with a given level of toxicity (10^{-6} risk of cancer). The latter were derived following Agency guidelines (U.S. EPA, 1986a).

FIELD SAMPLING PROCEDURES

Sample Collection

The EPA Regional Offices were responsible for the collection of the fish samples and for transport to ERL-Duluth for analysis. Procedures for sample fish collection, handling, preservation, and transport were described in the Work/Quality Assurance Project Plan (U.S. EPA, 1986a, 1984) and are noted below. Two composite fish samples per site were collected, where possible:

- 1. A representative bottom-feeding fish composite to be analyzed whole, as an overall indication of pollutant levels at each site.
- 2. A representative game fish composite to be analyzed as a fillet to provide an indication of potential human health risk from consumption of fish.

Approximately three to five adult fish of similar size and from the same species were collected for each composite at a given site allowing for a minimum sample size of 500 grams. All fish in the composite sample were obtained from the same site. The fish species targeted for sampling were considered to be good bioaccumulators and/or were routinely consumed by humans. For bottom-feeding fish, target fish in order of preference were 1) carp, 2) channel catfish, and 3) white sucker. Suggested target species for game fish included 1) white bass, 2) northern pike, 3) walleye, 4) smallmouth bass, 5) largemouth bass, and 6) crappie. (A

TABLE 2-1 List of Target Analytes

DIOXINS

2,3,7,8 Tetrachlorodibenzodioxin (TCDD) 1,2,3,7,8 Pentachlorodibenzodioxin (PeCDD) 1,2,3,6,7,8 Hexachlorodibenzodioxin (HxCDD) 1,2,3,7,8,9 Hexachlorodibenzodioxin(HxCDD) 1,2,3,4,7,8 Hexachlorodibenzodioxin(HxCDD) 1,2,3,4,6,7,8 Heptachlorodibenzodioxin(HpCDD)

FURANS

2,3,7,8 Tetrachlorodibenzofuran (TCDF) 1,2,3,7,8 Pentachlorodibenzofuran (PeCDF) 2,3,4,7,8 Pentachlorodibenzofuran (PeCDF) 1,2,3,6,7,8 Hexachlorodibenzofuran (HxCDF) 1,2,3,7,8,9 Hexachlorodibenzofuran (HxCDF) 1,2,3,4,7,8 Hexachlorodibenzofuran (HxCDF) 2,3,4,6,7,8 Hexachlorodibenzofuran (HxCDF) 1,2,3,4,6,7,8 Heptachlorodibenzofuran (HpCDF) 1,2,3,4,7,8,9 Heptachlorodibenzofuran (HpCDF)

OTHER XENOBIOTICS

Biphenyl
Chlordane, cis
Chlordane, trans
Chlorpyrifos
p,p'-DDE
Dicofol
Dieldrin
Diphenyl Disulfide
Endrin
Heptachlor
Heptachlor epoxide
Hexachlorobenzene
Hexachlorobutadiene
alpha-BHC
gamma-BHC (lindane)
Isopropalin
Mercury
Methoxychlor

Mirex Nitrofen Nonachlor, cis Nonachlor, trans Octachlorostyrene Oxychlordane Pentachloroanisole Pentachlorobenzene Pentachloronitrobenzene Perthane **Polychlorinated Biphenyls** (Mono-Decachlorinated) 1,2,4,5 Tetrachlorobenzene 1.2.3.4 Tetrachlorobenzene 1,2,3,5 Tetrachlorobenzene 1.2.3 Trichlorobenzene 1.2.4 Trichlorobenzene 1.3.5 Trichlorobenzene Trifluralin

summary of the types of fish actually collected and analyzed and a comparison of the observed fish tissue concentrations detected are included in Chapter 5, "Fish Species Summary and Analysis.")

Sample Handling/Preparation

After collection, the fish were individually wrapped in aluminum foil, labeled, dry-iced, and shipped frozen to Duluth. Chain-of-custody procedures were followed for each sample using a centralized sample control system. Once fish samples were received by ERL-Duluth, the staff completed the chain-of-custody forms and placed the frozen samples in a freezer. Fish tissue was ground frozen and homogenized in a stainless steel meat grinder. For whole-fish samples (e.g., bottom feeders), the entire fish including organs and muscle tissue was ground. For game fish, fillets with the skin off were prepared and then ground. Most filleting (skin-off) was done at ERL-Duluth. All equipment and the stainless steel table were cleaned after each use. The ground tissue was stored at -20° C until extracted.

Fish Length and Weight Data

Length and weight data for individual fish in the bioaccumulation data set were not usually available. Information on the number of samples per composite and sampling date was recorded. along with the weight of the sample and percent lipid (see Appendix D, Vol. II). Age and sex were not determined for this study. To minimize potential differences, fish were not collected during or soon after spawning or during seasonal migration. The dates of sample collection are included in Appendix D, Vol. II. In future studies, it is recommended that length and weight data be obtained for all samples and that enough samples be aged to develop age vs. length and weight relationships. In some cases, only mean lengths and weights were available for the fish from which fillet and whole-body samples were prepared for analysis. A preliminary review of the data indicated that some samples consisted of individual specimens with widely differing lengths and weights. This probably resulted from limited availability of fish. Assuming that length and weight are a reasonable indicator of age for most fish species, then the likely use of different age fish could bias some of the various bioaccumulation study analyses. In general, it may be assumed that older fish would have had a longer exposure to contaminants either through direct contact with substrates (e.g., demersal species) or as predators, having consumed large quantities of contaminated prey. Changes in metabolism related to age and other age-dependent factors may also affect tissue contaminant levels. In general, samples prepared for tissue analyses requiring multiple specimens should, to the extent possible, include only those fish which are essentially the same length and weight and, hence, approximate age.

ANALYTICAL PROTOCOLS

Three analytical procedures were employed during the laboratory analysis of the sample composites. The summaries that follow have been abstracted from U.S. EPA, 1990b, EPA/600/3-90/022 (PCDD/PCDF); U.S. EPA, 1990c, EPA/600/3-90/023 (xenobiotic chemical contaminants); and U.S. EPA, 1989a (mercury).

Dioxins/Furans

A schematic of the analytical procedures used for the tissue extraction of polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDD/PCDF) is shown in Figure 2-1. Specific details of the analytical procedures used are provided in U.S. EPA. 1990b (included in Appendix A). After spiking a dry tissue sample with internal standard solutions, the sample was extracted with a mixture of hexane and methylene chloride and the eluent was collected in a Kuderna-Danish (KD) apparatus. The internal standards added at this point consisted of 11 different ¹³C labeled compounds and four PCDD/PCDF compounds (see Solutions A and B in Table 2-2.). The KD apparatus was then placed in a 60°C water bath under a dry carbon filtered air flow. After the solvent had evaporated, the lower tube and contents were weighed. The lipid was then quantitatively transferred to an acid-celite macro-column, and the lower empty tube and contents were weighed. The percent lipid was calculated based on the difference in weights. The acid-celite column was eluted with benzene/hexane. Isooctane was added and the sample volume reduced for transfer to the activated florisil/sodium sulfate column. The column was eluted with methylene chloride and hexane and the eluate discarded. The column was then washed with methylene chloride, which flowed directly onto a carbon silica gel column for PCDD/PCDF isolation. Benzene/methylene chloride was added to the carbon column, and then the carbon column was inverted. The PCDD/PCDF were eluted with toluene and another internal standard, Solution C in Table 2-2, prior to gas chromatography/mass spectrometry (GC/MS) analysis.

During the course of this study, changes were made to the PCDD/PCDF methodology. In 1987, toluene was replaced with tridecane as the solvent for the standard PCDD/PCDF recovery and calibration solutions. The new standards included more compounds than the original set. In addition, the procedure for determining the minimum level of detection was modified to better reflect actual instrumental analysis. Consequently, results generated after July 1987 reflect a minimum level of detection (MLD) defined as the concentration predicted from the ratio of the baseline noise area to the labeled internal standard area plus three times the standard error of the estimate from the weighted initial calibration curve. Before this procedure, the MLD was determined according to the Analytical Procedures and Quality Assurance Plan for the Analysis of 2,3,7,8 TCDD in Tier 3-7 Samples of the U.S. Environmental Protection Agency National Dioxin Study (EPA/600/3-85-019).

Prior to the addition of the florisil column in July 1988, polychlorinated diphenylethers interfered with the quantification of some of the biosignificant furans (2,3,4,7,8 PeCDF; 1,2,3,4,6,7 HxCDF; 1,2,3,4,7,8 HxCDF; and 2,3,4,6,7,8 HxCDF). The reported values for these compounds may have been overestimated due to the interference. The samples with interferences were flagged in the data reports with a comment. In addition, a flag has been added to the data tables indicating that 1,2,3,4,7,8 \text{ HxCDF} coelutes with 1,2,3,4,6,7 \text{ HxCDF} on the GC column (DB5 30M).

All GC/MS analyses were done using high-resolution GC/high-resolution MS (HRGC/HRMS). Before the analyses, each sample was spiked with a standard solution and the sample volume adjusted to 20 μ L with tridecane. Sample analyses were done in sets of twelve consisting of:

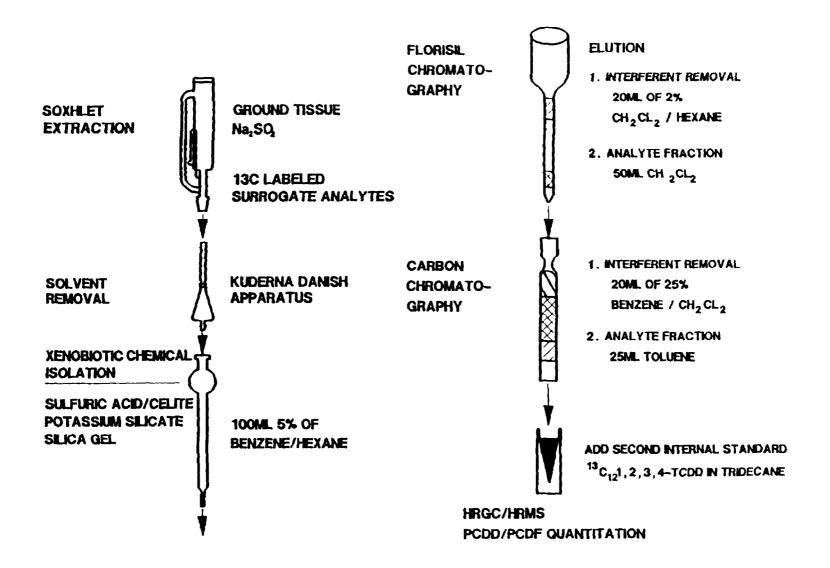


Figure 2-1. Schematic of laboratory procedures for dioxins and furans.

Compound	Concentration in Solution (pg/µL)	Concentration in tissue (pg/g*)
	Internal Standard Solution A. (100µ	L)
37 _{CL4} 2,3,7,8 TCDD	2.0	10.0
13C12 2,3,7,8 TCDD	5.0	25.0
13C12 2,3.7,8 TCDF	5.0	25.0
13 _{C12} 1,2,3,7,8 PeCDD	5.0	25.0
13C12 1,2,3,7,8 PeCDF	5.0	25.0
13c12 1,2,3,4,7,8 HxCDD	12.5	62.5
13 _{C12} 1,2,3,4,7,8 HxCDF	12.5	62.5
13c12 1,2,3,4,6,7,8 HpCDD	12.5	62.5
13c12 1,2,3,4,6,7,8 HpCDF	12.5	62.5
13C12 OCDD	25.0	125.0
37 _{CL4} 2,3,7,8 TCDF	2.0	10.0
	Internal Standard Solution B.	
1,2,3,4 TCDD	1.0	5.0
1,2,4,7,8 PeCDD	1.0	5.0
1,2,3,4 TCDF	1.0	5.0
1,2,3,6,7 PeCDF	1.0	5.0
	Internal Standard Solution C.	
13c121,2,3,4 TCDD	50.0	50.0

TABLE 2-2. Internal Standard Solutions Used for PCDD/PCDF Analyses

Surrogate Standard and Internal Standard Solutions Used for Other Xenobiotic Compound Analyses

Compound	Concentration (µg/mL)		
	Surrogate Standard Solution A (25µL)		
Iodobenzene	125		
1-Iodonaphthalene	125		
4,4'-Diiodobiphenyl	125		
	Internal Standard Solution (10µL)		
Biphenyl-D ₁₀	50		
Phenanthrene-D ₁₀	75		
Chrysene-D ₁₂	75		

- 1. One method blank;
- 2. One additional fortified matrix (blank) spiked with native analytes;
- 3. One detection limit verification sample—an environmental sample with a detectable amount of native analyte (determined from a previous analysis), spiked with native analytes, and analyzed with the next sample set (used for only the first three sample sets of a matrix type to establish that the calculated MLD was achievable);
- 4. One duplicate sample; and
- 5. Eight (if detection limit verification sample used) or nine environmental samples.

Quantification of analytes was accomplished by assigning isomer identification, integrating the area of mass-specific GC peaks, and calculating an analyte concentration based upon an ion relative response factor between the analyte and the appropriate standard. For the tetrachloro- to heptachloro-congeners/isomers of PCDD/PCDF, analytical results were reported as concentration in picograms per gram (pg/g) (ppt wet weight) for each GC peak in a congener class by making the assumption that the response for the molecular ion of all isomers in that class was equal to the response observed for the isomer for which ERL-Duluth had a standard. Target MLD are noted below:

TCDD, TCDF	1 pg/g
PeCDD, PeCDF	2 pg/g
HxCDD, HxCDF	4 pg/g
HpCDD, HpCDF	10 pg/g

The specific detection limits for each sample with concentrations below detection were recorded in the data base (see Appendix D, Volume II). The actual detection limits achieved were often lower than the above targeted values.

Other Xenobiotic Chemicals

A schematic of the analytical procedures used for the tissue extraction of the other xenobiotic chemicals is shown in Figure 2-2. More specific details are provided in U.S. EPA, 1990c, included in Appendix A. Before extraction, each sample was fortified with a surrogate standard solution (Table 2-2) to evaluate the recovery of target analytes. To isolate the xenobiotic chemical contaminants, a gel permeation chromatography (GPC) system was first used to remove fish lipid interferences. Then a Kontes column packed with silica gel was used to remove naturally occurring cholesterol and fatty acids. Finally, the samples were spiked with an internal standard solution, also listed in Table 2-2, used to quantify target analytes before GC/MS analysis.

In August 1988, two important changes were made in the xenobiotics methodology. The amount of silica gel used was doubled, and the maximum amount of lipid placed on the GPC system was decreased from 1.0 g to 0.8 g. These changes were made to obtain better recovery of the target analytes and to decrease interferences. The quantitative results (concentrations) obtained with the two methods were comparable.

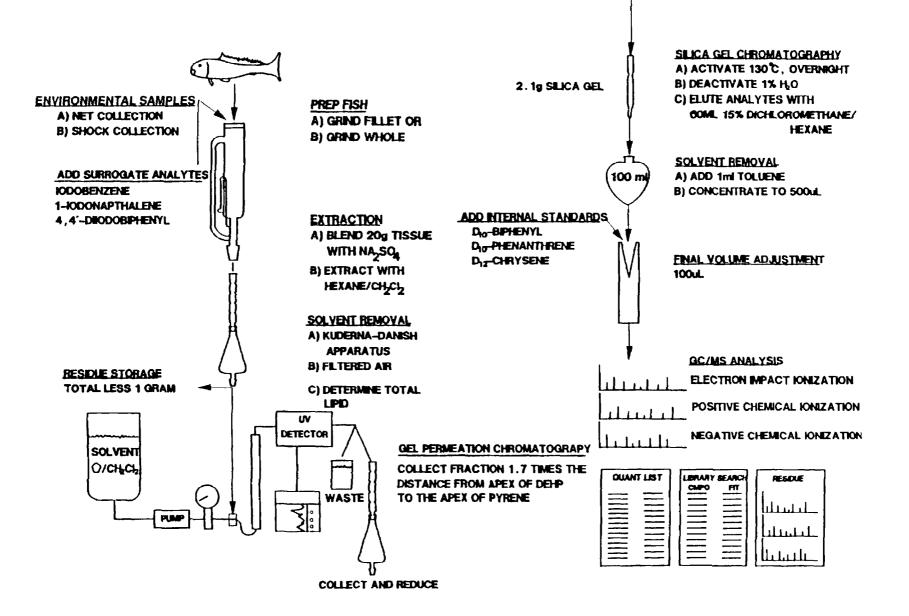


Figure 2-2. Schematic of laboratory analytical procedure for other xenobiotic chemicals.

Samples were analyzed by GC/MS as referenced in U.S. EPA, 1990c. The positive identification of analytes using the MS was based upon a reverse library search threshold value and relative retention time: quantification was based on the response factors relative to one of three internal standards. Sample analyses were done in sets of 12 consisting of:

- 1. One method blank,
- 2. One additional fortified matrix (blank) spiked with one of eight mixtures of the target analytes,
- 3. One duplicate sample, and
- 4. Nine environmental samples.

All target xenobiotic analytes were quantified as unique values (ng/g-ppb wet weight), except PCBs, which were reported by total congener at each degree of chlorination. Specific detection limits were not determined for individual samples so they have been operationally set at zero. Target quantitation limits for these analytes were:

Target Analytes (except PCBs)		2.5	ng/g
Polychlorinated Biphenyls			
Level of Chlorination:	1-3	1.25	ng/g
	4-6	2.50	ng/g
	7-8	3.75	ng/g
	9-10	6.25	ng/g

Mercury

A schematic of the equipment arrangement for mercury analyses is shown in Figure 2-3. More specific details are provided in Olson et al., 1975; Horwitz, 1983; APHA, 1985; and Glass et al., 1990. The analytical procedure for mercury was based on a standard flameless atomic absorption method. Fish tissue samples were digested in a mixture of nitric acid, sulfuric acid, potassium permanganate, and potassium persulfate as the digestion reagent. The resulting solution was treated with a sodium chloride-hydroxylamine sulfate solution and aqueous stannous chloride. Liberated mercury was measured using an atomic absorption spectrophotometer equipped with a cold mercury vapor apparatus. Data for mercury are reported as microgram per gram ($\mu g/g$)(ppm wet weight). The detection limit for mercury was $0.05 \mu g/g$ for samples analyzed prior to 1990 and $0.0013 \mu g/g$ for the 195 samples analyzed in 1990. The sample size was decreased from 1.0 g to 0.2 g to obtain results within the instrument's calibration range established at the lower detection limit.

Quality Assurance/Quality Control (QA/QC)

Specific laboratory QA procedures were established by ERL-Duluth, and are summarized in Appendix A, Table A-1. The PCDD/PCDF QA requirements for accuracy, method efficiency, precision, and signal quality (signal-to-noise [S/N] ratio) are shown in Appendix A, Table A-2. Limits for recovery of standards were also set. Values that were below 40 percent recovery were

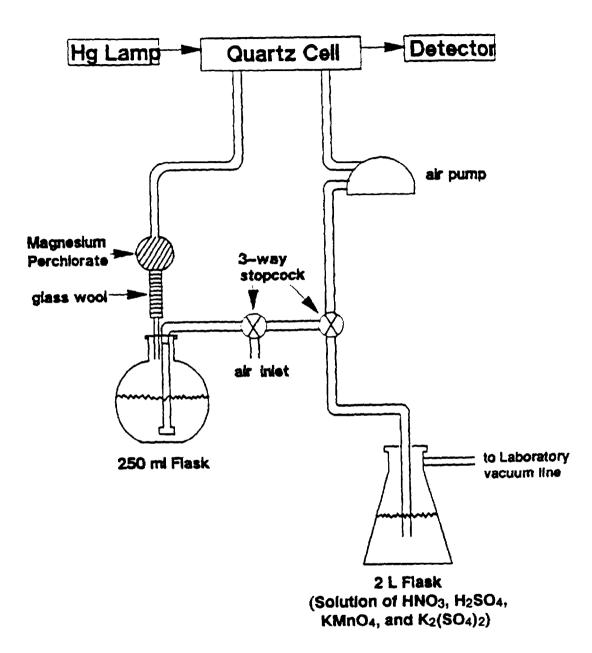


Figure 2-3. Schematic of laboratory analytical procedure for mercury.

flagged with a QR designation in the data base. These values represent minimum concentrations and are included with the data but were not used in the data analyses.

Xenobiotic and mercury data QA requirements are listed in Appendix A, Table A-4 and Appendix A, Table A-7. If more than 20% of the analytes were outside the QA for accuracy and precision, the sample set was reanalyzed. QC charts were maintained by the laboratory for each analyte displaying quantitative bias and precision. Bias and precision were calculated at the completion of the study and are presented in Appendix A. For QA factors outside of the above criteria (Appendix A for xenobiotics), corrective actions were undertaken (e.g., adjust GC or MS parameters, flush/replace GC column, clean MS, reextract and reanalyze samples). An overall data completeness criterion of 80 percent was set for the study. As discussed in Appendix A, this criterion was met.

General guidance for data quality including QA/QC requirements was provided in the Work/Quality Assurance Project Plan (U.S. EPA, 1986a). As stated in this Project Plan:

"The expected quality of the data will be specified in terms of precision, bias, and detection limits. In general, the bias requirements will be 30% (i.e., the reported values will be within 30%of the true values) and the precision requirement will be 50% The detection limit for fish will be based on consideration of levels of concern...."

The target for completeness of the data was originally set at 80 percent in the study workplan. This target was the minimum percent of verified data as a percent of total reported data. In fact, this target was exceeded. For the dioxin/furan analyses 96 percent of all analyses met QA/QC criteria. Those analyses which did not are flagged with "QR" in the database (Vol. II, Appendix D) and were not used for any data analyses. All other data met the QA/QC criteria, i.e., the percent of total reported data classified as valid.

Specific protocols were developed in this study for controlling data quality and ensuring data comparability, including:

- 1. Standardized written sampling and analytical procedures,
- 2. Standardized handling and shipping procedures,
- 3. The use of blanks (reagent and field),
- 4. The use of fortified samples to control accuracy and internal standards to quantify target analytes.
- 5. Specified calibration procedures to control accuracy and verify detection limits,
- 6. Replicate analyses to evaluate laboratory precision, and
- 7. Standardized data reduction and validation procedures.

Procedures for documentation, data reduction and validation, and reporting were specified in the Analytical Procedures and Quality Assurance Plan Manuals (U.S. EPA, 1990b, 1990c, 1989a).

SITE SELECTION

Fish collected from 388 unique sites were analyzed for this study (Figure 2-4). The types of sites sampled included targeted sites near potential point and nonpoint sources (shown separately in Figure 2-5), background sites (shown separately in Figure 2-6), and a subset of sites from the USGS NASQAN (shown separately in Figure 2-7):

Type of Site	Number <u>Sampled</u>
Targeted Sites	314
Background Sites	35
USGŠ NASQAN Sites (Subset)	_39
TOTAL	388

A subset of samples that had been collected at 103 sites during the National Dioxin Study (U.S. EPA, 1987b), and that had been analyzed for 2,3,7,8 TCDD only, were reanalyzed for the other study dioxin/furan congeners and xenobiotic compounds. These sites have episode numbers from 1994 to 2776. The new sites have episode numbers beginning with 3000.

Targeted sites were selected by EPA Regional and State staff based on proximity to potential sources (Figure 2-5). Fish and other aquatic biota were sampled near industrial dischargers, urban areas, or agricultural runoff areas. The number of sites was not allocated equally among types of sources. Some of the targeted sites were selected based on potential chlorinated dioxin and furan contamination, including areas near pulp and paper mills (mills that use chlorine to bleach pulp and other types of mills), wood preservers, users of such contaminated products as polychlorinated phenols and phenoxides, PCB dischargers, organic chemical and pesticide manufacturers, and combustion sources (sewage sludge incinerators, municipal incinerators). Two reasons for selecting these types of sites were:

- 1. The major sources of chlorinated dioxins and furans are suspected to be similar to the sources of 2,3,7,8 TCDD investigated in the National Dioxin Study, and
- 2. Certain organic chemicals and pesticide compounds (primarily polychlorinated phenols and polychlorinated phenoxides) had been identified as having chlorinated dioxin or furan contamination. In addition, several PCB mixtures had been reported to contain furan contamination.

More sites with potential dioxin/furan contamination were selected than for other compound groups to follow up the results of the National Dioxin Study. Some targeted sites were also selected for sampling based on the potential for hexachlorobenzene (HCB) contamination. Potential sources of HCB include fugitive emissions from manufacturing plants, impurities in pesticides (e.g., pentachloronitrobenzene [PCNB], dacthal, chlorothalonil, picloram), and previous application of HCB as a fungicide. Production facilities for certain chemicals (e.g., chlorobenzenes, carbon tetrachloride, chlorine) are known to generate HCB as a contaminant (U.S. EPA, 1986a). The ten largest direct dischargers (by production volume) of the chemicals of concern were recommended

Figure 2-4. Location of bioaccumulation study sampling sites.

ļ

PUERTO RICO

Figure 2-5. Location of targeted sites.

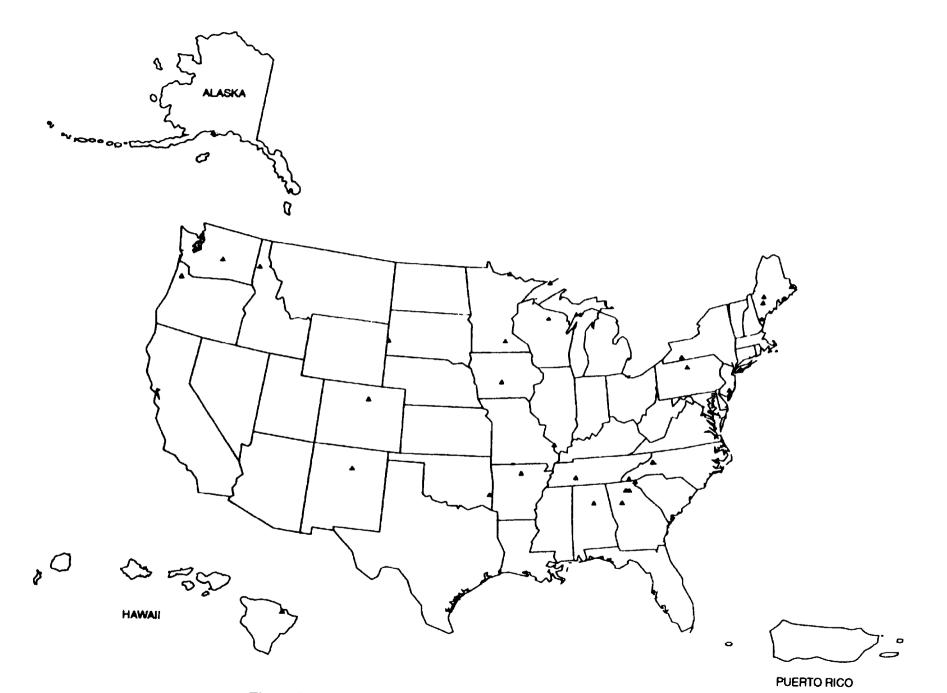
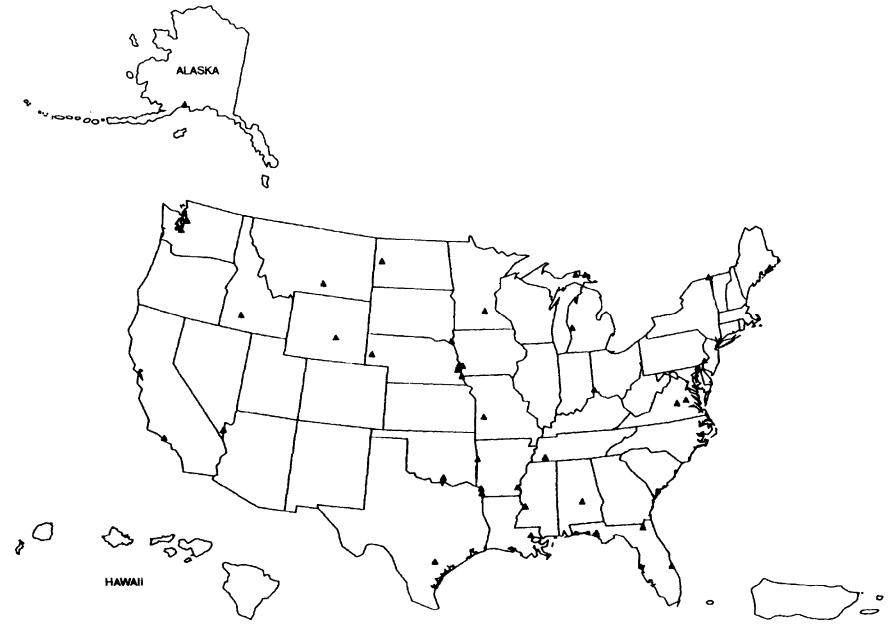



Figure 2-6. Location of sites representing background conditions.

PUERTO RICO

Figure 2-7. Location of sites selected from a subset of the USGS NASQAN Network.

for sampling. In addition, a site within each of the 10 U.S. counties with the highest combined applications of the pesticides PCNB, picloram, and chlorothalonil (Resources for the Future, 1986) were selected by the EPA Regions and targeted for sampling.

The following categories were used for targeted sites: background, paper mills using chlorine, other types of pulp and paper mills, wood preserving plants, refineries/other industries, Superfund sites, industry/urban, agriculture, and POTW. The two broad categories, industry/urban and refineries/other industries, were used to accommodate the sites having multiple point sources.

Background sites, shown in Figure 2-6, were selected by EPA Regional and State staff in areas generally free of influence from industrial releases, urban activities, or agricultural runoff. Results from these background sites were to be compared with concentrations of pollutants found in samples from the targeted, potentially more polluted sites.

A subset of sites were selected based upon hydrologic subdivision of major river basins, from the USGS NASQAN sites for nationwide coverage (Figure 2-7). The sampled sites were intended to represent a larger number of sites from the network.

Chapter 3 - Dioxin and Furan Results and Analysis

This chapter presents the results from analysis of fillet and whole-body samples for dioxin and furan compounds. The first section contains a summary of the prevalence and concentration of all dioxins and furans analyzed, as well as a summary of theToxicity Equivalency Concentration (i.e., a toxicity-weighted concentration of all dioxins and furans). Additional information presented in this chapter consists of a geographical distribution summary and a source correlation analysis. The latter analysis identifies point and nonpoint sources in the vicinity of the highest concentration fish samples and compares concentrations between various site categories.

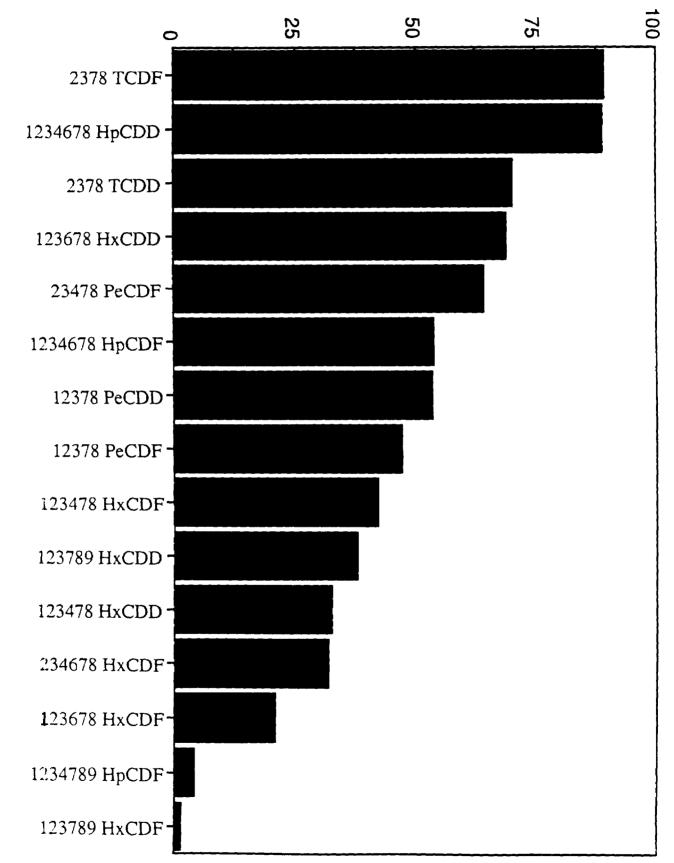
Chemical profile data for dioxins and furans can be found in Appendix C, Volume II. These data include physical/chemical properties, sources, standards and criteria, and human health effects. The raw concentration data, specific detection limits for dioxin/furan congeners, and location information on the fish samples and other sampling data including sample weight, percent lipid, number of fish per composite, and date of sample collection are included in Appendix D, Volume II. The number of samples taken and analyzed by site can be determined by counting the samples for a given site (episode number) in the data tables (Appendix D, Volume II). The number of fish in each composite sample is provided in Appendix D-6 (Volume II). Other values for a given site can be reviewed by identifying the episode number for the site from the site matrix (Table B-3, Appendix B, in Volume I or Table D-1, Appendix D, in Volume II) and then looking at the data in the raw data tables (Appendix D, Volume II).

PREVALENCE AND CONCENTRATION SUMMARY

Six dioxin congeners and nine furan congeners were measured in the fish tissue and shellfish samples. Summary data regarding the prevalence and concentration of these 15 compounds can be found on Table 3-1 and Figure 3-1. Mean concentrations were calculated using one-half of the detection limit for tissue concentrations below detection. The total number of sites sampled and the percent of sites where at least one sample had a detected concentration are also shown. Each of the dioxin congeners was detected in samples ranging from 32 percent (1,2,3,4,7,8 HxCDD) to 89 percent (1,2,3,4,6,7,8 HpCDD) of the sites (Figure 3-1). The occurrence of furans by site showed more variability, ranging from 1 percent (1,2,3,7,8,9 HxCDF) to 89 percent (2,3,7,8 TCDF). The dioxins and furans detected in samples from more than 50 percent of the sites included:

89 89 70 69 64 54 54

	TABLE 3-1
Summary	y of Dioxins/Furans Detected in Fish Tissue


	Percent of Sites Where			Standard		Total Number	
Chemical	Detected	Max*	Mean*	Deviation	Median*	of Sites	a
2378 TCDF	89.4	403.9	13.61	40.11	2.97	388	7
1234678 HpCDD	89.0	249.1	10.52	25.30	2.83	354	6
2378 TCDD	70.3	203.6	6.89	19.41	1.38	388	1
123678 HxCDD	68.8	100.9	4.30	9.25	1.32	375	4
23478 PeCDF	64.3	56.37	3.06	6.47	0.75	387	9
1234678 HpCDF	53.8	58.3	1.91	4.41	0.72	353	14
12378 PeCDD	53.5	53.95	2.38	4.34	0.93	385	2
12378 PeCDF	47.3	120.3	1.71	7.69	0.45	387	8
123478 HxCDF	42.0	45.33	2.35	4.53	1.42	379	10
123789 HxCDD	37.9	24.76	1.16	1.74	0.69	375	5
123478 HxCDD	32.3	37.56	1.67	2.39	1.24	375	3
234678 HxCDF	31.7	19.30	1.24	1.51	0.98	379	13
123678 HxCDF	20.8	30.86	1.74	2.34	1.42	379	11
1234789 HpCDF	4.0	2.57**	1.24	0.33	1.3	353	15
123789 HxCDF	1.3	0.96**	1.22	0.41	1.38	379	12
TEC	N/A	213.05	11.08	23.77	2.8	388	

* Concentrations are picograms per gram (pg/g) or parts per trillion (ppt) by wet weight. The mean, median, and standard deviation were calculated using one-half the detection limit for samples which were below the detection limit. In cases where multiple samples were analyzed per site, the value used represents the highest concentration.

**Detection limits were higher than the few quantified values for 1,2,3,4,7,8,9 HpCDF and 1,2,3,7,8,9 HxCDF. Maximum values listed are measured values.

TEC = Toxicity equivalency concentration based on method of Barnes et al., 1989.

Note: D is designation of chemical on histogram (Figure 3-1) of the percent of sites with concentrations above detection.

Percent of Sites with Detected Levels

The maximum levels of the four most frequently detected compounds and 1,2,3,7,8 PeCDF were greater than 100 ppt. The highest mean and median concentrations were for 2,3,7,8 TCDF at 13.6 and 2.97 ppt, respectively.

The lower median value reflects the lognormal type distribution as shown in the cumulative frequency distributions for the six dioxins (Figure 3-2) and for selected furans (Figure 3-3). These graphs were prepared using the maximum detected value at each site. When the duplicate sample value was higher than the original sample, the duplicate value was used. In a similar manner, values for samples from duplicate sites (i.e., resampled locations) were compared and the maximum measured value used. The graphs show that the dioxins 2,3,7,8 TCDD and 1,2,3,4,6,7,8 HpCDD were present at higher concentrations than the other dioxin congeners. For 2,3,7,8 TCDD, 18 percent of the sites had measured concentrations greater than 7 pg/g. A similar pattern was observed for the furans, although the maximum concentration for 2,3,7,8 TCDF was considerably higher than any of the other furan congeners, and this was the only furan congener with a median concentration greater than 2 pg/g.

Toxicity Equivalency Concentration (TEC)

Toxicity equivalent concentrations (TECs) of dioxins/furans were calculated to facilitate comparison of fish tissue contamination among sites. TEC represents a toxicity weighted total concentration of all individual congeners using 2,3,7,8, TCDD as the reference compound. EPA's interim method was used to determine TEC (Barnes, et. al., 1989). This is referred to as the Toxicity Equivalency Concentration (TEC) value, sometimes called TEQ (toxicity equivalents). The TEC method was developed under an international project and advocated by EPA. Under this method, 2,3,7,8 TCDD is used as the reference toxicity compound with all other dioxins and furans compared to this compound through the use of a Toxicity Equivalency Factor (TEF). The factors for determining the relative toxicities are shown in Table 3-2. Octa-dioxins and furans were not analyzed because at the time this study began in 1986, the TEFs were zero for these congeners. Under the 1989 interim method, the TEF was increased to 0.001. Consequently, TEC values may be underreported for samples collected at sites with sources of octa-dioxins, e.g., wood preservers.

The largest TEF used to compute TEC is for 2,3,7,8 TCDD (a value of 1). The next largest factor is for the 2,3,7,8 PeCDDs (i.e., penta-dioxins that have a chlorine atom in each of the 2,3,7,8 molecular positions and the fifth chlorine atom is in any of the remaining positions) and 2,3,4,7,8 PeCDF (both 0.5). The compound 2,3,7,8 TCDF has a TEF of 0.1, but because it is frequently detected it is a significant contributor to the TEC values. The cumulative frequency distribution of TEC values shows that these values exceeded 1 pg/g in at least one sample at 70 percent of the sites (Figure 3-4). The proportion of the TEC contributed by 2,3,7,8 TCDD using the 1989 interim method is over 50 percent in 50 percent of the samples (Figure 3-5a). Four compounds (2,3,7,8 TCDD; 2,3,7,8 TCDF; 1,2,3,7,8 PeCDD; and 2,3,4,7,8 PeCDF) account for a little more than 80 percent of the TEC in three-fourths of the samples (Figure 3-5b). Levels of hepta- and hexa-dioxins, detected in a high percentage of study samples, have gained significance because the factors for these compounds, though low relative to the tetra- and penta-dioxins, have increased from 0.001 under the U.S. EPA's 1987 method to 0.01 for the 2,3,7,8 HpCDDs under the 1989 method and from 0.04 to 0.1 for 2,3,7,8 HxCDDs.

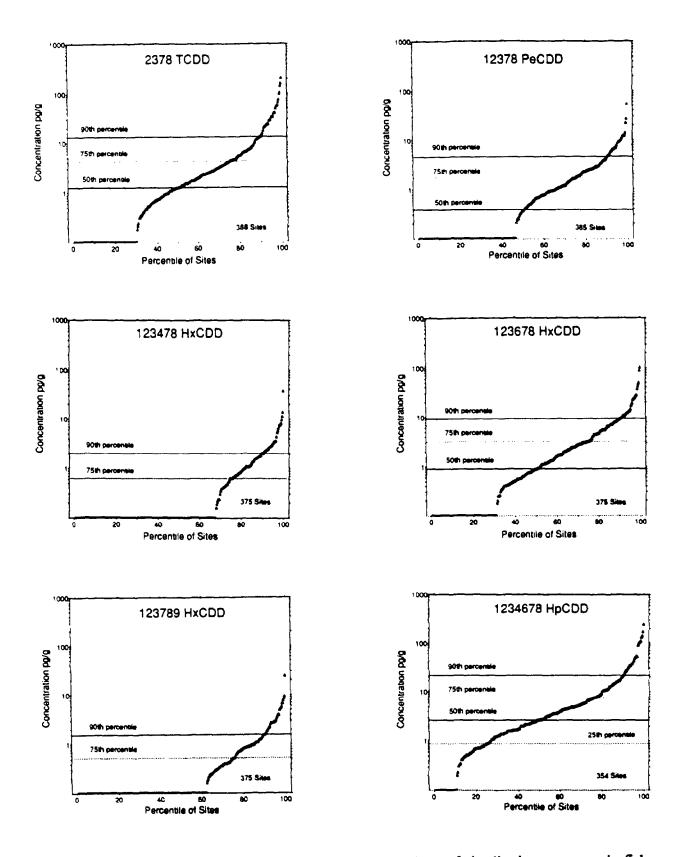


Figure 3-2. Cumulative frequency diagrams of concentrations of six dioxin congeners in fish tissue. Points display values above detection. The bars along the x axis indicate values below detection (ND). The total number of sites is also listed on the graph. Concentrations used are maximum values at each site.

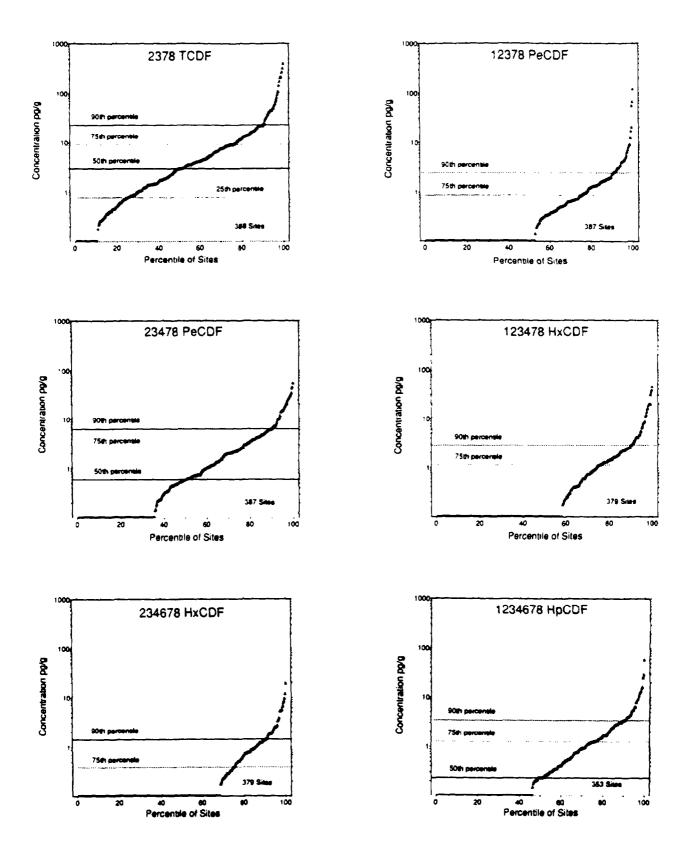


Figure 3-3. Cumulative frequency diagrams of concentrations of six furan congeners in fish tissue. Points display values above detection. The bars along the x axis indicate values below detection (ND). The total number of sites is also listed on the graph. Concentrations used are maximum values at each site.

TABLE 3-2
1989 Toxicity Equivalency Factors

Compound	TEF s/89
Mono-, Di-, and Tri-CDDs	0
2,3,7,8 TCDD	1
Other TCDDs	0
2,3,7,8 PeCDD	0.5
Other PeCDDs	0
2,3,7,8 HxCDDs	0.1
Other HxCDDS	0
2,3,7,8 HpCDD	0.01
Other HpCDDs	0
OCDD	0.001
Mono-, Di-, and Tri-CDFs	0
2,3,7,8 TCDF	0.1
Other TCDFs	0
1,2,3,7,8 PeCDF	0.05
2,3,4,7,8 PeCDF	0.5
Other PeCDFs	0
2,3,7,8 HxCDFs	0.1
Other HxCDFs	0
2,3,7,8 HpCDFs	0.01
Other HpCDFs	0
OCDF	0.001
Reference: Barnes et al., 1989.	

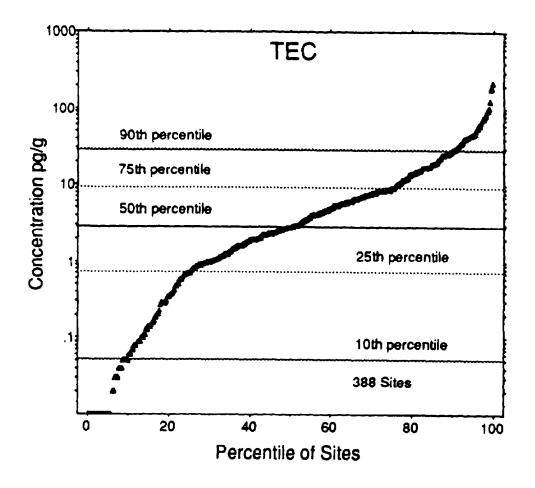


Figure 3-4. Cumulative frequency distribution of maximum calculated TEC values in fish tissue by percentile of sites. Bar on x-axis indicates sites where concentrations of PDCC/PCDF congeners were below detection for all samples from those sites.

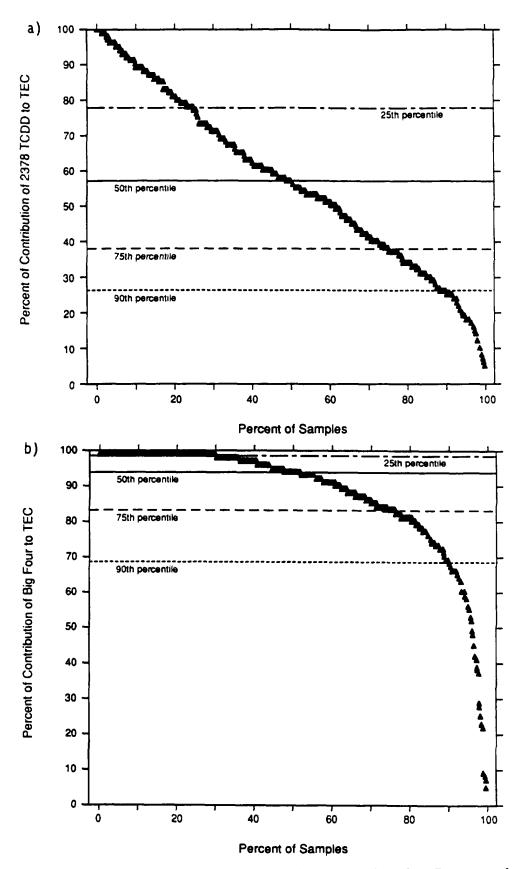


Figure 3-5. Toxicity Equivalency Concentrations (TEC) based on Barnes et al., 1989 method, a) the percent TEC contributed by 2,3,7,8, TCDD, and b) the percent of TEC contributed by 2,3,7,8, TCDD; 2,3,7,8 TCDF: 1,2,3,7,8 PeCDD and 1,2,3,7,8, PeCDF. (Values below the detection have been deleted from the plots.)

Comparison of TCDD and Other Dioxin/Furan Compounds

A comparison by site was made to determine whether any correlations existed between 2,3,7,8 TCDD and detectable levels of the other congeners. This comparison indicated that in most cases detected levels of other dioxin/furan isomers did not occur without detectable levels of 2,3,7,8 TCDD. The principal exception occurred for four congeners, penta-dioxins and furans and 2,3,7,8, TCDF, in less than 15 percent of the samples. Correlation plots of 2,3,7,8 TCDD versus 2,3,7,8 TCDF in the same sample were made to see whether there was a quantitative relationship between these congeners. No such predictive relationships were found based on linear or higher order regressions for these or the other congeners.

GEOGRAPHICAL DISTRIBUTION

The geographical distribution of dioxin and furan levels in fish tissue from the sites sampled is indicated on maps of the continental United States, Alaska, Hawaii, and Puerto Rico, showing the ranges of observed concentrations by site for 2,3,7,8 TCDD, for 2,3,7,8 TCDF, and for TEC. (Concentration ranges for these and all other maps were selected to identify locations with the higher concentrations and for ease of presentation. The first concentration range usually represents values up to the limit of quantification.) The maps depict the maximum values measured at a given location among all species sampled. In most cases, this was a whole-body sample. The maximum fillet concentration was used where no whole-body concentrations were available or where the highest value at a site was a fillet value. The number of cases where fillet data were used as the maximum value is shown on the maps. The specific type of sample at a particular site can be determined using the episode number from the site matrix (Appendix B-3) and the data tables in Appendix D.

Comparison of the maps for 2,3,7,8 TCDD (Figure 3-6) and 2,3,7,8 TCDF (Figure 3-7) shows that both are detected at many of the same sites. For example, Ship Creek in Anchorage near a former salvage yard with PCB contamination, now a Superfund site, had a 2,3,7,8 TCDF concentration of 3.1 pg/g, 2,3,7,8 TCDD of 0.51 pg/g, and TEC of 0.91 pg/g. However, 2,3,7,8 TCDF was detected at high concentrations at more sites. The percent of sites greater than 10 pg/g was 13 percent for 2,3,7,8 TCDD and 23 percent for 2,3,7,8 TCDF. Comparison of the map for 2,3,7,8 TCDD and TEC shows a similar pattern, and that there are some sites where the TEC value is greater than 1 pg/g due to the presence of additional congeners (Figure 3-8).

SOURCE CORRELATION ANALYSIS

Sources Located Near Highest Concentrations

Information on the types of point and nonpoint sources in the vicinity of each site was obtained from the selection criteria in the original study workplan, from the sample collection forms, and from information provided by EPA Headquarters, Regional Coordinators, and State staff involved in collecting the samples. Using these descriptions, a site matrix was prepared showing whether the site had been designated as a targeted site or a background site, or was one of the sites that had been selected from the USGS NASQAN (Appendix B-3). For targeted sites, the matrix indicates the predominant types of sources present and other available information.

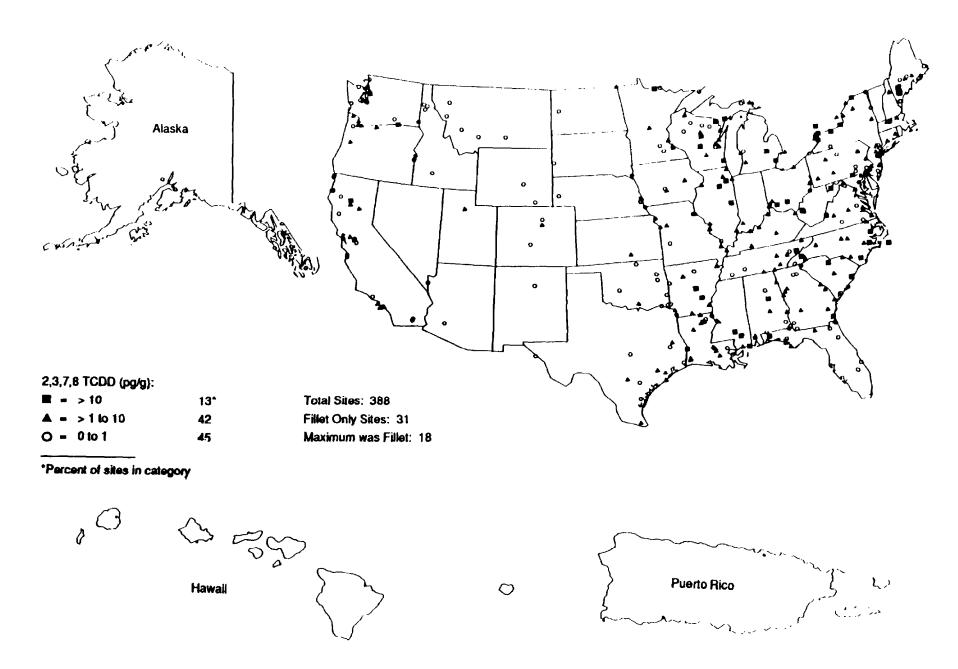


Figure 3-6. Map showing geographical distribution of various concentration ranges of 2,3,7,8 TCDD in fish tissue.

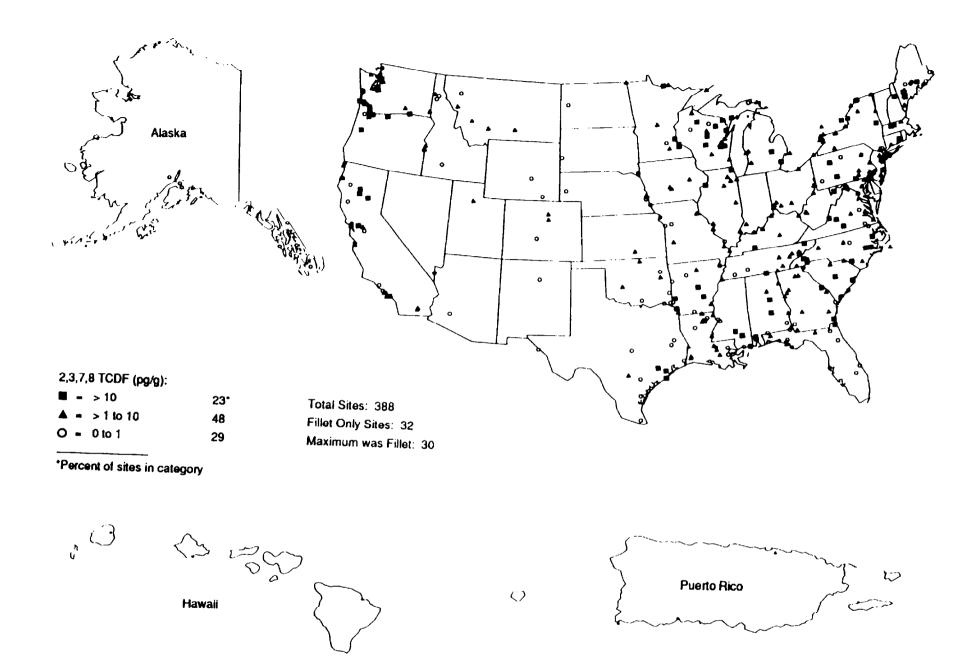


Figure 3-7. Map showing geographical distribution of various concentration ranges of 2,3,7,8 TCDF in fish tissue.

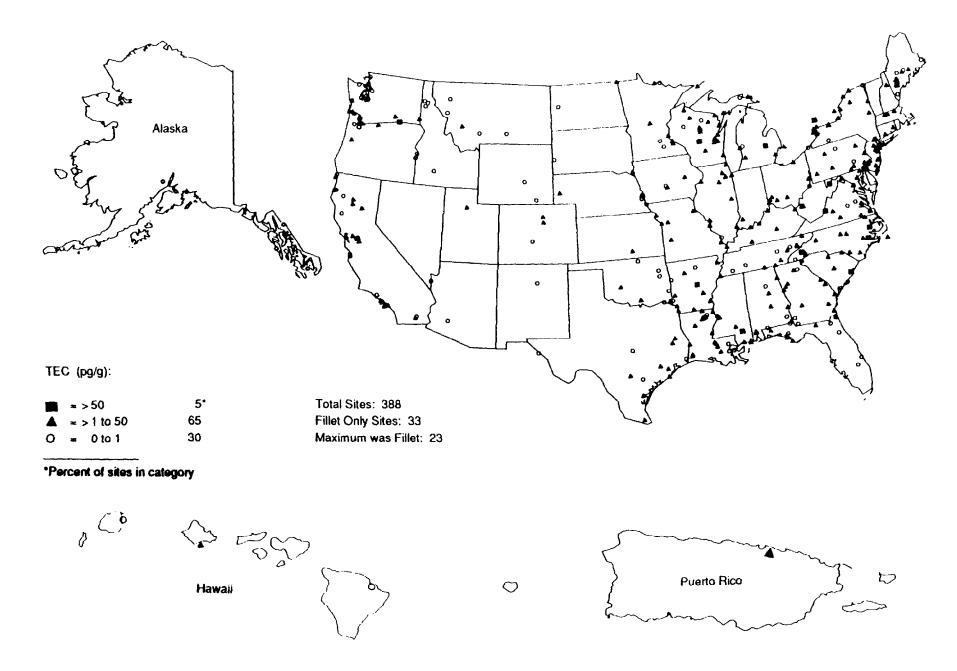


Figure 3-8. Map showing geographical distribution of various concentration ranges of TEC in fish tissue.

Tetra-Dioxins/Furans

The sites with the top 10 percentile concentrations (39 out of 388) were identified for each of the dioxin and furan congeners studied. Sites near paper and pulp mills using chlorine for bleaching accounted for 28 out of the top 39 sites for 2,3,7,8 TCDD and 31 out of the top 39 sites for 2,3,7,8 TCDF. For both 2,3,7,8 TCDD and 2,3,7,8 TCDF, four of the top five sites are located near pulp and paper mills using chlorine. The fifth and highest concentration site (3078) for 2,3,7,8 TCDD is located near a Superfund site with known dioxin contamination. The fifth and highest concentration site (3162) for 2,3,7,8 TCDF is located in a heavily industrialized area with a pulp and paper mill and a Superfund site in the vicinity. The top five sites for both compounds are shown below:

2,3,7,8 TCDD

Conc. pg/g (ppt)	Episode Number	Type of Sample	Location
203.6	3078	WB Sm Buffalo	Bayou Meto, Jacksonville, AR
160.4	3425	WB Carp	Wham Brake, Swartz, LA
143.3	3346	WB Creek Chubsucker	Roanoke R., Plymouth, NC
104.1	3348	WB Blue Catfish	Sampit R., Georgetown, SC
98.9	3340	WB Channel Catfish	Leaf R., New Augusta, MS

2,3,7,8 TCDF

Conc. pg/g(ppt)	Episode Number	Type of Sample	Location
403.9	3162	Hepatopancreas crab	Hylebos Waterway, Tacoma, WA
320.7	3221	WB Carp	Columbia R., Walla Walla, WA
273.8	3395	WB Redhorse Sucker	Neuse R., New Bern, NC
261.3	3087	WB Carp	Wham Brake, Swartz, LA
207.5	2721	WB Sucker	Androscoggin R., Turner Falls, ME

The above sites with the highest 2,3,7,8 TCDD concentrations also had the highest TEC values. Other sources near the remaining top 10 percentile sites included historical PCB contamination, chemical manufacturing plants, automobile manufacturing, a refinery, and an incinerator.

Penta-Dioxins/Furans

The sites with the highest 10 percentile concentrations for 1,2,3,7,8 PeCDD were near a variety of sources. Sites near paper mills using chlorine for bleaching accounted for 13 out of the 39 sites. Sites near Superfund waste disposal areas accounted for 8 sites, 4 were former wood preserving plants, 2 had PCB contamination, 1 had dioxin contamination, and 1 was a former dump with an unknown mixture of chemicals. Six of the sites were located near chemical manufacturing plants. The top 5 out of 385 sites are listed below:

1,2,3,7,8 PeCDD

Conc. _pg/g (ppt)	Episode Number	Type of Sample	Location
53.9	3355	WB Carp	Old Mormon Slough, Stockton, CA
27.2	3098	WB White Sucker	Red Clay Cr., Ashland, DE
22.4	3141	WB Carp	Milwaukee R., Milwaukee, WI
15.9	3162	Hepatopancreas Crab	Hylebos Waterway, Tacoma, WA
14.3	2290	WB Spotted Sucker	Savannah R., Augusta, GA

The highest concentration was from a site located on the San Joaquin River system near a former wood preserving plant, now a Superfund site. This site also had the highest concentrations of four other dioxin/furan congeners (1,2,3,4,7,8 HxCDD; 1,2,3,7,8,9 HxCDD; 1,2,3,4,6,7,8 HpCDD; and 1,2,3,4,7,8,9 HpCDF) and was one of the top five sites for three other congeners (1,2,3,6,7,8 HxCDD; 1,2,3,6,7,8 HxCDF; and 1,2,3,4,6,7,8 HpCDF). Of the next four sites, one is near a dump, one is near a highly industrialized area with known PCB contamination, and two are near paper mills. High levels of other congeners were detected at these locations as well.

The top 10 percentile sites out of 387 for the PeCDFs included those near paper mills using chlorine for bleaching (19 out of 39 for 1,2,3,7,8 PeCDF and 9 out of 34 for 2,3,4,7,8 PeCDF), chemical/pesticide manufacturing plants, Superfund sites, and refineries (although other industries were often present). As shown below, three of the top five sites for both of these congeners are the same (3162, 3163, and 3085).

Con. pg/g(ppt)	Episode Number	Type of Sample	Location
120.3	3162	Hepatopancreas Crab	Hylebos Waterway, Tacoma, WA
68.4	3163	Hepatopancreas Crab	Commencement Bay, Tacoma, WA
54.3	3206	Crayfish	Willamette R., Portland, OR
20.3	3085	PF Back Drum	Brazos R. Freeport, TX
17.2	2290	WB Spotted Sucker	Savannah R., Augusta, GA

1,2,3,7,8 PeCDF

2,3,4,7,8 PeCDF

Conc. pg/g (ppt)	Episode Number	Type of Sample	Location
56.37	3162	Hepatopancreas Crab	Hylebos Waterway, Tacoma. WA
45.51	3085	WB Sea Catfish	Brazos River, Freeport, TX
42.58	3299	WB White Sucker	Niagara River, N. Tonawanda, NY
34.48	3163	Hepatopancreas Crab	Commencement Bay, Tacoma, WA
33.25	3086	WB Catfish	Bayou D'Inde, Sulfur, LA

The two sites near Tacoma are in a heavily industrialized area with paper mills, refineries, and other industries that have been designated as one Superfund site. This site also had the highest concentration of 2,3,7,8 TCDF and of two hexa-furans. The Brazos River site is close to the outfall of a pesticide manufacturing plant. The other two sites listed are also near chemical manufacturing plants.

Hexa- and Hepta-Dioxins/Furans

The major sources near the top 10 percentile sites for the hexa- and hepta-dioxins included wood preserving plants, paper mills, Superfund sites, and chemical manufacturing plants. Three of the top five sites (3355, 3167, and 3185) are near wood preserving plants or former plants, one is near multiple urban/industrial sources (3444) and the remainder are near paper mills (Table 3-3).

The major sources at the top 10 percentile sites for the hexa- and hepta-furans were similar to the hexa-dioxins, except that HCB contamination appears to be an important potential source for HxCDFs. Several of the sites had high levels of more than one congener. The top five sites out of 379 listed in Table 3-4 for 1,2,3,7,8,9 HxCDF were the only ones with detectable levels of this compound. Only 14 sites out of 353 had detectable levels of 1,2,3,4,7,8,9 HpCDF. The most common sources near the sites with detectable concentrations of HxCDFs and HpCDFs were paper mills using chlorine for bleaching, Superfund sites, and chemical manufacturing sites.

TABLE 3-3 Location of Maximum Measured HxCDD and HpCDD Concentrations in Fish Tissue

	Maximum	D 1		
C 1	Concentration	Episode		•
Compound	pg/g	Number	Type of Fish	Location
123478 HxCDD				
(375 sites)*	37.6	3355	WB Carp	Old Mormon Slough, Stockton, CA
	14.3	3167	WP Bluegill	Medlins Pond, Morrisville, NC
	11.6	2304	WB Carp	Alabama R., Claiborne, AL
	9.9	3092	WB Carp	Dugdemona R., Hodge, LA
	8.7	3444	WB Carp	Nonconnah Creek, Memphis, TN
123678 HxCDD				
(375 sites)	100.9	2290	WB Spotted Sucker	Savannah R., Augusta, GA
	89.1	3355	WB Carp	Old Mormon Slough, Stockton, CA
	50.8	3185	WB Channel Catfish	Bernard Bayou, Gulfport, MS
	47.3	3377	WB Carp	Chattahoochee R., Franklin, GA
	41.9	3376	WB Carp	Chattahoochee R., Whitesburg, GA
123789 HxCDD				
(375 sites)	24.8	3355	WB Carp	Old Mormon Slough, Stockton, CA
	9.5	3185	WB Channel Catfish	Bernard Bayou, Gulfport, MS
	8.5	3167	WP Bluegill	Medlins Pond, Morrisville, NC
	7.8	3377	WB Carp	Chattaboochee R., Franklin, GA
	6.8	3098	WB White Sucker	Red Clay Cr., Ashland, DE
1234678 HpCDD				
(354 sites)	249.1	3355	WB Carp	Old Mormon Slough, Stockton, CA
	171.0	3377	WB Carp	Chattahoochee R., Franklin, GA
	150.8	3444	WB Carp	Nonconnah Creek, Memphis, TN
	141.2	2290	WB Spotted Sucker	Savannah R., Augusta, GA
	138.1	3376	WB Carp	Chattahochee R., Whitesburg, GA

* Number shown is total number of sites.

WB = whole-body bottom-feeding composite sample.

PF = predator fillet composite sample.

WP = whole-body predator composite sample.

TABLE 3-4 Location of Maximum Measured HxCDF and HpCDF Concentrations in Fish Tissue

	Maximum Concentration	Episode			
Compound	P2/2	Number	Туре	of Fish	Location
123478 HxCDF					
(379 sites)*	45.3	3162		Hepatopancreas Crab	Hylebos Waterway, Tacoma, WA
(379 SILES).	43.5 37.9	3297	WB	Сагр	Niagara R., Niagara Falls, NY
	34.3	2410	WB	Carp	Rouge R., River Rouge, MI
	34.3 30.8	3299	WB	White Sucker	Niagara R., N. Tonawanda, NY
		3086	WB	Catfish	
	20.0	3080	WD	Cattisti	Bayou D'Inde, Sulfur, LA
123678 HxCDF				_	
(379 sites)	30.9	31 62		Hepatopancreas Crab	Hylebos Waterway, Tacoma, WA
	16.2	3085	WB	Sea Catfish	Brazos R., Freeport, TX
	14.0	3301	WB	Carp	Eighteen Mile Cr., Olcott, NY
	13.8	3297	WB	Carp	Niagara R., Niagara Falls, NY
	13.1	3355	WB	Carp	Old Mormon Slough, Stockton, CA
123789 HxCDF				-	-
(377 sites)	0.96	3085	WB	Sca Catfish	Brazos R., Freeport, TX
(377 31732)	0.51	3150	WB	White Sucker	Otter R., Baldwinville, MA
	0.44	3112	WB	Carp	Mississippi R., Little Falls, MN
	0.41	3107	WB	Carp	Wisconsin R., Brokaw, WI
	0.23	3206		Crayfish	Willamette R., Portland, OR
224679 U.CDE	0.20	0200			
234678 HxCDF	10.7	7167	WP		Medlins Pond, Morrisville, NC
(379 sites)	19.3	3167	-	Bluegill Chargel Cettinh	
	11.8	3185	WB WB	Channel Catfish	Bernard Bayou, Gulfport, MS
	9.6	2290		Spotted Sucker	Savannah R., Augusta, GA
	8.4	2225	WB	Shorthead Redhorse	James R., Glasgow, VA
	7.8	2383	WB	Carp	Des Plaines R., Lockport, IL
1234678 HpCDF					
(353 sites)	58.3	3167	WP	Bluegill	Medlins Pond, Morrisville, NC
	29.4	3185	WB	Channel Catfish	Bernard Bayou, Gulfport, MS
	25.7	3086	WB	Catfish	Bayou D'inde, Sulfur, LA
	25.4	3355	WB	Carp	Old Mormon Slough, Stockton, CA
	16.4	3377	WB	Carp	Chattahoochee R., Franklin, GA
1234789 HpCDF				•	
(353 sites)	2.57	3355	WB	Carp	Old Mormon Slough, Stockton, CA
(هالله درد)	1.76	3206	10	Crayfish	Willamette R., Portland, OR
	1.78	3085	WB	Sca Catfish	Brazos R., Freeport, TX
	0.97	3377	WB	_	Chattaboochee R., Franklin, GA
	0.97	3376	WB	Carp	Chattaboochee R., Whitesburg, GA
	0.71	3310	۳D	Carp	Cumunocula N., Willisong, OA

* Number shown is total number of sites.

WB = whole-body bottom-feeding composite sample.

PF = predator fillet composite sample.

WP = whole-body predator composite sample.

Concentration Comparison Between Site Categories

Description of Categories

The point and nonpoint source categories used for the dioxin/furan comparisons were background sites (B); sites selected from the USGS NASQAN (NSQ); Superfund sites (NPL); sites near pulp and paper mills that use chlorine for bleaching (PPC); sites near other types of pulp and paper mills (PPNC); sites near former or existing wood preserving plants (WP); sites near industrial or urban areas (IND/URB); sites near industrial areas that include refineries with catalytic reforming operations (R/I); sites that could be influenced by runoff from agricultural areas (AGRI); and sites near publicly owned treatment works (POTWs). The two broad categories, industry/urban and refineries/other industry, resulted from a substantial number of sites having multiple point sources. With the exception of background and NASQAN sites, categories were established based on probable sources of various pollutants including dioxins, furans, and pesticides. Background sites were selected to provide a comparison with areas relatively free of point and nonpoint source pollution; however, some background sites do have other source categories present. NASQAN sites were selected to evaluate the geographic extent and prevalence of fish contamination throughout the country rather than to identify specific sources of this contamination.

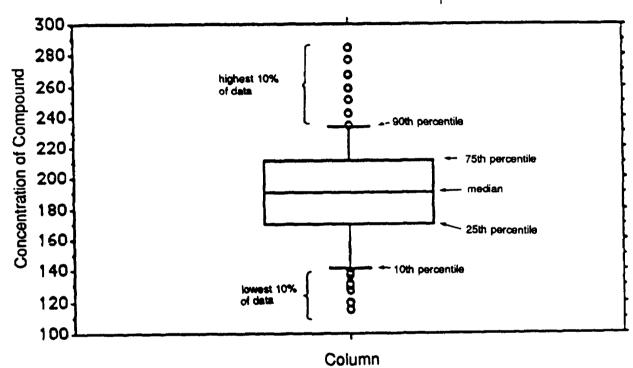
Sites would, in general, be included in statistical tests (described below) only if a single potential source of contamination existed at the site. The intent was to determine whether concentrations would differ at sites with different sources. Multiple sources were excluded so as not to infer a correlation with a given source when in fact the high contamination levels were due to the contribution of another type of source. The number of sites per category varied for dioxins/furans and other xenobiotics. Two categories (POTWs and agricultural areas) would not, as data on these sites confirm, be expected to significantly impact overall dioxin/furan contamination of fish. Accordingly, the presence of these categories would not preclude a site from being designated as a single category site for purposes of statistical analysis for dioxins/furans. For xenobiotics, no such "override" was included in the analysis of data.

