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These notes have been prepared for teaching a 
one-day course intended to refresh and upgrade 
the statistical background of the participants. 
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1. INTRODUCTION 
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STATISTICS
 

Statistics is the science of collecting, analyzing,
interpreting, modeling, and displaying masses of
numerical data primarily for the characterization and
understanding of incompletely known systems. 

Over the years, these objectives have lead to a fair
amount of analytical work to achieve, substantiate,
and guide descriptions and inferences. 
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WHY STATISTICS? 
 

• Given any district, time and economics ordinarily 
preclude acquiring perfect knowledge of a single 
attribute of interest, let alone a collection of them, 
resulting in uncertainty and sometimes into bulky 
datasets. 

• Note that uncertainty is not an intrinsic property of 
geological systems; it is the result of incomplete 
knowledge by the observer. 

• To a large extent, earth sciences aim to inferring past 
processes and predicting future events based on 
relationships among attributes, preferably quantifying 
uncertainty. 
Statistics is an important component in the emerging 

fields of data mining and geoinformatics. 
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WHEN NOT TO USE STATISTICS? 

• 	 There are no measurements for the attribute(s) of 
interest. 

• 	 There are very few observations, say 3 or 4. 
• 	 The attribute is perfectly known and there is no 

interest in having associated summary information, 
preparing any generalizations, or making any type of 
quantitative comparisons to other attributes. 
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CALCULATIONS 
 

As shown in this course, most of the statistical calculations 
for the case of one attribute are fairly trivial, not requiring
more than a calculator or reading a table of values. 

Multivariate methods can be computationally intensive,
suited for computer assistance. Computer programs used
to be cumbersome to utilize, some requiring the mastering
of special computer languages. 

Modern computer programs are easy to employ as they
are driven by friendly graphical user interfaces.
Calculations and graphical display are performed through
direct manipulation of graphical icons. 
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EXAMPLE OF MODERN PROGRAM 
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COURSE OBJECTIVES 
 

This short course is intended to refresh basic concepts
and present various tools available for optimal extraction
of information from data. 

At the end of the course, the participants: 
• 	 should have increased their ability to read the 

statistical literature, particularly those publications 
listed in the bibliography, thus ending better qualified 
to independently apply statistics; 

• 	 may have learned some more theoretically sound and 
convincing ways to prepare results; 

• 	 might be more aware both of uncertainties commonly 
associated with geological modeling and of the 
multiple ways that statistics offers for quantifying such 
uncertainties. 
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“That’s the gist of what I want to say.  Now get 
me some statistics to base it on.” 

10 



2. DATA COLLECTION 


ISSUES 
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ACCURACY AND PRECISION 
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ACCURACY 
 

Accuracy is a property of measured and calculated 
quantities that indicates the quality of being close to 
the actual, true value. 
• 	 For example, the value 3.2 is a more accurate 

representation of the constant π (3.1415926536 …) 
than 3.2564. 

• 	 Accuracy is related to, but not synonymous with 
precision. 
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PRECISION 
 

In mathematics, precision is the number of significant 
digits in a numerical value, which may arise from a 
measurement or as the result of a calculation. 

The number 3.14 is less precise representation of 
the constant π  than the number 3.55745. 

For experimentally derived values, precision is 
related to instrumental resolution, thus to the ability of 
replicating measurements. 

14 



ACCURACY AND PRECISION 
 
Mathematically, a calculation
or a measurement can be: 
•	 Accurate and precise.  For 

example 3.141592653 is
both an accurate and 
precise value of π. 

• Precise but not accurate, 


like π = 3.5893627002. 
 

• 	 Imprecise and inaccurate, 
such as π  = 4. 

•	 Accurate but imprecise, 

such as π  = 3.1.
 

Accuracy 

P
re

ci
si

on
 

Experimental context 

While precision is obvious to assess, accuracy is 
not. To a large extent, what is behind statistics is an
effort to evaluate accuracy. 
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SIGNIFICANT DIGITS 
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SIGNIFICANT DIGITS 
 

Significant digits are the numerals in a number that are 
supported by the precision of a measurement or 
calculation. 
• 	 The precision of a measurement is related to the 

discriminating capability of the instrument. 
•	 The precision of a calculation is related to the numbers 

involved in the arithmetic processing and is decided by 
a few simple rules. 

17 



SIGNIFICANT DIGITS IN A NUMBER 
 
• 	 Digits from 1-9 are always significant. 
• 	 Zeros between two other significant digits are always 

significant. 
• 	 Zeros used solely for spacing the decimal point 

(placeholders) are not significant. For example, the
value 0.00021 has two significant digits. 

• 	 Trailing zeros, both to the right of the decimal place and 
of another significant digit, are significant.  For example,
2.30 has three significant digits. 

• 	 For real numbers, zeros between the rightmost 
significant digit and the decimal place are not significant.  
Hence, 4000. is automatically understood to have one
significant digit. If, for example, indeed there are two,
use the notation 4.0.103. 

• 	 Whole numbers have unlimited number of significant 
digits. So, 4000 has infinite significant digits. 
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SIGNIFICANT DIGITS IN CALCULATIONS 
 

Reporting results often requires some manual rounding, 
especially if using calculators or computers. 

In all four basic operations of addition, substraction,
multiplication, and division, the number with the least
significant digits in decimal places determines the
significant decimal digits to report in the answer.
Examples: 

• 2.1 + 2.08 = 4.2 
• (8 1. .2.08)/4 = 4.2 

Easy way corollary: 
If all the operands have the same number of significant 
decimal places, the significant decimal places in the 
result are the same as those of the operands. Example:
0.38.27.90 - 4.28/10.25 = 10.18 

19 



DETECTION LIMIT 
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LIMITS IN CHEMICAL ANALYSES 
 
In analytical chemistry, the detection limit is the lowest 

quantity of a substance at which it can be decided 
whether an analyte is present or not, a problem that 
arises from the fact that instruments produce readings 
even in the complete absence of the analyte. 

The limit actually measured, xL, is:
 

x = x +  k ⋅ s
L bl bl 

where xbl is the mean of blank measurements,       sbl 
their standard deviation, and k a reliability factor 
commonly taken equal to 3. If S is the sensitivity of 
the calibration curve, then the detection limit, LOD, is: 

LOD = k ⋅  sbl ⋅  S 
21 



        

EXAMPLE OF COPPER DETECTION (1) 
 

In this case the interest is 
in the detection limit for 
Cu in Fe. From the 
measurements in Fe with 
actually any Cu: 

xbl =  2.594 cps 
sbl =  0.366 cps 

So, taking  k =  3: 
xL =  2.594 + 3 ⋅  0.366 

= 3.692 

Measured limit of detection 

22 
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EXAMPLE OF COPPER DETECTION (2) 
 

The sensitivity of the 
calibration curve, S, is the 
inverse of the rate of 
change of instrumental 
reading with changes in the 
concentration of the analyte 
above the detection limit, 
LOD. In our example, 

S = 0.074 %/cps. 
Thus 
LOD = 3 ⋅  0.366 ⋅  0.074 

=  0.08 %Cu 
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INSTRUMENTAL DETECTION LIMIT 
 

The Limit of Detection presumes a matrix clean of other 
interfering substances. In such a case, the Limit of 
Detection is a special case of Instrumental Detection 
Limit, IDL: 

LOD =  IDL .
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METHOD DETECTION LIMIT 

In the presence of complex matrices that can 
complicate the calculation of the background 
properties, it is common to use the Method Detection 
Limit, MDL, instead of simply the Instrumental 
Detection Limit, IDL. 

In the detection of copper, iron is a clean matrix and 
stainless steel would be a complex matrix with several 
alloys. 

The Method Detection Limit can be anywhere from 


2-5 times higher than the Instrumental Detection Limit 
 

MDL = (2 to 5)⋅  IDL 
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LIMIT OF QUANTITATION 
 
A common misconception is that the LOD is the 
minimum concentration that can be measured.  
Instead, LOD is the concentration at which one can be 
reasonably certain that the concentration is not zero. 

Just because one can tell something from noise 
does not mean that one can necessarily know how 
much of the analyte there actually is. Quantitation is 
generally agreed to start at 5 times the Method 
Detection Limit. This higher concentration is called 
Practical Quantitation Limit, PQL. Thus 

PQL = 5 ⋅ MDL
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SUMMARY 
 

In summary: 

LOD : IDL : MDL : PQL =  1:1: (2to5) : (10 to25) 

27 



LEGACY DATA 
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LEGACY DATA 
 

Legacy data are information in the development of
which an organization has invested significant
resources in its preparation and that has retained its
importance, but that has been created or stored using
software and/or hardware that is perceived outmoded
or obsolete by current standards. 
• 	 Working with legacy data is ordinarily a difficult and 

frustrating task. 
• 	 Customarily, legacy data are too valuable to be 

ignored. 
• The nature of problems is almost boundless, yet it is 


possible to group them in some general categories. 
 

29 



COMMON PROBLEMS WITH LEGACY DATA 
 

• Data quality challenges 
• Database design problems 
 

• Data architecture problems 
 

• Processing difficulties 
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TYPICAL DATA QUALITY PROBLEMS 
 

• 	 Different technologies in acquiring the data. 
• 	 Obsolete methods and conventions were used to 

prepare the data. 
• 	 The purpose of a column in a tabulation is determined by 

the value of one or several other columns. 
• 	 Inconsistent data formatting. 
• 	 Frequently missing data 
• 	 Multiple codes have the same meaning. 
• 	 Varying default values 

31 



COMMON DATABASE DESIGN PROBLEMS 
 

• Inadequate documentation 
• Ineffective or no naming conventions. 
• Text and numbers appear in the same column. 

