
Using the U.S. Geological Survey National Water
Quality Laboratory LT-MDL to Evaluate and
Analyze Data

Open-File Report 2008-1227

U.S. Department of the Interior
U.S. Geological Survey



 

Using the U.S. Geological Survey National Water 
Quality Laboratory LT-MDL to Evaluate and  
Analyze Data 

by Bernadine A. Bonn 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Open-File Report 2008-1227 

U.S. Department of the Interior 
U.S. Geological Survey 

 



U.S. Department of the Interior 
DIRK KEMPTHORNE, Secretary 

U.S. Geological Survey 
Mark D. Myers, Director  

U.S. Geological Survey, Reston, Virginia 2008 
 

For product and ordering information: 
World Wide Web: http://www.usgs.gov/pubprod 
Telephone: 1-888-ASK-USGS 

For more information on the USGS—the Federal source for science about the Earth, 
its natural and living resources, natural hazards, and the environment: 
World Wide Web:  http://www.usgs.gov 
Telephone:  1-888-ASK-USGS 

Suggested citation: 
Bonn, B.A., 2008, Using the U.S. Geological Survey National Water Quality Laboratory LT-MDL to 
evaluate and analyze data: U.S. Geological Survey Open-File Report 2008-1227, 73p. 

Any use of trade, product, or firm names is for descriptive purposes only and does not imply  
endorsement by the U.S. Government. 

Although this report is in the public domain, permission must be secured from the individual  
copyright owners to reproduce any copyrighted material contained within this report. 

 



CONTENTS 
Introduction.................................................................................................................................................... 1 

Purpose and Scope ................................................................................................................................... 1 
Structure of This Document ....................................................................................................................... 2 

Background ................................................................................................................................................... 3 
Understanding Chemical Analyses ............................................................................................................ 3 
Methods of Reporting Analytical Results.................................................................................................... 6 

NWQL Reporting Procedure........................................................................................................................ 11 
Fundamentals .......................................................................................................................................... 11 
Why the LT-MDL/LRL Reporting Procedure Is Good News for Data Users ............................................. 13 
How the LT-MDL/LRL Reporting Procedure Poses Challenges for Data Users....................................... 13 

Assessing Project Data Quality ................................................................................................................... 15 
Comparing Your Sample Results to Routine Lab Performance ............................................................... 15 

Examples..................................................................................................................................................... 19 
Statistical Methods and Censored Data ................................................................................................... 20 
Quality Assurance Examples .................................................................................................................. 23 

1. Is the variability for my samples consistent with the LT-MDL?.. ....................................................... 23 
2. What does it mean if the variability for my samples is not consistent with the LT-MDL?. ................. 24 
3. What can I do if the variability for my samples is not consistent with the LT-MDL?.......................... 26 
4. The results for my blanks were reported as less than a concentration that was greater than some of 

my field samples—do I have a contamination problem?. ................................................................. 28 
5. The results for my blanks were not all “less thans”—do I have a contamination problem? The 

method was not information-rich.. .................................................................................................... 29 
6. The results for my blanks were not all “less thans”—do I have a contamination problem? The 

method was information-rich.. .......................................................................................................... 30 
7. What does it mean if one of my spikes is a nondetect?.................................................................... 32 
8. What can I do if my spikes show a poor recovery?. ......................................................................... 33 

Project Planning Examples ...................................................................................................................... 36 
1. I want to compare values to a criterion at the low end of the analytical range.  

Is that possible with this analytical method?. ................................................................................... 36 
2. I want to compare two groups. Is the precision of this analytical method adequate?. ...................... 40 

Data Interpretation Examples................................................................................................................... 41 
1. I’ve heard that it is easy to misinterpret nondetections in a way that introduces bias in the summary 

statistics. How do I avoid that? The analytical method is not information-rich.................................. 41 
2. I’ve heard that it is easy to misinterpret nondetections in a way that introduces bias. How do I avoid 

that? The analytical method is information-rich................................................................................ 43 
3. How do I interpret data and calculate statistics when I have nondetections? The low-level values are 

not important to my study................................................................................................................. 45 

iii 



4. How do I calculate summary statistics when I have nondetections? I am not concerned with 
individual values, but want to characterize the distribution. The analytical method used was not 
information-rich ................................................................................................................................ 48 

5. How do I calculate summary statistics when most of my data are nondetections or low-level values? 
The analytical method was information-rich and many of the reported values are less than the  
LT-MDL.. .......................................................................................................................................... 53 

6. My data were collected over several years, during which the LT-MDL changed. What can I do to 
simplify my data set?. ...................................................................................................................... 55 

7. How do I calculate summary statistics when I have several detection levels or when I have reported 
values that are less than the censoring level?. ................................................................................ 58 

8. How do I group my data using one or more cutoff or benchmark values?. ....................................... 66 
9. How do I compare my data to a value that is less than the LRL? ..................................................... 70 

Annotated Bibliography................................................................................................................................ 72 
 

iv 



Using the U.S. Geological Survey National Water 
Quality Laboratory LT-MDL to Evaluate and  
Analyze Data 

 
By Bernadine A. Bonn

ABSTRACT
A long-term method detection level (LT-MDL) and laboratory reporting level (LRL) are used 

by the U.S. Geological Survey’s National Water Quality Laboratory (NWQL) when reporting 
results from most chemical analyses of water samples. Changing to this method provided data 
users with additional information about their data and often resulted in more reported values in 
the low concentration range. Before this method was implemented, many of these values would 
have been censored.

The use of the LT-MDL and LRL presents some challenges for the data user. Interpreting data 
in the low concentration range increases the need for adequate quality assurance because even 
small contamination or recovery problems can be relatively large compared to concentrations near 
the LT-MDL and LRL. In addition, the definition of the LT-MDL, as well as the inclusion of low 
values, can result in complex data sets with multiple censoring levels and reported values that are 
less than a censoring level. Improper interpretation or statistical manipulation of low-range results 
in these data sets can result in bias and incorrect conclusions.

This document is designed to help data users use and interpret data reported with the LT-
MDL/LRL method. The calculation and application of the LT-MDL and LRL are described. This 
document shows how to extract statistical information from the LT-MDL and LRL and how to use 
that information in USGS investigations, such as assessing the quality of field data, interpreting 
field data, and planning data collection for new projects. A set of 19 detailed examples are 
included in this document to help data users think about their data and properly interpret low-
range data without introducing bias. Although this document is not meant to be a comprehensive 
resource of statistical methods, several useful methods of analyzing censored data are demon-
strated, including Regression on Order Statistics and Kaplan-Meier Estimation. These two statisti-
cal methods handle complex censored data sets without resorting to substitution, thereby avoiding 
a common source of bias and inaccuracy. 

INTRODUCTION
In FY 2000, the U.S. Geological Survey’s National Water Quality Laboratory (NWQL) 

began routinely applying a new reporting procedure for high-demand water methods (Childress 
and others, 1999). Use of this reporting procedure has continued and is being employed for most 
analyses on water samples. The reporting procedure does not alter the actual analytical methods 
used by the NWQL, but only the way in which the results are communicated. Understanding this 
procedure provides the data user additional information about their data; it also presents the data 
user with new opportunities and challenges regarding data interpretation, especially in the low 
range of the method. Moreover, improperly interpreting low range results can bias summary sta-
tistics.
1



Purpose and Scope

The purpose of this paper is to help the data user understand the reporting procedure used by 
NWQL and show how to apply that understanding to better interpret data from the NWQL. Spe-
cifically, the following will be addressed:

• How the reporting parameters used by NWQL (the LT-MDL and the LRL) are defined and 
used in reporting results of chemical analyses

• How to extract the statistical information that is embedded in these reporting parameters

• How to use that statistical information, combined with other quality control data from the 
NWQL, to assess the quality of field data, interpret field data, and plan data collection for new 
projects

• How to properly interpret low range data to prevent distortion of the data distribution which 
biases summary statistics

• What factors to consider when representing and analyzing censored data

• An exploration of some methods of analyzing censored data

The techniques that will be discussed are most applicable for concentrations in the low range 
of the chemical method and include, but are not limited to, censored values. Particular attention 
will be focussed on to how to best represent censored data in light of the question being investi-
gated. In addition, some methods of analyzing censored data will be explored. This paper, how-
ever, is not a comprehensive resource of statistical methods for analyzing censored data. 

Structure of This Document

 This document is divided into four parts:

1. The Background section includes a discussion of analytical error and its role in reporting 
the results from chemical analyses. Basic concepts such as confidence and uncertainty are 
reviewed.

2. The NWQL Reporting Procedure section includes a detailed description of the default 
reporting values used in the new procedure (the LT-MDL and LRL) and how they are 
applied to data. A comparison of the new reporting procedure with the one used previously 
by NWQL is included.

3. The Assessing Project Data Quality section describes how to determine if the LT-MDL and 
LRL are appropriate for a given dataset. This is particularly important if the data user is 
interpreting data near the low end of the analytical range or planning to use the statistical 
basis of the new procedure to estimate uncertainty.

4. The Examples sections contain detailed discussions and calculations for a variety of hypo-
thetical questions and datasets. 

Throughout this document, and especially for the examples, it is assumed that the reader has 
a familiarity with basic statistical concepts and tests (mean, median, standard deviation, t and z 
tests, F test, Chi square test, and others). Readers will find it helpful to have an introductory statis-
tics text available to use as a reference for statistical tables and to review some procedures.
2



BACKGROUND

 Understanding Chemical Analyses

In order to understand the new reporting procedure and how to use it to advantage, it is 
important to consider the nature of chemical analyses—in particular—the issues of detection and 
quantification. Detection addresses the question: “Is the analyte of interest present in the sample?” 
Quantification addresses the question: “What is the concentration of the analyte of interest in the 
sample?” Although quantification seems to be the more difficult question, it is in fact, often more 
straightforward to answer than detection.

Analytical error and uncertainty—All chemical analyses have errors. Errors can be classified as 
either systematic or random.

Systematic errors are always in the same direction. For example, some methods produce 
results that are low because the analyte degrades before it can be detected; other methods produce 
results that are high because of background contamination. Bias is the result of systematic error. 
Systematic errors can be discovered by a quality assurance/quality control (QA/QC) program. 
Often, the problems that lead to these errors can be corrected, thereby eliminating the error in 
future analyses. Data users need to be aware of possible systematic errors in their data and inter-
pret results accordingly. Systematic error will only be discussed in this paper in the context of 
methods that are known to have low analyte recovery.

Unlike systematic errors, random errors occur with equal frequency in both directions and are 
unavoidable because they are caused by fundamental limitations on the ability to make perfect 
measurements. Random errors translate into analytical uncertainty—a region that surrounds the 
reported value. Almost all of the issues and examples presented in this paper relate to the analyti-
cal uncertainty produced by random error.

Because of analytical uncertainty, the reported result of a chemical analysis can never be 
assumed to equal the true concentration of an analyte. Rather, it is an estimate of the true concen-
tration. Analytical uncertainty is sometimes explicitly included with the reported result (for exam-
ple, 4.5 ± 0.2 mg/L), but more commonly it is either implied by significant figure conventions or 
not reported at all. All analytical results have associated uncertainty, regardless of whether the 
uncertainty is reported with the result. For a chemical analysis to be accurate or correct, the region 
of uncertainty around the reported value must include the true concentration. Of course, the true 
concentration is never known exactly. Confidence is based on the risk that the region of uncer-
tainty surrounding the reported result does not encompass the true concentration.

The size of the uncertainty depends on three things: (1) the nature of the analytical method, 
(2) the chemical and physical properties of the analyte, and (3) the degree of confidence desired 
by the data user. Some analytical methods tend to produce large uncertainties (that is, they tend to 
have high variability); some tend to produce small uncertainties (they tend to have low variabil-
ity). Methods that tend to produce small uncertainties are considered precise.

The choice of analytical method is partially determined by the chemical and physical proper-
ties of the analyte. Not every method will work for every analyte and some compounds are notori-
3



ously difficult to analyze. Some of the properties that can cause analytical difficulties include 
chemically reactive compounds that degrade before and during analysis, volatile compounds that 
evaporate, and compounds that are difficult to isolate from similar compounds. Results for such 
analytes may never be as precise or accurate as those for analytes that are easier to assay.

The data user cannot change the inherent nature of a method or the properties of an analyte, 
but they can modulate the size of the uncertainty by requiring more or less confidence. For a given 
method, accepting lower confidence shrinks the size of the uncertainty and requiring higher confi-
dence expands the size of the uncertainty (fig. 1). This may seem counterintuitive, but remember 
that high confidence has to do with minimizing the chance of being wrong, not with minimizing 
the size of the uncertainty. It is a sad irony that the analytes whose methods are associated with 
large uncertainties often seem to be the same ones for which data users desire high confidence.

reported value

uncertainty or confidence interval

Figure 1. The analytical method and the confidence required determine the size of the uncer-
tainty. For the same degree of confidence, more precise methods tend to have smaller uncer-
tainties than less precise methods. For the same method, the more confidence required, the 
larger the size of the uncertainty.
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Uncertainty can be determined in a variety of ways. Sometimes uncertainty is based solely on 
instrument resolution. For example, a mass measurement produced by a centigram balance has an 
inherent uncertainty of ±0.01 g, whereas the same measurement made using an analytical balance 
has an uncertainty of ±0.0001 g. Sometimes uncertainty incorporates a wide variety of factors and 
is determined by the professional judgement of the analyst. Uncertainty also can be defined using 
statistical methods. In this paper, a statistically defined confidence interval will be used to calcu-
late uncertainty. For example, a 90% confidence interval indicates that there is a 10% chance that 
the region of uncertainty does not include the true result. Of course, the true result of the analysis 
might not be the true concentration of the analyte if the method is biased (always produces results 
that are too high or too low).  

Developing Intuition about Uncertainty and Confidence
Although it may seem counterintuitive at first, a large region of uncertainty implies greater confi-

dence than a small region of uncertainty (assuming no method or analyte differences). Confidence has 
to do with how sure the data user is that the region of uncertainty surrounding the measured value 
actually encompasses the true value. The following analogy illustrates these concepts.

Suppose that I want to specify the location of my sister. It is a weekday; she is a nurse that works at 
a local clinic. If I want a very high degree of confidence in my assessment of her location, I might say 
“She is on the planet Earth.” With this extremely large region, the chance that I am wrong is virtually 
zero, but the region of uncertainty is too large to be useful. If I choose a smaller region of uncertainty, 
“She is in the metropolitan area,” I have a greater chance of being wrong—in other words, less confi-
dence. It is possible that she is out of town attending a conference or on vacation, but these situations 
are not very likely because I know that they are rare occurrences in her routine. If I choose an even 
smaller region of uncertainty, “She is in the clinic office on Main Street,” my chance of being wrong is 
much greater. She might be home sick, taking a day off, or out at lunch. Every time I choose a smaller 
region of uncertainty, I also decrease the confidence that the region captures her true location.

This analogy can be extended to consider the nature of different analytes. Suppose I want to spec-
ify the location of my cousin who is a sales representative. I am still quite certain that he is on the 
planet Earth, but if I limit the neighborhood of his location to "metropolitan area," I have a very good 
chance of being wrong. I know that he travels a great deal. Because of their inherent natures and 
behaviors, my sister is much easier to locate than my cousin. As chemical analytes, she would be rel-
atively easy to analyze and he would be more difficult. 

The analogy can be extended further to consider the analytical method. At this point I have 
assessed an individual’s location based on a knowledge of his or her habits. This is not a very precise 
method, but it is easy and inexpensive. If I require a small region of uncertainty and high confidence, I 
would need to use a more precise method for determining location, such as fitting my sister or cousin 
with a radio transmitter. This would require more work on my part and be more expensive than the 
less-precise, but easy, method. Similarly, choosing a more precise analytical method decreases the 
size of the uncertainty for chemical analyses, but it usually costs more. In addition, a more precise 
method that is biased may not provide an estimate that is closer to the true value than an unbiased but 
less precise method.

To summarize, the size of the uncertainty for a measured value depends on the nature of the ana-
lyte and the method used to analyze it, and on the degree of confidence required by the data user.
5



Quantification and detection—A quantitative result is essentially an observation in the form of 
a number. It was obtained when some physical measurement (such as the volume of a titrant or the 
magnitude of an electronic signal) was mathematically manipulated to obtain an estimate of ana-
lyte concentration. The data user must calculate or assume an appropriate amount of uncertainty 
around the reported result.