Below is a listing of the number of sites included in each category for dioxins/furans. A similar table is presented in Chapter 4 for xenobiotics. Category data were not available for each site.

Category	Abbreviation	Number of Sites
Background	В	34
USGS NASQAN	NSQ	40
Paper Mills using Chlorine	PPC	78
Other Types of Pulp and Paper Mills	PPNC	27
Wood Preserving Plants	WP	11
Refineries/Other Industries	R/I	20
NPL (Superfund Sites)	NPL	7
Industry/Urban	IND/URB	106
Agriculture	AGRI	19
Publicly Owned Treatment Works (POTW)	POTW	11

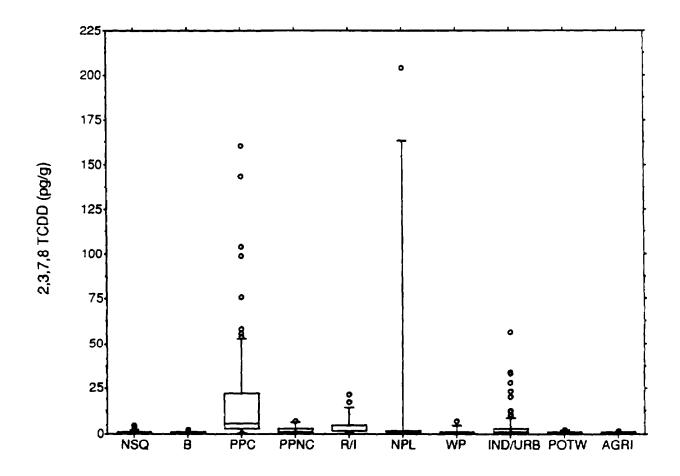
Statistical Comparison Tests

To compare observed concentrations between site categories, box and whisker plots were prepared for the tetra- and penta-dioxins individually and for total hexa-dioxins and total hexa-furans and TEC values. A schematic box and whisker plot is shown in Figure 3-9. The box shows the spread of the data between the 25th percentile and the 75th percentile. The line inside the box represents the median concentration. The "whiskers" or lines extend down to the 10th percentile and up to the 90th percentile. The circles above or below the line represent the extreme upper and lower 10 percent of the data. The maximum value of all samples at each site, including the duplicates, was used. For dioxins/furans, values below detection have been replaced by one-half the detection limit prior to determining the maximum value except for total HxCDDs and total HxCDFs. For these plots the values below detection were assigned a value of zero because detection limits were often high. The summary statistics for each category are shown beneath the plot.


Because the data sets consist of highly-skewed non-normal distributions, nonparametric statistical methods were used to test the significance of the results. The Kruskal-Wallis test is a one-way nonparametric analysis of variance used to determine whether concentrations from three or more categories are from different populations or whether the observed differences could be due to random variations of the parameters. The test is based on a comparison of ranks (order of the observations, i.e., highest = 1, next highest = 2, etc.). The results are presented as an H statistic and a probability (p) that the sets of samples are from the same population (null hypothesis). This value p is then compared to a critical level. For this study a level of significance of 0.05 was used. If the p values for a comparison of categories are less than 0.05, the two categories are considered to be significantly different. This test is analogous to the F test for parametric data, but less powerful. The Kruskal-Wallis test is preferred over a test using only the median, because it considers the distribution of the data as well as the median.

The Mann-Whitney U test is a nonparametric equivalent of the "t" test. The U test is also based on ranks. This statistic was used to test for significant differences in concentrations between two categories (e.g., background sites and agricultural sites). The U statistic is calculated and the probability that the two sets of samples are from the same population is tabulated. A critical level of 0.05 was used as the level of significance in this study. If the probability for a two-way comparison was less than 0.05, the null hypothesis was rejected (i.e., the two categories being compared are significantly different).

Site Category Comparisons


Tetra -Dioxins/Furans

Pulp and paper mills using chlorine appear to be the dominant source of 2,3,7,8 TCDD. The paper mills using chlorine had the highest median concentration (5.66 pg/g) compared to 1.82 pg/g for refinery/other industry sites and 1.27 pg/g for Superfund sites (Figure 3-10). Statistical comparisons based on the Mann-Whitney U tests (Table 3-5) showed that pulp and paper mills using chlorine had significantly higher concentrations than other paper mills, wood preserving operations, Superfund sites, industry/urban sites, or refineries/other industries. As would be expected, the box

Box Plots for Column X,

Figure 3-9. Example box plot with explanation of features.

Summary Table for 2,3,7,8 TCDD Box Plot

Concentration Range									
Site Category	<u>n</u>	pg/g	Mean	Stan. Dev.	Median				
NASQAN (NSQ)	40	0.17- 4.73	1.02	1.02	0. 65				
Background (B)	34	0.06 - 2.26	0.56	0.38	0. 50				
Paper Mills Using CI (PPC)	78	0.55 - 160.4	19.02	30.64	5.66				
Other Paper Mills (PPNC)	27	0.48 - 7.15	2.17	2.21	1.09				
Refinery/Other Industry (R/I)	20	0.50 - 21.55	4.38	5.88	1.82				
Superfund Sites (NPL)	7	0.62 - 203.6	30.02	76.54	1.27				
Wood Preservers (WP)	11	0.21 - 7.30	1.40	2.08	0.56				
Industrial/Urban Sites (IND/URB)	105	0.10 - 56.34	4.04	8.05	1.40				
POTW	8	0.18 -2.24	0.90	0.76	0. 63				
Agricultural (AGRI)	17	0.20 - 1.78	0.75	0.39	0.58				

Figure 3-10. Box and whisker plot for 2,3,7,8 TCDD concentrations in fish tissue.

	K ruskal-W	allis	Mann-Whitney								
Chemical	All Groups Except NSQ	IND/URB,R/I, NPL, PPC, PPNC, WP	PPC, B	PPC, WP	PPC, PPNC		PPC, NPL	PPC, IND/ URB	РРС РОТW	PPC, AG	
2,3,7,8-TCDD	.0001	.0001	.0001	.0001	.0001	.0032	.0348	.0001	.0001	.0001	
2,3,7,8-TCDF	.0001	.0001	.0001	1000.	.0001	.0001	.0531	.0001	.0001	.0001	
2,3,4,7,8-PeCDF	.0001	.0003	.0001	.0004	.0099	.0881	.3538	.4096	.0002	.0001	
1,2,3,7,8-PeCDF	.0001	.0352	.0001	.0252	.0779	.3733	.5650	.2948	.0065	.0005	
1,2,3,7,8-PeCDD	.0001	.0871	.0001	.0274	.1021	.4890	.9809	.1389	.0225	.0025	
HxCDDs	.0001	.3496	.0001	.1299	.6976	.7377	.7311	.0493	.0003	.0044	
HxCDFs	.0013	.4981	.0007	.7553	.1166	.2724	.8479	.9612	.0220	.0249	
TEC	.0001	.0001	.0001	.0003	1000.	.0400	.1692	.0001	.0001	.0001	
			Mann-Whit	ney							
Chemical		WP, PPNC	₩₽, R/I	WP, NPL	WP, IND/ URB	WР, <u>РОТ</u> W	<u>WP, AG</u>				
2,3,7,8-TCDD	.0961	.1567	.0132	.0515	.0102	.8365	.8878				
2,3,7,8-TCDF	.1956	.0021	.0118	.0098	.0002	.4090	.1263				
2,3,4,7,8-PeCDF	.1780	.1303	.0002	.0032	.0053	.4328	.6381				
1,2,3,7,8-PeCDF	.3485	.2337	.0036	.0236	.0077	.2831	.4517				
1,2,3,7,8-PeCDD	.7760	.2337	.0219	.1473	.0846	.2831	.9250				
HxCDDs	.0617	.3424	.2477	.2976	.5406	.0265	.5885				
HxCDFs	.1115	.5302	.4090	.8919	.7808	.1604	.2690				
TEC	.1696	.0974	.0287	.0774	.0215	.5633	.9250				

Table 3.5 Mann-Whitney U Test Results for Dioxins Furan Comparing Selected Source Categories

Values shown are two-tail probabilities that groups are different. The critical level was set at 0.05. If p<0.05, the categories were considered to be significantly different.

WP

PPC

Site Calcgories:

IND/URB	=	Industry and/or Urban
AG	=	Agriculture
B	=	Background
NPL	=	National Priority List (Superfund site)
POTW	=	Publicly Owned Treatment Works (sewage)

NSQ = National ambient stream monitoring network. (This designation is independent of source categories.)

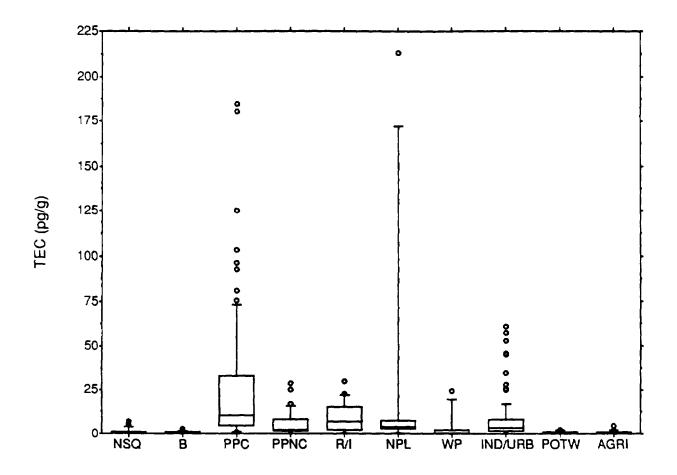
Wood preserving related activities

- = Paper and pulp mills using chlorine for bleaching
- PPNC = Other paper and pulp mills including deinking plants
- R/I = Refines using catalytic reforming process and other industry

plot for combined dioxins/furans based on TEC values (Figure 3-11) also shows that pulp and paper mills using chlorine have the highest median concentration.

The highest median concentration of 2,3,7,8 TCDF was 14.0 pg/g at pulp and paper mills using chlorine (Figure 3-12). The next highest median values were 3.6 pg/g for other pulp and paper mill sites and 3.5 pg/g for Superfund sites. Pulp and paper mills using chlorine also had a substantially higher mean concentration of 2,3,7,8 TCDF than any of the other categories, 39.2 pg/g, compared to 7.2 pg/g for the next highest category, Superfund sites. The Mann-Whitney U tests showed that with the exception of Superfund sites, pulp and paper mills using chlorine had significantly higher concentrations of 2,3,7,8 TCDF than other categories. A Mann-Whitney U comparison of pulp and paper mills using chlorine with Superfund sites results in a value that only slightly exceeds the 0.05 critical value. The similarities between the categories are due in part to the fact that there are only a few (i.e., 7) Superfund sites used in the analysis.

Penta-Dioxins/Furans

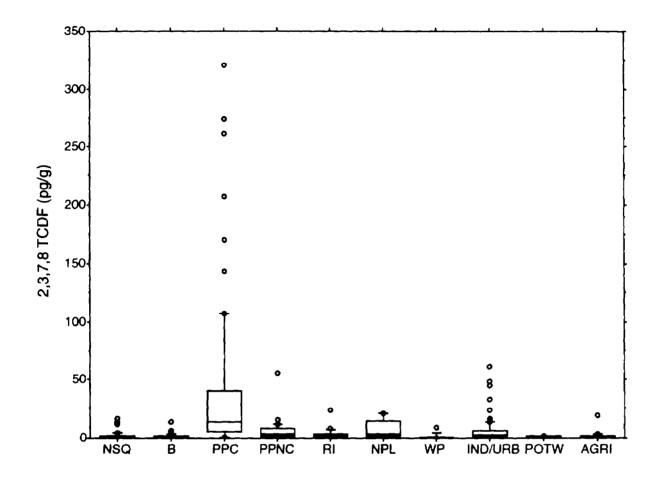

For 1,2,3,7,8 pentachlorodibenzodioxin (1,2,3,7,8 PeCDD), there were several significant sources of contamination, including pulp and paper mills, Superfund sites, industry/urban sites, and refinery/other industry sites (Figure 3-13). The highest median was for paper mills using chlorine at 1.52 pg/g; refinery/other industry had the next highest at 1.35 pg/g followed by 1.09 pg/g for industrial/urban. The highest concentration (27.5 pg/g) was found in the industrial/urban category with the highest mean (3.3 pg/g) found in the refinery/other industry category. Mann-Whitney U tests comparing pulp and paper mills using chlorine with Superfund sites, other paper mills, refinery/other industry sites, and industry/urban sites showed no significant differences (Table 3-5).

For both 1,2,3,7,8 and 2,3,4,7,8 penta-furans, the highest median concentration was found at Superfund sites (Figures 3-14 and 3-15). A review of the median values for other categories indicates that there is no dominant source for either of these penta-furan congeners. This observation is confirmed by the Kruskal-Wallis test for 1,2,3,7,8 PeCDF and by the Mann-Whitney U tests for 2,3,4,7,8 PeCDF (Table 3-5).

Hexa-Dioxins/Furans

For hexa-dioxins the highest median concentration, 3.19 pg/g, occurred at paper mills using chlorine. Median values (Figure 3-16) for the next two highest source categories (refinery/other industry and Superfund sites) were approximately the same at 1.97 and 1.94 pg/g, respectively. A Kruskal-Wallis test (Table 3-5) for paper mills, refinery/other industry sties, industrial/urban sites, Superfund sites, and wood preservers showed that none of the sources was significantly different from the others with regard to fish contamination. Values below detection were set at zero for the hexa-dioxin and hexa-furan box plots because the detection limits were often higher than the measured concentrations.

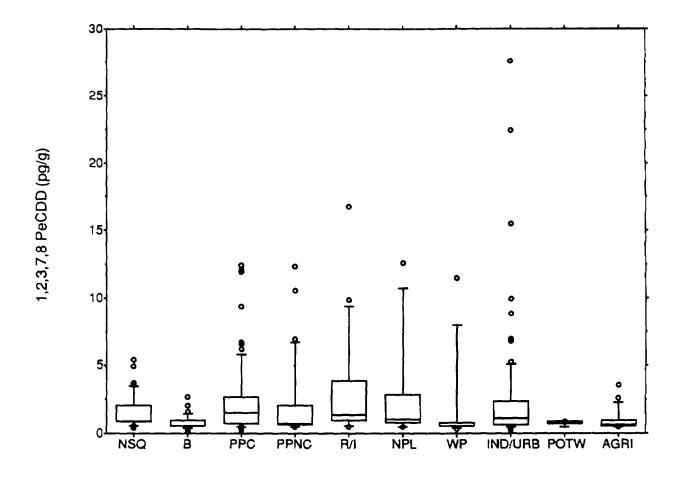
For hexa-furans, the source category with the highest median concentration is refinery/other industry (Figure 3-17). This category is followed by industrial/urban and Superfund sites. The Kruskal-Wallis test (Table 3-5) shows that no single category is significantly different from all others with regard to hexa-furan fish contamination.



Summary Table for TEC Box Plot

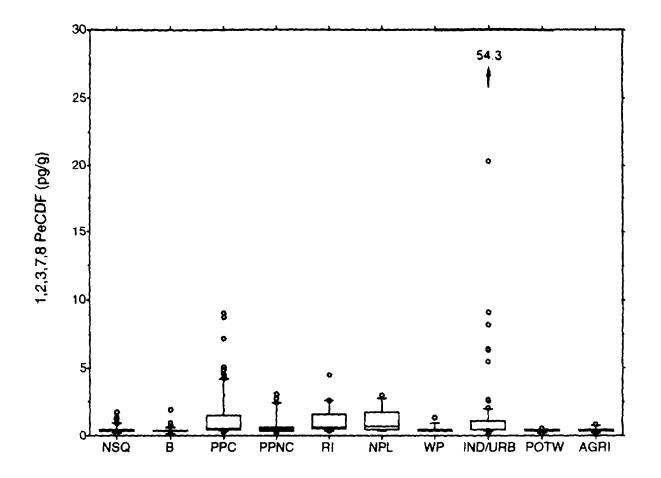
		Concentration Range			
Site Category	n	pg/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	40	ND- 7.18	1.12	1.87	0.16
Background (B)	34	ND- 3.02	0.59	0. 9	0.21
Paper Mills Using CI (PPC)	78	0.4- 184.24	25.84	36.90	10.62
Other Paper Mills (PPNC)	27	ND- 28.9	5.70	7.50	2.39
Refinery/Other Industry(R/I)	20	ND- 30.22	8.89	8.64	6.81
Superfund Sites (NPL)	7	0.13-213.05	33.86	79.06	4.36
Wood Preservers (WP)	11	0.01-24.84	4.34	8.36	0.43
Industrial/Urban Sites (IND/URB)	105	ND- 61.07	7.79	12.54	3.26
POTW	8	0.03-2.24	0.70	0.92	0.12
Agricultural (AGRI)	17	ND- 4.44	1.02	1.19	0.79

ND = TEC value not determined because all values below detection. Maximum value at each site was used. Sites were assigned to only one category.


Figure 3-11. Box and whisker plot for TEC concentrations in fish tissue.

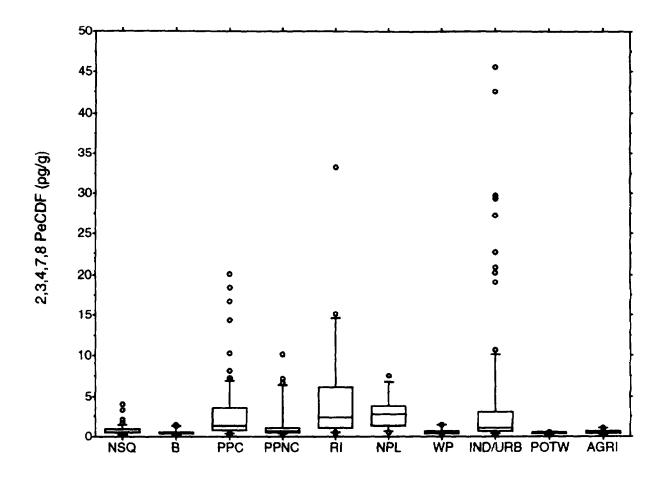
Summary Table for 2,3,7,8 TCDF Box Plot

Site Category	<u>n</u>	Concentration Range pg/g	Mean	<u>Stan. Dev.</u>	<u>Median</u>
NASQAN (NSQ)	40	0.19 - 16.61	2.11	3.66	0.68
Background (B)	34	0.10 - 13.73	1.61	2.51	0.90
Paper Mills Using Cl (PPC)	78	0.26 - 320.69	39.20	66.18	14.04
Other Paper Mills (PPNC)	27	0.25 - 55.75	6.42	10.72	3.61
Refinery/Other Industry (R/I)	20	0.24 - 23.36	3.62	5.16	1.91
Superfund Sites (NPL)	7	0.56 - 21.23	7.23	8.62	3.48
Wood Preservers (WP)	10	0.18 - 8.84	1.31	2.54	0.39
Industrial/Urban Sites (IND/URB)	105	0.24 - 61.58	5.93	9.49	2.90
POTW	8	0.24 - 2.00	0.94	0.72	0.79
Agricultural (AGRI)	17	0.19 - 19.28	2.21	4.52	0.84


Figure 3-12. Box and whisker plot for 2,3,7,8 TCDF concentrations in fish tissue.

Summary Table for 1,2,3,7,8 PeCDD Box Plot

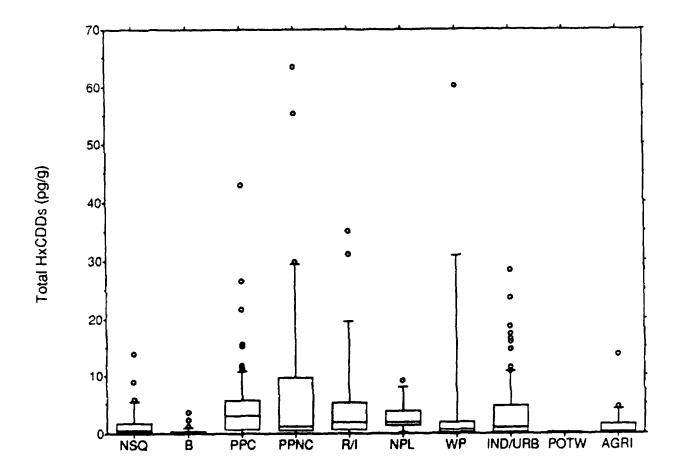
Concentration Range								
Site Category	<u>n</u>	pg/g	Mean	Stan. Dev.	Median			
NASQAN (NSQ)	39	0.36-5.41	1.53	1.24	0.90			
Background (B)	33	0.15-2.67	0.77	0.54	0.54			
Paper Mills Using CI (PPC)	78	0.25-12.48	2.37	2.72	1.52			
Other Paper Mills (PPNC)	27	0.45-12.38	2.22	3.19	0.68			
Refinery/Other Industry (R/I)	20	0.46-16.80	3.28	4.17	1.35			
Superfund Sites (NPL)	7	0.46-12.62	3.01	4.34	1.00			
Wood Preservers (WP)	11	0.28-11.50	2.01	3.51	0.52			
Industrial/Urban Sites (IND/URB)	105	0.20-27.56	2.32	3.93	1.09			
POTW	8	0.46-0.88	0.75	0.18	0.84			
Agricultural (AGRI)	17	0.46-3.54	0.92	0.84	0.62			


Figure 3-13. Box and whisker plot for 1,2,3,7,8 PeCDD concentrations in fish tissue.

Summary Table for 1,2,3,7,8 PeCDF Box Plot

		Concentration Range			
Site Category	<u>n</u>	pq/q	Mean	Stan. Dev.	<u>Median</u>
NASQAN (NSQ)	40	0.16 - 1.69	0.48	0.33	0.39
Background (B)	34	0.10 - 1.90	0.43	0.31	0.39
Paper Mills Using CI (PPC)	78	0.30 - 9.08	1.43	1.88	0.58
Other Paper Mills (PPNC)	27	0.22 - 3.09	0.80	0.83	0.40
Refinery/Other Industry (R/I)	20	0.38 - 4.47	1.18	1.07	0.66
Superfund Sites (NPL)	7	0.39 - 2.96	1.18	0.97	0.71
Wood Preservers (WP)	10	0.39 - 1.3	0.51	0.28	0.39
Industrial/Urban Sites (IND/URB)	104	0.13 - 54.32	1.73	5.74	0.50
POTW	B	0.16 - 0.51	0.38	0.10	0.38
Agricultural (AGRI)	7	0.20 - 0.89	0.43	0.18	0.38

Figure 3-14. Box and whisker plot for 1,2,3,7,8 PeCDF concentrations on fish tissue.

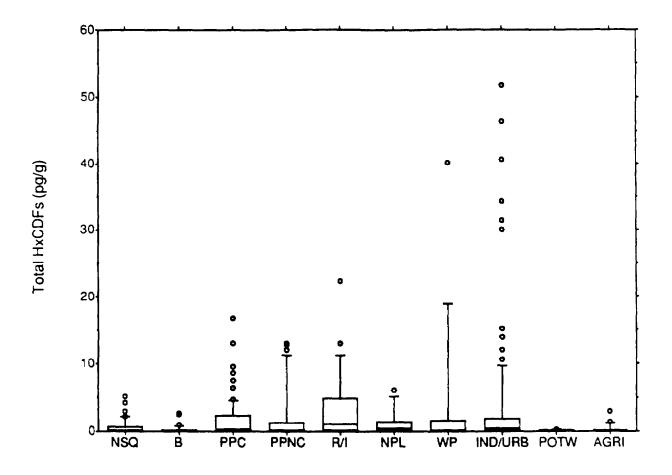


Summary Table for 2,3,4,7,8 PeCDF Box Plot

Site Category	<u>n</u>	Concentration Range	Mean	<u>Stan. Dev.</u>	Median
NASQAN (NSQ)	40	0.16 - 4.11	0.78	0.79	0.46
Background (B)	34	0.10 - 1.39	0.50	0.36	0.42
Paper Mills Using CI (PPC)	78	0.25 - 20.14	2.92	4.04	1.37
Other Paper Mills (PPNC)	27	0.40 - 10.21	1.71	2.55	0.59
Refinery/Other Industry (R/I)	20	0.42 - 33.25	5.44	7.86	2.32
Superfund Sites (NPL)	7	0.48 - 7.53	2.93	2.37	2.73
Wood Preservers (WP)	10	0.42 - 1.43	0.63	0.40	0.42
Industrial/Urban Sites (IND/URB)	104	0.13 - 45.51	4.09	8.27	0.98
POTW	8	0.16 - 0.59	0.42	0.13	0.44
Agricultural (AGRI)	17	0.15 - 1.02	0.53	0.26	0.42

n = number of sites in category. Maximum value at each site was used. One-half the detection limit was used for values below detection.

Figure 3-15. Box and whisker plot for 2,3,4,7,8 PeCDF concentrations in fish tissue.



Summary Table for Total HxCDDs Box Plot

		Concentration Range			
Site Category	<u>n</u>	pg/g	Меап	Stan. Dev.	Median
NASQAN (NSQ)	37	ND -13.91	1.73	2.94	0.51
Background (B)	30	ND - 3.57	0.39	0.80	ND
Paper Mills Using CI (PPC)	78	ND - 42.98	4.68	6.66	3.19
Other Paper Mills (PPNC)	27	ND - 63.35	9.23	16.77	1.25
Refinery/Other Industry(R/I)	20	ND - 35.17	5.54	9.75	1.97
Superfund Sites (NPL)	7	ND - 9.07	2.96	2.99	1.94
Wood Preservers (WP)	11	ND -60.10	7.04	17.90	0.71
Industrial/Urban Sites (IND/URB)	100	ND - 28.4	3.60	5.49	1.14
POTW	7	ND	ND	ND	ND
Agricultural (AGRI)	17	ND - 13.79	1.63	3.38	0.44

n = number of sites in category. Maximum value at each site was used. Sites were assigned to only one category. ND = limit of detection, here set at 0.0.

Figure 3-16. Box and whisker plot for total HxCDDs concentrations in fish tissue.

Summary Table for Total HxCDFs Box Plot

		Concentration Range			
Site Category	<u>n</u>	pg/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND - 5.11	0.58	1.21	ND
Background (B)	29	ND - 2.59	0.22	0.66	ND
Paper Mills Using CI (PPC)	78	ND - 16.75	1.74	3.11	0.34
Other Paper Mills (PPNC)	27	ND - 12.93	1. 94	4.16	ND
Refinery/Other Industry(R/I)	20	ND - 22.46	3.69	5.76	1.05
Superfund Sites (NPL)	7	ND - 6.08	1.22	2.22	0.41
Wood Preservers (WP)	11	ND - 40.1	4.42	11.92	ND
Industrial/Urban Sites (IND/URB)	103	ND - 51.76	3.67	9.49	0.48
POTW	8	ND -0.35	0.04	0.12	ND
Agricultural (AGRI)	17	ND - 3.01	0.31	0.78	ND

n = number of sites in category. Maximum value at each site was used. Sites were assigned to only one category. ND = limit of detection, here set at 0.0.

Figure 3-17. Box and whisker plot for total HxCDFs concentrations in fish tissue.

Chapter 4 - Other Xenobiotic Compound Results and Analysis

This chapter presents results for all study compounds other than dioxins and furans. For ease of presentation these other study compounds are referred to as "other xenobiotics" or simply "xenobiotics." The term *xenobiotic* means a compound that does not naturally occur in living organisms, in this case, fish. In addition to an overall summary, the discussion of results for xenobiotic compounds is contained in three sections—xenobiotics detected in samples from greater than 50 percent of the sites, between 10 and 50 percent of the sites, and less than 10 percent of the sites. Within each of the three principal sections, information is provided, as appropriate, on high concentration sources, geographical distribution, and source correlation analysis.

Chemical profile data and information for all of the 45 xenobiotics is presented in Appendix C, Volume II. This information includes physical/chemical properties, standards and criteria, chemical uses, and health effects. Concentration data for individual fish samples, as well as information on where the samples were collected, can be found in Appendix D, Volume II. The number of samples taken and analyzed by site can be determined by counting the samples for a given site (episode number) in the data tables (Appendix D, Volume II). The number of fish in each composite sample is provided in Appendix D-6 (Volume II). Other values for a given site can be reviewed by identifying the episode number for the site from the site matrix (Table B-3, Appendix B, in Volume I or Table D-1, Appendix D, in Volume II) and then looking at the data in the raw data tables (Appendix D, Volume II).

PREVALENCE AND CONCENTRATION SUMMARY

A total of 45 compounds were measured in the fish tissue samples; these compounds include 34 organic compounds, PCBs with 1 to 10 substituted chlorines, and mercury. Summary data regarding the prevalence and concentration of these compounds can be found on Table 4-1 and Figure 4-1. Six pesticides, PCBs, three other industrial organic chemicals, and mercury were detected at more than 50 percent of the sites. All the compounds were detected in samples from at least one site. The compounds detected at more than 50 percent of the sites are as follows:

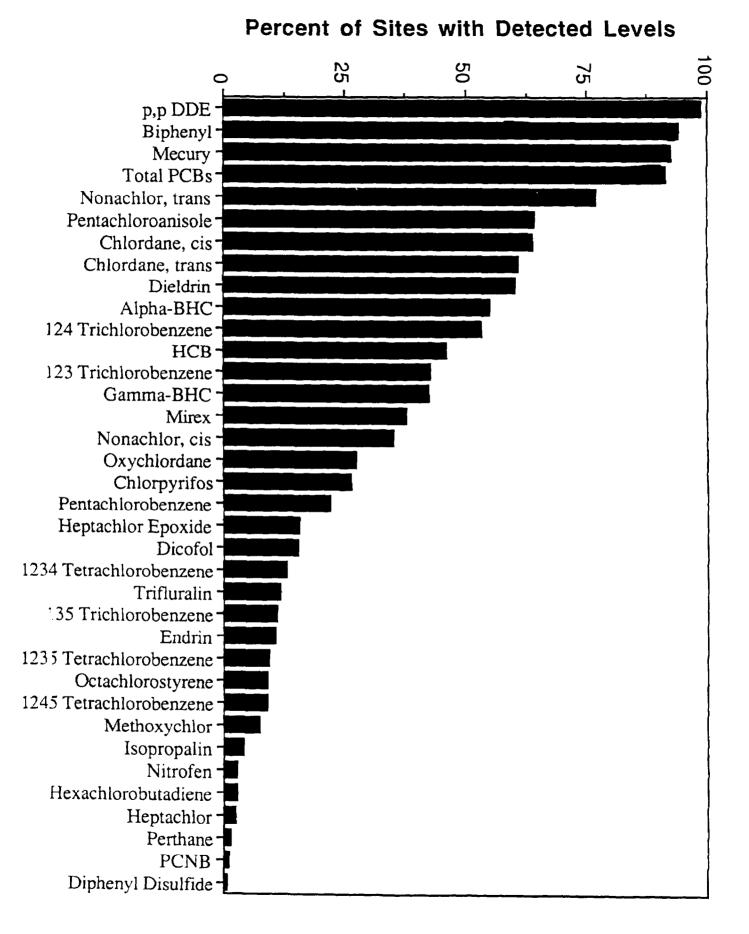

r	*****	1				1	1
Chemical	Percent of Sites Where Detected	Max	Mean*	Standard Deviation	Median*	Total Number of Sites	D
Chernical	Letected	MidA *		Langer and the second s	- Methani	11 Shiba	+
+ +00E		14000		Inits are ng/g)	58.25	362	26
p,pDDE	98.5	14028	295.28	972.65	170	374	36
Mercury Total PCBs	92.2	1770	1897.88	0.28 7557.8	208.78	362	35
	91.4	124192					7
Biphenyl	93.9	131	2.71	10.4	0.64	362	25
Nonachior, Trans	77.1	477	31.24	56.92	9.22	362	23
Chlordane, cis	64.1	378	21.05	42.76	3.66	362	
Pentachloroanisole	64.4	647	10.77	52.06	0.92	362	13
Chlordane, Trans	61.0	310	16.68	36.74	2.68	362	23
Dieldrin	60.2	450	28.14	58.37	4.16	362	27
Alpha-BHC	55.0	44.4	2.41	4.53	0.72	362	11
124 Trichlorobenzene	53.3	264.8	3.10	19.41	0.14	362	2
Hexachiorobenzene	45.9	913	5.80	49.79	ND	362	12
Gamma-BHC	42.3	83.3	2.70	7.07	ND	362	14
123 Trichlorobenzene	42.5	69	1.27	5.57	ND	362	3
Mirex	37.8	225	3.86	17.74	ND	362	34
Nonachlor, cis	35.1	127	8.77	17.94	NO	362	31
Oxychlordane	27.3	243	4.75	17.76	ND	362	22
Chlorpyritos	26.2	344	4.09	20.16	ND	362	18
Pentachlorobenzene	22.1	125	1.18	7.9	ND	362	9
Heptachlor Epoxide	15.7	63.2	2.19	7.36	ND	362	21
Dicofol	15.5	74.3	0.98	5.18	ND	362	33
1234 Tetrachlorobenzene	13.0	76.65	0.47	4.23	ND	362	8
Tritturalin	11.6	458	5.98	32.01	ND	362	10
135 Trichlorobenzene	11.0	14.9	D.12	0.95	NG	362)
Endrin	10.50	162	1.69	11.22	NO	362	29
1235 TECB	9.40	28.3	0.34	2.1	ND	362	6
Octachlorostyrene	9.1	138	1.71	9.9	ND	367	20
1245 TECH	9.1	28.3	0.33	2.09	ND	362	5
Methoxychlor	7.2	393	1.32	20.68	NO	362	32
Isopropalin	3.9	37.5	0.46	2.96	NO	362	19
Nitrolen	2.8	17.9	0.17	1.42	NO	362	28
Hexachlorobutadiens	2.8	164	0.57	8.72	NO	362	4
Heptachior	2,21	76.2	0.35	4.2	ND	362	17
Perthane	1.4	5.12	0.03	0.35	ND	362	30
Pentachioronitrobenzene	1.1	15.5	0.09	1.1	ND	362	15
Diphenyl Disulfida	0.6	3.24	0.02	0.22	ND	362	16

 TABLE 4-1

 Summary of Xenobiotic Compounds in Fish Tissue

Note: D is designation of chemical on histogram (Figure 4-1)

In cases where multiple samples were analyzed per site, the value used represents the highest concentration.

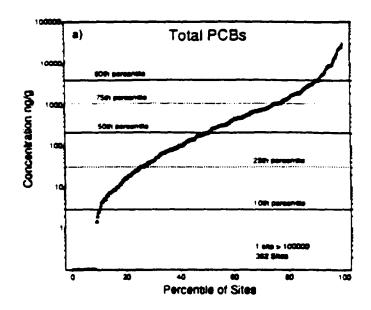
More than 50 Percent	10 to 50 Percent	Less Than 10 Percent
of the Sites	of the Sites	of the Sites
Total PCBs Biphenyl Mercury Pentachloroanisole 1,2,4 Trichlorobenzene Pesticides: DDE trans-Nonachlor cis-Chlordane trans-Chlordane Dieldrin alpha-BHC ¹	Hexachlorobenzene 1,2,3 Trichlorobenzene Pentachlorobenzene 1,2,3,4 Tetrachlorobenzene 1,3,5 Trichlorobenzene Pesticides/Herbicides: gamma-BHC ¹ Mirex cis-Nonachlor Oxychlordane Chlorpyrifos Heptachlor Epoxide Trifluralin Dicofol Endrin	Octachlorostyrene 1,2,4,5 Tetrachlorobenzene 1,2,3,5 Tetrachlorobenzene Hexachlorobutadiene Diphenyl Disulfide Pesticides/Herbicides: Methoxychlor Isopropalin Nitrofen Heptachlor Perthane Pentachloronitrobenzene

Mean fish tissue concentrations were highest for total PCBs and p,p'-DDE at 1890 and 295 ng/g, respectively (Table 4-1). These two compounds were also detected at over 90 percent of the sampled sites. Mean concentrations of trans-nonachlor and dieldrin were the next highest at 31 and 28 ng/g, respectively. These compounds were also found at a large number of sites, 77 and 60 percent of the sampled sites, respectively. Biphenyl was detected at a large percentage of sites (91 percent), but the levels at most sites were low. Only 12 percent of the sites had biphenyl concentrations above the quantitation level (2.5 ng/g).

As previously discussed in Chapter 3 for dioxins/furans, point and nonpoint sources were divided into nine categories plus NASQAN sites for geographic coverage throughout the country. Below is a listing of the number of sites included in each category for xenobiotics. The number of sites for xenobiotics will be different from the number of sites for dioxins/furans for reasons presented in Chapter 3, as well as the fact that not all xenobiotics were analyzed at all sites.

¹ Alpha-BHC and gamma-BHC (or Lindane) are formally known as α-hexachlorocyclohexane and γ-hexachlorocyclohexane, respectively. The former chemical designations are used in this document.

Number		Number
Category	Abbreviation	of Sites
Background	В	22
USGS NASQAN	NSQ	40
Paper Mills using Chlorine	PPC	42
Other types of Pulp and Paper Mills	PPNC	17
Wood Preserving Plants	WP	11
Refineries/Other Industries	R/I	5
NPL (Superfund Sites)	NPL	6
Industry/Urban	IND/URB	35
Agriculture	AGRI	19
POTW	POTW	8


COMPOUNDS DETECTED AT MORE THAN 50 PERCENT OF THE SITES²

Total PCBs

Total PCBs were detected at over 91 percent of the sites sampled with the median value of 208.78 ng/g (Figure 4-2a). Twenty-six percent of the sites had fish tissue concentrations greater than 1000 ng/g (Figure 4-2b). A major use of PCBs has been as dielectric fluids in transformers, capacitors, and electromagnets. Prior to 1974, PCBs were also used as plasticizers, lubricants, ink carriers, and gasket seals. PCB production in the United States stopped after 1977, and uses since then have been limited mostly to small, totally enclosed electrical systems in restricted access areas. PCBs can reach water bodies by runoff from PCB spills or electrical equipment fires, or runoff/seep-age from disposal sites containing PCB-contaminated soils and equipment.

Summary statistics for the PCB congeners with 1 to 10 substituted chlorines show that the median fish tissue concentration was highest for hexachlorobiphenyl followed by pentachlorobiphenyl (Table 4-2). Total PCBs in this study refers to the sum of the concentrations of compounds with 1 to 10 chlorines. Concentrations of specific Aroclor or mono-ortho substituted compounds were not determined in this study. PCBs were detected in all parts of the country with the highest levels detected in industrial regions. The prevalence of PCBs is consistent with their high bioaccumulation potential and persistence in the environment. The sites with the five highest concentrations are listed below:

² Four chemicals found at less than 50 percent of the sites are presented in this section to facilitate their discussion. These are gamma-BHC; 1,2,3 trichlorobenzene; cis-nonachlor; and oxychlordane.

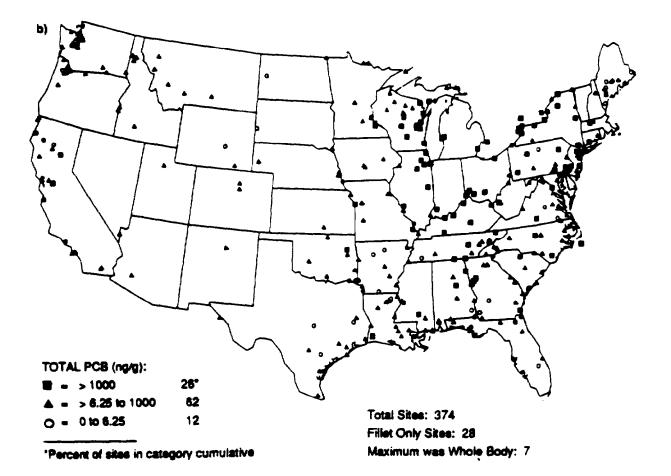
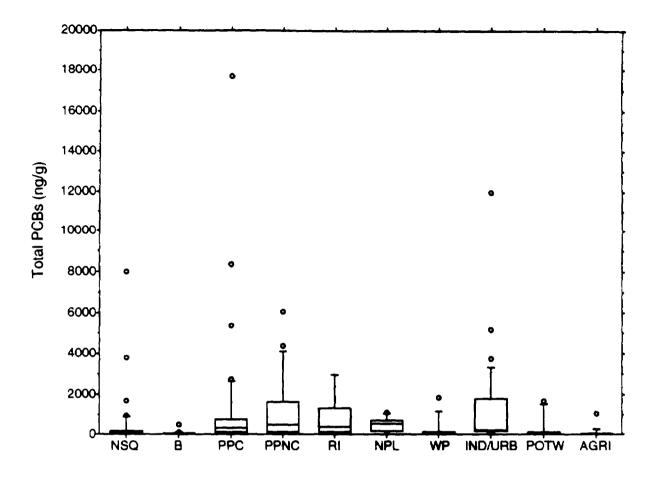


Figure 4-2. Total PCBs: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue.

TABLE 4-2 Summary of PCBs in Fish Tissue

Chemical	Percent of Sites Where Detected	Max*	Mean*	Standard Deviation	Median*	Total Number of Sites
Total Hexachlorobiphenyl	88.7	8862	355.93	867.13	76.85	362
Total Pentachlorobiphenyl	86.7	29578	564.70	1993.521	72.4	362
Total Tetrachlorobiphenyl	72.4	60764	696.23	3647.97	23.09	362
Total Heptachlorobiphenyl	69.1	1850	96.71	209.98	16.85	362
Total Trichlorobiphenyl	57.5	18344	149.80	1024.59	2.09	362
Total Octachlorobiphenyl	34.8	593	17.37	52	ND	362
Total Dichlorobiphenyl	30.7	5072	21.43	267.74	ND	362
Total Monochlorobiphenyl	13.8	235	1.22	12.56	ND	362
Total Decachlorobiphenyl	3.3	29.5	0.44	3.08	ND	362
Total Nonachlorobiphenyl	9.7	413	3.04	25	ND	362
Total PCBs	91.4		1897.88	7557.8	208.78	362

*Concentrations are nanograms per gram (ng/g) or parts per billion (ppb) by wet weight. In cases where multiple samples were analyzed per site, the value used represents the highest concentration.


Conc. ng/g	Episode Number	Type of Fish	Location
124192	3259	WB Sucker	Hudson R., Fort Miller, NY
29130	2429	WB Carp	Fox R., Depere Dam, WI
25240	3134	WB Sucker	Manitowoc R., Chilton, WI
24118	3182	WB Carp	Mud R., Russellville, KY
23809	3142	WB Carp	Sheboygan R., Kohler, WI

PCB contamination from past spills occurred in the vicinity of the first two sites and the last site. Fish samples with the next three highest PCB concentrations were collected at locations near various industrial and other source categories. It is not apparent from available information which, if any, of these sources can be identified as the cause of each of the next three highest PCB concentrations. Sources in the vicinity of these samples include a metal plating shop, a rendering plant, an incinerator, a water softening plant, a window manufacturing facility with wood treatment operations, and agriculture croplands.

The top 10 percentile sites (36 out of 362) included three additional sites on the Fox River and one additional site on the Hudson River. Historical PCB contamination was present at 12 of the top 10 percentile sites including five Superfund sites. The remaining top 10 percentile sites were located near industrial facilities including chemical and automobile manufacturing plants, foundries, refineries, and paper mills. Two of the sites in the top 10 percentile were located near plants with PCB discharge limits in their NPDES permits (one on the Grass River in New York and one on the Raquette River in New York). The box plot confirms that high concentrations of PCBs were associated with paper mills, refinery/other industry sites, Superfund sites, and industrial/urban areas (Figure 4-3). The two highest median concentrations were 525 ng/g for Superfund sites and 349 ng/g for refinery/other industry sites. The Kruskal-Wallis test (Table 4-3) showed that no dominant source existed.

Biphenyl

Biphenyl was detected at a large percentage of the sites (91.4 percent), but the concentrations at most sites were low. Eighty-eight percent of the sites had concentrations below 2.5 ng/g (Figure 4-4a). Biphenyl is used in the manufacture of PCBs and is also a breakdown product of PCBs. Biphenyl is also produced during the manufacturing of benzene and has other industrial uses as well. The sites with the five highest concentrations are listed below:

Summary Table for Total PCBs Box Plot

Site Category	_ <u>n</u> _	Concentration Range pg/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	 39	ND - 7977	449.1	1408.9	24.8
Background (B)	20	ND - 480	46.9	108.7	ND
Paper Mills Using CI (PPC)	39	ND - 17723	1247.0	3147.5	293.2
Other Paper Mills (PPNC)	17	ND - 6061	1225.1	1739.5	483.7
Refinery/Other Industry (R/I)	5	ND - 2974	833.5	1230.5	349.3
Superfund Sites (NPL)	6	2.51 - 1075	491.0	390.5	525.2
Wood Preservers (WP)	10	ND - 1804	260.6	561.4	38.6
Industria/Urban Sites (IND/URB)	31	2.54 - 12027	1277.9	2374. 9	213.2
POTW	6	ND - 1677	302.4	674.3	22.2
Agricultural (AGRI)	15	ND - 1064	97.4	274.1	8.6

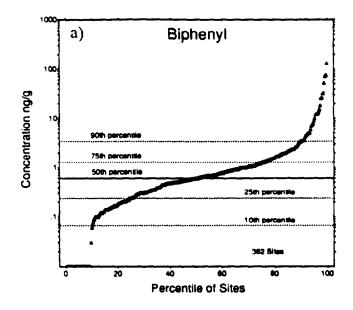
n = number of sites in category. ND's set at zero. Maximum concentrations at sites were used.

Figure 4-3. Box and whisker plot for total PCBs in fish tissue.

TABLE 4.3
Results of Statistical Tests for Selected Xenobiotics and Mercury

	Kruskal-V	Vallis					Man	n-Whitn	ey				
- Chemical	All Groups Except NSQ	All Groups Except NSQ, B	NPL, IND	PPC, IND	PPNC, IND	WP, IND	B, IND	AG, IND	POTW, IND	RI,B	RI, AG	R/I, Potw	R/I IND
Pentachloobenzene	.7614	.6393	.8529	.1954	.6821	.2246	.1995	.4121	.3227	.2088	.2949	.2733	.4368
1,2,3,4-Tetrachiorobenz	ene.8587	.7880	.7417	.8872	.3214	.9516	.7723	.5980	.7108	.2923	.1904	.2733	.2254
1,3,5-Trichlorobenzene	.9600	.9283	.9180	.3206	.8886	.3624	.5243	.2917	4583	.6836	.5127	.5839	.9818
Total PCBs	.0001	.0012	.8368	.3848	.9914	.0099	.0001	.0001	.0210	.0324	.0887	.2012	.9453
Biphenyl	.6338	.8390	.7417	.8685	.8716	.3164	.0842	.2275	.5640	.9458	.8273	.6481	.2723
Mercury	.0222	.0203	.3706	.5909	.8297	.0177	.0489	.0975	.0017	.6256	.5705	.0828	.0470
1,2,4-Trichlorobenzene	.0645	.0550	.9016	.0228	.7876	.0709	.1590	.2759	.7262	.2623	.3827	.7150	.8369
Hexachlorobenzene	.0970	.1176	.4836	.0164	.1996	.0210	.0167	.4968	.0580	.0832	.4581	.1207	.8014
1,2,3-Trichlorobenzene	.3530	.2811	.3127	.4214	.0511	.4038	.8094	.8697	.2840	.6836	.7600	.2733	.7837
Pentachloranisole	.0473	.1979	.6356	.4079	.1036	.2486	.0613	.2321	.7262	.1968	.2752	.8551	.6974

	Kruskal-Wallis			Mann-Whitney				
	PPC, PPNC	WP,	WP,	PPC,	POTW,	POTW,	POTW,	POTW,
Chemical	R/I,NPL,IND	PPC	PPNC	PPNC	PPC	NPL	R/I	WP
Total PCBs	.9058					_	_	-
Pentachloranis	iole — eloi	.1181	.0350	.2256		-		<u> </u>
Mercury			_	-	.0158	.1093	.0828	.0562


Values shown are two-tail probabilities that groups are different. The critical level was set at 0.05. If p<0.05, the categories were considered to be significantly different.

NSQ =

Site Categories:

- IND/URB = Industry and/or Urban
- Agriculture AG Ξ
- В Background æ

- National ambient stream quality monitoring network. (This designation is independent of source categories.) WP
- National Priority List (Superfund site) NPL Ξ
- POTW Publicly Owned Treatment Works (sewage) =
- = Wood preserving related activities
- Paper and pulp mills using chlorine for bleaching PPC =
- Other paper and pulp mills including deinking plants PPNC =
- R/I Refineries using catalytic reforming process and other industry Ξ

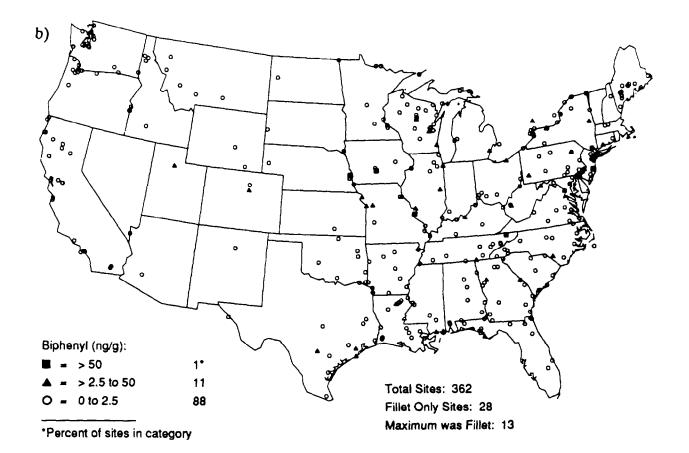
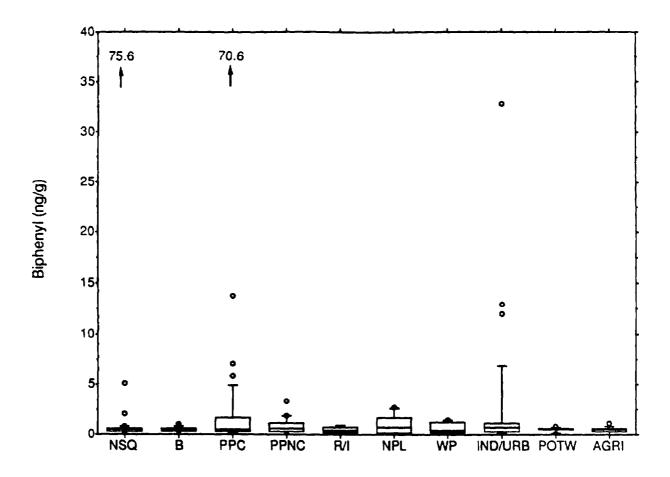


Figure 4-4. Biphenyl: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue.

Biphenyl

Conc.	Episode Number	Type of Sample	Location
131.7	2654	WB Carp	Toms River, NJ
75.6	3042	WB Carp	Missouri R., Omaha, NE
70.6	3403	WB River Carpsucker	Holston R., S. Fork, Kingsport, TN
70.2	3038	WB Carp	Des Moines R., Des Moines, IA
53.8	3115	PF Catfish	Mississippi R., E. St. Louis (Sauget), IL


These five sites are near chemical manufacturing plants as were 24 of the top 36 sites representing the highest 10 percentile. The remaining sites were near Superfund sites or paper mills. The overall geographic distribution of biphenyl concentrations and the cumulative frequency distribution show that high concentrations (>50 ng/g) were detected mostly in the Midwest and Northeast (Figure 4-4b).

A comparison of source categories for biphenyl (Figure 4-5) shows that Superfund sites had the highest median concentration, 0.76 ng/g. A Kruskal-Wallis test for all categories except NASQAN and background showed that no significant differences between categories existed (Table 4-3).

Mercury

Mercury was detected in at least one sample from 92 percent of the sites. Mercury has been used in making batteries, lamps, thermostats, and other electrical devices and as a fungicide in latex and exterior water-based paints. Effective August 1990, mercury was banned from interior paint. Mercury is present in soil as a component of a number of minerals (e.g., cinnabar, HgS). It is also discharged to the atmosphere from natural degassing processes and from the burning of fossil fuels. Mercury compounds occur in both organic and inorganic forms. In fish tissue it is nearly all in the organic form, methylmercury. The measured mercury concentrations were usually higher in the fillet samples than in the whole-body samples. This is because, unlike the other organic chemicals studied, organic mercury compounds are taken up and stored in muscle tissue rather than the lipid. There were, however, 15 sites where the concentration in a whole-body sample was higher than that in a fillet sample from the same site. This disparity may have been due to a number of factors, including species variability, stomach content (which may include significant quantities of contaminated sediment ingested during feeding), and other variables.

The measured concentrations ranged up to $1.77 \,\mu g/g$ with 2 percent of the sites greater than $1 \,\mu g/g$ (Figure 4-6a); most of the higher concentrations were in the Northeast (Figure 4-6b). The highest concentration was on the Wisconsin River near Boom Bay at Rhinelander, Wisconsin. The sites with the five highest concentrations are given below:

Summary Table for Biphenyl Box Plot

		Concentration Range			
Site Category	n	ng/g	Mean	Stan. Dev.	Mediar
NASQAN (NSQ)	39	ND-75.6	2.51	12.04	0.49
Background (B)	20	ND-1.04	0.42	0.30	0.38
Paper Mills Using CI (PPC)	39	ND-70.6	3.18	11.36	0.54
Other Paper Mills (PPNC)	17	ND-3.35	0.87	0.87	0.61
Refineries/Other Industry (R/I)	5	ND-0.98	0.44	0.40	0.43
Superfund Sites (NPL)	6	ND-2.7	0.97	1.09	0.76
Wood Preservers (WP)	10	ND-1.5	0.60	0.60	0.45
Industrial/Urban Sites (IND/URB)	31	ND-32.8	2.56	6.38	0. 68
POTW	6	0.1 -0.79	0.55	0.24	0.63
Agricultural (AGRI)	15	ND-1.11	0.48	0.31	0.53

n = number of sites in category. ND's set at 0. Maximum concentrations at sites were used.

Figure 4-5. Box and whisker plot for biphenyl in fish tissue.

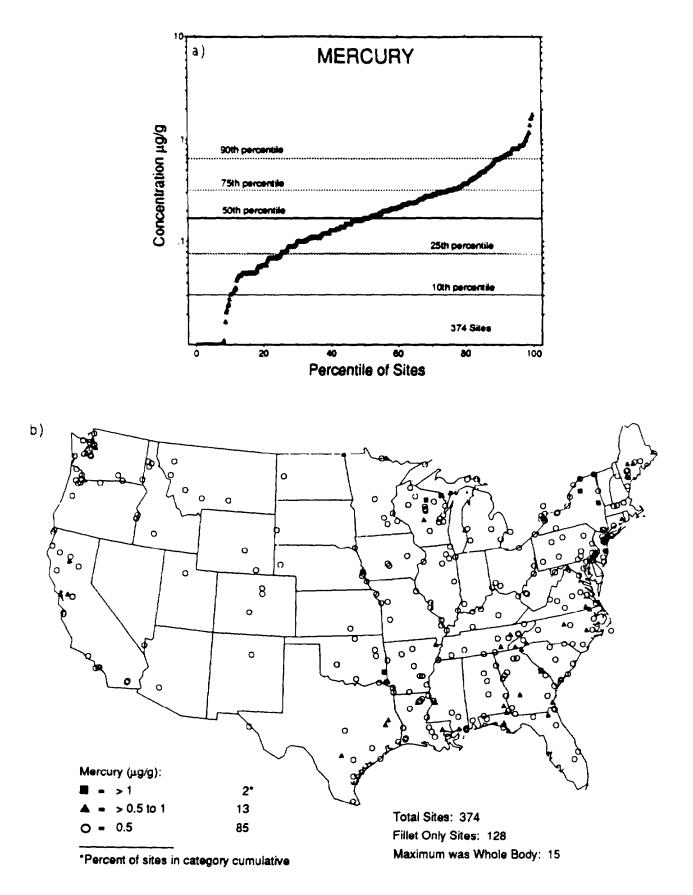
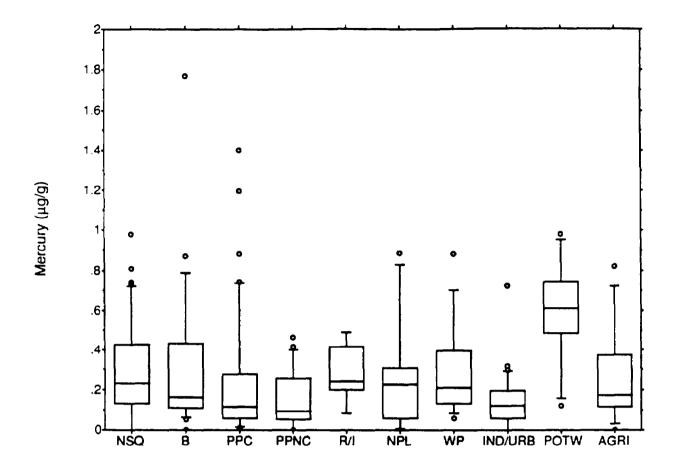


Figure 4-6. Mercury: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue.

Mercury

Conc. <u>µg/g(ppm)</u>	Episode Number	Type of Sample	Location
1.77	2397	PF Walleye	Wisc. R/Boom Bay, Rhinelander, WI
1.66	3259	PF Lm Bass	Hudson R., Fort Miller, NY
1.63	2027	PF Lm Bass	Kiamichi R., Big Cedar, OK
1.40	3122	WB Carp	Menominee R., Quinnesac, MI
1.13	2290	PF Lm Bass	Savannah R., Augusta, GA


The fish sample with the highest concentration was found at a site designated as background. The site with the third highest concentration was designated as background and agriculture. Additional investigation at these sites is needed to determine sources of mercury contamination. Industrial facilities located in the vicinity of the other three top five sites include pulp and paper mills, a pesticide manufacturing plant, and a textiles facility.

Ten of the sites with the highest 10 percentile concentrations were near paper mills. Four were near Superfund sites, and most of the remaining were from industrial areas. Sources could not be identified at all of these sites. Five sites considered to represent background conditions and six NASQAN sites were included in the top 10 percentile sites.

The box plot for mercury shows that the highest median concentration $(0.61 \ \mu g/g)$ was for POTWs (Figure 4-7). The remaining median values had a relatively small range with the lowest being background at 0.09 $\mu g/g$ and the highest being refinery/other industry at 0.24 $\mu g/g$.

Pentachloranisole

Pentachloroanisole was detected in at least one sample from 65 percent of the sites with the median concentration of the sites at 0.9 ng/g (Figure 4-8a). The majority of the higher concentration sites (greater than 2.5 ng/g) are in the eastern part of the country (Figure 4-8b). This compound is a metabolic breakdown product of pentachlorophenol (PCP). PCA is retained in the fish and is therefore easier to measure. The primary uses of PCP are for treating telephone poles, fence posts, and railroad ties. This compound is also used as an antimicrobial agent in pulp and paper manufacturing, to control slimes in cooling towers, and to make anti-fouling paint. Prior to 1984, it was used in the production of the pesticide sodium pentachlorophenate and as a herbicide. The sites with the five highest concentrations out of 362 are listed below.



Summary Table for Mercury Box Plot

		Concentration Range			
Site Category	<u> </u>	μ g/g	Mean	Stan. Dev.	Mediar
NASQAN (NSQ)	39	ND - 0.98	0.2 9	0.25	0.23
Background (B)	21	ND - 1.77	0.34	0.40	0.16
Paper Mills Using CI (PPC)	40	ND - 1.4	0.26	0.33	0.12
Other Paper Mills (PPNC)	17	ND - 0.46	0.16	0.15	0.09
Refinery/Other Industry (R/I)	5	0.08 - 0.49	0.29	0.16	0.24
Superfund Sites (NPL)	6	ND - 0.89	0.28	0.32	0.22
Wood Preservers (WP)	11	0.06 - 0.88	0.31	0.24	0.21
Industrial/Urban Sites (IND/URB)	33	ND - 0.72	0.15	0.14	0.12
POTW	6	0.12 - 0.98	0.59	0.30	0.61
Agricultural (AGRI)	15	ND - 0.82	0.27	0.24	0.17

n = number of sites in category. ND's set at 0. Maximum concentrations at sites were used.

Figure 4-7. Box and whisker plot for mercury in fish tissue.

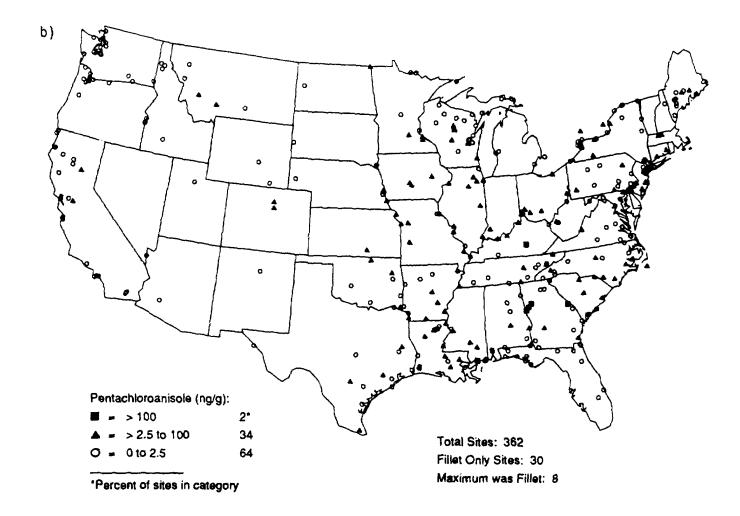
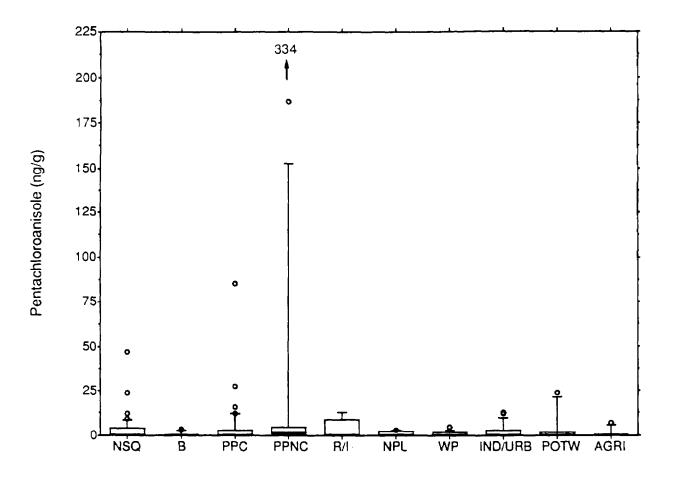


Figure 4-8. Pentachloroanisole: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue.

Pentachloroanisole

Conc. ng/g	Episode Number	Type of Fish	Location
647	3375	WB Carp	Chattahoochee R., Austell, GA
570	3185	WB Channel Catfish	Bernard Bayou, Gulfport, MS
334	3376	WB Carp	Chattahoochee R., Whitesburg, GA
240	2618	WB Quillback	Hamilton Canal, Hamilton, OH
187	3377	WB Carp	Chattahoochee R., Franklin, GA

A wood treatment plant and Superfund site with solvents present are located near the Bernard Bayou site. The Hamilton Canal site is near a paper mill and Superfund site. The other three top five sites are located near paper mill operations. Eight of the top 36 sites (highest 10 percentile) were located near Superfund sites of which four were related to wood preserving. Paper mills were located near 17 of the top 36 sites.


The box plot for pentachloroanisole shows that the highest median concentration was 1.7 ng/g for nonchlorine paper mills (Figure 4-9). The second highest median concentration was for sites near pulp and paper mills that use chlorine in the bleaching process (0.8 ng/g).

1,2,3 and 1,2,4 Trichlorobenzene

The compounds 1,2,3 trichlorobenzene and 1,2,4 trichlorobenzene (TCB) were detected in at least one sample at 42 percent and 53 percent of the sites, respectively. The median concentrations, however, were low (below detection for 1,2,3 TCB and 0.14 ng/g for 1,2,4 TCB) (Figure 4-10a,b). The two compounds are used in a variety of industrial applications including 1,2,4 TCB as a solvent and dielectric fluid and 1,2,3 TCB as a coolant in electrical installations, in the production of dyes, and in products to control termites. The sites with concentrations above 2.5 ng/g are located for the most part near industrial organic chemical manufacturing plants. The five sites with the highest concentrations out of 362 sites are as follows:

1,2,3 TCB

Conc.	Episode Number	Type of Fish	Location
69 .0	2056	WB Carp	Ohio R., West Point, KY
54.9	3097	PF Brown Bullhead	Red Lion Cr., Tybouts Corner, DE
30.2	3164	WB Carp	Haw R., Saxapahaw, NC
26.8	3376	WB Carp	Chattahoochee R., Whitesburg, GA
24.8	2341	WB Carpsucker	Ohio R., Markland, KY

Summary Table for Pentachloroanisole Box Plot

		Concentration Range			
Site Category	<u>n</u>	ng/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND - 46.8	3.75	8.48	0.33
Background (B)	20	ND - 3.33	0.59	1.14	ND
Paper Mills Using CI (PPC)	39	ND - 85.1	5.46	14.32	0.77
Other Paper Mills (PPNC)	17	ND - 334	33.10	89.53	1.67
Refinery/Other Industry (R/I)	5	ND - 13.2	4.21	5.97	0.32
Superfund Sites (NPL)	6	ND - 2.99	1.00	1.39	0.22
Wood Preservers (WP)	10	ND - 4.47	0.86	1.46	ND
Industrial/Urban Sites (IND/URB)	31	ND - 13	2.44	3.88	0.42
POTW	6	ND - 24.20	4.42	9.72	0.16
Agricultural (AGRI)	15	ND - 7.31	1.18	2.34	ND

n = number of sites in category. ND's set at 0. Maximum concentrations at sites were used.

Figure 4-9.	Box and whisker	plot for	pentachloroanisole in	fish tissue.
-------------	-----------------	----------	-----------------------	--------------

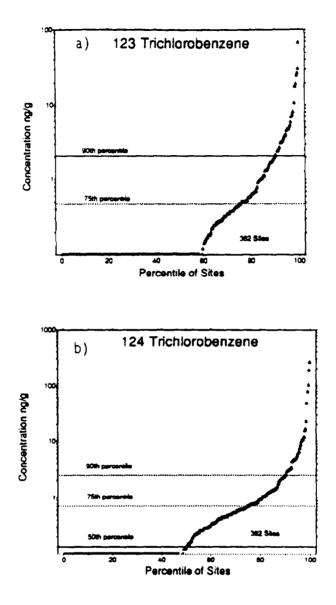
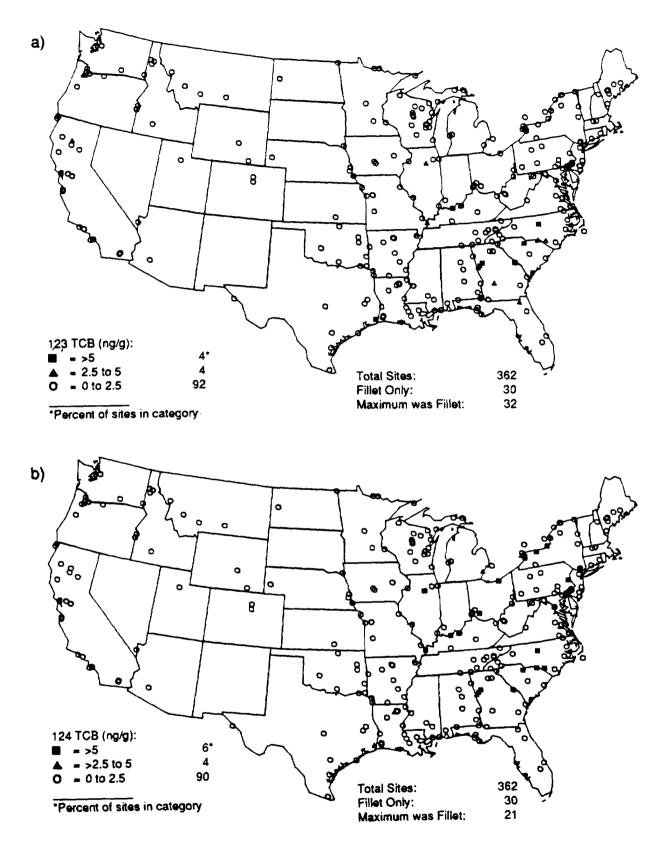


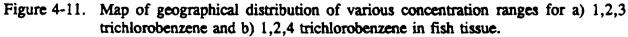
Figure 4-10. Cumulative frequency distributions of a) 1,2,3 trichlorobenzene and b) 1,2,4 trichlorobenzene in fish tissue. (Maximum concentration at each site was used. The bar along the x-axis indicated values below the detection.)

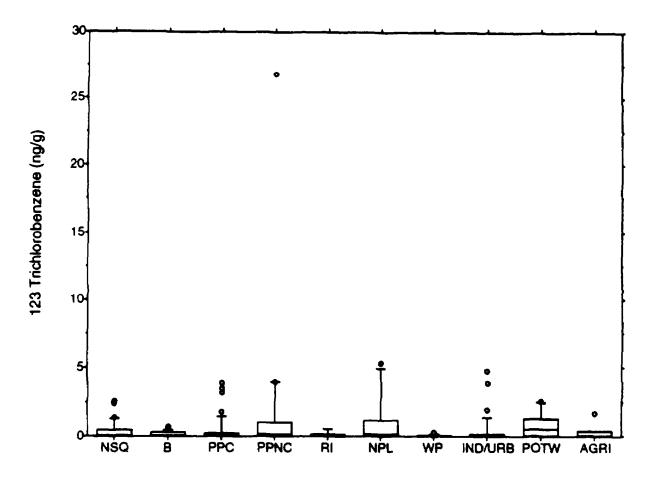
Episode Number	Type of Fish	Location
2654	WB Carp	Toms R., NJ
2056	WB Carp	Ohio R., West Point, KY
2290	WB Spotted Sucker	Savannah R., Augusta, GA
3097	PF Brown Bullhead	Red Lion Cr., Tybouts Corner, DE
3411	WB Redhorse Sucker	Rochester Embayment, Rochester, NY
	<u>Number</u> 2654 2056 2290 3097	NumberType of Fish2654WB Carp2056WB Carp2290WB Spotted Sucker3097PF Brown Bullhead

1,2,4 TCB

Two of the sites are the same for both 1,2,3, TCB and 1,2,4 TCB. Of the other eight sites shown above, three are near Superfund sites with chlorobenzene contamination (3181, 3097, 2654). Two sites are near paper mills (3376, 2290), one is near a chemical manufacturing plant (3411), and the remaining two are near agricultural/rural areas. For 1,2,4 TCB, nine of the highest 36 sites were near Superfund sites. Chemical manufacturing facilities are near 12 of the sites and paper mills near another six sites. Distribution of 1,2,3 TCB and 1,2,4 TCB is shown in Figures 4-11 a,b. The highest mean concentration for 1,2,3 TCB is 2.2 ng/g from nonchlorine paper mills and for 1,2,4 TCB is 3.2 ng/g for sites in the industrial/urban category (Figures 4-12 and 4-13).