32 



COMMON ARCHITECTURE PROBLEMS 

• Different hardware platforms 
• Different storage devices 
• Redundant data sources 
• Inaccessible data in obsolete media. 

33 



LEGACY DATA EVALUATION 
Issues to consider include: 
• Are the data needed to achieve an established goal? 


• What will be lost if this information is eliminated? 
• Are the data consistent? 
• Are the data accurate and up-to-date? 
• How much data are missing? 
• What is the format of the data? 
• Can the new system support the same format? 
• Is the information redundant? 
• Is this information stored in multiple ways or multiple 


times? 
 

We are all generating legacy data. Be visionary!
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3. UNIVARIATE 


STATISTICS 
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EVERYTHING AND A PIECE 
 
In statistics, population is the collection of all possible
outcomes or individuals comprising the complete system
of our interest, e.g. all people in USA. 

Populations may be hard or impossible to analyze
exhaustively. In statistics, a limited collection of 
measurements is called sample, e.g. a Gallup Pool. 

Unfortunately, the term “sample” is employed with 
different meanings in geology and statistics. 

Geology Statistics 
collection sample 
sample observation 

The statistical usage of the term sample is observed in
what follows. 
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RANDOM VARIABLE 
Fr

eq
ue

nc
y 

Variate 

• A random variable or 
variate is a quantity that
may take any of the
values within a given set
with specified relative
frequencies. 

• The concept is heavily 
utilized in statistics to 
characterize a population
or convey the unknown
value that an attribute 
may take. 
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DESCRIPTIVE ANALYSIS 
 
• 	 A sample of an attribute ordinarily comprises several 

measurements, which are best understood when 
organized in some way, which is an important aspect
of statistics. 

• 	 The number of measurements in a sample is the 
sample size. 

• 	 There are multiple options to make the data more 
intelligible, some more convenient than others,
depending on factors such as the sample size and
the ultimate objectives of the study. 
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SAMPLE VISUALIZATION 
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FREQUENCY TABLE 
 

If the range of the data is divided into class intervals 
customarily of the same length and all observations 
are assigned to the corresponding class, the result 
is a count of relative frequency of the classes. 
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UNCF EXAMPLE FREQUENCY TABLE




 
Class Count Frequency, % 

1 7680-7710 1 1.43 
2 7710-7740 1 1.43 
3 774 -7770 0 1 1.43 
4 7770-7800 2 2.86 





















5 - 0 7800 783 5 7.14 

 


 

 


 

 

6 0-783 7860 6 8.57 
7 7860-7890 10 14.29 
8 7890-7920 11 15.71 
9 7920-7950 13 18.57 

10 7950-7980 7 10.00 
11 7980-8010 7 10.00 


































 

12 8010-8040 4 5.71 
13 8040-8070 2 1.43 
Total 70 100.00 

































This example relates to depth to an unconformity at 
an undisclosed location by a major oil company. 



It will be employed as a common reference to 




































graphically illustrate other definitions in this chapter. 
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HISTOGRAM 
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A histogram is a graphical representation of a
frequency table. 
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CUMULATIVE FREQUENCY 
 

Summaries based on frequency tables depend on the
selection of the class interval and origin. 

A display of proportion of 
data not larger than a given 
value versus such value 
eliminates this drawback. 
The data zi are ranked 

and the ordinate divided 
into classes of width 100/n. 
The ordinate of any zi is the 
center of the class with the 
same rank as zi. 

Customarily, the vertical axis is scaled so that data from 
a normal distribution displays as a straight line. 
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SUMMARY STATISTICS 
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SUMMARY STATISTICS 
 
Summary statistics are another alternative to
histograms and cumulative distributions. 

A statistic is a synoptic value calculated from a
sample of observations, which is usually but not
necessarily an estimator of some population
parameter. 

Generally, summary statistics are subdivided
into three categories: 
• Measures of location or centrality 
• Measures of dispersion 
• Measures of shape 
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MEASURES OF LOCATION 
 
Measures of location give an idea about the central 
tendency of the data. They are: 
• the mean; 
• the median; 
• the mode. 
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MEANS 
The arithmetic mean or 
simply the mean, m̂, of a 
sample of size n is the 
additive average of all the
observations, zi: 

1 n 

m̂ 
 
 =
 ∑zi . n i =
 1  

The less frequently used
geometric mean, m̂ g   , is the 
nth root of the product:

⎛
1/ nn ⎞m̂g 
 = ⎜ ⎟ = ⋅ ⋅ ⋅⎜ n
  ∏zi ⎟
⎠

 
 z1 z
 2 
K
⎝


 
 
 


i =1 



 z n . The arithmetic mean of the


  

Always:


 UNCF sample is 7912.2 ft




and its geometric mean is 





 

m̂ ≥  m̂ g . 7911.8 ft. 
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THE MEDIAN 
The median, Q2, of a 
sample is the value that
evenly splits the number
of observations zi into a 
lower half of smallest 
observations and the 
upper half of largest 
measurements. 

If zi is sorted by
increasing values, then 

⎧z(n 1) / 2, if n is odd,⎪ +Q2 = ⎨
⎪0.5 ⋅ (z +  z ), if n is even.⎩ n / 2 (n / 2)+1 

The median of the UNCF sample is 7918 ft. 
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THE MODE 
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The mode of a sample is 
the most probable or 
frequent value. 

For the UNCF sample,
the center of the class with 
the most observations is 
7935 ft. 
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ROBUSTNESS 
 

Robustness denotes the ability of statistical methods 
to work well not only under ideal conditions, but in the 
presence of data problems, mild to moderate 
departures from assumptions, or both. 

For example, in the presence of blunders, the 
median is a more robust statistic than the mean.
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MEASURES OF SPREAD 
 
Measures of spread provide an idea of the 
dispersion of the data. The most common measures 
are: 
• the variance; 
• the standard deviation; 
• extreme values; 
• quantiles; 
• the interquartile range. 
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VARIANCES 
 

The variance, ˆ σ   2, is the average squared dispersion
around the mean: 

) 2 1 n 

σ = ∑(z − 2
i   m)

n i =1 

expression that is commonly restricted to estimate
variances of finite populations. 

On dealing with samples, the denominator is often
changed to n - 1.  

Because this is a quadratic measure, it is less
robust than other measures of spread. 

The variance of the UNCF sample is 5474 sq ft.
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STANDARD DEVIATION 

The standard deviation is 
the positive square root
of the variance. 

It has the advantage of
being in the same units
as the attribute. 

The UNCF sample 


standard deviation is 


74.5 ft. 
σ σ σ σAccording to Chebyshev’s

theorem, for any sample and t > 1, the proportion of data 
that deviates from the mean m̂ at least  t ⋅σ̂ is at most t −2: 

1Prop( X − m̂ ≥ t ⋅σ̂ )≤  2t 
53 



EXTREME VALUES 
 
The extreme values 
are the minimum and 
the maximum. 

For the UNCF 
sample, the minimum
is 7696 ft and the 
maximum is 8059 ft. 
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QUANTILES 
 

The idea of the median splitting the ranked sample 
into two equal size halves can be generalized to any
number of partitions with equal number of
observations, called quantiles or fractiles. The 
names for the boundaries for the most common 
quantiles are: 
• Median, for 2 partitions 
• Quartiles, for 4 partitions. 
• Deciles, for 10 partitions. 
• Percentiles, for 100 partitions. 
There is always one less boundary than the number
of partitions. 
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UNCF QUARTILES 
 
Q1 = 7871.75 ft 

Q2 = 7918 ft 

Q3 = 7965.75 ft 
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INTERQUARTILE RANGE 
 
The interquartile range,
iqr, is the difference 
between the upper and
the lower quartiles 

iqr =  Q3 − Q1, 

thus measuring the data
central spread. 

For the UNCF sample,
the interquartile range is
94 ft. iqr 
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OUTLIER
 

Atypical extreme values are called outliers. 
 

• 	 Outliers may be genuine 
values or sampling 
blunders. 

76
95

 
77

55
 

78
15

 
78

75
 

79
35

 
79

95
 

80
55

 
80

85
 

81
15

 
81

45
 

81
75

 
82

05
 

20 

mild mild 

ex
tre

m
e 

16 

Fr
eq

ue
nc

y,
 p

er
ce

nt
 

12 

8 

4 

0 

Depth, ft 

• A practical rule of thumb is 


to regard as a mild outlier 


any value deviating from 


the median more than 1.5 


times the interquartile 
range and an extreme 
outlier if it departs more 3
times. 

For the UNCF sample, all mild outliers seem to be
legitimate values while the extreme outlier of 8210 ft is a
blunder. 
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BOX-AND-WHISKER PLOT
The box-and whisker plot is
a simple graphical way to 
summarize several of the 
statistics: 
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• Minimum 
• Quartiles 
• Maximum  
• Mean 
Variants abound. Extremes 
may exclude outliers, in 
which case the outliers are 
individually posted as open 
circles. Extremes sometimes 
are replaced by the 5 and 95 
percentiles. 
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MEASURES OF SHAPE 
 
The most commonly used measures of shape in 
the distribution of values are: 
• The coefficient of skewness 
• The quartile skew coefficient 
• The coefficient of kurtosis. 
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COEFFICIENT OF SKEWNESS 
 
The coefficient of skewness is a measure of asymmetry 
of the histogram. It is given by: 

1 ∑ 

n 

(zi −  m)3 

n 20 
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i =1 =B 
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σ 3 

If : B1 < 0, the left tail is 


longer; 
 

B = 0, the distribution is
1 
symmetric; 

B1 >  0, the right tail is 
longer. 