In contrast, detection is not an 
observed number, but a decision. Detec-
tion imposes a judgement on an analysis 
that was not required for quantification: 
Is this sample different from a sample 
that does not contain the analyte (a 
blank)? Making that decision is compli-
cated by the fact that all quantitative 
results have uncertainty. To be judged a 
detection, the region of uncertainty sur-
rounding the reported value should not 
include zero (fig. 2). When an analyte is 
reported as “detected,” the data user 
should be confident that the analyte is 
indeed present in the sample. The con-
verse is not true, however. If an analyte 
is reported as “not detected,” it may still 
be present, but the concentration is so 
low that a blank sample could have pro-
duced the same analytical signal.

 Methods of Reporting Analytical Results

An analytical result can be reported in a variety of ways. Regardless of the conventions that 
are used, all analytical results should be reported with some indication of the associated uncer-
tainty. 

Most robust method—In an ideal world, every sample would be analyzed several times so that 
the uncertainty for that sample would be firmly established. In this utopia, every value would be 
reported with its unique standard deviation and the number of replicate analyses; the data user 
could apply statistical theory to calculate the desired confidence interval for every value (see A 
Closer Look—Most Robust Method, on the following page.). In this case, the data user makes 
decisions about the question of detection and the laboratory simply reports the data. In this situa-
tion, that laboratory would use all analytical measurements, even the negative values.

Unfortunately, there are many reasons why this approach is impractical. Collecting a large 
enough sample for the analysis of many replicates may not be possible. Routinely analyzing many 
replicates for each sample also would greatly increase analytical costs. 
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Figure 2. If the region of uncertainty around a 
result includes zero, then the result is not consid-
ered a detection.
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A Closer Look— Most Robust Method

PROCEDURE

1. Sample is submitted to laboratory.

2. At the laboratory: 

• Sample is homogenized.
• Sample is split into several fractions.
• Splits are analyzed independently.
• Hypothetical results for five splits: 3.252, 3.283, 3.291, 3.258, 3.264.
• Mean (x) and standard deviation (s) are calculated: x =3.269600, s=0.016682.

3. Laboratory reports result as: 3.270, s=0.017 (n=5), or they report the individual values.

4. Data user interprets value:

• Data user decides that 5% error is tolerable.

• Student’s t for a 2-tail test, 4 degrees of freedom, 95% confidence: t=2.78.

• Calculate confidence limits: 2.78 × 0.017 = 0.047.

RESULT
Data user publishes result as 3.27± 0.05 .

DISCUSSION
Replicate analyses are performed to allow a statistical determination of the region of uncertainty at a 

user-chosen confidence level. Normally distributed values are assumed—a reasonable assumption for 
random analytical variability. Standard statistical tables are used to look up the value of Student’s t. A 2-
tailed value is used, placing half of the error in one tail and half in the other tail. The distribution for this 
example is illustrated below (not to scale). Note that this procedure produces a well-defined quantitative 
result for a single sample. No information about field or sampling variability or bias is included. Fur-
thermore, this result may be different from the “true” concentration if the laboratory method is biased. 

3.27 3.323.22

2.5%2.5%
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Less robust method: reporting and detection levels—When replicate analyses of each sam-
ple are not possible, assumptions and compromises are required and the data user must be mindful 
of them. Sometimes each sample is analyzed only once. A single analysis provides absolutely no 
information about the uncertainty, but the data user still needs that information for the analytical 
result to be meaningful. In such cases, the laboratory adopts procedures for reporting the data that 
provide the data user with some indication of the random error associated with the analytical 
method. Reporting procedures vary among laboratories and analytical methods.

MRL. One commonly used option is for a laboratory to establish a minimum reporting level 
(MRL). An MRL divides the data into two groups. Results that are greater than the MRL are 
reported. Results that are less than the MRL are censored; that is, they are reported simply as “less 
than the MRL” (< MRL). Methods for choosing MRLs vary and no single procedure is univer-
sally used. In general, the data user can assume that a laboratory is confident that the analyte is 
present in the sample if its concentration exceeds the laboratory’s MRL. No other information 
about uncertainty is implied. Some laboratories choose MRLs so that the relative standard devia-
tion for values greater than the MRL (reported values) is approximately constant. This is very use-
ful for the data user to know because it provides an estimate of the random error associated with 
analytical results and can be used to estimate a region of uncertainty. In many cases, however, the 
MRL has no statistical basis and is based on the professional judgement of the analyst.

Imposing an MRL does not alter the fact that all data have associated analytical error. 
Because of analytical error, most data users would not assume that two samples, each analyzed 
only once, with reported concentrations of 0.15 and 0.16 mg/L, were different. However, data 
users sometimes make the erroneous assumption that two samples with reported concentrations of 
<0.15 and 0.16 mg/L are different. That is, they assume that if the true analyte concentration of a 
sample were greater than the MRL, then the results for this sample would not be censored. This 
assumption is false. 

Analysis of a sample having a true 
concentration equal to the MRL has a 
50% chance of producing a result that is 
less than the MRL and a 50% chance of 
producing a result that is greater than the 
MRL. Consequently, based on a single 
analysis, a data user cannot confidently 
conclude that a sample with a reported 
concentration near the MRL is different 
from a sample with a reported concen-
tration of <MRL (fig. 3).  
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Figure 3. The results shown here would be 
reported differently, even though they could eas-
ily be replicate results for the same sample.This 
is because the results fall on opposite sides of 
the MRL.
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USEPA-MDL. Another common approach is for a laboratory to use the U.S. Environmental 
Protection Agency’s method detection limit (USEPA-MDL) procedure. Unlike MRLs that can be 
based on many different factors, the USEPA-MDL is determined using a clearly prescribed proce-
dure (U.S. Environmental Protection Agency, 1998) (see A Closer Look—USEPA-MDL, on the 
following page). The USEPA-MDL is statistically defined as the smallest concentration that can 
be measured and reported with 99% confidence that the analyte concentration is greater than zero.

When the measured concentration exceeds the USEPA-MDL, the compound is considered 
“detected.” Assuming that the sample is well behaved, this conclusion (detection) could occur due 
to random noise in the analytical method a maximum of 1% of the time if the value measured 
were equal to the USEPA-MDL. In other words, the chance of a false detection is no more than 
1%. When the analytical result does not exceed the USEPA-MDL, the analyte is considered “not 
detected with adequate confidence,” which is different from “not present.”

The USEPA-MDL procedure is based on one set of replicate analyses of an ideal sample 
(usually analyte-spiked blank water); as such, the USEPA-MDL indicates the best performance of 
the analytical method. The analytical method may not perform as well on field samples, which 
probably contain substances in addition to analyte and water. For example, other competing ana-
lytes or humic substances can cause matrix interferences. Therefore, the data user should be 
aware that the USEPA-MDL may not be applicable to environmental samples that are not well 
behaved or have substantial matrix interferences. 

Using the USEPA-MDL as an MRL. Usually, an MRL is set at a concentration that is con-
siderably greater than the USEPA-MDL. This is because the relative analytical uncertainty is 
large at concentrations near the USEPA-MDL; when the analyte concentration is equal to the 
USEPA-MDL, the region of uncertainty (defined as the 99% confidence interval) is ±100%. 
Occasionally, however, a laboratory will use the USEPA-MDL as their MRL—both to censor data 
and as the default value for reporting the censored data. In this case, when the laboratory mea-
sures a value that is less than the USEPA-MDL, it is censored and reported as “< USEPA-MDL.” 
The use of the USEPA-MDL as the default reporting value for censored data is not related to its 
statistical definition. The USEPA-MDL is designed to limit the chance of erroneously concluding 
that an analyte is present in a sample when it actually is not. In other words, the USEPA-MDL 
protects against false positives. If a sample does not contain the analyte, there is only a 1% chance 
that random error in the analytical method will produce a result greater than or equal to the 
USEPA-MDL. The USEPA-MDL does not indicate the minimum concentration that can be 
detected with confidence (99% of the time). In other words, it does not protect against false nega-
tives. Analysis of a sample having a true concentration equal to the USEPA-MDL has a 50% 
chance of producing a result that is less than the USEPA-MDL and a 50% chance of producing a 
result that is greater than the USEPA-MDL.
9



A Closer Look— USEPA-MDL

PROCEDURE

1. Laboratory estimates a value for the MDL, for this example 0.05.

2. Laboratory prepares and analyzes a solution of spiked blank water:

• Analyte concentration in spike is 1–5 times the estimated MDL.

• In this example, spike is 0.135.

• Seven replicates of spike are analyzed.

• Hypothetical results for spikes: 0.1345, 0.1402, 0.1358, 0.1297, 0.1366, 0.1410, 0.1383.

• Mean (x) and standard deviation (s) are calculated: x =0.136586, s=0.003827.

3. Laboratory interprets result:

• Student’s t for a 1-tail test, 6 degrees of freedom, 99% confidence: t=3.14.

• Calculate USEPA-MDL: 3.14 × 0.003827 = 0.012.

• Value is much smaller than originally estimated, making spike concentration too high.

4. Laboratory prepares and analyzes a new spike solution:

• New spike concentration in this example is 0.040.

• Hypothetical results are: 0.0366, 0.0409, 0.0427, 0.0358, 0.0391, 0.0383, 0.0404.

• x=0.039114, s=0.002438.

5. Laboratory interprets new result:

• USEPA-MDL= 3.14 × 0.002438 = 0.008.

• Spike concentration is within desired range (1-5 times USEPA-MDL).

• Analytical results greater than or equal to 0.008 are considered detections; that is, they are dif-
ferent from zero with 99% confidence.

DISCUSSION
Analytical variability for a true blank (concentration equals zero) is assumed to be the same as that 

for a low concentration spike. Analytical variability is assumed to be normally distributed. Standard sta-
tistical tables are used to look up the value of Student’s t. A 1-tail value is used, because the interest is 
in limiting the incidence of false positives. The distribution for this example is illustrated below (not to 
scale).

xblank = 0 USEPA-MDL = 3.14 s = 0.008

1%
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NWQL REPORTING PROCEDURE

Fundamentals (or the ABCs of the NWQL’s LT-MDLs and LRLs)

Historically, the NWQL used MRLs when reporting data. Procedures for determining MRLs 
were not consistent among methods and sometimes not well documented. More recently, USEPA-
MDLs were used as MRLs for some of the newer methods. In 1999, the NWQL established a new 
reporting procedure that has been implemented for most water matrix methods (Childress and 
others, 1999). The procedure involves two parts: the use of a statistic called the long-term method 
detection limit (LT-MDL) and the implementation of a new reporting convention. The new 
method is outlined as follows (see also Comparing the Old and New Reporting Procedures, on the 
following page).

1.  A long-term detection limit (LT-MDL) is determined for each analyte/method combination 
on an annual basis. The LT-MDL is very similar to the USEPA-MDL. The LT-MDL is sta-
tistically defined identically to the USEPA-MDL—the smallest concentration that can be 
measured and reported with 99% confidence that the analyte concentration is greater than 
zero. Like the USEPA-MDL, it is obtained from replicate analyses of spiked blank water 
and, therefore, it applies to well-behaved samples. It differs from the USEPA-MDL in that 
it incorporates variability due to the different instruments and analysts that are part of a pro-
duction laboratory like NWQL and in that it is calculated over an extended period of time.

2. All analytical results greater than the LT-MDL are reported. These results can be considered 
detected (different from zero with 99% confidence), provided that the samples are well 
behaved.

3. Analytical results less than the LT-MDL are reported if the analytical method includes ana-
lyte-specific identification—usually a matching spectral signature. In such methods, the 
detector (a mass spectrometer or photodiode array spectrometer) confirms the identity of 
the analyte. NWQL calls these methods “information-rich.” Results less than the LT-MDL 
are reported with a qualifying E-code. 

4. Analytical results less than the LT-MDL are censored if the analytical method does not spe-
cifically identify the analyte. Examples of nonspecific detection methods include retention 
time and absorbance at a particular wavelength. These results are reported as “less than the 
laboratory reporting level” (< LRL). The LRL is calculated as LRL= z x LT-MDL. The 
value of z depends on the mean recovery of spike samples used to determine the LT-MDL. 
If the mean recovery is 100%, then z=2; if the mean recovery is less than 100%, then z>2. 
Provided that the sample is well behaved, the data user can assume with 99% confidence 
that the concentration in the sample is less than the LRL. In other words, there is no more 
than a 1% chance that the true concentration of the analyte in the sample exceeds the LRL 
due to random analytical error.

5. A qualifying E-code accompanies analytical results between the LT-MDL and LRL because 
relative uncertainty is greater in this region than above the LRL.
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Comparing the Old and New Reporting Procedures

The table below shows hypothetical laboratory results and how those results would be reported 
using the various procedures. Remember that the data user only receives the reported results and not 
the instrument derived values. 

DISCUSSION
The old procedure. When a value is reported as <0.050, the data user knows that the value mea-

sured by the laboratory was less than 0.050. However, that does not mean that the true analyte con-
centration is less than 0.050 (50% of the time, a sample with a true concentration of 0.050 will be 
reported as <0.050). Notice that Samples 1, 2, and 3 would be indistinguishable to the data user, when 
in fact Samples 3 and 4 really had the closest instrument values. 

The new procedure (for most methods). When a value is reported as “<0.060” (<LRL), the data 
user knows that the laboratory obtained a value less than 0.030 (the LT-MDL). The data user can also 
conclude that the true analyte concentration is less than 0.060 with no more than a 1% chance of it 
actually being greater than 0.060. (Using the LRL minimizes the risk of a false negative.) The results for 
Samples 3 and 4 are E-coded because they are between the LT-MDL and the LRL and, therefore, sub-
ject to greater relative analytical error than larger values. In particular, false negatives are not uncom-
mon in this region. Based solely on these single measurements, the data user could not conclude with 
confidence that the true concentrations of Samples 1 through 4 were different; the use of the LRL as 
the default reporting level and the use of the qualifying E-code are consistent with that fact.

The new procedure (for information-rich methods). When a value is reported as “<0.060” 
(<LRL), the data user knows that the laboratory was unable to positively identify the analyte (assuming 
laboratory quality control criteria were met). The LRL is used because it is the default value for nonde-
tections. The result for sample 2 is reported with an E-code. The analyte’s presence was confirmed by 
the method, but because it is less than the LT-MDL, this result is subject to greater relative analytical 
error (especially contamination problems) than larger values.

NOTES
In this example, the LT-MDL < MRL < LRL. This will not necessarily be the case. Most frequently, the 

MRL>LT-MDL. If the MRL<LT-MDL, it is an indication that previously reported data less than the LT-
MDL have high uncertainty. If such data are considerably less than the LT-MDL and the method is not 
information-rich, the possibility of false positives should be considered.

In this example, it was assumed that the lowest laboratory standard used in the analysis (LS) is 
approximately equal to the LRL, which will usually be the case. If not, some additional values may be  
E-coded. See Childress and others (1999) for an explanation of the role of the LS in coding.

Sample
Instrument 

Derived
Value

Reported Result Using

Old Procedure

MRL=0.050

New Procedure
LT-MDL = 0.030 LRL = 0.060

Not Information-Rich
Analytical Method

Information-Rich
Analytical Method

1 –0.008 < 0.050 < 0.060 < 0.060
2 0.015 < 0.050 < 0.060 E 0.015
3 0.048 < 0.050 E 0.048 E 0.048
4 0.051 0.051 E 0.051 E 0.051
5 0.076 0.076 0.076 0.076
12



Why the LT-MDL / LRL Reporting Procedure is Good News for Data Users

Provides more information—The LT-MDL / LRL reporting method provides the data user with 
information about method performance at the NWQL. Because the LT-MDL and LRL are statisti-
cally defined to describe routine lab performance on well-behaved samples, the data user can use 
them to estimate the expected incidence of false positives and false negatives and to estimate 
uncertainty in the low end of the analytical range. This information can be used to help decide if 
an existing analytical method is adequate for a proposed project. In addition, this information 
gives the data user more power in assessing data quality and in interpreting project data. Using 
information embedded in the LT-MDL to assess data quality is addressed in the next section. Spe-
cific examples of using the LT-MDL to help plan a project, assess data quality, and interpret data 
are given in the examples sections. 