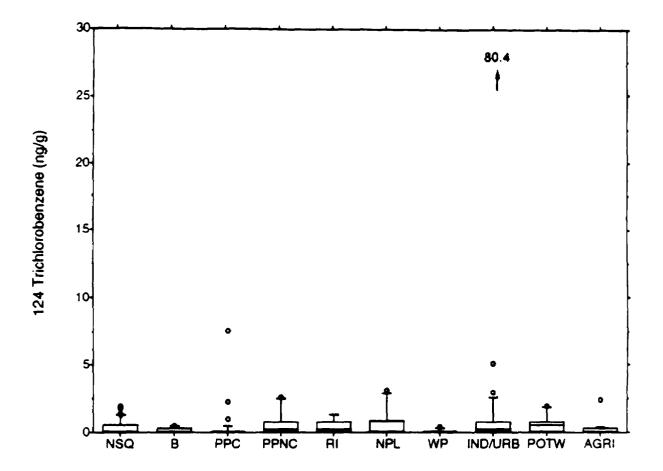

Pesticides/Herbicides


DDE


The most frequently detected xenobiotic compound was p,p'-DDE at 98.6 percent of the sampled sites (Figure 4-14a). DDE is a metabolic breakdown product of the widely-used pesticide DDT. The geographic distribution of fish tissue concentrations (Figure 4-14b) shows the widespread occurrence of DDE, which is consistent with historic pesticide use patterns of DDT (see profile in Appendix C). The prevalence of DDE at a large number of sites, even though use of DDT was banned in 1972, is consistent with its persistence in the aquatic environment and its high bioaccumulation potential. The concentrations of DDE found at the top 5 out of 362 sites sampled are listed below:

p,p' -DDE

Conc. ng/g	Episode Number	Type of Fish	Location
14028	3315	WB Carp	Union Canal, Lebanon, PA
8708	3282	WB Carp	Alamo R., Calipatria, CA
3221	3084	WB Channel Catfish	Arroyo Colorado, Harlingen, TX
3214	3212	WB Carp	Owyhee R., Owyhee, OR
2493	3231	WB Carp	Yakima R., Richland, WA



Summary Table for 1,2,3-Trichlorobenzene Box Plot

Concentration Range						
Site Category	<u>n</u>	pg/g	Mean	<u>Stan. Dev.</u>	<u>Median</u>	
NASQAN (NSQ)	39	ND - 2.6	0.39	0.67	ND	
Background (B)	20	ND - 0.69	0.14	0.22	ND	
Paper Mills Using CI (PPC)	39	ND - 3.92	0.42	0.98	ND	
Other Paper Mills (PPNC)	17	ND - 26.8	2.25	6.46	0.16	
Refinery/Other Industry (R/I)	5	ND - 0.51	0.10	0.23	ND	
Superfund Sites (NPL)	6	ND - 5.34	1.13	2.11	0.16	
Wood Preservers (WP)	10	ND - 0.29	0.03	0.09	ND	
Industrial/Urban Sites (IND/URB)	31	ND - 4.77	0.43	1.12	ND	
POTW	6	ND - 2.60	0.83	1.05	0.51	
Agricultural (AGRI)	15	ND - 1.71	0.21	0.45	ND	

n = number of sites in category. ND's set at 0. Maximum concentrations at sites were used.

Figure 4-12. Box and whisker plot for 1,2,3 tricholorbenzene in fish tissue.

Summary Table for 1,2,4-Trichlorobenzene Box Plot

Concentration Range						
Site Category	<u>n</u>	pg/g	Mean	<u>Stan. Dev.</u>	Median	
NASQAN (NSQ)	39	ND - 1.97	0.36	0.55	ND	
Background (B)	20	ND - 0.47	0.17	0.19	0.08	
Paper Mills Using CI (PPC)	39	ND - 7.58	0.33	1.26	ND	
Other Paper Mills (PPNC)	17	ND - 16.1	1.44	3.86	0.24	
Refinery/Other Industry (R/I)	5	ND - 1.36	0.44	0.56	0.22	
Superfund Sites (NPL)	6	ND - 3.12	0.70	1.23	0.12	
Wood Preservers (WP)	10	ND - 0.42	0.07	0.14	ND	
Industria/Urban Sites (IND/URB)	31	ND - 80.4	3.24	14.36	0.20	
POTW	6	ND - 1.97	0.64	0.73	0.54	
Agricultural (AGRI)	15	ND - 2.46	0.28	0.62	0.09	

n = number of sites in category. ND's set at 0. Maximum concentrations at sites were used.

Figure 4-13. Box and whisker plot for 1,2,4 trichlorobenzene in fish tissue.

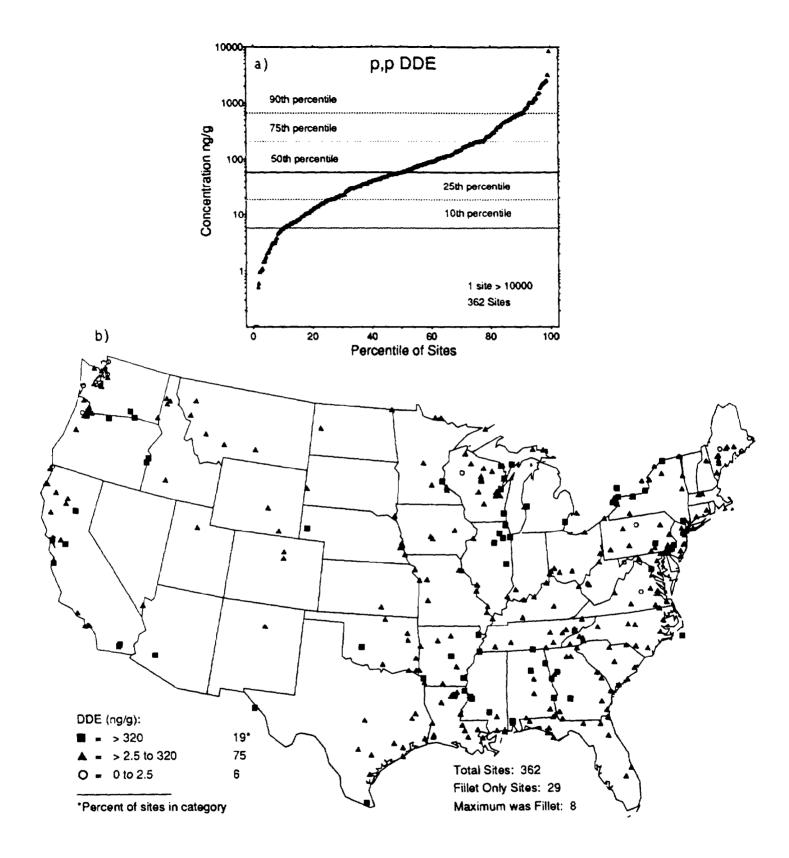
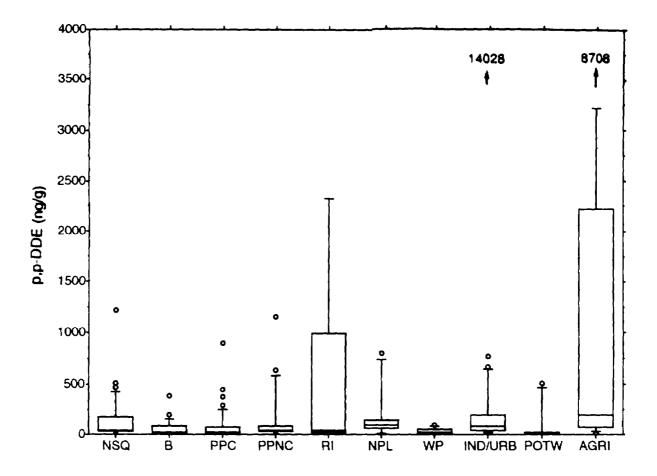


Figure 4-14. p,p'-DDE: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue.


The maximum DDE concentration was found in a whole-body carp sample from Union Canal at Lebanon. Pennsylvania, near pesticide manufacturing plants. The other four sites are located in agricultural areas.

Six of the highest 10 percentile sites (36 out of 362 sites) were also located in agricultural areas without industrial activities. Five of the sites were near Superfund sites. Most of the remaining sites were located in industrial areas. The box plot (Figure 4-15) shows that the highest median concentration was 201 ng/g for agricultural areas. Kruskal-Wallis tests (Table 4-4) comparing agricultural sites with Superfund and industrial/urban sites showed no significant differences with regard to fish contamination levels.

Chlordane and Related Compounds (Nonachlor and Oxychlordane)

The next most frequently detected pesticides were chlordane and the compounds related to chlordane. Chlordane, itself, is a chlorinated hydrocarbon that occurs in two forms—cis and trans. The cis-isomer was detected at about 3 percent more sites than the trans-isomer (Figure 4-16 a.b. c). Prior to 1987, this compound was widely used for termite and ant control and for agricultural uses such as dipping nonfood roots and tops. Also, prior to 1980 it was used to control insects on a variety of crops including corn, grapes, and strawberries. At present, it can be used only for subsurface termite control. Related compounds are cis- and trans-nonachlor and oxychlordane. Nonachlor is a component of chlordane (trans can be 7 to 10 percent in technical-grade chlordane (Takamiya, 1987)) as well as an impurity of heptachlor. Trans-nonachlor was detected at 77 percent of the sites, whereas cis-nonachlor was detected at only 35 percent of the sites (Figure 4-17 a,b, c). Oxychlordane is a metabolic breakdown product of chlordane. Oxychlordane was detected at 27 percent of the sites (Figure 4-16d). Nonachlor and chlordane have a high potential for bioaccumulation, while oxychlordane has a lower potential. The total chlordane and total nonachlor concentrations were compared for the same sample and found to be correlated based on a linear function (r^2) = 0.7) but not as strongly as cis- versus trans-chlordane ($r^2 = 0.89$). Total chlordane is the sum of the cis- and trans-chlordane isomer concentrations measured in the same sample. Total nonachlor is the sum of the cis- and trans-nonachlor isomers. The correlations are consistent with the multiple sources of nonachlor. Comparing the geographic distribution of the two compounds (Figure 4-18a,b) shows that most of the sites with high levels of total nonachlor (greater than 100 ng/g) also have a high level of chlordane.

The maximum concentrations at the top five sites for each of these compounds were detected near industrial areas and Superfund sites (Table 4-5). The Monongahela River at Clairton, Pennsylvania, an industrial area with manufacturing plants of inorganic chemicals and pesticides, had the highest concentrations of total, cis-, and trans-chlordane and total and trans- nonachlor. This site also had high concentrations of oxychlordane and cis-nonachlor. The highest concentrations of cis-nonachlor and oxychlordane were also in industrial areas, Lake Michigan at Waukegan, Illinois, and Peshtigo River Harbor, Peshtigo, Wisconsin, respectively. The remaining sites were located near various industrial areas involving the production of inorganic and organic chemicals, and pesticides. Sources for the top 10 percentile sites were predominantly industrial areas near chemical manufacturing plants (17 out of 36). Superfund sites were near 10 of the 36 sites. All of these sites were located in areas with nearby industrial activities. The highest median concentrations for chlordane were near Superfund sites and industry/urban areas (Figure 4-19). For total nonachlor

Summary Table for p.p'DDE Box Plot

Site Category	n	Concentration Range pg/g	Mean	<u>Stan. Dev.</u>	<u>Median</u>
NASQAN (NSQ)	39	1.09 - 1223	136,18	226.21	46.90
Background (B)	20	ND - 384	56.28	93.42	11.68
Paper Mills Using CI (PPC)	39	1.0 - 895	87.27	167.67	22.20
Other Paper Mills (PPNC)	17	0.9 - 1157	161.94	306.58	42.50
Refinery/Other Industry (R/I)	5	5.9 - 2329	586.87	1000.14	41.50
Superfund Sites (NPL)	6	1.5 - 805	200.17	300.35	97.95
Wood Preservers (WP)	10	1.65 - 91.5	33.13	32.7	16.85
Industrial/Urban Sites (IND/URB)	31	7.23 - 14028	602.34	2499.49	78.80
POTW	6	2.49 - 516	98.16	204.84	17.40
Agricultural (AGRI)	15	13.1 - 8708	1526.89	2313.13	201.00

n = number of sites in category. ND's set at 0. Maximum concentrations at sites were used.

Figure 4-15. Box and whisker plot for p,p'-DDE in fish tissue.

	Kruskal-Wallis		Mann-Whitney				
Chemical	All Groups Except NSQ	Ind/URB NPL, AG	B,PPC,PPNC WP,POTW		AG, NPL	AG, B	IND, B
Total Nonachlor	.0071	.7565	.1946	.5346	.5593	.0113	.0013
Trifluralin	.4822	.1363	.9870	.0809	.1021	.0956	.8926
Mirex	.6451	.8643	.3180	.6477	.6128	.4334	.7212
Heptachlor Epoxide	.9599	.7704	.9899	.6144	.8153	.8415	.7576
Dieldrin	.0891	.6856	.4053	.5269	.4835	.3861	.0176
Endrin	.8983	.5777	.7063	.6732	.5858	.8415	.8020
Chlorpyrifos	.4019	.5426	.4757	.6990	.4835	.5938	.2242
Alpha-BHC	.0905	.4388	.1437	.3989	.2129	.1880	.0087
Isopropalin	.9951	.7358	.9920	.4821	1.000	1.000	.4403
Total Chlordane	.0047	.6774	.2289	.6144	.3115	.0164	.0036
p,p' DDE	.0001	.1074	.5430	.0403	.1857	.0002	.0017
Gamma BHC	.0417	.3614	.0184	.2657	.6404	.1615	.0056
Dicofol	.6233	.2085	.8068	.0893	.2429	.2861	.4635
Oxychiordane	.2994	.7081	.9567	.4748	1.000	.6892	.1708

Table 4.4Results of Statistical Tests for Selected Xenobiotics(Pesticides/Herbicides)

Values shown are two-tail probabilities that groups are different. The critical level was set at 0.05. If p<0.05, the categories were considered to be significantly different.

Site Categories:

IND/URB	=	industry and/or urban
AG	=	Agriculture
В	Ξ	Background
NPL	=	National Priority List (Superfund site)
POTW	=	Publicly Owned Treatment Works (sewage)
R/I	=	Refines using catalytic reforming process and other industry

- NSQ = National Ambient Stream Quality monitoring network. (This designation is independent of source categories.)
- WP = Wood preserving related activities
- PPC = Paper and pulp mills using chlorine for bleaching
- PPNC = Other paper and pulp mills including deinking plants

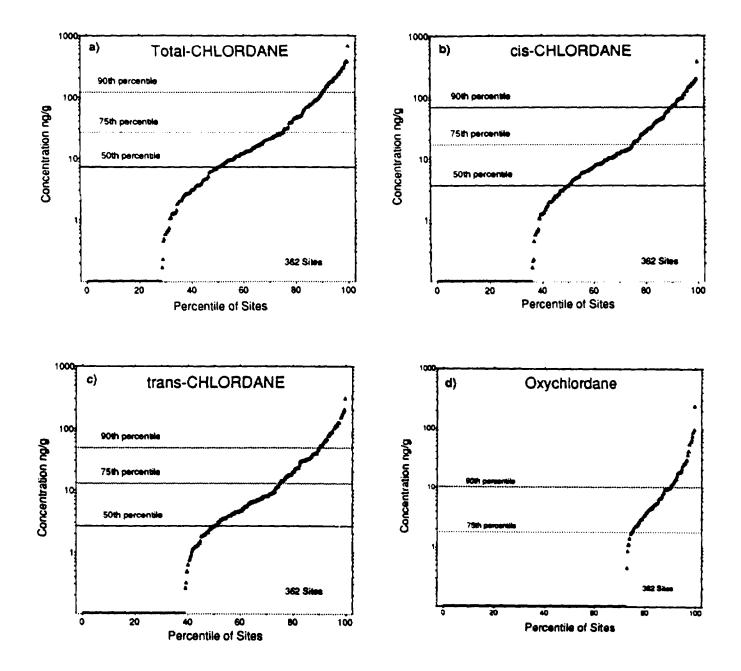


Figure 4-16. Cumulative frequency distribution of a) total chlordane, b) cis-chlordane, c) trans-chlordane and d) oxychlordane. (Maximum concentration at each site was used. The bar along the x-axis indicated values below the detection.)

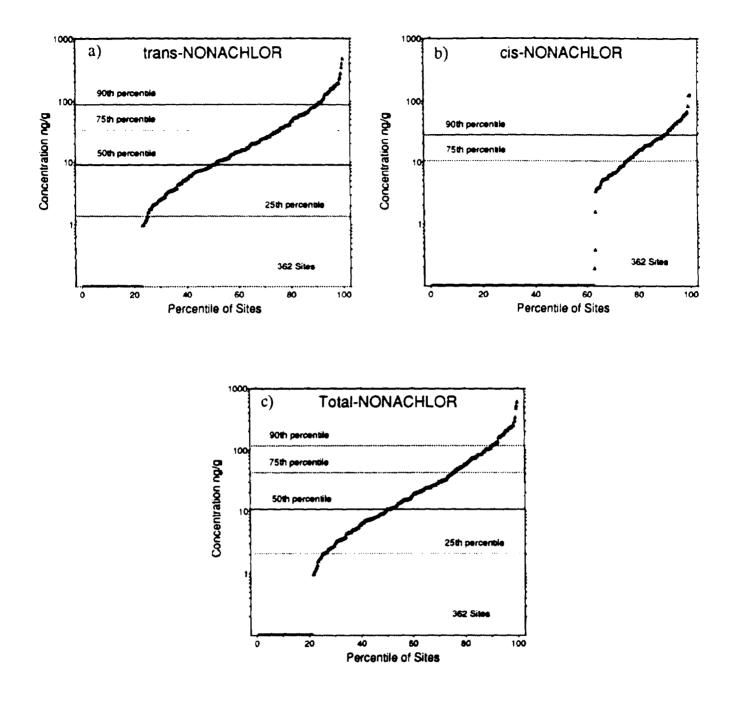


Figure 4-17. Cumulative frequency distribution of a) trans-nonachlor b) cis-nonachlor, and c) total nonachlor. (Maximum concentration at each site was used. Bar at x-axis represents sites with levels below detection.)

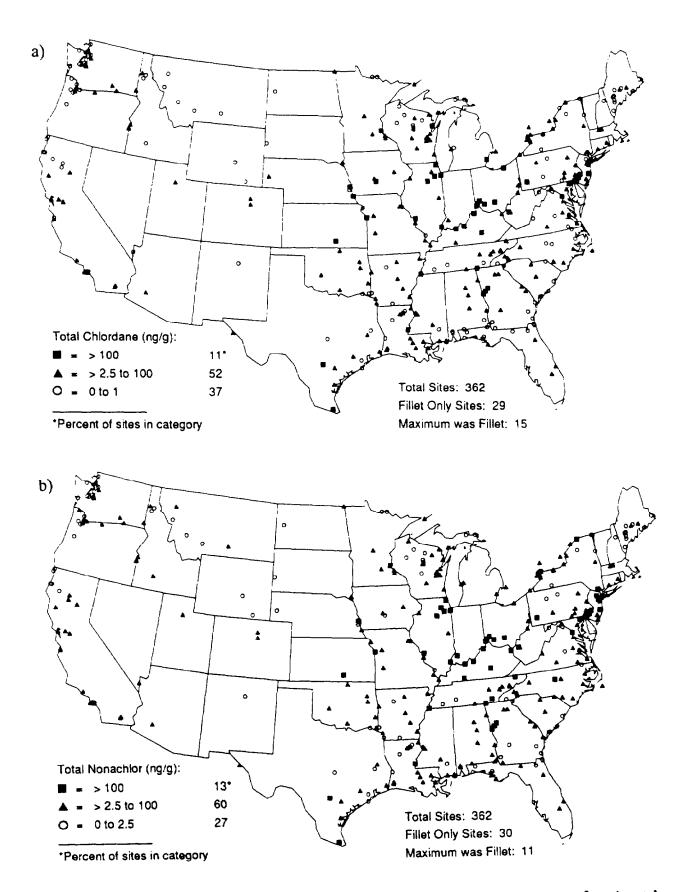
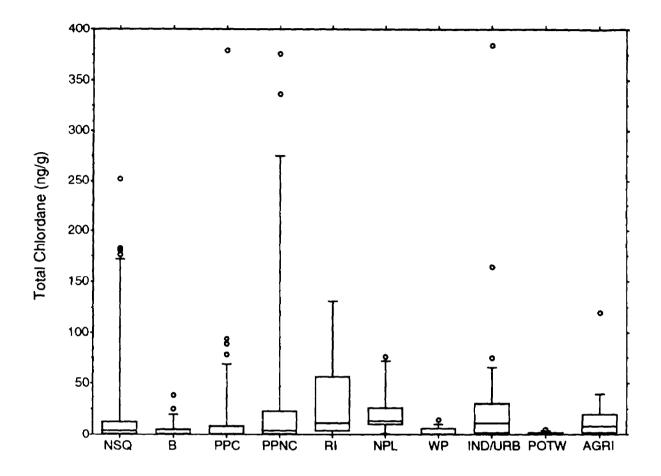


Figure 4-18. Map of geographical distribution of various concentration ranges for a) total chlordane and b) total nonachlor in fish tissue.

TABLE 4-5					
Sites With Highest Concentrations Of					
Chlordane Related Compounds					


-

	Maximum Concentration	Episode		
Chemical	ng/g	Number	Type of Fish	Location
Total Chlor	dane			
	688	2215	WB Carp	Monongahela, Clairton, PA
	384	3045	WB Carp	Missouri R., Kansas City, MO
	379	3435	WB Bigmouth Buffalo	Mississippi R., Natchez, MS
	376	3376	WB Carp	Chattahoochee R., Whitesburg, GA
	369	3048	WB Carp	Mississippi R., West Alton, MO
		50-06	WD Calp	Mississippi R., West Anoli, MO
cis-Chlorda			um a	
	378	2215	WB Carp	Monongahela R., Clairton, PA
	200	3048	WB Carp	Mississippi R., West Alton, MO
	196	3045	WB Carp	Missouri R., Kansas City, MO
	185	3376	WB Carp	Chattahoochce R., Whitesburg, GA
	179	2383	WB Carp	Des Plaines R., Lockport, IL
trans-Chlor	rdane			-
	310	2215	WB Carp	Monongahela R., Clairton, PA
	206	3435	WB Bigmouth Buffalo	Mississippi R., Natchez, MS
	191	3376	WB Carp	Chattahoochee R., Whitesburg, GA
	188	3045	WB Carp	Missouri R., Kansas City, MO
	182	2190	WB Carp	Nishnabotna R., Hamburg, IA
<u> </u>		2170	WB Carp	Nisiliaootta N., Haliburg, IA
Oxychlorda		2427		
	243	2427	WB Carp	Peshtigo R. Harbor, Peshtigo, WI
	96.2	2618	WB Carp	Hamilton Canal, Hamilton, OH
	91.4	2215	WB Carp	Monongahela R., Clairton, PA
	87.2	3117	PF Lake Trout	Lake Michigan, Waukegan, IL
	77	2439	WB Carp	Great Miami R., New Baltimore, OH
Total Nona	chlor			
	601	2215	WB Carp	Monongahela R., Clairton, PA
	521	3377	WB Carp	Chattahoochee R., Franklin, GA
	477	3117	PF Lake Trout	Lake Michigan, Waukegan, IL
	340.9	2394	WB Carp	Great Miami R., Franklin, OH
	299	3181	WB Carp	Ohio R., West Point, KY
		3101	mb Carp	Ono K., West I Ont, K I
cis-Nonach				
	127	3117	PF Lake Trout	Lake Michigan, Waukegan, IL
	124	2215	WB Carp	Monongahela R., Clairton, PA
	123	3377	WB Carp	Chattahoochee R., Franklin,GA
	83.2	3285	Stingray	Colorado Lagoon, Long Beach, CA
	65.7	2383	WB Carp	Des Moines R., Lockport, IL
trans-Nona	achlor		_	
	477	2215	WB Carp	Monongahela R., Clairton, PA
	398	3377	WB Carp	Chattahoochee R., Franklin, GA
	350	3117	PF Lake Trout	Lake Michigan, Waukegan, IL
	279	2394	WB Carp	Great Miami R., Franklin, OH
	242	3181	WB Carp	Ohio R., West Point, KY

Total number of sites for each chemical was 362.

_

Summary Table for Total Chiordane Box Plot

Site Category	n	Concentration Range pg/g	Mean	<u>Stan. Dev.</u>	Median
NASQAN (NSQ)	39	ND - 251.7	31.80	64.97	3.66
Background (B)	20	ND - 38.3	5.20	10.30	ND
Paper Mills Using CI (PPC)	39	ND - 379	20.54	63.90	ND
Other Paper Mills (PPNC)	17	ND - 376	48.73	116.27	4.52
Refinery/Other Industry (R/I)	5	ND - 131.5	35.45	55.00	11.2
Superfund Sites (NPL)	6	ND - 76.60	23.25	27.53	13.42
Wood Preservers (WP)	10	ND - 14.23	3.0	4.69	0.62
Industrial/Urban Sites (IND/URB)	31	ND - 384	32.80	73.25	11.29
POTW	6	ND - 4.86	1.42	1.95	0.63
Agricultural (AGRI)	15	ND - 120.4	17.20	30.68	7.85

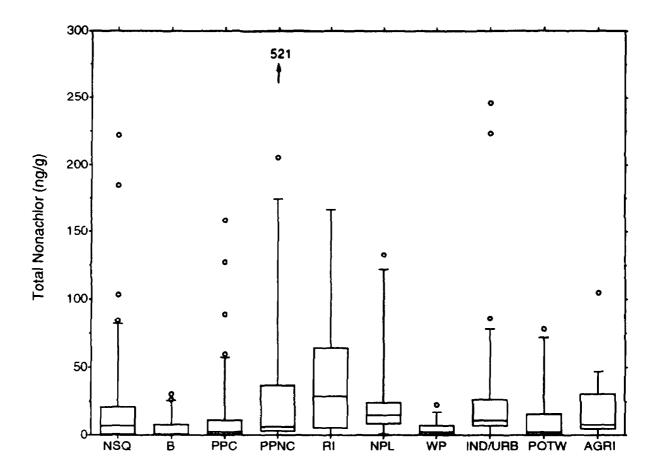
Figure 4-19. Box and whisker plot for total chlordane in fish tissue.

(Figure 4-20) the highest median concentrations were near refinery/other industry sites and industry/urban sites. The only median concentration above the detection limit for oxychlordane was near refinery/other industry sites (Figure 4-21). A single dominant source was not observed for either compound based on Kruskal-Wallis tests (Table 4-4).

Dieldrin

Dieldrin, an organochlorine pesticide widely used prior to 1974, was detected at 60 percent of the 362 sites, (Figure 4-22a). The cumulative frequency distribution shows 9 percent of the sites with a concentration above 100 ng/g (Figure 4-22b). The top 5 out of 362 sites for dieldrin are listed below:

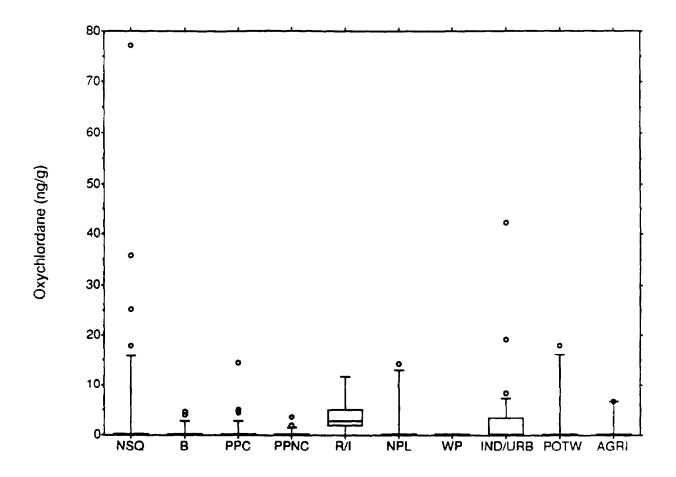
Dieldrin


Conc.	Episode	Type of Fish	Location
450	3161	WB Sucker	Cobbs Cr., Philadelphia, PA
405	3117	PF Lake Trout	Lake Michigan, Waukegan, IL
323	3036	WB Carp	Nishnabotna R., Hamburg, IA
312	2199	WB Bigmouth Buffalo	Missouri R., Lexington, MO
260	3272	WB White Surfperch	Lauritzen Canal, Richmond, CA

The first two sites are near Superfund sites in industrial areas. The next two sites are located in agricultural areas. The fifth site is located at a former pesticide packaging plant.

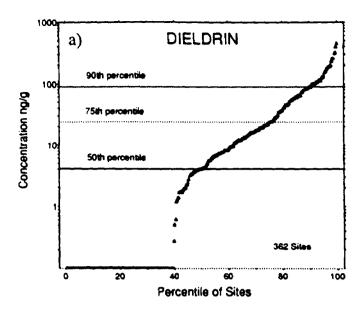
The highest median for dieldrin (13.0 ng/g) was for locations near Superfund sites and the next highest for sites near industrial/urban areas (9.9 ng/g) (Figure 4-23).

alpha/gamma-BHC


Prior to 1977, alpha-BHC was a component of technical grade gamma-BHC, or lindane. Lindane is an insecticide/acaricide which has been used to treat seeds, hardwood lumber, and livestock and also to control soil pests for tobacco, fruit, and vegetable crops. The five sites with the highest concentrations of 362 sites for alpha- and gamma-BHC are listed below.

Summary Table for Total Nonachlor Box Plot

		Concentration Range			
Site Category	<u>n</u>	pg/g	Mean	<u>Stan. Dev.</u>	<u>Mediar</u>
NASQAN (NSQ)	39	ND - 221.3	26.26	49.28	7.07
Background (B)	20	ND - 30.4	5.68	9.84	ND
Paper Mills Using CI (PPC)	39	ND - 159.3	17.70	36.10	2.29
Other Paper Mills (PPNC)	17	ND - 521	54.00	130.03	6.59
Refinery/Other Industry (R/I)	5	ND - 166.6	46.48	68.47	28.76
Superfund Sites (NPL)	6	ND - 132.9	32.35	49.92	14.7
Wood Preservers (WP)	10	ND - 22.52	5.07	7.15	2.01
Industrial/Urban Sites (IND/URB)	31	ND - 245	32.45	50.08	11.3
POTW	6	ND - 78.2	16.49	30.77	2.72
Agricultural (AGRI)	15	ND - 105.0	19.88	27.75	7.87


Figure 4-20. Box and whisker plot for total nonachlor in fish tissue.

Summary Table for Oxychlordane Box Plot

Concentration Range								
Site Category	<u>n</u>	ng/g	Mean	Stan. Dev.	Mediar			
NASQAN (NSQ)	39	ND - 77.0	4.67	14.11	ND			
Background (B)	20	ND - 4.64	0.50	1.34	ND			
Paper Mills Using CI (PPC)	39	ND - 14.4	0.73	2.5 9	ND			
Other Paper Mills (PPNC)	17	ND - 3.48	0.34	0.92	ND			
Refinery/Other Industry (R/I)	5	ND - 11.7	3.87	4.52	2.62			
Superfund Sites (NPL)	6	ND - 14.3	2.38	5.84	ND			
Wood Preservers (WP)	10	ND	ND	ND	ND			
Industrial/Urban Sites (IND/URB)	31	ND - 42.3	3.34	8.25	ND			
POTW	6	ND - 17.9	2.98	7.31	ND			
Agricultural (AGRI)	15	ND - 6.75	2.62	0.68	ND			

Figure 4-21. Box and whisker plot for oxychlordane in fish tissue.

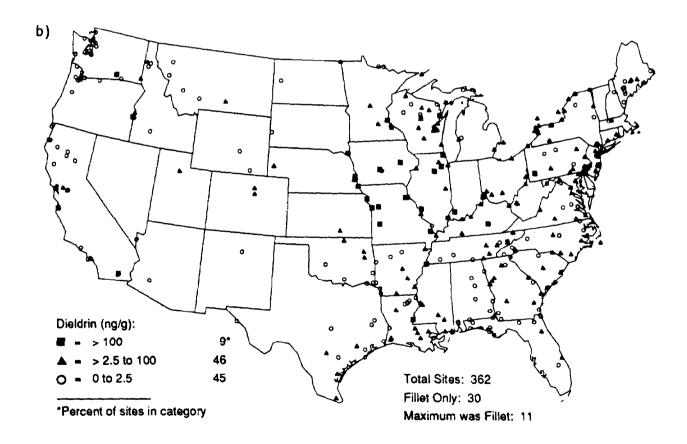
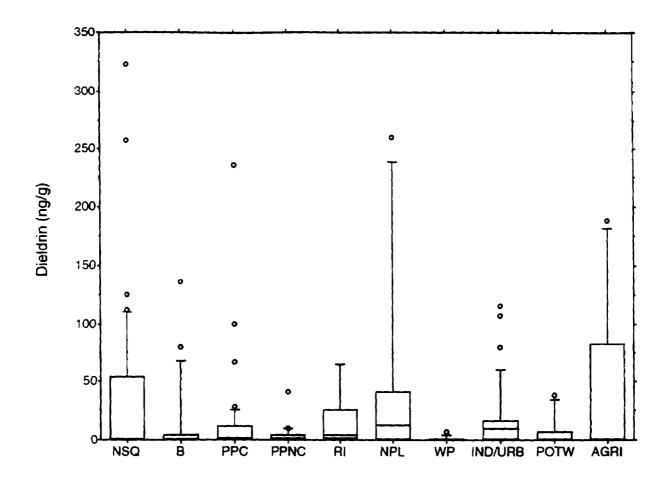



Figure 4-22. Dieldrin: a) cumulative frequency distribution and b) map of geographical distribution of various concentrations in fish tissue.

Summary Table for Dieldrin Box Plot

		Concentration Range			
Site Category	<u>n</u>	pg/g	Mean	<u>Stan. Dev.</u>	<u>Median</u>
NASQAN (NSQ)	39	ND - 323	35.46	71.16	ND
Background (B)	20	ND - 136	14.31	35.45	ND
Paper Mills Using CI (PPC)	39	ND - 236	14.86	41.18	1.40
Other Paper Mills (PPNC)	17	ND - 41.5	4.90	9.94	1. 84
Refinery/Other Industry (R/I)	5	ND - 64.9	16.64	27.40	4.18
Superfund Sites (NPL)	6	ND - 260	54.55	101.77	13.05
Wood Preservers (WP)	10	ND - 7.73	0.97	2.45	ND
Industrial/Urban Sites (IND/URB)	31	ND - 116	18.48	29.71	9.96
POTW	6	ND - 38.2	7.86	15.16	0.64
Agricultural (AGRI)	15	ND - 188	43.94	69.37	ND

Figure 4-23. Box and whisker plot for dieldrin in fish tissue.

Conc. ng/g	Episode Number	Type of Fish	Location
44.4	3098	WB White Sucker	Red Clay Cr., Ashland, DE
29.0	2427	WB Carp	Peshtigo R. Harbor, Peshtigo, WI
20.8	2410	WB Carp	Rouge R., River Rouge, MI
19.3	2383	WB Carp	Des Plaines R., Lockport, IL
18.6	2056	WX Carp	Ohio R., West Point, KY

alpha-BHC

gamma-BHC (Lindane)

Conc. ng/g	Episode Number	Type of Fish	Location
83.3	3042	WB Carp	Missouri R., Omaha, NE
44.5	2416	WB Carp	Cuyahoga R., Cleveland, OH
38.8	3098	PF American Eel	Red Clay Cr., Ashland, DE
27.4	2439	WB Carp	Great Miami R., New Baltimore, OH
25.7	3342	WB Spotted Sucker	Lumber R., Lumberton, NC

Five of these sites are near chemical manufacturing plants (2383, 2410, 2416, 3042, and 3181). Paper mills were located near three of the sites (2427, 2439, and 3342). The remaining site is in an agricultural area where mushroom farming is done, which uses large quantities of pesticides.

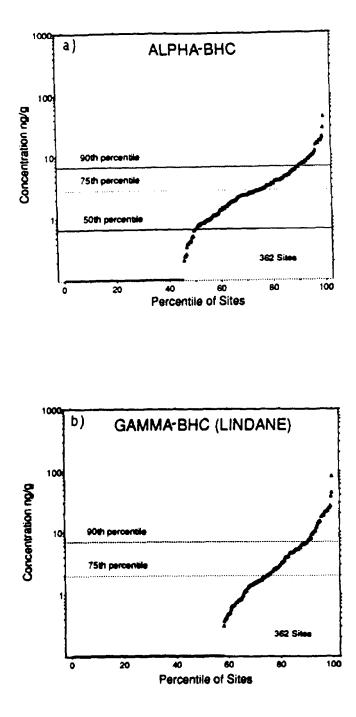
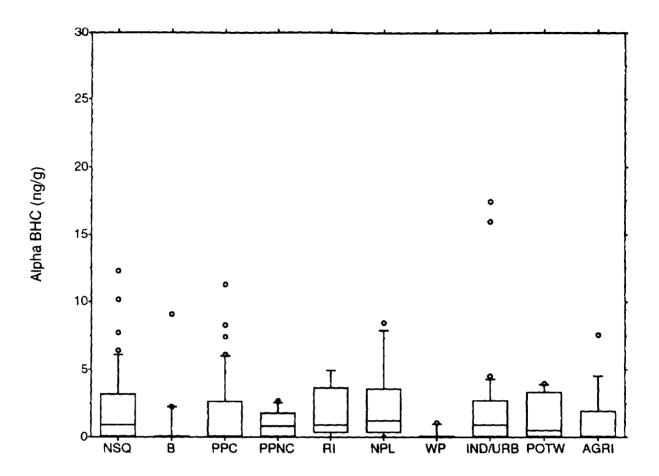
Fifty-five percent of these sites were above detection for alpha-BHC, while only 42 percent of the sites were above detection for gamma-BHC (Figure 4-24a,b). The box plots for alpha-BHC and gamma-BHC are shown in Figures 4-25 and 4-26, respectively. A geographical distribution of various concentration ranges of alpha- and gamma-BHC is shown in Figure 4-27a,b.

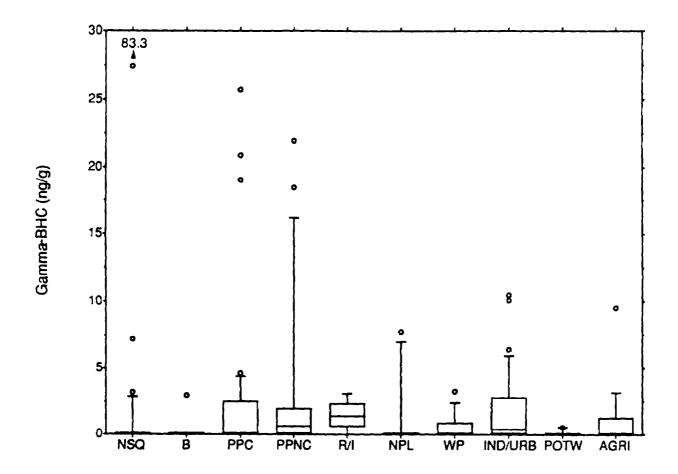
COMPOUNDS DETECTED AT BETWEEN 10 AND 50 PERCENT OF THE SITES³

Hexachlorobenzene

Hexachlorobenzene (HCB) was one of the original targeted compounds because it may contain dioxin and is toxic itself. HCB can be produced in a number of ways: as a by-product of chlorinated solvent manufacturing; from incineration of municipal waste; from chlorination of wastewater; and as a breakdown product of lindane. It is also an impurity in other currently registered pesticides, (e.g., pentachloronitrobenzene (PCNB)) and in pentachlorophenol (see profile

³ Five chemicals found at less than 10 percent of the sites are presented here for ease of discussion. These are 1,2,3,5 and 1,2,4,5 trichlorobenzene; methoxychlor; isopropalin; and perthane. One chemical, heptachlor epoxide, found at 16 percent of the sites, is presented in the next section with heptachlor.


Figure 4-24. Cumulative frequency distribution of a) alpha-BHC and b) gamma-BHC (lindane) in fish tissue.

Summary Table for Alpha-BHC Box Plot

		Concentration Range			
Site Category	<u>n</u>	pg/g	Mean	<u>Stan. Dev.</u>	<u>Median</u>
NASQAN (NSQ)	39	ND - 12.30	1.98	2.98	0.93
Background (B)	20	ND - 9.08	0.72	2.09	ND
Paper Mills Using CI (PPC)	39	ND - 11.30	1.74	2.75	ND
Other Paper Mills (PPNC)	17	ND - 2.77	0.99	0.99	0.85
Refinery/Other Industry (R/I)	5	ND - 4.97	1.92	2.11	0.96
Superfund Sites (NPL)	6	ND - 8.43	2.49	3.18	1.26
Wood Preservers (WP)	10	ND - 1.08	0.21	0.44	ND
Industrial/Urban Sites (IND/URB)	31	ND - 17.48	2.20	4.11	0.91
POTW	6	ND - 3.98	1.41	1.82	0.56
Agricultural (AGRI)	15	ND - 7.56	1.32	2.19	ND

Figure 4-25. Box and whisker plot for alpha-BHC in fish tissue.

Summary Table for Gamma-BHC Box Plot

Site Category	<u>_n</u>	Concentration Range ng/g	Mean	Stan. Dev.	Median
NASQAN (NSQ)	39	ND - 83.3	3.25	13.91	ND
Background (B)	20	ND - 2.97	0.15	0.66	ND
Paper Mills Using CI (PPC)	39	ND - 25.7	2.66	5.85	ND
Other Paper Mills (PPNC)	17	ND - 21.9	3.33	6.60	0.63
Refinery/Other Industry (R/I)	5	ND - 3.1	1.49	1.21	1.41
Superfund Sites (NPL)	6	ND - 7.8	1.30	3.18	ND
Wood Preservers (WP)	10	ND - 3.3	0.57	1.09	ND
Industrial/Urban Sites (IND/URB)	31	ND - 10.5	1.99	2.97	0.37
POTW	6	ND - 0.58	0.10	0.24	ND
Agricultural (AGRI)	15	ND - 9.6	1.15	2.52	ND

Figure 4-26. Box and whisker plot for gamma-BHC in fish tissue.

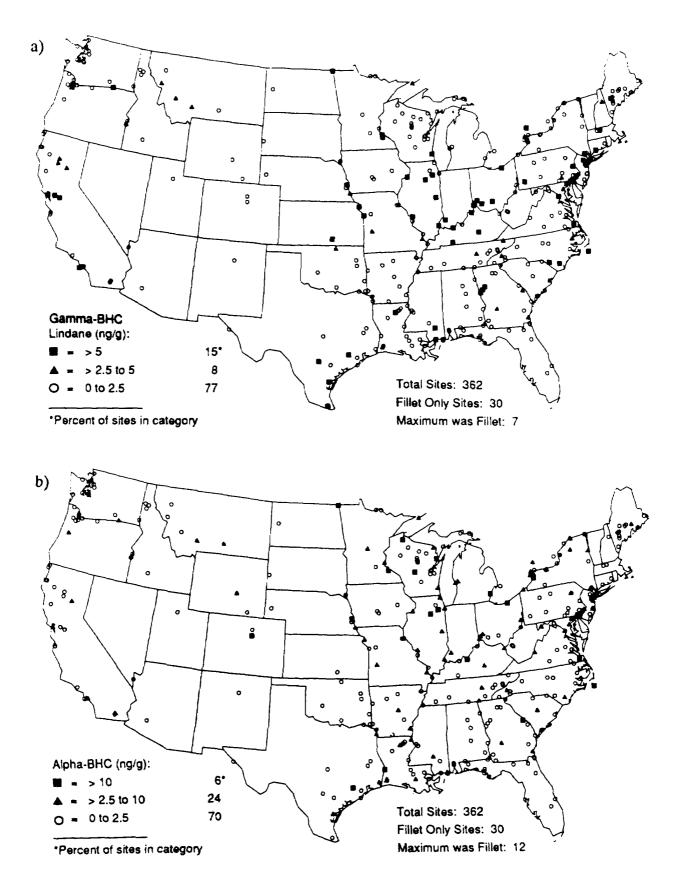
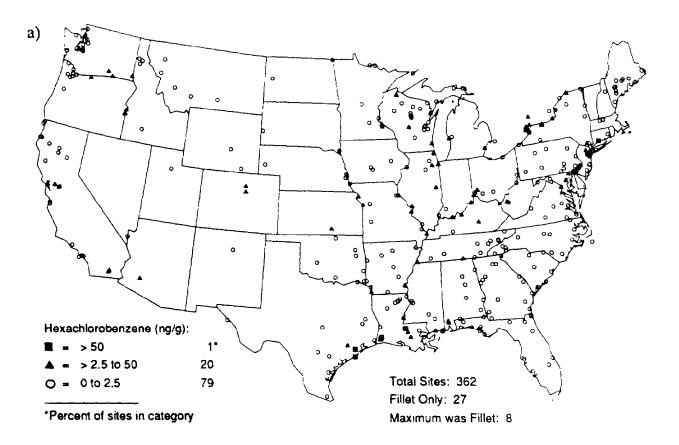


Figure 4-27. Map of geographical distribution of various concentration ranges for a) gamma-BHC (lindane) and b) alpha-BHC in fish tissue.

in Appendix C). The compound is not readily affected by transformation processes (e.g., hydrolysis) and has a high potential for bioaccumulation. Given this variety of sources, it is not surprising that the compound was found at sites located in nearly all parts of the country (Figure 4-28a). HCB was detected at 46 percent of the sites (Figure 4-28b), though the median concentration was below the detection limit. Pentachlorobenzene is also an impurity in PCNB and was found in detectable quantities at some of the same locations as discussed later in this chapter. Sites with the five highest concentrations out of 362 sites are listed below:


Hexachlorobenzene

Conc. ng/g	Episode Number	Type of Sample	Location
913	3085	WB Sea Catfish	Brazos R., Freeport, TX
202	3086	WB Catfish	Bayou D'Inde, Sulfur, LA
93.7	2532	WB Carp	Mississippi R., St. Francisville, LA
85.5	2376	WB White Sucker	Quinipiac R., North Haven, CT
75	3063	WB Sea Catfish	Calcasieu R., Moss Lake, LA

The first two sites are near pesticide manufacturing plants and the remaining sites are near manufacturing plants for other types of chemicals. At the Quinipiac River site, there is also a Superfund site known to have solvent contamination. The predominant sources for the top 10 percentile sites (36 out of 362) were pesticide/chemical manufacturing plants and Superfund sites. Six sites originally selected because of organic chemical manufacturing plants were included in the top 10 percentile sites. Two agricultural sites where pesticides are extensively used were included in the top 10 percentile sites (one at Calipatria, California, and one at Gila Bend, Arizona). A statistical comparison (Kruskal-Wallis test, Table 4-3) of all the various source categories (Figure 4-29) shows that no significant differences exist between any of the categories regarding fish contamination levels.

Pentachlorobenzene

Pentachlorobenzene is an impurity in pentachloronitrobenzene and the sites with the highest concentrations of pentachlorobenzene are mostly in Texas and Louisiana (Figure 4-30a). It was detected at 22 percent of the sites (Figure 4-30b). The top five sites are listed below.

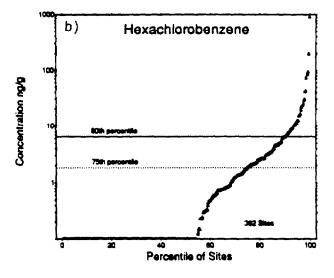
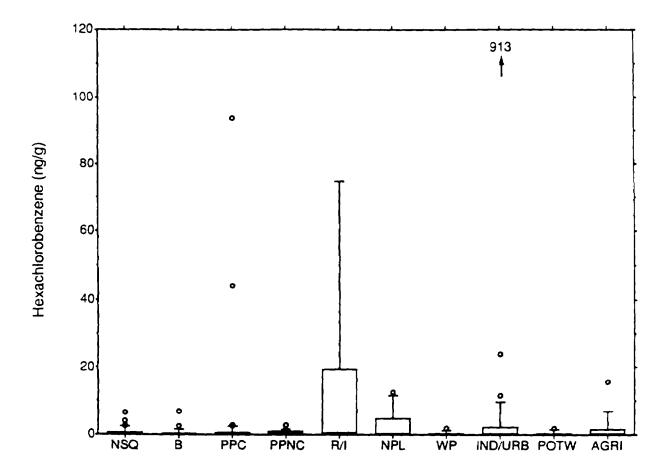



Figure 4-28. Hexachlorobenzene: a) map of geographical distribution of various concentration ranges and b) cumulative frequency distribution in fish tissue.

Summary Table for Hexachlorobenzene Box Plot

Concentration Range								
Site Category	n	ng/g	Mean	Stan. Dev.	Median			
NASQAN (NSQ)	39	ND - 6.49	0.63	1.35	ND			
Background (B)	20	ND - 6.88	0.60	1.59	ND			
Paper Mills Using CI (PPC)	39	ND - 93.7	3.90	16.35	ND			
Other Paper Mills (PPNC)	17	ND - 2.7	0.54	0.77	ND			
Refinery/Other Industry (R/I)	5	ND - 75	15.3 9	33.33	0.73			
Superfund Sites (NPL)	6	ND - 12.5	2.89	5.09	ND			
Wood Preservers (WP)	10	ND - 1.89	0.24	0.60	ND			
Industrial/Urban Sites (IND/URB)	31	ND - 913	31.56	163.6	0.33			
POTW	6	ND -1.76	0.29	0.72	ND			
Agricultural (AGRI)	15	ND - 15.6	2.08	4.26	0.09			

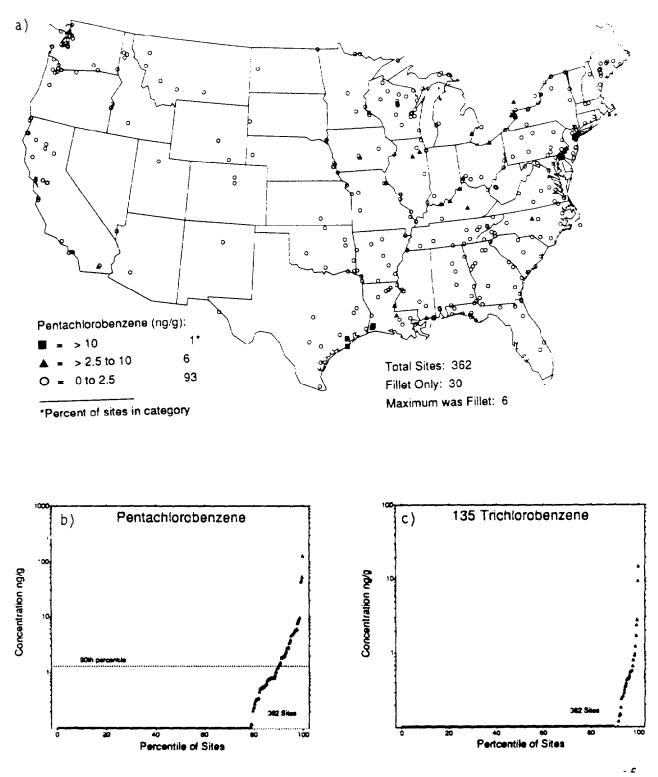


Figure 4-30. Pentachlorobenzene: a) map of geographical distribution of various concentration ranges and b) cumulative frequency distribution in fish tissue. c) Cumulative frequency distribution of 1,3,5 trichlorobenzene in fish tissue.

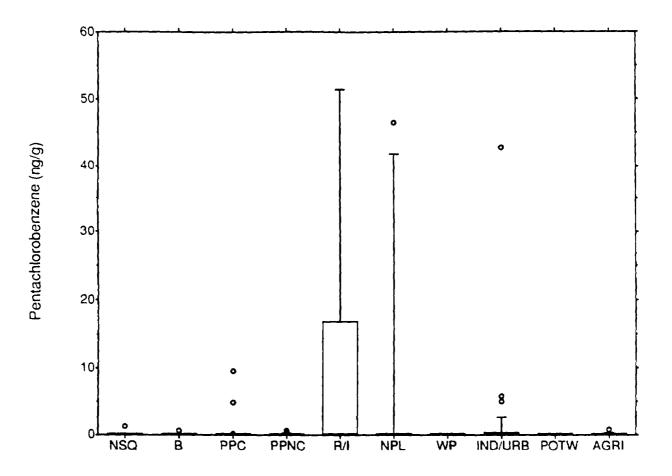
Pentachlorobenzene

Conc. ng/g	Episode Number	Type of Sample	Location
125	3086	WB Catfish	Bayou D'Inde, Sulfur, LA
51.4	3063	PF Spotted Sea Trout	Calcasieu R., Moss Lake, LA
46.3	3097	WB Carp	Red Lion Cr., Tybouts Corner, DE
42.6	308 5	WB Sea Catfish	Brazos R., Freeport, TX
9.6	2532	WB Carp	Mississippi R., St. Francisville, LA

Four of these sites are near chemical manufacturing plants and the other site (3097) is a Superfund site with HCB contamination. In the top 10 percentile of the sites, 22 of the 36 sites out of 362 were near chemical manufacturing plants and nine were near Superfund sites of which four had HCB contamination. The box plot (Figure 4-31) shows that none of the source categories have median concentrations above detection.

1,3.5 Trichlorobenzene

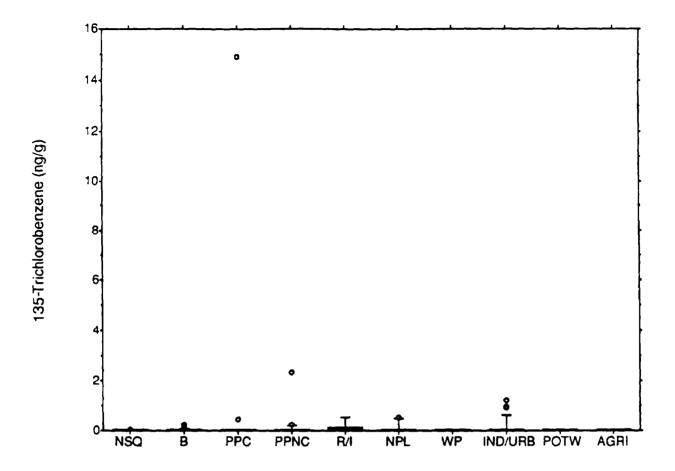
The compound 1,3,5 trichlorobenzene (TCB) is used as a solvent for dyes and in the manufacturing of other organic compounds. Though detected at 11 percent of the sites, the compound 1,3,5 trichlorobenzene was detected above the quantitation limit at only three sites (Figure 4-30c). These sites are listed below:


1,3,5 TCB

Conc.	Episode Number	Type of Sample	Location
14.9	3403	WB River Carpsucker	So. Fork of Holston R., Kingsport, TN
9.2	2290	WB Spotted Sucker	Savannah River, Augusta, GA
2.77	2056	WB Carp	Ohio River, West Point, KY

Sites 3403 and 2290 are near paper mills. The latter site also has other industrial/urban sources nearby. Site 2056 is near a Superfund site known to be contaminated with PCBs, dioxins, furans, and solvents. The median concentration of all source categories was below detection (Figure 4-32).

Tetrachlorobenzenes


Cumulative frequency distributions of the tetrachlorobenzenes (TECB) show that these compounds were detected at less than 15 percent of the sites (Figure 4-33a,b,c). The tetrachlorobenzenes are moderately to highly volatile and, as a result, may be higher than reported because the analytical procedures for this study included an evaporation step. The chemical 1,2,4,5 tetrachlorobenzene is used in the manufacturing of 2,4,5 T (2,4,5 trichlorophenoxyacetic acid), a

Summary Table for Pentachlorobenzene Box Plot

Concentration Range								
Site Category	<u>n</u>	ng/g	Mean	Stan. Dev.	Mediar			
NASQAN (NSQ)	39	ND - 1.26	0.03	0.20	ND			
Background (B)	20	ND - 0.6	0.03	0.13	ND			
Paper Mills Using CI (PPC)	39	ND - 9.61	0.38	1.71	ND			
Other Paper Mills (PPNC)	17	ND - 0.57	0.08	0.17	ND			
Refinery/Other Industry (R/I)	5	ND - 51.4	11.36	22.50	ND			
Superfund Sites (NPL)	6	ND - 46.3	7.72	18.90	ND			
Wood Preservers (WP)	10	ND	ND	ND	ND			
Industrial/Urban Sites (IND/URB)	31	ND - 42.6	1.84	7.68	ND			
POTW	6	ND	ND	ND	ND			
Agricultural (AGRI)	15	ND - 0.75	0.07	0.20	ND			

Figure 4-31. Box and whisker plot for pentachlorobenzene in fish tissue.

Summary Table for 1,3,5-Trichlorobenzene Box Plot

Site Category	n	Concentration Range ng/g	Mean	Stan. Dev.	Mediar
NASQAN (NSQ)	39	ND - 0.06	0.002	0.01	ND
Background (B)	20	ND - 0.24	0.02	0.06	ND
Paper Mills Using CI (PPC)	39	ND - 14.9	0.40	2.38	ND
Other Paper Mills (PPNC)	17	ND - 2.35	0.16	0.57	ND
Refineries (RFNY)	5	ND - 0.54	0.11	0.24	ND
Superfund Sites (NPL)	6	ND - 0.55	0.09	0.22	ND
Wood Preservers (WP)	10	ND	ND	ND	ND
Industrial/Urban Sites (IND/URB)	31	ND - 1.20	0.13	0.32	ND
POTW	6	ND	ND	ND	ND
Agricultural (AGRI)	15	ND	ND	ND	ND

Figure 4-32. Box and whisker plot for 1,3,5 trichlorobenzene in fish tissue.

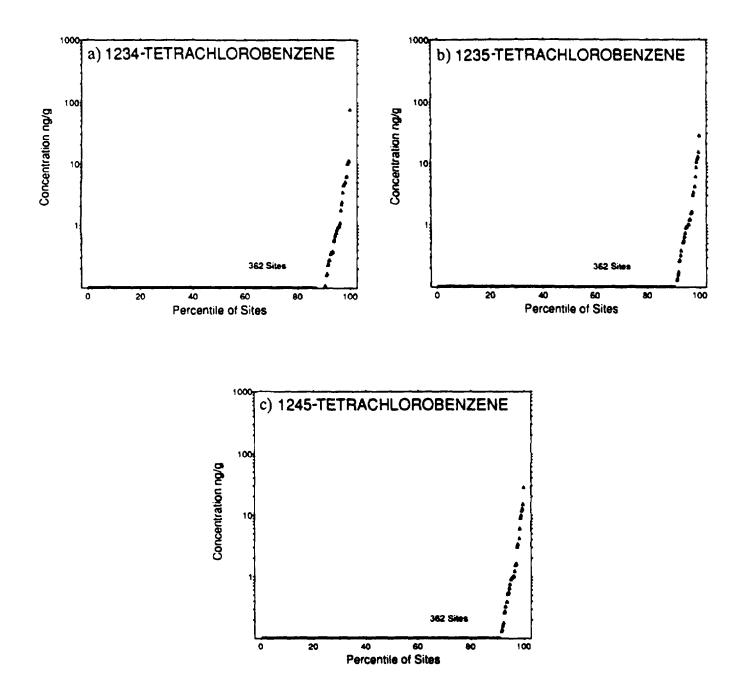
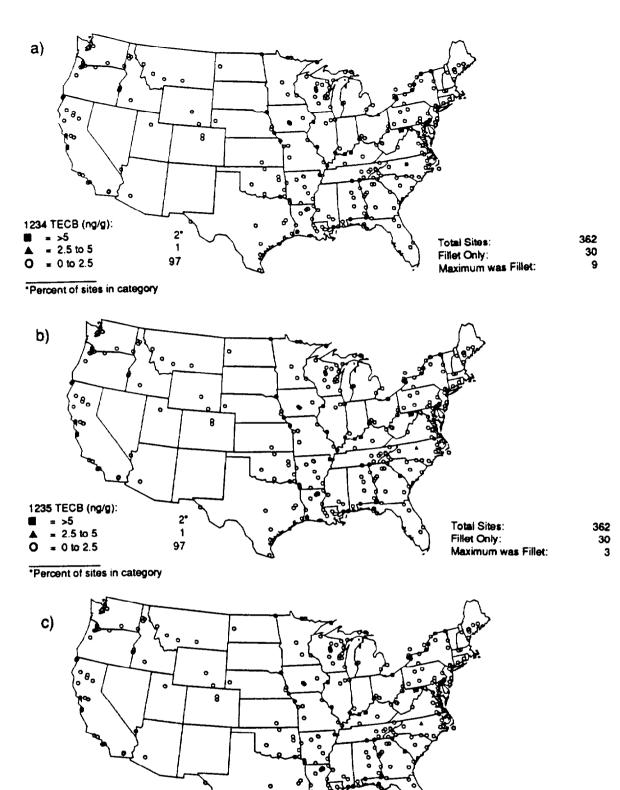


Figure 4-33. Cumulative frequency distribution of a) 1,2,3,4 tetrachlorobenzene, b) 1,2,3,5 tetrachlorobenzene and c) 1,2,4,5 tetrachlorobenzene in fish tissue.

primary component of the defoliant Agent Orange used in Vietnam. It has also been used as a precursor for the manufacture of other organic chemicals and in the dye industry. The 1,2,3,4 isomer is a component of dielectric fluids, and was the most commonly detected of the three isomers (13 percent of the sites versus 9.4 percent for 1,2,3,5 TECB and 9.1 percent for 1,2,4,5 TECB). Median concentrations were below detection for all three of these compounds. Geographic distributions of TECB concentrations are shown in Figure 4-34a,b,c.

The sites with the top five concentrations out of 362 were the same for 1,2,3,5 and 1,2,4,5 TECB as follows:

1,2,3,5 and 1,2,4,5 TECB


Conc. ng/g	Episode Number	Type of Sample	Location
28.3	3097	PF Brown Bullhead	Red Lion Creek, Tybouts Corner, DE
15.3	2056	WB Carp	Ohio River, West Point, KY
12.9	2341	WB Carpsucker	Ohio River, Markland, KY
12.0	2290	WB Spotted Sucker	Savannah River, Augusta, GA
10.7	3086	PF Red Drum	Bayou D'Inde, Sulfur, LA
12.0	2290	WB Spotted Sucker	Savannah River, Augusta, GA

The first two sampling locations are near Superfund sites, and the others are near chemical plants (2341 and 3086) and paper mills (2290).

The top five sites for 1,2,3,4 TECB are shown below. The first three are the same as described above for 1,2,3,5 and 1,2,4,5 TECB. Site 3096 is located near a refinery, industrial chemical facilities, and a POTW. Site 3094 is near chemical manufacturing plants and a POTW. Median values from all source categories were below detection (Figure 4-35).

1,2,3,4 TECB

 Conc. ng/g	Episode Number	Type of Sample	Location
76.65	3097	PF Brown Bullhead	Red Lion Creek, Tybouts Corner, DE
11.50	2056	WB Carp	Ohio River, West Point, KY
11.3	2341	WB Carpsucker	Ohio River, Markland, KY
10.6	30 96	WB Channel Catfish	Delaware River, Eddystone, PA
10.4	3094	BF Channel Catfish	Delaware River, Torresdale, PA

Fillet Only: 30 Maximum was Fillet: 2

*Percent of sites in category

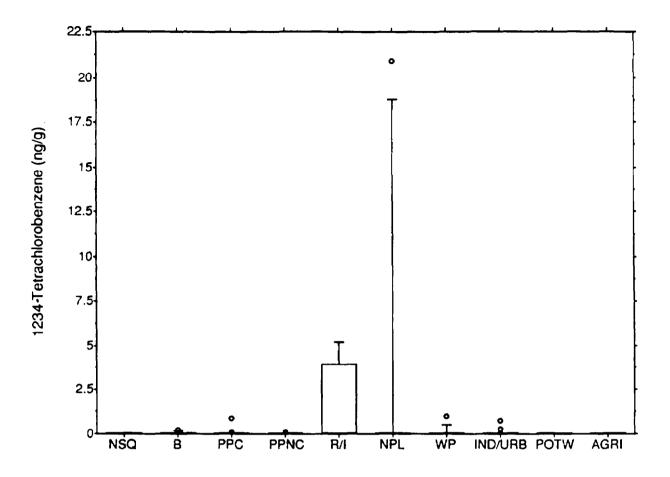
2*

1

97

1245 TECB (ng/g):

= 0 to 2.5


2.5 to 5

= >5

.

0

Figure 4-34. Map of geographical distribution of various concentration ranges for a) 1,2,3,4 tetrachlorobenzene, b) 1,2,3,5 tetrachlorobenzene, and c) 1,2,4,5 tetrachlorobenzene in fish tissue.

Summary Table for 1,2,3,4-Tetrachlorobenzene Box Plot

Concentration Range								
Site Category	<u>n</u>	ng/g	Mean	Stan. Dev.	Mediar			
NASQAN (NSQ)	39	ND	ND	ND	ND			
Background (B)	20	ND - 0.25	0.03	0.08	ND			
Paper Mills Using CI (PPC)	39	ND - 0.88	0.03	0.14	ND			
Other Paper Mills (PPNC)	17	ND - 0.11	0.02	0.03	ND			
Refinery/Other Industry (R/I)	5	ND - 5.21	1.74	2.46	ND			
Superfund Sites (NPL)	6	ND -20.92	3.49	8.54	ND			
Wood Preservers (WP)	10	ND - 1.01	0.10	0.32	ND			
Industrial/Urban Sites (IND/URB)	31	ND - 0.76	0.04	0.14	ND			
POTW	6	ND	ND	ND	ND			
Agricultural (AGRI)	15	ND	ND	ND	ND			

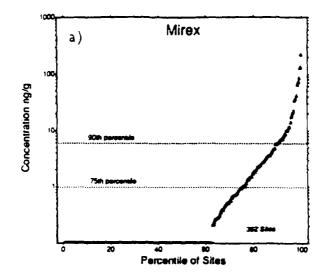
n = number of sites in category. ND's set at 0.

Maximum concentrations at sites were used.

Figure 4-35. Box and whisker plot for 1,2,3,4 tetrachlorobenzene in fish tissue.

Pesticides/Herbicides

Mirex, Chlorpyrifos, Dicofol, Methoxychlor, and Perthane


Mirex was used primarily to control fire ants in the Southeast between 1962 and 1975 (NAS, 1978). Mirex has also been used on pineapple mealy bugs in Hawaii and as a fire retardant in plastics and other products. Mirex was detected at 38 percent of the sites primarily in the Southeast and the Great Lakes region (Figure 4-36a). The chemical was produced at plants located along the Niagara River, and it occurred at high levels in this area as shown below:

Mirex

Conc.	Episode Number	Type of Sample	Location
225	2328	PF Chinook Salmon	Lake Ontario, Olcott, NY
137	3305	WB Channel Catfish	Racquette R., Massena, NY
131	2329	PF Brown Trout	Lake Ontario, Rochester, NY
85.4	3412	WB Carp	Oswego Harbor, Oswego, NY
73.7	3301	WB Carp	Eighteen Mile Cr., Olcott, NY

The box and whisker plot (Figure 4-37) shows that the highest concentration was found in the industrial/urban category. The only median value above detection was for sites in the refinery/other industry category.

Chlorpyrifos, an organophosphate insecticide, was originally developed in the 1960's to replace organochlorine pesticides such as DDT. It is used on cotton, peanuts, sorghum, and a variety of fruits and vegetables, as well as for control of termites and household pests. For chlorpyrifos, over 70 percent of fish concentrations at all sites were below detection (Figure 4-36b). The geographic distribution map shows that the few sites with relatively high concentrations (above 50 ng/g) are scattered throughout the East and Midwest and in California (Figure 4-38). The highest concentrations were observed at sites near agricultural facilities. The top 5 out of 362 sites are listed below:

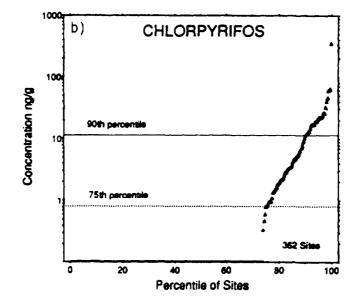
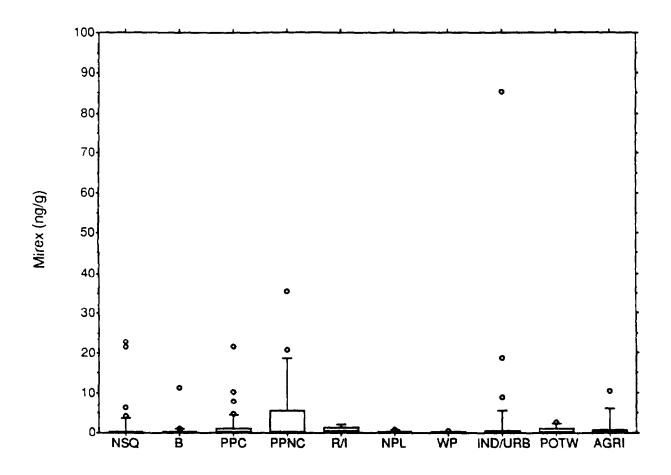



Figure 4-36. Cumulative frequency distribution of a) mirex and b) chlorpyrifos in fish tissue.