The UNCF coefficient of skewness is -0.38. 
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QUARTILE SKEW COEFFICIENT 
 
It serves the same purpose as the coefficient of skewness, 
but it is more robust, yet more sensitive to the central part 
of the distribution. Its definition is: 

20 

qs = (Q −  Q )−  (Q −  Q )3 2 2 1 
16 

qs=0.02 
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12 

8If : qs < 0, the left tail is longer;
 
4qs =  0 , the distribution is 
0symmetric; 

qs >  0 , the right tail is longer. 
The UNCF quartile skew coefficient is 0.02. 
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COEFFICIENT OF KURTOSIS 
This statistic measures the concentration of values around 
the mean. Its definition is: 

Gaussian distribution 
0.5n 

41 
∑(zi  − m)  0.4 n i=1B = 0.32 σ 4 

0.2 

If : B2 <  3, the distribution is 
more peaked than 

0.1 

-5 -2.5 0 2.5 5Gaussian; 
0
 

B2 =  3, it is as peaked as x
 

f(x
) 

B2 = 3 

Gaussian; 
B2 >  3 , it is less peaked 

than Gaussian. 

The UNCF coefficient of kurtosis 
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MODELS 
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PROBABILITY 
 

Probability is a measure of the likelihood that an uncertain 
event, A, will occur. It is commonly denoted by Pr[A]. 

•	 The probability of an impossible event is zero, Pr[A] = 0. 
It is the lowest possible probability. 

• 	 The maximum probability is Pr[A] = 1, which denotes 
certainty. 

• When two events A and B cannot take place 


simultaneously, Pr[A or B] = Pr[A] + Pr[B].
 

•	 Frequentists claim that Pr[A] = NA/N, where N is total 
number of outcomes and NA the number of outcomes of 
A. They can be counted theoretically or experimentally. 

• 	 Subjective probabilities are a degree of belief in A. 
65 



BAYES’S THEOREM 
This is one of the most widely used probability relationships. 
If event B already occurred, the conditional probability of 
event A, Pr[A|B], is: 

[ Pr[B | A]Pr A | B ] =  Pr A[ ]
Pr B [ ]

Example 
 

Suppose we have two boxes. 


A blue ball is drawn (event B). 


What is the probability it came 

from box #1 (event A)?
 

• In the absence of additional information, Pr[A] = ½ = 0.5.
 

  Number of balls 
 Box Blue Red Total

#1 20 5 25
#2 12 18 30

23 55

 
 
 

• Pr[B|A] = 20/25 = 0.8. 
32 • Pr B[ ] = 32/55 = 0.59. Hence 

• Pr[ 0.8 A | B] = 0.5 = 0.69
0.59 
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PROBABILITY FUNCTIONS 
 
Analytical functions approximating experimental
fluctuations are the alternative to numerical descriptors
and measures. They provide powerful approximations
of general conditions. The drawback is loss of fine 
details in favor of simpler models. 

Models approximating histograms are called
probability density functions. 

Variations in the parameters of a probability density
function allow the generation of a family of distributions,
sometimes with radically different shapes. 

Main subdivision is into discrete and continuous 
distributions, of which the binomial and normal 
distribution are two typical and common examples. 
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BINOMIAL DISTRIBUTION 

This is the discrete 


probability density function,
.f (x;p,n          ), of the number of 
successes in a series of 




independent (Bernoulli) 






trials, such as head or tails 
in coin flipping. If the 


probability of success at 
every trial is p, the 



probability of x 




successes 
in n independent trials is 




 

0 

y
 0.3 f (x ; 0.5, 12) 

 ili
t 
 

b
 ab 0.2 
 

or
P 0.1 
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Number of successes
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0.3 f (x ; 0.1, 12)
 

0.2 
 

0.1 
 

0
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0.4 

f ( n! x;p,n) = p x (1− p n−x  ) , x = 0
x

 ,1, 2,K, n 
!(n − x )! 
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NORMAL DISTRIBUTION 
 

The most congenial of all
continuous models is the normal 
distribution, also known as 
Gaussian distribution. Its 
parameters are μ and σ, which 
coincide with the mean and the 
standard deviation. 0 

0.1 

0.2 

0.3 

0.4 

0.5 

f(x
; 0

,1
) 

-5 -2.5 0 2.5 5 

(x−μ )2x 
1 − 2
2σ 
f (x;μ,σ ) = e ,−∞  < x < ∞  

σ 2π 

If X = log(Y) is normally distributed, Y is said to follow 
a lognormal distribution. Lognormal distributions are 
positively defined and positively skewed. 
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PROBABILITY FROM MODELS 


x

 
Prob [X ≤ x ]

1 

1 = ∫ f x( )dx Prob[X ≤ x1] = F (x1)
−∞

 
 

x

f(x
)

Gaussian distribution 
0.5 
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 f(x
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0 1.171.17 
x x 

Examples: 
Gaussian distribution 

[
1.17 

Prob X ≤ 1.17] =  ∫Normal(x;0,1)dx Prob[X ≤ 1.17] = F (1.17)
−∞

 
 = 0.88 

= 0.88 
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EXPECTED VALUE 
 

Let X be a random variable having a probability 
distribution f x      ( ), and let u(x) be a function of x. The
expected value of x is denoted by the operator E[u(x)]
and it is its average value.   

 

Continuous case, such as temperature: 

E[ ∞
u x ]( ) = ∫ u x f 

−∞
( ) x( )dx 

 

 

Discrete case, like coin flipping: 


E[u(x)] = ∑u(x f ) (x)
  

x 
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EXAMPLE 

For the trivial case 

u(x) = x 

in the discrete case, if all values are equally probable, the 
expected value turns into 

E[ ] = 

1 ∑x x 
n x 

which is exactly the definition of the mean. 
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MOMENT
 

Moment is the name given to the expected value 
when the function of the random variable, if it exists, 
takes the form (x −  a)k, where k is an integer larger 
than zero, called the order. 

If a is the mean, then the moment is a central 
moment. 

The central moment of order 2 is the variance. For 
an equally probable discrete case, 

) 2 1 2M2 = σ = ∑ 
n 

(xi − m)
n i =1 
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SIMULATION 
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SIMULATION 
 

Reality is often too complex to be able to analytically derive 
probabilities as in flipping coins. Modern approaches use 
computers to model a system and observe it repeatedly, 
with each repetition being the equivalent of flipping a coin. 
• Relevant attributes take the form of random variables 

instead of being deterministic variables. 
• Generators of random sequences of numbers between 

0-1 play an important part in simulation. 
• The other important component is 

the Monte Carlo method, which 
allows drawing values from the 
distributions. 

• The final result is the histogram(s) 
for the output variable(s). 
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BOOTSTRAP 
• This is a resampling form of the 

Monte Carlo method. 
• It works with the sample directly 

instead of a distribution. 
• In its simplest form, the general 

steps are: 
1. Randomly pick as many

measurements as the sample
size. Some values may be
taken more than once, while 
others not at all. 

2. Calculate and save as many
statistics as interested. 

3. Go back to step 1 and repeat the


process at least 1,000 times. 
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4. BIVARIATE STATISTICS 
 

78 



TOOLS
 

Frequently there is interest in comparing two or more 
measurements made for the same object or site. Among 
the most common alternatives, we have: 
• Scatterplot 
• Correlation coefficient 
• Regression 
• Quantile-Quantile plot 
• Probability-Probability plot 

Some of these concepts can be generalized to more 
than two variables, and all multivariate techniques in 
Chapter 7 are valid for two variables. 
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SCATTERPLOTS 
A bivariate scatterplot is 
a Cartesian posting in 
which the abscissa and 
the ordinate are any two 
variables consistently 
measured for a series of 
objects. 

Scatterplots are 
prepared for exploring 
or revealing form, 
direction, and strength 
of association between 
two attributes. 

Mecklenburg Bay seafloor, Germany 
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COVARIANCE 
 

Given two random variables X and Y with means μx     and μ   Y, 
their covariance is the expected value: 

Cov X ,Y = E[(X −  μX )(Y − μ Y )]

The covariance estimator when using a sample of point 
measurements is: 

1 n n n 

Côv X ,Y =  ∑ 1 xi ⋅ y i − ∑xi ⋅n   ∑y
− i   1 i =1 n ⋅ (n −1) i = 1 i =1 

The covariance is a measure of joint variation. 

81 



CORRELATION COEFFICIENT 
This coefficient is the number most 
commonly used to summarize bivariate 
comparisons. If σ X and σY    are the standard 
deviations for two variables, their correlation 
coefficient, ρ, is given by: 

Cov 
ρ = X ,Y 

σ X ⋅σY 

•	 It only makes sense to employ ρ for 
assessing linear associations. 