Provides more data—The LT-MDL / LRL reporting procedure often results in the data user 
receiving fewer censored data than before. This is because data having values between the LT-
MDL and the LRL are now reported (with an E-code); previously, it is likely that these values 
would have been censored. In addition, the censoring criterion (the LT-MDL) commonly is 
smaller than the previously used criterion (the MRL). In rare cases, the LT-MDL may be larger 
than the old MRL. Such an occurrence might seem to be a disadvantage because it results in more 
data being censored than before, but those previously uncensored data were not reliably different 
from a blank. In other words, if the LT-MDL is larger than the old MRL, it is evidence that the old 
MRL was too small and resulted in an increased incidence of false positives.

How the LT-MDL / LRL Reporting Procedure Poses Challenges for Data Users

Complicated data sets—The LT-MDL is reassessed annually, and it and the LRL can change 
over time. Consequently, data sets can be complicated by multiple LRLs and LT-MDLs. In addi-
tion, reported values less than the LRL and sometimes less than the LT-MDL may be common in 
some data sets, as well as an increased number of values with an E-code. Data users need to 
develop strategies for working with such data sets. Several examples of strategies to deal with 
these data set complications are presented in the examples sections.

Potential for misinterpretation— Low level data produced by LT-MDL/LRL reporting proce-
dure can be incorrectly interpreted in a way that results in distortion of the data distribution 
(Helsel, 2005). As previously described, an analytical result that is less than the LT-MDL is 
reported as less than the LRL (for a method that is not information-rich) and an analytical result 
that is between the LT-MDL and LRL is reported as a value with an E-code. If the data user inter-
prets the censored value as being potentially between 0 and the LRL and interprets the E-coded 
value as being potentially between the LT-MDL and the LRL, the data distribution becomes dis-
torted. In this erroneous interpretation, the uncertainty of the E-coded value is assumed to be less 
than that of the censored value, when, in fact, the uncertainties are about the same. The uncertain-
ties are roughly equal because both values are in the low-level range of the method. Depending on 
the confidence that the data user requires, these two results should be treated either as (A) indis-
tinguishable (high confidence required), or (B) the E-coded value being greater than the censored 
13



value (less confidence required). Methods for avoiding this problem are presented in several 
examples later in this paper.

Need for careful data quality assessment—For some projects, the LT-MDL/LRL reporting 
procedure will result in data sets that contain many low-level and E-coded reported values that 
previously would have been censored. These data have considerable uncertainty. In order to cor-
rectly interpret such data, data users will need to carefully examine quality control samples. Simi-
larly, data users who plan to make use of the statistical basis of the LT-MDL and LRL need to 
ensure that their samples behaved as expected during analysis. In addition to using all available 
laboratory quality assurance information, additional quality control samples may be needed.
14



ASSESSING PROJECT DATA QUALITY
As with the old MRL, the LT-MDL and an LRL are not determined individually or uniquely 

for each sample. Unlike the old method, however, the LT-MDL/LRL reporting procedure is based 
on some well-defined assumptions about the behavior of samples and the analytical performance 
of the method. Data users can evaluate various quality control sample results to determine if there 
is any evidence that the LT-MDL and LRL do not apply to their samples.

Every laboratory implements procedures to ensure that their analytical results are correct. An 
incorrect result occurs when the true concentration is not within the region of uncertainty of the 
reported concentration. Standardized procedures help minimize the chances of obvious errors. 
The Inorganic and Organic Blind Sample Program (BSP) administered by the Branch of Quality 
Systems helps uncover method bias and systematic errors, such as laboratory contamination or 
loss of analyte during the analytical process. Statistical results from the BSP also can be used to 
estimate the analytical random error. The BSP helps identify errors that apply to all samples. In 
contrast, individual data users need to worry about sample-specific errors—ill-behaved samples. 
Often this occurs due to a matrix interference; another substance that is present in the sample and 
interferes with the analyte of interest. Depending on the type of interference, the reported concen-
tration may be always high or always low or highly variable. 

It is up to the data user to determine whether an LT-MDL is appropriate for their particular 
samples. In some cases, it may be necessary to examine chromatograms or talk to the analyst 
about the performance of specific samples.

Comparing Your Sample Results to Routine Lab Performance

The LT-MDL, LRL and the BSP’s evaluations provide information about the results that can 
be expected when the NWQL analyzes spiked blank water. The data user needs to determine if the 
performance on their field samples is comparable. Several tests can be done.

Simple checks—Data users can check for several conditions that may indicate problems with 
analytical performance or the behavior of particular samples or sample types. These include:

• A sample reported as a nondetection with an analyst-raised LRL (an LRL higher than the nor-
mal LRL for the method)

• Analyst-raised LRLs that occurred during a particular time period or for particular sample 
types

• The use of E-codes on values greater than the LRL

• Surrogate recoveries that are outside of control limits

Note that the absence of these conditions does not guarantee that the LT-MDL and LRL apply 
to your field samples.

Standard deviation—The standard deviation of values from field spikes and replicate samples 
can be compared to the results obtained by the laboratory. If the results are significantly different 
from the laboratory results, then the data user has evidence that these samples are not well 
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behaved. The basic procedure is outlined below; several examples are given in the examples sec-
tions.

1. Calculate the standard deviation for replicate samples and replicate field spikes.

2. Pool the standard deviations if appropriate.

3. Obtain laboratory estimates for the standard deviation for the method.These can be found at 
the following Web sites: 

4. Use the F-test or Levene’s test to compare field results with lab estimates.

Incidence of false positives and contamination—Blank samples (field blanks as well as lab 
and BSP blanks) are presumed to have an analyte concentration of zero. Because of random error, 
a blank can produce an analytical signal. The reporting procedure is devised so that there is only a 
1% probability that a blank will produce a signal equal to or greater than the LT-MDL. Blank sam-
ples that routinely are reported as having detectable concentrations are evidence of background 
contamination or interference from another analyte. 

The number of field blanks that are reported with detectable concentrations can be compared 
to the expected behavior of the method. This is important when interpreting data in the low-range 
of the method (values less than the LRL and, particularly, values less than the LT-MDL). In this 
range, identifying any low-concentration blank contamination is necessary. The data user should 
analyze results from field blanks as well as NWQL results for lab water sets and the BSP’s results 
for blanks. The basic procedure is outlined below; several specific examples are given in the 
examples sections.

1. Calculate the incidence of presumed false positives as the number of blank samples with 
reported concentrations greater than the LT-MDL divided by the total number of blank sam-
ples.

2. Determine the probability for this incidence of false positives. Table 1 provides such values. 
The probability also can be calculated using the binomial distribution function:  
Probability , where n is the total number of blank samples, d is the number of 
detections greater than the LT-MDL, p is the probability of a detection for a blank (p=0.01 
for a blank), q is the probability of a nondetection (q=0.99 for a blank) and  is the bino-
mial coefficient which is calculated as , where ! indicates factorial. 

 

Information URL

LT-MDL documentation http://bqs.usgs.gov/ltmdl accessed on 3/20/2007

Blind samples—organic methods http://bqs.usgs.gov/OBSP accessed on 3/20/2007

Blind samples—inorganic methods http://bqs.usgs.gov/bsp accessed on 3/20/2007

Cn
d= pdq n d–( )

Cn
dn!

d! n d–( )!
------------------------
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Table 1: Probability of false positives.
[Calculated using the binomial distribution function as described in step 2 of the preceding section.] 

Number of 
Blank 

Samples

Total Number of Detections ≥ LT-MDL

0 1 2 3 4 5

1 0.99 0.01 — — — —

2 0.98 0.020 0.0001 — — —

3 0.97 0.029 0.00030 0.000001 — —

4 0.96 0.039 0.00059 0.000004 <0.000001 —

5 0.95 0.048 0.00097 0.000010 <0.000001 <0.000001

6 0.94 0.057 0.0014 0.000019 <0.000001 <0.000001

7 0.93 0.066 0.0020 0.000034 <0.000001 <0.000001

8 0.92 0.070 0.0026 0.000053 <0.000001 <0.000001

9 0.91 0.083 0.0034 0.000079 0.000001 <0.000001

10 0.90 0.091 0.0042 0.00011 0.000002 <0.000001

11 0.90 0.099 0.0050 0.00015 0.000003 <0.000001

12 0.89 0.11 0.0060 0.00020 0.000005 <0.000001

13 0.88 0.12 0.0070 0.00026 0.000007 <0.000001

14 0.87 0.12 0.0081 0.00033 0.000009 <0.000001

15 0.86 0.13 0.0092 0.00040 0.000012 <0.000001

16 0.85 0.14 0.010 0.00049 0.000016 <0.000001

17 0.84 0.14 0.012 0.00059 0.000021 0.000001

18 0.83 0.15 0.013 0.00070 0.000027 0.000001

19 0.83 0.16 0.014 0.00083 0.000033 0.000001

20 0.82 0.17 0.016 0.00096 0.000041 0.000001
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Notice that the probability of a random detection in blanks increases with the number of 
blank samples. If 20 blanks were submitted, the probability that 1 (and only 1) of them was 
reported with a concentration greater than or equal to the LT-MDL is about 17%. This is solely 
due to analytical variability and would not be considered unusual. However, the chance that ana-
lytical variability alone resulted in 2 (and only 2) out of 20 blanks being reported with concentra-
tions greater than or equal to the LT-MDL is only 1.6%. This occurrence is rare enough that it 
could be considered evidence of background contamination or another problem. 

Incidence of false negatives and analyte loss—Spiked samples (field spikes as well as lab and 
BSP spikes) are presumed to have an analyte concentration greater than zero. Because of random 
error, a low-level spiked sample can produce an analytical signal less than the LT-MDL. This 
value would be reported with an E-code for an information-rich method and as a nondetection 
(<LRL) for a method that is not information-rich. The reporting procedure is devised so that there 
is a 1% probability that a sample with a concentration equal to the LRL will produce a signal 
equal to or less than the LT-MDL. Spikes that routinely are reported as nondetections (false nega-
tives) are evidence of analyte loss. False negatives are somewhat more difficult to interpret than 
false positives. This is because the probability of a false negative depends on an unknown— the 
true concentration of analyte in a field matrix spike. 

The concentrations of field matrix spikes should be chosen to best meet the needs of the data 
user. The organic spike kits from NWQL often result in analyte concentrations that may be an 
order of magnitude or more greater than the LRL. At such concentrations, field matrix spikes are 
not very useful in determining method performance in the low range of the method (less than the 
LRL) and are not a good test of the LRL value. The data user has some choices. 

If the data that are to be interpreted are expected to be significantly greater than the LRL, the 
data user can prepare field matrix spikes in the usual manner. Such spikes will provide informa-
tion about method bias, but not about performance in the low concentration range.

If the data user is primarily interested in data that are in the low range of the method, then 
field matrix spikes with analyte concentrations near the LRL are needed. These could be prepared 
by using the standard spiking procedure but substituting a larger volume of sample or by serial 
dilution of the standard solution. Samples that have concentrations equal to the LRL are expected 
to result in nondetections 1% of the time, assuming no matrix interferences. Performance of 
spikes at the LRL can be evaluated using the same procedure as for field blanks. If the analyte 
concentration is not equal to the LRL, then the probability of a nondetection must be calculated 
using the estimate of the standard deviation. This probability can then be used in the formula for 
the binomial distribution. Examples are given in the examples sections. 
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EXAMPLES
The remainder of this document details a number of examples that make use of the informa-

tion inherent in the LT-MDL. Examples include quality assurance, project planning, and data 
interpretation. These examples are not intended to be a comprehensive set of all possible situa-
tions that a data user might encounter. Rather, it is hoped that they will provide the data user with 
“food for thought” regarding how to handle their data. No two data sets or projects are alike and 
approaches must vary accordingly. The data user must use his or her best judgement about a par-
ticular situation, make a decision, and then document what was done.

The examples that follow assume that the data user is familiar with basic statistical methods 
and has access to statistical tables and software. Tables of statistics (t values, F values, etc.) are 
not included, but generally can be found in the appendices of standard statistical texts. Some sta-
tistical references are given at the end of this report. 

The examples given here are for illustration purposes. The analytes are hypothetical and con-
centration units are not specified. NWQL statistics such as LT-MDLs and standard deviations are 
made up to reflect the process used at the NWQL, but do not correspond to any particular analyte 
or method.

Advice to the data user

Know the question you are trying to answer. 
• Don’t interpret low-level data if you are only interested in values near the upper end of the data 

distribution.

• Decide what level of certainty is required to answer the question.

Know your data and its limitations. 
• Remember that all analytical results have uncertainty. This is not the lab’s fault, it is life. 

• Some samples are easier to analyze than others. Yours might be easy or difficult. 

• Performance of instruments, analysts, and data users varies from day to day. You don’t get to 
choose whether your samples are analyzed on a good day or a bad day.

• Do enough QC to ensure that you know the quality of your data. 

Tailor your approach to your question and your data.
• Remember that different questions and data sets require different interpretive methods. 

• Don’t do extensive (and expensive) QC to assess low-level data if you are only interested in 
values near the upper end of the data distribution or if you do not need a high level of certainty.

• Ask yourself if the quality of your data allows the type of analysis you are doing.

Be mindful of lurking variables.
• Matrix effects, low-level contamination and analyte losses can be very important, especially at 

low concentration levels.

• Make sure that differences between groups of samples are not because one type of sample 
has a simpler matrix than another and therefore had fewer nondetections.

Document your approach and explain the reasons behind it.
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Statistical Methods and Censored Data

The application of statistical methods to environmental chemical data is complicated by the 
presence of censored data. Historically, very few statistical methods accommodated such data 
sets. The most common approach to this problem was simply substituting a value for the nonde-
tection. The usual choices for the substituted value are zero, the detection limit (DL), ½DL, and 

. At best, substitution is an arbitrary method that minimally affects data interpretation; 
at worst it can lead to bias and erroneous conclusions. Although substitution is still used, newer 
statistical methods have been developed that are better for censored data. The only option worse 
than substitution is to discard the censored data altogether; this approach should never be used. 
For an unorthodox description of the pitfalls of using substitution, see the cookie company anal-
ogy on the following pages.

One alternative to substitution is to use statistical methods that rely on data ranks, rather than 
actual data values. Calculation of percentiles for summary statistics, Wilcoxen or Mann-Whitney 
U tests for comparison tests, and Spearman or Kendall coefficients for correlation are such meth-
ods. (See Examples 3 and 4 in this document.) Although these methods produce nonbiased 
results, they have some limitations. For example, they can produce summary statistics that are 
censored. In addition, they cannot be directly applied to complicated data sets that contain multi-
ply-censored data or reported values less than the censoring level. 

Another way to approach censored data is to convert the data values to categorical data and 
then apply appropriate statistical methods. Calculation of frequencies for summary statistics, Chi-
square analysis for comparison tests, and logistic regression are examples of this approach. (See 
Example 8 in this document.) These methods are not used as commonly as rank tests, but can be 
especially advantageous when the categories are chosen based on the purpose of the investigation.

A variety of methods have been developed recently that accommodate complicated data sets. 
Some of these methods are fully or partially parametric, meaning that they require assumptions 
about the shape of the distribution. Others are fully nonparametric. Two of these methods are used 
in the examples in this document: Regression on Order Statistics (Examples 4 and 7) and Kaplan-
Meier Estimation (Example 7). For more information about these and other such methods see 
Helsel (2005) and Helsel and Hirsch (1992).

This document is designed to (a) help data users think about their data and (b) illustrate sev-
eral statistical methods that avoid the problems of simple substitution methods and thereby lead to 
more accurate interpretations. Data interpretation will always be an issue and results can be biased 
either by ignorance or by design. New methods to interpret data and calculate statistics for a mix-
ture of semiquantitative, nonquantitative and quantitative data are relatively recent and may not 
be widely used. Data interpretation can be improved as follows:

• Minimize the amount of semiquantitative and nonquantitative data by using the best available 
laboratory methods;

• Know which data are semiquantitative or nonquantitative and which data are quantitative;

• Understand the pitfalls of the statistical method used for data interpretation;

• Use new approaches and methods to interpret mixtures of semiquantitative, nonquantitative 
and quantitative data. 

DL 2( )⁄
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An Analogy for Chemical Analysis and Data Interpretation
The NWQL uses detection levels (LT-MDLs) and reporting levels (LRLs) to provide the data user with NWQL's best 

estimate of the concentration ranges that are quantitative (above the reporting level value), semiquantitative (between the 
reporting level and the detection level), and not quantitative (below the detection level). The following analogy illustrates 
how different data users might use or misuse these reporting and detection levels. It was first printed in the NWQL Newslet-
ter, January 1999, and shown in an updated format here.

