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S U M M A R Y

Eight different linear regression models were tested for ability to predict
timber inventory for four tree species in Northeast Texas. Sample trees were
selected for the Forest Survey by the variable plot (prism) method. Each model
was tested using two weighting schemes for weighted least squares regression-
probability weights and optimal heteroscedasticity-correcting weights. In gen-
eral, the probability weights performed best for inventory prediction. Spurr’s
combined formula model, incorporating DsH,  fitted with probability weights
made the best predictions.

May 1987



A Comparison of Tree Volume Estimation
Models for Forest Inventory

John F. Kelly and Roy C. Beltz

INTRODUCTION

Developing forest inventory estimates often in-
volves predicting tree volumes from only diameter at
breast height (d.b.h.) and/or merchantable height.
Prediction equations based on these two factors from
a small number of intensively measured trees can
lead to significantly different inventory estimates.
The nationwide Forest Survey is particularly suscep-
tible to these effects because of the interval between
successive surveys and the importance of estimating
inventory trends.

The principal goal of the Forest Survey at its incep-
tion in 1928 by the McSweeney-McNary  Act was to
estimate the total volume and area of the forest re-
source. As user demands become more intense, con-
cerns center more on inventory components such as
species and d.b.h. classes, and estimates of change,
i.e., growth and removals. But these estimates are not
nearly as reliable as those for the total inventory
since they deal with smaller numbers of trees or rela-
tively small changes in volume. Estimates of change
deal with differences in volumes of those surviving
trees which were measured in previous surveys and
the addition or removal of trees from the inventory.
The increasing concerns for reliable estimates of in-
ventory components and volume changes requires
that Forest Survey volume estimation techniques be
as accurate as possible.

Techniques may differ enough between successive
surveys to cloud the change statistics. While proce-
dures are standard, slight variations creep in as sur-
vey analysts continually try to improve their meth-
ods. Volume equations, for example, may change
slight!y !I!-%?  to a chmge ifi the moclel or estimat.inn
methods. Past volumes are usually recalculated to
new standards (equations) for comparison, However,
the subtle effects of these volume equations can affect
evidence of inventory trends.

Data from the 1985 Forest Survey of east Texas
were used to investigate eight linear models and two
weighting schemes in predicting timber inventory
volumes. Specific objectives of the study were to:
(1) evaluate linear models incorporating d.b.h. and

merchantable height as explanatory components; (2)
evaluate linear models incorporating d.b.h. only; and
(3)  evaluate two alternative weighting schemes for es-
timation of linear regression parameters: (a) probabil-
ity-based weights, which emphasize compatibility
with sample selection probabilities, and (b)  optimal
heteroscedasticity-correcting weights, which empha-
sizes conformance to a key assumption of the general
linear regression model. The basis for evaluations
were comparisons of timber inventory predictions
with estimates developed from Smalian formula tree
volumes and sample probabilities for numbers of trees
per acre.

LINEAR REGRESSIONS AND TIMBER
INVENTORY SAMPLES

The linear regression model, with parameters esti-
mated by ordinary least squares (OLS) techniques, is
often used as a convenient means of estimating tree
and inventory volumes. This classical linear regres-
sion model involves specific assumptions, some of
which may be violated by application to timber inven-
tory situations. Furthermore, effective use depends on
the correct specification of the models; i.e., a linear
relationship should exist between predicted variables
(such as tree volume) and independent variables
(d.b.h., height, etc.).

The general linear regression model has the form:

Yj = PO + pIX,i + @2X‘& + .*.  + Ej

where Y = dependent variable;
X = indepandent  vttri&lc?;
p = regression parameters;
E = variation not explained by the regression

model (error term).
The six basic assumptions regarding application of
the general linear regression model are: (1) the mean
of the error term (E) is zero; (2) the variance of the
error term is constant; i.e., the data are homoscedas-
tic; (3) the error terms for different observations are
uncorrelated; (4) independent variables are non-
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stochastic; (5) no perfect collinearity exists between
independent variables (in models containing two or
more independent variables); and (6) the number of
observations is greater than the number of independ-
ent variables.