• 	 ρ  varies continuously from: 
1, perfect direct linear correlation 
0, no linear correlation 
-1, perfectly inverse correlation 

1 
 

0 
 

-0.38 
 

-1 
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SENSITIVITY TO OUTLIERS 
 
M

oore and N
otz, 2006 
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REGRESSION 
 

Regression is a method for establishing analytical 
dependency of one or more variables on another 
mainly to determine the degree of their dependency, 
to estimate values not included in the sampling, or 
to summarize the sampling. 
• 	 The variable in the abscissa is called the 

regressor, independent, or explanatory variable. 
• 	 The variable in the ordinate is the regressed, 

dependent, or response variable. 
• 	 In many studies, which variable goes into which 

axis is an arbitrary decision, but the result is 
different. Causality or the physics of the process 
may help in solving the indetermination. 
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REGRESSION MODEL 
 

• The model is: 

R
es

po
ns

e 
va

ria
bl

e 
(y

 ) 

εi 

( )θ;ixf 

y i =  f (xi ;θ)+ ε i 

• f (xi ;θ) is any continuous 
function of x that is judiciously
selected by the user. θ are 
unknown parameters. 

• Term  ε is a random variable 


accounting for the error. 
 

•	 Having selected  f (xi ;θ), 
parameters θ  are calculated 
by minimizing total error, for 

Explanatory variable (x) which there are several 
methods. 

Avoid using the model outside the sample range of the 
explanatory variable. 85 



LINEAR REGRESSION 
 
ρ = 0.94 

Mecklenburg Bay seafloor, Germany The simplest case is linear 
regression with parameters
obtained minimizing the 
mean square error, MSE: 

n1 2MSE =  ∑ε i n i =1 

In this special situation, ρ 2 

accounts for the proportion
of variation accounted by
the model. 

In the example, ρ = 0.94. 
Hence, in this case, the 
linear regression explains 88% (100 ⋅ ρ 2 ) 

of the variation. 
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NONLINEAR REGRESSION 
 

Linear Quadratic polynomial 

MSE = 25.47 MSE = 20.56 

Cubic polynomial Sixth degree polynomial 

MSE = 19.98 MSE = 20.33 

• In theory, the 
higher the
polynomial degree,
the better the fit. 

• In practice, the 
higher the
polynomial, the
less robust the 
solution. 

• Overfitting may 
capture noise and
not systematic
variation. 
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IMPLICATIONS 
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High to good correlation: 
• 	 allows prediction of one 

variable when only the other
is known, but the inference
may be inaccurate,
particularly if the correlation
coefficient is low; 

• 	 means the variables are 
related, but the association
may be caused by a
common link to a third 
lurking variable, making the
relationship meaningless; 

• 	 does not necessarily imply
cause-and-effect. 
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“In a new effort to increase third-world life ex-
pectancy, aid organizations today began delivery 
of 100,000 television sets.” 

A
fter M

oore and N
otz, 2006 
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QUANTILE-QUANTILE PLOT 
• 	 A quantile-quantile or QQ-plot is a 

scatterplot based on ranked data. 
• 	 The paring is independent from the 

object or site where the
observations were taken. The first 
pair of coordinates has the minimum
value for each attribute, the second
pair is made of the second smallest
readings, and so on until finishing
with the two maximum values. 
Interpolations are necessary for
different size samples. 

• 	 Identical distributions generate a 
straight line along the main
diagonal. 

• 	 QQ-plots are sensitive to a shift and
scaling of the distributions. 
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STANDARDIZED VARIATE 
 
If X is a random variable 
with mean μ and 
standard deviation σ, 
the standardized 
variate, Z, is the 
transformation. 

X − μZ = 

σ  

A standardized variate always has a mean of zero 
and variance of one. 
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PROBABILITY-PROBABILITY PLOT 
 

Density 
Velocity 

A PP-plot is another scatterplot prepared extracting
information from the cumulative distributions of two 
variates. 

If the variates are in different units, preliminary
standardization is necessary. 

For given thresholds, the axes show the cumulative
probabilities for the two distributions being compared. 92 



SPECIAL TOPICS 
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PROPAGATION OF ERRORS 
 
Error propagation is a rather Analytically:
archaic term referring to the N(30,5) = N(12,3) + N(18,4) 
influence that uncertainty in 


variables have on a function 
 Monte Carlo simulation:of them. 0.5 
N(18,4) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

f(x
) 

N(12,3) • Under certain simple 
 0.4 

0.3 

conditions, it is possible 
 f(x
) 

0.2 

0.1 to analytically express 
 0 
0 3 6 9 12 15 18 21 24 0 6 12 18 24 30 36

the impact of variable 


94 

xx 

uncertainty on the 
function uncertainty. 

• 	 Today the situation is 
resolved through 
numerical simulation. 



BIAS 
 

Bias in sampling denotes preference in taking the 
measurements. 

Bias in an estimator implies that the calculations are 
preferentially loaded in one direction relative to the true 
value, either systematically too high or too low. 
• When undetected or not compensated, bias induces 

to erroneous results. 
• The opposite of the quality of being bias is unbiased.
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SEMIVARIOGRAM 
 

Let si be the geographical location of a sampling site. 
The semivariogram is a

squared average comparison
of the degree of dissimilarity
with geographical distance,
h, for pairs of measurements
of Z at sites s and s + h: 

1 2γ ( )  {Z(s + )  Z( )  s } ]h = E[ h − 

2 
If Nh is the number of pairs 

a distance h apart, the most 
popular unbiased estimate is: 

Nh 

ˆ( ) = − 
1 ∑[Z(s +h)− Z( )  si ]2γ h i
2Nh i =1 
 96 



  

Semivariogram

Covariance

LEARNING FROM THE SEMIVARIOGRAM 
 

• 	 The autocovariance is a 
function that results from 
grouping covariance values
by distance class. 

• 	 The semivariogram and the 
autocovariance are related 
through:

( ) = σ −Cov( )γ h 2 h . 
• 	 The sill is equal to the 

population variance,σ 2. 
•	 The range, a, gives a

quantitative indication to the aLag 

notion of radius of influence 


of a measurement. 
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Autocovariance 
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97 



 

 

COMPOSITIONS 
In some studies, an object can be
decomposed in constituent parts. By
definition, these parts add to the 25 

whole object. Compositional data are 

0 

20 

measurements of these components. 
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15 

10 

5 

Compositional data only contain 

relative information. 
 

Compositional data are common in 75 80 85 90 95 100 

Fixed carbon, percent weight geochemical analysis, taking units
such as parts per million and percent. 

Only positive measurements are possible, between 
zero and the value denoting the whole object, say, 100 if 
the parts are percentages of the whole. 

The fact that compositions are constraint data brings 
correlation to the components. 98 



CAUTION
 

In general, straight application of statistics to data adding to 
a constant produces suboptimal or inconsistent results. 
Most successful ad hoc developments still employ classical 
statistics, but after taking special precautions. 

The most common approach is to transform the data. One 
possibility is the isometric log-ratio transformation, Y, which 
for two components, X1 and X2, is: 

1 X 1 XY =  log 1 or Y = 2

2 

 log , with X +
X 1  X2 = c 

2 2 X1 

where c is a known closure constant. This transformation: 
• brings the range of variation to  (−∞,∞)           ; 
• eliminates the correlation due to closure; 
• properly handles distances in attribute space.
Results require backtransformation.
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5. NONDETECT STATISTICS 
 

100 



STATISTICS OF THE UNDETECTED 
 

• 	 Undetected values have peculiar characteristics that 
put them apart from those actually measured. 

• 	 Values below detection limit require different 
treatment than precise measurements. 

• There have been several attempts to analyze 


samples with values below detection limit. 
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STATISTICAL METHODS 

The main approaches for the calculation of summary 
statistics are: 
• 	 Replacement of the values below detection by an 

arbitrary number. 
• 	 Maximum likelihood method 
• 	 Kaplan-Meier method 
• 	 Bootstrap 
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REPLACEMENT 


• 	 This is the prevailing practice. 
•	 This is not really a method.  It has poor to no 

justification. 
• 	 It can lead to completely wrong results. 
• 	 The most common practice is to replace the values 

below detection by half that value. 
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MAXIMUM LIKELIHOOD METHOD 
 
THE GENERAL CASE 
 

This is a method for the inference of parameters, θ, of a 
parent probability density function f ( x | θ) based on 
multiple outcomes, xi. 

The function L(  θ) = f (  x ,K,x |θ ,K,θ ) 
is called the

1 n 1 m 

likelihood function. 
Given outcomes xi, the optimal parameters θ are those 

that maximize L(  θ)  , which come from solving ∂ L(  θ) / ∂ θ = 0. 
For example, for the normal distribution, n 

2 

( n (x −θ )
1

x −θ 2 ∑ i  

1 ) 1 

( )
− 

2θ 2
2  ( ) ⎛ 1 ⎞2 − i =1 

f x  | θ =  e

 

L θ

 2θ 2
2  = ⎜⎜  ⎟2 ⎟ e 

2πθ 2πθ

 

2 ⎝ 2 ⎠
the solution is: 

  

1 n 
2 1 θ 2 2 

1 = ∑
n 

xi = μ ˆ θ2 = ∑(x
n n i  − ˆ μ) = ˆ σ

i =1 

 

 i =1  104 



MAXIMUM LIKELIHOOD 
 

OF THE UNDETECTED 
 

• 	 The method is parametric: it requires assuming the 
distribution that the data would have followed in case 
all values would have been accurately measured. 

•	 Essential for the success of the method is the 
assumption of the correct distribution. 

• 	 Most commonly selected models are the normal and 
the lognormal distributions. 

•	 It is commonly used to estimate mean, variance, and 
quartiles. 