A famous cookie company produces one million cookies a day and is concerned about cookie pil-
fering by its elf employees. They hire a cookie detective to search the worker elves as they leave the 
factory. The cookie detective thought about the task of detecting pilfered cookies. The cookie detec-
tive knew he could reliably count and identify a quantity as small as one cookie if he found it. Ah, but 
finding just one pilfered cookie was a problem. The detective knew that he couldn't reliably identify 
every elf that was absconding with just one cookie. A cookie or two could be stashed in an inside 
pocket or concealed in some other way. How many cookies would an elf have to take to be caught 
most of the time? After testing various cookie-stashing methods, he concluded that it would be fairly 
difficult to stash a dozen cookies and walk out without detection. A dozen cookies, then, was the min-
imum number of cookies that he could routinely and reliably find. Now, what if an elf was found with 
crumbs or parts of cookies? Well, the elves make cookies all day and everyone knows that “cookies 
crumble,” so a few crumbs should be expected. Parts of cookies, therefore, wouldn't count as evi-
dence of theft.

The detective summarized the search method for management and elves as follows: Finding at 
least one whole cookie was evidence of a theft. Any elf who tried to pilfer 12 or more cookies would 
almost surely be caught. Elves who pilfered 1 to 11 cookies would sometimes be caught and some-
times get away with it. Cookies eaten by elves on the job don't count. That is biodegradation. Crumbs 
don't count. That is a blank contamination problem. More concisely, LT-MDL = 1 cookie and LRL = 12 
cookies. (The mathematical relation between the LT-MDL and the LRL is different in this case from 
what the NWQL uses because NWQL is basing its definition on a different statistical probability than 
the cookie detective.)

Next, the cookie detective set about detecting cookie theft by elves. He carefully measured and 
honestly reported the data to cookie company management and to the elf union. He was shocked to 
find that the use of his data depended on the perspective and personal agenda of who was interpret-
ing the data. Here is what he found.

Case 1—Company management wants to find out how much money is being lost to cookie-pilfer-
ing elves. So, the management elf in charge of loss estimation adds up all of the sure detections of 
cookie theft and considers that sum to be the minimum loss. But he knows that the cookie detective 
doesn't catch all of the pilfering elves. He assumes that every elf who wasn't caught (nondetections) 
had actually pilfered 11 cookies (<LRL) and gotten away with it. He further assumed that all of the 
elves caught stealing just a few cookies (low-level detections) had really stashed 11 cookies, but all 
of them hadn't been found. (Those elves are clever rascals.) Then he adds these to the detected 
losses from thefts of 12 or more cookies to arrive at an estimated maximum cookie loss. He reports 
the potential range of cookie loss to the chief elf. The chief elf is shocked that the elves could be 
stealing so many cookies.
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Case 2—The cookie business hasn't been so good lately and the company needs to renegotiate 
the contract with its worker elves. The management elf in charge of the negotiation wants to justify 
that the worker elves need to make some hefty concessions. He thought about using the high esti-
mate of cookie theft that the chief elf had shown him, but he thought that the estimate was biased and 
too high. After all, not every elf stole 11 or more cookies all the time. So, he assumed that every elf 
who wasn't caught (nondetections) had actually pilfered six cookies (half the LRL) and added that 
result to the detected thefts. That number was probably high, too, because some of the employees 
took nothing and very few probably took 6. So the average was probably much less than six, but it 
was an estimate and he wanted a bargaining chip. He presents the estimated theft loss to the elf 
union and says they had better compromise.

Case 3—The elves' union representative doesn't like the way management counted cookie theft. 
He wants to assume that every elf who wasn't caught stealing was innocent. But, he knows that occa-
sionally a cookie is pilfered and he doesn't want to sound as biased as that lousy company negotia-
tor. To show his good faith, he is willing to assume that every nondetection could be counted as 0.5 
cookie (half the LT-MDL). He reasons that, sure, a few elves pilfer a cookie now and then, but the 
problem is small and if the company paid the elves a decent salary, they wouldn't have to steal cook-
ies to feed the hungry little elves at home. He realizes that this assumption might be biased low, but 
he doesn't want to admit that cookie pilfering by elves is a problem. He also wants a bargaining chip 
(also called a chocolate chip by the wily elves). He presents his theft estimate and requests binding 
arbitration.

Case 4—An individual elf has been watching the manipulation of data by the company and her 
union and she is offended. She has never stolen a single cookie in her life—not even when they were 
making double chocolate chip. Yet everyone seems to have assumed that she pilfered cookies. She 
doesn't care if they assume 0.5 or 1 or 6 or 11. Her pilfering was zero. She is sick and tired of every-
one not realizing what a terrific employee she is. She feels wrongly accused and is considering filing 
suit for defamation of character. Character is important to elves.

Case 5—The company is going to lay off elves. It decided that pilfering elves would be the first to 
go. A particular elf had never pilfered cookies, but making cookies wasn't lucrative and his twin elflets' 
4th birthday was coming up and he didn't have a present. So, one day he pilfered two cookies—one 
for each of the twins. He wasn't very good at pilfering and got caught. He was fired. He thought this 
wasn't fair. This was his first offense and it was only two cookies. The elf who worked next to him pil-
fered six cookies every day and smuggled them out in a cleverly concealed cookie pouch under his 
elf hat. That guy never gets caught. The fired elf complains to the company, but it reasons that some-
one who was caught with even one cookie must have pilfered more than someone who hasn't been 
caught. The elf decides to talk with the union representative. 

All of the aforementioned cases mimic actual practices with real water-quality data. The problem 
with cookie detection and analytical chemistry is that detection is not perfect—there is a gray area, a 
range that is semiquantitative. The problem can be minimized by improving detection ability, but nei-
ther cookie detectors nor NWQL can achieve detection capability that quantitates zero. The NWQL 
uses LT-MDLs and LRLs together to communicate ranges of certainty and uncertainty associated 
with its measurements. Those data will be used by someone. Substitution methods, as used by all of 
the elves in this analogy, often lead to flawed results.
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Quality Assurance Example 1 

Is the variability for my samples consistent with the LT-MDL?

Description: As part of a QA program, two sets of triplicates were sent to the lab for 
analysis. The samples could be from different sites or collected at different times. The 
results for the analyte were:

The LT-MDL for this analyte is 0.002, which was based on 21 samples. From the 
NWQL Web pages, the standard deviation used to calculate the LT-MDL was s=0.00083. 
Is the variance of these field samples consistent with the LT-MDL with 95% confidence?

Analysis: An F-test is used to determine if the standard deviations of the sample rep-
licates is greater than the standard deviation from the LT-MDL. Because there is no rea-
son to believe that the true variance for field samples actually could be less than that for 
spiked blank water, a 1-tail test will be used. By similar reasoning, there is no need to 
compare the standard deviation for sample 2. 

The equation for the F test is: . 

For sample 1 replicates:  

The critical value for F for a 1-tail test with 95% confidence: F2,20=3.49.

The calculated value of F does not exceed the critical value of F; therefore, there is 
no significant difference. The performance on these field replicates is consistent with lab 
performance on LT-MDL blank (reagent water) spikes. There is no reason to conclude 
that the standard deviation measured by the lab does not apply to this data set or that the 
LT-MDL is not a valid estimate of the detection level. 

Sample 1 Sample 2

Replicate A 0.0096 0.0153

Replicate B 0.0116 0.0142

Replicate C 0.0115 0.0144

x 0.0109 0.0146

s 0.00113 0.000586

n 3 3

F
s

1
2

s
2
2

------ ,where s1 s2>=

F 0.001132

0.000832
--------------------- 1.85= =
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Quality Assurance Example 2 

What does it mean if the variability for my samples is not consistent 
with the LT-MDL?

Description: As part of a QA program, four sets of triplicates were collected at differ-
ent locations or on different dates. The results are in the table below, which also includes 
a variety of statistics that were calculated from the replicates. The LT-MDL for this ana-
lyte is 0.002, based on 21 samples with a standard deviation of 0.00083. See Quality 
Assurance Example 1 to review how to calculate F. 

Analysis: For samples 1 and 2, the F value does not exceed the critical F value, 
showing that the variability for these analyses is consistent with that obtained by NWQL 
for LT-MDL blank spikes. The F values for samples 3 and 4 (9.60 and 46.3, respectively) 
exceed the critical F value, indicating that the variances for these samples are signifi-
cantly different from (and larger than) the LT-MDL blank spikes. Interpreting what this dif-
ference means is not the same for these two samples. In the case of sample 4, the 
concentration is not in the low range of the method; the ratio of the average concentra-
tion to the LT-MDL is 24. The standard deviation is not expected to remain constant as 
the concentration increases above about 5 times the LT-MDL. The results for sample 4 
replicates must be compared to NWQL results for comparable concentrations, rather 
than results for low-level concentrations. The Blind Sample Program (BSP) evaluates 
performance in the ultralow, low, medium and high range of a method. Data from the 
BSP for this analyte were low range spiked at about 10×LT-MDL CV=15.2% and medium 
range spiked at about 50×LT-MDL CV=12.4%. Comparing these values to the CV for 
sample 4 (12%) indicates that the behavior of sample 4 replicates is comparable to that 

Sample 1 Sample 2 Sample 3 Sample 4

Replicate A 0.0096 0.0097 0.0132 0.0532

Replicate B 0.0116 0.0078 0.0124 0.0419

Replicate C 0.0115 0.0083 0.0084 0.0473

x 0.0109 0.0086 0.0113 0.0475

s 0.00113 0.00098 0.00257 0.00565

n 3 3 3 3

CV = 10% 11% 23% 12%

x/LT-MDL 5.5 4.3 5.7 24

F 1.85 1.41 9.60 46.3

Critical F2,20 (95%) 3.49 3.49 3.49 3.49

s
x
--
24



obtained by the BSP and that there is no evidence that sample 4 is ill behaved. This is 
not the case for sample 3. The sample 3 mean concentration is on the high side of the 
region that should be described by the LT-MDL standard deviation (x/LT-MDL=5.7); how-
ever, the standard deviation for sample 3 is significantly higher than what is expected for 
that region. This is an indication that sample 3 may not be well behaved. At this point, the 
data user needs to use other knowledge about sample 3 to try to understand why this 
may be the case and to decide if this could apply to other samples in the larger data set. 
Assumptions that rely on the validity of the LT-MDL, such as estimates of uncertainty or 
incidence of false positives and false negatives, may not be applicable to sample 3 and 
other samples like it.
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Quality Assurance Example 3 
What can I do if the variability for my samples is not consistent with the LT-MDL? 

Description: As part of a QA program, three sets of replicates were collected. The 
results are in the table below, which also includes a variety of statistics. The LT-MDL for 
this analyte is 0.040, based on 19 samples with a standard deviation of 0.0157. See 
Quality Assurance Example 1 to review how to calculate F. 

Analysis: In this example, the F values for samples 2 and 3 exceed the critical F val-
ues, showing that the variability for these samples exceeds the variability from LT-MDL 
blank spikes. The F value for sample 1 does not exceed the critical F value, but it is fairly 
close. Based on the data here, it seems likely that the standard deviation for this data set 
in general might exceed that for LT-MDL spikes. This analysis does not indicate why this 
is the case—difficult matrix, variable decomposition during shipping, sloppy collection or 
sample preparation are all possibilities. Regardless of the reason for the greater stan-
dard deviation, the data user decides that this entire data set is not consistent with the 
LT-MDL as published and decides to recalculate a detection limit based on the perfor-
mance of these data. First, the data user uses an F-test to compare the standard devia-
tion of each of these samples to the other. The reader can verify that there are no 
significant differences among these samples. Then, the data user pools the standard 
deviations using the following formula:

Sample 1 Sample 2 Sample 3

Replicate A 0.110 0.249 0.304

Replicate B 0.153 0.197 0.330

Replicate C — 0.170 0.374

Replicate D — 0.241 —

x 0.132 0.214 0.336

s 0.030 0.0373 0.0354

n 2 4 3

CV = 23% 17% 11%

x/LT-MDL 3.3 5.4 8.4

F 3.65 5.64 5.08

Critical F (95%) F1,18=4.41 F3,18=3.16 F2,18=3.55

s
x
--

spool
2 n1 1–( )s1

2 n2 1–( )s2
2 . . . + nk 1–( )sk

2
+ +

n1 n2 . . . nk k–+ + +
--------------------------------------------------------------------------------------------------=
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Substituting the appropriate values from this example into the above equation yields:

Taking the square root gives s=0.0355. There are 6 degrees of freedom for this calcula-
tion (denominator from spool calculation). For a 1-tail test with 99% confidence and 6 
degrees of freedom, t=3.14. This results in an estimated MDL of (3.14)(0.0355)=0.111 for 
these samples. To obtain a new estimate for the reporting level, the data user needs to 
know the mean recovery. From the NWQL Web site, the data user finds that the mean 
recovery for the LT-MDL spikes was 85%. A spike sample sent in by the data user had a 
similar recovery. A new estimate of the reporting level is then calculated as

.

The data user chooses to use these alternative values (MDL=0.111, RL=0.261) in 
data interpretation rather than the NWQL LT-MDL and LRL of 0.040 and 0.080. (Note 
that the NWQL did not adjust the LRL for percent recovery in this example.) Based on 
the field sample replicates, the data user decides that the laboratory LT-MDL and LRL 
are too low for these particular sample types and could lead to erroneous conclusions for 
this data set.

One note of caution for the data user: the analysis described here tests only whether 
the sample variability exceeds the LT-MDL variability (1-tail test). It does not check the 
reverse because the reverse should not occur except by chance. The data user should 
not use this method to calculate an MDL and RL that are less than the LT-MDL and LRL. 

spool
2 1 0.030( )2 3 0.0373( )2 2 0.0354( )2

+ +
2 4 3 3–+ +

------------------------------------------------------------------------------------------- 0.007580
6

---------------------- 0.001263= = =

RL 2
percent recovery
---------------------------------------- MDL× 2

0.85
---------- 0.111× 0.261= = =
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Quality Assurance Example 4  

The results for my blanks were reported as less than a concentration that was 
greater than some of my field samples—do I have a contamination problem? 

Description: As part of a QA program, five field reagent water blanks were sent to 
NWQL for analysis, randomly, over the course of project sample collection. The LT-MDL 
for the analyte is 0.015. All five of the samples were reported as “0.030” with a qualifying 
code of “<.” Is there any evidence of contamination in the low-end of the analytical 
range? Two field samples (non blanks) were reported as “0.020” with a qualifying code of 
“E.” The analytical method was not considered information-rich

Analysis: All of the blank samples were reported as nondetections. This means that 
the actual result measured by the lab was less than 0.015 (the LT-MDL) for each of these 
samples. The fact that the default reporting value is greater than the LT-MDL is to be 
expected. The LRL, which is 2 times the LT-MDL for an analysis with 100% recovery, is 
used as the default reporting value for nondetections. Therefore, there is no indication of 
low-level contamination. The data user should also check the lab set blank and the BSP 
blank results to verify this conclusion.

The two field samples had concentrations reported because the actual results mea-
sured by the lab were greater than the LT-MDL. If the standard deviations are consistent 
with those of the LT-MDL blanks (see Quality Assurance Examples 1–3), then there is no 
more than a 1% chance that the true concentration in either of these two field samples 
was actually zero. 
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Quality Assurance Example 5 

The results for my blanks were not all “less thans”—do I have a contamination 
problem? The method was not information-rich.

Description: As part of a QA program, five field reagent water blanks were sent to 
NWQL for analysis, randomly, over the course of project sample collection. The LT-MDL 
for the analyte is 0.015. The results were < 0.030, <0.030, E0.018, <0.030, and <0.030. 
The analytical method used was not considered information-rich. Is there any evidence 
of contamination in the low-end of the analytical range?