Assumption 2 is commonly violated when using lin-
ear regressions to predict tree volume. The absence of
homoscedasticity, i.e., heteroscedasticity, occurs
when samples include a range of tree sizes, from small
trees to large ones. Since the height and form of large
diameter trees may vary considerably, due to various
stand and site factors influencing the growth, the vol-
ume will likewise vary. Small diameter trees that are
shorter and contain less total volume will usually
vary less in volume. Tree samples selected to estimate
timber inventory for a variety of forest conditions
thus may not be homoscedastic because of volume
variance attributable to factors not explicit in regres-
sion models. Figure 1 illustrates the variance of total
tree volume by diameter class of sample trees in this
study.

If heteroscedasticity is, in fact, present in a sample
of trees, there are some consequences from using OLS
techniques to estimate linear regression parameters.
Fortunately, the regression coefficients estimated
under these conditions are not biased, and their esti-
mates tend to converge on the true parameters as the
sample size increases. The variances of the coefficient
estimates will, however, be larger than those esti-
mated for homoscedastic samples. Furthermore, the
variances for the coefficients calculated using stand-
ard OLS methods may be biased, appearing to be
smaller than their actual value. The extreme conse-
quence posed by this situation is the rejection of the
hypothesis that regression coefficients are equal to
zero when the hypothesis is actually true. Barring

this potential problem, however, the presence of het-
eroscedasticity will still allow unbiased estimates of
regression coefficients, but these estimates will not
have minimum variance.

The use of weighted least squares is a common rem-
edy for heteroscedasticity. This technique involves
multiplying the regression equation by a factor (say,
Zi) which equalizes the variance of the error term for
the sample data. For instance, if it is determined that
the variance of the error term is proportional to the
square of an independent variable, then the appropri-
ate weighting factor would be the inverse of the
squared variable. A technique for determining correct
weighting factors will be discussed later.

Weighting techniques may alter regression results
when sample character%tics vary according to the
weighting factors. This may occur when the inverse of
tree diameter (or some transformation such as diame-
ter squared) is used as a weighting factor. In this case,
the influence of large diameter trees in calculating
regression parameters will be discounted, while the
influence of small diameter trees will be amplified.
Since the relationship between volume and predictive
variables (diameter, height) may vary depending on
tree diameter, the use of weights related to diameter
may skew results.

While the use of weights related to the inverse of
tree diameter may potentially skew regression re-
sults, the actual outcome will depend on the specific
relationship between the sample and weights se-
lected. The selection of weights is particularly impor-
tant for probability-related samples where the num-
ber of large trees selected is greater than that
obtained from simple random samples. Because of the
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Figure L-Comparison of tree volume variance. Average variance by diameter class, regression
sample.
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emphasis on large trees in a prism sample, the use of
compatible weights is necessary to fully realize the
advantages of the sample.

In the special case where the weighting variable Zi
is the number of trees per unit area represented by a
sample tree, the product of the weight and tree vol-
ume (YiZi) would be the volume per unit area repre-
sented by that tree. These weights would then be com-
patible with the probability of tree selection. For
prism samples, the number of trees represented by
each sample tree is a linear function of the inverse of
the squared tree diameter.

Because of the possible consequences posed by cor-
recting for heteroscedasticity in a prism sample, it is
not clear if the procedure is desirable. The weights for
correcting heteroscedasticity will likely be quite dif-
ferent from probability weights. Researchers using
probability-based homoscedastic samples have not
agreed on the desirability of using probability
weights. DuMouchel  and Duncan (1983) indicated
that probability weights may not be desirable in all
situations. Holt, Smith and Winter (1980) found that
probability weighted regressions provided good re-
sults as long as selection probabilities were related to
an independent variable in the model. The current
problem, however, deals with probability-based het-
eroscedastic sample data and with procedures desir-
able for timber inventory estimation.