• 	 The method tends to outperform the others for samples 
of size larger than 50, or when 50 to 80% of the values 
are below detection limit. 
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ARSENIC CONCENTRATION 
 

OAHU, HAWAII 
 
Mean: 0.945 
St. dev.: 0.656 
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KAPLAN-MEIER METHOD 
 
• 	 The Kaplan-Meier method works in terms of a survival 

function, a name derived from clinical applications in
which the interest is on survival time after starting
medical treatment. 

• 	 The Kaplan-Meier method was developed for right 
censored data—exact measurements are missing
above certain values. Left censored data must be 
flipped using a convenient but arbitrary threshold 
larger than the maximum. 

• 	 Calculated parameters must be backtransformed. 
• 	 The Kaplan-Meier method tends to work better when 

there are more exact measurements than data below 
detection limit. 
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OAHU DATA SURVIVAL FUNCTION 
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Mean: 0.949 
St. dev.: 0.807 
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Flipped concentration, micro g/L 

Flipping constant: 5 micro g/L 
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BOOTSTRAPPING FOR NONDETECTS 
 
Remember that the bootstrap is a
resampling form of the Monte
Carlo method. The adjusted steps
for handling nondetects are: 
1. Randomly pick as many values 

as the sample size. 
2. If a picked value is a nondetect, 

replace it with a number 
randomly selected between zero 
and the detection limit. 

3. Make a log-ratio transformation. 
4. Calculate all statistics of interest. 
5. Save the statistics. 
6. Go back to step 1 and repeat 

the process at least 1,000 times. 109 



   
 

 
 

 

 
 

 

 

COMPARISON OF THE FOUR METHODS 
 
EXAMPLE FROM OAHU, HAWAII 


 Mean St. dev. Q1 Median Q3 

μg/L 
Substituting with zero 0.567 0.895 0.0 0.0 0.7 
Subs. half detection lim. 1.002 0.699 0.5 0.95 1.0 
Subs. with detection lim. 1.438 0.761 0.75 1.25 2.0 

Lognormal Max. Likelihd. 0.945 0.656 0.509 0.777 1.185 

Kaplan-Meier, nonparm. 0.949 0.807 0.5 0.7 0.9 

Bootstrap average 1.002 0.741 0.501 0.752 1.370 
Log-ratio bootstrap aver. 0.722* 0.492 0.738 1.330 

*geometric mean 
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6. STATISTICAL TESTING 
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STATISTICAL TESTING 
 

The classical way to make statistical comparisons is 
to prepare a statement about a fact for which it is 
possible to calculate its probability of occurrence. 
This statement is the null hypothesis and its 
counterpart is the alternative hypothesis. 

The null hypothesis is traditionally written as H0 
and the alternative hypothesis as H1. 

A statistical test measures the experimental 


strength of evidence against the null hypothesis. 
 

Curiously, depending on the risks at stake, the null 
hypothesis is often the reverse of what the 
experimenter actually believes for tactical reasons 
that we will examine. 
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EXAMPLES OF HYPOTHESES 
Let 1μ    and μ2   be the means of two samples. If one 
wants to investigate the likelihood that their means are 
the same, then the null hypothesis is: 

H0 : μ1 = μ2 
and the alternative hypothesis is: 

H1 : μ1 ≠ μ2 
but it could also be: 

H1 : μ1 > μ2 

The first example of H1 is said to be two-sided or two-
tailed because includes both μ1 >μ2 μ and 1 < μ2          . The 
second is said to be one-sided or     one-tailed. 

The number of sides has implications on how to 
formulate the test. 
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POSSIBLE OUTCOMES 
 

H0 is correct 
Correct decision H0	 

is accepted Probability: 1−α  

Type I error H0	 

is rejected Probabilty: α 

H0 is incorrect 
Type II error 

Probability: β
 

Correct decision 
 

Probability:1− β
 

•	 The probability  α  of committing a Type I error is 
called the level of significance. 

•	 α  is set before performing the test. 
•	 In a two-sided test,  α is split between the two options.
 

• Often,  H0 and α  are designed with the intention of 
rejecting H0, thus risking a Type I error and avoiding 
the unbound Type II error. The more likely this is, 
the more power the test has. Power is 1− β . 
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IMPORTANCE OF CHOOSING H0
 
Selection of what is null and what is alternative hypothesis 
has consequences in the decision making. Customarily, tests 
operate on the left column of the contingency table and the 
harder to analyze right column remains unchecked.  Consider 
environmental remedial action: 

 

 

   
 

     
    

Selection A Ho: Site is clean 
True False 

Test 
action 

Accept Correct 
Reject Wrong 

A. Wrong rejection means the 
site is declared contaminated 
when it is actually clean, 
which should lead to 
unnecessary cleaning. 
B. Now, the wrong decision

Selection B Ho  : Site is contaminated 
True False

Test  
action 

Accept    Correct  
Reject    Wrong   

 declares a contaminated 
site clean. No action
prolongs a health hazard. 

In both cases, Pr[Type I error] ≤ α . 
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PARTITION 
The level of significance is employed to partition the range 
of possible values of the statistic into two classes. 
• 	 One interval, usually the longest one, contains those 

values that, although not necessarily satisfying the null 
hypothesis exactly, are quite possibly the result of random 
variation. If the statistic falls in this interval—the green 
interval in our cartoon—the null hypothesis is accepted. 

accept 	 reject 

• 	 The red interval comprises those values that, although 
possible, are highly unlikely to occur. In this situation, the 
null hypothesis is rejected. The departure from the null 
hypothesis most likely is real, significant. 

•	 When the test is two-sided, there are two rejection zones.
 

reject	 accept reject 116 



 

STATISTIC 
A key step in the feasibility of being able to run a test 
is the ability of finding an analytical expression for a 
statistic such that: 
•	 It is sensitive to all parameters involved in the 

null hypothesis. 
• 	 It has an associated probability distribution. 

Given some data, the p-value is the probability that 
the statistic takes values beyond the value calculated 
using the data. The p-value allows to convert the 
statistic to probability units. For a one-sided test: 
• The  p-value is also the smallest level of significance 

leading to rejection of the test. 
• The lower the p-value, the stronger is the evidence 


against the null hypothesis provided by the data. 
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SAMPLING DISTRIBUTION 

The sampling distribution of a statistic is the 
distribution of values taken by the statistic for all 
possible random samples of the same size from 
the same population. Examples of such 
sampling distributions are: 
•	 Standard normal and the t-distributions for the 

comparison of two means. 
• 	 The F-distribution for the comparison of two 

variances. 
• χ 2

	 The     distribution for the comparison of two 
distributions. 
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PROBABILITY REMINDER AND P-VALUES 
 

∫
1 

Prob [
x ∞

X ≤ x ] = f x( )dx Prob [X  >
 

x 1] =1 ∫ x   f ( )dx 

−∞  x1 

f(x
)
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Gaussian distribution 
Example: 

[
1.28 

Prob X ≤ 1.28] = ∫Normal(x;0,1)dx
−∞

 

 

= 0.90 
 

Prob[X > 1.28]
∞

= ∫

 

Normal(x;0,1)dx 
1.28 

 

= 0.10 
In this example, assuming a one-sided test, when the 

statistic is 1.28, the p-value would be 0.1 (10%). 
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TESTING PROCEDURE 
 

α  

zαzs z 

f(z
) 

1. Select the null hypothesis H0 and 
the alternative hypothesis H1. 

2. Choose the appropriate statistic. 
3. Set the level of significance α. 
4. Evaluate the statistic for the case 

of interest, zs. 
5. Use the distribution for the statistic in combination with 


the level of significance to define the acceptance and 


rejection intervals. Find out either the corresponding: 
 

• p-value of the statistic in the probability space, or 
• level of significance in the statistic space, zα.
 

6. Accept the null hypothesis if zs < zα. Otherwise, reject 


H0 because its chances to be true are less than α. 
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PARAMETER TESTING 
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TESTING TWO MEANS 
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INDEPENDENCE 
 

The random outcomes A and B are 
statistically independent if knowing the result 
of one does not change the probability for the 
unknown outcome of the other. 

Prob[A | B] =  Prob[A] 
For example: 
• Head and Tail in successive flips of a fair coin 
are independent events. 
• Being dealt a King from a deck of cards and 
having two Kings on the table are not 
independent events. 
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TESTING PARENT POPULATIONS 
 
Given a sample, the interest is on whether the values 
are a partial realization of a population with known mean 
and variance. 

A one-sided test would be: 

H0 : mn ≤ μp 

H1 : mn > μp 

where 
mn is the sample mean, 
μp is the population mean, 
σ p

2 is the population variance. 

124 



  

                       

CENTRAL LIMIT THEOREM 
 
Let X , X ,K, X be n random variables that: 
1 2 n 
• 	 share the same probability distribution D; 
• 	 are independent; 
• 	 the mean of the probability distribution is  μ ;
 

•	 the standard deviation of the distribution         σ  

exists and is finite; and 
•	 let                      m = (X + X +K + X )/ n

.

n 1 2	 n 

Then, for any D: 
lim F(m ) = Normal (μ,σ 2 / n)
n→∞ 

n 
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CENTRAL LIMIT THEOREM IN ACTION 
 

Examples 

n =  2 
 

n =  4
 

n = 25
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STANDARD NORMAL DISTRIBUTION 
 
As mentioned before, 
standardization is the 
transformation obtained by 
subtracting the mean from 
each observation and 
dividing the result by the 
standard deviation. 