Analysis: In this example, four of the five blanks were reported as nondetections. 
That means that four of the five samples produced results that were less than the LT-MDL 
(0.015). The data user needs to determine the chance of obtaining one detection out of  
five blank samples simply due to random noise. The chance of any individual blank being 
reported as a value greater than the LT-MDL is 0.01, provided that the method is working 
properly and there are no contamination problems. This is based on the definition of the 
LT-MDL. To calculate the probability of one detection out of five samples, the binomial 
distribution function is used:

In this equation, n is the number of samples, d is the number of detections, p is the 
probability of a detection, q =1-p (the probability of nondetection) and C is the mathemat-
ical combinatorial function. Results of this calculation for p= 0.01 can be found in Table 1. 
For completeness, the calculation for this example is shown here and yields:

The probability of one in five blanks having a detection solely by chance is about 
0.05 (5%, or 1 in 20). A check of the lab set blank and the BSP blank results for this 
method shows no evidence of contamination either for the lab set or on a routine basis. 
Now the data user must make a decision. Depending on the project’s needs, the data 
user may consider 5% not particularly rare and conclude that this was an unfortunate 
chance occurrence and not an indication of problems with contamination or ill-behaved 
samples. A different data user might apply a more stringent requirement and be con-
cerned about possible low-level contamination. The second data user might choose to 
have more blanks analyzed. Neither approach is better than the other. What is important 
is that the approach is based on the certainty requirements of the project.

P Cn
d= pdq n d–( ) n!

n d–( )! d( )!
-----------------------------pdq n d–( )

=

P 5!
4!1!
---------- 0.01( )10.994 0.048==
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Quality Assurance Example 6 

The results for my blanks were not all “less thans”—do I have a contamination 
problem? The method was information-rich.

Description: As part of a QA program, five field reagent water blanks were sent to 
NWQL for analysis, randomly, over the course of project sample collection. The LT-MDL 
for the analyte is 0.015. The results were < 0.030, E0.010, E0.018, E0.009, and E0.005. 
The analytical method used was considered information-rich What do the results for the 
blanks indicate?

Analysis: This example is very similar to the previous one. Like that example, out of 
five blanks, there is one detection greater than the LT-MDL. What differs is that for this 
information-rich method, three of the other four blanks were reported with estimated val-
ues, albeit values less than the LT-MDL. The analyst had additional qualifying informa-
tion that included positive identification of the analyte of interest. Having a high incidence 
of low-level detections, as in this example, is a good indication of background contamina-
tion. This is a common occurrence for some analytes (phthalates, for example). The 
source could be from the field, from the lab or from both. The set blanks and BSP results 
would indicate the level of contamination, if any, that is typical for this analysis.

A reasonable action for the data user in such a case is to censor their data at a mini-
mum reporting level that is based upon the reported values for the blanks. If enough 
blank samples were analyzed, the data user could censor all data at the 99th or 95th per-
centile of the blank values. When few blanks were analyzed, the data user could censor 
the data at the maximum blank value. In this example, the data user might decide to cen-
sor all values less than or equal to 0.018 and consider such values not reliably different 
from a blank.

Alternatively, the data user can calculate the probability of detections at a level 
smaller than the LT-MDL and then make a decision about how to interpret low-level data. 
To do this, the binomial distribution function is used in the same way as in the previous 
example except that the probability of a detection is no longer 0.01 (because of blank 
contamination) and therefore table 1 is not applicable. In this case, it is necessary to cal-
culate the probability of a detection at the level of interest.

If the data user is interested in detections as low as 0.008, then the probability that a 
blank gives a signal of 0.008 or greater must be determined. This involves calculating the 
probability that a blank produces a signal that falls within the shaded upper tail of the nor-
mal distribution curve as shown in the illustration on the following page.
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A standardized t value is calculated using the formula: .

In this case, x equals 0.008 (the value of interest) and  equals zero (because the 
sample is a blank). The standard deviation can be obtained from NWQL, but the data 
user can also approximate it from the LT-MDL. Generally, the NWQL uses about 20 sam-
ples to determine an LT-MDL. Assuming 20 samples (19 degrees of freedom) and 99% 
confidence, the value of t is 2.54. The standard deviation then is 0.015/2.54=0.0059. If 
the number of samples were known exactly, then this would not be an approximation. 
Substituting into the formula yields

The probability that a blank yields a result greater than 0.008 is obtained by looking 
up the value 1.36 in a table of t values, specifying 19 degrees of freedom and a 1-tail 
test. From such a table, the standardized area under the unshaded (larger) part of the 
distribution curve is 0.905, making the probability of a value falling in the shaded area 
equal to 9.5%.

The calculation is now just like the previous example. Out of the five blanks, two 
were either not detected or reported at less than 0.008 (probability=90.5%) and three 
were reported as greater than or equal to 0.008 (probability =9.5%) Using the binomial 
distribution function yields:

The probability of three in five blanks having a value of 0.008 or more solely by 
chance is about 0.007 (0.7%). The data user considers this event too unlikely and con-
cludes that this was probably not a chance occurrence and that the blanks indicate low-
level contamination. By examining the other lab QC data, the data user may be able to 
determine if this is a general laboratory problem or a field-derived contamination.

0 0.008

?%

t x x–
s

-----------=

x

t 0.008 0–
0.0059

---------------------- 1.36==

P 5!
3!2!
---------- 0.905( )2 0.095( )3 0.007==
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Quality Assurance Example 7 

What does it mean if one of my spikes is a nondetect?

Description: A project manager anticipates that a number of samples will contain 
concentrations of analyte near the LRL and therefore submits samples spiked at concen-
trations near the LRL value of 0.030. Two field samples were collected and each was 
split into two fractions, one of which was spiked with analyte to produce a concentration 
increase of 0.030 above background. All four samples were analyzed. The results are 
shown in the table below.

Analysis: The true concentration is unknown for all four samples. However, the data 
user is sure that the concentration in the two spiked samples should be at least 0.030. 
Because this value is the LRL, the probability of nondetection is no more than 1%. The 
binomial distribution function can be used as before. Out of two spikes, one was a detec-
tion and one was not, giving:

If neither sample contained the analyte before spiking, then the probability of getting 
one detection and one nondetection simply by chance is 2%. Because these samples 
might have contained analyte before spiking, the probability of one nondetection is less 
than 2%. At this point, the data user must make a judgement call. It is reasonable to con-
clude that sample 1 contained analyte before spiking. These data suggest that some 
analyte may have been lost or that the method may have a low bias for these samples. 
The addition of spike to sample 1 increased the concentration by 0.016, or about half of 
what would be expected. The addition of spike to sample 2 was not discernible. With only 
two samples, the data are inconclusive and it is difficult to know if this behavior was due 
to random chance, if something was wrong with the spike solution, or if matrix effects 
compromised the analyses of these samples. The data user has just enough data to be 
suspicious and possibly worried, but not enough data to take any definitive action. The 
next example shows an approach that is less likely to leave the data user in such a quan-
dary.

Sample 1 Sample 2

Background (unspiked) 0.047 <0.030

Spiked (0.030 additional) 0.063 <0.030

Δspike 0.016 0 (highly uncertain)

P 2!
1!1!
---------- 0.99( )1 0.01( )1 0.02==
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Quality Assurance Example 8 

What can I do if my spikes show a poor recovery?

Description: As in the previous example, the project manager anticipates that a num-
ber of samples will contain concentrations of analyte near the LRL. The LRL is 0.030 as 
before, and the samples were spiked so the expected concentration increase would be 
0.030. This time, two sets of triplicate field samples and spikes were submitted. That is, 
each raw sample was split into two fractions, one of which was spiked. The spiked and 
unspiked fractions were each split into three fractions which were sent in for analysis. 
Although such a sampling scheme requires a large volume of the original field sample, 
having the data from triplicate analyses is advantageous because it allows the calcula-
tion of standard deviations. The results are shown in the table below. Note that this ana-
lytical method must have been information-rich because one reported result is smaller 
than the LT-MDL of 0.015. (Note: the concepts in this example also apply to methods that 
are not information-rich.) 

Analysis: The results for sample 1 indicate that the analyte was probably not present 
in the unspiked sample. Spikes of sample 1 clearly show that analyte is present, 
although one of the spikes is less than the LT-MDL. Given that the spikes were done at a 
level of 0.030, the same as the LRL, the chance of detecting each spike is 99% when 
added to a sample containing no analyte. The chance of obtaining two values above and 
one value below the LT-MDL can be calculated from the binomial distribution function:

This result is somewhat rare and probably indicates analyte losses or low bias. Repro-
ducibility is fine. The standard deviation for the sample 1 replicates (0.0045) is not statis-
tically different from the s for the LT-MDL blank spikes (0.006) (see Quality Assurance 
Example 1 for how to check this). The values for the sample 1 spikes, however, appear 
to be less than they should be, which supports the concern about analyte loss or low bias 
in the analytical method. Analyte losses probably mean that the LRL is too low for these 
samples.

Triplicate Results x s Δspike

Sample 1

Background (unspiked) <0.030, <0.030, <0.030 <0.030 ?
~0.0147

Spiked (0.030 additional) E0.010, E0.019, E0.015 0.0147 0.0045

Sample 2

Background (unspiked) 0.053, 0.042, 0.050 0.0483 0.0057
 0.0157

Spiked (0.030 additional) 0.060, 0.065, 0.067 0.0640 0.0036

P 3!
1!2!
---------- 0.99( )2 0.01( )1 0.03== 3%=
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Sample 2 clearly contained analyte before spiking. The addition of analyte to the 
spiked samples is also clearly discernible, but the values again appear to be smaller than 
they should be. The reproducibility is comparable to what is expected for the method 
(0.006).

In general, both of these results indicate that some of the spike is being “lost.” Possi-
ble causes of this include inefficient extraction, analyte degradation, and volatilization. 
Some methods routinely produce low results for such reasons. The data user decides to 
compare the study results to those from the BSP and the lab set spike. Those data do 
not show a similar loss of analyte, indicating that the problem is not part of routine NWQL 
procedures. Alternatively, the apparent loss of analyte might be due to a matrix problem. 
A matrix issue may or may not apply to all samples in this project. At this point, the data 
user might contact NWQL personnel who can look more carefully at the raw results for 
these analyses to see if there is any indication as to why they are apparently low. The 
data user may also have additional knowledge about the sample matrix.

The data user may decide that samples for this particular project have a matrix inter-
ference that causes a diminished signal. For example, samples with high amounts of dis-
solved organic matter may not be extracted efficiently. In such a case, the data user 
should probably raise the reporting level (RL) for these samples. First, a recovery factor 
is calculated by dividing the actual recovery by the expected recovery. For samples 1 
and 2, respectively, the recovery factors are:

 and 

The average recovery factor is 0.51, making the new RL for these samples equal to:

This means that a sample with a true concentration of 0.059 has only a 1% chance of 
being reported as less than the LT-MDL (0.015). Note that in this case, the RL is no 
longer equal to twice the LT-MDL. 

The results for sample 1 can be reevaluated, knowing that the chance of having a 
value reported as less than the LT-MDL in this instance is greater than 1%. First, deter-
mine the probability that a sample with a true concentration of 0.030 is reported with a 
concentration of less than the LT-MDL. In this example, a sample with a true concentra-
tion of 0.030 has an “effective concentration” of 0.030 × 0.51=0.0153 (concentration × 
recovery factor). The distribution is illustrated in the figure on the following page. The 
shaded area is the fraction of the distribution that is less than the LT-MDL. To obtain the 
probability associated with the shaded area, calculate a standardized t value and look up 
the probability in a table of t-values. To calculate the standardized t value, subtract the 
effective concentration from the LT-MDL and then normalize by assuming a standard 
deviation of 0.006 (based on the LT-MDL).

0.0147
0.030
---------------- 0.490= 0.0157

0.030
---------------- 0.523=

RL LRL
recovery factor
------------------------------------ 0.030

0.51
------------- 0.059= = =
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The value -0.05 is looked up 
in a table of t values, assum-
ing 19 degrees of freedom 
and a 1-tail test. From such 
a table, the probability of a 
value falling in the shaded 
area shown above is 0.48 or 
48%. Therefore, the proba-
bility of a detection (a value of 0.015 or greater) is 52% and the probability of a nondetec-
tion is 48%. For sample one, out of three spikes, two were greater than the LT-MDL and 
one was less than the LT-MDL. Using the binomial distribution function yields:

The probability that one in three spikes with a concentration of 0.030 is reported as less 
than the LT-MDL is 39%. This is obviously likely and supports the idea that raising the RL 
is an appropriate action.

0.01530.015

?%

(=effective concentration)(=LT-MDL)

t 0.015 0.0153–
0.006

------------------------------------ 0.05–==

P 3!
1!2!
---------- 0.52( )2 0.48( )1 0.39==
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Project Planning Example 1  

I want to compare values to a criterion at the low end of the analytical range. 
Is that possible with this analytical method?

Description: The LT-MDL for a particular analyte is 0.021, based on a standard devi-
ation of 0.008 and 16 samples. The LRL is 0.042. As part of a proposed project, ambient 
values will be compared to a criterion which is 0.035. How feasible is this? What sorts of 
errors are involved? How can errors be minimized?

Analysis—Part A: The main purpose of this project is identifying values that are 
greater than or equal to 0.035. Assume that the project manager has decided that it is 
very important that the actual concentrations in samples reported as nondetections 
(<LRL, <0.042) are really less than 0.035. The project will be designed with this objective 
in mind. 

First, calculate the probability of not detecting the analyte in a sample that has a true 
concentration of 0.035. (A sample with a true concentration of 0.035 is the most difficult 
case of the objective.) This example assumes that the recovery factor is 100% (no ana-
lytical bias). Detection is defined as an analytical result that is greater than or equal to the 
LT-MDL (0.021).

Looking up the proba-
bility in a table of t val-
ues, with 15 degrees of 
freedom, a 1-tail test 
yields a probability of 
0.048. This means 
there is about a 1 in 20 
chance (0.05) of a sam-
ple with a true concen-
tration of 0.035 being reported as a nondetection. The project planner decides that 1 in 
20 is too many exceedences to miss. 

One way to reduce the chance of erroneously not detecting the analyte is to analyze 
replicates for every sample. Consider analyzing duplicates. The possible results for a 
sample with a true concentration of 0.035 are detailed in the table for duplicate samples 
on the following page.

0.0350

?%

0.021
(=true concentration)(=LT-MDL)

t 0.021 0.035–
0.008

--------------------------------- 1.75–==
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.

If every sample is analyzed in duplicate, the project can effectively lower the default 
“less than” reporting value. If the analyte is not detected in either duplicate, then the data 
user can conclude with 99.7% certainty that the true concentration is less than 0.035, 
despite the fact that the reported result was <LRL or <0.042. Of course, this comes with 
a price: the cost of duplicate sampling.

Analysis—Part B: In this case, assume that the project manager has a different 
objective—minimizing the chances of concluding that the concentration in a sample 
exceeded 0.035 when it actually did not. Recognizing that all measurements have error, 
the project manager decided to determine the probability that a sample exceeded 0.035, 
when it actually was 0.030 or less. (The choice of 0.030 by the project manager is arbi-
trary; choosing 0.030 allows for a 14% margin of safety.)

A table of t values 
shows that the probabil-
ity associated with a t of 
0.625, 15 degrees of 
freedom and a 1-tail 
test is 0.27 or 27%, 
which the project man-
ager considers too 
high.The project man-
ager considers having 
every sample analyzed 
in duplicate.

Potential Outcome Probability Calculation Probability

Detected in both duplicates 90.3%

Detected in only one duplicate 9.5%

Not detected in either duplicate 0.3%

P 2!
0!2!
---------- 0.95( )2 0.05( )0 0.903==

P 2!
1!1!
---------- 0.95( )1 0.05( )1 0.095==

P 2!
2!0!
---------- 0.95( )0 0.05( )2 0.0025==

t 0.035 0.030–
0.008

--------------------------------- 0.625==

0.0350

?%

0.030
(=comparison value)(=actual mean)
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There is still a 7% chance that a sample with a concentration of 0.030 would be reported 
as greater than or equal to 0.035 for both duplicates. The project manager considers this 
error too high, although it is better than the 27% chance for one sample. The manager 
considers analyzing triplicates.

The project manager considers 2% an acceptable error rate and plans to submit a tripli-
cate split for every sample. If every one of the three triplicates produces a result greater 
than or equal to 0.035, the data user will conclude that the true concentration of the sam-
ple could have been 0.030 or greater. 