Summary Table for Mirex Box Plot

Concentration Range								
Site Category	<u>n</u>	ng/g	Mean	Stan. Dev.	Median			
NASQAN (NSQ)	39	ND-23.1	1.6	5.0	ND			
Background (B)	20	ND-11.3	0.7	2.5	ND			
Paper Mills Using CI (PPC)	39	ND-21.6	1.6	4.0	ND			
Other Paper Mills (PPNC)	17	ND-35.5	4.9	9.6	ND			
Refineries/Other Industry (R/I)	5	ND-2.0	0.8	0.9	0.7			
Superfund Sites (NPL)	6	ND-0.8	0.2	0.3	ND			
Wood Preservers (WP)	10	ND-0.5	0.1	0.2	ND			
Industrial/Urban Sites (IND/URB)	31	ND-85.4	3.9	15.6	ND			
POTW	6	ND-2.6	0.6	1.1	ND			
Agricultural (AGRI)	15	ND-10.4	1.3	3.0	ND			

Figure 4-37. Box and whisker plot for mirex in fish tissue.

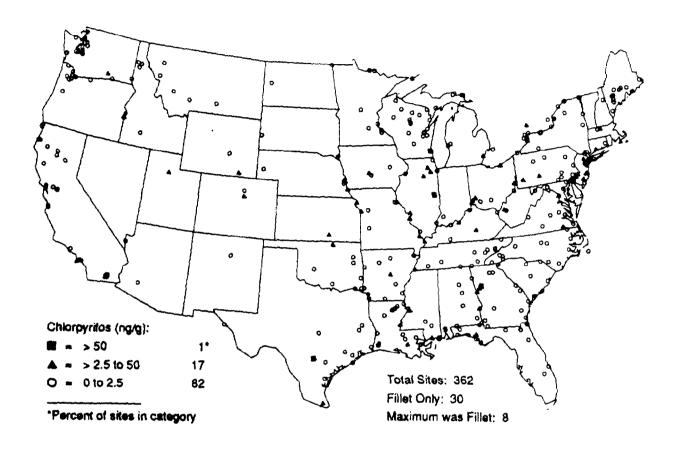
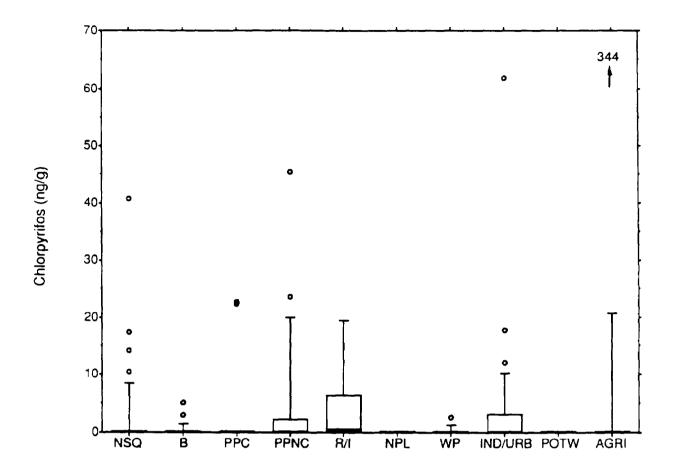


Figure 4-38. Map of geographical distribution of various concentration ranges for chlorpyrifos in fish tissue.

Chlorpyrifos

Conc. ng/g	Episode Number	Type of Sample	Location
344	3282	WB Carp	Alamo R., Calipatria, CA
64.5	3375	WB Carp	Chattahoochee R., Austell, GA
63.7	3071	WB Carp	San Antonio R., Elmendorf, TX
62.7	3141	PF Northern Pike	Milwaukee R., Milwaukee, WI
61.7	3283	WB Carp	New R., Westmoreland, CA


Three of the sites are located in agricultural areas, while the remaining sites (3071 and 3141) are located in urban areas with a variety of nearby industrial sources. The box and whisker plot also shows that the highest mean concentration was for sites in the agricultural category (Figure 4-39).

Dicofol, methoxychlor, and perthane are pesticides similar in structure to DDT, but less persistent. Dicofol and methoxychlor are active ingredients of currently registered pesticides. These three pesticides were detected at less than 16 percent of the sites versus 99 percent of the sites for DDE, the metabolic breakdown product of DDT (Figure 4-40a,b,c). Dicofol is primarily used to control mites on cotton and citrus crops. Other crops to which it has been applied include apples, pears, apricots, cherries, and vegetables. It is also used on turf and shade trees. Methoxychlor, also similar to DDT, has not been widely used since 1982. Prior to that time, it had been applied to a wide variety of fruit, vegetable, and forage crops and had been used to control mosquitos and flies in homes and businesses. Methoxychlor has a lower bioaccumulation factor than dicofol and was detected at fewer sites (7 percent versus 15.5 percent). Dicofol and methoxychlor concentrations were greater than the quantification limit of 2.5 ng/g in samples from 7 and 5 percent of the sites, respectively (see Figure 4-41a,b). Most of the sites appear to be in agricultural areas where citrus and other fruits and vegetables are grown. The box plot for dicofol is shown in Figure 4-42. The highest mean concentration of all the categories was for sites near agricultural areas (2.7 ng/g).

The highest five concentrations of dicofol and methoxychlor are listed below:

Dicofol

Conc. ng/g	Episode Number	Type of Sample	Location
74.3	3355	WB Carp	Old Mormon Slough, Stockton, CA
36.0	3252	WB Sucker	Boise River, Parma, ID
21.1	3198	WB Sucker	South Platte River, Denver, CO
18.4	3208	WB Sucker	Malheur River, Ontario, OR
14.9	3117	PF Lake Trout	Lake Michigan, Waukegan, IL

Summary Table for Chlorpyrifos Box Plot

Concentration Range								
Site Category	<u>n</u>	ng/g	Mean	Stan. Dev.	Mediar			
NASQAN (NSQ)	39	ND-40.8	2.34	7.43	ND			
Background (B)	20	ND-5.13	0.40	1.29	ND			
Paper Mills Using CI (PPC)	39	ND-22.6	1.15	5.02	ND			
Other Paper Mills (PPNC)	17	ND-45.6	4.71	11.98	ND			
Refineries/Other Industry (R/I)	5	ND-19.4	4.40	8.43	0.48			
Superfund Sites (NPL)	6	ND	ND	ND	ND			
Wood Preservers (WP)	10	ND-2.51	0.25	0.79	ND			
Industrial/Urban Sites (IND/URB)	31	ND-61.7	3.8 9	11.50	ND			
POTW	6	ND	ND	ND	ND			
Agricultural (AGRI)	15	ND-344	24.46	88.56	ND			

n = number of sites in category. ND's set at 0. Maximum value at each site was used.

Figure 4-39. Box and whisker plot for chlorpyrifos in fish tissue.

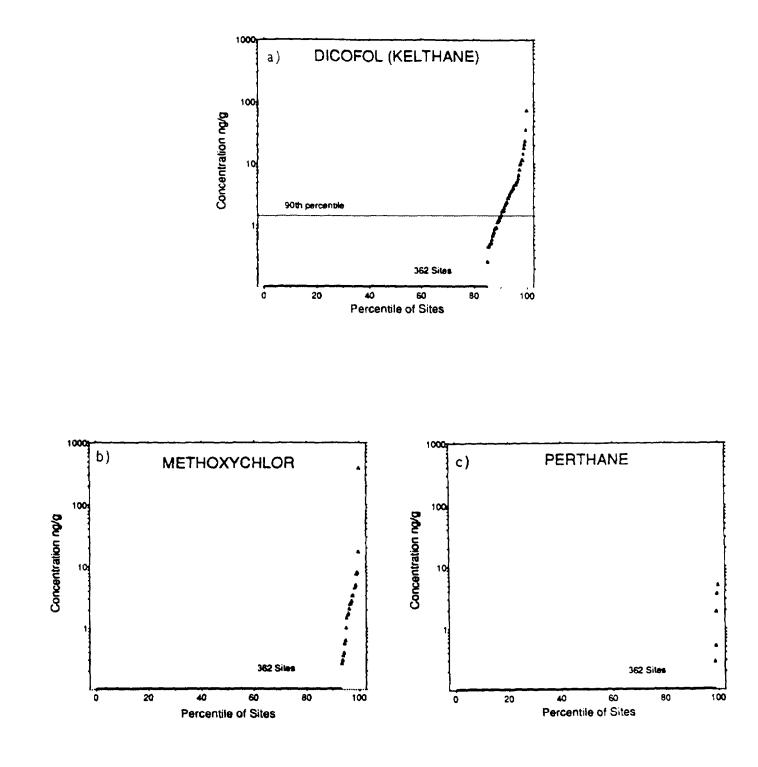
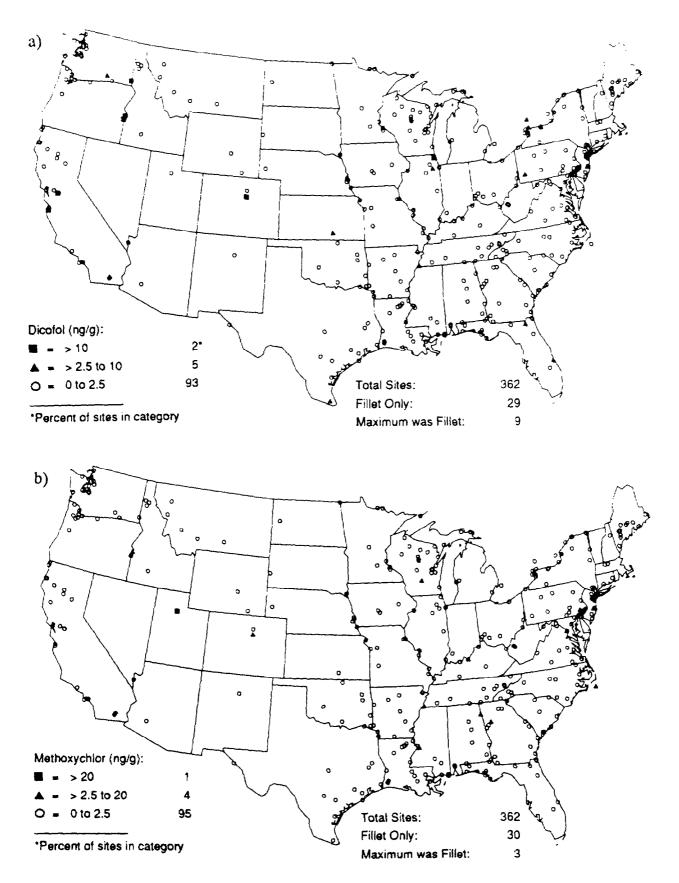
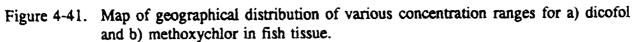
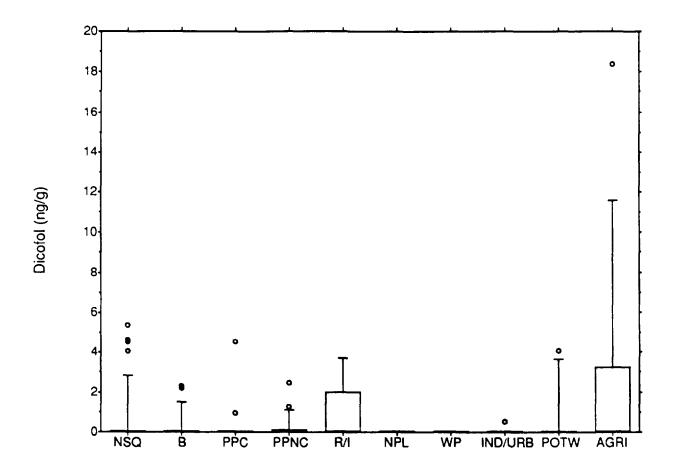





Figure 4-40. Cumulative frequency distribution of a) dicofol (kelthane), b) methoxychlor, and c) perthane in fish tissue.

Summary Table for Dicofol Box Plot

Concentration Range							
Site Category	<u>n</u>	ng/g	Mean	Stan. Dev.	Media		
NASQAN (NSQ)	39	ND-5.37	0.54	1.44	ND		
Background (B)	20	ND-2.29	0.27	0.70	ND		
Paper Mills Using CI (PPC)	39	ND-4.53	0.14	0.74	ND		
Other Paper Mills (PPNC)	17	ND-2.44	0.28	0.65	ND		
Refineries/Other Industry (R/I)	5	ND-3.69	1.02	1.61	ND		
Superfund Sites (NPL)	6	ND	ND	ND	ND		
Wood Preservers (WP)	10	ND	ND	ND	ND		
Industrial/Urban Sites (IND/URB)	31	ND-0.50	0.02	0.09	ND		
POTW	6	ND-4.09	0.68	1.67	ND		
Agricultural (AGRI)	15	ND-18.40	2.66	5.41	ND		

Figure 4-42. Box and whisker plot for dicofol in fish tissue.

Methoxychlor

Conc. ng/g	Episode Number	Type of Sample	Location
393.	3195	WB Chub	Jordan River, Salt Lake City, UT
17.9	3375	WB Carp	Chattahoochee River, Austell, GA
8.22	2056	WB Carp	Ohio River, West Point, KY
8.15	3172	WB Carp	Coosa River, AL/GA State Line
7.71	3144	WB Carp	Fox River, Portage, WI

The two highest concentrations (3355 and 3195) were found near Superfund sites. The Stockton, California, site is also influenced by agricultural runoff. Two additional locations were near Superfund sources which could be identified as the cause for the high concentrations. Agricultural areas and pesticide manufacturing plants were also near sites in the top 10 percentile.

Perthane was detected above the quantitation limit in only one sample—a whole body catfish from the Delaware River at Torresdale, Pennsylvania (3094) where this compound was manufactured. Prior to 1980, perthane was used as an insecticide on fruit and vegetable crops and to protect woolens against moths and beetles.

Trifluralin and Isopropalin

Trifluralin and isopropalin, both currently registered dinitroaniline herbicides, were found above the quantitation limit at 11 and 3 percent of the sites, respectively (Figure 4-43a,b). The largest quantities of trifluralin are used primarily on soybeans, cotton, peanuts, wheat, and barley. The States with the highest uses are Arkansas, Illinois, Iowa, Minnesota, Missouri, North Dakota, South Carolina, Tennessee, and Texas (Resources for the Future, 1986). With a few exceptions, the sites with the highest concentrations were located in these States. Three of the sites on the Missouri River in Nebraska and Kansas were located near pesticide manufacturing plants (Figure 4-44a,b). Trifluralin has a low leaching potential from soils due to its strong capacity for sorption. Isopropalin is less persistent in the aquatic environment due to its greater volatility. Isopropalin was also used on fewer crops, primarily tobacco, peppers, and tomatoes, and therefore would be expected to be less prevalent. At present, the only currently registered use is for tobacco. Box plots for trifluralin and isopropalin show that all median values for the categories were below detection (Figures 4-45 and 4-46, respectively).

Endrin

Endrin is an organochlorine pesticide and a contaminant of dieldrin. Endrin was detected in at least one sample from 10.5 percent of the sites (Figure 4-47a). Endrin is less persistent in the environment than dieldrin and has a lower bioconcentration factor. Endrin was used on tobacco crops prior to cancellation of this use in 1964. Until 1979 it was used mostly to control bollworms on cotton in the Southeast. Other past uses included controlling termites, mice, and rodents, and treatment for a variety of grains and other crops. In 1984, all registered uses of endrin were

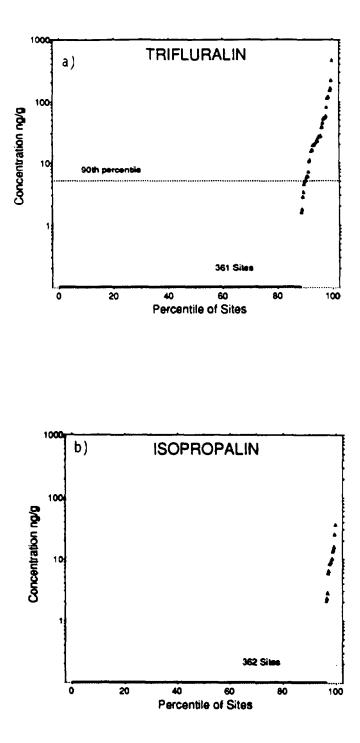
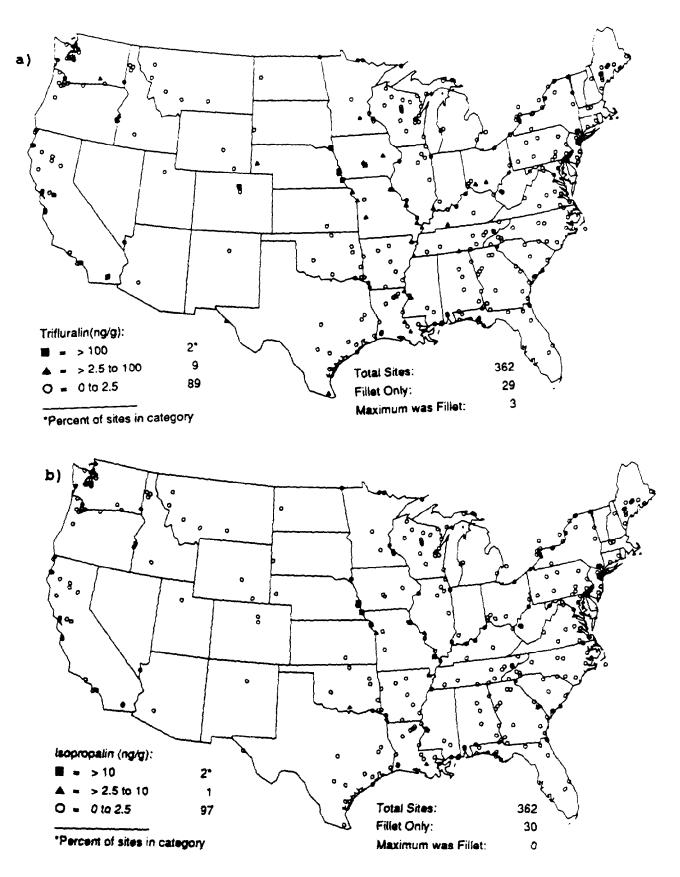
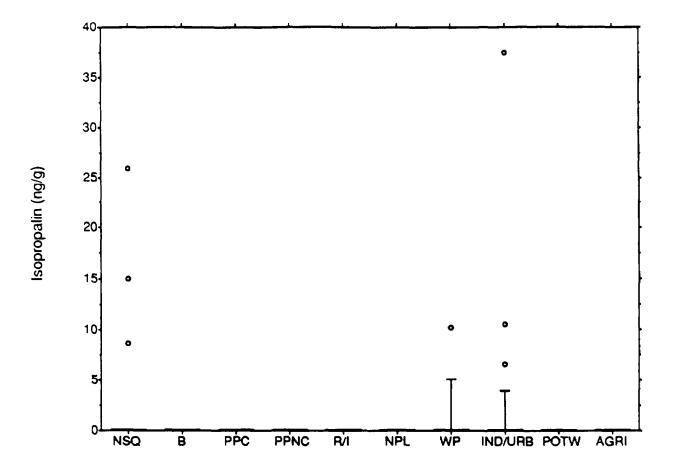


Figure 4-43. Cumulative frequency distribution of a) trifluralin and b) isopropalin in fish tissue.




Figure 4-44. Map of geographical distribution of various concentration ranges for a) trifluralin and b) isopropalin in fish tissue.

Summary Table for Trifluralin Box Plot

Site Category	<u>n</u>	Concentration Range ng/g	Mean	Stan. Dev.	Mediar
NASQAN (NSQ)	39	ND-458	20.92	77.01	ND
Background (B)	20	ND-163	10.80	37.73	ND
Paper Mills Using CI (PPC)	39	ND-23.1	0.59	3.70	ND
Other Paper Mills (PPNC)	17	ND-3.4	0.20	0.82	ND
Refineries (RFNY)	5	ND - 2.9	0.58	1.30	ND
Superfund Sites (NPL)	6	ND	ND	ND	ND
Wood Preservers (WP)	10	ND	ND	ND	ND
Industrial/Urban Sites (IND/URB)	31	ND-82.8	6.37	18.83	ND
POTW	6	ND	ND	ND	ND
Agricultural (AGRI)	15	ND-153	23.35	46.52	ND

Figure 4-45. Box and whisker plot for trifluralin in fish tissue.

Summary 7	Table	for	Isopropalin	Box Plot
-----------	-------	-----	-------------	----------

Site Category	n	Concentration Range	Mean	Stan. Dev.	Median
		ng/g			
NASQAN (NSQ)	39	ND-25.9	1.27	4.89	ND
Background (B)	20	ND	ND	ND	ND
Paper Mills Using CI (PPC)	39	ND	ND	ND	ND
Other Paper Mills (PPNC)	17	ND	ND	ND	ND
Refinery/Other Industry(R/I)	5	ND	ND	ND	ND
Superlund Sites (NPL)	6	ND	ND	ND	ND
Wood Preservers (WP)	10	ND-10.2	1.02	3.23	ND
Industrial/Urban Sites (IND/URB)	31	ND-37.5	1.83	6.98	ND
POTW	6	ND	ND	ND	ND
Agricultural (AGRI)	15	ND	ND	ND	ND

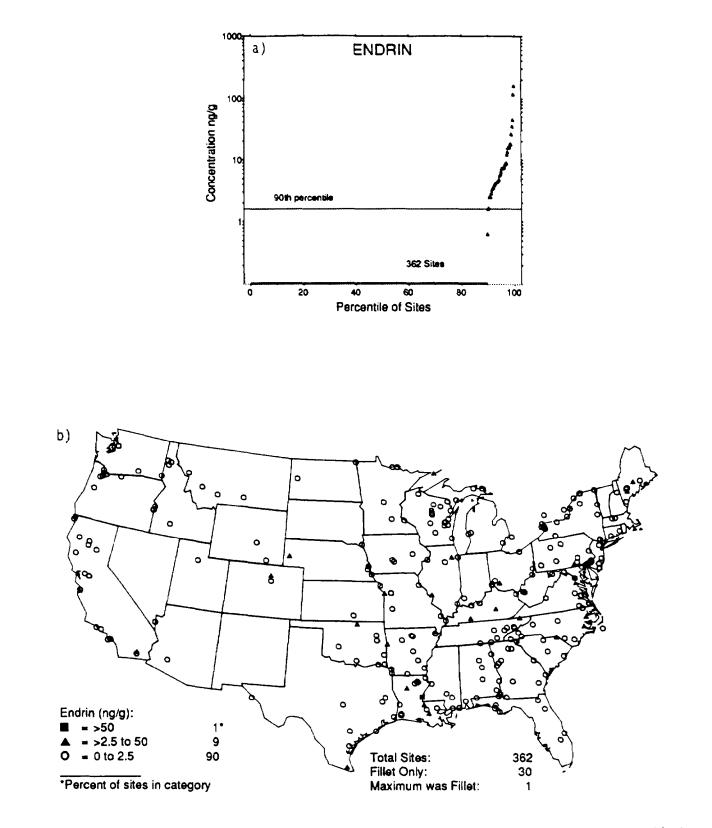


Figure 4-47. Endrin: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue.

voluntarily canceled. The geographic distribution of sites is shown in Figure 4-47b. The box plot (Figure 4-48) shows that median concentrations for all source categories were below detection.

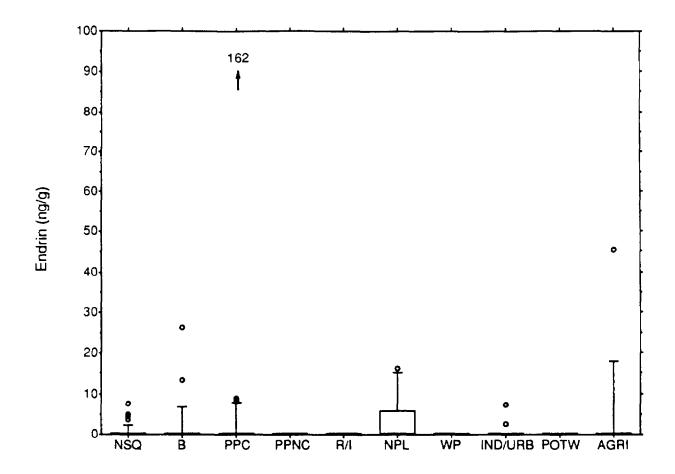
COMPOUNDS DETECTED AT LESS THAN 10 PERCENT OF THE SITES⁴

Octachlorostyrene

Octachlorostyrene is not intentionally produced. It can be formed as a by-product of the electrolytic production of chlorine using graphite anodes and coal tar pitch and the electrolytic production of magnesium. The sites where it occurred at levels above quantification (2.5 ng/g) are located in areas where industrial organic chemicals are manufactured. It was detected at only 9 percent of the sites (Figure 4-49a).

Hexachlorobutadiene

Hexachlorobutadiene is a by-product of the carbon disulfide process for the manufacture of the solvent carbon tetrachloride. It was detected in at least one sample from three percent of the sites (Figure 4-49b). Concentrations were above 2.5 ng/g at only four sites. The top five sites (all of which are near organic chemical manufacturing plants) are listed below:


Hexachlorobutadiene

Conc. ng/g	Episode Number	Type of Sample	Location
164.00	3063	WB Sea Catfish	Calcasieu R., Moss Lake, LA
23.00	3085	WB Sea Catfish	Brazos R., Freeport, TX
10.50	3115	PF Catfish	Mississippi R., E. St. Louis (Sauget), IL
2.54	3065	WB Flathead Catfish	Mississippi R., Baton Rouge, LA
2.37	3086	WB Catfish	Bayou D'Inde, Sulfur, LA

Diphenyl Disulfide

Diphenyl disulfide was detected at only two sites (Figure 4-49c). This compound is used in small amounts in the pharmaceutical industry, in the vulcanizing of rubber, and as a flavoring agent.

⁴ Some chemicals found at less than 10 percent were presented elsewhere for ease of discussion. See footnotes 2, page 57, and 3, page 91.

Summary Table for Endrin Box Plot

		Concentration Range				
Site Category	<u>n</u>	ng/g	Mean	Stan. Dev.	Mediar	
NASQAN (NSQ)	39	ND-7.5	0.53	1.65	ND	
Background (B)	20	ND-26.5	2.00	6.50	ND	
Paper Mills Using CI (PPC)	3 9	ND-162	5.22	25.90	ND	
Other Paper Mills (PPNC)	17	ND	ND	ND	ND	
Refinery/Other Industry(R/I)	5	ND	ND	ND	ND	
Superfund Sites (NPL)	6	ND-16.2	3.64	6.55	ND	
Wood Preservers (WP)	10	ND	ND	ND	ND	
Industrial/Urban Sites (IND/URB)	31	ND-7.37	0.32	1.38	ND	
POTW	6	ND	ND	ND	ND	
Agricultural (AGRI)	15	ND-45.4	4.23	12.30	ND	

n = number of sites in category. ND's set at 0. Maximum concentrations at sites were used.

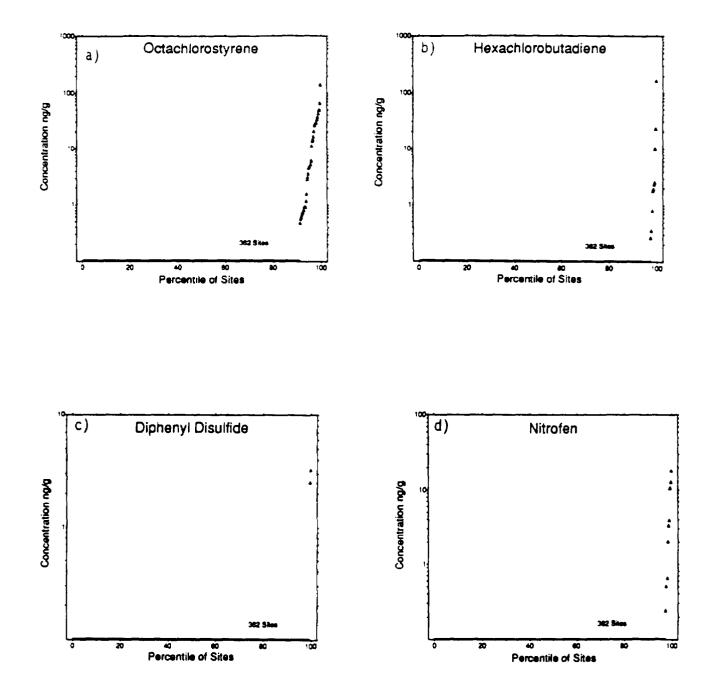


Figure 4-49. Cumulative frequency distribution of a) octachlorostyrene, b) hexachlorobutadiene, c) diphenyl disulfide, and d) nitrofen in fish tissue.

Pesticides/Herbicides

Nitrofen

Nitrofen is a selective herbicide that has not been used in the United States since 1984. Prior to that time it was used to control weeds in vegetables including sugar beets, rice, and on cereal grains. It can biodegrade and undergo photolysis so this chemical is less persistent than a compound such as DDT, and was detected at only 2.8 percent of the sites (Figure 4-49d). This compound was above the quantitation limit at the following sites:

Nitrofen

Conc. ng/g	Episode Number	Type of Sample	Location
17.9	3354	WB Carp	New Mormon Slough, Stockton, CA
12.8	3300	WB White Sucker	Niagara River Delta, Porter, NY
10.4	2654	WB Carp	Toms River, NJ
10.6	3302	WB White Sucker	Niagara River, Lewiston, NY
3.95	3288	PF Squawfish	Blanco Drain, Salinas, CA

The site with the highest concentration is located near a Superfund site, as is the Toms River, New Jersey, site. The Stockton, California, site is also influenced by agricultural runoff. The Niagara River sites are near chemical manufacturing facilities and agricultural areas. The Blanco Drain is located in an agricultural irrigated area where pesticides are used extensively.

Heptachlor and Heptachlor Epoxide

Heptachlor is an insecticide that has been used to control fire ants in southern States and soil insects on corn. Its uses were limited in 1983 to subsurface termite control and dipping of nonfood roots and tops. Massachusetts, Minnesota, and New York allow no uses. It is also a contaminant of chlordane, which is widely used for termite control, especially in urban areas. Heptachlor is moderately volatile and can also be transformed by other environmental processes including hydrolysis and photolysis. It is metabolically converted to heptachlor epoxide, which bioaccumulates to a greater extent than heptachlor and is less affected by transformation processes. Heptachlor epoxide was detected in samples from more sites and, in general, at higher concentrations than heptachlor (Figure 4-50a,b). Thirteen percent of the sites had maximum concentrations over 2.5 ng/g for heptachlor epoxide, but only 3 percent for heptachlor. Heptachlor epoxide was found at higher concentrations in the Midwest, particularly in the Mississippi River system (Figure 4-51). The box plot for heptachlor epoxide shows that median concentrations for all categories were below detection (Figure 4-52).

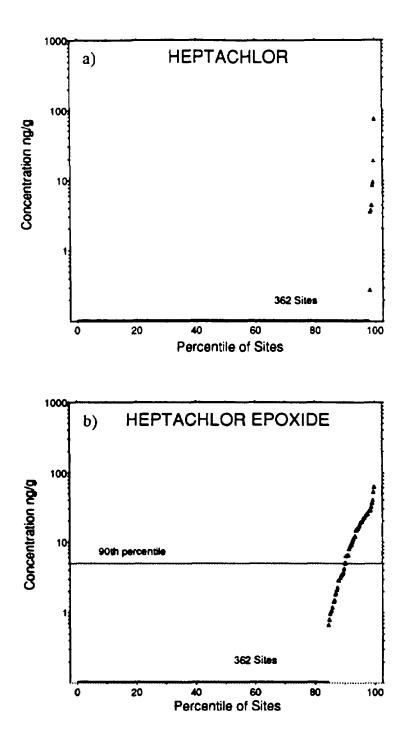


Figure 4-50. Cumulative frequency distribution of a) heptachlor and b) heptachlor epoxide in fish tissue. (Maximum concentration at each site was used. Bar on x-axis represents sites below detection.)

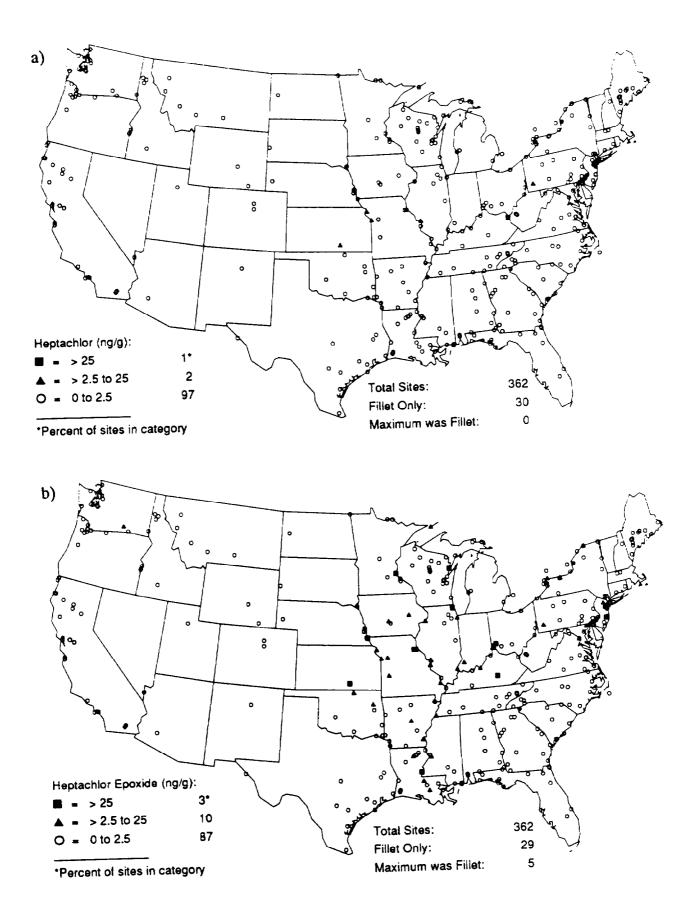
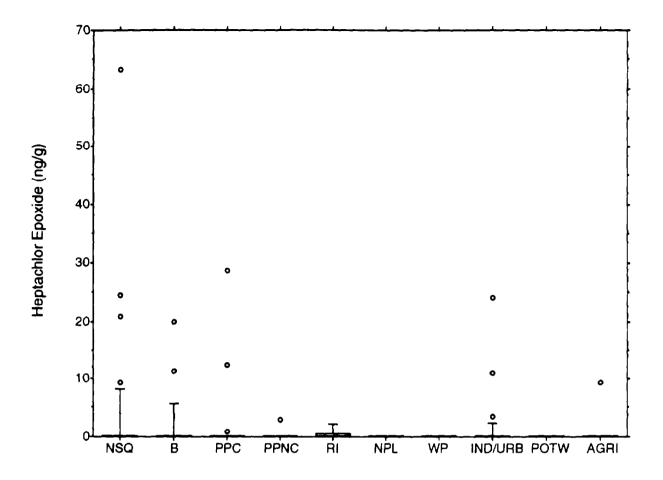



Figure 4-51. Map of geographical distribution of various concentration ranges for a) heptachlor and b) heptachlor epoxide in fish tissue.

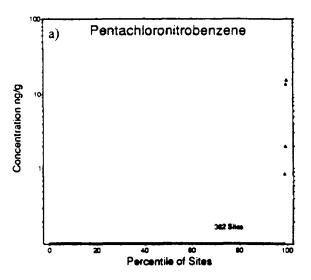
Summary Table for Heptachlor Epoxide Box Plot

		Concentration Range				
Site Category	<u> </u>	pg/g	Mean	<u>Stan. Dev.</u>	<u>Median</u>	
NASQAN (NSQ)	39	ND - 63.2	3.3	11.2	ND	
Background (B)	20	ND - 19.9	1. 6	5.0	ND	
Paper Mills Using CI (PPC)	39	ND - 28.7	1.1	5.0	ND	
Other Paper Mills (PPNC)	17	ND - 2.9	0.2	0.7	ND	
Refinery/Other Industry (R/I)	5	ND - 2.3	0.5	1	ND	
Superfund Sites (NPL)	6	ND	ND	ND	ND	
Wood Preservers (WP)	10	ND	ND	ND	ND	
ndustrial/Urban Sites (IND/URB)	31	ND - 24.1	1.3	4.7	ND	
POTW	6	ND	ND	ND	ND	
Agricultural (AGRI)	15	ND - 9.3	0.6	2.4	ND	

n = number of sites in category. ND's set at 0. Maximum concentrations at sites were used.

Figure 4-52. Box and whisker plot for heptachlor epoxide in fish tissue.

Pentachloronitrobenzene


Pentachloronitrobenzene (PCNB) is used as a soil fungicide, a seed dressing agent for peanuts, to control stem and root rot on flowers and vegetables, and to minimize mold growth on cotton and turf. PCNB was detected at four sites (Figure 4-53a,b). The highest concentration of PCNB was found in a whole-body carp sample from the Missouri River at St. Joseph (3044) located near an agricultural chemical manufacturing plant, and the next highest was a whole-body carp sample from the Scioto River at Chillicothe, Ohio (3132) near pesticide and inorganic chemical manufacturing plants and a Superfund site.

COMPARISON WITH NATIONAL CONTAMINANT BIOMONITORING PROGRAM

The National Contaminant Biomonitoring Program (NCBP), formerly part of the National Pesticide Monitoring Program, is an ongoing study begun in 1964 to determine how organochlorine pollutant levels vary over geographic regions and change over time. Fish have been monitored since 1967 and the latest analyses were performed in 1984 for 19 organochlorine compounds and 7 metals (cadmium, lead, mercury, arsenic, copper, selenium, and zinc). Fifteen of the organochlorine compounds and mercury were also analyzed in the NSCRF.

The 1984 NCBP sampled 112 sites for organic chemicals and 109 sites for metals. The monitoring sites were selected to represent watersheds, and included all of the major river basins in the continental United States. Only 11 sites were common to both the NCBP and NSCRF studies. Composite samples consisted of five fish and were collected at each site for three fish species-two bottom feeder species and one predator species.

A total of 15 organic compounds and mercury were measured in both studies. In the NSCRF, 11 compounds were found at greater than 50 percent of the sites. Eight of these compounds were analyzed in the NCBP: p,p'-DDE, PCBs, dieldrin, cis- and trans-chlordane, pentachloroanisole, trans-nonachlor and alpha-BHC. All of these compounds, except alpha-BHC, were found at greater than 50 percent of the sites in the NCBP. Several other pesticides were found at higher concentrations in the NCBP including dieldrin, endrin, gamma-BHC, and chlordane-related compounds. This is consistent with the larger proportion of sites near agricultural areas in the NCBP. Additionally, the percent occurrence for p,p'-DDE and PCBs in both studies is very close. The percent occurrences for DDE were 99 in the NSCRF and 98 in the NCBP, and 91 for PCBs in both studies. Mercury was similar, found in samples from 92 percent of the sites in the NSCRF and 100 percent of the sites in the NCBP. These results highlight the ubiquitous extent of these three compounds.

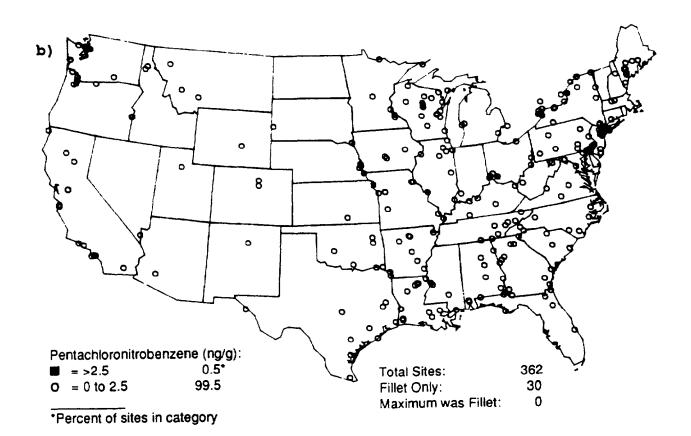


Figure 4-53. Pentachloronitrobenzene: a) cumulative frequency distribution and b) map of geographical distribution of various concentration ranges in fish tissue.

This chapter provides biological information on the various fish species sampled as well as a summary of average fish tissue concentration data by type of fish species. At most of the sampled sites, few, if any, different types of species were collected. As a consequence, only limited bioaccumulation or other comparions can be made between fish species for a given sampling site. Nevertheless, the tables showing the concentration of chemicals by fish species may provide a good basis for follow-up studies or as a supplement to other fish contamination studies. Additionally, the information on fish feeding strategies may prove useful in developing future source correlation studies.

SUMMARY OF FISH SPECIES SAMPLED

Though protocols were established to minimize fish sample variables among sites, over 119 different species representing 33 taxonomic families of fish were collected for this study. Freshwater, estuarine, and marine samples were included. Table 5-1 lists the species by scientific and common name and shows the number of sites at which they were sampled. This table also shows feeding strategy and indicates whether the fish is found in a freshwater and/or marine environment. Sampling locations were shown earlier in Figure 2-4. Tissue concentrations have been measured in catadromous species (e.g., American eel, Anguilla rostrata); anadromous species (e.g., salmon, Onchorhynchus); and freshwater, estuarine, and marine species, in addition to exotic introduced species such as <u>Tilapia</u>. In addition, 17 samples of shellfish were collected, which are described at the end of this section.

The 14 most free	mently sam	nled species	were as follows:
The I + moot net	jucinity outin	pied species	

Bottom Feeder Species	Number of Sites Where Sampled
Carp	135
White Sucker	32
Channel Catfish	30
Redhorse Sucker	16
Spotted Sucker	10
Game Species	Number of Sites Where Sampled
Largemouth Bass	83
Smallmouth Bass	26
Walleye	22
Brown Trout	10
White Bass	10
Northern Pike	8
Flathead Catfish	8
White Crappie	7
Bluefish	5

TABLE 5-1 Distribution and Feeding Strategy for Fish Species Collected

Scientific Name	Common Name	Range ¹	Feeding Strategy ²	No. of Sites ³
Class - Chondrichthyes Order - Squaliformes Family - Carcharhinidae				
<u>Triakis semifasciata</u> Order - Rajiformes Family - Rajidae	Leopard Shark	М	Р	1
Raja binoculata Family - Dasyatidae	Big Skate	М	В	1
Dasyatis (species unknown) Order - Chimaeriformes Family - Chimaeridae	Stingray	М	P	1
Hydrolagus collici Class Osteichthyes Order Acipenseriformes Family Acipenseridae	Spotted Ratfish	М	P	1
Acipenser transmontanus Order - Semionotiformes Family - Lepisosteidae	White Sturgeon	Both	Р	4
Lepisosteus osseus Lepisosteus platostomus Order - Amiiformes	Longnose Gar Shortnose Gar	F F	P P	1 1
Family - Amiid ae <u>Amia calva</u> Order - Anquilliformes Family - Anquillidae	Bowfin	F	P (Pisc.)	2
Anguilla rostrata Order - Clupeiformes Family - Clupeidae	American Eel	Both	P	1
Alosa sapidissima Dorosoma cepedianum	American Shad Gizzard Shad	Both Both	P P (Filter Feeder)	1

¹ Estuarine/Marine: M = Marine; F = Freshwater; [1] = Introduced ² P = Predator: B = Bottom Feeder ³ Number of sites where fish were collected and analyzed

SOURCE: AFS, 1980

Scientific Name	Common Name	Range ¹	Feeding Strategy ²	No. of Sites ³
Order · Osteoglossiformes				
Family - Hiodontidae				
Hiodon alosoides	Goldeye	F	Р	1
Order - Salmoniformes				
Family - Salmonidae				
Coregonus clupeaformis	Lake Whitefish	Both	Р	1
Oncorhynchus gorbuscha	Pink Salmon	Both	Р	1
Oncorhynchus kisutch	Coho Salmon	Both	P (Pisc.)	1
Oncorhynchus mykiss	Rainbow Trout	Both	P (Fish, Insects, Algae)	7
Oncorhynchus tshawytscha	Chinook Salmon	Both	P (Pisc.)	1
Prosopium williamsoni	Mountain Whitefish	F	P (Aq. Insects)	1
<u>Salmo clarki</u>	Cutthroat Trout	Both	Р	1
<u>Salmo salar</u>	Atlantic Salmon	Both	P (Pisc.)	2
Salmo trutta	Brown Trout	Both[I]	P (Pisc.)	10
Salvelinus fontinalis	Brook Trout	Both	Р	2
<u>Salvelinus malma</u>	Dolly Varden	Both	Р	2
Salvelinus namaycush	Lake Trout	F	P (Pisc.)	1
Family - Osmeridae				
Hypomesus pretiosus	Surf Smelt	Both	В	1
Family - Esocidae				
Esox lucius	Northern Pike	F	P (Pisc.)	8
Esox niger	Chain Pickerel	F	Р	4
Esox spp.	Pickerel; Pike	F	Р	1
Order - Cypriniformes				
Family - Cyprinidae				
Acrocheilus alutaceus	Chiselmouth	F	В	1
Carassius auratus	Goldfish	F[I]	В	l
Ctenopharyngodon idella	Grass Carp	F[I]	В	1
Cyprinus carpio	Common Carp	F[I]	B (Omni.)	135
<u>Gila</u> spp.	Chub	F	В	1
Orthodon microlepidotus	Sacramento Blackfish	F	В	1
Ptychocheilus	Squawfish	F	B (Pisc.)	9
Family - Catostomidae				
Carpiodes carpio	River Carpsucker	F	В	4
Carpiodes cyprinus	Quillback	F	В	1
Catostomus catostomus	Longnose Sucker	F	В	2
Catostomus columbianus	Bridgelip Sucker	F	В	3
Catostomus commersoni	White Sucker	F	B (Omni.)	32
Catostomus macrocheilus	Largescale Sucker	F	В	2
Catostomus occidentalis	Sacramento Sucker	F	В	3
	Sucker (unspecified)	-	•	32

¹ Estuarine/Marine: M = Marine: F = Freshwater; [1] = Introduced ² P = Predator: B = Bottom Feeder ³ Number of sites where fish were collected and analyzed

SOURCE: AFS, 1980

Scientific Name	Common Name	Range ¹	Feeding Strategy ²	No. of Sites ³
Erimyzon oblongus	Creek Chubsucker	F	B	1
Erimyzon sucetta	Lake Chubsucker	F	B	1
Hypentelium nigricans	Northern Hog Sucker	F	B	- 1
Ictiobus bubalus	Smallmouth Buffalo	F	B	5
Icuobus cyprinellus	Bigmouth Buffalo	F	B	4
		-	(Zooplankton & Crust.)	•
Ictiobus niger	Black Buffalo	F	В	1
Minytrema melanoos	Spotted Sucker	F	B (Zooplankton	10
• • • • • • •	-		Insect Larvae/Plants)	
Moxostoma anisurum	Silver Redhorse	F	B (Aq. Insects)	1
Moxostoma congestum	Gray Redhorse	F	B (Aq. Insects)	1
Moxostoma duquesnei	Black Redhorse	F	B (Aq. Insects)	1
Moxostoma erythrurum	Golden Redhorse	F	B (Aq. Insects)	1
Moxostoma macrolepidotum	Shorthead Redhorse	F	B (Aq. Insects)	I
Moxostoma poecilurum	Blacktail Redhorse	F	B (Aq. Insects)	1
Moxosioma	Redhorse Sucker	F	B (Aq. Insects)	16
Order - Siluriformes Family - Ictaluridae				
Ictalurus catus	White Catfish	F	В	4
Ictalurus furcatus	Blue Catfish	F	B (Omni.)	6
Ictalurus melas	Black Bullhead	F	B (Omni.)	2
Ictalurus natalis	Yeilow Bullhead	F	B (Omni.)	1
Ictalurus nebulosus	Brown Bullhead	F	B (Omni.)	4
Ictalurus punctatus	Channel Catfish	F	B (Omni.)	30
Pylodictis olivaris	Flathead Catfish	F	P (Pisc.)	8
There it an a state of	Catfish (unspecified)	-	-	11
Family - Ariidae		_		
Arius felis	Hardhead Catfish	Both	В	7
Order - Gadiformes Family - Gadidae				
Gadus morhua	Atlantic Cod	м	Р	1
Order - Perciformes				
Family - Percichthyidae				
Morone americana	White Perch	Both	Р	4
Morone chrysops	White Bass	F	P	10
		-	(Fish & Insects)	
Morone saxatilis	Striped Bass	Both	P	1
	Bass (unspecified)	•	-	3
				-

¹ Estuarme/Marine: M = Marine; F = Freshwater; [I] = Introduced² P = Predator: B = Bottom Feeder³ Number of sites where fish were collected and analyzed

SOURCE: AFS, 1980

Scientific Name	Common Name	Range ¹	Feeding Strategy ²	No. of Sites ³
Family - Centrarchidae				
Ambloplites rupestris	Rock Bass	F	Р	4
Lepomis auritus	Redbreast Sunfish	F	P	2
Lepomis cyanellus	Green Sunfish	F	P	2
Lepomis gibbosus	Pumpkinseed	F	Р	1
Lepomis gulosus	Warmouth	F	Р	l
Lepomis macrochirus	Bluegill	F	P (Insects)	4
Lepomis megalotis	Longear Sunfish	F	Р	1
Lepomis microlophus	Redear Sunfish	F	P (Mollusks)	1
Micropterus coosae	Redeye Bass	F	Р	1
Micropterus dolomieui	Smallmouth Bass	F	P (Pisc.)	26
Micropterus notuus	Suwannee Bass	F	Р	1
Micropterus punctulatus	Spotted Bass	F	Р	3
Micropterus salmoides	Largemouth Bass	F	Р	83
Pomoxis annularis	White Crappie	F	P (Pisc.)	7
Pomoxis nigromaculatus	Black Crappie	F	P (Pisc.)	4
2	Crappie (unspecified)	•	-	3
Family - Percidae				
Perca flavescens	Yellow Perch	F	Р	1
Stizostedion canadense	Sauger	F	Р	3
Stizostedion vitreum				
viteum	Walleye	F	P (Pisc.)	22
Family - Pomatomidae				
Pomatomus saltatrix	Bluefish	м	P (Pisc.)	5
Family - Carangidae			- (•
Caranx bartholomaei	Yellow Jack	м	р	1
Caranx hippos	Crevalle Jack	M	P	1
<u>Caranx ienoblis</u>	Papio	M	P	1
	1 apro	141	1	1
Family - Lutjanidae	D		D	•
Lutianus campechanus	Red Snapper	М	Р	2
Family - Sparidae				
Archosargus probato				
-cephalus	Sheepshead	М	Р	2
Family - Sciaenidae				
Aplodinotus grunniens	Freshwater Drum	F	P (Mollusks & Fish)	3
Cynoscion nebulosus	Spotted Seatrout	Both	È P	3
Cynoscion regalis	Weakfish	М	Р	3
Equetus punctatus	Spotted Drum	М	Р	1
Leiostomus xanthurus	Spot	Both	P	3

¹ Estuarine/Marine: $M \approx$ Marine; $F \approx$ Freshwater; [I] = Introduced ² P = Predator; B = Bottom Feeder ³ Number of sites where fish were collected and analyzed

SOURCE: AFS, 1980

Ξ

Scientific Name	Common Name	Range ¹	Feeding Strategy ²	No. of Sites ³
Micropogonias undulatus	Atlantic Croaker	Both	P	3
Pogonias cromis	Black Drum	М	Р	3
Sciaenops ocellatus	Red Drum	Both	Р	3
Family - Cichlidae				
<u>Tilapia</u> (species uncertain)			В	1
<u>Tilapia zilli</u>	Redbelly Tilapia	F[I]	В	1
Family - Embiotocidae				
Phanerodon furcatus	White Surfperch	М	В	1
Family - Mugilidae	•			
Mugil cephalus	Striped Mullet	Both	Р	3
Family - Scorpaenidae	··· •			
Sebastes auriculatus	Brown Rockfish	М	Р	1
Sebastes caurinus	Copper Rockfish	M	P	1
Sebastes maliger	Quillback Rockfish	M	P	1
Sebastes paucispinis	Bocaccio	M	P	1
Sebastes proriger	Redstripe Rockfish	М	Р	1
Family - Cottidae				
Cottus (species unknown)	Sculpin		В	4
Cottus aleuticus	Coastrange Sculpin	Both	B (Plants & Insects)	
Order - Pleuronecuformes Family - Bothidae				
Paralichthys dentatus	Summer Flounder	м	Р	1
Paralichthys lethostigma	Southern Flounder	Both	P	2
Family - Pleuronectidae		-		
Hinpoglossoides elassodon	Flathead Sole	М	Р	2
Hypsopsetta guttulata	Diamond Turbot	М	P	1
Platichthys stellatus	Starry Flounder	Both	P	5
Pleuronichthys verticalis	Hornyhead Turbot	М	Р	1
<u>Pseudopleuronectes</u> americanus	Winter Flounder	М	Р	4

¹ Estuarine/Marine: M = Marine; F = Freshwater; [1] = Introduced ² P = Predator: B = Bottom Feeder ³ Number of sites where fish were collected and analyzed

SOURCE: AFS, 1980

PREVALENCE AND AVERAGE CONCENTRATION OF CHEMICALS BY SPECIES

Table 5-2 shows average fish tissue concentrations for each of the dioxin/furan compounds in the 14 most commonly sampled fish species at targeted sites. With the exception of four congeners (1,2,3,4,7,8,9 HpCDF; 1,2,3,4,7,8 HxCDD; 1,2,3,6,7,8, HxCDF; 1,2,3,7,8,9 HxCDF), whole-body samples from bottom-feeding species have higher dioxin/furan concentrations than fillet samples from game fish. Average concentrations were the highest in carp for four of the six dioxins, and three of the nine furans. The highest concentrations of the other congeners were found in spotted and redhorse suckers and channel catfish for the bottom-feeding species. For game fish species, the highest concentrations were found in white crappie for two of the six dioxins, four of nine furans, and TEC. Brown trout had the highest average concentration for one dioxin and two furans. The highest concentrations of the other congeners were found in largemouth bass, white bass, northern pike, and bluefish. The occurrence of pollutants in the most frequently sampled fish species varied by chemical. Some pollutants (i.e., 2,3,7,8 TCDF and 1,2,3,4,6,7,8 HpCDD) were found in the majority of samples (Table 5-3). Two furans, 1,2,3,7,8,9 HxCDF and 1,2,3,4,7,8,9 HpCDF, were not found in quantities above detection in any of the game fish fillets, but were detected in a small number of the bottom feeder whole-body samples.

Table 5-4 shows the average fish tissue concentration of selected xenobiotics for the 14 most commonly sampled species at targeted sites. Average mercury concentrations are higher in game fish analyzed as fillets than bottom feeders analyzed as whole-body samples. As discussed in Chapter 4, this result would be expected because mercury is stored in the muscle tissue rather than the lipid and would, therefore, exhibit higher concentrations in fillets than in whole-body samples. Ten xenobiotics are detected in whole-body samples of bottom feeders and in fillet samples of game fish at roughly the same average concentrations. These compounds are biphenyl, chlorpyrifos, dicofol, dieldrin, endrin, mirex, oxychlordane, PCBs, DDE, and trifluralin. Twelve compounds have higher average concentrations in whole-body samples of bottom feeders than in fillet samples of game fish: alpha and gamma-BHC; heptachlor epoxide; pentachloroanisole; pentachlorobenzene; chlordane; nonachlor; three trichlorobenzenes; 1,2,3,4 tetrachlorobenzene; and hexachlorobenzene. Biphenyl, mercury, PCBs, and DDE were found in a majority of both whole-body and fillet samples with concentrations above detection (Table 5-5). Endrin, 1,3,5 trichlorobenzene and trifluralin were found in quantities above detection in only a few of the game fish fillet samples collected.

HABITAT AND FEEDING STRATEGY OF MOST FREQUENTLY SAMPLED SPECIES

Common Carp

The common carp (<u>Cyprinus carpio</u>) is distributed widely throughout most parts of the country. It prefers the shallows of warm streams, lakes, and ponds containing an abundance of vegetation. It is not normally found in clear, cold waters or streams of high gradients.

The spawning period for this species can last from April to August, but generally spawning occurs in late May and June. Shallow and weedy areas of lakes, ponds, tributaries, streams, swamps, floodplains, and marshes are suitable spawning grounds. The young carp consume zooplankton as

Fish Species	2378 TCDD	12378 PeCDD	123478 HxCDD	123678 HxCDD	123789 HxCDD	1234678 HpCDD	2378 TCDF	12378 PeCDF	23478 РвСDF	123478 HxCDF	123678 HxCDF	123789 <u>Hx</u> CDF	234678 HxCDF	1234678 HpCDF	1234789 HpCDF	TEC
Bottom Feeders																
Carp	7.76	3.63	2.16	6.81	1.54	22.29	10.15	1.31	4.01	2.54	1.91	1.16	1.20	2.49	1.22	13.06
White Sucker	8.08	2.05	1.03	1.96	0.88	3.72	22.89	1.10	2.64	2.21	1.29	1.06	1.09	1.23	1.13	12.79
Channel Catfish	11.56	2.37	1.61	5.62	1.29	9.40	2.22	0.52	2.91	2.41	1.41	1.38*	1.62	2.55	1.26	14.80
Redhorse Sucker	4.65	1.50	1.40	2.36	0.84	4.94	30.09	0.75	1.28	2.10	1.16	1.19*	1.50	1.57	1.36*	9.22
Spotted Sucker	1.73	2.34	1.70	12.08	1.14	17.48	7.49	2.12	2.06	2.22	1.79	1.28*	1.78	1.77	1.08	6.23
Game Fish																
Largemouth Bass	1.73	0.59	1.12	1.28	0.64	2.48	2.18	0.37	0.47	1.24	1.23	1.21*	0.88	0.82	1.21*	1. <u>91</u>
Smallmouth Bass	0.72	0.50*	1.13*	0.79	0.64*	0.67	1.93	0.36*	0.51	1.28	1.23	1.26*	0.89*	0.69	1.30*	0.65*
Walleye	0.88	0.54*	0.99*	0.73	0.62*	0.88	1.83	0.35*	0.38	1.04	1.09*	1.07*	0.75	0.74	1.21*	0.79*
Brown Trout	2.52	1.01	1.07*	0.98	0.68*	1.18	3.74	0.60	1.36	1.47	1.12*	1.09*	0.94*	0.67	1.16*	3.31
White Bass	3.00	0.66	1.05*	0.78	0.61*	1.01	5.07	0.40	0.49	1.04	1.16*	1.13*	0.81*	0.63	1.17*	3.44
Northern Pike	0.77	0.46*	1.23*	0.91	0.69*	0.73	1.01	0.44	0.66	1.41*	1.42*	1.38*	0.98*	0.56	1.30*	0.66
Flathead Catfish	0.78	0.43	0.90	1.06	0.50	1.67	1.63	0.40	0.56	1.05	1.20*	1.17*	0.61*	0.56	1.10*	0.99
White Crapple	2.13	0.60	1.29*	1.03*	0.83*	1.33	10.46	0.54	0.67	1.33*	1.33*	1.30*	0.95*	0.96*	1.34*	3.80
Bluefish	0.85	0.56	1.23*	0.98*	0.69*	0.65	2.11	0.41	0.59	1.42*	1.42*	1.39*	0.98*	0.72*	1.31*	1.41

TABLE 5-2 Average Fish Tissue Concentrations of Dioxins and Furans for Major Species

Values calculated using whole body samples for bottom feeding species and fillet samples for Game Fish (predators).

Values below detection have been replaced by one-half detection limit for the given sample. Asterisk indicates all values below detection.

Units = pg/g.

TABLE 5-3
Detailed Summary of Occurrence of Prevalent Dioxins/Furans by Fish Species

Name and Address of Concession, Name and Address of Concession, Name of Street or other Distances of Concession, Name of Concession,	the second s														
	2378	12378	123478	123678	123789	1234678	2378	12378	23478	123478	123678	123789	234678	1234678	1234789
Fish Species	TCDD	PeCDD	HxCDD	HxCDD	HxCDD	HpCDD	TCDF	PeCDF	PeCDF	HxCDF	HxCDF	HxCDF	HxCDF	HpCDF	HpCDF
Bottom Feeders										i i					
Carp	106/135	89/133	73/125	102/125	71/125	103/108	124/135	83/134	96/134	79/126	45/126	2/126	63/126	84/109	6/109
White Sucker	28/37	20/36	7/ 34	20/34	7/ 34	28/31	35/37	19/37	27/37	14/34	4/34	1/34	8/ 34	16/31	2/31
Channel Catfish	12/19	13/17	6 / 18	16/18	12/18	18/18	16 / 19	9/19	15/19	9/18	5/18	0/18	8/18	10/18	1/18
Redhorse Sucker	9/15	7/15	1/14	9/14	3/14	12/13	14 / 15	6/15	11/15	5/15	1/15	0/15	3/15	5/13	0/13
Spotted Sucker	6/10	5/10	4/10	7/10	6/10	10/10	9/10	2/10	6/10	2/10	1/10	0/10	1 / 10	5/10	1/10
Game Fish															
Largemouth Bass	34/75	10/73	2/72	18 / 72	5/72	37/67	42 / 75	6/74	12/74	10/73	2/73	0/73	6/73	13/67	0/67
Smallmouth Bass	9/22	0/21	0/20	2/19	0/20	10/18	16/22	0/22	5/22	1/20	1/20	0/20	0/20	1/18	0/18
Walleye	5/18	0/18	0/16	1/16	0/16	9/16	12/18	0/18	3/18	1/16	0/16	0/16	1/16	2/16	0/16
Brown Trout	2/8	3/7	0/7	1/7	0/7	2/6	6/8	2/8	4/8	2/7	0/7	0/7	0/7	0/6	0/6
White Bass	5/10	2/10	0/10	2/10	0/10	8/9	10/10	4/10	4/10	1/10	0/10	0/10	0/10	1/9	0/9
Northern Pike	4/7	0/6	0/7	6/7	0/7	2/7	4/6	1/7	1/7	0/7	0/7	0/7	0/7	1/7	0/7
Flathead Catfish	3/6	3/6	1/6	4/6	1/6	5/6	2/6	1/6	2/6	2/6	0/6	0/6	2/6	3/6	0/6
White Crappie	1/8	1/8	0/7	0/7	0/7	2/7	3/8	1/8	1/8	0/6	0/7	0/7	0/7	0/7	0/7
Bluefish	3/4	1/4	0/4	0/4	0/4	1/4	4/4	1/4	4/4	0/4	0/4	0/4	0/4	0/4	0/4

Values were determined using whole body samples for bottom-feeding species and fillet samples for game species.

First number indicates number of samples where detected; second number indicates total number of samples at different sites for given species analyzed.

It more than one tillet or whole body sample of the same species at a site was analyzed, only the highest value was used.

Fish Species	Alpha-BHC	Gamma-BHC	Biphenyl	Chlorpyritos	Dicotol	Diekdrin	Endrin	Heptachlor Epoxide	Mercury (µg/g)	Mirex	Oxychlordane	PCBs
Bottom Feeders												
Carp	3.10	4.34	4.38	8.23	0.88	44.75	1.40	4 00	0 11	3.70	8 20	2941.13
White Sucker	3.31	1.66	1.28	1.75	0.48	22.75	0.24	1 09	0.11	4 35	3.10	1697 81
Channel Cat	2.87	3.17	1.24	6 97	0 59	15.44	9.07	0 50	0 09	14.59	6 4 1	1300 52
Redhorse Sucker	0.82	0.41	1.25	0.35	ND	5.35	0.97	ND	0.27	0 57	2 37	487.72
Spotted Sucker	1.45	2.63	3.35	0.56	0.05	5.52	ND	ND	0.12	1 79	0.05	133 90
Game Fish												
Largemouth Bass	0.15	0.07	0.38	0.23	0.20	5.01	ND	0.30	0.46	0.21	047	232 26
Smallmouth Bass	0.36	0.15	0.33	0.08	ND	2.34	ND	0.07	0.34	1.99	0.54	496.22
Walleye	ND	ND	0.40	0.04	ND	3.73	ND	0.21	0.51	0 08	1.11	368.65
Brown Trout	1.59	ND	0.81	ND	0.94	20.13	ND	2.08	0.14	43 98	5.38	2434.07
White Bass	0.34	0.79	0.62	1.32	ND	9.35	ND	1 40	0.35	0.11	0 84	288 35
Northern Pike	0.55	ND	0.59	11.43	0.31	9.04	ND	ND	0.34	2.39	4 00	788.40
Flathead Cat	0.92	0.58	0.60	22 57	1.28	37.38	3.45	0.57	0 27	ND	0.63	521.19
White Crappie	0.23	ND	0.21	ND	ND	ND	ND	ND	0.22	ND	ND	22 34
Bluefish	0.38	0.12	0.20	ND	ND	2.87	ND	ND	0.22	0.13	ND	368 06
Fish Species	Pentachloro- anisole	Pentachloro- benzene	DDE	Total Chlordane	Total Nonachlor	123 TCB	124 TCB	135 TCB	1234 TECB	Trifluralin	Hexachloro- benzene	
Bottom Feeders												
Carp	16.50	1.04	415.43	67.15	63.15	1.54	4.77	0.08	0.30	12.55	3.58	

 TABLE 5-4

 Average Fish Tissue Concentrations of Xenobiotics for Major Species

White Sucker 9.06 0.39 78.39 18.42 20.83 0.30 0.14 ND 0.16 0.15 3.62 Channel Cat 39.60 1.32 627.77 54.39 66.28 0.14 0.37 ND 0.88 1.00 2.36 Redhorse Sucker 2.87 0.02 87.25 16.48 30.73 ND 0.55 6.48 0.08 0.09 0.58 Spotted Sucker 17.68 0.02 75.31 12.33 15.00 1.00 ND 3.34 12.00 0.09 0.02 Game Fish 2.89 Largemouth Bass 0.02 55.72 ND 0.57 4.21 0.22 0.19 0.03 0.01 0.20 Smallmouth Bass 0.23 0.02 33.63 4.01 7.82 0.59 0.04 0.04 ND 0.36 0.70 Walleye ND 3.62 ND 0.76 34.00 8.04 0.29 0.38 ND 0.004 0.11 Brown Trout 0.60 158.90 7.25 32.60 ND ND 0.09 1.10 0.98 0.09 3.06 White Bass 0.93 ND 17.44 10.67 16.00 0.21 0.10 ND 0.01 ND 0.83 Northern Pike 1.51 0.09 59.50 5.45 13.88 0.30 0.23 ND 0.01 ND 0.20 Flathead Cat 0.31 ND 755.18 16.07 14.04 0.10 0.18 ND ND 44.37 0.85 White Crappie 0.33 ND 10.04 0.34 0.28 ND ND 0.08 0.08 ND ND Bluefish 0.05 ND 29.13 7.74 7.56 6.25 4 66 0 57 ND ND ND

Values calculated using whole body samples for bottom feeding species and fillet samples for Game Fish (predators). Values below detection have been set at zero.

Units = ng/g, unless noted.

	<u> </u>			T			<u> </u>		<u> </u>	<u> </u>		
		[1		_		Heptachlor				
Fish Species	Alpha-BHC	Gamma-BHC	Biphenyl	Chlorpyritos	Dicotol	Dieldrin	Endrin	Epoxide	Mercury	Mirex	Oxychlordane	PCBs
Bottom Feeders				1								
Сагр	77/128	57/128	124/128	46/128	12/128	91/128	16/128	33/128	111/133	55/128	36/128	122/128
White Sucker	24/35	18/35	33/35	7 / 35	7/35	24/35	_3 / 35	2/35	29/34	9/35	9 / 35	32/35
Channel Cat	7/16	7/16	16/16	9/16	4/16	11/16	2/16	2/16	16/17	7/16	6/16	15/16
Redhorse Sucker	6/14	4/14	14/14	3/14	0/14	8/14	2/14	0/14	14/15	6/14	5/14	14/14
Spotted Sucker	3/10	2/10	10/10	1/10	1/10	5/10	0/10	0/10	9/10	6/10	1/10	9/10
Game Fish												
Largemouth Bass	5/31	3/31	29/31	4/31	7/31	9/31	0/31	2/31	65/66	6/31	4/31	26/31
Smallmouth Bass	4/15	2/15	15/15	1/15	0/15	8/15	0/15	1/15	20/20	6/15	3/15	14/15
Walleye	0/8	0/8	8/8	1/8	0/8	3/8	0/8	2/8	19/19	2/8	2/8	8/8
Brown Trout	1/3	0/3	3/3	0/3	1/3	2/3	0/3	2/3	7/8	2/3	2/3	3/3
White Bass	3/5	4/5	5/5	3/5	0/5	5/5	1/5	2/5	6/6	3/5	2/5	5/5
Northern Pike	1/6	0/6	6/6	3/6	2/6	3/6	0/6	0/6	7/7	3/6	1/6	5/6
Flathead Cat	2/4	1/4	4/4	3/4	1/4	4/4	1/4	1/4	6/6	0/4	1/4	4/4
White Crappie	1/4	0/4	4/4	0/4	0/4	0/4	0/4	0/4	5/7	0/4	0/4	3/4
Bluefish	1/3	1/3	2/3	0/3	0/3	2/3	0/3	0/3	3/3	1/3	0/2	3/3
			·	· · · · · · · · · · · · · · · · · · ·	•·			· · · · · · · · · · · · · · · · · · ·	•		·	
	Pentachioro-	Pentachloro-		Total	Total						Hexachioro-	
Fish Species	anisole	benzene	DDE	Chlordane	Nonachlor	123 TCB	124 TCB	135 TCB	1234 TECB	Trifluralin	benzene	
Bottom Feeders				Of lior out to	Hondonio	120 100		100 100	12011200			
Carp	103/128	42/128	126/128	109/128	114/128	35/128	60/128	14/128	16/128	31/128	72/128	
White Sucker	25/35	7/35	34/35	24/35	24/35	9/35	18/35	2/35	5/35	0/35	16/35	
Channel Cat	11/16	4/16	16/16	12/16	14/16	3/16	7/16	0/16	2/16	1/16	6/16	
Redhorse Sucker	11/14	1/14	14/14	7/14	10/14	6/14	6/14	2/14	2/14	0/14	4/14	
Spotted Sucker	7/10	1/10	9/10	7/10	8/10	7/10	8/10	2/10	1/10	0/10	2/10	
Game Fish												
Largemouth Bass	6/31	1/31	31/31	12/31	18/31	17/31	17/31	3/31	1/31	0/31	6/31	
Smallmouth Bass	4/15	1/15	15/15	8/15	9/15	9/15	8/15	1/15	3/15	0/15	5/14	
Walleye	6/8	0/8	8/8	4/8	3/8	3/8	3/8	0/8	1/8	0/8	2/8	
Brown Trout	1/3	2/3	3/3	2/3	2/3	3/3	3/3	0/3	1/3	0/3	2/3	
White Bass	5/5	0/5	5/5	4/5	5/5	4/5	3/5	0/5	1/5	1/5	3/5	
Northern Pike	2/6	1/6	6/6	3/6	4/6	3/6	2/6	0/6	1/6	0/6	1/6	
Flathead Cat	2/4	0/4	4/4	3/4	4/4	1/4	2/4	0/4	0/4	3/4	2/4	
White Crappie	1/4	0/4	4/4	1/4	1/4	1/4	2/4	0/4	0/4	0/4	0/4	
Bluefish	1/3	0/3	2/3	3/3	3/3	3/3	3/3	1/3	0/3	0/3	0/3	

 TABLE 5-5

 Detailed Summary of Occurrence of Prevalent Xenobiotics by Fish Species

Values were determined using whole body samples for bottom-feeding species and fillet samples for predator species.