In the Central Limit case: 
m n − μz = p  

σ p 1/ n 

Normal(0,1)
0.5 

0.4 

0.3 

0.2 

0.1 

0 
-4 -3 -2 -1 0 1 2 3 4 

z 

f(z
) 

Thus, in this case, the appropriate statistic is the 
sample mean standardized by employing the population 
parameters. By the Central Limit theorem, this statistic 
follows a standard normal distribution, N(0,1). 127 



    

  

 

EXAMPLE 
 

 Size Mean Stand. dev. 
Population  16.5 6.0 
Sample 25 18.0 

1. H : m ≤ μ0 n p 	 0.5 

H : m > μ1 n p	 

0.4 

0.3 2. α = 0.05 (5%) 

3. The statistic is z-score. 0.2 

18 −16.5	 0.1 4. 	 zs = = 1.25 
6 1/ 25 0 

-4 -3 -2 -1 0 1 2 3 4 

z 1.25 1.655. For a Normal(0,1) 
distribution, the
cumulative probability is 0.05 above zα = 1.65. 

6. zs<zα, therefore, H0 is accepted. 

f(z
) 

128 



 
  

 

INFLUENCE OF SAMPLE SIZE 
The table shows sensitivity of the results to sample size 
when the experimental mean remains fixed at 18.0 in 
the previous example. 

Sample 
size 

Statistic 
zs 

P-value, 
percent Ho(α=5%) 

10 0.79 21.48 Accepted 
25 1.25 10.16 Accepted 

100 2.50 0.62 Rejected 
250 3.95 0.01 Rejected 

The larger the sample size, the more likely a rejection. 
 

• 	 Specification of sample size adds context to a test. 
 

•	 Specificity of a test is poor for small sample sizes. 
• 	 For large sample sizes, findings can be statistically 

significant without being important. 
129 



DEGREES OF FREEDOM 
 

Degrees of freedom is a measure of the independent pieces 
of information on which a parameter estimate is based. 

The number of degrees of freedom for any estimate is the 
number of observations minus all relationships previously 
established among the data. The number of degrees of 
freedom is at least equal to the number of other parameters 
necessary to compute for reaching to the calculation of the 
parameter of interest. 

For example, for a sample of size n, the number of degrees 
of freedom for estimating the variance is n – 1 because of the 
need first to estimate the mean, after which one observation 
can be estimated from the others. E. g., for the first value: 

x +  x +  K+  x1 2 nx = n ⋅ − (x +  x +  K+ x )
1 2 3 n n4 2 41 4 4 3
mean 130 



       

STUDENT’S T-DISTRIBUTION 
 
We have seen that the mean of any independent and 
identically distributed random variables is normal 
provided that: 
• 	 One knows the means and variance of the 

population. 
• 	 The sample size is large.  The rule of thumb is that 

a size above 30 is large. 
The Student’s t distribution operates analogously to 


the standard normal distribution, N 0,1 , and should be
( )  

used instead when any of the requirements above is 
not met. 
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EXAMPLES OF T-DISTRIBUTIONS 
 

Probability density function Cumulative distribution function 

k is the degrees of freedom. 
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TESTING TWO VARIANCES 
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F-DISTRIBUTION 
 

The F-distribution is another distribution particularly 
developed for statistical testing. 

Its parameters are two degrees of freedom that 
vary independently from each other. 

It is employed to test variances and it operates 
completely analogously to the other distributions: it 
provides a reference value based on which the null 
hypothesis is accepted or rejected according to a 
level of significance. 

The main limitation is that the samples must come 
from normal distributions. 
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EXAMPLES OF F-DISTRIBUTIONS 
 

Probability density function Cumulative distribution function 

d1 and d2 are the degrees of freedom. 
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EXAMPLE OF VARIANCE TESTING 
 
 Size Variance 

Sample 1 11 22.4 
Sample 2 26 10.0 

H :σ  = σ0 1 2 

H :σ > σ1 1 2 

The test statistic is the ratio of 
largest to smallest variance 

22.4F = 

10 
= 2.24 F

Above F =  2.24, the p-value is 5%. Thus H0 is10,25 

rejected if  α >  5.0%, when zα will be less than 2.24. 
Otherwise, it is accepted. 
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TESTING MORE THAN TWO MEANS 
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ANALYSIS OF VARIANCE 
 

•	 Analysis of variance is an application of the F-test for the 
purpose of testing the equality of several means. 

• 	 Strategies and types of variances abound, but it all 
revolves around calculating some variances and then
proving or disproving their equality. 

• 	 The interest is on deciding whether the discrepancies in 
measurements are just noise or part of a significant
variation. 

• 	 The simplest form is the one-way ANOVA, in which the 
same attribute is measured repeatedly for more than two
specimens: 

H0 	 : μ1 = μ2 L = μk ,k ≥  3 
H1 : at least one mean is different. 

•	 In this case, the variances going into the statistic are the 
variance for the mean among localities and the variance
within specimens. 
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2
⎛ ⎞m 
⎜ 

n 
⎟SSE =∑ ∑ xij − X j⎜ ⎟

j =1 ⎝ i =1 ⎠ 

N = n ⋅m
n 1 X j = ∑ xij n i =1 

m n 1 X = ∑∑ xij N j =1 i =1 

m 2

SS A =  ∑⎜⎛ X j − X ⎟⎞ 

⎝ ⎠
j =1 

m n 2
⎛ ⎞SST =  ∑∑⎜xij − X ⎟
⎝ ⎠  

j =1 i =1 

SSE MSE = 

N −  m 

SS MS A = A 

m −1

  
 

 
 

  

  

   

    

ONE-WAY ANOVA TABLE 
 
Source of 
variation Sum of squares 

Degrees of 
freedom Variance F test statistic 

Among localities SSA m - 1 MSA 

EA MSMS /Within specimens 
(“Error”) SSE N - m MSE 

Total Variation SST N - 1 

m : number of localities 
n : number of specimens 
xij : specimen i for locality j 
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EXAMPLE  

Shell 
Specimen Locality 1 Locality 2 

1 16.5 14.3
2 17.3 16.1
3 18.7 17.6

width, mm 
Locality 3 Locality 4 Locality 5 

8.7 15.9 17.6
9.5 17.6 18.4

11.4 18.4 19.1

 

4 19.2 18.7
5 21.3 19.3
6 22.4 20.2

25

12.5 19.0 19.9
14.3 20.3 20.2
16.5 22.5 24.3

W
id

th
, 

m
m 20 + + +

+
15

+
10

5
1 1 2 3 4 5

Specimens 

Source of Degrees of 
variation Sum of squares freedom Variances F test statistic 

Among localities 237.42 4 59.35 
Within specimens 10.14146.37 25 5.85(“Error”) 
Total Variation 383.79 29

When F4,25 = 10.14, p = 0.00005, so for α > 0.00005, at
least one mean is significantly different from the others. 
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DISTRIBUTIONAL TESTING 
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THE χ 2 DISTRIBUTION 

Let X1, X2,K, Xk be k random variables that: 
• are independent; 
• are all normally distributed; 
• the means  μ
• each distribution has a standard deviation  σ , 
then, the sum of the standardized squares 

k 
2 

k ⎛ x − μ ⎞
2 

z =∑ i ∑⎜⎜ 
i i 

⎟⎟ 

i =1 i =1 ⎝ σ i ⎠ 
i are not necessarily equal; 

i 

follows a kχ
2      distribution with k degrees of

freedom. Like the t-distribution, lim χ 2
k = N 0,1

k→∞ 

( )

. 
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   EXAMPLES OFχ 2 DISTRIBUTIONS 
 

Probability density function Cumulative distribution function 

k is the degrees of freedom. 

143 



χ 2 
TEST OF FITNESS 

χ k
2 can be used to test whether the relative frequencies of 

an observed event follow a specified frequency distribution. 
The test statistic is 

n (Oi −  Ei )2 
2 = ∑ χ

i =1 Ei 
Oi is an observed frequency for a given class, 
Ei is the frequency corresponding to the target distribution. 

As usual, if the statistic lands beyond the value of χ 2 
k

corresponding to the degrees of freedom k and level of 
significance α   , the null hypothesis is rejected. 

Weaknesses of the test are: 
• result depends on the number of classes, 
• no class can be empty, 
• there must be at least 5 observations per class for at 

least 80% of the classes. 144 



 
Mean: 15.64 ft 
Stand. dev.: 8.75 

1 2 3 4 65 Class 

WEST LYONS FIELD, KANSAS (1) 
1. The testing will be for 

normality, 6 classes, and a 
level of significance of 5%. 

2. In the normal distribution, 
7.2 11.92 19.23 23.99class width should be 

100/6=16.66% probability. 
Boundaries for those 
equiprobable classes are 
7.20, 11.92, 15.64, 19.23, 
and 23.99. Each class 
contains Ei = 76/6=12.66 
measurements exactly. 
Values for Oi must be 
counted. 
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WEST LYONS FIELD, KANSAS (2) 
 
4. In this case, the statistic is: 

2 2 2 2 
2 (11−12.66) (17 −12.66) (12 −12.66) (10 −12.66)χ = +  + +s 12.66 12.66 12.66 12.66 

(15 −12.66)2 (11−12.66)2 

=  2.94 

5. We have calculated two 
parameters (mean and 
standard deviation). So 
the there are 6 - 2 = 4 
degrees of freedom. 

26. For a level of significance of 5%, χα (4,0.05) = 9.49

. 