Analysis—Comparing A and B: Parts A and B of this example show the two types of 
error encountered in determining detection or deciding if a value exceeds a criterion. 
One type of error is concluding detection or exceedence when it actually did not occur; 
the other type of error is concluding nondetection or nonexceedence when it did actually 
occur. These two types of error are always a trade off. The less likely the first type of 
error, the more likely the second type, and vice versa. Analyzing replicate samples can 
allow the data user to constrain both types of error simultaneously, but introduces a third 
category: “too close to call.” For example, suppose that a sample was analyzed in 

Potential Outcome Probability Calculation Probability

Reported as ≥0.035 in both dupli-
cates

7.3%

Reported as ≥0.035 in one duplicate 
and as <0.035 in one duplicate

39.4%

Reported as <0.035 in both dupli-
cates

53.3%

Potential Outcome Probability Calculation Probability

Reported as ≥0.035 in all three rep-
licates

2%

Reported as ≥0.035 in two repli-
cates and as <0.035 in one replicate

16%

Reported as ≥0.035 in one replicate 
and as <0.035 in two replicates

43%

<0.035 in all three replicates 39%

P 2!
0!2!
---------- 0.27( )2 0.73( )0 0.073==

P 2!
1!1!
---------- 0.27( )1 0.73( )1 0.394==

P 2!
2!0!
---------- 0.27( )0 0.73( )2 0.533==

P 3!
0!3!
---------- 0.27( )3 0.73( )0 0.02==

P 3!
1!2!
---------- 0.27( )2 0.73( )1 0.16==

P 3!
2!1!
---------- 0.27( )1 0.73( )2 0.43==

P 3!
3!0!
---------- 0.27( )0 0.73( )3 0.39==
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duplicate and the result was one nondetection and one 0.035. It would be difficult to 
conclude with any certainty whether or not this sample actually exceeded 0.035. If the 
concentration actually was 0.035, there would be a 50% chance of obtaining one 
reported value greater than 0.035 and one reported value less than 0.035. If a project 
manager requires greater precision, the only options are to increase the number of 
replicates, thereby decreasing the standard error of the mean, or to ask the analytical 
laboratory to use a different method of chemical analysis which has less variability.
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Project Planning Example 2 

I want to compare two groups. Is the precision of this analytical method adequate?

Description: Some projects involve comparing two or more groups of data to each 
other. When this is the case, the analytical uncertainty must be substantially smaller than 
the difference that the project is attempting to discern. For example, a project is pro-
posed to determine if there is an observable chemical difference between typical urban 
streams and similar streams which have undergone streambank restoration. Will the 
analytical method be precise enough to distinguish between the two?

Analysis: As a rule of thumb, the means of two groups must differ by at least three 
standard deviations (more for small data sets) for a discernible difference to be statisti-
cally observable. The standard deviation here measures the total variability—spatial, 
temporal, sampling, and analytical. Typically, the analytical variability will account for only 
a tiny fraction of the total variability. In any event, it is important to make sure that the 
analytical variability is acceptable for the proposed project. 

The LT-MDL is calculated as the product of the standard deviation for the method 
and a t-multiplier. The t-multiplier will never be less than 2.3*. Therefore, the routine ana-
lytical standard deviation of the method will not be larger than the LT-MDL divided by 2.3.

Suppose that the LT-MDL for a particular analyte is 0.0067. The maximum routine 
analytical standard deviation is 0.003 (0.0067/2.3), for values that are in the low range of 
the method (<5×LRL or <10×LT-MDL). The minimum difference that can be observed 
between group means therefore would be about 0.009, assuming that all other forms of 
variability are negligible. If this value is greater than or even near the value of the differ-
ence that is expected, the project manager must use a different analytical method with 
lower variability or alter the project in some other way.

*[Note: the t-multiplier comes from the Student’s t distribution. The t-multiplier in the 
LT-MDL will never be less than 2.3 because that is the t-value for an infinite number of 
degrees of freedom at a probability of 0.99.]
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Data Interpretation Example 1

I’ve heard that it is easy to misinterpret nondetections in a way that introduces 
bias in the summary statistics. How do I avoid that? The analytical method is 

not information-rich.

Description: The LT-MDL for a particular analyte is 0.003 and the LRL is 0.006. The 
data are E0.004, E0.005, <0.006, <0.006, 0.008, and 0.010. What are some options for 
handling these data? What should be avoided? 

Analysis: Bias is introduced when the data are interpreted in a way that is inconsis-
tent with the rank order of the actual lab measurements. It is important to remember that 
the LRL is a default value rather than a measured one. The lab measurement leading to 
a reported value of “<LRL” was less than the LT-MDL. Analytical results for samples hav-
ing true concentrations between the LT-MDL and the LRL are associated with a larger 
relative error (the reason for the E-code) and a greater incidence of false negatives than 
those for samples having true concentrations greater than the LRL. The following table 
shows several methods of acceptable interpretation which could be used in calculating 
summary statistics or comparing groups. The choice of method depends upon the needs 
of the data user.

Data as Reported 
from NWQL Actual Lab Measurement

Used in Data Analysis

Value Rank
Most conservative approach—Values that have high uncertainty are not compared to one 
another, but rather, are ranked equally. This is appropriate when great certainty is required or 
when the QA needed to interpret results near the LT-MDL is absent.

<0.006 0 ≤ measurement  <0.003, high uncertainty <0.006 2.5
<0.006 0 ≤ measurement  <0.003, high uncertainty <0.006 2.5
E0.004 0.004, high uncertainty <0.006 2.5
E0.005 0.005, high uncertainty <0.006 2.5

0.008 0.008 0.008 5
0.010 0.010 0.010 6

Least conservative approach—This approach is useful when characterizing a distribution and 
when the data user can tolerate greater uncertainty. There should be adequate QA (blanks and 
low-level spikes) to demonstrate that the LT-MDL is appropriate for the data set.

<0.006 0 ≤ measurement  <0.003, high uncertainty <0.003 1.5
<0.006 0 ≤ measurement  <0.003, high uncertainty <0.003 1.5
E0.004 0.004, high uncertainty 0.004 3
E0.005 0.005, high uncertainty 0.005 4

0.008 0.008 0.008 5
0.010 0.010 0.010 6
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Intermediate approach—The distinction between detection and nondetection is preserved, but 
low-level detections (considered nonquantitative detections) are not compared to one another. 
Results from field blanks should show that the incidence of false positives is not inconsistent 
with the LT-MDL. If adequate low-level spike data are absent, the data user must be tolerant of 
the possibility of an increased chance of false negatives in the nondetection group. 

<0.006 0 ≤ measurement  <0.003, high uncertainty <0.003 1.5
<0.006 0 ≤ measurement  <0.003, high uncertainty <0.003 1.5
E0.004 0.004, high uncertainty 0.003 – 0.006 3.5
E0.005 0.005, high uncertainty 0.003 – 0.006 3.5

0.008 0.008 0.008 5
0.010 0.010 0.010 6

INCORRECT approach—The nondetections encompass values that exceed an E-coded detec-
tion. This is inconsistent with lab measurements and leads to bias, regardless of the method 
used. Using the LRL as the censoring level while including individual values between the LT-
MDL and LRL will bias results from methods such as regression on order statistics (ROS or 
probability plot), Kaplan-Meier estimation, and maximum likelihood estimation (MLE). 

<0.006 0 ≤ measurement  <0.003, high uncertainty <0.006 3.5
<0.006 0 ≤ measurement  <0.003, high uncertainty <0.006 3.5
E0.004 0.004, high uncertainty 0.004 1
E0.005 0.005, high uncertainty 0.005 2

0.008 0.008 0.008 5
0.010 0.010 0.010 6

Data as Reported 
from NWQL Actual Lab Measurement

Used in Data Analysis

Value Rank
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Data Interpretation Example 2
I’ve heard that it is easy to misinterpret nondetections in a way that introduces bias. 

How do I avoid that? The analytical method is information-rich.

Description (Information-rich methods): The LT-MDL for a particular analyte is 0.003 
and the LRL is 0.006. The data are E0.002, E0.004, E0.005, <0.006, 0.008, and 0.010. 
What are some options for handling these data? What sort of interpretation should be 
avoided because it introduces bias?

Analysis: The essential requirement for treating data from information-rich methods 
is the same as that for methods that are not information-rich: make sure that the data are 
interpreted in a way that is consistent with the rank order of the actual lab measure-
ments. Data sets for information-rich methods are sometimes complicated by reported 
values less than the LT-MDL which are extremely uncertain. The following table shows 
several methods of acceptable interpretation which could be used in calculating sum-
mary statistics or comparing groups. The choice of method depends upon the needs of 
the data user.

Data as Reported 
from NWQL Actual Lab Measurement

Used in Data 
Analysis

Value Rank
Most conservative approach—Values that have high uncertainty are not compared to one 
another, but rather, are ranked equally. This is appropriate when great certainty is required or 
when the QA needed to interpret low levels is absent.

<0.006 analyte confirmation insufficient <0.006 2.5
E0.002 0.002 very high uncertainty <0.006 2.5
E0.004 0.004, high uncertainty <0.006 2.5
E0.005 0.005, high uncertainty <0.006 2.5

0.008 0.008 0.008 5
0.010 0.010 0.010 6

Least conservative approach—This approach is useful when characterizing a distribution and 
when the data user can tolerate considerable uncertainty in individual values. There should be 
adequate QA (blanks and low-level spikes) to demonstrate that the LT-MDL is appropriate for 
the data set. Because information-rich methods require evidence that identifies the analyte, 
using zero for nondetection is not equivalent to a substitution method. Zero is the value that is 
most faithful to the analytical result—sufficient evidence of presence was not observed.

<0.006 analyte confirmation insufficient 0.000 1
E0.002 0.002 very high uncertainty 0.002 2
E0.004 0.004, high uncertainty 0.004 3
E0.005 0.005, high uncertainty 0.005 4

0.008 0.008 0.008 5
0.010 0.010 0.010 6
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Intermediate approach 1—Detections that are less than the LT-MDL are grouped with 
nondetections. This is especially useful to minimize the possibility of false positives (usually 
due to carry over between analyses). Values between the LT-MDL and LRL are grouped 
together because of their increased uncertainty relative to values greater than the LRL.

<0.006 analyte confirmation insufficient <0.003 1.5
E0.002 0.002 very high uncertainty <0.003 1.5
E0.004 0.004, high uncertainty 0.003 – 0.006 3.5
E0.005 0.005, high uncertainty 0.003 – 0.006 3.5

0.008 0.008 0.008 5
0.010 0.010 0.010 6

Intermediate approach 2—nondetections, detections less than the LT-MDL, and detections 
between the LT-MDL and LRL are treated as three separate groups. This approach maximizes 
the ability to observe detection. Adequate QA (blanks and low-level spikes) is important. In 
particular, users of this approach should check lab blanks as well as field blanks for incidence 
of low-level false positives that may indicate carry over between analyses.

<0.006 analyte confirmation insufficient 0.000 1
E0.002 0.002 very high uncertainty 0.000 – 0.003 2
E0.004 0.004, high uncertainty 0.003 – 0.006 3.5
E0.005 0.005, high uncertainty 0.003 – 0.006 3.5

0.008 0.008 0.008 5
0.010 0.010 0.010 6

INCORRECT approach—The nondetections encompass values that exceed several E-coded 
detections. This is inconsistent with lab measurements and leads to bias, regardless of the 
method used. Using the LRL as the censoring level while including individual values less than 
the LRL will bias results from methods such as regression on order statistics (ROS or probabil-
ity plot), Kaplan-Meier estimation, and maximum likelihood estimation (MLE).

<0.006 analyte confirmation insufficient <0.006 4
E0.002 0.002 very high uncertainty 0.002 1
E0.004 0.004, high uncertainty 0.004 2
E0.005 0.005, high uncertainty 0.005 3

0.008 0.008 0.008 5
0.010 0.010 0.010 6

Data as Reported 
from NWQL Actual Lab Measurement

Used in Data 
Analysis

Value Rank
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Data Interpretation Example 3
How do I interpret data and calculate statistics when I have nondetections? 

The low-level values are not important to my study.

Description: The LT-MDL and LRL for a particular analyte are 0.004 and 0.008, 
respectively. The data user is interested in reporting some basic descriptive statistics 
such as medians and percentiles. The data user also would like to perform some statisti-
cal tests such as comparing groups and correlations. Most of the data exceed the LRL 
value. The data user is not particularly concerned with values less than the LRL. The cri-
terion for aquatic health for this analyte is 0.040, a value that is 10 times the LT-MDL. 
Data for one group in the data set are 0.015, 0.024, 0.019, 0.031, 0.010, <0.008, 0.023, 
E0.006, 0.046, 0.018, and 0.022. How should nondetections be handled?

Analysis: The data user decides to use a simple, robust method to handle this data 
set. The user censors the data at the LRL (0.008) and the data are ranked as shown in 
the table below. The censored data are shaded. (Note that the sample reported as 
E0.006 produced a larger analytical signal than the sample reported as <0.008, but both 
are ranked equally because the data are being censored at the LRL).

The data user decides to report nonparametric summary statistics such as percen-
tiles as shown in the table below. Detailed calculations for this example are shown in the 
box on page 45.   

Data as reported from NWQL Data as used by data user Rank
<0.008 <0.008 1.5
E0.006 <0.008 1.5

0.010 0.010 3
0.015 0.015 4
0.018 0.018 5
0.019 0.019 6
0.022 0.022 7
0.023 0.023 8
0.024 0.024 9
0.031 0.031 10
0.046 0.046 11

90th percentile 0.043

75th percentile 0.024

median 0.019

25th percentile 0.010

10th percentile <0.008
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The 10th percentile here includes, but is not limited to, nondetections. It should be 
interpreted literally—values less than 0.008. Depending on the data set, the censoring 
point may fall much higher in the distribution; in other words, a greater proportion of the 
data set could be censored. This is not a problem because the data user made the deci-
sion that the high end of the distribution is what is important. Low level detections are not 
pertinent to data interpretation for this project. 

The data user also can perform nonparametric statistical tests on the ranks of cen-
sored values (for example, Spearman correlation, Wilcoxon group comparisons, etc.). 
For large data sets, parametric methods such as t-tests and Analysis of Variance can be 
performed on the ranks because parametric tests applied to ranks approximate the non-
parametric tests for large data sets. For small data sets such as this one, however, the 
exact nonparametric tests are preferred.

This method of handling low-level values is advantageous because it is straightfor-
ward and requires no assumptions. Although data below the LRL are not interpreted, that 
should not be considered a disadvantage. Not interpreting data below the LRL is often 
the most appropriate approach, especially for projects that are primarily concerned with 
identifying areas where high concentrations are a threat to aquatic or human health. The 
data user needs to decide what is appropriate based on the intent of the study.
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Calculating percentiles

Percentiles can be calculated many ways; for example, SAS (Proc Univariate) offers 5 
different methods. There is no general agreement about which methods are best for which 
applications. The statistics produced by all methods are very similar for large data sets and for 
medians, but diverge for small data sets and for large or small percentiles. To avoid highly 
uncertain estimates, the range of percentiles calculated should be limited to between  and 
100– , where n is the number of data values. In this document, the method described by 
Helsel and Hirsch (1992) is used. It is identical to SAS Proc Univariate Definition 4 (SAS 
Institute, 1990). This method produces estimates of upper percentiles that are slightly greater 
than and lower percentiles that are slightly less than those of the other methods.

Procedure: 
The general formula is: 

where i and frac are the integer part and fractional parts of (n+1)p, respectively, n is the 
number of values in the data set, and p is the quantile (the percentile represented as a fraction).

1.  Calculate the nearest data (xi and xi+1) and the weighting factor (frac) for each percentile.

• For this dataset, n=11. For the 90th percentile, p=0.90
• Calculate i and frac. 

 (n+1)p = (11+1)(0.90) = 10.8, therefore i=10 and frac=0.80
• Choose nearest data using the index, i, after ordering the data from smallest to largest. 

 xi = x10= 0.031 and xi+1 = x11= 0.046

2. Calculate the percentile value. 
90th percentile = 0.031 + 0.80 (0.046 – 0.031) = 0.043

A spreadsheet showing the results for this 
data set is shown at the right. For this 
dataset, the calculation should be limited to 
the 9th to 91stpercentile range. 

About Excel percentiles. Because of its ubiquity and ease of use, Microsoft Excel is often 
used to calculate percentiles. The method used by Excel differs from Helsel and Hirsch and all 
of the SAS methods. Because of how Excel ranks data, the Excel Percentile Function may not 
be the best method for datasets that contain many tied data values.