METHODS

Periodic forest surveys are conducted by the Forest
Inventory and Analysis (FIA) unit of the Southern
Forest Experiment Station, USDA-Forest Service,
as a part of a nationwide forest survey. Plot locations
are at the intersections of a three-mile grid. Informa-
tion was collected for Northeast Texas according to
standard procedures (USDA Forest Service 1985).
Plots consist of 10 point-samples with point centers
systematically placed on a grid 66 feet apart. Sample
trees are selected using a 37.5 basal area factor prism.
For each tree, diameter is recorded at l-foot stump,
d.b.h., mid-saw-log height, saw-log height, mid-bole
height, and merchantable height (fig. 2). Mer-
chantable limits are 5 inches d.b.h., and 4 inches top
diameter outside bark (d.o.b.) for poletimber. Soft-
wood sawtimber limits are 9 inches d.b.h. and 7 inches
top d.o.b.; hardwood sawtimber limits are 11 inches
d.b.h. and 9 inches top d.o.b. Top merchantability lim-
its may also be reached where deformities or other
defects are present. Bark thickness at d.b.h. is meas-
ured and deducted to get d.b.h. inside bark. Upper
stem bark values are derived from the ratio of
d.b.h.i.bJd.b.h.0.b. according to procedures in STX
(Grosenbaugh 1964). Cubic foot volume for each sec-
tion in each tree is computed using the Smalian for-
mula. These sectional volumes are then summed for

HEIGHT

I-+ ,D.B.H. (4.5 FT)

Figure 2.-Measurement points on FIA tally trees.

each tree to obtain total tree volume; these calculated
volumes are referred to as “actual” volumes through-
out this paper.

Data from 676 forests plots in the Northeast Texas
survey region (fig. 3) were screened for four common
species-shortleaf pine (Pinus echinata), loblolly pine
(Pinus  taeda), sweetgum (Liquidambar  styraciflua),
and post oak (Quercus stellata var. stellata).

Each tree had to qualify as growing stock1 and be at
least 5 inches d.b.h. and no greater than 28 inches
d.b.h. Plots were randomly allocated to one of two

‘Growing stock is defined as trees that contain, or potentially
contain, at least 1 la-foot saw log of minimum grade specification;
rough culls, rotten culls, and dead trees do not qualify as growing
StOCk.
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Figw s 3.-Plot locations of sample trees, Northeast Texas survey
region.

data sets. Qualifying trees in one data set were used
to develop the equations. The other set was used to
test them. Sample sizes for the two data sets are given
in table 1.

Individual tree gross volumes were used to tit 8
linear regressions using (1) probability weights for
individual tree selection, and (2)  optimal weights for
correcting heteroscedasticity. Regression models
evaluated were:

1. CF = l.&-, + &D + &D2 + l&H  f E
2. CF = BiD + P2D2 + &H + E
3. CF = PO + &D2H + E
4. CF = &D2H + E
5. CF = PO + &D + p2D2 + E
6. CF = PO + P1D3 + E
7. CF = PO + &D2 + E
8. CF = P1D2 + E

where
CF = gross cubic foot volume in the merchantable

bole;
D = d.b.h. outside bark;
H = merchantable height;
pi = coefficients to be estimated;

E = error term.
Equations 2, 4, and 8 are identical to 1, 3, and 7,

respectively, except for the intercept (&,) term. Equa-
tions l-4 include merchantable height and d.b.h.;

Table L---Number of trees in sample data sets, Northeast Texas

Shortleaf pine
Loblolly  pine
sweetgum
Post oak

Regression sample Test sample

1,131 1,059
1,133 1,260

5 8 0 618
371 390

equations 5-8 include only d.b.h. Equation 3 is
Spurr’s combined variable formula, and equation 4 is
the constant form-factor equation (Spun: 1952). Equa-
tion 5 is a 2nd degree parabolic formula which was
used by Cunia (1964).