2 2So, because χs <  χα , there is no evidence to suggest 
that the thickness values are not normally distributed. 

f(x
) 

x 2.94 9.49 

( )42χ

66.1266.12
++ 
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KOLMOGOROV-SMIRNOV TEST 
 
This is a much simpler test 
than the chi-square test 
because: 
•	 The result does not 

depend on the number 
of classes. 

• 	 It is nonparametric. 
The statistic is the 

maximum discrepancy, 
D, between the two
 
cumulative distributions Fn (x)and ( ) 
F x under comparison. 

D = max(Fn (x)−F ( )  x ) 
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Ds 

WEST LYONS FIELD, KANSAS 
 
1. We want to test that 

the data are 
N(15.64,8.75) for a 
level of significance 
of 5%. 

2. Ds = 0.090 (9%). 
3. Critical value for 

Dα(76,0.05) = 0.102. 
4. There is no evidence 

to postulate that the
thickness values are not normally distributed because 
Ds<Dα. The test, however, presumes the sample comes 
from independent and identically distributed observations. 
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QQ 

PP 

Q-Q AND P-P PLOTS 
 

Scatterplots of the quantiles and West Lyons field 

the cumulative probabilities of the two
distributions are the ultimate tests in 
terms of simplicity. 
•	 If the distributions are the same, the 

points align along the main diagonal. 
• 	 There is no statistic or level of 

significance for evaluating the
results. 

• 	 PP-plots are insensitive to shifting
and scaling, and the vertical scale is
in the same units as in Kolmogorov-
Smirnov test. 

•	 The QQ-plot is good here at calling 
the user’s attention about the normal 
distribution being able to take negative values. 149 



FINAL REMARKS 
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SPATIOTEMPORAL DEPENDENCE 
 
Many natural phenomena exhibit fluctuations that 
show continuity in space and time. Continuity denotes 
the common experience that in proximity of any 
observation, another measurement will be 
approximately the same. 
• 	 Given a spatiotemporally continuous phenomenon 

and the location of an observation, close proximity 
does tell something about the outcome of a second 
observation; they are not necessarily independent. 

• 	 The degree and extent of this dependence can be 
estimated through the semivariogram. 

• 	 Modeling spatiotemporally dependent data, often in 
the form of maps, is the realm of geostatistics. 
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SEMIVARIOGRAM 
 

1000 random numbers Gravimetric anomaly, Elk Co., KS
 

Spatial independence Spatial dependence
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7. MULTIVARIATE 


STATISTICS 
 

153 



METHODS 
 

Multivariate statistics deals with the analysis and display
of objects with two or more attributes consistently
measured for several specimens. The main motivations
are better understanding of the data and introducing
some simplifications.

The main families of methods available are: 
• cluster analysis; 
• discriminant analysis; 
• principal component analysis; 
• factor analysis. 

While missing values are not an insurmountable
problem, they are a situation to avoid.  Often one missing
value in a record requires dropping the entire record.

All methods are complex enough to require a computer
for performing the calculations. 
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MATRICES 

A matrix is a rectangular 
array of numbers, such as A. 
When n = m, A is a square 
matrix of order n. 

Matrices are a convenient 
notation heavily used in 
dealing with large systems of 
linear equations, which 
notably reduce in size to just 
A X = B. 

Main diagonal of a square 
matrix is the sequence of 
element a11, a22, …, ann from 
upper left to lower right. 

⎡a11 a 12 L ⎤
⎢

 a1m 
⎥a a ⎢ 21 22 LA 

 a
= 2m ⎥
⎢

 
L
⎢

 L L L ⎥
⎥

 

⎣a n1 a n2 L anm ⎦

B = [b1 b2 L bm ]' 

X = [ x1 x2 L xm ]' 
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CLUSTER ANALYSIS 
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AIM 
 

The general idea is to group objects 
in attribute space into clusters as 
internally homogeneous as possible
and as different form the other 
clusters as possible. 

Different types of distances,
proximity criteria, and approaches 
for preparing the clusters have
resulted in several methods. 

Some methods render results as 
dendrograms, which allow displaying
the data in two dimensions. 

Large distance increments provide
the best criteria for deciding on the
natural number of clusters. 
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DISSIMILARITIES
If Σ is the covariance matrix for a multivariate sample of m
attributes, the following distances are the most common 
measurements for dissimilarity between vectors p and q:

m

• Euclidean, ∑
m

(p     q−    ) 2i i        •  Manhattan, ∑ pi − qi
=i=1 i 1

m

(Mahalanobis, ∑ p −q)'Σ−1(p−• q).
i=1

Distances can be in original data space or standardized.
Mahalanobis distances account for distance relative to 

direction and global variability through the covariance matrix.
Euclidean distances can be regarded as a special case of 

Mahalanobis distance for a covariance matrix with ones 
along the main diagonal and zeros anywhere else.



PROXIMITY AND METHODS 

Proximity between clusters is commonly decided 


based on the average inter-cluster distance. The 


most common methods are: 
 

• Agglomerative hierarchical             
• Divisive hierarchical 
• K-means 

Choice of dissimilarity measure may have greater 
influence in the results than the selection of the method. 
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DATA SET TO BE CLUSTERED 
 
Physical properties of carbonates 

Mineral 
Spec. gravity 

g/cc 
Refractive index

    Smallest   Largest Hardness 
Aragonite (ar) 2.94 1.530 1.685 3.7 
Azurite (az) 3.77 1.730 1.838 3.7 
Calcite (ca) 2.72 1.486 1.658 3.0 
Cerusite (ce) 6.57 1.803 2.076 3.0 
Dolomite (do) 2.86 1.500 1.679 3.7 
Magnesite (mg) 2.98 1.508 1.700 4.0 
Rhodochrosite (rh) 3.70 1.597 1.816 3.7 
Smithsonite (sm) 4.43 1.625 1.850 4.2 
Siderite (si) 3.96 1.635 1.875 4.3 
Strontianite (st) 3.72 1.518 1.667 3.5 
Witherite (wi) 4.30 1.529 1.677 3.3 

Often all attributes are standardized to avoid the 
dominance of results by those with the largest 
numerical values. 
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AGGLOMERATIVE CLUSTERING 
 
• Initially there are as many 

clusters as records. 
• At any stage, the two 

closest clusters are 
merged together, 
reducing the number of 
clusters by one. 

• The procedure ends with 
the last two clusters 
merging into a single 
cluster. 

Euclidean distance is the most common choice (Ward’s
method). 
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DIVISIVE CLUSTERING 
 

1. 	 Initially all records
are in one cluster. 

2.	 At any stage, all
distances inside 
each cluster are 
calculated. 

3.	 The cluster with the 
largest specimen-to­
specimen distance
is broken apart,
increasing the
number of clusters 
by one. 
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DIVISIVE CLUSTERING 
 

4. These specimens with 
the largest distance 
become the seed of 
the two new clusters. 
All other specimens in 
the breaking apart 
cluster are assigned to 
the closest seed. 

5. The procedure ends 
with the last two true 
clusters breaking 
apart into individual 
specimens. 
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K-MEANS CLUSTERING 
 

The final number, k, of k = 5
clusters is here decided 
at the outset. The 
algorithm is: 
1. Select the location of k 
 

centroids at random. 


2. All objects are assigned 


to the closest centroid. 
 

3. Recalculate the location 
of the k centroids. 

4. Repeat steps 2 and 3 until reaching convergence. 
The method is fast, but the solution may be sensitive to 
the selection of the starting centroids. 

ca ce 

do 
ar 

ma 

rh 

st 

wi 

az 
smsi 
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CLUSTERING REMARKS 
 

• 	 The method is primarily a classification tool devoid of 
a statistical background. 

• The more complex the dataset, the more likely that 


different methods will generate different results. 
 

•	 The k-means methods is an extreme case, as even 
different runs for the same number of clusters may
produce different results. 

• 	 Often solutions are suboptimal, failing to perfectly 
honor the intended objective of the method. 

• 	 In the absence of clear cut selection criteria, 
convenience in the eye of the user remains as the
ultimate consideration on choosing the number of
final clusters and clustering method. 

•	 If totally lost, go for the Ward’s method followed by 
the k-means method starting from the cluster
generated by Ward’s method. 
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DISCRIMINANT ANALYSIS 
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BASIC IDEA 
 

Discriminant analysis is a mixture of classification and 
prediction method under different availability of data than in 
cluster analysis. 
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•	 The classes are known for all 
objects in a training set. 

•	 The training set is a data set 
intended for a second stage 
classification of objects 
without class assignments. 

• 	 The problem is solved by 
minimizing misclassification, 
which starts by finding class 
geometric boundaries for the 
training set in the data space. 
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ASSUMPTIONS 
 

Discriminant analysis is a true statistical method based
on multivariate distribution modeling.  Important
assumptions for making the analysis possible are: 
• 	 The data are a sample from a multivariate normal 

distribution. Thus, all attributes are normally
distributed within each class. 

• 	 Any specimen has the same probability of belonging 
to any of the classes.

• 	 None of the attributes is a linear combination of the 
others. 

• 	 The means for attributes across groups are not 
correlated with the variances. 

Although in practice all assumptions are never
simultaneously satisfied, the formulations are robust
enough to tolerate departures. 
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VARIANTS 
 

There are different approaches to discriminant analysis, 
but the main difference is in the type of surfaces 
employed to establishing the class boundaries. 
• 	 Linear methods, in which the surfaces are 

hyperplanes in an m dimensional space, where m is 
the number of attributes considered in the analysis. 
Linear discriminant analysis results from assuming 
all classes have the same covariance matrix. 