100
n

---------
100
n

---------

100 p×( )thpercentile xi frac xi 1+ xi–( )+=

Quanitile (p) (n+1)p= i = frac = Value
0.90 10.80 10 0.80 0.043
0.75 9.00 9 0.00 0.024
0.50 6.00 6 0.00 0.019
0.25 3.00 3 0.00 0.010
0.10 1.20 1 0.20 <0.008
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Data Interpretation Example 4

How do I calculate summary statistics when I have nondetections? I am not con-
cerned with individual values, but want to characterize the distribution. The analyti-

cal method used was not information-rich.

Description: An ongoing project has a moderately sized set of ambient chemical 
data. The purpose of the project is to statistically describe the distribution of analyte con-
centrations in the environment. Because the data will be viewed collectively, an individual 
value can have large uncertainty without compromising the interpretation. Much of the 
data falls in the low-level range, including values between the LT-MDL (0.050) and LRL 
(0.100) and many nondetections. Because the analytical method was not information-
rich, the laboratory censored values below the LT-MDL and reported them as <LRL, the 
same as nondetections. How should this data set be handled?

Analysis: Because most of the distribution falls in the low-level range, the data user 
would prefer not to censor the data at the LRL—too much information would be lost. 
However, before proceeding, the data user must examine the QA data to make sure that 
the samples were well behaved during analysis. If this is not the case for some samples, 
the data user may choose to omit those samples from interpretation and explain the rea-
sons for doing so. For example, the data user noticed that blanks collected in June of a 
particular year had evidence of contamination, but that no other blanks did. The amount 
of contamination was similar in magnitude to low-level environmental concentrations 
measured in this project. Based on this information, the data user concluded that the 
June data were seriously compromised and decided to omit samples collected during 
that time period from the final analysis. Note that this decision is somewhat arbitrary. 
Another data user might choose to retain the questionable data. The decision to omit or 
to include data that are known to be compromised should not be made lightly. The data 
user should examine the effect of either omitting or retaining these data and use that 
information to inform their decision.

Once the data user has assessed the quality of the analytical results, nondetections 
must be handled. Nondetections are reported as <LRL, but the LRL is simply the default 
“less than” reporting value that was selected to minimize the incidence of false negatives 
(reporting an analyte as not present when it actually is present). When an analyte is 
reported as not detected, the signal observed by the analyst was in the level of noise for 
a non-information-rich method (as in this case) and less than the signal equivalent to the 
LT-MDL. Consequently, the value that most faithfully reports the observed analytical sig-
nal is <LT-MDL. The reason the NWQL does not report it this way is that a sample which 
had a true concentration just greater than the LT-MDL has a high probability of being 
reported as <LT-MDL (almost 50%; more if an analyte has a recovery of less than 100%). 
Reporting the value as <LRL limits the chance of a false negative error to 1%. For the 
purpose of describing a distribution, however, high certainty is not needed for each 
value; rather, the most faithful representation is needed. 
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The data user reassigns “<LT-MDL” to the results that were originally reported as 
“<LRL.” This is not altering the data. The data user has chosen to accept a higher level 
of uncertainty for nondetections than that used by NWQL. In this situation, the LT-MDL is 
a more appropriate default “less than” value for nondetections than is the LRL. A sample 
data set is shown below. 

The data user then decides what method to use to determine summary statistics. 
Two good methods are the rank method and the robust “regression on order statistics” 
(robust ROS) method. Both methods are appropriate for most data sets. A detailed dis-

Data as reported from NWQL Data as used by data user Rank
< 0.100 <0.050 7
< 0.100 <0.050 7
< 0.100 <0.050 7
< 0.100 <0.050 7
< 0.100 <0.050 7
< 0.100 <0.050 7
< 0.100 <0.050 7
< 0.100 <0.050 7
< 0.100 <0.050 7
< 0.100 <0.050 7
< 0.100 <0.050 7
< 0.100 <0.050 7
< 0.100 <0.050 7
E 0.057 E 0.057 14
E 0.061 E 0.061 15
E 0.081 E 0.081 16
E 0.090 E 0.090 17
E 0.091 E 0.091 18
E 0.093 E 0.093 19

0.103 0.103 20
0.119 0.119 21
0.133 0.133 22
0.134 0.134 23
0.137 0.137 24
0.184 0.184 25
0.248 0.248 26
0.537 0.537 27
0.542 0.542 28
0.544 0.544 29
1.17 1.17 30
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cussion of these two methods follows, and the calculated summary statistics are shown 
at the end of the section. 

Other methods such as Kaplan-Meier and Maximum Likelihood Estimation (MLE) 
may also be used, but are not shown here. When only one censoring value is present, 
the Kaplan-Meier method does not yield much more information than the rank method 
and the estimated mean will be biased if the lowest value is censored as it is in this 
example. The Kaplan-Meier method is shown in Data Interpretation Example 7. The 
Maximum Likelihood Estimation method requires a relatively large data set (at least 50 
values) and an assumption about the shape of the distribution. An example of the use of 
MLE is not included in this document. 

The rank method is simple and involves no assumptions about the underlying distri-
bution. It requires a single censoring point below which all data are censored. Therefore, 
data sets with multiple detection limits or reported data less than the censoring level 
(such as is possible with information-rich methods) must be recensored, causing the loss 
of some information. Because the percentiles are determined by using <LT-MDL as the 
lowest rank, some of the statistics produced by the rank method will be censored values 
and some statistics may be ties (as are the 10th and 25th percentiles in this case, both of 
which are <0.050). The rank method does not yield parametric statistics such as the 
mean or standard deviation. 

The robust ROS method uses a probability plot procedure to “fill in” censored values 
(Helsel and Hirsch, 1992; Helsel, 2005). Although an underlying data distribution is an 
inherent assumption of this method, the overall method is not fully parametric, because 
summary statistics are calculated using the fill-in values (assumed data distribution) 
combined with the noncensored data (no assumed distribution). The robust ROS method 
can accommodate multiple detection limits and detected values that are less than the 
censoring limit without recensoring (see Data Interpretation Example 7). This method 
also can produce parametric summary statistics. Detailed calculations for this example 
are shown in the boxes on the following pages.   

Summary statistics obtained from each method are shown below. 

Rank Method  Robust ROS Method

10th percentile <0.050 0.008

25th percentile <0.050 0.020

median 0.071 0.071

75th percentile 0.135 0.135

90th percentile 0.542 0.542

mean — 0.153

standard deviation — 0.247
50



ROS Method —Data Interpretation Example 4 (page 1 of 2)

A spreadsheet was used for the robust ROS method in this example. For a detailed discus-
sion of the theory involved in this method see Helsel (2005). 

Part 1—The noncensored values are used to obtain a regression equation. A log-normal distri-
bution is assumed.

1. Compute normal scores for the detected values.

• List the noncensored values in order from largest to smallest. (See Detected Data column.)
• Calculate the probability of detection as: number of detections / total number. 

  P(detection) = 17/30 = 0.5667
• Calculate the probability level increment as: P(detection) / (number of detections + 1). 

  Increment = 0.5667/18 = 0.0315
• Assign probability levels to the detected values. (See Prob Level column.) 

  For the highest data value: Prob Level = 1 – Increment 
  For subsequent values: Prob Level = Previous Prob Level – Increment 
Check: Prob Level for the smallest detection should equal: 1 – P(detection) + Increment

• Calculate the normal score (z-score) associated with each probability level by using the 
inverse of the normal distribution function.(See Normal Score column.)

2. Take the natural logarithm of the detected values. (See ln(Data) column.)

3. Graph the ln(Data) versus the Normal Score and calculate the equation of the regression line.

The portion of the spreadsheet resulting from these steps is shown below.
Detected 

Data
Prob 
Level

Normal 
Score ln(Data)

1.17 0.969 1.859 0.16
0.544 0.937 1.530 -0.61
0.542 0.906 1.314 -0.61
0.537 0.874 1.146 -0.62
0.248 0.843 1.005 -1.39
0.184 0.811 0.882 -1.69
0.137 0.780 0.771 -1.99
0.134 0.748 0.669 -2.01
0.133 0.717 0.573 -2.02
0.119 0.685 0.482 -2.13
0.103 0.654 0.395 -2.27
0.093 0.622 0.311 -2.38
0.091 0.591 0.229 -2.40
0.090 0.559 0.149 -2.41
0.081 0.528 0.070 -2.51
0.061 0.496 -0.009 -2.80
0.057 0.465 -0.088 -2.86

y = 1.5234x - 2.8084
R2 = 0.9516

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-0.5 0.0 0.5 1.0 1.5 2.0
Normal Score

ln
(D

at
a)
51



ROS Method —Data Interpretation Example 4 (continued) (page 2 of 2)

Part 2—The regression equation is used calculate fill-in values to represent the censored 
values in the calculation of summary statistics.

1. Compute normal scores for the censored values.

• Calculate the probability of nondetection as: 1 – P(detection) 
  P(nondetection) = 1 – 0.5667 = 0.4333

• Calculate probability level increment as: P(nondetection) / (number of nondetections + 1) 
  Increment = 0.4333/14 = 0.03095

• Create a list of probability levels for censored values. (See Censored Prob column, below) 
  Beginning with: Censored Prob = P(nondetection) – Increment 
  For subsequent values: Censored Prob = Previous Censored Prob – Increment 
The number of Censored Probability Levels should equal the number of censored values 
and the least Censored Probability Level should equal the Increment (within round-off 
error).

• Calculate the normal score (z-score) associated each probability level by using the inverse 
of the normal distribution function. (See Censored Norm column.)

2. Use the regression equation from Part 1 to calculate the natural logarithms of fill-in values. 
(See ln(Fill-in) column.)

3. Calculate fill-in data values from their natural logarithms. (See Fill-in Values column.)

The portion of the spreadsheet resulting from these steps 
is shown at the right.

Part 3—The detected values (all 17 values in the 
Detected Data column on the previous page) and the fill-
in values (all 13 values in the Fill-in Values column at the 
right) are combined and used to calculate summary statis-
tics. The reader can verify the summary statistics calcu-
lated from this hybrid data set. Note that fill-in values do 
not correspond to any specific samples and should never 
be reported as data. 

Censored
Prob

Censored
Norm

ln
(Fill-in)

Fill-in
Values

0.402 -0.247 -3.185 0.041
0.371 -0.328 -3.308 0.037
0.340 -0.411 -3.435 0.032
0.310 -0.497 -3.566 0.028
0.279 -0.587 -3.703 0.025
0.248 -0.682 -3.847 0.021
0.217 -0.784 -4.002 0.018
0.186 -0.894 -4.170 0.015
0.155 -1.016 -4.357 0.013
0.124 -1.156 -4.570 0.010
0.093 -1.323 -4.824 0.008
0.062 -1.539 -5.153 0.006
0.031 -1.867 -5.653 0.004
52



Data Interpretation Example 5

How do I calculate summary statistics when most of my data are nondetections or 
low-level values? The analytical method was information-rich and many of the 

reported values are less than the LT-MDL.

Description: An ongoing project has large set of ambient chemical data. The data are 
to be used to calibrate and verify a water quality model. No individual value is of particu-
lar importance and the data user can tolerate considerable uncertainty regarding each 
value. Most of the data are below the LRL (0.10) and about 20 percent of the data are 
nondetections. An information-rich method was used, so some values below the LT-MDL 
(0.050) are reported. How should these data be handled?

Analysis: The first priority for the data user is to carefully examine the QA data to 
determine if the low-level samples seem to be well behaved. The data user must be sat-
isfied that the behavior of different samples are comparable to each other and to the rou-
tine laboratory performance. If this is not the case, then the data user may choose to 
adjust values so that they are comparable. Here are two examples. Suppose that the 
results of low level spikes frequently were reported as nondetections. In such a case, the 
data user may choose to censor data based on the performance observed. In another 
case, supposed that one tributary routinely had higher concentrations of humic sub-
stances than the others, and that these samples also had matrix problems that led to 
poor recovery. In this case, the data user may decide to apply sample-specific or site-
specific recovery factors to adjust the data in this project. In both of these cases, the data 
user would need adequate data to calculate censoring levels or recovery factors and 
must document whatever action was taken. See Quality Assurance Example 8 for more 
information related to recalculating censoring levels.

Assuming that any data problems have been addressed by the data user, the next 
task is to decide how to handle nondetections. Censoring the data at the LRL is undesir-
able because too much valuable information will be lost. Recall that although nondetec-
tions are reported as <0.10 (the LRL value), they were not uniquely measured as less 
than 0.10. The LRL is the default reporting value and is based on probability. Further-
more, for an information-rich method, when an analyte is reported as not detected it usu-
ally means that not only was the observed signal in the range of noise, but no positive 
identification of the analyte was made. In other words, evidence of the analyte’s pres-
ence was insufficient. For such samples, zero is the value that is most faithful to the ana-
lytical result. The data user assigns a concentration of zero to all nondetections. This 
results in no censoring of the data set whatsoever, the data are amenable for use in a 
model, and no special techniques are needed to calculate summary statistics. Note that 
each individual value is quite uncertain—reported values below the LT-MDL have a con-
siderable risk of being false positives and zeros have a considerable risk of being false 
negatives. For this application, however, certainty of individual values is not necessary. 
Assigning a value of zero to nondetections in this case is different than simply using zero 
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in a substitution method. Because this analytical method was information-rich, the data 
user knows that the analyst did not observe sufficient evidence of the analyte to report its 
presence.

Data as reported 
from NWQL

Data as used 
by data user Rank

< 0.100 0.000 4
< 0.100 0.000 4
< 0.100 0.000 4 10th percentile=0.000
< 0.100 0.000 4
< 0.100 0.000 4
< 0.100 0.000 4
< 0.100 0.000 4
E 0.006 0.006 8 25th percentile=0.005
E 0.007 0.007 9
E 0.008 0.008 10
E 0.012 0.012 11
E 0.013 0.013 12
E 0.016 0.016 13
E 0.017 0.017 14
E 0.023 0.023 15
E 0.037 0.037 16
E 0.039 0.039 17
E 0.045 0.045 18
E 0.048 0.048 19
E 0.052 0.052 20
E 0.058 0.058 21
E 0.060 0.060 22
E 0.071 0.071 23 75th percentile=0.074
E 0.082 0.082 24
E 0.090 0.090 25

0.110 0.110 26
0.133 0.133 27
0.138 0.138 28 90th percentile=0.138
0.175 0.175 29
0.182 0.182 30

High risk of 
false negative.

Evaluate low-
level spike 

High risk of 
false positive, 
which 
decreases as 
values 
increase

Evaluate blank 

LT-MDL=0.050

LRL= 0.100

median=0.030
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Data Interpretation Example 6

My data were collected over several years, during which the LT-MDL changed. 
What can I do to simplify my data set? 

Description: A project collected data over 3 years. During that time, the LT-MDL and 
LRL for two of the analytes changed. The reported data are shown in the table below. 

Note that these data demonstrate how the nature of the method affects the options 
for the data user. The “laboratory signal” in this data set was identical for both methods. 
The method for analyte A was information-rich; the method for analyte B was not. Data 
for both analytes have multiple detection limits, which complicates data analysis. Is there 
a way to simplify this data set to eliminate the problems associated with multiple censor-
ing levels.

Analysis: The laboratory spike samples that are used to determine the LT-MDL and 
LRL are submitted on an ongoing basis, but the results are evaluated annually. If the LT-
MDL calculated for new data is significantly different (on a statistical basis) from the LT-
MDL for the previous year, the LT-MDL (and the LRL) will change. Some change is to be 
expected, because the standard deviation that is used to calculate the LT-MDL is only an 
estimate of the true standard deviation of the analytical process, which can never be 
known with absolute certainty. Generally, the changes will be relatively small. If the LT-
MDL or LRL change by a large amount, it is indicative of a major change such as a signif-
icant equipment upgrade. If some of the data are from a time before the LT-MDL/LRL 
procedure was implemented, and if the LRL is considerably higher than the older MDL 
but the method itself has not changed, then it is indicative that the old MDL was too 
small. In such a case, it would be reasonable to recensor the data at the new LRL value.

In this example, the LRL changes by a small amount (0.006 to 0.008) over the 3-year 
span of the study. A pooled LT-MDL and LRL can be calculated that span the entire study 

Analyte Year 1 Year 2 Year 3

A 
(information-rich)

<0.006
E0.002
E0.004
E0.005

0.006
0.010

<0.006
<0.006
E0.003

0.006
0.008

<0.008
E0.003
E0.005
E0.005
E0.006

0.009

B 
(not information-rich)

<0.006
<0.006
E0.004
E0.005

0.006
0.010

<0.006
<0.006
E0.003

0.006
0.008

<0.008
<0.008
E0.005
E0.005
E0.006

0.009
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period. The data user looks up the LT-MDL values and the number of lab spikes that they 
were based upon on the NWQL Web pages. These are shown in the second and third 
columns in the table below. A statistical table is used to obtain the value of Student’s t at 
n-1 degrees of freedom and 99% confidence (1-tail). The standard deviation, s, is calcu-
lated as LT-MDL/t. 