Weighted least squares were used to estimate coef-
ficients. Probability weights used were 1/D2;  the nnm-
ber of trees per acre represented by each tree in a
prism sample is a linear function of 1/D2.  Optimal
weights for correcting heteroscedasticity were deter-
mined using a maximum likelihood function as dis-
cussed below.

The test sample was used to simulate the effect of
the equations on timber inventory estimation. Re-
sults were compared to Smalian formula volumes cal-
culated from measurements by survey field crews.

DETERMINATION OF OPTIMUM WEXGHTS
FOR CORRECTING HETEROSCEDACTICITY

Squares of non-weighted regression residuals plot-
ted against predicted volumes indicated that the
residuals were an approximate function of the
squared volume. Plots of squared residuals against D2
and H further indicated that variability was an ap-
proximate function of the square of each of these vari-
ables, i.e., D4 and H2. This would suggest that weights
of the form 1/D4H2  and l/D4 would be appropriate for
correcting heteroscedasticity.

Meng and Tsai (1986) reported that these weights
(1/D4H2  and 1/D4)  have been traditionally considered
as appropriate by several sources, but the optimum
exponent for D, say, A, will vary with different sam-
ples.

Following an approach derived by Meng and Tsai
(1986) from Box and Cox (196412, the optimum
weights in the forms (1/DXHj2  and (1iDx)2  were deter-
mined for all species and all equations.

Optimum values for the exponent of D (h) were de-
termined by an iterative process which estimated the
likelihood function for different A. Separate iterations
were run for each equation; weights of the form
(1/DAHj2  were used for equations l-4, and weights of
the form (1/Dx12 were used for equations 5-8. The

%menta  (1971) presents a similar, though more general ap-
proach.



maximum value for the likelihood function indicated
that an optimum A had been found. Values for A were
incremented by .025 until an optimum value was
reached; i.e., likelihood functions were estimated for
values such as 2.5, 2.525, 2.55, etc.

The log likelihood function for X is

n
L, = $JSS,--X 2 ln(DJ+iln(n)-;--iln2*

i=l

where Lh = the maximized log likelihood for A;
SS, = the sum of squares for the error term

resulting from weighted regression;
n = the total number of trees in the sample;

In  = the natural logarithm for the variable
indicated.

After finding the value for X providing the maxi-
mum L, a confidence interval was established for A at
a probability level of 0.95 (01=.05)  as follows (Meng
and Tsai 1986):

A: Lh” - J-Q < 112 x21df,  .05

where L; = the maximized log function for the opti-
mum A;

x2iaf  ,05  = the chi-squared distribution for 1 de-
gree of freedom and a = .05.

By following these procedures for all species and
equations, the optimum values for A and confidence
intervals were produced (table 2). For this analysis
the optimum values of A were used for comparisons.

RESULTS

Regression Analysis

The F test and adjusted R2 regression statistics in-
dicate that all eight equations are effective predictors
of volume. The F test indicated that all models were
significant at the 95 percent probability level; ad-
justed R2 values were at least 38.

Plots of regression residuals (on weighted scales)
indicate that the basic assumptions of zero mean for
the error term and uncorrelated error terms hold true.

Possible collinearity of D and H in equations 1 and
2 was considered. Although the relationship between
D and H approaches linearity, it is not perfectly lin-
ear, nor particularly strong. Thus, the estimated re-
gression coefficients for equations 1 and 2 are valid
(unbiased).

Other than heteroscedasticity, no other violations
of remaining basic assumptions for linear regression
models were noted.

There were some coefficients for independent vari-
ables not statistically different from zero, all occur-
ring in fitting equation 5 and involving the D vari-
able. The use of probability weights produced 3 of the
4 instances where the D coefficient was statistically
insignificant at the .95 probability level. Alternately,
3 of the 4 optimally weighted regressions for equation
5 had D coefficients  that were statistically significant.