First number indicates number of samples where detected; second number indicates total number of samples at different sites for given species analyzed.

If more than one fillet or whole body sample of the same species at a site was analyzed, only the highest value was used.

their major food source. Adults consume fish, snails, plants, bottom ooze, insect larvae, insects, crustaceans, mollusks, and fish eggs.

White Sucker

The white sucker (<u>Catostomus commersoni</u>) is found in the northeastern, central, and eastern regions of the country. It is a common inhabitant of the most highly polluted and turbid waters. It tolerates a wide range of environments and stream gradients. However, it is found most often in lakes or reservoirs with clear to slightly turbid waters and a bottom consisting of gravel or sand with sparse vegetation.

Spawning generally occurs in mid-April to early May in swift water or rapids over gravel bottoms. The young feed on algae, zooplankton, and blood worms, and the adults consume fish, fish eggs, mud, plants, algae, insects, mollusks, and zooplankton.

Channel Catfish

The channel catfish (<u>Ictalurus punctatus</u>) is found throughout the central part of the country and into parts of the western and eastern United States. It prefers clear, rocky, well-oxygenated streams, lakes, and reservoirs, but can adapt to slow-moving, silty streams.

The spawning period generally occurs from May to July in inlet streams or tributaries. The spawning nest is located in a crevice, under a bank, rock, or log, and can be constructed on several types of bottom substrate. The young consume aquatic insects and zooplankton, while the adults take any food available to them. This can include fish, plants, frogs, crayfish, clams, worms, algae, and decaying or dead matter.

Spotted Sucker

The spotted sucker (<u>Minytrema melanops</u>) is found in the central and southeastern regions of the United States. It prefers large rivers and their sloughs and reservoirs that are slow moving with a soft bottom of muck or sand with vegetation. It is intolerant of turbid waters, various industrial pollutants, and bottoms covered with flocculent clay silts.

Spawning occurs throughout the month of May in pool-like areas near riffle over a rubble bottom. The young and adult spotted suckers both feed on zooplankton, insect larvae, crustaceans, algae, and higher plant material.

Redhorse Sucker

Redhorse suckers are most commonly found in the central and eastern parts of the country. Redhorse suckers generally prefer swiftly flowing sections of small to medium-sized streams with clear water and a gravel, bedrock, or sand bottom. They are intolerant of siltation and pollution in their habitat. Spawning generally occurs during the month of April in shallower areas with a proper bottom substrate. Redhorse suckers are highly selective when it comes to choosing a spawning area. The water depth (0.5-2.0 ft) and the bottom substrate (approximately 70 percent fine rubble, 10 percent coarse rubble, and 20 percent sand and gravel) are the most important factors for a proper spawn. The young feed principally on phytoplankton, and the adults feed primarily on aquatic insects. For the data analyses in this report, all species of redhorse sampled were grouped under the name redhorse sucker.

Largemouth Bass

The largemouth bass (<u>Micropterus salmoides</u>) is found in most parts of the country. It prefers medium to large rivers, lakes, sloughs, ponds, and backwaters with clear to slightly turbid waters. It is usually found in shallower areas with dense to sparse vegetation.

The spawning period generally occurs from late April to early June. They tend to spawn a little earlier than the smallmouth bass. The fish spawn in quiet bays with emergent vegetation on a sand, gravel, or, occasionally, mud bottom. The young feed on algae, zooplankton, and insect larvae, while the adults feed on fish, crayfish, mammals, large insects, and amphibians.

Smallmouth Bass

The smallmouth bass (<u>Micropterus dolomieui</u>) is found mostly in the northeastern and central parts of the country, but can be found in limited areas of other parts of the country. It prefers medium to large streams, rivers ,and lakes with clear water, rocky or sandy bottoms, aquatic vegetation, and clean gravel shores.

Spawning generally occurs during late May and throughout June. The spawning nest is built on a gravel bottom beside a large boulder, log, stump, or foreign object in the shallows. The young consume insect larvae, zooplankton, and small insects, and the adults consume mostly fish but will also eat crayfish, insects, mammals, and amphibians.

Walleye

The walleye (<u>Stizostedion vitreum vitreum</u>) is found in most parts of the country except for the most western and southern areas. It prefers large clearwater rivers and lakes with sand and gravel bottoms. It is usually found in quiet backwaters and sloughs of these rivers and lakes.

Spawning generally occurs between mid-April and early May in wave-washed shallows or up inlet streams with gravel bottoms. This species prepares no spawning nest so the eggs are scattered over the gravel bottom of the area. The young consume zooplankton, insect larvae, and fry of other fish species, and the adults consume mostly fish, but will also eat insects, crayfish, and lamprey eels.

White Bass

The white bass (<u>Morone chrysops</u>) is found throughout the country, but is most heavily concentrated in the central United States. It prefers large, open rivers and lakes with clear to turbid waters and moderate currents.

The spawning period runs from late April into early June over most of its range. The spawning grounds consist of a firm bottom of sand, gravel, rubble, or rock in the shallows. This species builds no spawning nest, so the eggs are scattered over the bottom of the spawning area. The young white bass consume algae and zooplankton, and the adults consume fish, insect larvae, insects, and zooplankton.

Brown Trout

The brown trout (<u>Salmo trutta</u>) is most heavily concentrated in the northeastern and western parts of the country. It prefers coldwater streams and lakes, but can tolerate warmer water than other species of trout. In streams, it can be found in deeper and slower moving pools, and in the Great Lakes, it is found close to the shore.

The spawning period generally occurs from October to December in waters ranging in size from large streams to small spring-fed tributaries. The spawning nest is made on a gravel bottom in the shallower sections of the stream. The young feed primarily on zooplankton and insect larvae, and the adults eat mostly fish but will also consume larval insects, insects, leeches, snails, crayfish, freshwater shrimp, and worms. The brown trout is known to eat more fish than the other species of trout.

Flathead Catfish

The flathead catfish (<u>Pylodictis olivaris</u>) is generally found in the central parts of the country. It prefers large, rocky rivers with deep pools, plenty of cover, and swiftly moving waters.

The spawning period generally occurs in the months of June and July. The spawning nest is built in a secluded dark shelter over a gravel bottom. The young consume aquatic insect larvae, and the adults consume mostly fish but will occasionally feed on crayfish.

Northern Pike

The northern pike (<u>Esox lucius</u>) is found in the northeastern and north central parts of the country. It prefers cool to moderately warm weedy lakes, ponds, and slow-moving rivers. It can be found in areas of light to dense aquatic vegetation with clear to slightly turbid waters.

The spawning period generally occurs in late March or early April in shallow flooded marshes or inlet streams. Grasses, sedges, or rushes with fine leaves are most suitable for egg deposition. The young feed on phytoplankton, zooplankton, and insects, and the adults consume mainly fish but will also consume crayfish, mammals, and frogs.

White Crappie

The white crappie (<u>Pomoxis annularis</u>) is found mostly in the central part of the country, but can be found in limited areas in other regions. It prefers sloughs, backwaters, landlocked pools and lakes, and pools in moderate-sized to large streams with slightly turbid to turbid waters. It is found in the shallow and warm areas with sparse vegetation over a variety of substrates.

The spawning period generally occurs in the months of May and June. The spawning nests are made in colonies near vegetation over a hard clay or gravel bottom in the shallows. The young consume zooplankton and small insects, and the adults consume mostly fish but will occasionally feed on insects.

Blue Fish

The bluefish (<u>Pomatomus saltatrix</u>) is an ocean predator found in the tropical and temperate waters of the world with the exception of the central and eastern Pacific. It lives around large shoals in open water and moves in toward coastal waters to feed. This movement inward, as well as other migrations, is correlated with the movement of prey species of fish. It will attack fish almost as long as itself and will kill prey that it does not eat. The bluefish is the only ocean fish included in the 14 most frequently sampled species for this study.

Shellfish

There were 17 shellfish samples analyzed in the study. These included 4 dungeness crabs, 2 hepatopancreas organs of crabs, 3 crayfish, 3 soft shell clams, 2 pacific oysters, 1 unidentified oyster, 1 unidentified mussel, and 1 unidentified shellfish. The different species of shellfish exhibited a wide range of chemical concentrations. This could be attributed to differences in habitat and food sources between species. Varying chemical concentrations within each type of species are most likely related to the location of capture.

The dungeness crabs, on average, were found to have the highest chemical concentrations of all the shellfish analyzed. The chemicals accumulate in the hepatopancreas organ of the crab in very high concentrations. The high concentrations of chemicals in these crabs may relate to the large amount of fish consumed as part of their diet. The crayfish consumes a smaller proportion of fish in its diet than the dungeness crabs. It also consumes other types of food including some plant material. This may account for the differences in chemical concentrations between the two species.

The oysters, mussels, and clams analyzed for some of the study sites are filter feeders and consume similar types of food. The soft shell clams show higher chemical concentrations than the other species of filter feeders. This may be explained by differences in habitat among these species. The clams prefer a muddy or sandy bottom, and the oysters and mussels prefer a rocky bottom. A muddy and soft bottom will tend to accumulate more contaminants than a rocky bottom, so this would most likely have a direct effect on the clams. Overall, the filter feeders showed lower chemical concentrations than the crabs and crayfish.

Chapter 6 - Estimate of Potential Human Health Risks

This chapter presents risk estimates to human health based on fillet concentration data shown in Appendix D. Most of the fillets were from game fish, but a few were from bottom feeders likely to be consumed by humans. Carcinogenic risks were estimated for 14 of the xenobiotic compounds for which cancer potency factors were available. Noncarcinogenic risks were estimated for the 21 compounds for which risk values (i.e., reference doses) were available. Human health risks were not calculated for dioxins/furans due to the current review of the potency of these chemicals. The estimated risks presented in the report are intended as a screening assessment. A detailed sitespecific risk assessment would require additional samples and would incorporate local consumption rates and patterns, and the actual number of people exposed. Information on the specific health effects of the study compounds and aquatic or wildlife effects, where available, are included in the chemical profiles, Appendix C.

Potential upper-bound human cancer risks from consumption of fish were estimated using fillet samples for selected analytes. Fillet data were available at 182 sites for mercury and 106 sites for the xenobiotic compounds, excluding dioxins and furans. Risks were calculated using the average fillet concentration at each site for the few places where more than one fillet concentration sample was available. The calculations were based on standard EPA risk assessment procedures for lifetime exposure with upper-bound cancer potency factors and three fish consumption rates of 6.5, 30, and 140 g/day. The reasons for setting these rates are discussed in the section on Exposure Assessment.

The compounds evaluated were those for which cancer potency factors and/or reference doses have been established. These compounds are listed below:

- Biphenyl
- alpha-BHC
- gamma-BHC (Lindane)
- Chlordane
- Chlorpyrifos
- p,p'-DDE
- Dicofol
- Dieldrin
- Endrin
- Heptachlor
- Heptachlor epoxide
- Hexachlorobenzene

- Hexachlorobutadiene
- Isopropalin
- Mercury
- Mirex
- Pentachloroanisole
- Pentachlorobenzene
- Pentachloronitrobenzene
- Polychlorinated biphenyls (PCBs)
- 1,2,4,5 Tetrachlorobenzene
- 1,2,4 Trichlorobenzene
- Trifluralin

METHOD OF ESTIMATING RISKS

Dose-Response Assessment

In developing risk assessment methods, EPA has recognized that fundamental differences exist between carcinogenic dose-response variables and noncarcinogenic dose-response variables that could be used to estimate risks. Because of these differences, human health risk characterization is conducted separately for potential carcinogenic and noncarcinogenic effects. However, carcinogenic chemicals may also cause noncarcinogenic effects (i.e., a variety of toxic endpoints other than cancer may be associated with exposure to carcinogens). Consequently, reference dose (RfD) values have been established for many carcinogens and are used in the evaluation of potential noncarcinogenic effects.

Key dose-response variables used in quantitative risk estimates are cancer potency factors (CPFs) for carcinogens and RfD values for noncarcinogens. The carcinogenic potency factor (expressed in units of $(mg/kg/day)^{-1}$) is typically determined by the upper 95 percent confidence limit of the slope of the linearized multistage model that expresses excess cancer risk as a function of dose. The RfD (expressed in units of mg/kg/day) is an estimated single daily chemical intake rate that appears to be without risk if ingested over a lifetime.

Available dose-response information for quantitative risk assessment is summarized in Table 6-1 for the chemicals investigated. Potency factors and reference dose values were collated primarily from the Integrated Risk Information System database (IRIS, 1989), and supplemented where necessary by information from other sources such as the Public Health Risk Evaluation Database (PHRED, 1988). As shown in Table 6-1, substances with the highest carcinogenic potency (i.e., those with the highest carcinogenic potency factors) are dieldrin, heptachlor epoxide, and PCBs. Substances with the highest noncarcinogenic potency toxicity (i.e., those with the lowest RfD values) are mirex, heptachlor epoxide, and dieldrin.

Human health risks due to PCBs were estimated based on the total of all the congeners present. EPA has developed a CPF only for total PCBs. While recent research (Smith et al., 1990) indicates that toxicity varies depending on the number of chlorines present and their position, EPA has not adopted this type of approach. Smith's research also indicates that certain PCBs can induce similar changes in enzymatic activity as dioxins and furans. At present the approved EPA approach is to estimate risks due to PCBs and dioxins/furans separately. The specific PCBs thought to induce enzyme changes (coplanar PCBs and mono-ortho analogues) were not quantified separately in this study. The risks due to chlordane were estimated using the CPF for chlordane and the sum of the concentrations of cis- and trans- chlordane, cis- and trans-nonachlor, and oxychlordane measured in the same fillet sample. This sum is referred to as combined chlordane. Heptachlor and heptachlor epoxide have separate CPF and RfD values that are different from chlordane.

Exposure Assessment

The exposure assessment for consumption of chemically contaminated fish and shellfish consisted of:

Analyte	Cancer Potency Factor (CPF) (mg/kg/day) ⁻¹	EPA Cancer Evidence Rating ^a	Reference (RfD) (mg/kg/day)
Biphenyl	$\overline{1.30 \times 10^{0c}}$	NA	5.00×10^{-2b}
Chlordane		B2	6.00×10^{-5c}
Chlorpyrifos	3.40x10 ^{-1c,d}	NA	3.00×10^{-3c}
DDE (p,p-)	4.40x10 ^{-1b}	B2	$5.00 \times 10^{-4c,d}$
Dicofol (Kelthane) Dieldrin	4.40×10^{10} 1.60×10^{1c}	C B2 D	5.00×10^{-5c} 3.00 x 10 ^{-4c}
Endrin Heptachlor Heptachlor epoxide	$\frac{-}{4.50 \times 10^{0c}}$ 9.10×10 ^{0c}	B2 B2	5.00×10^{-4c} 5.00×10^{-4c} 1.30×10^{-5c}
Hexachlorobenzene	1.70×10^{0}	B2	8.00×10^{-3c}
Hexachlorobutadiene	7.8×10^{-2c}	C	2.00 \times 10^{-3c}
Isopropalin α -Hexachlorocyclohexane	$\overline{6.30 \times 10^{0c}}$ 1.30 × 10^{0f}	NA B2	$\frac{1.50 \times 10^{-20}}{-10^{-10}}$
γ-Hexachlorocyclohexane Mercury Mirex	$\frac{1.30 \times 10^{-1}}{1.80 \times 10^{-1}}$	B2 D R	3.00×10^{-4e} 3.00×10^{-4e} 2.00×10^{-6c} 2.00×10^{-2e}
Pentachloroanisole	1.60×10^{-2g}	D,R	3.00×10^{-2c}
Pentachlorobenzene		D	8.00 \times 10^{-4c}
Pentachloronitrobenzene	$\overline{7.70 \times 10^{0c}}$	pending	3.00×10^{-3C}
Polychlorinated biphenyls		B2	1.00×10^{-4h}
1,2,4,5 Tetrachlorobenzene		D	3.00x10 ^{-4c}
1,2,4 Trichlorobenzene		D	2.00x10 ^{-2c}
Trifluralin		C	7.50x10 ^{-3c}

TABLE 6-1 Dose-Response Variables Used in Risk Assessment

a Designations are (IRIS, 1989): NA = not evaluated, B2 = probable human carcinogen, C = possible human carcinogen, D = not classified, R = under review by EPA.

b Value from PHRED (1988).

c Value from IRIS 1989 (data current as of 9/89).

d Value is for DDT. DDE is assumed to have similar toxic properties.

e Value from ATSDR (1987).

f Value from HEAST (U.S. EPA, 1989c).

g Value from EPA Region X toxicologist

h RfD for Arochlor 1016.

- Defining chemical concentrations to be used,
- Selecting consumption rates for various segments of the population, and
- Estimating chemical doses.

The detected fillet concentration at each site was used to estimate risks. If more than one fillet sample, excluding duplicates, was available, the average concentration was used, even if the fish species were different. Multiple fillets were available at four sites that represented 4 percent of the sites with xenobiotic data. Fillet composite samples consisting of fewer than three fish were not used for the risk assessment. Three consumption rates were used to estimate exposure:

- 6.5 g/day, which is the average fish consumption rate of freshwater and estuarine fish across the United States (U.S. EPA, 1980a);
- 30 g/day, which is representative of the average fish consumption rate by average sport fishermen (U.S. EPA, 1989b); and
- 140 g/day, which is representative of the consumption rate for the 95th percentile of sport fishermen and is appropriate for subsistence consumers (U.S. EPA, 1989b).

Risks for consumption rates of 6.5 g/day, 30 g/day, and 140 g/day can be read directly from the nomographs in Appendix B. The nomographs can be used to estimate risks at consumption rates between 1 and 1000 g/day.

The consumption rate was combined with the chemical concentration data to estimate a range of daily doses over a lifetime associated with each chemical and location. For xenobiotics, a concentration of zero was used for individual samples in which the analyte was not detected. (Specific sample detection limits for xenobiotics were not available.)

Standard EPA methods were used to estimate exposure and risk due to ingestion of fish (U.S. EPA, 1986b, 1989d). Exposure doses were determined using an equation that assumes a constant daily fish ingestion rate over a lifetime (70 years).

$$D_{ij} = (C_i \quad \mathbf{x} \quad I_j) \ / \ W$$

where:

Dij	=	estimated dose (mg/kg/day) for chemical i at ingestion rate j
Ci	=	concentration of chemical i in fish or shellfish
Ij	=	ingestion rate for the jth percentile of the population
W	=	assumed human body weight (70 kg).

Risk Characterization

Potential upper-bound risks associated with each carcinogen were estimated as the probability of excess cancer using the equation:

$$R_{ij} = 1 - \exp\left(-D_{ij} \quad x \quad P_i\right)$$

where:

Rij	=	Risk associated with chemical i at consumption rate j
Pi	=	Carcinogenic potency factor for chemical i (mg/kg/day) ⁻¹
Dii	=	Dose of chemical i at consumption rate j (mg/kg/day).

The carcinogenic potency factors used and methods of dose estimation are as described above (see Dose Response Assessment and Exposure Assessment sections).

Potential hazards associated with noncarcinogenic toxic effects of the various chemicals were expressed as a ratio:

$$H_{ij} = D_{ij}/RfD_i$$

where:

Hij	=	Hazard index of chemical i at consumption rate j
Dij	=	Dose of chemical i at consumption rate j (mg/kg/day)
RfDj	=	Reference dose for chemical i (mg/kg/day).

The hazard index is a ratio of a dose of a chemical to the level at which noncarcinogenic effects are not expected to occur (i.e., reference dose, RfD). If the value of the hazard index is less than 1.0, it follows that toxic effects are not expected to occur. The methods of dose estimation are as described above.

CARCINOGENIC RISK ESTIMATES

Potential upper-bound human carcinogenic risks were estimated for targeted and background sites using the maximum, mean, and median concentrations for all chemicals with CPF values (Tables 6-2 and 6-3). The fish tissue concentrations associated with these estimated cancer risks are given in Table 6-4. Table 6-5 presents a summary of the fish samples that exceed risk levels of 10^{-6} to 10^{-3} for each of the chemicals with CPF values. The highest lifetime risk levels are associated with total PCBs. The cancer risk exceeded 10^{-4} at 42 of 106 sites for total PCBs, for a fish consumption rate of 6.5 g/day. PCBs also exceeded 10^{-3} risks at 10 sites. A complete list of sites is presented in Appendix D-10.

Risks for chlordane were estimated for the sum of the cis- and trans-chlordane isomers, cisand trans-nonachlor isomers, and oxychlordane (referred to as combined chlordane). The CPF factor for chlordane is used since separate cancer potency factors are not available for nonachlor and oxychlordane. This method is consistent with the EPA's Office of Pesticide Programs, which also combines the concentrations of the cis- and trans- isomers of chlordane and nonachlor with oxychlordane and the four chlordene isomers (referred to as TTR-Total Toxic Residue). The four chlordene isomers were not measured for this study. Heptachlor and heptachlor epoxide have different CPF and RfD values from those for chlordane, so were not added.

Chemical	Maximum ^c	Mean ^d	Median ^e	No. of Sites with Fillet Data
PCBs	3.7×10^{-3}	3.4×10^{-4}	6.0×10^{-5}	106
DDE	8.9x10 ⁻⁵	4.1×10^{-6}	4.6×10^{-7}	106
Combined Chlordane ^f	9.3×10^{-5}	3.6x10 ⁻⁶	5.5×10^{-7}	106
Dieldrin	6.0×10^{-4}	2.2×10^{-5}	1.2×10^{-6}	106
α -Hexachlorocyclohexane	1.0x10 ⁻⁵	4.4×10^{-7}		106
γ-Hexachlorocyclohexane	8.1x10 ⁻⁶	3.6x10 ⁻⁸	_	106
Hexachlorobenzene	8.0×10^{-6}	2.5×10^{-7}		106
Heptachlor	1.2×10^{-7}	1.1×10^{-7}	_	106
Heptachlor Epoxide	3.4×10^{-5}	8.7×10^{-6}		106
Mirex	3.8×10^{-5}	7.4×10^{-7}	_	106
Trifluralin	8.3x10 ⁻⁸	1.7×10^{-9}	_	106
Dicofol	6.1×10^{-7}	2.8×10^{-8}		106
Hexachlorobutadiene	6.4×10^{-7}	7.1x10 ⁻⁹		106
Pentachloroanisole	7.2×10^{-8}	2.0×10^{-9}	_	106

TABLE 6-2 Estimates of Potential Upper-Bound Cancer Risks at Targeted Sites Based on Fillet Samples^{a,b}

^aConsumption rate of fish set at 6.5 g/day. ^bCancer Potency Factors used are given in Table 6-1. ^{c,d,e} Risk shown is associated with maximum, mean, and median fillet concentration at targeted sites. Values below quantification set at zero.

^fCombined chlordane is the sum of cis- and trans-chlordane isomers, cis- and trans-nonchlor isomers, and oxychlordane.

⁸Dash indicates median fillet concentration was below detection.

TABLE 6-3 Estimates of Potential Upper-Bound Cancer Risks at Background^d Sites Based on Fillet Samples

Chemical	Maximum ^a	Mean ^b	Median ^c	No. of Sites with Fillet Data
PCBs	3.2×10^{-5}	8.0x10 ⁻⁶	_	4
DDE	1.4×10^{-6}	4.1×10^{-7}	1.4×10^{-7}	4

Consumption rate of fish set at 6.5 g/day.

CPF values used are given in Table 6-1.

Dash indicates median fillet concentration was below detection.

^{a. b.c}Risk shown is associated with maximum, mean, and median fillet concentration at background sites. Values below quantification were set at zero.

^d It is important to note that background risks are estimated from a small number of samples. Also, as indicated in Chapter 2, the background samples were, in some cases, selected for purposes of comparison and do not necessarily represent areas completely free from point and nonpoint sources of pollution. Note:

All fillet concentrations at background sites were below detection for dieldrin, chlordane, alpha-BHC, gamma-BHC, hexachlorobenzene, heptachlor, heptachlor epoxide, mirex, trifluralin, dicofol, hexachlorobutadiene, and pentachloroanisole.

TABLE 6-4 Fish Tissue Concentrations Used to Estimate Cancer Risks

Chemical	Maximum	Mean	Median	No. of Sites with Fillet Data
PCBs	5148.1	477.4	84.5	106
DDE	2820	130.6	14.6	106
Combined Chlordane	770	29.6	4.6	106
Dieldrin	405	15.1	0.8	106
α -Hexachlorocyclohexane	17.5	0.75	ND	106
y-Hexachlorocyclohexane	6.68	0.30	ND	106
Hexachlorobenzene	50.7	1.6	ND	106
Heptachlor	0.28	0.003	ND	106
Heptachlor Epoxide	40.7	1.0	ND	106
Mirex	225	4.42	ND	106
Trifluralin	116.0	2.35	ND	106
Dicofol	14.9	0.68	ND	106
Hexachlorobutadiene	88.3	0.98	ND	106
Pentachloroanisole	48.6	1.3	ND	106

TARGETED SITES

Units are ng/g unless noted.

BACKGROUND SITES

Chemical	Maximum	Mean	Median	No. of Sites with Fillet Data
PCBs	44.8	11.2	ND	4
DDE	43.0	13.0	4.4	4

All fillet concentrations at background sites were below detection for dieldrin, chlordane, alpha-BHC, gamma-BHC, Hexachlorobenzene, heptachlor, heptachlor epoxide, mirex, trifluralin, dicofol, hexachlorobutadiene, and pentachloranisole.

Combined chlordane is the sum of cis- and trans-chlordane isomers, cis- and trans-nonachlor isomers, and oxychlordane.

TABLE 6-5Number of Sites with Estimated Upper-Bound Risks

TARGETED SITES

			RISK LEVEL (Cumulative)						
	No. of Sites with Fillet	6	>10 ⁻⁵	>10 ⁻⁴	10-3				
Chemical	Data	(>1 in 1,000,000)	(>1 in 100,00)	(>1 in 10,000)	(>1 in 1,000)				
PCBs	106	89	79	42	10				
Dieldrin	106	53	31	6	0				
Combined Chlordane	106	44	10	0	0				
DDE	106	40	10	0	0				
Heptachlor Epoxide	106	9	2	0	0				
Alpha-BHC	106	11	1	0	0				
Mirex	106	8	2	0	0				
нсв	106	5	0	0	0				
Gamma-BHC	106	0	0	0	0				
Heptachlor	106	0	0	0	0				
Dicofol	106	0	0	0	0				
Hexachlorobutadiene	106	0	0	0	0				
Pentachloroanisole	106	0	0	0	0				
Trifluralin	106	0	0	0	0				

BACKGROUND SITES

	RISK LEVEL (Cumulative)						
Chemical	No. of Sites with Fillet Data	4	>10 ⁻⁵	>10 ⁻⁴ (>1 in 10.000)	(>1 in 1,009)		
		(21 11 1000,000)	(-1 11 100,000)	(- (11 10,000)			
PCBs	4	1	1	0	0		
DDE	4	1	0	0	0		

Basis: 1) Used EPA (i.e., upper bound) cancer potency factors.

2) Used consumption rate of 6.5 grams/day.

3) Used average fillet concentrations at the few sites with multiple samples.

Combined chlordane is the sum of cis- and trans-chlordane isomers, cis- and trans-nonachlor isomers, and oxychlordane.

The mean, median, and maximum risks using 30 g/day and 140 g/day are compared to the risks using 6.5 g/day in Table 6-6. For the median fillet concentrations at targeted sites, estimated risks equal or exceed 10^{-5} for PCBs at 6.5 g/day and 30 g/day. At the higher consumption rate of 140 g/day, estimated risks due to combined chlordane and dieldrin were also above 10^{-5} .

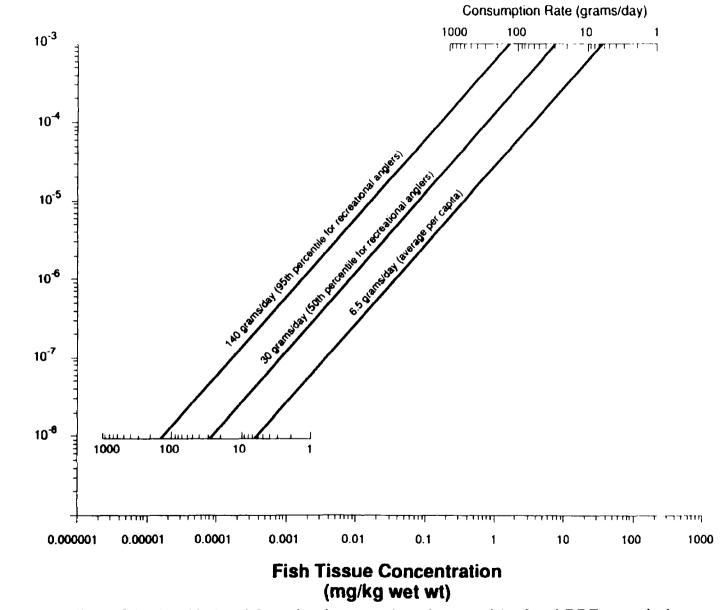
As a final step in the risk characterization, a graphical tool was developed for estimating potential health risks at consumption rates from 1 to 1,000 g/day for all chemicals that exceeded a 10^{-6} risk level. These nomographs are included in Appendix B. As an example, the graph for estimating the carcinogenic risks from p.p'-DDE is shown in Figure 6-1. In each graph, the methods and assumptions outlined above were used to plot potential health risks for three consumption rates (i.e., 6.5 g/day, 30 g/day, and 140 g/day). In addition to the consumption rates shown, a scale is provided on each graph so that health risks can be estimated for any consumption rate in the range of 1 to 1,000 g/day. This is an important feature because potential health risks may vary with regional, cultural, or ethnic differences in species of fish eaten and consumption rates. Hence, using the nomographs provided herein, it is possible to evaluate potential health risks associated with specific consumption rates at a given site.

NONCARCINOGENIC RISKS

Noncarcinogenic hazard indices were summarized for targeted and background sites for the chemicals with reference dose values available (Table 6-7). Based on a fish consumption rate of 6.5 g/day, the hazard index, defined previously, exceeded 1 (meaning adverse effects may occur) at only a few targeted sites for PCBs, mirex, and combined chlordane. The hazard indices associated with the mean and median concentrations for these same chemicals were less than 1.0. The hazard indices for all chemicals at background sites were also less than 1.0.

Graphs for estimating noncarcinogenic hazard index values at various consumption rates were prepared for most of the compounds evaluated. Using these graphs, one can determine whether the hazard index would exceed a value of 1 at consumption rates between 1 and 1, 000 g/day. For example, using the maximum DDE concentration at targeted sites (2,819 ng/g), a hazard index value of 0.52 was estimated for a 6.5-g/day consumption rate, while for a 30-g/day rate it was about 2 (Figure 6-2). The graphs for the other compounds are included in Appendix B following those for estimating carcinogenic risks.

		Maximum				Mean				Median	
Background	6.5	30	140	Background	6.5	30	140	Background	6.5	30	140
PCBs	3.2x10 ⁻⁵	1.5x10 ⁻⁴	6.9x10 ⁻⁴	PCBs	8.0x10 ⁻⁶	3.7x10 ⁻⁵	1.7×10^{-4}	PCBs	-	-	-
DDE	1.4x10 ⁻⁶	6.4x10 ⁻⁶	3.0x10 ⁻⁵	DDE	4.1×10^{-7}	1.9x10 ⁻⁶	8.8x10 ⁻⁶	DDE	1.4x10 ⁻⁷	6.4x10 ⁻⁷	3.0x10 ⁻⁶
Targeted	6.5	30		Targeted	6.5			Targeted	6.5	30	140
PCBs	3.7x10 ⁻³	1.7×10^{-2}	7.6×10^{-2}	PCBs	3.4×10^{-4}	1.6×10^{-3}	7.3×10^{-3}	PCBs	6.0×10^{-5}	2.8x10 ⁻⁴	1.3×10^{-3}
DDE	8.9x10 ⁻⁵	4.1×10^{-4}	1.9×10^{-3}	DDE	4.1x10 ⁻⁶	1.9x10 ⁻⁰	8.9x10 ⁻⁵	DDE	4.6x10 ⁻⁷	2.1×10^{-6}	9.9x10 ^{.6}
Combined	9.3x10 ⁻⁵	4.3x10 ⁻⁴	2.0×10^{-3}	Combined	3.6×10^{-6}	1.6x10 ⁻⁵	7.7x10 ⁻⁵	Combined	5.6×10^{-7}	2.6x10 ⁻⁶	1.2×10^{-5}
Chlordane	_		_	Chlordane		_	_	Chlordane			
Dicofol	6.1x10 ⁻⁷	2.8×10^{-6}	1.3x10 ⁻⁵	Dicofol	2.8×10^{-8}	1.3×10^{-7}	6.0×10^{-7}	Dicofol	-	-	-
Dieldrin	6.0×10^{-4}	2.8×10^{-3}	1.3×10^{-2}	Dieldrin	2.2×10^{-5}	1.0×10^{-4}	4.8×10^{-4}	Dieldrin	1.2×10^{-6}	5.5×10^{-6}	2.6×10^{-5}
α-Hexachloro-	1.0x10 ⁻⁵	4.6x10 ⁻⁵	2.2×10^{-4}	α-Hexachloro-		2.0×10^{-6}	9.4x10 ⁻⁶	α-Hexachloro-	-	-	-
cyclohexane	_			cyclohexane				cyclohexane			
y-Hexachloro-	8.1x10 ⁻⁷	3.7x10 ⁻⁶	1.7x10 ⁻⁵	Y-Hexachloro-	3.6x10 ⁻⁸	1.7x10 ⁻⁷	7.8x10 ⁻⁶	y-Hexachloro-	-	-	-
cyclohexane				cyclohexane				cyclohexane			
Hexachloro-	8.0x10 ⁻⁶	3.7x10 ⁻⁵	1.7x10 ⁻⁴	Hexachloro-	2.5×10^{-7}	1.2×10^{-6}	5.4x10 ⁻⁶	Hexachloro-	-	-	-
benzene				benzene				benzene			
Hexachloro-	6.4x10 ⁻⁷	3.0x10 ⁻⁶	1.4x10 ⁻⁵	Hexachloro-	7.1x10 ⁻⁹	3.3x10 ^{.8}	1.5×10^{-7}	Hexachloro-	-	-	-
butadiene				butadiene				butadiene			
Heptachlor	1.2×10^{-7}	5.4x10 ⁻⁶	2.5×10^{-5}	Heptachlor	*	*	*	Heptachlor	-	-	-
Heptachior				Heptachlor				Heptachlor	-	-	-
Epoxide	3.4×10^{-5}	1.6x10 ⁻⁴	7.3x10 ⁻⁴	Epoxide	8.4×10^{-7}	3.9×10^{-6}	1.8×10^{-5}	Epoxide	-	-	-
Mirex	3.8x10 ⁻⁵	1.8×10^{-4}	8.2×10^{-4}	Mirex	7.4x10 ⁻⁷	3.4x10 ⁻⁶	1.6x10 ⁻⁵	Mirex		-	-
Pentachioro-	7.2x10 ⁻⁸	3.3×10^{-7}	1.6x10 ⁻⁶	Pentachloro	1.9x10 ⁻⁹	8.9x10 ⁻⁸	4.2x10 ⁻⁸	Pentachloro-	-	-	-
anisole				anisole				anisole			
Trifluralin	8.3x10 ⁻⁸	3.8×10^{-7}	1.8x10 ⁻⁶	Trifluralin	1.7×10^{-9}	7.8x10 ⁻⁹	3.6x10 ⁻⁸	Trifluralin	-		-


TABLE 6-6 Estimated Upper-Bound Risks at Three Fish Consumption Rates Based on Fillet Samples

Basis: Used upper-bound CPFs (Table 6-2) fish consumption rates of 6.5, 30, and 140 g/day.

Dash indicates concentration was reported as not detected.

"Only one value was above detection, so risk not computed.

Combined chlordane is the sum of cis- and trans-chlordane isomers, cis- and trans-nonachlor isomers, and oxychlorane.

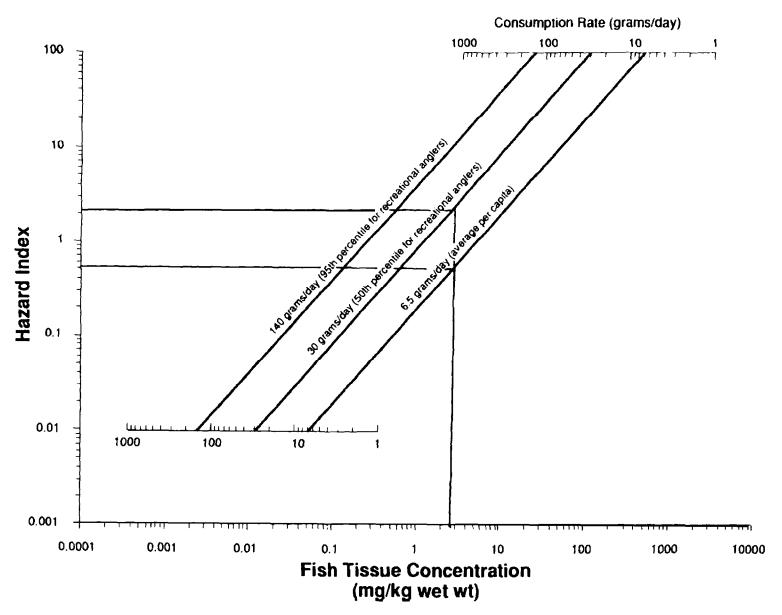
Excess Cancer Risk

p,p'-DDE

Figure 6-1. Graphical tool for estimating upper-bound cancer risk of p,p'-DDE or equivalents for different fish consumption rates.

TABLE 6-7 Noncarcinogenic Hazard Index Values at Targeted and Background Sites Based on Fillet Samples

TARGETED


Chemical	Maximum	Mean	Median	No. of Sites with Fillet Data
Biphenyl	9.8x10 ⁻⁵	2.0×10^{-6}	3.5×10^{-7}	106
Combined Chlordane	1.2	4.6×10^{-2}	7.1×10^{-3}	106
Chloropyrifos	2.4×10^{-3}	6.4×10^{-5}	ND	106
DDE	5.2×10^{-1}	2.4×10^{-2}	2.7×10^{-3}	106
Dieldrin	7.5×10^{-1}	2.8×10^{-2}	1.5×10^{-3}	106
Endrin	4.3×10^{-3}	9.6x10 ⁻⁵	ND	106
γ-Hexachlorocyclohexane	2.1×10^{-3}	9.3×10^{-5}	ND	106
Hexachlorobenzene	5.9×10^{-3}	1.9×10^{-4}	ND	106
Heptachlor	5.2×10^{-5}	5.6×10^{-7}	ND	106
Heptachlor Epoxide	2.9×10^{-1}	7.1×10^{-3}	ND	106
Hexachlorobutadiene	4.1×10^{-3}	4.6×10^{-5}	ND	106
lsopropalin	ND	ND	NQ	106
Mercury	5.1×10^{-1}	9.0×10^{-2}	7.1×10^{-2}	182
Mirex	10.45	2.1×10^{-1}	ND	106
Pentachloronitrobenzene	2.7×10^{-5}	2.5×10^{-7}	ND	106
Pentachlorobenzene	6.0×10^{-3}	1.3×10^{-4}	ND	106
Pentachloroanisole	1.5×10^{-4}	40×10^{-0}	NQ	106
PCBs	4.78	4.4×10^{-1}	7.8×10^{-2}	106
1,2,4,5 Tetrachlorobenzene	8.8×10^{-3}	1.2×10^{-4}	ND	106
1,2,4 Trichlorobenzene	4.8x10 ⁻⁴	7.2×10^{-6}	6.5×10^{-7}	106
Trifluralin	1.4×10^{-3}	2.9×10^{-5}	ND	106

BACKGROUND

Chemical	Maximum	Mean	Median	No. of Sites with Fillet Data				
Biphenyl	3.7×10^{-7}	2.2×10^{-7}	2.5×10^{-7}	4				
Combined Chlordane	3.7×10^{-7} 5.0×10^{-3}	2.2×10^{-7} 1.0×10^{-3}	ND	4				
Mercury	5.5×10^{-1} 3.3×10^{-6} 4.2×10^{-2}	1.5×10^{-1}	1.2×10^{-1}	1				
1,2,4 Trichlorobenzene	3.3×10^{-6}	1.6×10^{-6}	1.5×10^{-6}	4				
PCBs	4.2×10^{-2}	1.6×10^{-6} 1.0×10^{-2}		4				
p,p'-DDE	8.0×10^{-3}	2.0×10^{-3}	ND 1.0x10 ⁻³	4				
(All other chemicals were not detected in background samples)								

Consumption rate of fish at at 6.5 g/day. RfD values used are given in Table 6-2. ND, not detected.

Combined chlordane is the sum of cis- and trans-chlordane isomers, cis- and trans-nonachlor isomers, and oxychlordane.

p,p'-DDE NONCARCINOGENIC EFFECTS

Figure 6-2. Graphical tool for estimating upper-bound noncarcinogenic hazard index of p,p'-DDE for different fish consumption rates.

- APHA (American Public Health Association). 1985. Standard Methods for Analysis of Water and Wastewater. 16th ed. APHA.
- ATSDR (Agency for Toxic Substances and Disease Registry). 1987. Draft Toxicological Profile for 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. ATSDR, U.S. Public Health Service, Oak Ridge National Laboratory, Oak Ridge, TN.
- Barnes, D.G., and J.S. Bellin. 1989. Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-Dioxins and -Dibenzofurans (CDDs and CDFs). U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, DC.
- Brown, J.F., Jr., B.L. Bedard, M.J. Brennan, J.C. Carnahan, H. Feng, and R.E. Wagner. 1987. Polychlorintated Biphenyl. Dechlorination in Aquatic Sediments. Science 236:709-712.
- Dorman, M. 1985. Memo to R. Frederick at U.S. Enivronmental Protection Agency from M. Dorman of Versar, Inc. Toxic Weighting Factors, February 12, 1985, as referenced in U.S. EPA, 1986a.
- Glass, G.E., J.A. Sorensen, K.W. Schmidt, and G.R. Rapp. 1990. New Source Identification of Mercury Contamination in the Great Lakes. ES&T 24 (7): 1059-1069.
- Horwitz, W., ed. 1983. Official Methods of Analysis of the Association of Official Analytical Chemists. 13th ed., pp. 404-406.
- IRIS. 1988. Integrated Risk Information System. U.S. Environmental Protection Agency, Washington, DC.
- IRIS. 1989. Integrated Risk Information System. U.S. Environmental Protection Agency, Washington, DC.
- Merhle, P.M., D.R. Buckler, E.E. Little, L.M. Smith, J.D. Petty, P.H. Peterson, D.L. Stalling, G.M. Degaeve, J.J. Goyle, and W.L. Adams. 1988. Toxicity and Bioconcentration of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and 2,3,7,8-Tetrachlorodibenzofuran in Rainbow Trout. Environ. Toxic. Chem. 7(1):47-62.
- NAS (National Academy of Sciences). 1978. Kepone/Mirex/Hexachlorocyclopentadiene: An Environmental Assessment. National Academy of Sciences, National Research Council, Washington, DC. NTIS PB 280289.

- NTP (National Toxicological Program). 1982a. Bioassay of 2,3,7,8-Tetrachloro-dibenzo-p-dioxin for Possible Carcinogenicity (Gavage Study). DHHS Publ. No. (NIH) 82-1765. Carcinogenesis Testing Program, NCI, NIH, Bethesda, MD; National Toxicology Program, Research Triangle Park, NC.
- NTP (National Toxicological Program). 1982b. Bioassay of 2,3,7,8-Tetrachloro-dibenzo-p-dioxin for Possible Carcinogenicity (Dermal Study). DHHS Publ. No. (NIH) 82-1757. Carcinogenesis Testing Program, NCI, NIH, Bethesda, MD; National Toxicology Program, Research Triangle Park, NC.
- Olson, G.F., D.I. Mount, V.M. Snarski, and T.W. Thorslund. 1975. Mercury Residues in Fathead Minnows, *Pimephales promelas* Rafinesque, Chronically Exposed to Methylmercury in Water. Bull. Env. Cont. Tox. 14:129-134.
- Palmer, F.H., R.A. Sapudar, J.A. Heath, N.J. Richard, and G.W. Bowes. 1988. Chlorinated Dibenzo-p-Dioxin and Dibenzofuran Contamination in California from Chlorophenol Wood Preservative Use. California State Water Resources Control Board, Report No. 88-SWQ.
- PHRED. 1988. Public Health Risk Evaluation Database. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC.
- Rappe, C., H.R. Buser, and H.P. Bosshardt. 1979. Environmental Science and Technology 18(3):78A-90A.
- Resources for the Future. 1986. A National Pesticide Usage Data Base. February 1986.
- Robins, C.R., et al. 1980. A List of Common and Scientific Names of Fishes from the United States and Canada. 4th ed. American Fisheries Society. Special Publication No. 12.
- Scott, W.B., and E.J. Crossman. 1973. Freshwater Fishes of Canada. Fisheries Research Board of Canada. Bulletin 184.
- Smith, P.W. 1979. The Fishes of Illinois. University of Illinois Press, Chicago, IL.
- Smith, L.M., T.R. Schwartz, K. Feltz, and T.J. Kubiak. 1990. Determination and Occurrence of AHH-Active Polychlorinated Biphenyls, 2,3,7,8-Tetrachloro-p-dioxin and 2,3,7,8-Tetrachlorodibenzofuran in Lake Michigan Sediment and Biota. The Question of Their Relative Toxicological Significance. Chemosphere 21(9): 1063-1085.
- Takamiya, K. 1987. Residual Levels of Plasma Oxychlordane and Trans-nonachlor in Pest Control Operators and Some Characteristics of These Accumulations. Bull. Environ. Contam. Toxicol. 39: 750-755.
- Tobin, P.M. 1984. Memo to S. Schatzow of U.S. Environmental Protection Agency, Office of Water Regulations and Standards. Priority pollutant ranking system, May 29, 1984, as referenced in U.S. EPA, 1986a.

Trautman, M.B. 1957. The Fishes of Ohio. Ohio State University Press, Columbus, OH.

- U.S. EPA. 1972. Water Quality Criteria, 1972 (the Blue Book, NAS/NAE, 1972). U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, DC. EPA R3-73-033.
- U.S. EPA. 1980a. Ambient Water Quality Criteria Documents (various). U.S. Environmental Protection Agency, Office of Water Regulations and Standards. EPA 440/5-80 Series.
- U.S. EPA. 1980b. List of Chemicals Having Substantial Evidence of Carcinogenicity. U.S. Environmental Protection Agency, Carcinogen Assessment Group, Washington, DC.
- U.S. EPA. 1980c. Exposure-Based Candidates for Existing Chemical Review, U.S. Environmental Protection Agency, Office of Toxic Substances memo from J.J. Merenda to M.P. Halper, as referenced in U.S. EPA, 1986a.
- U.S. EPA. 1984. Sampling Guidance Manual for the National Dioxin Study. U.S. Environmental Protection Agency, Washington, DC.
- U.S. EPA. 1985a. Ambient Water Quality Criteria Documents (various). U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, DC. EPA 440/5-85 Series.
- U.S. EPA. 1985b. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses. U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, DC. PB85-227049.
- U.S. EPA. 1986a. Work/Quality Assurance Project Plan for the Bioaccumulation Study. U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Monitoring and Data Support Division, Washington, DC. July 1986.
- U.S. EPA. 1986b. Superfund Public Health Evaluation Manual. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC. EPA 540/1-86/060.
- U.S. EPA. 1987a. Ambient Water Quality Criteria Documents (various). U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, DC. EPA 440/5-87 Series.
- U.S. EPA. 1987b. The National Dioxin Study. U.S. Environmental Protection Agency, Washington, DC. EPA 440/4-87-003.
- U.S. EPA. 1987c. Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-dioxins and -Dibenzofurans (CDDs and CDFs). U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, DC. EPA/625/3-87/012.

- U.S. EPA. 1989a. Analytical Procedures and Quality Assurance Plan for the Determination of Mercury in Fish. U.S. Environmental Protection Agency, Environmental Research Laboratory, Duluth, MN. April 1989.
- U.S. EPA. 1989b. Exposure Factors Handbook. U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Exposure Assessment Group, Washington, DC. EPA/600/8-89/043.
- U.S. EPA. 1989c. Health Effects Assessment Summary Tables (HEAST). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.
- U.S. EPA. 1989d. Risk Assessment Guidance for Superfund: Human Health Evaluation Manual. Part A. Interim final. U.S. Environmental Protection Agency, Washington, DC. Report No. 05-230.
- U.S. EPA. 1990a. Aquatic Toxicity Information Retrieval (AQUIRE) Data Base. U.S. Environmental Protection Agency, Environmental Research Laboratory, Duluth, MN.
- U.S. EPA. 1990b. Analytical Procedures and Quality Assurance Plan for the Determination of PCDD/PCDF in Fish. U.S. Environmental Protection Agency, Washington, DC. EPA/600/3-90/022.
- U.S. EPA. 1990c. Analytical Procedures and Quality Assurance Plan for the Determination of Xenobiotic Chemical Contaminants in Fish. U.S. Environmental Protection Agency, Washington, DC. EPA/600/3-90/023.
- Wydoski, R.S., and R.R. Whitney. 1979. Inland Fishes of Washington. University of Washington Press, Seattle, WA.

Additional specific references for the study compounds are included in the chemical profiles, Appendix C. These references include physical/chemical properties, standards and criteria, major compound uses, health effects, aquatic life effects where available, and factors used to estimate risks (e.g., CPF, RfD, BCF).

Glossary

Bioaccumulation	The net accumulation of a chemical from combined exposure to water, food, and sediment by an organism. This may be further defined as accumulation under a non-steady-state or equilibrium condition of exposure.
BCF	The bioconcentration factor (BCF) is the partition coefficient for the distribution of chemical between water and an organism exposed only through water. $BCF = C_t/C_w$, where $C_t =$ concentration of a chemical in wet tissue (either whole organism or specified tissue) and $C_w =$ concentration of a chemical in water. The higher the BCF value, the greater the potential for high concentrations of a chemical to occur in fish tissue samples. BCF values given in the chemical profiles in Volume II are based on water and fish tissue concentrations.
CPF	Cancer potency factor expressed in units of $(mg/kg/day)^{-1}$ based on experiments to determine whether a chemical causes cancer. The method used by EPA to derive this value is to set the CPF equal to the upper 95 percentile of the slope of the linearized multistage model for extrapolation of cancer from high to low doses. Cancer risks derived using this approach are referred to as upper-bound risks.
Combined Chlordane	Combined chlordane is the sum of cis- and trans-chlordane isomers, cis- and trans-nonchlor isomers, and oxychlordane.
Congeners	Related chemical compounds with same basic structure but different number of substitutions (e.g., chlorine). Examples of congeners investigated in this project include the chlorinated dibenzo-p-dioxins (e.g., 2,3,7,8 TCDD with four chlorines and 1,2,3,7,8 PeCDD with five chlorines). Such congeners are sometimes referred to as homologs.
GC/MS	Gas chromatography/mass spectrometry, a laboratory analytical method used in this study for PCDDs, PCDFs, and other xenobiotic compounds.
Hazard Index	Ratio of dose of a chemical to the level at which noncarcinogenic effects are not expected to occur (reference dose or RfD). If the value of the hazard index is less than 1, no toxic effects should occur from the dose tested (e.g., ingestion of fish at a given consumption rate with a specified contaminant concentration).

Isomers	Related chemical compounds that have the same molecular formula but are structurally different. An example of isomers investigated during this study include cis- and trans-chlordane.
NPL	Waste disposal sites included on the National Priority List for clean-up under CERCLA/SARA, also referred to as Superfund sites.
PCDDs	Polychlorinated dibenzodioxins
PCDFs	Polychlorinated dibenzofurans
RſD	Reference dose expressed in units of mg/kg/day. The RFD is the estimated single daily chemical intake rate that appears to be without toxic effects if ingested over a lifetime.
TEC	Toxicity equivalency concentration for dioxins and furans. This represents a toxicity-weighted total concentration of all individual congeners using 2,3,7,8 TCDD as the reference compound. The 1989 interim method advo- cated by EPA was used for this study (Barnes et al., 1989).
TEF	Toxicity equivalency factors for dioxins and furans. These factors express the relative toxicity of the 2,3,7,8-substituted congeners. The values used in this study were from the 1989 interim method (Barnes et al., 1989).
TEQ	Toxicity equivalents for dioxins and furans (Barnes et al., 1989). This term has the same meaning as TEC.
Total Chlordane	Total chlordane refers to the sum of the measured concentration of cis- and trans-isomers of chlordane measured in the same sample.
TTR	Total toxic residue equals the combined concentration of cis- and trans-chlor- dane, cis- and trans-nonachlor, oxychlordane, and the four chlordene iso- mers. This combined concentration is used by EPA's Office of Pesticide Programs.
Xenobiotic	Compounds that do not naturally occur in living organisms.

APPENDIX A

Laboratory QA/QC Procedures and Results

APPENDIX A-1

Analysis of Laboratory QA/QC Data

Appendix A-1 - Analysis of Laboratory QA/QC Data

The QA/QC procedures, as mentioned in Chapter 2 and listed in Table A-1, included analysis of reference fish spiked with the chemicals being studied, analysis of method blanks and duplicate tissue samples, and confirmation sampling using a second GC column. The total number of QA/QC samples of each type is listed below:

	Number of Analyses
Reference Fish	142
Method Blanks	135
Duplicate Samples	117
Confirmation Samples	41

These data were used by the EPA Duluth laboratory to estimate analytical precision and bias.

BIAS

Bias is a systematic error resulting in values that are too high or too low. It can be measured using spiked samples and is defined as follows:

$$B = (100 (C_a - C_b)/T) - 100$$

where:

B	=	percent bias
Ca	=	measured concentration of analyte after spiking
Cb	=	original concentration in sample
Т	=	amount of spike added to sample.

Reference fish, not containing dioxin/furan, were used in this study to determine bias. The QA/QC criteria, listed in Table A-2, specify that the bias be \pm 50 percent for tetra- and pentadioxin/furan congeners, \pm 100 percent for hexa- and hepta-dioxins and hexa-furans, and \pm 200 percent for hepta-furans. Method bias achieved is reported in Table A-3 for PCDD/PCDF analysis. The reported values are for standard solutions in tridecane solvent and represent the three spiking levels indicated in the Analytical Procedures and Quality Assurance Plan for the Determination of Mercury in Fish (U.S. EPA, 1989a). Method bias prior to the use of the tridecane solvent was, in general, lower. Mean recovery for the dioxins/furans ranged from 94 percent to 109 percent. The percent bias ranged from +9 percent to -6 percent. Thus, the above criteria for bias were met.

The bias QA/QC criteria for xenobiotics were defined in terms of individual analyte recovery and total analyte recovery. The bias for specific analytes must be between +50 percent and +130 percent, except for the following compounds:

TABLE A-1

Laboratory Quality Assurance Procedures

- 1. All instrument maintenance schedules maintained according to the manufacturer's recommendations
- 2. Gas Chromatography (GC) performance
 - a) <u>Xenobiotics</u>
 - 1. Column resolution (number of theoretical plates of resolution must not decrease by more than 20%)
 - 2. Relative retention times (3%) of internal standards
 - b) <u>PCDD/PCDF</u>
 - 1. Resolution of 1,2,3,4 TCDD from 2,3,7,8 TCDD must be 0.75
 - 2. The R^2 value of the regression of the relative retention time of all biosignificant PCDD/PCDF to the library relative retention should not be <0.995
 - 3. Elution of all PCDD/PCDF during analysis from a GC window defining solutions of select PCDD/PCDF congener groups (first eluted/last eluted)
- 3. Mass Spectrometry (MS) performance
 - a) <u>Xenobiotics</u>
 - 1. Sensitivity (signal-to-noise ratio, 3.0 for m/z 198 from injection of 10.0 ng decafluorotriphenylphosphine [DFTPP])
 - 2. Spectral quality (intensity of ions in the spectrum of DFTPP must meet specified criteria)
 - b) <u>PCDD/PCDF</u>
 - 1. Sensitivity and linearity were evaluated using calibration standards (in $pg/\mu l$ tridecane) which varied in concentration
 - 2. Mass resolution was a minimum of 5,000 (10% valley definition)
 - 3. Percent relative standard deviations for the mean response factors were <20%
- 4. Gel Permeation Chromatography (GPC) performance
 - a) <u>Xenobiotics</u>
 - 1. Column flow rate (not vary by more than 0.2 ml/min)
 - 2. Column resolution (daily injection of performance solution)
 - 3. Collection cycle (start and end of the collect cycle must not deviate by more than 2 ml)
- 5. Silica Gel Chromatography performance
 - a) <u>Xenobiotics</u>
 - 1. Evaluated by its ability to resolve cholesterol from a select model target analyte, dieldrin

	Ion Ratio	Method ^a Efficiency	Accuracy ^a at 10 pg/g	Precision ^b at 10 pg/g	S/N Minimum
TCDD	0.76±15%	>40%,<120%	±50%	±50%	3.0
PCDD	0.61±15%	>40%,<120%	±50%	±50%	3.0
HxCDD	1.23±15%	>40%,<120%	±100%	±100%	3.0
HpCDD	1.02±15%	>40%,<120%	±100%	±100%	3.0
TCDF	0.76±15%	>40%,<120%	±50%	±50%	3.0
PCDF	1.53±15%	>40%,<120%	±50%	±50%	3.0
HxCDF	1.23±15%	>40%,<120%	±100%	±100%	3.0
HpCDF	1.02±15%	>40%,<120%	200%	200%	3.0

TABLE A-2 Quality Assurance Parameters for Dioxins and Furans

^a Variance of measured value from actual. ^b Variance of difference of duplicates from mean.

Chemical	Mean Recovery	Stan. Dev.	% Bias
2,3,7,8 TCDF	109	16	9
2,3,7,8 TCDD	102	13	2
1,2,3,7,8 PeCDF	104	14	4
2,3,4,7,8 PeCDF	104	12	4
1,2,3,7,8 PeCDD	100	13	0
1,2,3,4,7,8 HxCDF	95	10	-5
1,2,3,6,7,8 HxCDF	104	17	4
2,3,4,6,7,8 HxCDF	96	11	-4
1,2,3,7,8,9 HxCDF	94	12	-6
1,2,3,4,7,8 HxCDD	99	24	-1
1,2,3,6,7,8 HxCDD	108	13	8
1,2,3,7,8,9 HxCDD	96	11	-4
1,2,3,4,6,7,8 HpCDF	99	11	-1
1,2,3,4,7,8,9 HpCDF	104	14	4
1,2,3,4,6,7,8 HpCDD	103	12	3

TABLE A-3 Bias Analysis for PCDDs/PCDFs

- Trichlorobenzenes (1,3,5-; 1,2,4-; and 1,2,3-);
- Tetrachlorobenzenes (1,2,4,5-; 1,2,3,5-; and 1,2,3,4-);
- Pentachlorobenzene; and
- Biphenyl.

The recovery for these analytes is low due to some losses during the evaporation steps. The average analyte recovery for the spiked analytes was then determined for these analytes. The QA/QC criteria specified that this value be greater than 35 percent and less than 130 percent (Table A-4).

The bias results are shown in Table A-5 for PCBs and Table A-6 for the remaining xenobiotics, excluding mercury. Mean recoveries for PCBs were estimated using data for PCBs with 3 to 7 chlorines with the recoveries ranging between 58 and 101 percent. The recoveries were higher for the more heavily chlorinated compounds. Bias for the above PCBs ranged between +8 and -37 percent and thus met the criteria.

Method bias values for xenobiotics were determined from two spiking levels (Analytical Procedures and Quality Assurance Plan, U.S. EPA, 1989a). Method bias for xenobiotic analytes varies considerably compared to PCDD/PCDF analysis. As expected, low recoveries are exhibited by the chlorinated benzenes and other semivolatile compounds due to the concentration steps in the analytical procedure. The percent bias for the analytes other than chlorinated benzenes and biphenyl ranged from -45 to +14. The average analyte recovery was 73.8, well within the overall QA/QC criteria.

The QA/QC criteria for mercury are listed in Table A-7. The amount of tissue analyzed decreased from 1.0 g to 0.2 g in 1990 to obtain results within the instrument calibration range established at a lower detection limit. The detection limit for samples analyzed in 1990 was 0.0013 μ g/g tissue. Analysis and EPA reference fish (mean value 2.52 μ g/g, standard deviation (s) = 0.64) throughout the study gave a mean mercury value of 2.87 μ g/g (s = 0.08). This gives a bias of +14 percent for mercury.

PRECISION

Precision (P) measures the reproducibility of the analyses. It can be determined as follows:

$$P = \frac{\text{difference between duplicate samples}}{\text{mean of duplicate}} \times 100$$

The precision criteria for dioxin/furan congeners are the same as those listed earlier for method bias. Specific precision criteria for the individual xenobiotics were not listed in the Analytical Procedures and Quality Assurance Plan (U.S. EPA, 1989a). The original Work Plan for the study (U.S. EPA, 1986a) listed a general criterion for precision of \pm 50 percent.

Estimates of intralaboratory precision expressed as the standard deviation for replicate pairs are presented in Table A-8 for dioxins/furans and in Table A-9 for selected xenobiotics. The

TABLE A-4 QA/QC Criteria for Xenobiotics Analyses

- 1. GC relative retention time for the target analytes could not deviate by more than + 3% from calibration curve values.
- 2. Analyte identification criteria reverse search identification of an analyte must have an FIT value of 800.
- 3. Signal-to-noise ratio quantification ion must have a ratio of 3.0.
- 4. Relative response factor for each analyte quantification ion relative to the appropriate internal standard quantification ion must not deviate by 20% from the previous day's value, and must be within 50% of the mean value from the calibration curve.
- 5. Percent recovery of each surrogate standard must be determined and must be within 25 and 130 percent for iodonaphthalene and 50 and 130 percent for 4,4'-diiodobiphenyl.
- 6. Average analyte recovery for all target analytes must be greater than 35% but less than 130%, and for the fortified analytes (except several chlorobenzenes, biphenyl, and hexachlorobutadiene) recovery must be within a range of 50 to 130 percent.

	Mean		
Chemical	Recovery	Stan. Dev.	% Bias
Tetrachlorobiphenyl	63	16.5	-37
Pentachlorobiphenyl	90	12	-10
Hexachlorobiphenyl	108	11	8
Heptachlorobiphenyi	99	23	-1

TABLE A-5 Bias Analysis for Polychlorinated Biphenyls

	Меап		
Chemical	Recovery	Stan. Dev.	% Bias
1.3.5 Trichlorobenzene	25	7	-75
1,2,4 Trichlorobenzene	25	11	75
1,2,3 Trichlorobenzene	21	11	-79
1,2,4,5 Tetrachlorobenzene	32	16	-68
1,2,3,5 Tetrachlorobenzene	39	12	-61
Biphenyl	27	10	-73
1,2,3,4 Tetrachlorobenzene	33	15	-67
Pentachlorobenzene	43	16	-57
Trifluralin	86	25	-14
alpha-BHC	67	18	-33
Hexachlorobenzene	58	16	-42
Pentachloroanisole	67	18	-33
gamma-BHC (Lindane)	64	16	-36
Pentachloronitrobenzene	71	19	-29
Diphenyl disulfide	82	26	-18
Heptachlor	68	18	-22
Chlorpyrifos	106	16	6
Isopropalin	84	49	-16
Octachlorostyrene	96	24	-4
Heptachlor epoxide	88	11	-12
Oxychlordane	76	14	-24
Chlordane, trans	92	15	-8
Chlordane, cis	97	24	-3
Nonachlor, trans	96	22	-4
p,p'-DDE	95	23	-5
Dieldrin	100	14	0
Nitrofen	114	20	14
Endrin	102	14	2
Perthane	78	32	-22
Nonachlor, cis	99	22	- 1
Methoxychlor	55	27	-45
Dicofol	96	27	-4
Mirex	90	20	-10

TABLE A-6 Bias Analysis for Xenobiotics

TABLE A-7 QA/QC Criteria for Mercury Analyses

- 1. Samples are analyzed in batches of 20 to 25, with at least 20% additional reagent blank and duplicate samples per batch.
- 2. The detection limit for a batch analysis is not to exceed 50% above the detection limit of 0.050μ g/g tissue, or samples are reanalyzed.
- 3. Complete reagent blanks are to produce a mercury signal equivalent to less than 0.15 $\mu g/g$ tissue.
- 4. Signal response to the standards is not to drop below 50% of the optimum value. The instrument is reoptimized if this criterion is not met.
- 5. The standard deviation for batch duplicates is not to exceed two times the standard deviation for the optimum determined value. Samples outside this range are reanalyzed.
- 6. Analysis of EPA reference samples for mercury in fish is used to assess accuracy.

Chemical	# of Observations	Precision ^a (pg/g)	Concentration Range (pg/g)
2,3,7,8 TCDF	51	s=0.07X	1 to 100
2,3,6,7 TCDF	13	s=0.08X	1 to 30
2,3,7,8 TCDD	41	s=0.08X	1 to 120
1,2,3,7,8 PeCDF	14	s=0.21	1 to 10
2,3,4,7.8 PeCDF	29	s=0.09X	1 to 50
1,2,3,7,8 PeCDD	25	s=0.91	1 to 30
1,2,3,4,7,8 HxCDF	18	s=1.37	1 to 50
1,2,3,6,7,8 HxCDF	9	s=0.11X	1 to 30
2,3,4,6,7,8 HxCDF	11	s=0.17X	1 to 5
1,2,3,4,7,8 HxCDD	11	s=0.13X	1 to 10
1,2,3,6,7,8 HxCDD	29	s=0.11X	1 to 35
1,2,3,7,8,9 HxCDD	8	s=0.11X	1 to 10
1,2,3,4,6,7,8 HpCDF	11	s=0.77	1 to 15
1,2,3,4,6,7,8 HpCDD	33	s=0.08X	2 to 150
^a X = concentration s = standard deviation			

 TABLE A-8

 Intralaboratory Precision Measurements for Replicate Pairs for PCDD/PCDF Analysis

 TABLE A-9

 Intralaboratory Precision Measurements for Replicate Pairs for Xenobiotic Analysis

.

Chemical	Number of Observations	Concentration Precision ^a (ng/g)	Range (ng/g)
1,3,5 Trichlorobenzene	5	s=13.05	40 to 100
1,2,4 Trichlorobenzene	5	s=0.28X	8 to 120
1,2,3 Trichlorobenzene	5	s=5.39	15 to 120
Hexachlorobutadene	6	s=0.39X	30 to 150
Biphenyl	5	s=0.19X	4 to 110
1,2,3,4 Tetrachlorobenzene	6	s=0.35X	30 to 150
Pentachlorobenzene	5	s=0.04X+5.04	50 to 200
Trifluralin	6	s=0.19X	2.5 to 150
alpha-BHC	7	s=0.05X+1.70	2.5 to 250
Pentachloroanisole	10	s=0.25X	2.5 to 240
gamma-BHC (Lindane)	8	s=0.12X	3 to 240
Pentachloronitrobenzene	5	s=38.81	70 to 280
Heptachlor	6	s=7.44	50 to 250
Chlorpyrifos	8	s=0.05X+8.09	4 to 300
Isopropalin	7	s=38.43	10 to 500
Heptachlor epoxide	6	s=0.13X	15 to 260
Oxychlordane	11	s=0.12X	4 to 300
Chlordane, trans	14	s=0.10X	3 to 300
Chlordane, cis	13	s=0.10X	3 to 200
Nonachlor, trans	21	s=0.16X	4 to 400
p,p'-DDE	29	s=0.17X	10 to 400
Dieldrin	17	s=0.10X	3 to 400
Endrin	5	s=0.10X	100 to 500
Nonachlor, cis	13	s=0.13X	5 to 300
Dicofol	5	s=0.03X+5.66	20 to 300
Mirex	5	s=0.07X	4 to 300
Tetrachlorobiphenyl	14	s=0.17X	10 to 280
Pentachlorobiphenyl	26	s=0.16X	7 to 1000
Hexachlorobiphenyl	28	s=0.14X	8 to 1000
Heptachlorobiphenyl	21	s=8.33	7 to 120
Octachlorobiphenyl	6	s=0.15X+1.41	6 to 100
Hexachiorobenzene	4	N/A	2 to 36
^a X= concentration s = standard deviation		· · · · · · · · · · · · · · · · · · ·	······

standard deviation, s, and coefficient of variation (CV) for each duplicate pair were determined and then plotted against the mean concentration. For most analytes, s increased as the mean increased and CV appeared constant. For these analytes the average CV was used as the precision summary. The precision is reported as s = (average CV)X, where X is the mean concentration of the duplicate pair. The pooled standard deviation value was used as the precision summary for 1,2,3,7,8 PeCDF; 1,2,3,4,7,8 PeCDD; 1,2,3,4,7,8 HxCDF; 1,2,3,4,6,7,8 HpCDF; 1,3,5 and 1,2,3 trichlorobenzene; pentachloronitrobenzene; and isopropalin.

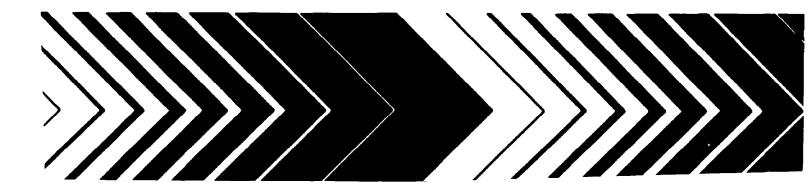
CV decreased with increasing concentration, and s appeared constant over the concentration range for these analytes. For pentachlorobenzene, alpha-BHC, chlorpyrifos, dicofol, and octachlorostyrene, precision was determined by a least-squares linear regression since s increased with concentration and CV decreased with concentration. Precision is not reported for some analytes since not enough data were collected to make any conclusions.