• 	 Quadratic methods, in which the boundaries are 
polynomials of order up to 2, with each class having 
a different covariance matrix. 
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TESTS
 

The following tests are integral parts of the procedure:
 

• Homogeneity of covariances 
• Equality of means 
• Normality 
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TEXAS GULF COAST
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0.355 

0.35 

0.345 

0.34 

0.335 

0.33 

0.325 

0.32 

0.315 

Offshore sands 

+ 

+ 
+ 

+ 

Beach sands

1.05 	 1.1 1.15 1.2 1.25 1.3 1.35 

Sorting coefficient 

 SAND EXAMPLE 
 

Test for homogeneity of covariances 

p = 0.85 

Test for equality of means 

p = 0.00

Classification table 
 Beach Offshore

Beach 31 3
Offshore 3 44

Kolmogorov-Smirnov test for normality 

 Statistic  Probability
Beach 0.056 0.96390
Offshore 0.034 0.99999

 

 
 
 

 
 
 

Assignments (+) 

Sorting Med. size Pr[Beach] Pr[Offsh.] 
1.22 0.327 0.97 0.03 
1.17 0.334 0.85 0.15 
1.12 0.342 0.40 0.60 
1.27 0.331 0.12 0.88 
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PRINCIPAL COMPONENT ANALYSIS 
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BASIC IDEA 
 

The main objective of principal 
component analysis is to reduce 
the dimensionality of the sample. 
• 	 The new variables are linear 

combinations of the old ones. 
• 	 The new axes are orthogonal 

and oriented in directions of 
maximum variation. 

• 	 The new variables account for 
the same total variance, but in 
decreasing proportions. 

• 	 If explaining less than 100% of 
the total variation is acceptable, 
one can drop the less relevant 
new variables. 
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MATRIX TERMINOLOGY 
The determinant of a square matrix, |A|, of order m is an 
expression having additive and subtractive products of m 
coefficients. The exact rules are complicated, but for order
2, for example, A = a
 11 ⋅a
 22
 − a
 12 ⋅a
 21.  

Given a symmetric square 
matrix, its eigenvalues are 
the solution, Λ, to the 
equation that results from 
subtracting the unknown 
value λ from the main 
diagonal of its determinant. 

An eigenvector Xi is the 
solution to equation system 
obtained by subtracting an 
eigenvalue from all diagonal 
terms of A when B = 0. 

11 − λa 12a L  1ma 

21a 22 − λa L  2ma 
0=  

L  L L L 

1ma 2ma L − λmma 

[Λ λ1 = λ2 L ]' mλ  

⎤ 

⎥ 

⎥ 

⎥ 

⎥
⎦


⎡ 

⎢ 

⎢ 

⎢ 

⎢
⎣


=
 

⎤ 

⎥ 

⎥ 

⎥ 

⎥
⎥⎦


⎡ 

⎢ 

⎢ 

⎢ 

⎢
⎢⎣


⎤
⎥
⎥
⎥
⎥
⎦λ− 

λ− 

λ−⎡
⎢
⎢
⎢
⎢
⎣ 

a a L a xi 011 i 12 1m 1 

a a L a x 021 22 i 2m i2 

L L L L M M  

a a L  a x 0m1 m2 mm i im 
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METHOD 
 

Solution to the problem comes from finding the
orthogonal combination of attributes with maximum
variance. 

Given n records containing measurements for m 
attributes, one can calculate an m by m symmetric
covariance matrix. The actual multivariate distribution 
is irrelevant. 

The directions of maximum variance are provided by


the eigenvectors in the form of directional cosines. The 


axes in the new system of reference remain orthogonal. 
 

The length of each axis is taken as twice the
eigenvalue. 

Borrowing from the properties of matrices, the new
axes are oriented along the directions of maximum
variance and ranked by decreasing length. 
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BOX EXAMPLE 
 

Variables 

x1 = long edge 
x2 = middle edge 
x3 = short edge 
x4 = longest diagonal 

radius of smallest circumscribe spherex =  5 radius of largest inscribe sphere 
 

long edge + intermediate edge 
x = 6 short edge 
 

surface area
 x = 7 volume 
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PRINCIPAL COMPONENTS EXAMPLE 
 

Coefficient matrix 

⎡ 5.400
 
 ⎤ 


⎢ 3.260 ⎢ 5.846
 

⎥
⎥

⎢ 0.779  1.465 2.774 
 ⎥  

A =
 

⎢ 6.391 ⎢
 6.083 2.204 9.107
 

⎥
⎥

⎢ 2.155 
⎢

3.035 ⎢

 1.312
2.877


 

 

−3.839 
− 5.167 


1.611 
2.783 

10.714
14.774 


 

20.776 
 

⎥
⎥
⎥

 

⎢⎣ −1.996

 − 2.370 


 −1.740 

 −3.283 
 2.252 2.622 2.594⎥⎦

 

Eigenvectors 

⎡ 0.164  − 0.422 − 0.645  0.225 0.415 0.385 ⎤ 
⎢ 0.142 ⎢

 
 − 0.447 0.713 0.395 ⎥0.329  
 ⎥

⎢− 0.173   − 0.257 0.130 − 0.629 − 0.607 0.280  0.211 ⎥
⎢Χ = 0.170 ⎢

 
   −0.650  − 0.146 − 0.212 − 0.403  
 

⎥− 0.565 ⎥
⎢ 0.546 
⎢
⎢ 0.768 

 
 

 

0.135 
0.133 

− 0.105
.1490

 − 0.164 − 0.161
− 0.207 

− 0.596 
0.465

 
 

 

0.514 ⎥
⎥

− 0.327 ⎥
⎢⎣ 0.313 − 0.719 0.596 0.107 ⎥⎦

Orientation 
of second 
new axis 

= [ .491Λ
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FACTOR ANALYSIS 
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INTENDED PURPOSE 
 

Factor analysis was originally 
formulated in psychology to assess 
intangible attributes, like intelligence, 
in terms of abilities amenable of 
testing, such as reading 
comprehension. 

Principal component analysis can 
be used to run a factor analysis, 
which sometimes contributes to 
confusion of the two methods. 

Principal component factor analysis 
employs a correlation coefficient 
matrix obtained after standardizing 
the data. 
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GENERAL ASSUMPTIONS 
 

Factor analysis, unlike principal component analysis, follows 
the canons of statistical modeling, thus 
• opening possibilities in terms of testing, yet 
• creating restrictions in utilization: data must comply with 
some assumption for the method to be applicable. 

Analogously to regression, the model is: 
p 

xi = ∑aik ⋅ fk  + ε i , i = 1, 2,K,m 
k =1 

where xi is the ith observed attribute. 
aik and fk are the loadings and factors to come from 
the analysis. 
εi is a random error. 

It is also assumed that all variables are multinormally 
distributed. 
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VARIANTS 
 

The two main approaches to factor analysis are: 
• 	 principal components 
• 	 maximum likelihood 
In addition to the general assumptions, maximum 
likelihood factor analysis assumes that: 
• 	 Factors follow a standard normal distribution, N(0, 1). 
 

• 	 All of the factors are independent. 
• 	 The correlation coefficient matrix prepared with the 

data is a good approximation to the population 
correlation coefficient matrix . 
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BOX EXAMPLE REVISITED 
 
Variables 

x1 =  long edge 
x2 = middle edge 
x3 = short edge 
x4 = longest diagonal 

radius of smallest circumscribe spherex =  5 radius of largest inscribe sphere 
 
long edge + intermediate edge 
x = 6 short edge 
 

surface area
 x =  7 volume 
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PRINCIPAL COMPONENT FACTOR 

ANALYSIS FOR THE BOX EXAMPLE 
 

Coefficient matrix 

⎡ 1.000
⎢


 
 ⎤
⎥




0.580 1.000 ⎢ ⎥
⎢  0.201 0.364 1.000 ⎥
⎢ ⎥

 

A =
 ⎢
 0.911 0.834 0.439 1.000
⎢


 ⎥

 0.283 0.166
 − 0.704 0.163 1.000 ⎥
⎢

 
 ⎥
⎢ 0.287 0.261
 − 0
 .681 0.202 0.990 1.000
 ⎥
⎢⎣ − 0
 .533
 − 0
 .609 
 − 0 649 ⎥
 . 
 −
 0
 .676 0.427 0.357 1.000⎦
 


Eigenvectors (Factors) 

⎡− 0.405 0.293 − 0 .667 − 0.227 − 0.410 0.278 ⎤
⎢ ⎥− 0 .432 0.222 0.698 − 0.437 − 0.144 0.254 ⎢

 

⎢−

 ⎥

⎢

 0
 

  .385 − 0.356 0.148 0.628 0.512 − 0.188 0.108 ⎥
⎥Χ = − − −⎢

 
 0 .494 0.232 0 .119 0.210 0.105 0.588 − 0.536 ⎥

 

⎢

  

⎢

 0.128 0.575 0.111 0.389 0.423 0.556 ⎥
⎥

 

⎢

 

0.580 0.174 0.355 − 0.500 − 0.497 ⎥

 

⎢

 

⎥

 

⎣ 0.481 0.130 0.735 − 0.455 ⎦

Orientation 
of second 
new axis 

70
Principal component analysis 

60

 


 

 




 

Factor analysis 
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New  axes 

Λ

Eigenvalues 

3.395[
 2.805 0.437 0.278 0.081 0.003 0.000 
= 
 ]' 
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