Negative intercept terms occurred in most regres-
sions for equations 5 and 7. The intercept term for
equation 1 (probability weighted) fitted to post oak
data was also negative.

Negative signs for D occurred in all regressions for
equations 1,2, and 5. In each of these equations D is
paired with D2; coefficients for the latter variable
were positive in all cases.

Comparison of Predicted Volumes for the Test
Sample

The test sample was used to compare predicted vol-
umes with actual volumes calculated from Smalian’s
formula. Three different criteria were used-the oc-
currence of unreasonable values (i.e., negative or zero
tree volumes), the prediction of total inventory vol-
umes within a 1 percent standard, and the prediction
of one-inch diameter class volumes within a 10 per-
cent standard. Inventory volumes were estimated by
first calculating individual tree volumes, using re-
gression coefficients, then obtaining the product of
tree volume and the number of trees per acre for the
37.5 basal area factor prism sample. Finally, values

Table 2.-Optimum d.b.h. weighting values and confia’ence  intervals for linear regressions, by species and regression muo!el

Linear
regression Weight

model variable
1 (1/D”H)2
2 (l/D”H)2
3 (1/D”Hj2
4 (1lDAH)2
5 (l/DA)2
6 MY)2
7 (l/D92
8 (imv

‘At .95 probability level.

ShortIeaf pine
2.2(2.05-2.325)
1.925(1.775-2.05)
2.075c1.9752.175)
1.95t1.852.075)
2.375(2.225-2.5)
2.525C2.3752.675)
2.325(2.2-2.45)
1.65(1.525-1.775)

Optimum values and confidence intervals1 for k

Loblolly  pine sweetgum
2.325C2.2252.425) 2.325(2.1?5-2.475)
1.95(1.85-2.075) 2.175(2-2.35)
1.975(1.9-2.075) 2.35(2.2-2.5)
1.75(1.65-1.85) 2.025(1.875-2.175)
2.225(2.125-2.35) 2.525(2.35-2.7)
2.55C2.4252.65) 2.8(2.625-2.95)
2.17X2.075-2.275) 2.5(2.3-2.65)
1.550.425-1.65) 2.375(2.125-2.6)

post oak
2.575(2.375-2.775)
2.5C2.3252.675)
2.375(2.175-2.575)
2.3(2.125-2.475)
2.45C2.25.2.65)
2.7(2.45-2.9)
2&X2.25-2.65)
1.875(1.675-2.1)
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for appropriate diameter classes and species were
summed. All comparisons were made for the four spe-
cies individually, and for all species (all trees) com-
bined. One-inch diameter classes ranged from 5 to 21
inches with all trees 21-28 inches being placed in the
latter class.

Among the probability weighted regressions, nega-
tive or zero tree volumes occurred with equations 1
and 2, usually in the 5-inch diameter class. Such val-
ues also occurred in the 6- and 7-inch-diameter classes
for the pines. No negative volumes were predicted
using optimally weighted regressions. For the bal-
ance of the analysis, all negative volumes produced
from the probability weighted regressions were set to
zero.

The ability of the models to predict inventory vol-
ume was compared using the test sample. Inventory
volumes represented by individual trees were first
predicted, then mean volumes calculated both for in-
dividual species and the entire test sample. These
mean volumes were finally divided by the mean
Smalian formula inventory volume (CF x trees per
acre); the results are displayed in table 3. Instances
where the predicted volume was within 1 percent of
actual volume are noted.

Among equations including both D and H compo-
nents, the probability weighted regressions generally
performed better than optimally weighted regressions
in predicting inventory volume. For the entire test
sample (all species combined), equation 3, fitted using
probability weights, predicted inventory with an
error of only .l percent; the use of optimal weights
produced an error of .6 percent. Equations 1 and 2,
fitted with probability weights, predicted inventory
for the combined sample within 1 percent error; other
regressions produced errors greater than 1 percent.