Mercury precision for replicate pairs was estimated as $s = 0.047 \ \mu g/g$ in the concentration range of 0.08 $\mu g/g$ to 1.79 $\mu g/g$ for 20 samples.

DATA COMPLETENESS

The original work plan (U.S. EPA, 1986a) specified a target for data completeness of 80 percent. This was to be based on verified data as a percentage of all reported data. For the dioxins and furans, 4 percent of all values did not meet the QA/QC criteria and are reported as "QR" in the data base. The xenobiotic data were tested throughout the study and if a run did not meet the 80 percent completeness criteria, the set of samples was rerun. No "QR" values were reported for xenobiotics. Thus, the criterion of 80 percent valid data was met.

APPENDIX A-2


Analytical Procedures and Quality Assurance Plan for the Determination of PCDD/PCDF in Fish United States Environmental Protection Agency Environmental Research Laboratory Duluth MN 55804

EPA 600 3-90/022 March 1990

Research and Development

Analytical Procedures and Quality Assurance Plan for the Determination of PCDD/PCDF in Fish

EPA/600/3-90/022 March 1990

U.S. Environmental Protection Agency

Hational Dioxin Study - Phase 11

Analytical Procedures and Guality Assurance Plan for the Determination of PCDD/PCDF in Fish

Environmental Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Duluth, MN 55804

BOTICE

The information in this document has been funded whelly or in part by the U.S. Environmental Protection Agency. It has been reviewed technically and administratively. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

ACKNOWLEDGEMENTS

Technical contributions to this research were made by:

U.S. Environmental Protection Agency Brian C. Butterworth Douglas W. Kuchl

A<u>Sci Corporation</u> Phillip J. Marquis Marie L. Larsen Larry G. Holland Christine E. Soderberg Jennifer A. Johnson

University of Visconsin-Superior

Elizabeth A. Lundmark Daniel M. Fremgen Sandra Naumann Murray Hackett Kent Johnson Harvey D. Corbin, Jr. Dr. Ray L. Hanson

<u>Uright</u> State University

Or. Thomas Tiernan

Kevin L. Hogfeidt

Dr. Hichael Taylor

FOREWORD

Directed by Congressional mandate, the U.S. Environmental Protection Agency during 1983 initiated the National Dioxin Study, a survey of environmental contamination by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the United States. Results of this study are published in the National Dioxin Study: Tiers 3,5,6, and 7, EPA 400/4-82-003. This laboratory, the Environmental Research Laboratory- Duluth, was responsible for one part of the Study, the analysis of fish samples. The most significant findings of these analyses was the observation that fish contamination was more widespread than previously thought, and that a primary source of TCDD was discharge from pulp and paper production using chlorine.

A second more detailed characterization of anthropogenic organic chemical contaminants in fish was conducted in subsequent analyses during what is now called Phase II of the National Dioxin Study. This document describes the analytical methods used for the determination of the level of contamination of fifteen biosignificant polychlorinated dibenzo-p-dioxins and dibenzofurans in fish. A companion document (EPA /600/3-90/023) describes the analytical methods used for the determination of levels of contamination of polychlorinated biphenyls, pesticides, and industrial compounds in those same fish.

TABLE OF CONTENTS

	0120	LAIM	ER	• • • •	• • • •	• • • •	• • • •	• • • •	•••		• • • •	•••	•••	• • • •	• • •	•••	• • •	••	•••	•••	i i
	ACKN	OWLE	DGEM	ENTS	• • • •	• • • •	• • • •		•••		• • • •	•••	•••	• • • •	•••	•••	•••	•••	•••	. i	i i
	FORE	WORD		• • • •	• • • • •		• • • •		•••	• • • •		•••	•••		•••	•••		•••		• •	i v
	ι.	Intr	oduc	tion	• • • • •		• • • •	• • • •	• • •	• • • •	•••	• • •	•••	• • • •		•••		• • ·	•••		. 1
1	τ.	Samp	ole P	repa	ratio	o n															
		A.	Grin	ding					• • •									• •			. 3
		8.	Extr	acti:	on		• • • •	• • • •	•••			• • •									. 3
		с.	Perc	ent	Lipic	d Des	term	inat	ion												. 3
		D .																			
		υ.	Anth	ropo	genic	: (1)	BURIC	• L 1	SOL	8 T 1 C	on	•••	•••	• • • •	• • •		•••	• • •	•••	••	. 5
		Ε.	Flor	isil	Chro	mat	ogra	phy.	•••	• • • •	•••	•••	•••	• • • •	•••	••	•••	••	• • •		. 5
		F.	PCDD	/ P C D	Fisc	olat.	ion.	••••	• • •		•••		•••	• • • •	•••	•••		•••	•••		. 5
11	ι.	Reag	ents	and	Star	ndaro	1 s. .														. 6
			Reag																		
			Stan																		
1	۷.	Inst	:rume	ntal	Para	meto	₽ г \$.	• • • •	• • •	• • • •	• • •	•••	•••	• • • •	•••	••	•••	•••		••	12
	۷.	Quel	ity	Assu	rance	e/Qui	l it	y Co	ntro	οι	• • •	•••	•••	• • • •	•••	•••	•••	•••		•••	13
		Α.	Gene	rali	Proce	dure	es o	f Op	era	tion		• • •	• • •		•••	•••	•••	•••	• • •	••	13
		8.	Inst	rumei	ntal	Qual	líty	Con	troi	ι	•••	• • •	• • •		• • •	•••	•••	• • •		••	2 0
		с.	Eval	uati	on of	F Dat	t s. .		• • •			• • •	• • •			• • •	•••	• • •			2 1
			1.	Acci	uracy				• • •				• • • •					• • •			21
			Ζ.		cisic																
			3.	·	nal G		•				,			-							
			4.	Pola	ar Ga	is Ct	nrom	atog	rapi	nic	Con	firi	mati	ion	Ana	itys	1 5	•••	• • •	•••	23
		D.	Qual	ity /	Assur	ance	e Pr	oble		nd	Cor	rec	tive	e Ac	tic	ns.		• • •		• •	24

۷1.	quar	ntification Procedures
	۸.	Initial and Daily Calibration of the HRMS
	۱.	Signal Quality
	с.	Guantification of PCDD/PCDF
	٥.	Nethod Efficiency
	٤.	Integration of Automated Data Processing and Quality Assurance

TABLES

Table 1	Biosignificant PCDDs/PCDFs	1
Table 2	Minimum Level of Oetection Limit	2
Table 3	Internal Standard Solutions	4
Table 4 ···	Calibration Standards	9
Table 5	Relative Retention Times 4-8 PCDD lsomers	10
Table 6	Relative Retention Times 4-8 PCDF Isomers	11
Table 7	HRGC/HRMS Operating Parameters	12
Table 8	Native PCDD/PCDF Spiking Solution	14
Table 9	Codes for the SCC Number and Matrix Type	19
Table 10	GC Column Performance Quality Control	20
Table 11+-	GC Elution Window Defining Solutions for	
	D8-5 Column	21
Table 12+-	Quality Assurance Perameters	2 2

Figures

Figure	1	••	Database Format for Sample Information
Figure	2	••	2,3,7,8-TCDD Weighted Calibration Curve
figure	3		Data Reduction for PCDD/PCDF National Dioxin Study.32

```
1. Introduction
```

This document, "Analytical Procedures and Quality Assurance Plan for the Determination of PCDD/PCDF in Fish" has been drafted in response to the need for the Environmental Research Laboratory of Duluth (ERL-D) to perform analysis for tetrachloro- to octachloro- congeners/isomers of polychlorinated dimenzop-dioxins and dibenzofurans (PCDD/PCDF), Table 1.

Table_1Biosignificant_	PCODS/PCOFS
Analyse	
2378-TCDF	51207-31-9
2367 - T C D F	
3467-TCDF	
2378-1000	1746-01-6
12378-Pecdf	57117-41-6
23478-Pecdf	57117-31-6
23467-PecDF	70648-29-9
12378-Pecdd	40321-76-4
123467 - H x CD F	
123478-HxCDF	70648-26-9
123678 - H x CD F	57117-44-9
234678 - H x CD F	60851-34-5
123789 - H×CDF	72918-21-9
123478 - H x C D D	32598 - 13 - 3
123678-HxCD0	57753-85-7
123789 - HxCDD	19408 - 74 - 3
1234678 - HpCDF	67562-39-4
1234789 - HpCDF	55673-89-7
12 34678- HpCDD	37871-00-4

These analyses are limited by lack of analytical standards; however isomer specificity may be determined using specially developed standards. Analytical results will, therefore, be reported as concentration (pg/g) for each gas chromatography (GC) peak in a congener class by making the assumption that the response for the molecular ion of all isomers in that class is equal to the response observed for the isomer for which ERL-D does have a standard. The target minimum level of detection (NLD) for specific PCDD/PCDF isomers is given in Table 2 below. This document is meant to be only a guideline for analyses and may be modified as needed to satisfactorily analyze any sample.

_____Able_2. Minimum_Level_of_Petection_Yaiyes____

Terget Hinimum

тсве,	TCDF	1	P#/#
Pecdd,	Pecof	2	P\$/\$
H×CDD,	HXCDF	4	P 9 / 9
HpCDD,	НрС₽₽	10	P#/1

II. Sample Preparation

- A. <u>Grinding</u>: Frozen fish wrapped in sluminum foil are sent to the ERL-Duluth laboratory. How the fish is ground, (whole body or fillet), is dependent on the species. Sottom feeders are ground whole and predators are filleted with the skin off. Fish tissue is ground frozen in a stainless steel power meat grinder. Each sample is processed through the grinder three times which homogenizes it thoroughly. The ground tissue is stored at -20^o C in solvent rinsed glass jars with aluminum lined plastic lids.
- B. <u>Extraction</u>: Tissue (20 g) is blended with enough anhydrous sodium sulfate to dry the tissue (100 g). Two-thirds of the sample is placed in a glass Soxhlet thimble, spiked with 100 ul of each Standard Solution A and B (Table 3) and then the remainder of the sample is added to the thimble. The sample is extracted at least twelve hours with a 1:1 mixture of hexane and methylene chloride in a Soxhlet extractor. The sample is quantitatively transferred to a 500 ml Kuderne-Dánish apparatus and prewashed boiling chips are added.
- C. <u>Percent Lipid Determination</u>: The sample extracted in section 1.8. of sample preparation is used to determine percent Lipid. After sample concentration, the KD lower tube is placed in a 60⁰ C water bath under a gentle stream of dry carbon filtered air. After any remaining solvent has been evaporated, the lower

tube and contents are weighed. The lipid is then quantitatively transferred to the macro column as described in Section 1.3. of sample preparation. After transfer, the empty lower tube and boiling chops are weighed. The percent lipid is calculated from the weight differences.

Table 3. Internal Standard Solutions.

Concentration Concentration ____Compound_____in_solution_(pg/uL)____in_tissue_(pg/gt)__

Internal Standard Solution A. (100 uL)

2,3,7,8-TCOD	2.0	10.0
2,3,7,8-ТСОО	5.0	25.0
2,3,7,8-TCDF	5.0	25.0
1,2,3,7,8-Pecod	5.0	25.0
1,2,3,7,8-Pecdf	5.0	25.0
1,2,3,4,7,8-HxCDD	12.5	62.5
1, 2,3, 4,7, 8 -H×CDF	12.5	62.5
1,2,3,4,6,7,8-HpCDO	12.5	62.5
1,2,3,4,6,7,8-HpCDF	12.5	62.5
0 C D D	25.0	125.0
2,3,7,8-TCDF	2.0	10.0
2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 2,3,7,8-TCDF	5.0 12.5 12.5 12.5 12.5 12.5 25.0	25.0 62.5 62.5 62.5 62.5 125.0

Internel Standard Solution 8.

1,2,3,4+TCDD	1.0	5.0
1,2,4,7,8-P+CDD	1.0	5.0
1, 2,3,4 -TCDF	1.0	5.0
1,2,3,6,7-PeCDF	1.0	5.0

Internal Standard Solution C.

¹³ C ₁₂ 1,2,3,4 - TCDD	50.0	50.0
* Assumes a 20 g sample.		

- D. Anthropogenic Chemical Isolation: The sample extract is quantitatively transferred to a 30 cm x 2.5 cm glass chromatography column (MACRO-columns) fitted with a 300 mL reservoir on top. The column has been packed with a plug of glass wool (bottom to top), 2 g silica gel, 2 g potassium silicate, 2 g sodium sulfate 10 g celite/sulfuric acid and 2 g sodium sulfate, and previously washed with 100 mL hexane. The column is aluted with 100 mL benzene/hexane (5%) and the eluent is collected in a Kuderna-Danish (KD) apparatus (Caution: benzene is a known carcinogen). Isooctane (1.0 mL) is added, the volume is reduced and then transferred to the florisil column.
- E. <u>Florisil Chromstography</u>: A 1.0 cm x 20.0 cm glass chromatography column fitted with a 100 mL reservoir is packed with a plug of glass wool (bottom to top), 5.0 cm (1.5 g) activated florisil and 1.0 cm sodium sulfate. The florisil is activated at 120° C for 24 hours. The column is washed with 20 mL methylene chloride followed by 10 mL hexane. Sample and two 1 mL hexane rinses are quantitatively applied in small "plugs". The column is eluted with 20 mL 2% methylene chloride/hexane and the eluste discarded. This wash is followed by 50 mL methylene chloride which flows directly onto the micro carbon/silce gel column for PCDD/PCDF isolation.
- F. <u>PCDD/PCDF Isolation</u>: Effluent from the florisil column is passed onto a 4 mm x 200 mm column (micro-column) containing 300 mg silica gel/carbon (see sec. [1].A.6) which was previously rinsed with 10 ml toluene followed by 10 ml methylene chloride. The column is fitted with a solvent reservoir. After the sample has almost completely eluted from the micro-column, the reservoir is washed twice with 2 mL 25% benzene/methylene chloride and the

column is finally eluted with an additional 11 mL 25% benzene/ methylene chloride. The column is inverted on the reservoir and the PCDD/PCDF are eluted with toluene (25 mL). The toluene fraction is collected in a pear shaped flask (25 ml) and reduced in volume to 0.1 mL in a 60° C water bath under a gentle stream of dry carbon filtered air. The sample is transferred to a microvial using toluene to rinse the flask. Prior to GC/HS analysis, the sample is allowed to evaporate to dryness and is spiked with 20 ul of Standard Solution C (Table 3).

III. Reagents and Standards:

A. Resgents:

- <u>Solvents</u>: Only pesticide grade distilled in glass solvents are used. They are: hexane, isooctane, methylene chloride, benzene, toluene, acetone, and methanol (Burdick and Jackson, Fischer Scientific).
- <u>Sodium Sulfate</u>: Sodium sulfate (Baker Chemical Company reagent grade anhydrous) is baked at 650⁰C in a furnace for 24 hours, cooled, and stored in an empty hexane solvent bottle.
- 3. <u>Silica Gel</u>: Silica-Gel-60 (Merck-Darmstadt), is Soxhlet extracted eight hours with methanol, placed on solvent rinsed fail, air dried for 12 hours, and vacuum oven dried (125⁰C) for 24 hours. It is stored in an empty hexane solvent bottle. Prior to use it is activated at 105⁰ C for 24 hours.
- 4. <u>Sulfuric Acid/Celite</u>: Sulfuric acid (Baker Chemical Company, Ultrex) (5 mL) is blended in a 250 mL beaker with Celite 545 (Baker) (10 g).

- 5. <u>Potassium Silicate</u>: High purity potassium hydroxide (Aldridge Chemical Company) (56 g) is dissolved in methanol (300 mL). Silica-gel (100 g) is added to the mixture and stirred (1 hour, 60° C). The mixture is cooled and the solvent is removed using a Buchner funnel. The potassium silicate is rinsed twice with 100 mL of methanol and once with 100 mL of methanol and allowed to dry for approximately 2 hours. The solids are placed in a vacuum oven and dried overnight at 105°C. The reagent is placed in a rinsed beaker and stored (activated) at 120°C until use.
 - 6. <u>Silica Gel/Carbon</u>: Silica Gel-60 (100 g) (Merck-Darmstadt) is Soxhlet extracted with methanol (200 mL) for 24 hours, air dried in a hood, and further dried in vacuum oven for 24 hours. AMGCO PX-21 Carbon (5 g) is added and then blended until uniform in color. The Silica Gel/Carbon is stored in a closed jar at room temperature until use.
 - 7. <u>Florisil</u>: Florisil 60-100 mesh (Baker Analyzed) is southlet extracted with methanol for 24 hours, placed on solvent rinsed foil, air dried and stored in an empty hexage bottle. Prior to use it is activated at 120°C for 24 hours.

8. <u>Standards</u>:

1. Analytical Standard Spiking Solution

Table 3 provides details of the spiking solutions. The surrogate analytes are used by the data reviewer to insure that calculated NLD values are reasonable.

2. <u>Quantification Standards</u>: Quantification standards were prepared by Wright State University. The concentration of 2,3,7,8-TCDD was checked against a primery standard obtained from the U.S. Hational Sureau of Standards. A table of the concentrations of each isomer in each standard is given in Table 4.

3. <u>Qualitative Standards</u>: ERL-D has developed two qualitative analytical standards, one containing all 75 PCDD's and all 138 PCDF's was developed from an extraction of municipal incinerator fly ash (Tables 5 and 6) and the other containing only the biosignificant isomers was developed by exposure of fish to an extract of municipal incinerator fly ash and processing the exposed fish for PCDD/PCDF. These standards will be used to assign structures for isomer specific analyses.

Standard solutions are sonicated for 5 to 10 minutes before use.

4. Mass Spectrometer Mass Calibration Compounds: Perfluorokerosene (PFK) is used for the initial mass calibration of the mass spectrometer. Perfluorodecalin (PFD) is used daily for determining mass resolution on m/z 392.9761.

Calibration Standard		<u>v2</u>	43	4	<u></u>	<u>4</u>	<u>u7</u>	8
2,3,7,8-100	200	100	50	25	10	5	2.5	1
2,3,7,8-TCDF	200	100	50	25	10	5	2.5	1
1,2,3,7,8-PeCDD	200	100	50	25	10	5	2.5	1
1,2,3,7,8-PeCDF	200	100	50	25	10	5	2.5	1
2,3,4,7,8-PeCDF	200	100	50	25	10	5	2.5	1
1,2,3,4,7,8-HECDD	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,6,7,8-HxCDD	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,7,8,9-HxCDD	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,4,7,8-HxCDF	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,6,7,8-HACOF	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,7,8,9-HxCDF	500	250	125	62.5	25	12.5	6.25	2.5
2,3,4,6,7,8-HxCDF	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,4,6,7,8-HpCDD	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,4,6,7,8-HpCDF	500	250	125	62.5	25	12.5	6.25	2.5
1,2,3,4,7,8,9-HpCDF	500	250	125	62.5	25	12.5	6.25	2.5
0CDD	1000	500	250	125	50	25	12.5	5
0 CD #	1000	500	250	125	50	25	12.5	5
13 13 12 12 12 12 12 12 12 12 12 12 12 12 12	50	50	50	50	50	50	50	50
¹³ 2 2 3 7 8-100F	50	50	50	50	50	50	50	50
12 1,2,3,7,8-Pecob	50	50	50	50	50	50	50	50
13 13 13 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	50	50	50	50	50	50	50	50
13 C12 1,2,3,7,8-FeCDF 13 C12 1,2,3,6,7,8-MxCDD 13 C12 1,2,3,6,7,8-MxCDD	125	125	125	125	125	125	125	125
13 c12 1,2,3,6,7,8-HxCDD 13 c12 1,2,3,6,7,8-HxCDP 13 c12 1,2,3,4,7,8-HxCDP	125	125	125	125	125	125	125	125
1,2,3,4,7,8-нжССР 13С12 1,2,3,4,6,7,8-НжССР 13С12 1,2,3,4,6,7,8-НрССР	125	125	125	125	125	125	125	125
12 1,2,3,4,8,7,8-MpLUP	125	125	125	125	125	125	125	125
¹³ C., OCDP	250	250	250	250	250	250	250	250
37 cl, 2,3,7,8+TCD0	20	20	20	20	20	20	20	20
	20	20	20	20	20	20	20	20
13 _{C12} 1,2,3,4-TCD0	50	50	50	50	50	50	50	50

Concentrations in Calibration Solutions in pg/ul Tridecane

•

	RRT	RRT		RRT	RRT
Compound	D 6 5	SP2330	Compound	085	SP233(
	********	********			*******
1368	0.814	0.826	12379	1.320	1.209
1379	0.838	0.871	12369	1.348	1.307
1369	0.861	0.948	12467	1.348	1.321
1378	0.912	0.916	12489	1.348	1.321
1469	0.912	1.072	12347	1.368	1.268
1267	0.912	0.948	12346	1.368	1.352
1248	0.912	0.948	12378	1.400	1.288
1246	0.921	1.014	12367	1.415	1.363
1249	0.921	1.014	12389	1.443	1.463
1268	0.934	0.972			
1478	0.940	0.990	124679	1.620	1.473
1279	0.960	1.027	124689	1.620	1.473
1234	0.985	1.014	123468	1.673	1.473
1236	0.985	1.027	123679	1.700	1.546
1269	0.985	1.105	123689	1.700	1.546
1237	0.993	1.014	123469	1.700	1.681
1238	0.993	1.014	123478	1.764	1.604
2378	1.000	1.000	123678	1.775	1.618
1239	1.009	1.088	123467	1.802	1.789
1278	1.028	1.072	123789	1.802	1.721
1267	1.048	1.130			
1289	1.079	1.216	1234679	1.976	2.135
			1234678	2.023	2.297
12468	1.224	1.111			
12479	1.224	1.111	12346789	2.234	3.225
12469	1.265	1.268			
12368	1.293	1.148			
12478	1.308	1.188			

Table 6: Reletive Retention Times for 4-8 PGOF Laomers

	RRT	RRT		RRT	R R T
Compound		\$ # 2 3 3 0	Compound	085	SP2330
*********		********			
1368	0.730	0.777	13478	1.202	1.083
1468	0.752	0.875	13479	1.217	1.103
2468	0.763	0.989	23469	1.217	1.173
1247	0.782	0.885	12479	1.233	1.142
1347	0.782	0.865	13469	1.253	1.204
1378	0.782	0.853	23468	1.253	1.278
1346	0.782	0.919	12469	1.253	1.278
2368	0.782	1.071	12347	1.253	1.173
1367	0.801	0.881	12346	1.253	1.231
1348	0.801	0.900	12348	1.280	1.216
1379	0.801	0.853	12378	1.280	1.216
		0.943	12367	1.295	1.252
1 2 6 8 1 2 4 8	0.835 0.835	0.919	23489	1.309	1.388
1467	0.853	0.989	12379	1.309	1.237
1478	0.853	0.943	23478	1.359	1.557
1369	0.863	D.943	12489	1.359	1.446
1237	0.863	0.943	13489	1.359	1.350
2467	0.863	1.109	12369	1.359	1.373
1234	0.880	0.977	23467	1.371	1.612
2349	0.880	0.977	12349	1.392	1.420
1236	0.880	0.989	12389	1.446	1.590
1469	0.880	1.061			1.370
1238	0.880	0.989	123468	1.556	1.336
1278	0.902	1.017	134678	1.570	1.370
1349	0.920	1.013	124678	1.570	1.348
1267	0.920	1.049	134679	1.570	1.348
2378	0.939	1.169	124679	1.602	1.428
2348	0.939	1.175	124689	1.621	1.521
2347	0.939	1.140	123467	1.663	1.533
2346	0.939	1.193	123478	1.663	1.489
1246	0.939	0.940	123678	1.676	1.502
1249	0.939	1.071	123479	1.676	1,489
1279	0.939	1.049	123469	1.712	1.668
2367	0.973	1.206	123679	1.730	1.562
1239	0.988		123689		1.668
1269	0.988	1.162	234678	1.744	2.012
3467	0.988	1.264	123789		
1289	1.071	1.341	123489	1.827	1.940
2		`			•
13468	1.120	1.008	1234678	1.954	1.936
12468	1.120	1.028	1234679		
23479	1.190	1.045	1234689		
12368	1.202	1.103	1234789		2.463
12478	1.202	1,121		_	
13467		1.142	12346789	2.240	3.165
	1.202				

11

IV. Instrumental Parameters:

All gas chrometography/HESS SDectrometry enalyses (GC/HS) will be done on a finnigen-HAT 8230 high resolution GC/high resolution HS (HRGC/ HRMS) system. Instrumental parameters are given in Table 7.

Table 7: MRGC/HRMS Operating Parameters Data Acquisition: Multiple Ion Selection Electric Sector Scan.

Compound	Mass Window	m/z value
		QyantConfir.
TCDF	t	305.8986 303.9016
37 11 12 12 12	1	311.8898
13 C 1 2 - T C D F	1	317.9389 315.9419
	1	321.8936 319.8965
37 CLTCDD	1	327.8847
¹³ C ₁₂ -TCDD	1	333.9338 331.9368
PecDF	2	339.8597 341.8567
13C12-Pecor	2	351.9000 349.9029
	2	355.8546 353.8576
¹³ C ₁₂ -PeCDD	2	367.8949 369.8919
NXCDF	3	373.8207 375.8178
13 C12 - HXCDF	3	385.8610 387.8580
Н ж С В В	3	389.8156 391.8127
13 C ₁₂ -H×CDD	3	401.8559 403.8530
HECDE	4	407.7817 409.7788
¹³ C ₁₂ -HpCDF	4	419.8220 421.8191
HECDO	4	423.7766 425.7737
¹³ C ₁₂ -HpCDD	4	435.8169 437.8140
000 #	5	443.7498 445.7369
13 C12 - 0CDF	5	455.7801 453.7831
0000	5	459.7348 457.7377
¹³ c ₁₂ ·ocoo	5	671.7750 673.7721
	Capillary Column	, Splitless Injection.
Ionization:		70eV, 1mA Emission Current.
Source Pressure:	1×10^{-5} torr.	forv, fink emission current.
lanizer Temperature:		
Mass Resolution:		
	1 HIS cycle per	
GC Column:	30 m 08-5, 60 m	
Linear Velocity:	35 cm/sec Helium	
Temperature Program:		in); 13°/min to 200°;
· ··- · ··-	3°/min to 270°;	
M		
HESS WINDOWS AFE MONI	tored sequentiall	y during the temperature

Programs with the windows definded by the elution of standards.

* Quant. = Quantification ion; Confir. = Confirmation ion.

V. Quality Assurance/Quality Control (QA/QC)

- A. General Procedures of Operation
 - <u>Analysis of Samples</u>: Samples are analyzed in sets of twelve consisting of:
 - a. <u>Blank</u>: Method Blank (extraction apparatus) is prepared in the laboratory and subjected to the same sample preparation procedures as environmental samples. The Method Blank is used in every sample set.
 - b. <u>Fortified Matrix</u>: Native analytes (100 uL) (Table 8) are added to a blank sample matrix. The levels of fortification of native analytes in the matrix spike will be above the target detection limit to provide an estimate of the method's sensitivity, and for determination of percent accuracy of quantification. This sample may be substituted with a reference sample that has been analyzed at least three times and a mean value of contamination has been established.
 - c. <u>Detection Limit Verification Sample</u>: An environmental sample with nondetectable amounts of native analyte (determined from a previous analysis) will be spiked with native analytes (Table 8) and analyzed with the next sample set. The addition of the QA/QC sample will be done for only the first three sample sets of any matrix type to establish that the calculated MLD is schievable. If analytical results show difficulty in obtaining the MLD, then this QA/QC sample must be in each set. If no problem is experienced, then this QA/QC sample may be dropped.

Table 8: Native PCDD/PCDF spiking solution (100 uL)

Compound

Co	ncen	trati	• •
(pg/	UL T	ridec	ene)

	Solytion A.	<u>Selution</u>	<u>Selution</u>
2,3,7,8-100	0.50	1.00	1.50
2,3,7,8-TCDF	0.50	1.00	1.50
1,2,3,7,8-Pecdo	0.50	1.00	1.50
1,2,3,7,8-Pecdf	0.50	1.00	1.50
2,3,4,7,8-PeCDF	0.50	1.00	1.50
1,2,3,4,7,8-HxCDD	1.25	2.50	3.75
1,2,3,6,7,8-HxCDD	1.25	2.50	3.75
1,2,3,7,8,9-HxCDO	1.25	2.50	3.75
1,2,3,4,7,8-HxCDf	1.25	2.50	3.75
1,2,3,6,7,8-HxCDF	1.25	2.50	3.75
2,3,4,6,7,8-H×CDF	1.25	2.50	3.75
1,2,3,7,8,9-HxCDF	1.25	2.50	3.75
1,2,3,4,6,7,8-HpCDD	1.25	2.50	3.75
1,2,3,4,6,7,8-HpCDF	1.25	2.50	3.75
0 C D D	2.50	5.00	7.50
QCQ /	2.50	5.00	7.50

- d. <u>Quplicate Sample</u>: Two separate portions of the same environmental sample are processed and analyzed.
- Environmental Samples: The total number of environmental samples analyzed is eight if the Detection Limit Verification sample is used; otherwise nine samples are analyzed.
- 2. Sample Tracking and Labeling of Samples:
 - a. Lossing incoming Samples: ERL-D completes the chain of custody forms and informs the Sample Control Center (SCC) that samples arrived safely or informs SCC of any problems with the samples. Each sample received by ERL-D had previously been assigned two numbers by the Sample Control Center, the Sample Control Center number (SCC#) and an Episode number. The SCC# number is unique for each sample and provides

a means for tracking a given sample throughout its analysis and its permanent storage at the locker plant. The samples are placed into freezer A upon arrival at ERL-Duluth, homogenized, (see II.A.), and en aliquot (100-500 g) is placed into freezer B. After the samples are extracted they are put into freezer C. If all the data meets QA requirements after mass spectral analysis and quantification, the samples are transferred to a locker plant for permanent storage (-20⁹ C).

- b. Longing and Labeling Samples During Preparation: A laboratory identification code (Lab 1D) is randomly assigned to each sample in a set of twelve at the start of sample preparation. The code consists of a letter, A through L, date of extraction, and two initials of the sample preparation chemist, (e.g. A0915&7HL). This code is used to identify the sample throughout the analysis period. The SCC#, Lab 1D, sample description, weight of sample, and amount of analytical standards added to each sample are recorded in the sample preparation log book at the start of extraction. The Lab 1D is unitten on Labeling tape which is transferred from beaker to flask during sample preparation. The Lab 1D is unitten into the MS log book along with the mass spectra analysis number.
- 3. <u>Data System Sample Tracking</u>: ERL-D has developed the National Dioxid Study (NDS) Phase II, Bioaccumulative Pollutants in Fish: Sample Tracking Database to facilitate record keeping and summary report generation for each sample on the DEC-VAX 11/785 (Digital Equipment Corporation). For each sample, including QA samples, information pertinent to each sample is entered into the

detabase. Quantification data (final concentration, ion ratios, percent recovery, HLDs, and signal to noise) are automatically uploaded to the database once all QA criteria have been met. Figure 1 is an example of the NDS database.

The first two letters of the SCC number indicate whether the sample is an Environmental, Method or Matrix Blank, Duplicate Sample or a mass spectral confirmation analysis of an environmental sample. All environmental samples begin with the letter D, or S if it is a mass spectral confirmation analysis of a previously analyted environmental sample. The Blank and Duplicate samples begin with the letter Q followed by a D or an R for duplicate or reference fish sample, respectively. Table 9 lists the possible codes for the SCC number, and matrix type. Episode numbers for Blanks and Fortified Matrix samples are entered as 0000. _Figure_1:_Database_format_for_Sample_Information.

NDS Phase [[: Bioaccumulative Pollutants in Fish; ERL-D loc:25 Sample Tracking System SCC #: 98071486 EPISODE #: 0000 Sampling Information: Sampling Office: State & City: Sampling Contact: Date Sampled: 0/0/0 Site Location: Latitude: N 0 37 0H Longitude: W 0 0/ 0* Date Received: 0/ 0/ 0 Analysis Lab: 0 Matrix Type: R Reryn: 0 Analytical: PCDD/PCDF Pesticide & Industrial Chemicaus Extraction Date: 7/14/86 0/ 0/ 0 GC/HS 10: HAT86824 LAB 10: K071486LH 0.00 Weight: 20.00 0.0 % Lipid: 5.2 Mass Lipid on GPC: 0.00

Comments: Reference fish 86

_____figure_1__secsi__getebee_formet_for_\$emple_informetion_____

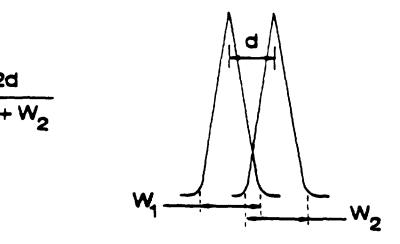
EPISODE #: 0000	s	cc #:	a r 071486		ERL-0 Loc: 25
DATA FOR BLOSIGNIFIC	NAT POLYCHLORI	NATED C	IBENZODIOXINS	AND FURANS:	:
Anelyt.	CAS NO.	[/#	S/N XREC	οι	Amount(pg/g)
2,3,7,8-TCDF	51207-31-9	0.74	55.75 62	0.0000	5.26
2,3,6,7-TCDF		1.00	8.28 62	0.9726	N D
3,4,6,7-TCDF		1.71	16.56 62	0.4863	N D
2,3,7,8-TCDD	1746-01-6	0.7 8	40.75 73	0.0000	15.63
1,2,3,7,8-PeCDF	57117-41-6	1.33	16.72 54	1.0892	ND
2,3,4,7,8- P ecdf	57117-31-6	1.10	11,15 54	1.6357	ND
2,3,4,6,7-PeCDF	70648-29-9	0.00	8.36 54	2.1784	ND
1,2,3,7,8-PecDD	40321-76-4	0.25	4.24 57	4.0729	ND
1,2,3,4,6,7-NxCDF *					
1,2,3,4,7,8-HxCDF	70648-26-9	0.00	57.03 47	0.7327	N D
1,2,3,6,7,8-HxCDF	57117-44-9	0.67	28.52 47	1.4654	N D
2,3,4,6,7,8-HxCDF	60851-34-5	1.25	57.03 47	0.7327	NO
1,2,3,7,8,9-HxCDF	72918-21-9	0.00	57.03 47	0.7327	ND
1,2,3,4,7,8-H×CDD	32598-13-3	0.00	29.08 49	1.3863	NO
1,2,3,6,7,8-HxCDD	57753-85-7	1.31	4.67 49	0.0000	3.23
1,2,3,7,8,9-HxCDD	19408-74-3	0.00	29.08 49	1.3863	ND
1,2,3,4,6,7,8-HpCDF	67562-39-4	0.62	18.97 39	0.0000	NO
1,2,3,4,7,8,9-HpCDF	55673-89-7	0.00	37.94 39	0.0000	NO
1,2,3,4,6,7,8-нрСОО	37871-00-4	1.13	10.50 39	0.0000	5.93

NDS Phase []: Bioaccumulative Pollutants in Fish

* Coelutes with 1,2,3,4,6,7-NxCDF on a D85.

1/R = Ion Ratio; S/N = Signal to Noise; DL = Detection Limit

```
_____Ieble 2: _____for the SCC_Number_and_Matrix_Type_____
    SCC number first letter options:
         D -- Environmental samples
         Q -- QA samples
         S -- MS confirmation analysis
    Second letter options for Environmental Samples
      A - Region 1
                                 G - Region 7
                                  H - Region 8
      8 - Region 2
                                 Y - Region 9
      C · Region 3
                                 J - Region 10
      D - Region 4
                                 T - All regional data
      E - tegion 5
      F - Region 6
    Second letter options for QA samples:
           8 - Method or matrix blank
           D - Labrotory duplicate
           R - Reference fish or fortified matrix
    Matrix Type:
           PF - Predator Fillet
           VB - Whole Bottom
           WP - Whole Predator
           BF - Bottom Filler
           R - Reference
           Y - Blank
           L - Laboratory Duplicate
```


- 8. Instrugental quality Control
 - 1. Gas Chrometograph
 - a. Operation and Maintenance: Operation and maintenance of the gas chromatograph will be done according to manufacturer's recommendations.
 - b. <u>Column Performance</u>: GC column performance will be evaluated by:
 - 1. Resolution of 1,2,3,4-TCDD from 2,3,7,8-TCDD

(Table 10).

- ii. The R^2 value of the regression of the sample relative recention time of all blosignificant PCDD/PCDF, to the library relative retention should not be less than 0.995.
- iii. Elution of all PCDD/PCDF during analysis from a GC window defining solution of select PCDD/PCDF (Table 11).

Table 10; GC Column Performence Quality Control

Resolution of 1,2,3,4-TCDD from 2,3,7,8-TCDD will be used to evaluate general column performance. Resolution (R) must be 0.75 or greater.

8 -

2d

20

Teble 11: _GC_ELucion_Window Defining Solucions for DB-S_Column

_____Gengener_Group_____finst_Eluting______Lest_Eluting_____

100	1,3,6,8	1,2,8,9
TCDF	1,3,6,8	1,2,8,9
P e C 0 0	1,2,4,7,9 /1,2,4,6,8	1,2,3,8,9
Pecof	1,3,4,6,8	1,2,7,8,9
H K C O O	1,2,4,6,7,9 / 1,2,4,6,8,9	1,2,3,4,6,7
HXCDF	1,2,3,4,6,8	1,2,3,4,8,9
H p C D D	1,2 3,4,6,7,9	1,2,3,4,6,7,8
HOCOF	1,2,3,4,6,7,8	1,2,3,4,7,8,9

2. <u>Mass Spectral Performance</u>: The performance of the mass spectrometer is evaluated for resolution, sensitivity and linearity. The mass resolution used for these analyses is set at a minimum of 5000 (10% valley definition). The mass spectrometer is tuned each day to the required resolution according to the procedures established by the instrument manufacturer. Sensitivity and linearity is evaluated by the use of calibration standards verying in concentration (Table 4). A calibration curve is established for each standard. The curve must be linear over the range of concentrations used in the calibration standards. The percent relative standard deviations for the mean response factors must be less than 20 percent.

C. Evaluation of Data:

 Accuracy: Accuracy, the degree to which the analytical measurement reflects the true level present, will be evaluated in two ways for each sample set. These are: the difference of measurement of a PCDD/PCDF isomer added to a blank matrix, or difference of measurement of a PCDD/PCDF from the level in an established reference material; and the efficiency for recovery of the internal standard added for each congener group. The gar requirements for accuracy and method efficiency are provided in Table 12. Percent Accuracy and Percent Method Efficiency are defined as follows:

measured value % accuracy = ______ x 100 amount native isomer added to blank matrix

```
measured value
% Method efficiency = ······ X 100
amount internal standard
added to each sample
```

	<u>130/6</u> _	<u>12: Quality As</u> : -			
		Hethod	Accuracy	Precision	5 / N
	Lon Ratio	Efficiency		at 10 pg/g	Minimum
TCDD	0.76 15%	>40%, <120%	<u>+</u> 50%	<u>+</u> 50%	3.0
PCDD	0.61 <u>+</u> 15%	>40X, <120X	<u>+</u> 50%	<u>+</u> 50%	3.0
HXCDD	1.23 <u>+</u> 15%	>40%, <120%	<u>+</u> 100%	<u>+</u> 100%	3.0
HpCDO	1.02 <u>+</u> 15%	>40%, <120%	±100%	±100%	3.0
0000	0.88 15%	>40%, <120%	-200X	±100X	3.0
T C D F	0.76 <u>+</u> 15%	>40X, <120X	<u>+</u> 50%	<u>•</u> 50%	3.0
PCOF	1.53 <u>+</u> 15%	>40%, <120%	<u>+</u> 50%	<u>+</u> 50%	3.0
HXCDF	1.23 <u>+</u> 15%	>40%, <120%	<u>+</u> 100%	±100%	3.0
NpCDf	1.02 15X	>40%, <120%	• 200X	7 500 x	3.0
0 C D F	1.53 <u>+</u> 15%	>40%, <120%	*500x	±200%	3.0

Variance of measured value from actual.

** Variance of difference of duplicates from mean.

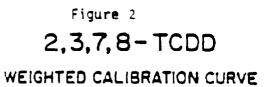
2. <u>Precision</u>: Precision, a measure of mutual agreement among individual measurements of the same pollutant in replicate samples, is evaluated for each sample set by the ratio of the difference of duplicate values to their mean value. Table 12 provides QA requirements for precision. Precision is determined only when both values are above the detection limit.

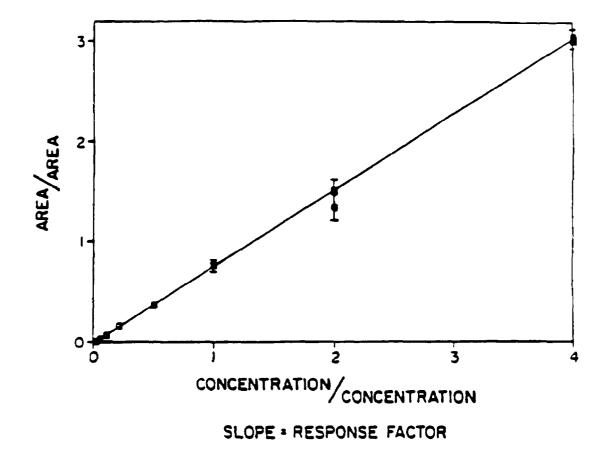
Precision is defined as follows:

difference between duplicate samples Precision = ······ X 100 mean value for the duplicates

- 3. <u>Signal Quality</u>: The quality of the mass spectral signals used for qualitative and quantitative analysis is evaluated using two parameters: the ion intensity ratio for the two ions monitored in each congener group, and the signal to noise (S/N) ratio. Table 12 provides QA requirements for signal quality. In addition, qualitative identification will be based on coelution with the stable isotope labeled compound, or relative retention time correlation (Tables 5 and 6).
- 4. Polar Gas Chromatographic Confirmation Analysis: Ten percent of the sample extracts analyzed are seleceted for GC/MS confirmation analysis on the more polar SP2330 column, (Supelco, Belafonte, PA). Samples which were positive for 2,3,7,8-TCDD were selected for analysis.

0. Quality Assurance Problems and Corrective Actions:


MS performance outside QA	Adjust MS parameters for resolution,
Ha periormance outside 44	rerun initial curve and reanalyze
	sample(s).
GC column performance	Reanalyze standards and samples on
autside 9A.	modified or elternate column.
Nethod efficiency outside	If 2378-TCDD method efficiency <40%,
of QA.	reanalyze sample set. If method
	efficiency <40% for analytes other
	than 2378-TCDD, flag and report data.
	• • • • • • • • • • • • • • • • • • • •
Accuracy outside of QA for	If more than 20% of the analytes are
spiked matrix.	outside of QA for accuracy and pre-
Precision of duplicates	cision, reanalyze the sample set.
outside QA.	
Detection of analyte in	Reextract and reanalyze all samples
blank for 2,3,7,8-TCDD,	for which the level of contamination,
2,3,7,8-TCDF and	or HLD, is < 2.5 x blank level.
1,2,3,7,8-PCDD	
For other analytes in	Record blank concentration in comment
blank	field of samples.
Analyte exceeds calibration	Measure method efficiency, Dilute
standard range.	sample 100:1 respike with each
	standard solution (A and B), adjust
	volume and reanalyze.
Nethod efficiency for blank	
outside of QA or blank lost	in set.
secause of the complexity of these a	enalyses types, it is not expected that
all shalytes will meet all us criter	ria. Therefore, a complete review of
the data by a chamine is secondial	Responsibility for the evaluation of
the data by a chemist is essential.	Responsibility for the eveloption of
dete is that of the secole presents	ion chemist and the mass spectrometer
dete is that of the sompte properet	
operator Beview of the data inclu	uding GA, and resolution of data quality
problems is the responsibility of t	ne Principal Investigator/Program Hanager
providme se the sepanorality of th	
Resolution of data questions may re-	guire reanalysis of samples to include
the addition of confirmatory ions of	r analysis on different types of


GC columns.

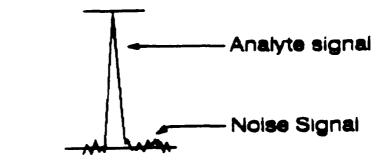
VI. Quantification Procedures

Quantification of analytes is accomplished by assigning isomer identification, integrating the area of mass specific GC peaks, and calculating an analyte concentration based upon an ion relative response factor between the analyte and standard.

A. Initial and Daily Calibration of the HRMS: An initial calibration of the instrument will be performed as needed. This will include making three replicate injections of each calibration standard (Table 4). Weighted Least-squares linear regression is used to generate a calibration curve for each analyte. The weighting factor is inversely proportional to the variance among the replicate injections of each calibration standard. The slope of the regression line is the response factor used to quantify the analyte. At least two calibration standards are injected daily to insure that any response factors used for quantification and recovery calculations do not deviate from the initial calibration by more than 20 percent. If the daily calibration generates values outside this margin, and less drastic corrective action does not solve the problem, a new set of initial calibration curves is generated and the old response factor libraries discarded. An example of a typical calibration curve, using 2,3,7,8+TCOD as an example, is shown in Figure 2.

8. <u>Signal</u> <u>Quality</u>

Minimum Level of Oerection (MLD): Minimum Level of Detection
is defined as the concentration predicted from the ratio of
baseline noise area to labeled standard area, plus three times
the standard error of the estimate derived from the initial
calibration curve for the analyte of interest.


Initial Calibration Based Method of MLD: MLD is estimated from the ratio of the noise area to the isotopically labeled internal standard area, plus three times the standard error of the estimate (SE) for the area ratio, or Y-axis, of the initial calibration curve. The Y-intercept (INT) is subtracted from this quantity, in keeping with the normal formalism for "inverse prediction" of a point on the X, or concentration ratio axis, from a point on the Y, or signal ratio axis. The SE term is derived from an analysis of variance (ANOVA) performed during the weighted least squares fit of the initial calibration curve. This term represents the random error in the replicate injections used to generate the calibration curve, the error not accounted for by the linear model. The weighting is necessary because of the relation often observed in instrumental analysis, of increasing variance with increasing concentration. MLD, according to this scheme, is defined below:

- where: N_A = noise area in the window for the major ion of the native analyte,
 - 1334 = labeled internal standard peak area in the sample,

 - C336 = labeled internal standard concentration,
 - K = constant to adjust for sample size and final volume,
 - $RF(N/(334) + response factor for major native ion to <math>{}^{13}C_{12}$ 1,2,3,4-TCDD ion, the slope of the initial calibration curve,
 - SE = standard error of the estimate of the initial
 calibration curve.

In addition, fish tissue is spiked with surrogate analytes (see Internal Standard Solution B, Table 3) prior to extraction. The surrogate analytes serve as an added check to insure that MLD values calculated from the initial calibration curve, as discussed above, are reasonable.

 <u>Signal to Noise (S/N)</u>: The method of determining the signal to noise ratio is shown below.

The noise area is calculated by integrating over a peak width equivalent to the analyte signal, typically about 10 seconds.

C. <u>Quantification of PCDD/PCDF</u>: The concentration of a natural PCDD/PCDF is determined by calculating a response factor between PCDD/PCDF and the stable isotope labeled PCDD/PCDF for the congener group. Calculations are performed as follows:

Standard:

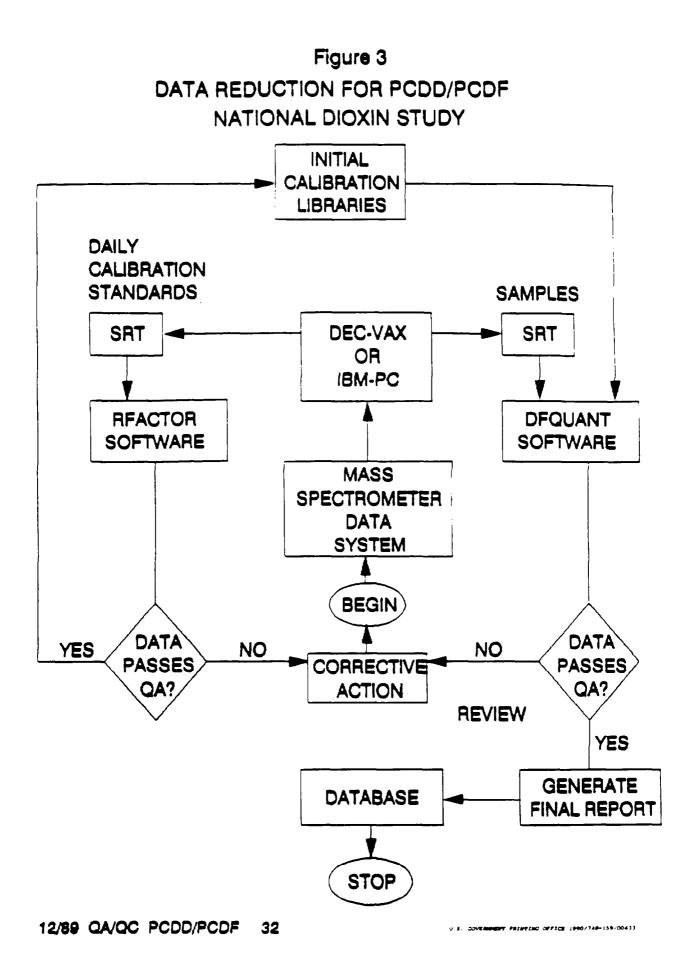
A_N x C_L RF(N/L) = -----A_L x C_N

Sample:

where: RF(H/L) = response factor native to labeled, A_N = peak area native, A_L = peak area labeled, C_N = concentration of native standard, C_L = concentration of labeled standard, S_L = labeled spiking level in sample, V_H = level of native analyte in sample. D. <u>Method Efficiency</u>: The method efficiency for the recovery of stable isotope labeled compounds is determined by calculating the amount of stable isotope labeled compound in the final extract and dividing by the amount spiked into the sample at the start of the cleanup procedure. This is done by determining the relative response factor between the Internal Standard Solution C, ¹³C₁₂ 1,2,3,4-TCDD and the stable isotope labeled internal standard (Solution A).

Determine Response Factor:

The response factor is then used in calculating the concentration of the internal standard in the final solution,


$$C_{L} = \frac{A_{L} \times C_{IS}}{A_{IS} \times RF}$$

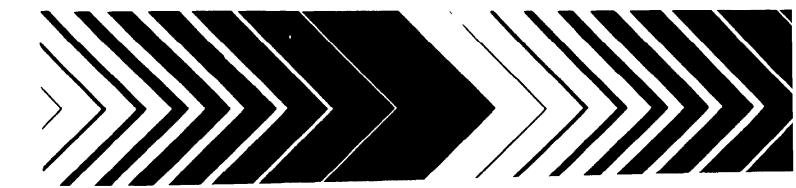
where: C_L = concentration of stable isotope labeled internel standard, (solution A). The concentration in the final solution times the final volume equals the total amount present. The method efficiency is then calculated by:

> CL found X Recovery = ----- X 100 CL spiked

E. Integration of Automated Data Processing and Quality Assurance:

QA parameters for method efficiency, ion ratios, retention time correlations, signal/noise ratio, accuracy and precision are monitored with the aid of software either developed in-house, or modified from existing programs included with the NRNS data system. Raw data is sorted and edited using the mass spectrometer's dedicated data system, transferred to the DEC-VAX system and processed using software programs RFACTOR and DFQUANT (Figure 3.). Data is reviewed by the Project Director before entering into the NDS data base.

APPENDIX A-3


Analytical Procedures and Quality Assurance Plan for the Determination of Xenobiotic Chemical Contaminants in Fish United States Environmental Protection Agency

Research and Development

Environmental Research Laboratory Duluth MN 55804 EPA 600 3-90 123 March 1990

Analytical Procedures and Quality Assurance Plan for the Determination of Xenobiotic Chemical Contaminants in Fish

EPA/600/3-90/023 March 1990

U.S. ENVIRONMENTAL PROTECTION AGENCY

NATIONAL DIOXIN STUDY PHASE II

Analytical Procedures and Quality Assurance Plan for the Determination of Xenobiotic Chemical Contaminants in Fish.

December 1989

Environmental Research Laboratory-Duluth 6201 Congdon Blvd. Duluth, MN 55804

SOLLOR

The information in this document has been funded wholly or in part by the U.S. Environmental Protection Agency. It has been reviewed technically and administratively. Mention of trade names of commercial products does not constitute endorsement or recommendation for use.

ACKNOWLEDGEMENTS

Technical contributions to this research were made by: U.S. Enviranmental Protection Agency Brian C. Butterworth Douglas W. Kuehl AScI_Corporation <u>University of Wisconsin-Superior</u> Phillip J. Merquis Elizabeth A. Lundmark Harie L. Larsen Daniel H. Fremgen Larry G. Holland Sandra Haumann Christine E. Soderberg Hurray Hackett Kent Johnson Jennifer A. Johnson Kevin L. Hogfeldt Harvey D. Corbin, Jr. Or. Raymond L. Hanson Alan E. Nozoi John Dergan <u>Wright_State_University</u> Dr. Thomas Tiernan

Dr. Michael Taylor

FOREWORD

Directed by Congressional mandate, the U.S. Environmental Protection Agency during 1983 initiated the National Dioxin Study, a survey of environmental contamination by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the United States. Results of this study are published in the National Dioxin Study: Tiers 3,5,6, and 7, EPA 400/4-82-003. This laboratory, the Environmental Research Laboratory - Duluth, was responsible for one part of the Study, the analysis of fish samples. The most significant findings of these analyses was the observation that fish contamination was more widespread than previously thought, and that a primary source of TCDD was discharge from pulp and paper production using chlorine.

A second more detailed characterization of anthropogenic organic chemical contaminants in fish was conducted in subsequent analyses during what is now called Phase II of the National Dioxin Study. This document describes the analytical methods used for the determination of the level of contamination of polychlorinated biphenyls, pesticides, and industrial compounds in fish. A companion document (EPA /600/3-90/022) describes the analytical methods used for the determination of levels of contamination of fitfteen biosignificant polychlorinated dibenzo-p-dioxins and dibenzofurans in those same fish.

TABLE OF CONTENTS

ι.	Intro	duct	ion.	• • • •	• • •	• • • •	•••	••••	• • • • •		• • • • •	1
11.	Prepa	ireti	an o	fSa	mple	F Ex	tra	c t			••••	4
	A .	Samp	le #	andi	ing	Het	hod	olog	y		••••	4
		1.	Shi	omen	to	f Sa	mpi	es t	o ERL	-Dulu	th	4
		2.	Sam	pie	Log	ing	a n	d Co	ding	Proce	dures	4
		3.	Tis	sue	Prej	o a r a	tio	n an	d Sta	rage	Proced	dures4
	۴.	Extr	acti	on a	f T	i s s u	• S	ampl	• • • •	• • • • •	• • • • •	7
		1.	Sox	hlet	Ext	trac	tio	n				7
		2.	For	tifi	cat	ion	wit	h Su	rroga	te St	andard	ds9
		3.	For	tífi	c a t	i o n	wit	h Ta	rget	Analy	tes	9
	с.	Isol	atio	n of	Xei	nobi	oti	c Ch	emica	il Con	tamina	ants11
		1.	Gel	Per		tion	i Ch	гола	togra	phy		11
		2.	Sil	ica	Gel	Chr		togr	aphy.			11
		3.	for	tifi	cat	ion	wit	h In	terna	il Sta	ndard	s 11
111.	Stand	iards	and	R e a	gen	t s		• • • •		• • • • •	• • • • •	1 2
17.	Analy	** 1 \$	of E	xtra	cts		• • •	• • • •		• • • • •	• • • • •	13
	Α.					ah i c	0.0		i n a 🛛 🖗			13
	8.											13
۷.	Queli	ty As	sura	nce/	Qua	lity	/ Ca	ntro	l Pro	cedur	es.	14
	Α.	Gene	ral	Proc	edu	r e s	o f	Oper	atior	1	• • • • •	14
		۱.	Sam	ple	Ana	lysi	s S	et				14
		z .										16
		3.	Dat	s St	ora	g e						16
		4.	Dat	a Re	evie:	¥						16

	8.	Pre) c e	đu	r e	5	f	o r	•	A r	18	ι	۷I	t i	c		ι	9	u	a l	i	۲	Y		\$	\$ I	J 1		n	c	P .	٠	•	•	. 1	6
		1.	G	4 5	с	hr	· a	m (i t	0 9	a r		61	۱γ	•	M a				S c		c	τ,	• •	nii.	• 1	tr	Y								
					-		-						-							•															. •	16
				ь	•			-		-			-		-					-	-	-	-													16
				Ĩ	·								-				•		1																	17
							2																											-		17
				c		-																													-	17
				c	•		1.						-								-	-	-													17
							2.																													17
							٤.		2	p	e c	τ	f	. (4			`	τ		•	•		•	•	• •	•	•	•		•	•	•	•	1 5
		2.	G	e i	P																		•													
				۰.																																18
				Ъ.		_																							-	-					-	18
				¢.		C	οl	1	e c	۲	ic	n	1	с,	c c	ι	•	•••	•	•	• •	•	•	• •	•	•	•	•	•	•	• •	• •	•	•	• '	18
		3.		S i	l i	C I	•	G	• l	i	C 1	ſ	0	n e	l t	0	g I	•	P	ħ	/ .	•	•	•••	•	•	•	• •	•	•	• •	• •	•	•	•	18
	с.	Cri	ter	i a	f	0 1	r	9		n	ti	t		t i	i v	e	1	٨r	•	ł.	y 1	: i	\$	• •	•	•	•	• •	•	•	•	•••	•	•	•	18
		۲.	-	4 5			-			-	-	-	•																					-		-
		2.		na																																
		3.	S	ig	n a	I L	t	a	N	σ	i 1	6 Q	•	• •		•	•	• •	•	•	• •	•	•	•	•	•	•	• •	•	•	•			•	•	19
		4.	R	e l	a t	: i :	~	2	R e	: \$	pq	o n	\$	ŧ	F	8	c	t	7 (•	• •	•		•		•	•		•	•	•			•		19
		5.	s	ur	r q	g	. t	•	5	τ		١d		r (1	R	e	c () v	e	r)	7.	•	•			•		•		•					19
		6.	Ť	o t	a l		A n	•	l y	t	•	R	e	c	9 V	•	r 7	y.	• •	•	• •	•	•	•	• •	•	•	• •	•	•	•	• •	••	•	•	19
	ο.	qua	(i t	y	C	'n	tr	• •	ι.	•	•	• •	•	•	••	•	•	•		•	•	••	•	•		•	•	• •	••	•	•	• •	•••	•	•	20
		1.		Co	nt	: i	nu		i	1	i i		,	A :	5 5		\$:	s 1		n	t.					•	•				•		••	•	•	21
		2.		Co	n	t i	n u		ι	P	r (e c	i	9	i o	n		A s		e	5 1	5 10		n I	τ.			• •		•	•	•	• •	•		21
		3.		90	.	i	ty	1	C	n	t	r a	1 L	(C 11	8	Г	t	••	•	•	•••	•	•		•	•	•	•••	•	•	•	•••	•	•	21
۷1.	Quan	tif	ica	it i	01	n	o 1	ł	T a	۱P	9	e t		A	n a	١	y	t	• •	•	•		•	•	• •	•	•	•	• •	•	•	•	••	•	•	22
	Α.	QUE	nti	fi	c	h t	ic	'n	5) r	0	C (d	u	r •	\$	•	•		•	•	• •	•	•	• •	•	•	•	• •	•	•	•	••	, .	•	22
	8.	Det			• # 1	: i	٥٢	•	o 1	ł	M	i r	1 i	1	u =		L	• •		ι		s f														
		Que				• •	• •	•	÷ .		• •		• •				-	-												•						23

-

Tables

	۲	a	þ	ι	e		1		•	•		L	i	\$ 1	t	4	3 1	F	٦	a	c	9	ŧ	٢		A	n	8	U	y I	t i	8 1			l	n	t I	e		1	• (•					
						\$	t	8	^	đ		r	đ	\$,	i		٦c	\$	S	i u	r	r	0	9	a	٢	e		c) (πp	0	i u	n	đ	\$		• *	n d	1						
						Ť	h	e	۱	r		q	u		n i	2	i 1	ti	1 1	,	0	n		t	0	n	\$. ;	2
	Ŧ	a	D	ι	e		2		•	•		с	0	d	e :	•	,	t c	, r		ţ	h	•		s	С	Ç		N	u	nł		r		8	n	d										
						M	a	t	r	i	x		f	۷I	5 (•																									• •					. :	7
	Ţ	a	ь	L	e		3					s	u	r 1	r (5	,	h 1		ł	s	ţ	a	n	đ	a	r	d		a	n (1															
												1	n	t (e i	•	n i			s	: t	a	n	đ		r	đ		s	٥	ι	u 1	; i	0	n	\$				•	• •			•		. (5
																						-		-	-		Ī		-																		
	T	а	ь	ı			4					T	a	r (t	4		• •	1		+			F	•	r	+	i	ŧ	i ç		. t	t	a	n										
		-	•	Ì																																										10	5
						3	J	`		Ì	•	Ŭ	•••	3	•	•	•	•		•	•		·	•	•	1	•	•	·	·	•	•	•••	•	•	•	•	•	•	•	• •	•••	•	•	•	• •	•
							c					~				- ,							_							,		н,															
	1	1	0	`																																										•	i
						3	ρ		c	t	Г	0	m	Ŧ			7	Ì	,,				¢	1	п	9		٣	•	F	•	11 4				3	•	•	٠	•	• •	••	•	•	•		•
	_													_	_	_	_																			_											
	T	a	D	t	e		_																									X															
																																												0			_
						F	ų	L	ι	•	q	a	n	9	e	i	Ο.	3	ta	•		C	q	ų	1	5	1	ť	İ	0	n	•	•	•	•	•	٠	•	٠	•	•	• •	•	٠	•		5
	Ť	a	þ	ι	e		7		•	•	T	a	٢	9	ł	t		A I	٦ (.)	1	e	5		W	1	۲	ħ		ŧ	c 1	1	ſ	e	¢	0	۷	e	r	i (e 1	5				
						f	0	۴		t	ħ	1	5	I	T)	ŧ	t	h () (t.		•									•	•			•	•	•	•	•	•	•		• •	•	•	2	٥
Fig	U U	r	e	\$																																											
																																					_										
	F	i	9	u	r																											ų I															
						0	a	t	8	b	a	\$	e		0	¥	t	p	. .	t.	• •	• •	٠	•	•	•	•	٠	•	•	•	•	• •		٠	•	٠	·	٠	•	•	• •	• •	•	•	•	5
	F	į	9	u	r	e		2		•	٠		S	c	h	e	m	8	t	i c	:	¢	f		A	2		ι	y	t	i	c :		L	٩	٢	0	c	•	d	u	r	2 3	ι.	•	•	8

L. INTRODUCTION

This document, developed for Phase II of the U.S. EPA National Dioxin Study, describes the analytical procedures and quality assurance plan for the determination of xenobiotic chemical contaminants in fish. The analytical approach includes:

- a simple sample preparation methodology that produces a single extract which minimizes analyte losses,
- a procedure that is cost effective in terms of man power, chemical reagents, and instrumentation,
- a characterization and quantification of a certain set of chemical contaminants,
- an identification of unknown contaminants by screening the data.

The set of analytes quantified was derived through considerations that included, but were not limited to, history (data from previous monitoring efforts), toxicology, persistence, bioavailability potential, total yearly production, and feasibility of analyses. A list of target analytes is presented in Table 1. Limits of quantitation for the Target Analytes are as follows:

Target Analytes		2.5 ppb
(except for PCBs)		
Polychlorinated Siphenyls		
Level of Chiorination:	1 - 3	1.25 ppb
	4 - 6	2.50 ppb
	7 - 8	3.75 ppb
	9-10	6.25 ppb

Fish were provided by the U.S. EPA Regional labs working with state environmental agencies.

		QUANT	
ANALYTE	CAS NUMBER	10N	RRT
Biphenyl-d _{+e} (Internal Standar			
(odobenzene (Surrogate)		204	0.309
1,3,5-Trichlorob enzene	108703	180	0,461
1,2,4-Trichlorobenzene	120821	180	0.548
1,2,3-Trichlorobenzene	87616	180	0.625
Hexachlorobutadiene	87683	225	0.529
1,2,4,5-Tetrachlorobenzene	95954	216	0.891
1,2,3,5-Tetrachlorobenzene	634902	215	0.891
Biphenyl	92524	154	1.010
1,2,3,4-Tetrachiorobenzene	634662	216	1.015
Pentachlorobenzene	608935	255	1.378
Phenanthrene:d.a. (Internal Sta	ndard)	185	1.000
1-lodonaphthalene (Surrogate)		127	J. 763
Trifluralin	1582098	306	0.855
Alpha-BHC	319846	219	J.890
Hexachlorobenzene	118741	284	0.912
Pentachloroanisale	1825214	280	0.924
Gamma-BHC (Lindane)	58899	219	0.979
Pentachloronitrobenzene	82688	295	3.994
Diphenyl disulfide	882337	218	1.076
Heptachlor	76448	272	1.185
Chlorpyrifos	2921882	197	1.308
Isopropalin	33820530	280	1.382
Octachlorostyrene	29082744	380	1.395
Heptachlor Epoxide	1024573	353	1.406
Oxychlordane	27304138	185	1.410
Chlordane, Trans-	5103742	373	1.477
Chlordane, Cis-	5103719	373	1.524
Chryseneid,Cinternal Standar	<u>ط}</u>	240	1.200_
Nonachior, Trans-	39765805	409	0.779
00£, p,p'-	72559	246	0.805
Dieldrin	60571	277	0.807
Nitrofen	1836755	2 5 3	0.836
Endrin	72208	317	0.840
Perthana	72560	223	0,844
Nonachlor, Cis	5103731	439	0.875
4,4'-Diiodobiphenyl (Surrogate)		406	0.876
Nethoxychior	72435	227	1.017
Dicofol (Kelthane)	115322	139	1.017
Nirex	2385855	272	1.079
			-

TADLE 1. LIST OF TARGET ANALYTES, INTERNAL STANDARDS, AND ______SURROGATE_COMPOUNDS_AND_THEIR_QUANTITATION_COMS_____

Table 1. LIST OF TARGET ANA		•	
SURROGATE COMPOUS	NOS AND INEIR QUANT	TATION 19	<u>NS</u>
		QUANT	
ANALYTE	CAS NUMBER	<u>.</u> 0M	<u> </u>
Chryseneid _{te} (internei_Stend:	erd)		1_000_
Polychlorinated Siphenyls, CL 1-1	0		
Monachlorabiphenyls	27323188	188	0.318
Oichlorobiphenyls	25512429	222	0.452
Trichtorobiphenyle	25323686	256	0.556
Tetrachiorobiphenyis	26914330	292	0.575
Pentachlorobiphenyls	25429292	326	0.801
Hexachlorobíphenyls	26601644	360	0.818
Heptachlorobiphenyls	28655712	394	0.881
Octachlorobiphenyls	31472830	430	1.022
Nonachlorobiphenyls	53742077	464	1.250
Decachlorobiphenyls	2051243	498	1.288

11. PREPARATION OF SAMPLE EXTRACT

A. Sample Mandling Methodology

 <u>Shipment of Samples to ERL-Duluth:</u> The EPA Regional Offices are responsible for the collection of the fish samples. Frozen fish wrapped in aluminum foil are sent to the ERL-Duluth laboratory.

2. Sample Logging and Coding Procedures: The Sample

Control Center (SCC) or EPA Regional Offices notify ERL-Duluth when samples have been shipped. Upon arrival, the samples are checked to make sure they are in good condition and the Shipment Records are complete. ERL-Duluth personnel complete the chain of custody forms and then notifies SCC that samples arrived safely or if there were any problems with the samples (example: a mislabeled sampled, no species identification).

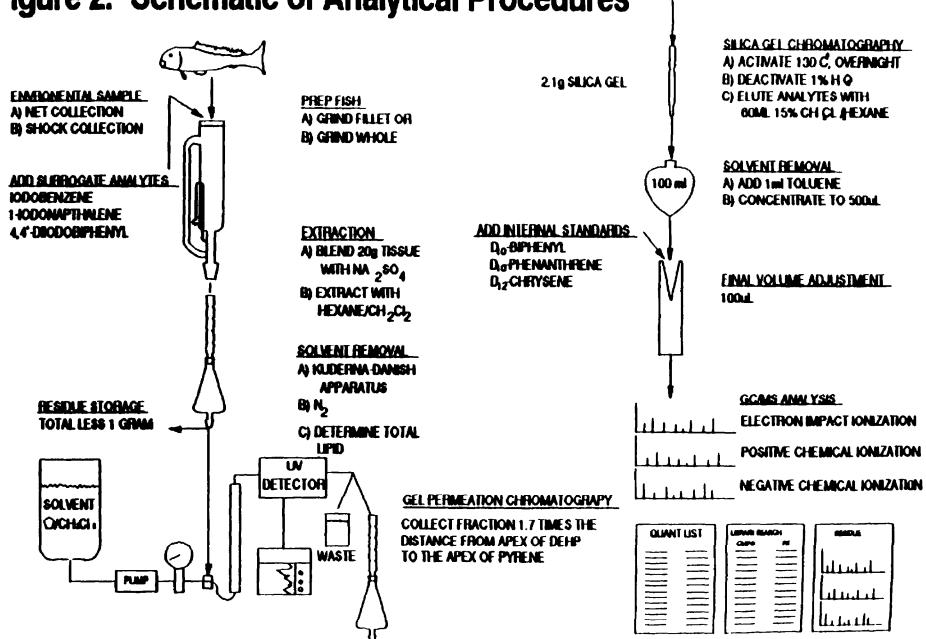
Samples are initially placed in a large walk-in freezer. Aliquots(100-500 g) of ground fish tissue samples (sec. [.A.3.] are transferred to laboratory freezer A. Extracted samples are stored in laboratory freezer B. Completed samples are taken to a locker plant for long term storage. A locker plant log is kept according to Episode and SCC numbers.

A computerized data base was developed for sample tracking and data storage. The episode number, SCC number, date sample was received, matrix type, latitude, longitude, description of sampling site, and state from which the sample came are entered into the data base. Figure 1 is a sample output of the data base.

The first two letters of the SCC number indicate whether the sample is an Environmental, Method or Matrix Blank, or Duplicate Sample. All Environmental samples begin with the letter D. The Blank and Duplicate samples begin with the letter Q followed by a D or an R for duplicate or reference fish sample, respectively. Table 2 lists the possible codes for the SCC number, and matrix type. Episode numbers for Blanks and Fortified Matrix samples are entered as 0000.