Among equations using only D as an explanatory
component, three-5,6,  and 7-predicted total inven-
tory volume within 1 percent of actual values, using
both weighting schemes. Equation 5 (optimal
weights) and equation 6 (probability weights) pre-
dicted total inventory with no error. Equations 5 and
7 (probability weights) were within .5 percent error.

Analysis of mean predicted inventory volume by

diameter class indicates distinct differences among
equations. Predicted volumes for individual trees of
the test sample, calculated using regression coeffi-
cients, were multiplied by the appropriate factor for
trees per acre to develop mean inventory volumes for
the 17 one-inch diameter classes. These mean vol-
umes were then compared to the respective Smalian
formula inventory volumes using a Chi-square test as
described by Freese (1960). This test was formulated
to estimate ability to simultaneously predict all 17
diameter class inventory volumes within 10 percent of
actual volume. The Chi-square statistics, presented in
table 4, were calculated as follows:

17
X217a,  .05  = (1.962/.102>  C, [(Xi/pi) - 112

i=l

where x2iTti, ,c5 = Chi-square distribution with 17
degrees of freedom, a = .05;

xi = predicted inventory volume for
diameter class i;

pi = actual inventory volume for di-
ameter class i.

The critical x2 value for these calculations is 27.6;
statistics less than this value indicate the model will
predict all 17 diameter class volumes with less than
10 percent error, unless a l-in-20 chance of a random
event occurs.

Only equation 3, using either probability weights or
optimal weights, was able to predict inventory vol-
umes by diameter class with no greater than 10 per-
cent error for all test groups (the 4 individual species
and total sample). Equations 4 and 5 also did well
relative to other equations, meeting this test for the
total sample and at least 2 individual species; equa-
tion 4, optimally weighted, met the test for 3 individ-
ual species as well as the total sample. Equations 2,6,
and 8 did not predict volumes for any of the test
groups within this standard using either probability
weights or optimal weights. Equation 1 produced only
one instance under each weighting scheme where the
10 percent standard for diameter class volume predic-
tion was met.

Table B.-Predicted  mean inventory volumes as a proportion of actuul  mean inventory volumes, by species and type of regression (test sample)

Equation
Entire sample Shortleaf Loblolly Post Entire sample Shortleaf Loblolly Post

(all trees) Dine Dine sweetfmm o a k (all trees) pine pine Sweetgum o a k

1 .993* .994* .979 1.019 1.003* .938 .938 .919 .982 .942
2 .991* 1.001* .971 1.011 1.003* .917 .930 .889 .946 .938
3 1.001* 1.004* .993* 1.022 .993* 1.006* 1.002* 1 .ooo* 1.030 1.012
4 .973 .994* .943 .997* .973 1.017 1.009* 1.006* 1.058 1.025
5 .997* 1.004* .975 1.023 1.028 1.000* 1.003* .981 1.025 1.028
6 1.000* .987 1.003* 1.024 .995* 1.007* .989 1.004* 1.039 1.040
7 .998* 1.005* .974 1.023 1.029 .994* 1.002* .973 1.010* 1.025
8 1.131 1.108 1.127 1.210 1.103 1.033 1.045 1.060 .947 1.017

Probability weighted regressions Optimally weighted regressions

*Predicted mean within 1 percent of actual meaus.
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EVALUATION OF MODELS AND WEIGHTS

There are tradeoffs between the probability weights
and optimal weights used for linear regression in this
study which dealt with a prism sample for the purpose
of inventory estimation. Probability weights are used
for regression in order to realize the advantages pro-
vided by emphasizing the selection of large, high-
volume trees. Optimal weights for correcting het-
eroscedasticity will provide estimates of regression
coefficients with smaller variances, although this did
not appear to be an important advantage in this study
because variances were typically very small. The opti-
mal weights in this study, however, did reduce the
influence of large trees, when compared to probability
weights. Coefficients estimated using both weighting
schemes can be expected to represent true population
values. Furthermore, the probability weights reduce,
but do not eliminate, the effects of heteroscedasticity.

Correct specification of linear regression models re-
quires linear relationships between independent and
predicted variables. Although equation 5 may appear
to violate this specification requirement (D is not lin-
early related to CF), the quadratic form of the equa-
tion apparently provides a powerful linear transfor-
mation for volume prediction where D is the only
explanatory component available. One reason for pos-
tulating equation 6 was the linear relationship im-
plied between the units of the D3 and CF variables.
Results from the test sample, however, indicate that
while equation 6 predicts total inventory volume ac-
curately, it does not perform well for predicting vol-
umes by diameter classes.

One advantage of through-the-origin regression
models (equations 2,4, and 8) was thought to be the
avoidance of negative volume prediction. Since equa-
tions 3 and ‘I-comparable to equations 4 and 8, but
with an intercept term-produced no negative vol-
umes, the use of the through-the-origin models for

this purpose was unnecessary. Equation l-compara-
ble to equation 2, but with an intercept term-did
produce negative volumes, but only when fitted with
probability weights. Equation 2 also predicted nega-
tive volumes when fitted with probability weights;
these values resulted because of the size of the D coef-
ficient, which was negative. Thus, through-the-origin
models would appear either ineffective or tmneces-
sary for this purpose.

Table 5 displays summary test information by indi-
cating (1) the number of test groups where total in-
ventory volumes were predicted within 1 percent of
actual volume; and (2) the number of test groups
where one-inch diameter class volumes were pre-
dicted (simultaneously) within 10 percent of actual
volume, as indicated by the Chi-square tests. Test
groups are the four individual species, plus the entire
combined test sample, i.e., the columns in tables 3 and
4.

In general, it appears that optimally weighted re-
gressions provide no clear advantage over the proba-
bility weighted regressions. Although the use of opti-
mally weighted regressions slightly improved
predictions for two equations (4 and 71,  other equa-
tions provided better estimates when fitted with prob-
ability weights (1, 2, 3, and 6). Table 5 indicates no
difference for the two weighting schemes for equa-
tions 5 and 8.

Based on the evidence summarized in table 5, equa-
tion 3, fitted with probability weights, is clearly the
best performer. Equation 3 also performed well when
fitted with optimal weights.

Among models using only D as a component, equa-
tion 5, fitted with probability weights, and equation 7
fitted with optimal weights, are the best performers.

Coefficients for equations 3, 5 and 7, derived using
both weighting schemes, are presented in table 6.

In summary, results from this study indicate that
linear regressions can be an effective tool for inven-

Table 4.-Chi-square  statistics for predicting inventory volume within 10 percent of actual volume for 17 one-inch diameter classes simulta-
neously at the 95 percent confidence level (a = .05)‘;  by species and type of regression (test sample)

Probability weighted regressions Optimally weighted regressions

Entire sample Shortleaf Loblolly Post Entire sample Shortleaf Loblolly Post
Equation (all trees) pine pine sweetgum o a k (ail  trees) pine pine Sweetgum o a k

1 51.5 27.1* 62.6 30.0 43.1 35.2 34.9 59.7 25.3* 31.7
2 199.7 154.5 139.7 102.9 44.4 131.7 111.7 158.8 167.1 45.4
3 11.9* 5.0* 11.7* 19.2* 22.1* 1.8* 5.8* 2.9* 16.4* 17.6*
4 24.2* 18.2* 42.5 33.7 16 .0 ” 18.1* 18.1* 26.7* 52.5 18.1*
5 15.2* 35.4 21.3* 44.9 17.3* 6.2* 32.0 14.2* 59.7 18.3*
6 809.6 463.6 568.1 286.3 300.4 185.6 296.8 191.5 450.4 392.7
7 39.2 52.0 39.5 56.0 18.6* 27.1* 43.7 37.3 48.7 17.4*
8 1435.1 1183.8 1614.0 962.4 369.5 1012.4 1122.7 1580.8 775.9 320.9