3. <u>Tissue preparation and storage procedures:</u> Fish tissue is ground frozen at ERL-Duluth in a stainless steel meat grinder. Each sample is processed through the grinder three times which homogenizes it thoroughly. For whole fish samples, the entire fish including organs and fillets are ground. The ground tissue is stored at -20°C in solvent rinsed glass jars with aluminum lined plastic lids.

figure_1.__figaccumuletive_follutents_in_fish_getebese_gutput NOS PHASE II: BIOACCUMULATIVE POLLUTANTS IN FISH Sample Tracking System ERL-D Loc.: 1234 EPISODE #: 4444 SCC #: 0P022030 Sampling Information: Sampling Office: ERL-Ouluth State & City: MN Duluth Sampling Contact: Regional Coordinator Date Sampled: 8/23/87 Site Location: HN Lester River & Lake Superior, Duluth Latitude: N 66 264 3677 Longitude: W 94 247 5377 Analysis Lab: D Date Received: 8/31/87 Natrig Type: F PF Steelhead Species Code: A2 Sample Composite: 5 Analytical: PCD0/PC0F Pesticide & Industrial Chemicals Extraction Date: 0/ 0/ 0 11/ 3/87 GC/MS ID: DR871213 LAS ID: 811038733 Weight: 20.00 XLipid: 3.2 DPE Indication: Mass lipid on GPC: 0.68 Comments: Xenabiotic Oefinitians: GA FLASS: E - exceeds highest calibration standard D - below limit of quantitation Limits of Guantitation: Pesticides -2.30 ppb PC85: 1-3 chloro - 1.25 ppb 4-4 chioro - 2.50 ppb 7-8 chiero - 3.75 ppb 9-10 chloro - 6.25 ppb


	L <u>utanta_in_fish_Database_Qutput</u> : 09022030 ERL+0 Loc.: 1234			
Target Analyte	CASRN			(ng/g)
1,3,5-Trichlorobenzene	108-70-3		ND	(09/9)
1,2,4 - Trichlorobenzene	120-82-1		ND	
1.2.3 · Trichlorobenzene	87-61-6		80	
Hexachlorobutadiene	87-68-3		ND	
1,2,4,5-Tetrachlorobenzene	95-95-4		ND	
1,2,3,5-Tetrachiorobenzene	634 . 90 . 2		NO	
Biphenyl	92-52-4	D		0.25
1,2,3,4-Tetrachlorobenzene	634 . 66 . 2	•	N D	
Pentachlorobenzene	608-93-5		ND	
Trifluralin	1582-09-8	D		2.34
Alpha-BHC	319-84-6	•	ND	
Hexachlorobenzene	118 • 74 • 1			13.2
Pentachloroanisole	1825-21-4			23.4
Gamma-BHC (Lindane)	58-89-9	0		1.23
Pentachloronitrobenzene	82-68-8	-	NO	•
Diphenyl disulfide	882-33-7		ND	
Heptachlor	76-44-8		NO	
Chlorpyrifos	2921-88-2		ND	
tsopropalin	33820-53-0		NO	
Octachlorostyrene	29082-74-4		NO	
Heptachlor Epoxide	1024-57-3		*0	
Oxychlordene	26880-44-8		ND	
Chlordane, Trans-	5103-74-2			17.2
Chlordane, Cis-	5103-71-9			33.1
Nonachlor, Trans-	39765-80-5			45.2
DDE, p,p'-	72-55-9	£		1234
Dieldrin	60-57-1			21.2
Hitrofen	1836 - 75 - 5		NO	
Endrin	72-20-8		NO	
Perthane	72-56-0		ND	
Nonachlor, Cis	3734-49-4			18.4
Nethoxychlor	72-43-5		ND	
Dicofol (Kelthane)	115-32-2		N D	
Hirex	2385-85-5	E		118
Total Monochiorobiphenyl	27323-18-8		ND	
Total Dichlorobiphenyl	25512-42-9		ND	
Total Trichlorobiphenyl	25323-68-6		ND	
Totai Tetrachlorobiphenyl	26914-33-0			11.4
Total Pentachiorobiphenyl	25429-29-2	E		60.6
Total Hexachlorobiphenyl	26601-64-4	E		265
Total Heptachlorobiphenyl	28655-71-2	E		187
Total Octachlorobiphenyl	31472-83-0			39.8
Total Nonachlorobiphenyl	53742-07-7		N D	
Total Decachlorobiphenyl	2051-24-3		N D	
Total Polychlorinated Siphenyls				564
Nercury (AA analysis)	7439-97-6	0.34	ug/g	
SURROGATE RECOVERY:				
lodobenzene		12		
lodonaphthalene		48		
4,4′-Diiodobiphenyl		93		

_____Ieble_2.__Codes_for_SGC_Mumbers_and_matrix_type.____ Environmental sample GA sample First Letter: Ð 9 Second Letter: A -- Region 1 8 -- Hethod blank E -- Region 2 D -- Laboratory duplicate C -- Region 3 R -- Reference fish or 0 -- Region 4 fortified matrix E -- Region 5 F -- Region 6 G -- Region 7 H -- Region 8 Y -- Region 9 J -- Region 10 Natrix Code Matrix Type F -- Fish VE -- Whole bottom BF -- Bottom fillet L -- Lab duplicate R -- Reference fish **PF -- Predator fillet** WP -- Whole predator Y -- Nethod Slank

8. Extraction of Tissue Samples.

Figure 2 is a schematic of the analytical procedures.

1. <u>Soxhlet Extraction:</u> Ground fish tissue (20 g) is blended with anhydrous sodium sulfate (100 g) in a 250 mL beaker to completely dry the sample. Two-thirds of the mixture is transferred to a coarse fritted soublet extraction thimble and spiked with Surrogate Standard Solution A (25 uL), Table 3. Also, at this time the fortified Matrix Sample and the Fortified Duplicate Sample, if used, are spiked with 25 ul of Target Analyte Solution (one of eight Target Analyte Fortification Solutions, Table 4). The remaining sample is added to the thimble and the sample is extracted for at least 12 hours with hexane/methylene chloride (1:1, v:v). The extract is then quantitatively transferred to a Kuderna-Danish (KD) apparatus fitted with a 3-ball Snyder column and reduced in volume to less than 5 mL on a steam bath. The extracts are further reduced under carbon filtered air to remove all solvent. The KD sample tubes with lipid are weighed. Two 0.40 g aliquots are prepared for Gel Permeation Chromatography (GPC) by weighing into 5 ml tubes. The empty sample tube is dried and reweighed to determine the percent lipid.

Figure 2. Schematic of Analytical Procedures

2. Fortification with Surrogate Standards:

Each sample is fortified with Surrogate Standard Solution A (25 uL) prior to souhlet extraction. The standards in this solution have been selected to represent various types of chemicals found in the list of target analytes, and are used to evaluate the recovery of target analytes in cleaned-up environmental samples.

Table 3. Surrogete Standard and Internal Standard Solutions.

Surrogate Standard Solution A (25 uL)

Compaund	Concentration (vg/ml)
lodobenzene	125
1-lodonaphthalene	125
4,4′-Diiodobiphenyl	125

Internal Standard Solution (10 uL)

Compound	Concentration (yg/ml)
Biphenyl-D _{in}	5 0
Bíphenyl-D ₁₀ Phenanthrene-D ₁₀	75
Chrysene-D ₁₂	75

3. Fortification with Target Analytes: A blank matrix sample is fortified with one of eight Target Analyte Fortification Solutions (25 uL), Table 4, to evaluate the overall accuracy of a subset of the target analytes. Two blank matrix samples will be fortified with the same solution once in every five (20%) sample sets to evaluate precision. Table 4. Terges Anelyse Forsificesion Solutions (25_4L)

Solution A: Aroclor 1256 at 500 ug/ml (A-1) and 1000 ug/ml (A-2) in toluene.

Solutions 8,C and D: Each have Target Analytes at 125 ug/ml (8-1, C-1, D-1) and 250 ug/ml (8-2, C-2, D-2).

<u>Salution B</u>	<u>Selution_C_</u>
§, 2, 3 - Trichlorobenzene	1,2,4-Trichtorobenzene
1,2,4,5-Tetrachlorobenzene	1,2,3,4-Tetrachiorobenzene
Siphenyl	Gamma-BHC (Lindane)
Alphs-BHC	Chlordane, trans-
Chlordane, cis	DDE, p,p'
Dicofol	Hitrofen
Endrin	Heptschlor
Diphenyl disulfide	Isopropalin
Hexachlorobenzene	Nonachlor, cis
Mirex	Oxychlordane
Octachlorostyrene	Pentachloronitrobenzene
Pentachlorobenzene	Trifluralin
Perthane	Hexachlorobutadiene

<u>Solution P</u> 1,3,5-Trichlorobenzene 1,2,3,5-Tetrachlorobenzene Methoxychlor Chlorpyrifos Dieldrin Heptachlor Epoxide Nonachlor, trans-<u>Pentachloroanisole</u>

C. Isolation of Xenobiotic Chemical Contaminants.

- 1. Gel Permeation Chromatography: A GPC system is used to isolate xenobiotic chemical contaminants from biological molecules (fish lipid). The GPC column (2.5 X 50 cm) (ACE Glass Company) is packed with previously swelled Siobead SX-3. The GPC injection port valve is fitted with a 0.075 mm stainless steel screen filter to remove particulates. The solvent is pumped at 5 mL/min. The absorbance of the effluent is monitored with a 254 nm UV detector (Varian Aerograph). Each aliquot of extract is diluted with 2 mL of elution solvent. The supernatant is quantitatively transferred into a sample loop of a 24 port auto-sampler with three additional 1 mi washes of the sample vial. The loops of the auto-sampler are loaded sequentially onto the GPC column under computer control. A GPC performance standard solution (sec. IV.8.1) is run to determine the collection period. This sample is run prior to each sample set. Xenobiotic chemical contaminants which elute 4 minutes after the elution apex of Di-2-ethylhexylphthalate, DEHP, and 1.7 times the elution volume between the apex of DEHP and Pyrene are collected in a KD. Each sample (two loops) are collected in a single KD. Hexane (10 mL) is added to the KD and the sample is reduced in volume (5 mL) on a steam bath using a 3ball Snyder column. The sample is further reduced in volume to 0.5 mL with a stream of dry filtered air at 40° C prior to silica gel chromatography.
- 2. <u>Silica Gel Chromatography:</u> A Kontes column packed with freshly prepared, partially deactivated silica gel is used to remove naturally occurring cholesterol and fatty acids. The column (9 mm X 19 cm plus a 50 ml reservoir) is packed with glass wool, anhydrous sodium sulfate (0.5 cm), silica gel (2.1 g about 7 cm), and anhydrous sodium sulfate (0.5 cm). The column is pre-eluted with 50 mL of hexane and the sample is quantitatively transferred to the column with three 0.5 mL methylene chloride/hexane (15%, v:v) washes. The column is then eluted with an additional 58.5 mL of the same solvent. Toluene (1 mL) is added to the collection vial as a "keeper". The sample is reduced in volume (0.5 mL) with a stream of dry filtered air, 40^o C, and quantitatively transferred with toluene to a tapered vial (1 mL).
- Fortification with Internal Standards. The samples are reduced to 90 uL and fortified with 10 uL of Internal Standard solution (Table 3) and stored in a microvial for GC/NS analysis.

[[]. Standards and Reagents

A. Reagents

- Solvents: Only pesticide grade distilled in glass solvents are used. They are: hexane, methylene chloride, toluene, acetone, and cylcopentane (Burdick and Jackson and Fischer Scientific).
- Sodium Sulfate: Sodium sulfate (Baker Chemical Company reagent grade anhydrous) is baked at 650°C in a furnace for 24 hours, cooled, and stored in an empty hexane solvent bottle.
- GPC Packing: Biobead SX-3 (BIORAD Corporation) are swollen in the elution solvent, cyclopentane/methylene chloride (1:1, v:v).
- 4. Silica Gel: Silica-Gel-60 (Merck-Darmstadt) is activated overnight at 225°C. It is then deactivated by adding distilled water (1% w:w) and shaken at high speed for four hours to disperse the water. The mixture is allowed to equilibrate for eight hours.

8. Standards

All pesticide standards are made from pure standard materials.

- GPC Performance Check Solution: Prepare a solution of 5 mg/ml Oacthal, 4 mg/ml DEHP, and 0.2 mg/ml Pyrene.
- NS Performance Check Solution: Prepare a 5 ng/ul solution of decafluorotriphenylphosphine (DFTPP) in toluene.
- Silica-Gel Performance Check Solution: Prepare a solution containing 2 mg/ml Dieldrin and 10 mg/ml cholesterol in an appropriate solvent.
- 4. Internal Standards: Chrysene-d₁₂, phenanthrene-d₁₀, and biphenyl-d₁₀ are used as internal standards. Table 1 indicates which internal standard the target analytes are referenced to in quantitation. Table 6 indicates the concentration of the internal standards in the calibration solutions and in the solution used to add the internal standards to the samples just prior to MS analysis.
- 5. Surrogate Compounds: lodobenzene, 1-lodonaphthalene, and 4,4'-diiodobiphenyl are used as surrogate compounds. Each are present at 125 ug/ml (Table 3) in the sample spiking solution. Table 6 indicates the concentration present in the five calibration solutions.

- 6. Pesticides and PCB Standards: A stock solution is made containing the pesticides listed in Table 1 and the PCB congeners listed in Table 6. Five calibration solutions are made at the concentrations listed in Table 6.
- 7. Fortification Solutions: The pesticides are divided into three fortification solutions at two different concentrations (Table 4). Aroclor 1254 is used as the PCB fortification solution at the concentrations listed in Table 4.

IV. Analysis of Extracts

Samples are analyzed on a Finnigan-MAT Model 4500 GC/MS with SUPERINCOS software and supplemental public domain software (1,2) provided by the U.S. EPA laboratories in Cincinnati, OH. All Target Analytes will be quantified individually and the results reported as unique values, except for PCBs, which will be reported by total congener at each degree of chlorination. An analysis set includes an analysis of a mass spectrometer performance check solution (sec. III.8.2), an analytical standard, an unfortified solvent (instrument blank), and twelve prepared samples. The GC/MS operator reviews the MS performance solution, analytical standard, and instrument blank data before starting the analysis of samples.

- A. <u>Gas Chrometograpic Operating Parameters</u>: A finnigan-MAT Model 9610 GC is fitted with a 60 m X 0.32 mm ID DB-5 fused silica capillary column (J & W Scientific) and operated in a temperature programmed mode. The capillary column is interfaced directly with the ionizer. Injections are made in splitless mode. Specific operating parameters are provided in Table 5.
- B. <u>Mass Spectrometric Operating Parameters:</u> A finnigan-MAT Model 4500 mass spectrometer is used in the electron impact mode. Specific operating parameters are provided in Table 5. The positive identification of target analytes is based upon a reverse library search threshold value and relative retention time (RRT). Quantification of the target analytes is based on the response factors (Rf) relative to one of the three internal standards listed in Table 1. Table 1 is formatted so that the target analytes follow the internal standard used in quantification. RRTs and RFs are initially determined using data from triplicate analysis of each of five target analyte quantification solutions (Table 6).

Table 5....Gas Chromatography/Mass_Spectrometry_Operating_Parameters

```
GC Parameters:
           Injector Temp.: 250° c
           Initial Temp.: 100° C held for 1 min.
                          5^{\circ} C/min to 175^{\circ} C
           First Ramo:
                          3° C/min to 280° C hold for 20 min
           Second Ramo:
      HS Parameters:
           Cycle time: 1.0 second
           Acquisition time: 0.95 second
           Scan Rate: 1.0 second
           Scan Range: 95 - 550 amu
           Electron Voltage: 70 eV
           Emission Current: 0.30 mA
           Menifold Temp.: 95<sup>0</sup> C
           lanizer Temp.: 150<sup>0</sup> C
Transfer Line Temp.: 280° C
```

V. Quality Assurance/Quality Control (QA/QC)

- A. <u>General Procedures of Operation.</u>
 - <u>Sample Analysis Set:</u> Analysis of samples is done in sets of twelve consisting of:
 - a. <u>Blank:</u> A METHOD BLANK (blank extraction apparatus) is analyzed with each set.
 - b. <u>Fortified Matrix</u>: A blank matrix sample is fortified with one of eight different mixtures of Target Analytes (Table 4) and analyzed with each set.
 - c. <u>Duplicate:</u> Each analysis set contains one duplicate sample. In four of five (80%) of the sample sets the duplicate is an environmental sample previously chosen for analysis in that set. In one of five (20%) of the sample sets the duplicate is a blank matrix sample that has been fortified with the same target analyte subset as the Fortified Matrix Sample. This additional type of duplicate insures that sufficient data is available at the end of the study to evaluate precision on all target analytes.

		Concent	<u></u>	(09/47)	
inalyte/Int. Std./					
urragete Compound			647-3-	44_	<u>5</u>
CE Cal. Congeners					
ci, 2.	0.25	0.50	1.25	2.50	5.00
ci 2,3-	0.25	0.50	1.25	2.50	5.00
cl 2,4,5-	0.25	0.50	1,25	2.50	5.00
Cl, 2,21,4,6-					
CL5 2,21,3,4,51-	0.50	1.00	2.50	5.00	10.00
Cl 2,21,4,41,5,61-	0.50	1.00	2.50	5.00	10.00
Cly 2,2',3,4,5,6,6-	0.75	1.50	3.75	7.50	15.00
clg 2,21,3,31,4,5,61-	0.75	1.50	3.75	7.50	15.00
	1.25	2.50	6.25	12.50	25.00
ILL Target Analytes					
ther than PCBs listed					
n Table 1	0.50	1.00	2,50	5.00	10.00
Internal Standards					
Chrysene ^{,d} 12	7.50	7.50	7.50	7.50	7.50
Phenanthrene-d ₁₀	7.50	7.50	7.50	7.50	7.50
Siphenyl-d ₁₀	5.00	5.00	5.00	5.00	5.00
Surrogate Compounds					
lodobenzene	0.50	1.00	2.50	5.00	10.00
1-lodonaphthalene					
4.4/:Qiigdebipheny.	1_0.50	1.99			10.00

- d. <u>Environmental Samples:</u> Nine Environmental Samples are analyzed with each set,
- 1. Sample Tracking: A sample tracking and logging system is used to assure that no samples are lost (see section [-A).
- 3. <u>Data Storage:</u> Data folders consisting of all hard copy output is maintained for each sample. In addition, all raw GC/HS data is stored on magnetic tape.
- 4. Data Review: GC/MS data is instially reviewed during sample set acquisition by the GC/MS operator to assure that all instrumental QA parameters are being met. Final review and release of the data is the responsibility of the Project Manager. Once the quality assurance criteria have been met, the quantification information is entered into the database. Quality assured data is then transferred to BLOACC/STORET for availability to the EPA Regions. Sefore release to the public, all transferred data is verified for completeness by the database manager.

8. General Procedures of Analytical Quality Assurance:

- 1. Gas Chromatography-Mass Spectrometry System:
 - a. Instrument Maintenance: The GC/HS system is maintained according to the manufacturer's suggested schedule. The maintenance schedule is indicated on a calendar located near each instrument. Log books will be kept for: Daily instrument settings; Samples analyzed; Maintenance; and Data Storage. Instrumental problems resulting in more than two days of down time are to be reported to the EPA Mass Spectrometry facility Supervisor to discuss solutions to the problems.
 - b. Gas Chrometography: The performance of the GC is evaluated by determination of the number of theoretical plates of resolution, and by relative retention of the Surrogate Standards.

 <u>Column Resolution:</u> The number of theoretical plates of resolution, N, is determined at the time the calibration curve is generated using Chrysene-d₁₀ and monitored with each sample set. The value of N shall not decrease by more than 20%. The equation for N is given as follows:

where, RT = Retention Time ofChrysene-d₁₀ in seconds W = Peak width of Chrysene-d₁₀ in seconds.

- <u>Relative Retention Time:</u> Relative retention times of the internal standards shall not deviate by more than +/- 3% from the values calculated at the time the calibration curve was generated.
- c. <u>Mass Spectrometry:</u> The performance of the mass spectrometer will be evaluated for both sensitivity and spectral quality.
 - <u>Sensitivity:</u> The signal to noise value must be at least 3.0 or greater for m/z 198 from an injection of 10.0 ng decafluorotriphenylphosphine (DFTPP).
 - Spectral Quality: The intensity of ions in the spectrum of DFTPP must meet the criteria listed below:

<u>m/z</u> 127 30-60% mass 198 197 < 1% mass 198 198 base peak 199 5-9% mass 198 442 >40% mass 198 442 17-23% mass 442

- <u>Gel Permeetion Chromatography:</u> The GPC is maintained when needed as determined by visual inspection (column discoloration, leaks, cracks, etc) measurement of flow rate, and routine measurement of contamination of instrument blanks.
 - <u>GPC Column flow Rate:</u> The flow rate of the GPC is measured three times during an analysis:
 1) before the GPC resolution solution, 2) after all samples are loaded but before analysis and 3) after all samples have been analyzed. Flow rate should not vary by more than +/- 0.2 mL/min.
 - b. <u>GPC Column Resolution:</u> A 350 ul injection of a performance solution containing Dacthal (5 mg/ml), DEHP (4 mg/ml), and Pyrene (0.2 mg/ml) must be run daily to evaluate column resolution, and to determine analyte starting and ending collection volume.
 - c. <u>Collection Cycle:</u> Proper operation of the GPC will also be evaluated by recording the time during an analysis cycle that the collection/waste valve is in the collect position. This is accomplished most easily by recording the valve position on the second pen of a dual pen recorder. The start and end of the collect cycle must not deviate by more than +/- 2 mL.
- 3. <u>Silica Gel Chromatography:</u> The silica gel column will be evaluated by its ability to resolve cholesterol from a select model target analyte, Dieldrin. A solution (1.0 mL) containing Dieldrin (2.5 mg/mL) and cholesterol (10 mg/mL) is spiked onto a silica gel column and eluted with methylene chloride/hexane (15%, v:v, 60 mL). The eluant, analyzed by flame ionization detector/gas chromatography (FID/GC) must not contain more than 10% of the cholesterol while at least 90% of the Dieldrin must be recovered.
- C. <u>Criteria for Quantitative Analysis</u>: All of the following quality assurance criteria must be met before a quantitative value may be reported for an analyte.
 - <u>Gas Chromatographic Relative Retention Time:</u> Relative retention times of the target analytes shall not deviate by more than +/- 3 % from the values established during the generation of the calibration curve (see Table 1 for RRT data).

- Analyte Identification Criteria: Reverse search identification of an analyte (SEAR) must have an FIT value of 800 or greater.
- <u>Signal to Noise:</u> The quantification ion must have a signal to noise value of at least 3.0.
- 4. <u>Relative Response factor:</u> The relative response factor for each analyte quantification ion relative to the appropriate internal standard quantification ion must not deviate by more than 20% from the value determined on the previous day (within a 24 hour period) and within 50% of the mean value from the calibration curve. The target analytes Endrin, Dicofol, and Decachlorobiphenyl must not deviate by more than 50% from the previous day.

A control chart is maintained on the daily response factors for each target analyte.

 Surrogate Standard Recovery: The percent recovery (XR) of each surrogate standard will be determined for all samples, as shown below:

XRs = 100[Co/Ca]
where XRs = surrogate percent recovery
 Co = observed concentration of
 surrogate

Ca = actual concentration of surrogate added to the sample.

The percent recovery must be within 25 and 130 percent for iodonaphthalene and 50 and 130 percent for 4,4'-diiodobiphenyl. The recovery of iodobenzene qualitatively indicates the extent of evaporative losses that the analytes listed in Table 7 may experience.

6. Total Analyte Recovery: The overall accuracy of quantification of all target analytes is evaluated by the analysis of a subset of target analytes fortified into a matrix blank. Recovery of the fortified analytes must fall within the range of 50 to 130% except for those listed in Table 7. The analytes Table 7. Target Analytas with low recoveries for <u>shis method</u>. 1,3,5-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4,5-Tetrachlorobenzene 1,2,3,5-Tetrachlorobenzene 1,2,3,4-Tetrachlorobenzene Pentachlorobenzene Hexachlorobutadiene

listed in Table 7 show recoveries that fall in the range of 20 to 30% for this method. An average analyte recovery (%AR) for all target analytes will be calculated and must be greater than 35% but less than 130%. A control chart for total analyte recovery and analyte recovery is maintained for each spiking solution. To determine total analyte recovery first calculate the percent recovery (%R) for each fortification analyte using,

%Ra = 100((Ai-Bi)/Ti)

where %Ra = analyte percent recovery Ai = measured analyte concentration in fortification sample after analysis. Bi = natural analyte concentration in sample before fortification. Ti = known true concentration of analyte fortification level.

Then calculate %AR by,

XAR = (Summation of XRa) /W

where N = number of fortification analytes in spiking solution.

D. <u>Quality Control:</u> Quality control charts displaying Quantitative bias (%8) and precision (%P) are maintained for each analyte using LOTUS 123 software, Lotus Development Corporation. Percent bias and percent precision will be recorded and the control chart will be updated after each analysis set. Complete statistics may be done for bias and precision at the completion of the project.

```
1. Continual Bies Assessment:
```

X8 = (100(Ca-Cb)/T) - 100

where Ca = determined concentration after analysis Ca = concentration present before spike added, T = known value of the spike.

2. Continual Precision Assessment:

Precision of quantification of each target analyte will be assessed separately for duplicate environmental samples and duplicate fortified matrix samples.

XP = 100((C1-C2)/Ct]

where C1 = concentration of analyte in spike
 sample 1.
 C2 = concentration of analyte in spike
 sample 2.
 Ct = Actual concentration of analyte
 for fortified matrix sample or mean of

duplicate environmental samples,

3. Quality Control Chart:

____QA_factor_outside_of_criteria______Corrective_Action____ OFTPP sensitivity and/or retune HS ion retios clean MS adjust GC parameters Relative Retention Time flush GC column replace GC column Relative Response factors retune MS recalibrate Recovery of Surrogate Standards verify MS data repeat sample extraction Total Analyte Recovery (%AR) If XR for at least 80% of target analytes not listed in Table 1 meets criteria proceed with calculations,

vi. <u>Quantification of Target Analytes:</u>

A. quantification Procedures

Response factors are determined for each target analyte and surrogate compound relative to one of the three internal standards. The response factors are determined by:

 $RF = A_X C_{1S} / A_{1S} C_X$

- where A = peak area of quantitation ion for a target analyte or a surrogate compound,
 - A_{IS} = peak area of quantitation ion for either Biphenyl-d₁₀, Phenanthrene-d₁₀, or Chrysene-d₁₂,
 - C_{re} = injected quantity of the internal standard,
 - C = injected quantity of the target analyte or surrogate compound.

Public domain software was provided by the EPA Office of Research and Development, Environmental Honitoring and Support Laboratory for the automated identification and quantification of the target analytes. The data reduction software uses the following formula to calculate target analyte concentrations:

CONC = ((QA * HUM * QRV) * FESV) / (VIA * SIZE) where QA = concentration as calculated using the response factor from the daily standard, NUM = factor to convert to number of ug/ml, QRV = Quan Report Volume (0.100 ml), VIA = Volume Internal Standard added to (0.100 ml), FESV = final Effective Sample Volume, SIZE = sample size (g).

The FESV term accounts for the total lipid present in the sample and the amount injected on the GPC. The FESV is calculated by:

fESV = final volume (ml) * (Total Lipid (g) / Lipid on GPC (g))

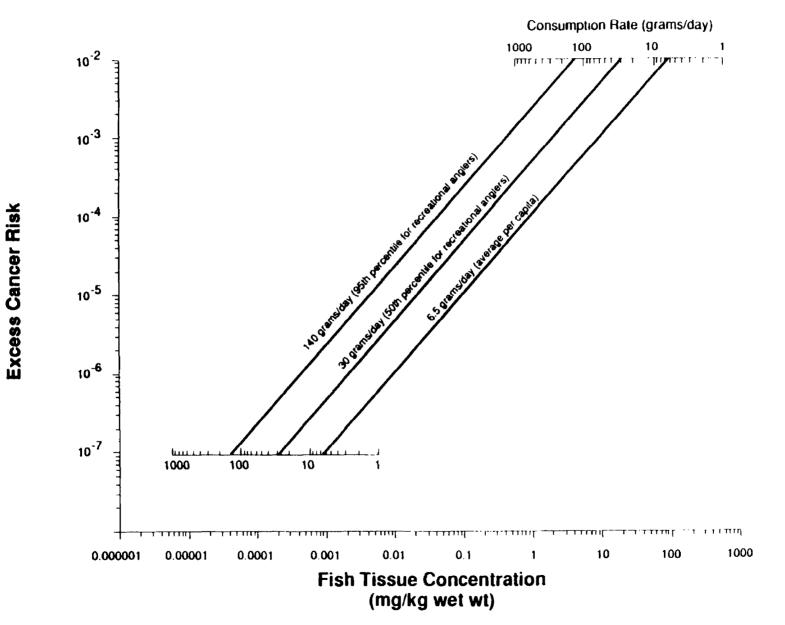
Calculations for determining surrogate spikes and fortified amounts use the following equation: CONC = (SA * FESV) / (FSRV * SIZE) where SA = spike amount, FSRV = Final Effective Surrogate Volume, FESV, SIZE = same as above. The FSRV term is equal to the FESV term. The concentration of a target analyte is denoted in the final report if it

exceeds the calibration range, ("E" flag), or is below the

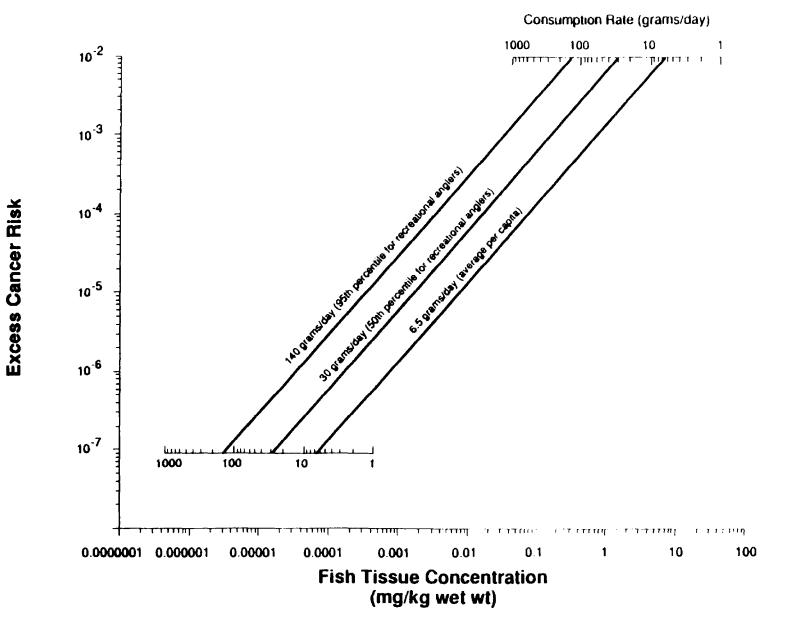
8. Determination of Minimum Level of Quantification

quantitation limit, ('D' flag).

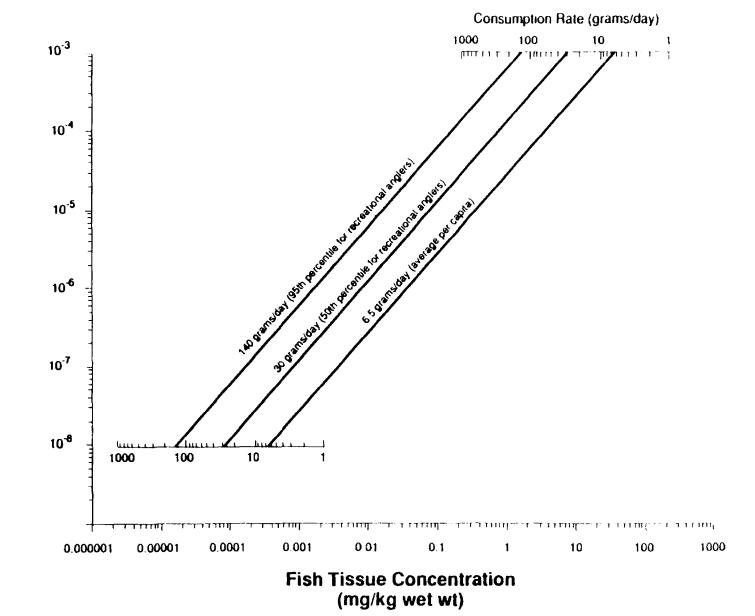
The calculated method detection limits (NOLs) for the analytes, (determined according the Federal Register 1988, Vol. 40, Appendix 8, Part 136, Definition and Procedure for the Determination of the Method Detection Limit, Rev. 1.11), are unrealistically low in comparison to the analysis of the xenobiotic calibration solutions over a two month period. Based on the analysis of the calibration solutions a minimum level of quantification was determined for each analyte, as given in the Introduction, which accurately reflects the instrumental detection limits.


U.S. COVERNMENT PRENTING OFFICE 1990/748-159/00430

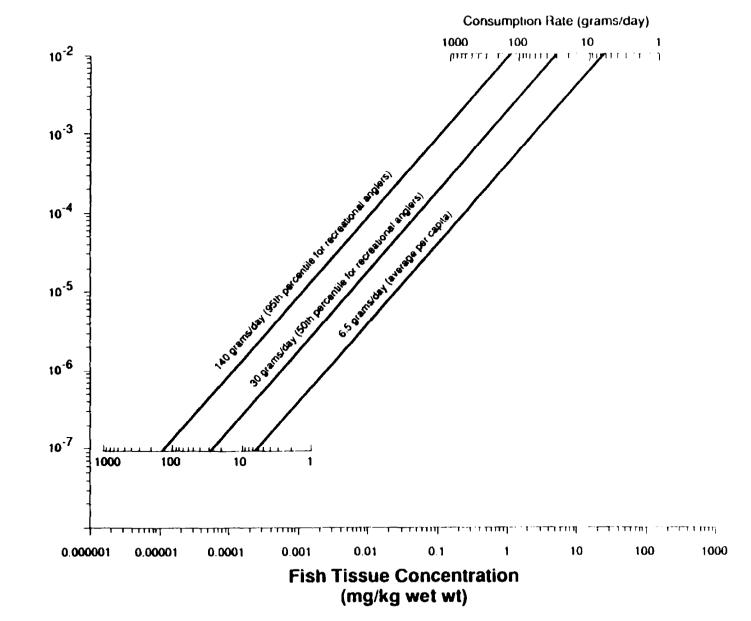
APPENDIX B


ADDITIONAL DATA ANALYSES

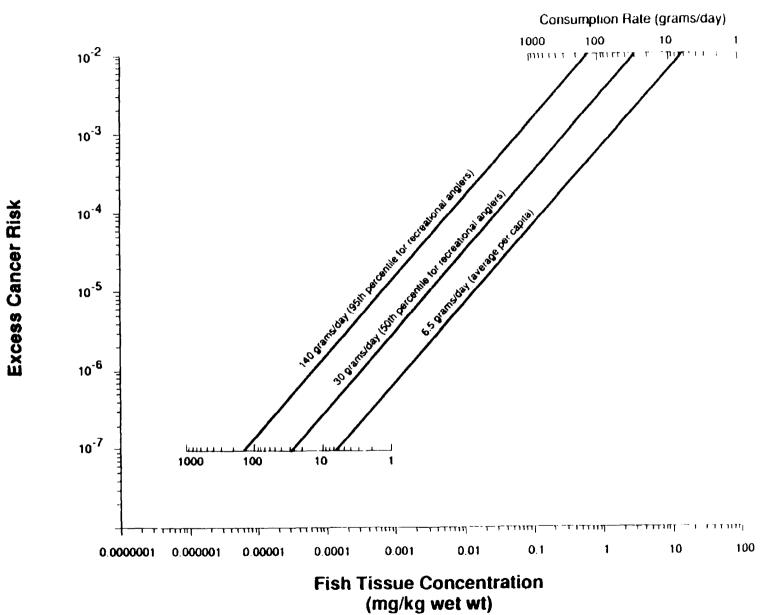
APPENDIX B-1


Nomographs for Estimating Cancer Risks

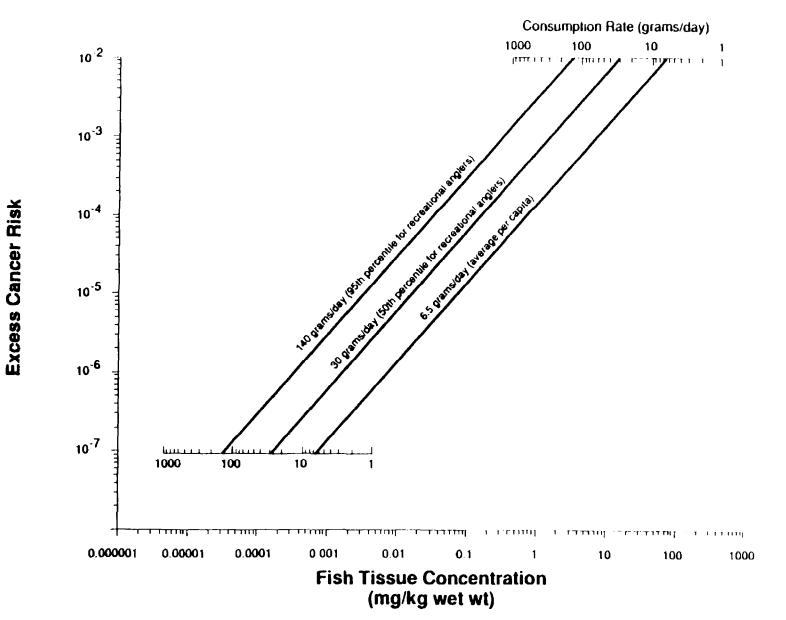
CHLORDANE



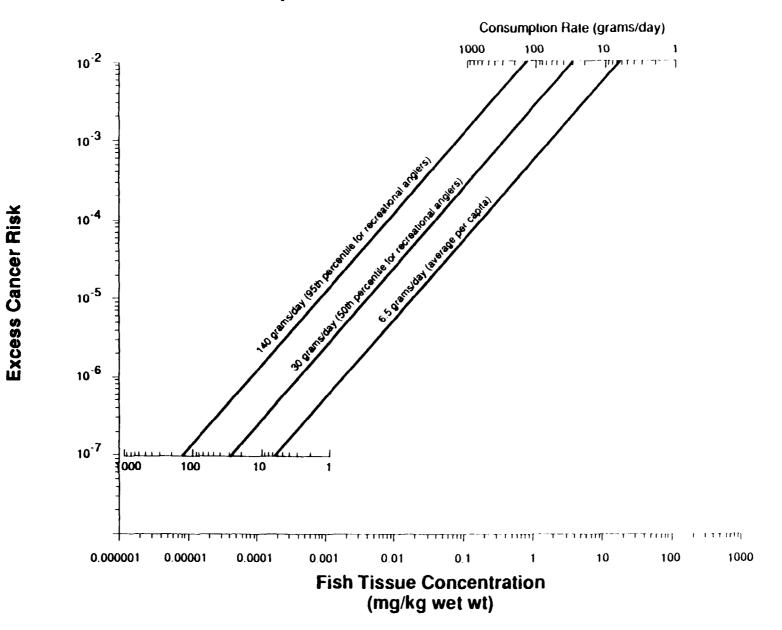
DIELDRIN

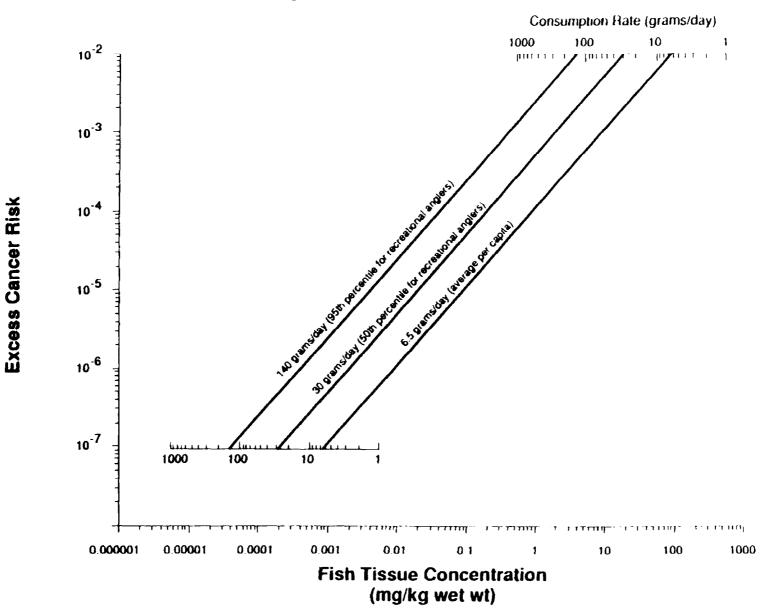

Excess Cancer Risk

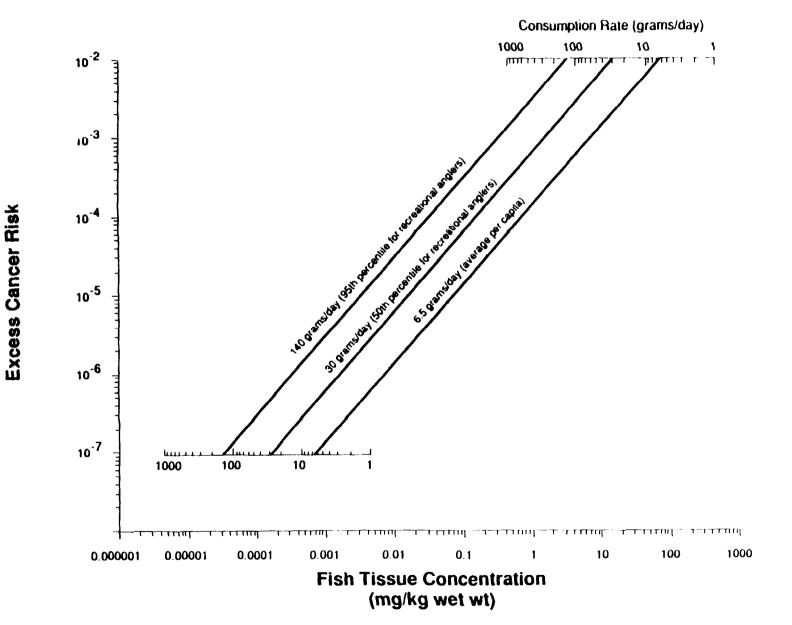
p,p'-DDE

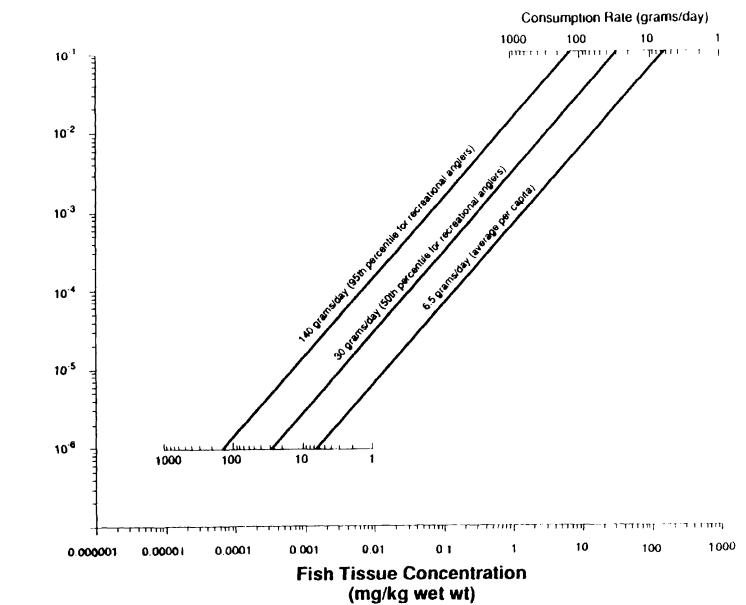


Excess Cancer Risk

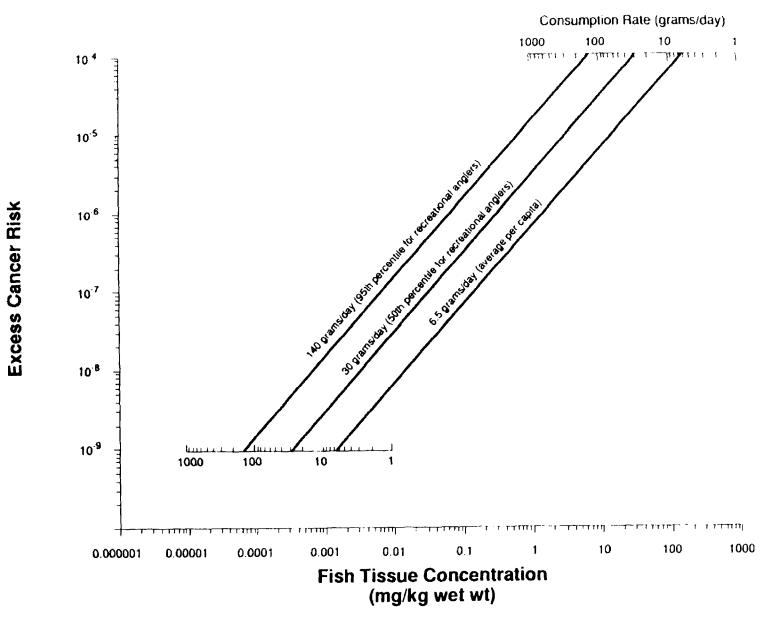

HEPTACHLOR


HEPTACHLOR EPOXIDE


HEXACHLOROBENZENE


alpha-HEXACHLOROCYCLOHEXANE

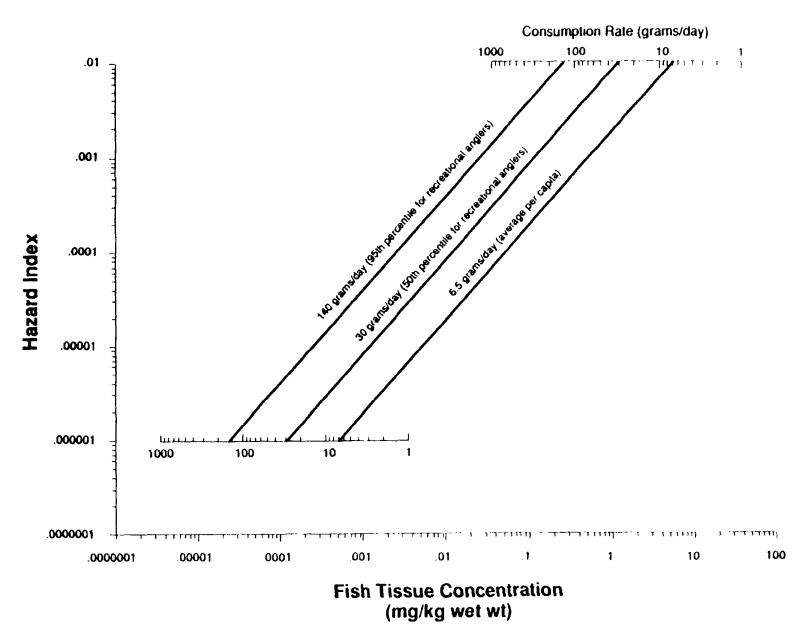
gamma-HEXACHLOROCYCLOHEXANE



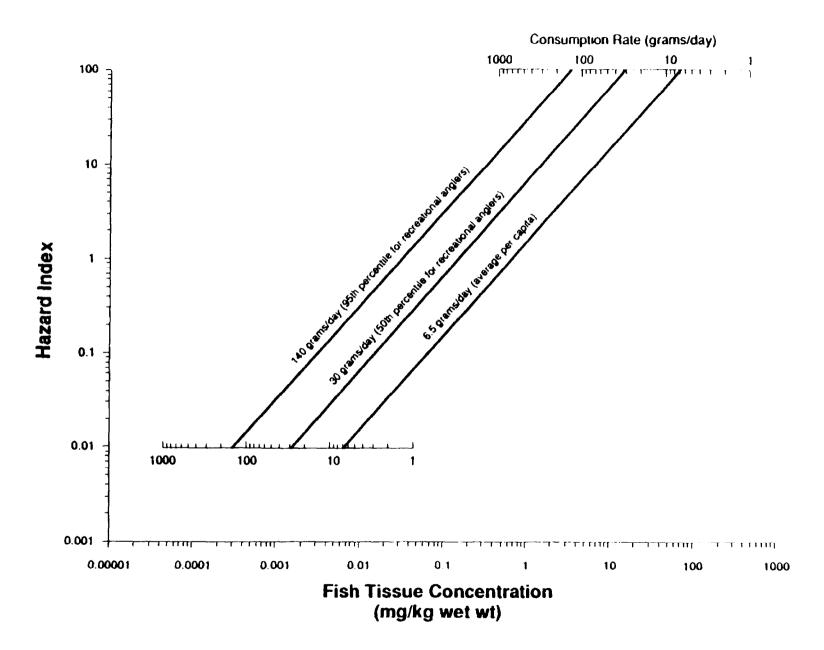
MIREX

PCBs

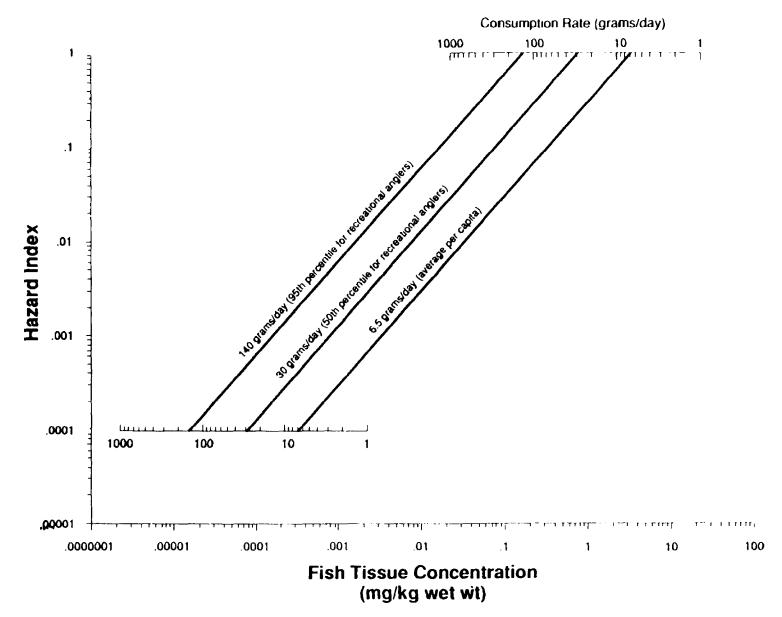
Excess Cancer Risk

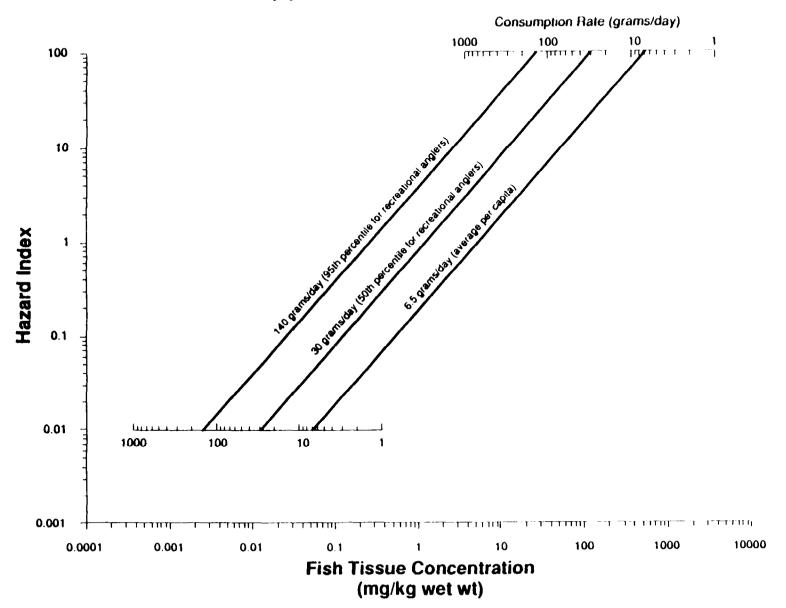


TRIFLURALIN


APPENDIX B-2

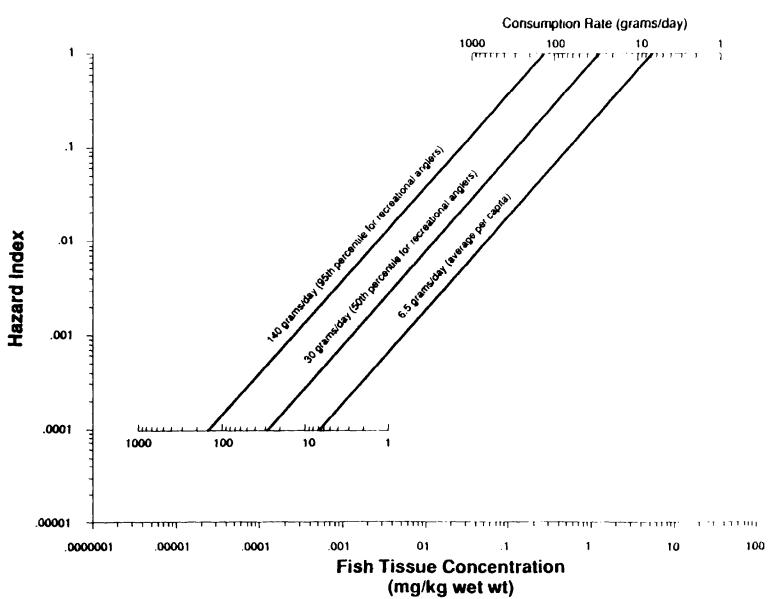
Nomographs for Estimating Noncarcinogenic Hazard Indices


BIPHENYL NONCARCINOGENIC EFFECTS



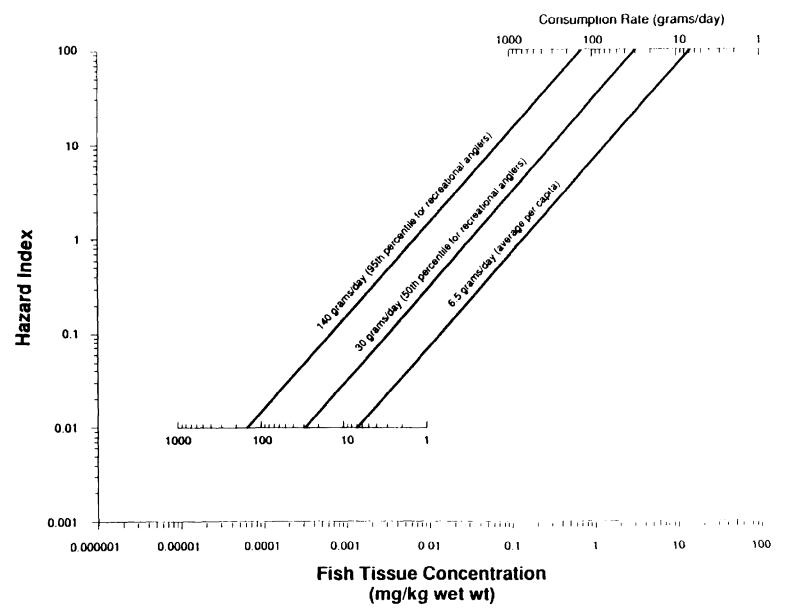
CHLORDANE NONCARCINOGENIC EFFECTS

CHLORPYRIFOS NONCARCINOGENIC EFFECTS

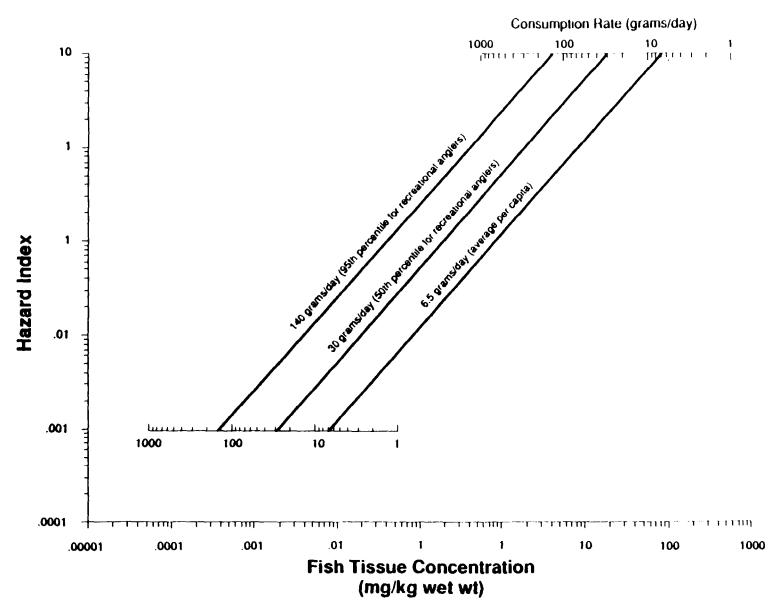


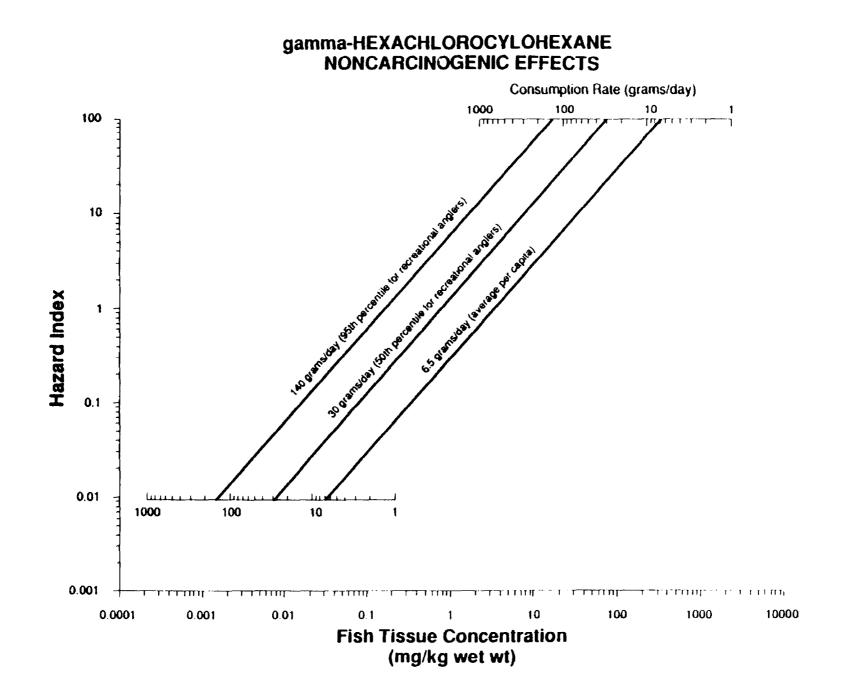
1

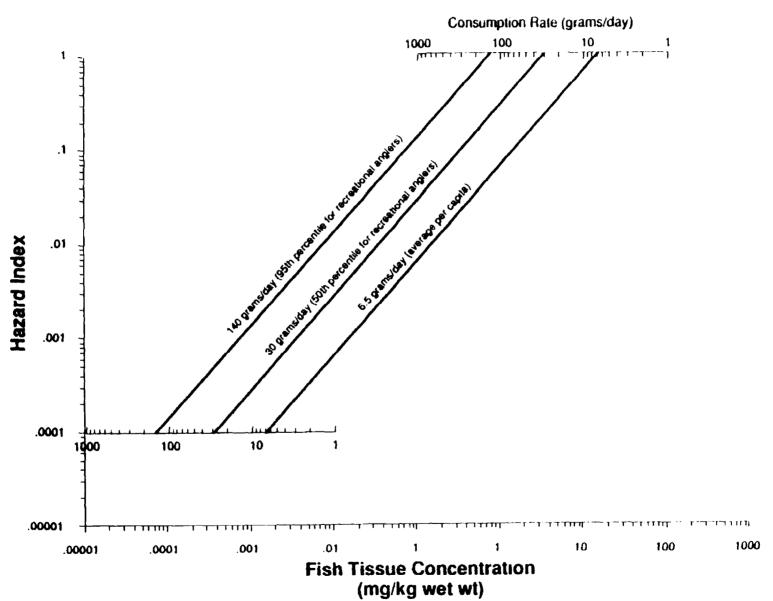
p,p'-DDE NONCARCINOGENIC EFFECTS


Consumption Rate (grams/day) 10 1 וייייי דייייי 1 100 1000 100 ក្រោះ បោះ កោ וידדד 7 10 Downson tomore we decemped and a spectral 1.60 COR SCAL OF TO POCOTION COLOR OF THE OF Hazard Index 1 0.1 0.01 100 10 1000 1 0.001 TITI 111111 -1-1-11111 π 0.01 0.1 0.00001 0.0001 0.001 10 100 1000 1 **Fish Tissue Concentration** (mg/kg wet wt)

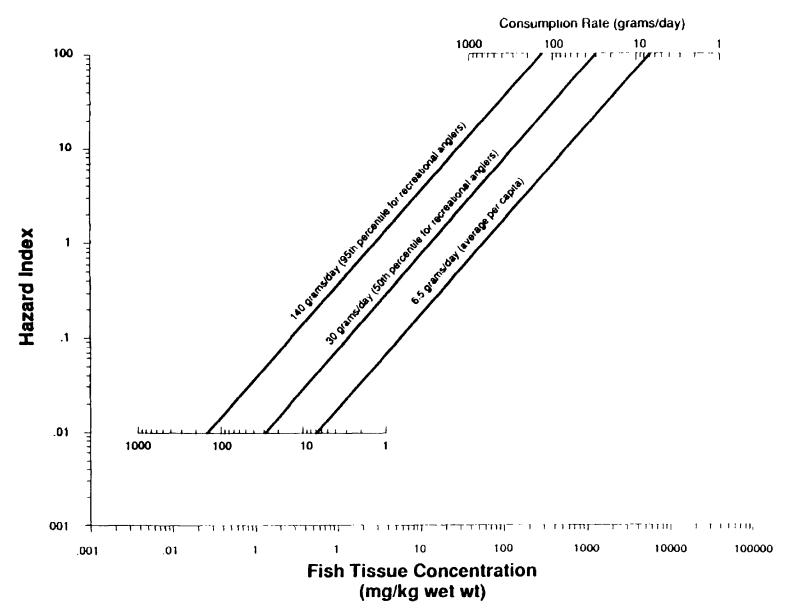
DIELDRIN NONCARCINOGENIC EFFECTS

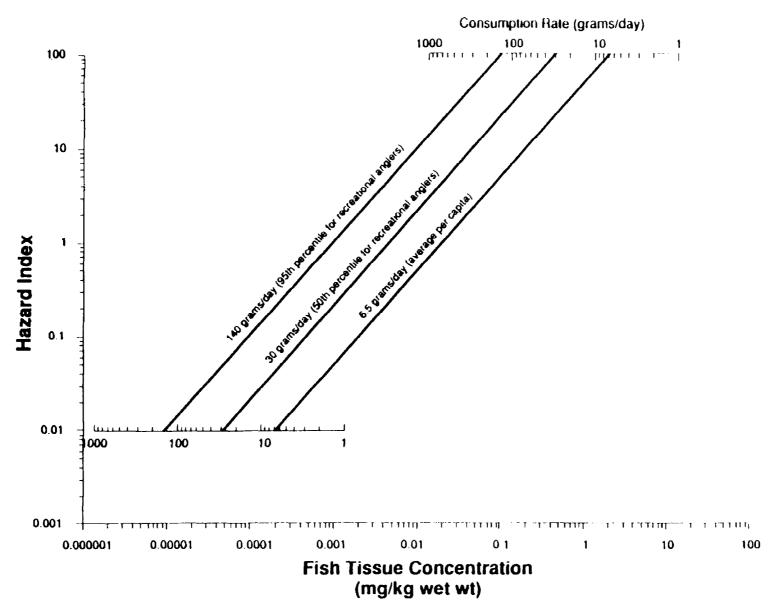



HEPTACHLOR NONCARCINOGENIC EFFECTS

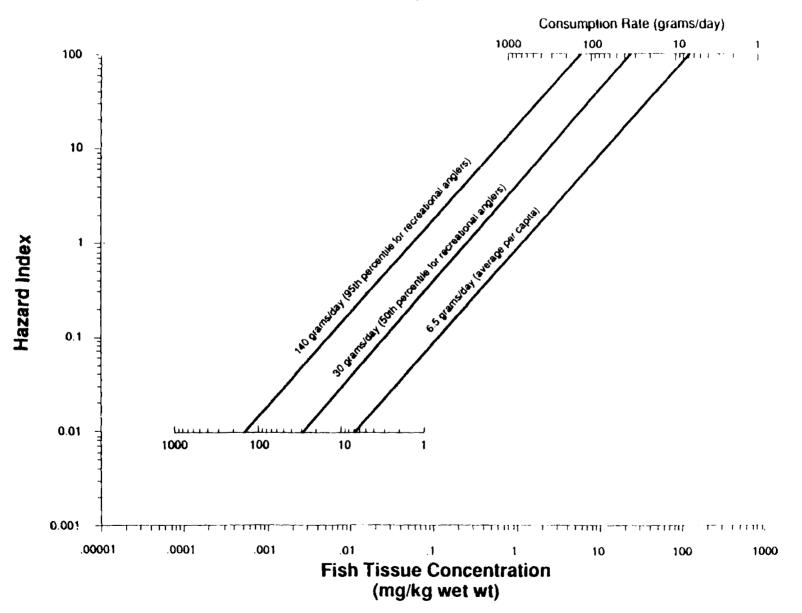

HEPTACHLOR EPOXIDE NONCARCINOGENIC EFFECTS

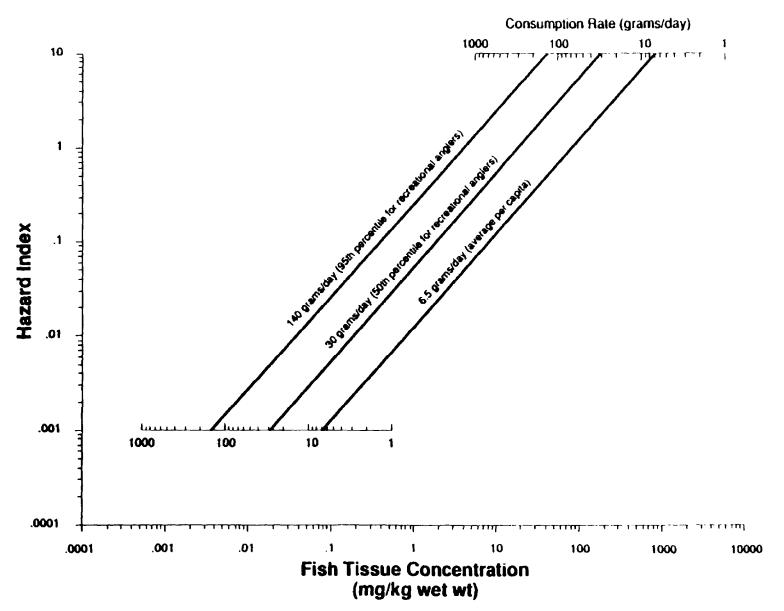
HEXACHLOROBENZENE NONCARCINOGENIC EFFECTS





ISOPROPALIN NONCARCINOGENIC EFFECTS


MERCURY NONCARCINOGENIC EFFECTS



MIREX NONCARCINOGENIC EFFECTS

PCB (AROCLOR 1016) NONCARCINOGENIC EFFECTS

TRIFLURALIN NONCARCINOGENIC EFFECTS

APPENDIX B-3

Site Description Matrix

Key to Table B-3 Matrix of Episodes and Site Descriptions

COL	UMN HEADING	DESCRIPTION
1.	EPA REGION	The U.S. Environmental Protection Agency Region which includes the sample location.
2.	EPISODE	The EPA Episode Number which is specific to each sampling location.
3.	LATITUDE	The latitude of the sample site in degrees, minutes and seconds.
4.	LONGITUDE	The longitude of the sample site in degrees, minutes and seconds.
5.	STATE	The state where the sample was collected.
6.	WATERBODY	Name of the water body where the sample was collected.
7.	LOCATION	The nearest town, road or county to the sample location.
8.	NSQ	Sample site from the USGS NASQAN monitoring network.
9.	В	Background site as selected for study.
	POINT SOURCES	: Point sources include the following six categories:
10.	РРС	Site near paper and pulp mill using chlorine for bleaching (includes mills using the sulfite process).
11.	PPNC	Site near paper and pulp mill not using chlorine for bleaching.
12.	REFINERY	Site near refinery using the catalytic reforming process.
13.	NPL SITE	Site near an EPA National Priority List Site (Superfund site).
14.	OTHER INDUSTRY	Site near industrial facility other than a paper mill, refinery, or wood preserver.
15.	POTW	Site near discharge of a Publicly Owned Treatment Works (POTW).
16.	WP	Site near active or former wood preserving activity.
	<u>NONPOINT</u> : Nor	point sources include the following two categories:
17.	URBAN	Site near urban runoff.
18.	AGRICULTURE	Site near agricultural area.