17
1x2r~~, .eb = (l.96?.102) Jl [(Xi/pi)  - 112,  where xi = predicted inventory volume; h = actual inventory volume. Note: asterisks (*I indicate

statistics less than the critical value of 27.6; these predictions are within the 10 percent limit at the indicated confidence level.
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Table 5.-Number of test groups’ meeting 1 percent total inventory and 10 percent diameter class
volume standards, by type of regression

Probability weighted regressions Optimally weighted regressions

Number within 1% Number within 10% Number within 1% Number within 10%
total inventory volume standard for total inventory volume standard for

Equation volume diameter class volume diameter class

1 3 1 0 1
2 3 0 0 0
3 4 5 3 5
4 2 3 2 4
5 2 3 2 3
6 3 0 2 0
7 2 1 3 2
8 0 0 0 0

‘Five test groups are included: 4 individual species and all trees combined.

Table 6.-Coefficients for gross cubic volume equations for probability and optimally weighted
regression moo!&  3,5,  and 7

Species
Regression model,

variables’ $0

Coefficient estimates

$1 I32

Shortleaf pine GP)Po,PI(D~H) 0.2578117 0.002676204 .........
(30) 0.1971193 0.002684152 .........
(~P)Bo,PI(D)&(D~) - 2.52757 - 0.2882 0.1898756
(50) - 1.05001 - 0.619361 0.2063557
(~P)Po,BI(D~) - 3.96955 0.1771888 . . . . . . . . .
(70) - 3.63574 0.1734781 . . . . . . . . .

Loblolly  pine C@)&J,&(D~H) 0.8668721 0.002384048 . . . . . . . . .
(30) 0.3031817 0.002529929 . . . . . . . . .
(~P)Po,PICWMD~) - 3.2068 - 0.0931619 0.1645083
(50) - 0.479005 - 0.681579 0.1917292
(~P)Po,MD~) - 3.68215 0.1606684 . . . . . . . . .
(70) - 3.3994 0.1574598 . . . . . . . . .

Sweetgum (3p)P,,P,(D2H) 0.2976087 0.002579246 . . . . . . . . .
(30) 0.2848158 0.002605488 . . . . . . . . .
(5~)9o,&(DMz(D~) 0.63616 - 0.908149 0.1940991
(50) 2.268433 - 1.30103 0.215419
(~P)P,,P,(D~) - 3.54821 0.1508756 . . . . . . . . .
(70) - 2.69169 0.1375616 . . . . . . . . .

Post oak (3p)Po,&(D2H) 0.3127841 0.002961708 . . . . . . . . .
(30) 0.1054914 0.003102175 . . . . . . . . .
(~P)Po,PD),P~(D~) - 1.28018 - 0.0736108 0.1071492
(50) - 0.657807 - 0.217158 0.1143979
(7~)@0~31@‘) - 1.6376 0.1039153 . . . . . . . . .
(70) - 1.52254 0.102326 . . . . . . . . .

IProbability weighted regression estimates are designated (p); optimally weighted regression
estimates are desigued (0).



tory estimation including component volumes by spe-
cies and d.b.h. class. While some linear models per-
form well using either probability weights or optimal
weights for correcting heteroscedasticity, other linear
models predict volumes with substantial errors, par-
ticularly when fitted with optimal weights. Evidence
from this study indicates that data from prism sam-
ples, where the probability of selection is a function of
tree diameter, can be effectively fitted to certain lin-
ear models using probability weights. Optimal
weights do not appear to provide any distinct advan-
tages for timber inventory estimation. The best equa-
tion in this test-using diameter and merchantable
height components combined in a single variable, and
fitted with probability weights-predicted total in-
ventory within a fraction of a percent. This equation
also predicted inventory volumes for individual spe-
cies by l-inch diameter classes within 10 percent of
actual volumes.
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