TABLE B-3

Matrix of Episodes and Site Descriptions

												POINT SE	WRCES			NONE	TRIO	
EPAE	pisede			})					-	NPI.	Other		1		Additional Site Description
leg		Lotitude	Longitude	State	Waterbody	Location	NSQ	B	PPC	PPN	C WP	Ríny	Site	Ind	POTW	Urban	Agri	(Focilities in the vicinity of the sampling site)
2	2376	41:22:00N	072:52:40W	СТ	Quinipiac River	North Haven							Х	х	х	1		Industry: chemical & pesticides; electronics; plastics; metals; Superfund
																1		site (solvents)
2	2375	41:36:47N	071:58:26W	СТ	Quinnebaug River	Jewett City							х	х	х			Ind.: organic chem. & pest., textiles; Superfund site (Furans)
2	2369	42:37:25N	071:23:10₩	MA	Merrimack River	Tyngs Island							X	х	х			Ind.: chem. & pest., industrial WWTP; P&P mill on Nashua R. (trib.);
																		Superfund site (solvents)
3	9151	42:35:22N	072:21:08W	MA	Millers River	Erving			X									Erving Paper Mills; wooded area; Ag.: croplands and grazing fields
3	150	42:35:46N	072:03:27W	MA	Otter River	Baldwinville			x								х	Erving Paper Mills; wooded area; Ag.: croplands and grazing fields
2	356	44:06:10N	070:13:58W	ME	Androscoggin R.	Lewiston			X					х	х	x		International Paper, Boise Cascade, James River; Ind.: textiles
2	721	44:15:20N	070:10:50W	ME	Androscoggin R.	Turner Falls			X									International Paper Co. in Jay
2	2725	44:30:09N	070:15:00W	ME	Androscoggin R.	Riley Dam			x									Boise Cascade in Rumford; rural;wooded area
3	026	44:10:20N	070:20:25W	ME	Androscoggin R.	Aubura			X	Х				х		X		Ind.: textiles; downstream of paper mills
3	028	45:04:48N	067:19:25W	ME	Bearce Lake	Barring		х								{		
2	358	44:36:30N	067:55:30₩	ME	Narraguagus R.	Cherryfield	X		1							1	Х	Two blueberty processing plants; blueberry fields (pesticides)
3	022	44:32:30N	070:07:15W	ME	North Pond	Chesterville		х										No industry; wooded and swampy area
2	355	44:49:20N	068:42:30W	ME	Penobscot R.	Eddington			X						х	X		James River Corporation on Old Town
2	2722	43:34:35N	070:33:45W	ME	Saco River	Union Falls		х							х	1		Same as 3027; POTW on upstream trib. yet is Background site
3	027	43:34:25N	070:33:55W	ME	Saco River	Union Falls		х							х			Same as 2722; POTW on upstream trib. yet is Background site
3	023	44:54:30N	069:55:05W	ME	Sandy Pond	North Anson		х										
3	024	44:54:00N	069:15:15W	ME	Sebasticook E. Br.	Newport								х	х			Industrial WWTP
3	025	44:49:40N	069:24:00W	ME	Sebasticook W. Br.	West Palmyra								х	х		Х	Industrial WWTP
3	3152	44:24:42N	071:11:29W	NH	Androscoggin R.	Berlin			X									James River Corporation
I 3	426	40:35:45N	074:12:20W	NJ	Arthur Kili	Carteret								х				GAF Corp. (chem. manufacturing)
I 3	1429	39:34:30N	075:31:00W	NJ	Delaware River	Salem						х	х	Х		X	Х	Superfund site (several sites; metals & org. chemicals)
I 3	430	39:18:00N	074:37:30W	NJ	Great Egg Harbor			х							х		Х	Background even though has agricultural area and POTW nearby
1 2	651	39:36:00N	074:35:00W	NJ	Mullica River	Green Bank		Х										Wooded area
I 3	427	40:39:15N	074:09:16W	NJ	Newark Bay	Elizabeth							x	х		x		Landfill
1 2	653	40:54:30N	074:12:00W	NI	Passaic River	Paterson				X			x	х	х	X		Marcal Paper and P&P mill on trib.; Ind.: metals, chem. & pest.;
				1														Superfund site (solvents)
1 3	428	40:43:15N	074:07:15W	NJ	Passaic River	Newark								х		x		80 Lister Ave.: chem. manufacturing
1 3	1433	40:28:24N	074:03:40W	IИ	Raritan Bay		1					х	х	х	х	1		P&P mill effluent into bay; Exxon Co.; Ind.: chem.; Superfund site (sever
																1		sites; metals & org. chem.)
1 3	1434	40:27:00N	074:03:00W	LИ	Sandy Hook							х		Х	х	X		Exxon Co.
I 2	654	39:57:30N	074:12:30W	LN.	Toms River		1						х	х	х		х	Ind.: chemical; Superfund site (chlorobenzene; Hg)
I 3	304	43:59:30N	076:04:30W	NY	Black River Delta	Dexter	1			х				х	х	1	х	Five paper mills (PPNC); Air Brake Co.; hydro-power; dairy fields
1 3	296	42:51:45N	078:52:00W	NY	Buffalo Harbor	Buffalo								х		x		Ind.: chemical, steel, petrochemical; landfills
I 3	298		078:52:30W	NY	Buffalo River	Buffalo								х		X		Allied Chemical (manufacturer of HCB); landfills
i 3			078:43:00W	NY	Eighteen Mile Creek	Olcott								х		1	х	Ind.: Harrison Radiator; chem. (HCB); Ag.: orchards and croplands
[2	326	42:13:00N	078:01:00W	NY	Genessee River	Belmont	1	х]						х			Same as 3309. Sampled below Belmont Dam. Superfund site is
									2									approximately 10 miles upstream (beavy metals, hydrocarbons)
3	309	42:13:30N	078:02:00W	NY	Genessee River	Belmont	1	х	i						х	1		Same as 2326

									1			POIN		CES			NON	POINT	
EPA	E pice d e	1							<u> </u>						Other		+		Additional Site Description
Leg		Latitude	Longitude	State	Waterbody	Location	NBQ		PPC	PP	NC W	VP	Riny	8Ha	ind	POTW	Urban	Agri	(Facilities in the vicinity of the sampling site)
n	3306	44:57:30N	074:49:00W	NY	Grass River	Massena	[–								х				Sampled below ALCOA'S outfall (PCB concern); GM & Reynolds (2
							1												miles below mouth of river)
u (3319	40:40:00N	073:20:00₩	NY	Great South Bay	Babylon		х	1							х		х	Same as 3320
11	3320	40:40:45N	073:19:00₩	NY	Great South Bay	Babylon		х								х		х	Same as 3319
u	2709	41:16:30N	073:57:00₩	NY	Hudson River	Pcekskill			Ì					х	х	х			Same as 3409; Ind.: chem.; P&P mill 150 river miles upstream; Superfund
				1															site (PCB)
	3259		073:36:30₩	NY		Fort Miller	1		X					••	X		1		Fort Miller Pulp and Paper (Finch, Pyruyn & Co.)
n	3409	41:20:00N	073:57:30W	NY	Hudson River	Peekskill								х	x	х			Same as 2709; Ind.: chem.; P&P mill 150 river miles upstream; Superfund site (PCB)
пÌ	3321	40-38-40N	073:50:40W	NY	Jamaica Bay	New York			ļ						х	х	x		Ind.: chem.; airport; landfill
	3322		073:47:00W	NY	Jamaica Bay	New York	ł		}						x	x	x		Ind.: chem.; airport; landfill
	3260		073:22:00W	NY	Lake Champlain	Ticonderoga	ļ		x						~	~	1		International Paper Co.
	2328		078:43:14W	NY	Lake Ontario	Olcott			1						x			х	Ag.: apple orchards and croplands
	2329	1	077:32:03W	NY	Lake Ontario	Rochester	l								x			x	Ind.: chem (Kodak); Site at the mouth of Genesee River
u	3323	40:48:00N	073:45:00W	NY	Little Neck Bay	Long Is. Sound									x	x	x	х	Same as 3324
u	3324	40:47:00N	073:45:00W	NY	Little Neck Bay	Long Is. Sound									х	х	X	х	Same as 3323
u	3325	40:49:00N	073:40:00W	NY	Manhasactt Bay	Long Is. Sound									х	х	X	х	Same as 3326
II	3326	40:50:10N	073:40:15W	NY	Manhassett Bay	Long Is. Sound									х	X	X	х	Same as 3325
I	3300	43:15:30N	079:03:45W	NY	Niagara R. Delta	Porter									х	х	X	х	Ind.: chem.; Olin, Dupont, Oxidental (HCB); Ag.: orchards; landfill
	3297	43:03:00N	078:58:55₩	NY	Niagara River	Niagara Falls									x	x	x		Ind.: chem.; Olin, Dupont, Oxidental Chem. (HCB), (companies downstream of site)
	3299	43:02:00N	078:53:45W	NY	Niagara River	N. Tonawanda									X	х	x		Ind.: chemical
	3302	43:10:30N	079:03:10W	NY	Niagara River	Lewiston									х	х	X	х	Ind.: chem.; Olin, Dupont, Oxidental (HCB); Ag.: orchards
1	3303	44:12:30N	075:00:00W	NY	Oswegatchie River	Newton Falls			X								ļ		Newton Falls Paper Mill (defunct since October 1984)
T	3412	43:28:00N	076:31:00W	NY	Oswego Harbor	Oswego			í						Х				Ind.: Chemical
L	3305	44:58:30N	074:44:00W	NY	Raquette River	Massena				Х	2				x	x			Potsdam Paper and Norfolk Paper (PPNC); ALCOA, GM, Reynolds (upstream of mouth)
1	2322	44:59:00N	073:21:00W	NY	Richelieu River	Rouses Pt.	x		ŕ							х	1		
1	3308	45:00:00N	073:21:00W	NY	Richelieu River	Rouses Pt.	x									х			
1	3411	43:11:18N	077:31:30W	NY	Rochester Embay.	Rochester									х		Ì		Ind.: chemical
1	3307	44:42:30N	075:28:30W	NY	St. Lawrence River	Ogdensburg			ļ						х				Ponderosa Fibers (out of business more than 4 years); Dow chemical in
ł				ł –													{		Canada
	3327		074:02:15W	NY	Upper Bay	New York									x	х	X		Sampled at 69th Street Pier
	3432		066:46:25₩	PR	Guayanilla Bay										x	х	1		
-	3431		066:06:30W	PR	San Juan Harbor	San Juan							x		x	X			Caribbean Gulf Refining Corp.; landfill
	2210 3147		077:02:15W	DC	E. Potomac River	DC									X	X	X	x	
	3147 3099		077:02:30W	DC DE	Potomic River Park Indian River										x	x	x	X X	Frances
	3098		075:39:44W	[Rosedale Beach								v	v			x	Estuary Ind.: metal plating, mining; illegal dump (landfill); Ag.: musbroom farming
	3097		075:37:50W	DE	Red Clay Creek Red Lion Creek	Ashland Tybouts Corner								X X	x		1	^	Chemical spill (HCB concern); Superfund site (HCB)
	3149		075:45:37W	DE	White Clay Creek	Thompson								~	x				Circulate shirt (TCD Conternal, onlicitation and (TCD)
	3100		076:31:30W	MD	Baltimore Harbor	Baltimore									x	x	x		
			079:01:00W	MD	Potomac R.N. Br.	Westernport			x						~	x	^		Westvaco (indirect); rural
			077.01.00 W		I GOMME IV.IV. DI.	westernport	_		~							~ 1	1		The second se

											-	NNT SOI	URCES			NON	PUINT	
PAEpise	-						ļ						NPL	Other	r	1		Additional Site Description
leg #	L	Latitude	Longitude	State	Waterbody	Location	NEQ		PPC	PPNC	WP	Kitey	Site	ind	POTW	Urben	Agri	(Facilities in the vicinity of the sampling site)
II 223	1 3	39:39:31N	076:10:28W	MD	Susquehanna River	Conowingo			1					X	х			Same as 3103
JI 310.	3 3	39:38:00N	076:10:00W	MD	Susquehanna River	Conowingo			ĺ.					X	х			Same as 2231
81 3310	6 4	11:25:20N	078:44:10W	PA	Clarion River	Ridgeway	ļ		X									Pentech Papers in Johnsonburg; rural; acid mine drainage
II 316	1 3	39:56:30N	075:14:35W	PA	Cubbs Creek	Philadelphia							Х	X		X		Old PCP plant (defunct for more than 5 years); landfill
11 342	0 3	39:53:42N	076:49:09W	PA	Codorus Creek	Spring Grove			X									P.H. Gladtfelder in Spring Grove
[] 309-	4 4	40:02:24N	074:59:20W	PA	Delaware River	Torresdale								X	х	X		
II 309:	5 3	39:53:00N	075:11:46W	PA	Delaware River	Schuylkill Jnct.						х		х	х	X		Coastal Eagle Point Oil Co. in NJ; Inorganic chem.
11 309	6 3	39:51:36N	075:18:40W	PA	Delaware River	Eddystone						х		х	x	X	X	Mobil Oil in NJ; Ind.: chem; multiple sources; Ag.: croplands (trucking of
				1					1									vegetables)
11 3318	8 4	10:23:20N	078:24:20W	PA	Frankstown Branch	Kladder Station	L		X									Appleton Paper on the Juniata River (Holter Creek)
li 3419	9 4	12:09:25N	090:02:57W	PA	Lake Erie	Erie			X					х	x	X		Hammermill Paper (indirect); railyard; food processing plant
11 3310	0 4	10:39:40N	075:14:35W	PA	Lehigh River	Easton								х	х	x		Steel industry
11 310)	1 4	10:03:40N	075:28:23W	PA	Little Valley Creek	Paoli	l	j	ł					х		1	Х	Paoli Railyard (historic PCB problems)
II 221:	5 4	0:17:30N	079:52:33W	PA	Monongahela River	Clairton								x	х	X		Ind.: inorganic chem. and pest.
11 2212	2 3	39:58:00N	075:11:20W	PA	Schuylkill River	Philadelphia	X					x	х	х	x	X		Same as 3104; two refineries; Ind.: org. chem. & pest.; P&P mill;
									1									Superfund site (PCP)
3104	4 3	39:58:22N	075:11:33W	PA	Schuylkill River	Philadelphia	X					х	Х	X	x	X		Same as 2212; two refineries; Ind.: org. chem. & pest.; P&P mill;
																		Superfund site (PCP)
II 341	5 4	11:23:30N	075:48:00W	PA	Susquehanna N.Br.	Ransom							Х					Superfund site (heavy metals)
11 2211	1 4	10:03:00N	076:30:00W	PA	Susquehanna River	Columbia			X					х	x			Gladtfelder (bleachkraft) 20 miles upstream on tributary
II 3414	4 4	11:18:50N	075:48:45W	PA	Susquehanna River	Pittston							Х			1		Superfund site (heavy metals); acid mine drainage
II 3319	5 4	0:21:00N	076:23:00₩	PA	Union Canal	Lebanon								х				Pesticide concern
II 2216	6 4	1:33:22N	0 77:41:28₩	PA	Young Womens Cr.	Renovo		х										
II 3422	2 34	6:33:10N	076:54:57W	VA	Blackwater River	Riverdale			x									Union Camp Corporation in Franklin
II 3421	1 31	7:47:15N	080:00:06W	VA	Jackson River	Covington			X									Westvaco Corporation
11 2225	5 31	7:35:00N	079:25:00W	VA	James River	Glasgow								х	х		х	Light agriculture; rural
II 2228			078:05:10W	VA	James River	Cartersville	X		X	x					х		X	Westvaco (PPC); Virginia Fibers and Nekoosa Edwards (PPNC)
11 2222			077:09:59₩	VA.	Nottoway River	Sebrell)		}					х	х	1		Union Camp is 20 miles downstream of sampling site
11 2220			077:19:57₩	VA.		Hanover	X							х	х			Upstream from the Cheasepeake Corporation
II 3423	- -		076:48:40W	VA	Pamunkey River	West Point			х							1		Cheasepeake Corporation (upstream of site)
II 3424	4 3'	7:32:01N	076:50:38W	VA.	Pamunkey River	West Point		j	х									Cheasepeake Corporation (downstream of site)
II 3193	3 3	7:01:45N	078:55:40W	VA.	Roanoke River	Brookneal											Х	Rural
II 3258	8 30	6:49:48N	076:17:30W	VA	S.Br.Elizabeth R.	Norfolk								х		X		
II 2500) 3	8:27:00N	081:49:00W	WV	Kanawha River	Nitro								х	х	X	X	Ind.: pesticides, trichlorophenol, and organic chemicals (Dow and
																		Monsanto); rural
II 3314			081:54:37W	WV		Winfield								х	х	X	X	Ind.: pesticides (Monsanto); rural
II 3311			080:51:52W	WV		Nw. Martinsvie								х	х	X		
1 3312	1		080:42:25₩	WV		Wheeling						x		х	х	X		Quaker State Oil Refining; steel industries; urban runoff
II 3313			077:52:30W	WV	Opequon Creek	Bedington								х		X	X	Ag.: orchards; rural
V 2304	-		089:30:45W	AL	Alabama River	Claiborne			х						х]		Alabama River Pulp Company
V 2309	J 32	2:24:41N	086:24:30W	AL	Alabama River	Montgomery	X							X	х	X	X	Ind.: organic chem. & pest.; Fence-post company; Ag.: croplands

						1				PI PI	DINT HOU	RCES			NONP	OINT	
AEpisode													Other		1		Additional Site Description
	Latitude	Longitude	State	Waterbody	Location	NSQ		PPC	PPNC	WP	Riny	Sile	Ind	POTW	Urben	Apri	(Facilities in the vicinity of the sampling site)
3360	32:07:55N	085:03:43W	AL	Chattahoochee	Cottonton	1			X								Alabama Kraft in AL (goes into GA water but on AL side)
3170		085:22:06W		Choctawbatchee R.	Henry Co.											x	.
2302	31:04:01N	087:02:40W	AL	Conecuh River	E. Brewton			x							1		Container Corporation
3172	31:25:07N	088:26:45W	AL	Coosa River	AL/GA State L			ļ					х				·
3328	33:17:24N	086:21:42W	AL	Coosa River	Coosa Pines	1		x							1	x	Kimberly Clark; wooded area; Ag.: croplands and grazing fields
3171		085:13:24W	AL	Cowarts Creek	Houston Co.	1										x	
3169	33:50:15N	086:31:46W	AL	Inland Lake	Blount Co.	ł	х	1									
3168	1	087:57:48W	AL	Mobile River	near Cold Cr.	l							х	х	x	x	Several chem. & pest. plants; Hydro-power
3331	30:30:00N	087:20:15W	FL	11 Mile Creek	Cantonment	j –		x							i	x	Champion International Corp. in Cantonment; rural; swampland; Ag.:
															[ĺ	croplands
3332	30:38:52N	081:29:28W	FL	Amelia River	Fernandina Bch			x									ITT Rayonier, Inc.
2151	30:23:04N	085:33:24W	FL	Econfina Creek	Panama City	x									ł		
3329		083:46:00W	FL	Fenholloway River	Perry			х								x	Buckeye Cellulose; rural; swampland; Ag.: grazing fields
3334	29:50:31N	085:17:59W	FL	Gulf Co. Canal	St. Joe	ł		x						х	x	i	St. Joe Paper (indirect)
3174	27:12:18N	080;47;28W	FL	Lake Okeechobee	Okeechobee								х		i		
2148	27:38:54N	080:24:10W	FL	Main Canal	Vero Beach	x									x]	Collected below salinity structure
3333	30:07:38N	085:39:25W	FL	St. Andrew Bay	Panama City			х						х			Southwest Forest Ind., Inc. (indirect) (Stone Container Corp.)
2142	29:38:48N	081:37:32W	FL	St. Johns River	Palatka	ļ.		x						х		x	Georgia Pacific Corporation
3173	30:00:00N	081:40:00W	FL	St. Johns River	Green Cv. Spr					х					x	- (Wood treatment plant
2152	30:21:30N	082:04:54W	FL	St. Mary's River	Macelenny	x								х			•
3330	30:28:00N	083:15:00W	FL	Withlacooche River	Blue Spring	1		ĺ	х						1	l l	
3337	31:39:10N	081:49:00W	GA	Altamaha River	Jesup	l l		x							}	x	ITT Rayonier, Inc.: swampland; Ag.: croplands
3177	34:26:00N	083:40:30W	GA	Chattahoochee R.	Gainesville	ł	x						х	х	}	x	Town of Schoville: heavy metals, wood products; Ag.: chicken farms a
1																	orchards
3375	33:39:24N	084:40:25W	GA	Chattahoochee R.	Austell	ŀ			х					х		•	Box Board on Hwy 92
3376	33:28:37N	084:54:04W	GA	Chattahoochee R.	Whitesburg				х								
3377	33:16:45N	085:06:00W	GA	Chattahoochee R.	Franklin				х							ļ	
3378	31:08:00N	085:04:00W	GA	Chattahouchee R.	Donaldsonville				х					х	ĺ	Í	Great Southern Pacific Paper Company
3178	34:55:00N	083:10:00W	GA	Chattooga River	Clayton		X										
3179	34:27:00N	083:57:30W	GA	Chestatee River	above L. Lanier		x							x		x	Mining: gold, sand, and gravel; Ag.: orchards, dairy farms & chicken
																	houses
2294	32:01:20N	083:56:30W	GA	Flint River	L. Blackshear			x									Procter & Gamble (Buckeye Cellulose)
3176	30:52:00N	084:36:00W	GA	Lake Seminole					х				х			x	Great Southern Pacific Paper Company
3336	30:43:37N	081:32:00W	GA	North River (mouth)	St. Marys			х									Gilman Paper Company
2290	33:22:25N	081:56:35W		Savannah River	Augusta			х					х		x	1	Federal Paperboard in Pond, Georgia Pacific; Ind.: pest.
3175		081:08:50W	GA	Savannah River	Savannah			х			х		x	x	x	J	Fort Howard Paper (PPC), Union Camp and Stone Container Corp.
																	(PPNC); Nuclear power
3338	33:22:00N	081:56:00W	GA	Savannah River	Augusta				х				х	x	х		Ponderosa Fibers (indirect)
3180	31:18:00N	084:45:00W	GA	Spring Creek	Early County								-			x	• •
3335	31:08:15N	081:31:35W			S. Brunswick R.			x								_	Brunswick Paper & Pulp on the Turtle R.; marshland; wooded area; A
1				· · · · · · · · · · · · · · · · · · ·				••									grazing fields

							1				20	DINT SO	RCES			NONE	MINT	
PAEpin	ade								1				NPL	Other	,	1		Additional Site Description
leg #		Latitude	Longitude	State	Waterbody	Location	NSQ		PPC	PPN	WP	Riny	Site	Ind	POTW	Urben	Agri	(Facilities in the vicinity of the sampling site)
V 318	33	38:24:22N	082:35:52W	KY	Big Sandy R.	Cattletsburg						x		X	х			Ashland Oil Inc.; Ind.: chem, iron and steel; coal mining, timber
V 333	39	36:55:41N	089:05:52W	KY	Mississippi River	Wickliffe			X								X	Westvaco Corporation; Ag.: croplands
V 318	32	36:55:27N	086:52:47W	KY	Mud River	Russellville			ļ					Х	х	1	X	Ind.: metal plating; rendering plant; Ag.: croplands
V 205	56	38:00:30N	085:56:30W	KY	Ohio River	West Point							Х	х	х	X X	X	Same as 3181; Ind.: chem. & pest., refinery; Ag.: crops; Superfund site
1							[1									(PCB's; solvents; dioxins & furans)
V 234	\$ 1	38:46:29N	084:57:52W	KΥ	Ohio River	Markland			X						х	X	X	Williamette Industries; multiple sources; rural
V 318	31	38:00:30N	085:56:30W	KY	Ohio River	Westpoint							Х	х	х	X	X	Same as 2056; Ind.: chem. & pest., refinery; Ag.: crops; Superfund site
																		(PCB's; solvents; dioxins & furans)
V 344	16	38:24:22N	082:35:52W	KY	Big Sandy R.	Catlettsburg						х	х	х				Ashland Oil refinery; coal mining
V 318	IS	30:25:00N	089:04:00W	MS	Bernard Bayou	Gulfport							Х	х		X		Ind.: chem.; woud treatment; (gas recovery) refinery; rural; Superfund si
																ļ		(solvents)
V 212	26	32:20:41N	090:51:48W	MS	Big Black River	Bovina	X								х		х	Ag.: soybcans and cotton
/ 344	- (i		088:31:00W	MS	Chevron Effluent	Pascagoula	Į –		X			х		х		X		Chevron refinery; International Paper; shipyard; fertilizer company
V 334			088:31:10W	MS	Escatawpa River	Moss Point										1		International Paper Company
V 334	·- I		089:02:50W	MS	Leaf River	New Augusta			X									Leaf River Forest Products
V 343			091:30:00W	MS	Mississippi River	Natchez			x									International Paper Company
/ 213	· · ·		090:49:02W	MS	Yazoo River	Redwood				Х							X	
/ 318			090:49:00₩	MS	Yazoo River	Redwood				х							х	Same as 2133; Ind.: paper; fertilizer plant
/ 334			078:10:30W	NC	Cape Fear River	Riegelwood			x						х		х	Federal Paper Board; rural; swampland; wooded area; Ag.: croplands
/ 213			093:04:23₩	NC	Cattaloochee Creek			х										Champion Paper (PPC-indirect source); wooded area
/ 316			079:39:24W	NC	Deep River	Ramseur Dam								х		x	х	
/ 334			082:40:45₩	NC	French Broad River				X						х		х	Ecusta (sulfite mill using chlorine); rural; wooded area; Ag.: croplands
V 316	. 1		079:19:20W	NC	Haw River	Saxapahaw								х	х		х	Ind.: textiles; rural; Ag.: croplands
V 334	1		078:59:00W	NC	Lumber River	Lumberton	1		x									Alpha Cellulose (sulfite mill using chlorine)
			078:50:20W	NC	Medlins Pond	Morrisville	ļ				х						i	Koppers Company (wood treat.); Superfund site - wood treat. (PCP)
V 316			083:38:15W	NC	Nanthalia River	Macon Co.	ĺ	х										
V 213	- I		077:35:09W	NC	Neuse River	Kinston	İ		X									Weyerhaeuser Company
/ 339			077:06:45W	NC	Neuse River	New Bern)		X							1		Weyerhaeuser Company
/ 334			082:54:40W	NC	Pigeon River	Clyde			X						х		X	Champion International in Canton; rural; wooded area; Ag.: croplands
V 334	16	35:51:55N	076:45:40W	NC	Roanoke River	Plymouth			X							1	х	Weyerhaeuser Company on Welch Creek; rurai; wooded area; Ag.:
				1	V U' D'	D								~		1		croplands
/ 338	- 1		081:31:32W	NC	Yadkin River	Patterson				х				х				Sealed Air Corporation (makes absorbant paper for meat trays)
/ 334			080:51:50W	SC	Catawba River	Catawba			X								x	Bowater Carolina; rural; wooded area; Ag.: croplands
/ 318			079:53:10W	SC	Charleston Harbor	Charleston			X	х				х		x		Westvaco Paper and Pulp; Amoco chemical plant
/ 334			079:18:34W	SC	Sampit River	Georgetown			x							1	~	International Paper Company; rural; wooded area; Ag.: croplands
/ 318			080:31:33W	SC	St. Helena Sound	P .	1	х									X	11.1. Come Conservations much much ded entry Any much ada
/ 334 / 230	· [080:37:32W 087:49:58W	SC	Wateree River	Eastover		v	x								X X	Union Camp Corporation; rural; wooded area; Ag.: croplands
V 230 V 318	· · · ·		-	TN	Buffalo River	Flatwoods		х						v			^	lad caluminum
V 318 V 229			084:58:18W	TN	Ft. Loudon Res.	D - 11	~							х		x		Ind.: aluminum
	-		088:58:36W	TN	Hatchie River	Bolivar	X										~	Boundar Couth Bound Composite events would are An encoded
					Hiwasee River	Calboun	1		X						v	1	x	Bowater South Paper Company; rural; wooded area; Ag.; croplands
V 229	ηų	N0C:UU:00	083:49:54W	TN	Holston River	Knorville	L.		X					х	х	1		Industry: metals

				1			1				POINT	T SOUR	CEI			NON	OINT	
	tente			i			{	ł					_	Other				Additional Site Degription
		Latinde	Longitude	State	Waterbedy	Location	NO		FFC	PPNC	WP I	Likey .	38+	and a	POTW	Urbun	Aarl	(Functiblies in the vicinity of the sampling site)
	403		082:35:00W	TN	Holston R., S. Fork	Kingsport	1		X									Mead Corporation (Chlorine Dioxide process)
	444		090:05:30W	TN	Mississippi River	Nonconnah Cr.			•-			x		х	х	x		Mapeo, Exxon, Union refineries; cement factory; soybean processing
	188		085:20:28W	TN	Nickajack Reservoir							••		x	x	X		Ind., chem.; coke; rendering; railyards; landfill
	404		083:12:00W	TN	Pigeon River	Newport	1		x					~		1 "	х	Champion International in North Carolina
	351		083:10:52W	TN	Pigeon River	Newport			x								x	Champion International in North Carolina
	190		084:04:13W	TN	Tennessee River	Knoxville		[х		x	••	
	401		086:16:39W	TN	Tennessee River	Hardin Co.	[Í		х								Tennesce River Pulp and Paper in Counce, TN
V 2	379		089:25:42W	IL	Big Muddy River	Grand Tower	ļ	x							х		х	
	383		088:04:07W	IL	Des Plaines River	Lockport	}					X		х	x	x		Ind.; organic chem. & pest.; Refineries (downstream); steel; incinerator
	113		088:18:31W	IL	Fox River	Geneva								x	x	x	х	
	380		088:45:10W	I.	Illinois River	Maracilles						x		x	x	x	x	Ind.; chem. & pest.; Union oil, Texaco, Mobil; Ammunition plant
· · · ·	114		091:31:04W	IL	Mississippi River	Quincy	í –	ł		x		~			x		x	Celotex Corporation (deinking)
	115		090:15:00W	iL	Monsanto Effluent	East St. Louis	1			~				х	x			Six chemical/pharmaceutical plants (paradichtorobenzene)
	117		087:49:40W	I.	Lake Michigan	Waukegan	ļ						х	x		x		Open lake sample; Superfund site (PCB) at Waskegan Harbor
	059		087:29:15W	IN	Indiana Harbor Can.	East Chicago						x	x	x	x	x		Same as 3356; Amoco Oil; Ind.: primarily steel; wastewater; Superfund site
· [-							1							••	•-			(PCB)
v i s	356	41:37:10N	087:29:15W	IN	Indiana Harbor Can.	East Chicago	}					x	x	х	x	x		Same as 2059; Amoco Oil; Ind.: primarily steel; wastewater; Superfund site
																		(PCB)
V 2	060	38:07:50N	087:56:20W	IN	Wahash River	New Harmony								x	х		х	Ind.; chem. & pest.; coal mining; (site at the mouth of the Wabash R.)
	057		087:17:30W	IN	White River	Petersburg	{	Í						x	x	x	x	Hydro-power, coal mining
	119		085:54:00W	MI	Allegan Lake	Allegan				х			x		•••			Historical PCB contaminaton from paper deinking; Superfund site (PCB)
	118		087:05:00W	MI	Escanaba River	Escanabe	1		х							ļ		Mead Corporation (historical PCB contamination)
	994		083:48:45W	MI	Flint River	Flushing		1	••					х	x	x		Automobile manufacturing (heavy metals and oils)
	120		082:10:00W	MI	Kalamazoo River	Saugatuck								x				Historical PCB contamination site is downstream of Kalamazou
	122		087:59:00W	MI	Menominee River	Quinnesec	(- 1	х							}		Champion International Corporation
	998		086:14:55W	MI	Muskegon Lake	Muskegon			x				х	х	x		х	Scott Paper (indirect); Power & chem. plant; Ag.: orch.; same as 3148;
				1			1											Superfund site (PCB)
V 3	148	43:15:05N	086:14:55W	мі	Muskegon Lake	Muskegon			х				x	х	x		х	Scott Paper (indirect); Power & chem. plant: Ag.: orch.; same as 1998;
				1	······································													Superfund site (PCB)
V 2	432	43:19:57N	086:08:42W	MI	Muskegon River	Bridgton	x								х			Far upstream of bleachkraft (Scott Paper Company)
. –	410		083:07:20W	MI	Rouge River	River Rouge	1							х	x	х		Ind.: heavy steel; chem.; automobile (PCB's in effluent)
V 2	431	46:29:45N	084:22:25W	MI	St Marys River	Sault St. Marie	X			x				X	x			St Mary's Paper; Algoma Steel; dredging
$\dot{\mathbf{v}}$ $ _{2}$	430		085:15:10W	MI	Tahquamenon R.	Paradise	x I	Í						••				
V 2	435	47:55:23N	089:08:42W	MI	Washington Creek	lsie Royale		x										Canadian Bleach Kraft P&P mill about 30 miles upwind in Thunder Bay,
				1	···		ļ											Ont.
V 2	387	44:16:08N	093:21:05W	MN	Cannon Lake	Fairbault		x							x		х	
V 2	437	44:41:33N	093:38:35W	MIN	Minnesota River	Jordan	x								x		х	
V 3	112	45:58:17N	094:22:05W	MN	Mississippi River	Little Falls	í	1		x								Hennepin Paper
V 3	125	44:33:34N	092:25:47W	MN	Mississippi River	Red Wing	l					x		X	x	х	х	Ashland Oil/Koch Refining; urban runoff; historical PCB contamination
V 2	385	48:36:29N	093:24:13W	MN	Rainy River	Intern'l Falls	1		х						x	х		Boise Cascade on both sides of the river
v B	001	48:35:29N	092:53:34W	MN	Rainy River	Intern'l Falls		xi							х			Site is above the dam. Boise Cascade outfall is below dam.
	416		081:42:10W	OH	Cuyahoga River	Cleveland	1							х	x	x		Ind.: chem.: oil.
	394		084:18:19W	ОН	Great Miami River	Franklin	ł			x				x	x	~		Appleton Papers and Miami Papers (deinking); Ind.: metals and others
			084:40:30W	OH	Great Miami River	Nw. Baltimore	x			x			x	~	x		x	Sorg P&P mill (deinking); Proctor and Gamble; Ag. runoff; Superfund site
						INW. Debumore	. ^								n	l 	r1.	I many a set that for the light a state of the set of the set of the set of the set

1		1		Ī					[P O	INT SOU	RCHS			NONP	OINT	
EPÆ	plande			1										Other		†		Additional Site Description
teg		Latitude	Longitude	State	Waterbody	Location	NSQ	D	PPC	PPNC	WP	Ring	Sile	Ind	POTW	Urben	Agri	(Facilities in the vicinity of the sampling site)
v	2618	39:24:40N	084:33:14W	ОН	Hamilton Canal	Hamilton	[х			X				х	Canal off G. Miami R.; Appleton Paper; Aviation plant; steel;
							1									1		hydro-power; Superfund site
v	3132	39:17:36N	082:55:48W	ОН	Scioto River	Chillicothe			х				Ż	х				Mead Corporation on Paint Creek; Ind.: inorg. chem. & pest.; Superfund
																		site
·	3135		091:30:38W	1	Chippewa River	Eau Claire			1	X								Pope and Talbot (deinking)
	3136	-	091:13:18W		Flambeau River	E. Ladysmith				X							•/	Pope and Talbot (deinking)
- 1	3137	1	090:26:4 FW		Flambeau River	Park Falls				x					X		x	Flambeau Paper; Ag.: croplands and grazing fields
1	2429		088:03:30W		Fox River	DePere Dam			x	v				х	X X	x		Fort Howard, James River, Green Bay Pkg., Nicolet Paper, Champion Kerwin Paper Company (deinking), Gladtfelder, WI Tissue, Kimberly Cla
	3138	,	088:22:18W		Fox River	Appleton			1	X X					x			Gladtfelder, WI Tissue Mills, Kerwin Paper (historical PCB contamination
	3140		068:27:34W		Fox River Fox River	Lk ButteD.Morts Oshkosh				x								Ponderosa (deinking)
	3143 3144		089:31:00W		Fox River, upper	Portage			[^				х	х		х	Historical PCB contamination
· •	2422		089:27:30W		Lake Superior	Ashland			x					~	^	ľ	~	James River-Dixie Northern (deinking); rural
	3134		068:08:45W		Manitowoc River	Chilton			n					х	х		х	Incinerator; H2O softener plant; Ag.: croplands
· [3141		087:53:54W	1	Milwaukee River	Milwaukee								x	x	x		Ind.: metals (historical PCB contamination); 300-400 Industrial discharges
· []	2427		087:44:50W	1	Peshtigo R. Harbor				x						x			Badger Paper Mills, (indirect)
· 1	3142		087:47:04W		Sheboygan River	Kohler							х	х				Superfund site (historical PCB contamination)
v I:	3110		092:46:00W		St Croix River	Hudson												Anderson Windows; wood treatment plant
v :	2,397	45:37:27N	089:25:14W	wi	Wisc. R/Boom Lak	c Rhinclander		х										Upstream of paper mills
v L:	2608	44:16:00N	089:53:00W	wi	Wisconsin River	U. Penteawell Fi			x					х	х		Х	Nekoosa, Fort Edwards, Consolidated Kraft; Vulcan mat. (rubber &
																		plastic); same as 3106
v :	3106	44:16:00N	089:53:00W	WE	Wisconsin River	U. Pentenwell Fl			X					х	х		Х	Nekoosa, Fort Edwards, Consolidated Kraft; Vulcan mat. (rubber &
																		plastic); same as 2608
V :	3107	45:01:20N	089:39:09W		Wisconsin River	Brokaw			X									Wausau Paper (sulfite mill)
	3108		089:40:00W		Wisconsin River	Merrill				х								Ward Paper (deinking)
- 1	3109		089:37:45W		Wisconsin River	Wausau								х				Wood treatment plant site is between paper mills.
	3145		089:43:56W	1	Wisconsin River	Mohawskin				х						1		Rhinelander Paper Company
	3146		089:38:17W	1	Wisconsin River	Rothschild			x								Х	Weyerhaeuser, half dozen small mills; Ag.: croplands
1	2023		094:17:54W		Arkansas River	Van Buren	х							X	X	ì	v	
	3060		092:06:38W		Arkansas River	Little Rock								х	x	ļ	X X	International Paper Company, wooded area; Ag.: croplands
	3062		091:43:56W		Arkansas River	Pine Bluff			x			x		x	x	x	~	Lion Oil Company
	3061 3078		092:39:00W 092:07:20W		Bayou DeLoutre Bayou Meto	El Dorado Jacksonville						^	x	^		^		Superfund site (dioxins); rural; wooded area
	3443		091:31:00W		Bayou Meto	Reydell							^	х	x		х	Downstream about 30 miles of the Jacksonville site (3078)
	2015		091:14:15W		Mississippi River	Arkansas City	х		x					^	^		x	Potlatch Corporation; Ag.: croplands
	2018		092:12:45W	1	N. Sylamore Creek		^	x	^								~	Same as 3073
	073		092:07:05W		N. Sylamore Creek			x										Same as 2018
	2016		094:02:28W		Red River	Index	x	••	x						х		x	Nekoosa Edwards Paper Company
	3452		094:06:00W		Red River	Index			x					х	••		x	Nekoosa Paper; lime and gravel mines; Ag.: crop and grazing lands
	3077		094:21:49W		Rolling Fork River												x	Wood treatment plant on Bear Creek
	2017		093:59:58W		Sulphur River	Texarkana	x		x									International Paper Company in Texas
	3188		093:25:00W	•	Апасосо Вауоц	Deridder			x								x	Boise Southern Co. (Boise Cascade); rural; Ag.: cropland
			091:43:00W	[Bayou Bonne Idee												X	HCB use in agriculture

				1			<u> </u>				P1	UNT SOU	RCES			NONP	OINT	
EFA	plante	ļ								• • • • •			NPL	Other				Additional Site Description
Reg		Latinda	Longitude	State	Waterbody	Lecation	NSQ		PPC	PPN	: WP	Ring	Site	Jud	POTW	Urben		
VI	3066	30:12:00N	093:17:00W	LA	Bayou D'Inde	Sulfur						х					х	Citgo Petroleum Corporation; Ind.: chem.
VI	3442	30:02:36N	090:22:27W	LA	Bayou Labarche	Norco						х		х				Shell and Norco Refinerics; Shell chemical plant
VI [3353	32:31:00N	091:54:00W	LA	Bayou LaFourche	Bastrop			X						х	1	х	International Paper Company; rural
VE	3063	30:06:00N	093:20:00W	LA	Calcasicu River	Moss Lake	1					х		х	х	X		Conoco, Inc.; Ind.: chem.
VI	3092	32:05:00N	092:47:00W	LA	Dugdemona River	Hodge				х							х	
VI [3352		091:51:00W	LA	Lake Irwia	Start											х	Above Bayou LaFourche. This dammed water feeds Wham Brake.
	3064		090:02:00W		Lake Pontchartrian	New Orleans								х	х	X		
VI	3082	£	091:11:00W	LA	Lake Providence												X	HCB use in agriculture
	2532		091:23:45W		Mississippi River.	St. Francisville	l		X							1		Crown Zelicrbach
	3065		091:13:00W	IN	Mississippi River	Baton Rouge			x			х		X		X	~	Georgia Pacific Corporation, Crown Zellerbach; two refineries
	3066	-	091:01:00W		Mississippi River	Union								х		1	х	Ind.: multiple sources; Ag.: cropland and grazing
	3418		091:17:00W	LA	Mississippi River	Zachary	1		X							1		Georgia Pacific and James Madison Paper; rural; wooded area
	3416		092:04:00W		Ouachita River	Sterlington			X						v			Georgia Pacific and International Paper; rural; wooded area
I	3080		092:07:00W	LA	Ouachita River	Monroe			x						X X	X	X	Georgia Pacific in Arkansas; Ag.: crop and grazing lands
	2544		090:21:42W	LA	Tangipahoe River	Robert	X		~						^	ł		Same as 3425; International Paper Co. (discharges to B. LaFourche)
	3087		091:56:00W		Wham Brake Wham Brake	Swartz Swartz			X							1		Same as 3067; International Paper Co. (discharges to B. LaFourche)
	3425		091:55:00W			Swartz Terrero	·	x	^									Same as 5007, fact national 1 aper Co. (discussinges to b. Ear outcole)
· - 1	3074 3105		105:39:27W 098:31:35W	NM OK	Fort Cobb Reservoir		[^								ł	х	Ag.: croplands; golf course near the site
	3090	-	095:16:00W		Fort Gibson Res.	Pyrer Creek				х							л	Robell Tissue Mills
	3079 3079		095.16:00W		Kaw Reservoir	ryter Creek	ļ			~				х		1		Vulcan Plant in Wichita, Kansas (chemical processing plant)
· · •	2027		094:36:45W		Kiamichi River	Big Cedar	í	x	1					~		ł	х	Heavily wooded area; Ag.: cattle
	3076		094:35:00W	1	Little River	Goodwater]	~			х)		Wood treatment: Thompson Lumber, Hulfman Preserver, Nixon Bros.
·]		55.57.001	074.55.0044			CONTAINC	ļ				~							Preserver
vi	3091	33 56-00N	095:07:00W	ок	Red River		l			х								Weyerhaeuser Company
	2026		096:58:32W	ок		Durwood	x					x			х			Kerr McGee Refining Corporation, Total Petroleum, Inc.
vi I:	3069	35:41:00N	095:14:00W	OK	Webbers Falls	Muskogee	}			х					х			Fort Howard Paper Company
VI :	3064	26:11:42N	097:36:06W	ΤХ	Arroyo Colorado	Harlingen										1	х	HCB me
vi :	3085	28:58:59N	095:23:41W	тх	Brazos River	Freeport								х				At Dow Chemical outfall
vi :	3068	29:40:48N	094:58:50W	TX	Houston Ship Chnł	Morgan Point	ļ		х			х		х	х	x		Champion International and Simpson Paper; four refineries; Ag.; cropiand
vi]:	3069	27:51:30N	097:30:20W	тх	Inner Harbor	Corpus Christi						х		х	х	x		Four refineries
vi [:	3081	31:25:58N	094:33:56W	тх	Lake Sam Rayburn	Lufkin			х						х			Champion International Corporation on the Angelina River
vi [:	2280	28:57:35N	096:41:13W	тх	Lavaca River	Edna	x									l	х	
vi [:	3075	28:09:00N	096:52:00W	тх	Mcsquite Bay		l	x										
VI :	3093	31.08:00N	094:48:39W	тх	Neches River	Diboli	i			х					X			Temple-Easter, Inc. in Diboll and Borden Chemical (resin)
vr :	1070	29:59:30N	093:54:00W	тх	Neches River (tidal)	Port Arthur	l		х			х		х				Temple-Easter, Inc. in Silsbee, TX; two refineries; Ind.: chem. & pest.
		-	105:36:00W	ТΧ	Rio Grande River	El Pano						х		х	1	x		Chevron USA, Inc., El Paso Refining Company
			098:21:43W	ТX	San Antonio River	Electedorf						х		х	х	х	х	Howell Hydrocarbons
			098:02:12W	тх	So. Fork Rocky Cr.	Briggs	ļ	X										Background site
			091:47:48W	IA	Cedar River	Palo								х		Х	X	About 50 miles downstream of Waterloo
			093:40:08W	IA	Des Moines River	Des Moines		x										Upstream about 10 miles from a POTW
			093:31:29W	IA	Des Moines River	Des Moines								х	x	X		Below POTW (pretreatment plant)
VII 3	1034	41:34:53N	090:23:23W	IA	Mississippi River	Le Claire								х		X	х	Upstream of lock and dam at Davenport (above dam)

											POIN	rt soul	CES			NONP	DINT	
EPAEP	ande												NPL	Other				Additional Sties Description
Reg	,	Latitude	Longitude	State	Waterbody	Location	NSQ		PPC	 NC V	VP.	Ríny	Site	lad	POTW	Urban	Agri	(Facilities in the vicinity of the sampling site)
VII 2	191	41:15:32N	095:55:20W	IA .	Missouri River	Council Bluffs	X		1					х	х	x		Ind.: chem. and pest.; metals; hydro-power; same as 3042-opposite sides
																ł		Tiver
/11 2	190	40:36:07N	095:38:44W	IA	Nishnabotna River	Hamburg	x								х	}	Х	Same as 3036
/11 3	036	40:36:07N	095:38:44W	IA .	Nishnabotna River	Hamburg	X								х		х	Same as 2190
/11 2	194	37:32:34N	097:16:29W	KS	Arkansas River	Derby								х	х	x		Same as 3039. Below Wichita
/11 3	039	37:32:35N	097:16:29W	KS	Arkansas River	Derby								х	х	x		Same as 2194. Below Wichita
/11 2	201	36:02:30N	090:07:30W	MO	Little River Ditch 81	Hornersville	1							х	х		х	Same as 3040. Rice growing region
/11 3	040	36:02:30N	090:07:30W	MO	Little River Ditch 81	Hornersville								x	x		х	Same as 2201. Rice growing region; heavy pesticide use
/11 3	047	39:42:36N	091:21:06W	MO	Mississippi River	Hannibal								х	х	x	х	Fish collected near downtown area.
/11 3	048	38:52:33N	090:10:26W		Mississippi River	West Ation								х	х	x		Ind.: chem.; beavy metals; beavy shipping traffic
/11 3	049	37:17:46N	089:30:56W		Mississippi River	Cape Giradeau								х	x	x	х	Collected at POTW outfall. Proctor & Gamble paper products, Ag
	- 1					•												croplands
/11 3	045	39:07:52N	094:27:58W	мо	Missouri River	Kansas City								x		x		
11 2	199	39:11:14N	093:53:45W	MO	Missouri River	Lexington			1					x	x	x	X	Same as 3046
		39:44:32N	094:51:36W	мо	Missouri River	St Joseph								х				
/11 3	046	39:11:14N	093:53:45W	мо	Missouri River	Lexington								х	x	x	x	Same as 2199
/11 30	050	37:59:15N	093:48:45W	мо	Osage River	Roscoe	x										х	Ag.: croplands
	I	41:15:32N	095:55:20W	1	Missouri River	Omaha	x							х	x	x		Ind.: chem. and pest.; metals; hydro power; same as 2191 - opposite sides
																		of river
/IL] 34	043	41:08:18N	095:52:40W	NE	Missouri River	Bellevue								х		x		
			103:25:02W	NE	North Platte River	Magrew	x								х		х	
	205		096:01:18W	NE	Platte River	Louisville	x								x		x	
111 3:			106:01:00W	co	Arkanses River	Salida												Defunct wood treatment plant
-	I		104:57:30₩	co	South Platte River	Deaver								х	x	x		
/m 32			104:59:00W	co		Longmont		х										
			112:46:26W	MT	Clark Fork River	Warm Springs		^						х				
			114:21:20W	мт	Clark Fork River	Ников			x					^				Stone Container Corporation
			111:05:04W	мт	East Gallatin River	Bozeman			1					x				Stolic Container Corporation
	1		114:11:04W	MT	Goose Bay	Lakeside								x				
			108:28:12W	MT	Yellowstone River	Billings	x							^	x			
1	- 1		103:15:05₩	ND	Little Missouri R.	Watford City									^			
111 21			097:13:45W	ND	Red River	Pembiaa	X							v	x		v	Sugar haat annousing plant, annousing for Suma at 2011
			-	ND	Red River	Pembina Pembina								x		Ì	X	Sugar beet processing plant; croplands; Same as 3111
			097:13:45W											X	X	v	X	Sugar beet processing plant; croplands; Same as 2100
			096:33:45W	SD	Big Sioux River	Akron								x	X	X	X	Same as 3199
111 31			096:33:15W	SD	Big Sioux River	Akron	X							x	x	x	X	Same as 2109
311 21			103:49:48W	SD	Castic Creek	Hill City		х					••					
111 3 1			111:55:15W	UT	Jordan River	Salt Lake City							х	x		X	x	Ind.: pesticides; Superfund site (chlorobenzenes)
			105:35:45W		Laramic River	Laramic												Railroad tic treating plant (defunct)
			106:41:31W	WY	North Platte River	Alcova	X											· · · · · · · · · · · · · · · · · · ·
			113:02:00W	AZ	Gila River	Gila Bend								х	х	x	х	Cotton growing region (Near Phoenix)
			115:37:00W	CA	Alamo River	Calipatria	1										х	HCB use in agriculture
-			121: 44:00W	CA	Blanco Drain	Salinas								х			х	Multiple sources
X 3	285	33:46:00N	118:08:00W	CA	Colorado Lagoon	Long Beach	1		1					x		х		Multiple sources

1	1											INT SOU	RCES			NON	THIO	
P/Epined														Other		1		Additional Site Description
1	Latitu		Longitude	-	Waterbady	Location	NSQ		PPC	PPNC		Riny	Site	Ind	PUTW	Urba	<u>Agri</u>	(Facilities in the vicinity of the sampling site)
3273			124:11:00W		Elk Creek	Crescent City					х							McNamara & Peepe (historical PCP site)
(3286			118:17:33W		Harbor Park Lake	Harbor City	[1		v			x		x		Multiple sources
(3271			123:11:00W		Hayfork Creek	Hayfork	1				X		~					Sierra Pacific (historical PCP site)
(3272			122:21:00W	· ·	Lauritzen Canal	Richmond							x					United Heckuthorn: pesticide packaging plant in 60's (PCB's, DDT, Pb
3275			124:00:00W	CA		Arcata	1		1					X				Mollala-Arcata Sierra Pacific
(3276			124:00:00W	ſ	Mad River Slough	Arcata			1					X X		1		
(3289) (3451)			121:46:00W	CA		Moss Landing									x			Multiple sources POTW: Tapia Creek; grazing land (horses)
				CA	Mouth of Malibu Cr				1				v	v	~		[McCormick and Batter (wood preservers); Superfund site (solvents)
3354			121:18:00W		New Mormon Sigh New River	Stockton Westmoreland	1		1				x	X X		X	x	
3355	1		115:40:00W										x	x		x	x	Multiple sources (HCB use) McCormick & Bauter (wood preservers); Ag.: croplands & orch.;
. 3355	37:30	UUN	121:19:00W		Old Mormon Slough	Stockton							~	~		1		Superfund site (solvents)
3290	37.57	non	121:20:00W	CA	Port of Stockton	Stockton							х	x				McCormick & Baster (wood preservers); Superfund site (solvents)
3274	1		121:20:00W	CA	Rowdy Creek	Smith River	}				х		^	^				Arcata Lumber Company (historical PCP site)
3357			121:44:00W	CA		Antioch			x		~			х			x	Gaylord Container Corp.; Ind.: chem.; refinery; power plant; Ag.:
)				Saciancia Dena	Annoca			1					~			^	orchards and croplands
3267	40.27	00N	122:11:00W	CA	Sacramento River	Anderson	1		x							1		Simpson Paper Company; wooded area
3270			122:11:00W	CA	Sacramento River	Red Bluff				х						1	x	Diamond International (recycled paper); Ag.: croplands and grazing
3287			118:06:00W	CA		Long Beach				x								Simpson Paper Company, Pacific Coast Paper
2748			119:30:00W	CA		Santa Paula	x											Same as 3281
3281	34:20:	ON	119:04:00W	CA	Santa Clara River	Santa Paula	x										[Same as 2748
3264	33:54:	27N	118:31:28W	CA	Santa Monica Bay	Los Angeles						х		X	х	x	ļ	El Segundo Refinery; Hyperion POTW outfall; multiple sources
3450	33:55:	00N	118:28:00W	CA	Short Bank (Pac. O.)	Los Angeles									х			POTW: Hyperion outfall
3269	37:43:	00N	121:09:00W	CA		Ripon			ļ					х				Multiple sources
3278	39:24:	00N	123:06:00W	CA	Upper Eel River	Potter Valley					х							Louisiana Pacific (historical PCP site)
2037	19:46:	15N	155:05:33W	HI	Honolii Stream	Hilo		х									x	Ag.: sugar cane growing (pesticides)
3261	21:18:)0N	157:59:00W	н	Pearl Harbor	Middle Loch			ļ				х					Combustion sources; Superfund site (solvents)
3262	22:04:	ION	159:22:30W	HI	Wailua Paelekaa St.	Kauai			i								- 1	Agent Orange test site (not a designated superfund site)
2776	35:40:	0N	114:40:00W	NV.	Colorado River	Biw Hoover Dr	x									!		
3238	60:58:	ION	149:27:35W	AK	Bird Creek	Bird		х								•		
3241	61:13:	0N	149:51:21W	AK	Ship Creek	Anchorage			ļ				х	х		x		Salvage yard with runoff of PCB; Superfund site; landfill
3246	57:03:	0N	133:14:00W	AK	Silver Bay	Sitka			x									Alaska Pulp Company
2070	61:32:4	12N	151:30:45W	AK	Susiana River	Susitna	х											
3244	58:41:0	ON	134:03:09W	AK	Vanderbilt Creek	Juncau			ļ					х		x		
3245	55:23:4	5N	131:44:20W	AK	Ward Cove	Ketchikan			x								- 1	Louisiana Pacific Corp. (sulfite mill); Ketchikan Pulp and Paper
3252	43:48:2	9N	117:00:15W	ID	Boise River	Parma			1					X		x	x	
3250	47:38:0	5N	116:43:15W	ID	Coeur d'Alene Lake	Coeur d'Alene								X		1	x	Ind.: silver mining
3249			116:22:06W	ID	Coeur d'Alene River									X			- X	Mining
3158			114:31:58₩	ID	Rock Creek	Twin Fails											x	
2478			115:12:06W	ID	Snake River	Kings Hill	х										x	
3256			117:02:04W	ID	Snake River	Lewiston			х							ļ	x	Potlatch Corporation
			116:33:35W	ID		St. Marie		X										
3203	45:37:1	9N 🗆	122:45:20W	OR	Columbia River	Portland								х		X		

TABLE	B-3	(Cont.)
-------	-----	---------

							Ì	— I			PO	INT SO	RCES			NONI	OINT	
EPAE	pisode			1				ł	-				NPL.	Other		f		Additional Site Description
Reg	#	Latitude	Longitude	State	Waterbody	Location	NSQ	В	PPC:	PPNC	WP	Rfny	Site	Ind	POTW	Urban	Agri	(Facilities in the vicinity of he sampling site)
x []	3216	45:51:53N	122:47:39W	OR	Columbia River	St. Helens			x					Х	х	x	X	Boise Cascade (indirect)
X []	3218	46:09:21N	123.24:00W	OR	Columbia River	Wauna	i		х								X	James River Corporation in Clatskanie
x []	3219	45:39:10N	120.56:00W	OR	Columbia River	Dalles								Х	х		X	Hydro-power (PCB's generated); food processing plant; Ag.: orch. &
ļ							Ļ										1	croplands
x :	3201	45:36:06N	122:43:57W	OR	Columbia Slough	Portland	:		Х					х		x		Five paper mills using CI bleach, two paper mills not using CI bleach;
	i			1														shipyard
x :	3208	44:03:30N	116:57:00W	OR	Matheur River	Ontario	ł.	ł									X	
x :	3212	43:46:59N	117:03:09W	OR	Owyhee River	Owyhee	ł										X	
x :	3205	45:26:33N	123:14:07W	OR	Tualatin River	Cherry Grove	1	x										
X :	3215	45:23:40N	122:45:30W	OR	Tualatin River	Cook Park	1							Х	х]	X	Minor industries; Ag.: croplands
x :	3206	45:34:53N	122:44:39W	OR	Willamette River	Portland								х	х	X	x	Ind.: chem.; smelters; shipyards; timber
X :	3217	44:23:16N	123-14:03W	OR	Willamette River	Hallsey			х							ļ	X	Hallsey Pulp Company (Pope and Talbot); Ag.: croptands
x }:	3213	45:17:17N	122:58:03W	OR	Willamette River	Newburgh Pool			х						х	1	X	Deinking plant; other pulp mills upstream; Ag.: croplands
X '	3437	45:17:38N	122:46:08W	OR	Willamette River	Wilsonville	ļ										X	
x :	3226	47:23:30N	122:37:38W	WA	Buricy Lagoon	Purdy	i						х			ļ		Below transformer and scrap metal salvage yard; below Superfund site
i				i												l I	1	(PCB)
x	14.18	46:15:36N	123:57:57W	WA	Columbia R. (lower)	Estuary	1							х				
x ¦∶	1220	46:07:50N	122:59:27W	WA	Columbia River	Longview	i		х							}	X	Weyerhaeuser and Longview Fiber Company; Ag.: croplands & grazing
																1	i	fields
		46:06:00N	118:55:00W	WA	Columbia River	Tri Cities	•		х								X	Boise Cascade; Ag.: croplands & grazing fields
	1222		122:24:42W	WA	Columbia River	Camas	1		х							ļ		Crown Zelierbach (James River Corporation)
X []			123:33:32W		Columbia River	Woody Island			Х					x		X		Boise Cascade and Weyerhaueser, Longview Fiber downstream
	-				Columbia River	Kalama		i	х					х		X		Boise Cascade and Weyerhaueser, Longview Fiber downstream
					Columbia River	Deer Island			х					х		X		Boise Cascade and Weyerhaueser, Longview Fiber downstream
x :	3163	47:16:12N	122:25:50W	WA	Commencement Bay	Tacoma	i		х			х	х	х	x	X	X	
							I									Į		Superfund site (Commencement Bay)
					Grays Harbor	Hoquiam	1			х						ļ		ITT Rayonier, Inc. (sulfite mill, nonchlorine)
					Grays Harbor	Cosmopolis	i		х							:	i	Weyerhaeuser Company (sulfite mill, chlorine)
					Hylebos Waterway	Tacoma		(х				x	х		X		Champion Paper Company; heavily industrialized; Superfund site
					Oakland Bay	Shelton	:							х			Х	Simpson Pulp Mill (wood overlay products)
					Port Angeles Harbor		i i		х					х		: •		ITT Rayonier, Inc.
1				s	Port Townsend	Port Townsend				х							1	
				÷	Puyallup River	Puyallup	' X	Ì							х		х	Simpson Paper Company (downstream)
		-	122:02:50W			Monroe	X								Х		х	Light agriculture; timber
x [1	3223	48:01:52N	122:13:00W	WA	Steamboat Slough	Everett	i.		х				х			1		Wey, accuser Company and Scott Paper Company; Superfund site
				i			i											(solvents)
					Whatcom Waterway				х							:		Georgia Pacific (sulfite process)
					Yakima River	Richland	1							х		X	X	
x 🗆	3230	47:11:10N	120:02:30W	WA	Yakima River	Cle Elum	i	xi								ļ		

APPENDIX B-4

Dioxins/Furans: Episode Numbers Used in Statistical Tests (By Category)

NASQAN (NSQ)		3042	NE	3261	HI
Episode	State	3050	MO	3272	CA
2015	AR	3104	PA	3414	PA
2016	AR	3199	SD	3415	PA
2017	AR	3281	CA	Total	7
2023	AR	3308	NY		
2026	OK	Total	40	POTW	
2070	AK	;		Episode	State
2098	WY	AGRICULTURE	(AG)	2122	MT
2105		Episode	State	2152	FL
2122	MT	2280	ΤX	2322	NY
2126	MS	2358	ME	2432	MI
2148	FL	2478	ID	2544	LA
2151	FL	3050	MO	3308	NY
2152	FL	3082	LA	3450	CA
2191	ĪA	3083	LA	3451	CA
2205	NE	3084	TX	Total	8
2220	VA	3099*	DE		
2228	VA	3105	OK	BACKGROUND (B)
2246	WA	3158*	ID	Episode	State
2247	WA	3170	AL	2027	OK
2280	TX	3171	AL	2037	HI
2298	TN	3180	GA	2110	SD
2309	AL	3193	VA	2139	NC
2322	NY	3208	OR	2216	PA
2358	ME	3212	OR	2283	TX
2430	MI	3282	CA	2301	TN
2431	MI	3352	LA	2379	IL
2432	MI	3437	OR	2387	MN
2437	MN	Total	19	2397	WI
2439	OH			2435	MI
2478	ID	SUPERFUND (N	(PL)	2651	NJ
2544	LA	Episode	State	3001	MN
2776	NV	3078	AR	3022	ME
3036	IA	3097	DE	3023	ME
3041	NE	3226	WA	3027	ME

 TABLE B-4

 Dioxins/Furans: Episode Numbers Used in Statistical Tests (By Category)

No data available for dioxins/furans. Number of data values varies by chemical.

TABLE B-4 (Cont.)								
3028	ME	3080	LA	3341	MS			
3037	IA	3081	TX	3342	NC			
3073	AR	3088	LA	3343	NC			
3074	NM	3107	WI	3344	NC			
3075	TX	3118	MI	3345	NC			
3166	NC	3122	MI	3346	NC			
3169	AL	3146	WI	3347	SC			
3178	GA	3150	MA	3348	SC			
3179	GA	3151	MA	3349	SC			
3187	SC	3152	NH	3350	TN			
3200	CO	3192	WA	3351	TN			
3205	OR	3217	OR	3353	LA			
3238	AK	3218	OR	3395	NC			
3248	ID	3220	WA	3403	TN			
3309	NY	3221	WA	3404	TN			
3320	NY	3222	WA	3416	LA			
3430	NJ	3224	WA	3418	LA			
Total	33	3237	MT	3420	PA			
		3245	AK	3421	VA			
PULP & PAPER		3246	AK	3422	VA			
(Chlorine) (PPC)		3256	ID	3423	VA			
Episode	State	3260	NY	3424	VA			
2015	AR	3267	CA	3425	LA			
2016	AR	3303	NY	3435	MS			
2017	AR	3316	PA	3452	AR			
2138	NC	3317	MD	Total	78			
2142	FL	3318	PA					
2294	GA	3328	AL	INDUSTRY/URB	AN			
2302	AL	3329	FL	(IND/URB)				
2304	AL	3331	FL	Episode	State			
2355	ME	3332	FL	1994	MI			
2385	MN	3333	FL	2023	AR			
2422	WI	3335	GA	2057	IN			
2427	WI	3336	GA	2060	IN			
2532	LA	3337	GA	2191	IA			
2721	ME	3339	KY	2210	DC			
2725	ME	3340	MS	2215	PA			
3062	AR			2220	VA			
No data availab	No data available for dioxins/furans. Number of data values varies by chemical.							

TABLE B-4	(Cont.)
-----------	---------

2220	VA	3134	WI	3297	NY
2225	VA	3141	WI	3298	NY
2227	VA	3144	WI	3299	NY
2309	AL	3147	DC	3300	NY
2328	NY	3149	DE	3301	NY
2329	NY	3164	NC	3302	NY
2410	MI	3165	NC	3306	NY
2416	OH	3168	AL	3307	NY
2500	WV	3172	AL	3310	PA
3024	ME	3174	FL	3311	WV
3025	ME	3182	KY	3313	WV
3034	IA	3188	TN	3314	WV
3035	IA	3189	TN	3315	PA
3038	IA	3190	TN	3321	NY
3039	KS	3198	CO	3322	NY
3040	MO	3199	SD	3324	NY
3042	NE	3203	OR	3326	NY
3043	NE	3206	OR	3327	NY
3044	MO	3219	OR	3411	NY
3045	MO	3227	WA	3412	NY
3046	MO	3231	WA	3426	NJ
3047	MO	3234	MT	3428	NJ
3048	MO	3235	MT	3432	PR
3049	MO	3236	MT	3438	WA
3060	AR	3244	AK	3443*	AR
3064	LA	3249	ID	Total	106
3066	LA	3250	ID		
3079	OK	3252	ID	PULP & PAPER	
3085	TX	3258	VA	(No Chlorine) (Pl	
3094	PA	3269	CA	Episode	State
3100	MD	3275	CA	3089	OK
3101	PA	3276	CA	3090	OK
3103	MD	3283	CA	3091	OK
3111	ND	3285	CA	3092	LA
3113	IL	3286	CA	3093	TX
3115	IL	3289	CA	3108	WI
3120	MI	3296	NY	3112	MN
				3114	IL
No doto origila	ble for diamine (fr	mone Number of date u	aluas maios bu	abamiaal	

* No data available for dioxins/furans. Number of data values varies by chemical.

TABLE B-4 (Cont.)

-

3135 3136	WI WI	REFINERY/OTH INDUSTRY (R/I)	
3130	WI	Episode	State
3138	WI	2026	OK
3140	WI	2380	IL
3140	WI	2380	IL IL
3145	WI	3061	AR
3184	MS	3063	LA
3191	WA	3069	
3270	CA	3071	TX
3287	CA	3072	TX
3294	WA	3086	LA
3330	FL	3095	PA
3360	AL	3096	PA
3375	GA	3125	MN
3376	GA	3183	KY
3377	GA	3264	CA
3378	GA	3312	wv
3401	TN	3431	PR
Total	27	3434	NJ
		3442	LA
OOD PRESER	VERS	3444	TN
(P)		3446	KY
Episode	State	Total	20
3076	OK		
3077	AR		
3110	WI		
3167	NC		
3173	FL		
3196	WY		
3197	CO		
3271	CA		
3273	CA		
3274	CA CA		
2220	(`A	1	
3278 Total	11		

* No data available for dioxins/furans. Number of data values varies by chemical.

APPENDIX B-5

Xenobiotics: Episode Numbers Used in Statistical Tests (By Category)

NASQAN (NSQ)		3041	NE	3261	HI
Episode	State	3042	NE	3272	CA
2015	AR	3050	MO	3414	PA
2016	AR	3104	PA	3415	PA
2017	AR	3199	SD	Total	6
2023	AR	3281	CA		
2026	OK	3308	NY	POTW	
2070	AK	Total	40	Episode	State
2098	WY			2122	MT
2105	ND	AGRICULTURE	(AG)	2152	FL
2122	MT	Episode	State	2322	NY
2126	MS	2280	TX	2432	MI
2148	FL	2358*	ME	2544	LA
2151	FL	2478	ID	3308	NY
2152	FL	3050	MO	3450*	CA
2191	IA	3082	LA	3451*	CA
2205	NE	3083	LA	Total	8
2220	VA	3084	TX		
2228	VA	3099	DE	BACKGROUND (B)
2246	WA	3105	OK	Episode	State
2247	WA	3158	ID	2110	SD
2280	TX	3170	AL	2139	NC
2298	TN	3171	AL	2216	PA
2309	AL	3180	GA	2283	ΤX
2322	NY	3193	VA	2397	WI
2358*	ME	3208	OR	2435	MI
2430	MI	3212	OR	2651	NJ
2431	MI	3282	CA	3022	ME
2432	MI	3352	LA	3023	ME
2437	MN	3437*	OR	3028	ME
2439	OH	Total	1 9	3037	IA
2478	ID			3073	AR
2544	LA	SUPERFUND (N	(PL)	3074	NM
2776	NV	Episode	State	3075**	TX
3036	IA	3097	DE	3166	NC
		3226	WA	3169	AL

 TABLE B-5

 Other Xenobiotics: Episode Numbers Used in Statistical Tests (By Category)

* No data available for other xenobiotics. Number of data values varies by chemical.

** Data available for mercury only.

TABLE B-5 (Cont.)							
3178	GA	3340	MS	3258	VA		
3200	CO	3341	MS	3269*	CA		
3205	OR	3342	NC	3275**	CA		
3238	AK	3348	SC	3276	CA		
3248	ID	3395	NC	3283	CA		
Total	21	3403	TN	3285	CA		
		3416*	LA	3286	CA		
PULP & PAPER		3418*	LA	3289	CA		
(Chlorine) (PPC)		3420	PA	3296	NY		
Episode	State	3421	VA	3298	NY		
2017	AR	3422	VA	3306	NY		
2138**	NC	3423	VA :	3307	NY		
2294	GA	. 3424	VA	3315	PA		
2302	AL	3425	LA	3411	NY		
2422	WI	3435	MS	3412	NY		
2532	LA	Total	42	3426	NJ		
2721	ME			3428	NJ		
2725	ME	INDUSTRY/URBAN (IND/URB)		3438*	WA		
3107	WI			Total	35		
3118	MI	Episode	State				
3122	MI	3043	NE	PULP & PAPER (No Chlorine) (PPNC)			
3151	MA	3044	MO		-		
3152	NH	3045	MO	Episode	State		
3192	WA	3079	OK	3090	OK		
3222	WA	3085	TX	3091	OK		
3224	WA	3101	PA	3108	WI		
3237	MT	3120	MI	3112	MN		
3245	AK	3149	DE	3135	WI		
3246	AK	3172	AL	3136	WI		
3260	NY	3174	FL	3140	WI		
3267	CA	3189	TN	3143	WI		
3303	NY	3190	TN	3145	WI		
3316	PA	3203	OR	3191	WA		
3318	PA	3234	MT	3287	CA		
3332	FL	3235	MT	3294	WA		
3335 3336	GA	3236	MT	3330	FL		
	GA	3244**	AK	3360	AL		

No data available for other xenobiotics. Number of data values varies by chemical. Data available for mercury only. *

* *

TABLE B-5 (Cont.)

3360 3376 3377 3401 Total WOOD PRESER	AL GA GA TN 17 VERS	
(WP) Episode 3076 3077 3110 3167 3173 3196 3197** 3271 3273 3274 3278 Total	State OK AR WI NC FL WY CO CA CA CA CA CA 11	
REFINERY/OTH INDUSTRY (R/I) Episode 3061 3063 3072 3095 3446 Total		

* No data available for other xenobiotics. Number of data values varies by chemical.

** Data available for mercury only.

United States Environmental Protection Agency (WH-551) Washington, DC 20460

Official Business Penalty for Private Use \$300