The pooled standard deviation is given by:

Substituting the appropriate values from this example into the above equation yields:

Taking the square root gives s=0.00124. This is the appropriate statistic to compare 
with field estimates of standard deviation (see Quality Assurance Example 1). 

The pooled standard deviation also can be used to calculate a 3-year MDL. There 
are 61 degrees of freedom for this calculation (denominator from spool calculation). For a 
1-tail test with 99% confidence and 61 degrees of freedom, t=2.39. This results in a 3-
year MDL of (2.39)(0.00124)=0.00296, or 0.003 for these samples. 

The 3-year MDL is useful for the analyte A data (information-rich method) if the data 
user wants to account for highly uncertain values. The table below shows the application 
of the 3-year MDL and Intermediate Approach 1 from Data Interpretation Example 2. 

Year LT-MDL n Student’s t s

Year 1 0.0030 21 2.53 0.00119

Year 2 0.0026 24 2.50 0.00104

Year 3 0.0038 19 2.55 0.00149

Year 1 Year 2 Year 3

Reported 
by NWQL Interpretation Reported 

by NWQL Interpretation Reported 
by NWQL Interpretation

<0.006 0.000 – 0.003 <0.006 0.000 – 0.003 <0.008 0.000 – 0.003
E0.002 0.000 – 0.003 <0.006 0.000 – 0.003 E0.003 0.003 – 0.006
E0.004 0.003 – 0.006 E0.003 0.003 – 0.006 E0.005 0.003 – 0.006
E0.005 0.003 – 0.006 0.006 0.006 E0.005 0.003 – 0.006

0.006 0.006 0.008 0.008 E0.006 0.006
0.010 0.010 0.009 0.009

spool
2 n1 1–( )s1

2 n2 1–( )s2
2 . . . + nk 1–( )sk

2
+ +

n1 n2 . . . nk k–+ + +
--------------------------------------------------------------------------------------------------=

spool
2 20 0.00119( )2 23 0.00104( )2 18 0.00149( )2

+ +
21 24 19 3–+ +( )

---------------------------------------------------------------------------------------------------------------- 9.316 10 5–×
61

------------------------------ 1.527 10 6–×= = =
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Notice that the nondetected values that were reported as <0.006 or <0.008 (using the 1-
year LRL values) by the NWQL are interpreted as <0.003 (using the 3-year LT-MDL). 
Because the LRL was a default value, substituting a different, but statistically defined 
default value is valid. Recall that it is important to use the LT-MDL as the censoring value 
in data analysis when values less than the LRL are included (see Data Interpretation 
Example 2). Applying the 3-year LT-MDL to data from an information-rich method elimi-
nates multiple detection limits.

Unfortunately, a multiple-year MDL does not work as well when the method is not 
information-rich. This is because values less than the annual LT-MDL are reported as 
“less thans” by NWQL. The multiple-year MDL will be less than the annual LT-MDLs for 
at least one of the individual years (because it is a type of average). For that year, the 
data user has no way of knowing if the laboratory value associated with <LT-MDL was 
greater than or less than the multiple-year MDL. This is the case for the result reported 
as <0.008 for analyte B in year 3 for this example. The data user knows that the labora-
tory observed a signal that was less than 0.004 (LT-MDL for year 3), but does not know 
how that observed signal compared to 0.003 (the 3-year MDL). Consequently, a multiple-
year MDL cannot be applied to all nondetections when the method is not information-
rich. The multiple-year LRL can only be used when it is greater than the annual-LRL. 
This is not particularly useful. When the LT-MDL and LRL do not change very much (as 
in this example), the best approach is to censor all the data using the highest LT-MDL 
(0.004). This is shown in the table below; the intermediate approach was used (see Data 
Interpretation Example 1).

Year 1 Year 2 Year 3

Reported 
by NWQL Interpretation Reported 

by NWQL Interpretation Reported 
by NWQL Interpretation

<0.006 <0.004 <0.006 <0.004 <0.008 <0.004

<0.006 <0.004 <0.006 <0.004 <0.008 <0.004

E0.004 0.004 – 0.008 E0.003 <0.004 E0.005 0.004 – 0.008

E0.005 0.004 – 0.008 0.006 0.004 – 0.008 E0.005 0.004 – 0.008

0.006 0.004 – 0.008 0.008 0.008 E0.006 0.004 – 0.008

0.010 0.010 0.009 0.009
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Data Interpretation Example 7
How do I calculate summary statistics when I have several detection levels or when 

I have reported values that are less than the censoring level?

Description: A data user has a data set that is complicated because some of the 
chemical analyses were done by a local laboratory and some by NWQL. The local labo-
ratory censors all data below their quantitation limit of 0.50. Data from NWQL dating from 
early in study was reported using an LRL of 0.40. Partway through the study, however, a 
new method became available at NWQL and the project manager switched to that 
method because it performed better than the old one. The LRL for the new method was 
0.16. Neither the old nor the new NWQL methods were information-rich. To further com-
plicate matters, matrix problems with some samples resulted in NWQL reporting “less 
thans” with raised reporting levels. The data set is shown in the table below.

The data user is interested in reporting some basic descriptive statistics such as 
medians and percentiles, and would like to obtain an estimate of the mean. How is this 
done with such a complicated data set? 

Analysis: Before combining data from different sources, the data user must deter-
mine if the different methods are yielding comparable results. Split spike samples should 
have been sent to both the local lab and NWQL. For the purpose of this example, it will 
be assumed that adequate QA has shown that no significant differences exist between 
results from the different laboratories and methods. 

The next task is to make sure that the "less than" values in the data set are censored 
appropriately (see Data Interpretation Example 1). The data from the local lab is cen-
sored at only one level and no values are reported less than the censoring level, so no 
modifications are necessary. Nondetections from NWQL are reported using an LRL to 
reduce the chance of false negatives to 1%. The actual signal observed by the lab for 
nondetections, however, was less than the LT-MDL and that should be used as the cen-
soring value here. Therefore, the reported value of <0.40 will be used as <0.20 and <1.8 
will be used as <0.9 (assuming 100% recovery). 

This results in a combined data set with three censoring levels (0.2, 0.5 and 0.9) and 
containing reported values less than all three of these censoring levels. The simplest 
approach for a data set such as this is to recensor it at the highest "less than" value, in 
this case 0.9. That is not a good option here, however, because too much information 
would be lost. 

Calculating summary statistics for data sets that contain different censoring points 
requires special methods. Simple ranking methods are not applicable because order is 
ambiguous. Two methods that can handle multiple censoring levels with or without 
reported values less than the censoring levels are Kaplan-Meier estimation and regres-

Source Data
Local lab <0.5, <0.5, <0.5, <0.5, 0.6, 0.9, 1.0, 1.3, 1.9, 2.8
NWQL — old method <0.40, <1.8, E0.24, E0.38, 0.73
NWQL — new method E0.12, 0.29, 0.68, 0.89, 1.5 
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sion on order statistics (ROS or probability plotting). Both will be shown for this example. 
Maximum likelihood estimation (MLE) also is acceptable, but an assumed distribution is 
required and it is best used when the data set contains at least 50 points.

The Kaplan-Meier method involves no assumptions about the underlying distribution 
and handles multiple censoring points. It produces percentiles (and their standard devia-
tions) as well as estimates of the distribution’s mean and standard error. It can be 
expanded to methods that allow comparison of two or more groups (Helsel, 2005; SAS 
Institute, 1990).

The major drawback of the Kaplan-Meier method occurs when the smallest value in 
the data set is censored. In this case, the estimate of the mean will be biased because 
the value of the smallest censoring level is substituted for the lowest nondetects in the 
calculation of the mean. (When there is only one censoring level and all values less than 
the censoring level are reported as “less thans,” the Kaplan-Meier method is equivalent 
to using simple substitution.) The bias increases as the size of the data set decreases 
and as the number of censored values at the lowest censoring level increases.

The Kaplan-Meier method was developed for survival analysis involving data that 
are right censored (“greater than” rather than “less than” censoring). Although equations 
can be developed for left-censored data, texts and software using the Kaplan-Meier 
method routinely are limited to right-censored data. Fortunately, it is easy to transform 
left-censored data into right-censored data (and back), and that transformation will be 
shown in this example. Detailed calculations for this example are shown in the boxes on 
the following pages.   

The robust ROS method requires the assumption of an underlying data distribution 
(usually log-normal), but is not fully parametric, because summary statistics are calcu-
lated using fill-in values combined with the noncensored data. ROS was shown for a data 
set with a single censoring point in Data Interpretation Example 4. The current example 
shows its application to data sets with multiple censoring points. Detailed calculations for 
this example are shown in the boxes on the following pages.    

Summary statistics obtained from each method are shown in the table below. 

Kaplan Meier Method  Robust ROS Method

10th percentile 0.12 0.13

25th percentile 0.24 0.25

median 0.60 0.49

75th percentile 1.00 0.98

90th percentile 1.90 1.86

mean 0.74 0.74

standard deviation 0.71 0.69
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Kaplan-Meier Method —Data Interpretation Example 7 (page 1 of 3)

A spreadsheet was used for the Kaplan-Meier method in this example. For a detailed dis-

cussion of the theory involved in this method, see Helsel (2005) and SAS (1990). 

1. Transform the data by “flipping” each value.

• List all values (including the censored ones) in order from largest to smallest. Include a 
column for the code for censored values. Do not list any value more than once. Include a 
column for the number of observed values which will account for multiple incidences of the 
same value. (See Value, Code, and #Obs columns.) An index column (i) also is included for 
clarity in the example spreadsheet, but is not required for the calculations.

• Pick an arbitrary value greater than the largest data value. In this case, a value of 3 was 
used. “Flip” the data by subtracting each data point from this arbitrary value. (See Flip 
column.) This column is sublabelled “ti” to clarify later calculations. An additional column 
(Flip Code) was included here to show that operation of flipping reverses the direction of the 
comparison operator; this column is not needed for the calculations. (The flipped data, ti , 
are equivalent to the time periods in survival analysis.)

• From this point onward in the calculation, the flipped values are used.

2.  Calculate the Incremental Probability— the probability of surviving to the next index level.

• Determine the number of values in the cohort at level i (number at risk). This is the number 
of flipped values greater than or equal to the flip value at index i. Be sure to account for 
values with multiple observations. (See ni column.)

• Determine the number of values in the cohort at level i that will not survive to the level i+1 
(number of deaths). This is the change in the number of flipped values (ni – ni+1), not 
counting right-censored values (>), which represent subjects that leave the survival analysis 
without dying. Be sure to account for values with multiple observations. (See di column.)

• Calculate the number of values in the cohort that survive to level i+1 as ni – di. (See si 
column.)

• Calculate the incremental probability as si/ni for each level i. (See Incremental Probability 
column, which shows the fraction and the decimal result for each row.)

3. Calculate the Cumulative Probability— the probability of surviving through the flipped  
value i—which also is known as the Survival Function (S).

• The Cumulative Probability at level i is the product all the incremental probabilities, up to 
and including level i as shown by the equation below. (See CumP or Si column.) This is 
based on the principles of conditional probability. 

Si
si
ni
----

i 1=

k

∏=
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 Kaplan-Meier Method —Data Interpretation Example 7 (continued) (page 2 of 3)

4. The standard error of the Cumulative Probability can be calculated by the formula 

      

(See the three columns with the spanning head of Calculate Standard Error Pctls.)

5. Plot the survival function and untransform the data to obtain percentiles of the original data.

• The Cumulative Probability is plotted as a step function of Flip and shown at the left below 
the spreadsheet.

• Cumulative Probability is plotted as a step function of the Original Values and shown at the 
right below the spreadsheet. Percentiles can be obtained directly from the graph as shown 
and are shaded on the spreadsheet. Note that this is a different method of calculating 
percentiles than described in Data Interpretation Example 3.

6. Calculate the mean.

• The mean of Flip is the area under the Cumulative Probability curve. This is most easily 
done by calculating the areas of individual rectangles and then adding them. The formula is

     

• The mean of the original data is calculated by subtracting the mean of Flip from the 
arbitrary value used to flip the data in step 1. In this case:  
  mean original = 3 – 2.262 = 0.738

7. Calculate the variance and standard error of the mean and the standard deviation of the distri-
bution (which are the same for Flip as for the original data).

• The formula for the variance of the mean is:

 where   

where k is the number of unique values (maximum of the i column), and m is the number of 
detections (sum of the di column). 
(See the two columns with the spanning head of Calculate SE Mean.)

• The standard error of the mean is the square root of the variance of the mean.
• The standard deviation of the distribution is the standard error of the mean times the square 

root of n, the number of total observations (sum of the # Obs column).  
  Standard deviation = 0.259 √20 = 0.717 

Standard Error of Si Si
dj

nj sj⋅
------------

j 1=

i

∑⋅=

mean Flip Si ti 1+ ti–( )⋅
i 0=

k 1–

∑=

Variance Mean m
m 1–
------------- Ai

2 di
ni si⋅
------------⋅

i 1=

k 1–

∑= Ai Sj tj 1+ tj–( )⋅
j i=

k

∑=
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ROS Method —Data Interpretation Example 7 (page 1 of 3)

A spreadsheet was used for the robust ROS method in this example. For a detailed discus-

sion of the theory involved in this method, see Helsel (2005). 

Part 1—The noncensored values are used to obtain a regression equation. A log-normal distri-
bution is assumed.

1. Compute normal scores for the detected values.

• List all noncensored values in order from largest to smallest. Subdivide the data into 
intervals bounded by the censoring values. In this example there are 4 intervals. (See 
Detected Data column on next page.)

• Calculate the probability of detection in each interval.
For the interval whose lower bound is the highest censoring level (0.9 in this example), this 
is the number of detections greater than the highest censoring level  / total number: 
  P(≥ 0.9) = 6/20 = 0.300
The presence of nondetections complicates the calculation of the detection probability in the 
other intervals. For each of these, the data in the intervals greater than the one of interest and 
the nondetections at the upper bound of the interval of interest are removed. This yields a 
conditional probability of detection. In this example, for the second interval it is the proba-
bility that a detection is greater than or equal to 0.5, given that it is less than 0.9 (P(≥0.5 | 
<0.9)). When this conditional probability is multiplied by the probability of the given condi-
tion (P(<0.9) here), the result is the probability of detection in the interval (P(≥0.5 and 
<0.9)). 
  P(≥0.5 and <0.9) = P(≥0.5 | <0.9) · P(<0.9) = 4/13 · 0.700 = 0.215  
   where P(<0.9) = 1 – P(≥ 0.9) = 1 – 0.300 = 0.700
The calculations for the other sections are shown below. 
  P(≥0.2 and <0.5) = P(≥0.2 | <0.5) · P(<0.5) = 3/5 · 0.485 = 0.291 
   where P(<0.5) = 1 – [ P(≥ 0.9) + P(≥0.5 and <0.9) ] = 1 – 0.300 – 0.215 = 0.485
  P(≥0 and <0.2) = P(≥0 | <0.2) · P(<0.2) = 1/1 · 0.194 = 0.194 
   where P(<0.2) = 1 – 0.300 – 0.215 – 0.291 = 0.194   

• Calculate the probability level increment for each interval as: 
 P(detection in the interval) / (number of detections in the interval + 1).
  Increment for 0.9 – ∞ = 0.300/7 = 0.0427 
  Increment for 0.5 – 0.9 = 0.215/5 = 0.0431 
  Increment for 0.2 – 0.5 = 0.291/4 = 0.0727 
  Increment for 0 – 0.2 = 0.194/2 = 0.0969
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ROS Method —Data Interpretation Example 7 (continued) (page 2 of 3)

• Assign probability levels to the detected and the censoring values. (See Prob Level column.)
For the highest data value: Prob Level = 1 – Increment for top interval
For subsequent values in top interval: Prob Level = Previous Prob Level – Increment
For the first censoring value: Prob Level = Previous Prob Level – Increment
For the highest data value in the next interval: 
    Prob Level = Prob Level of Censoring Value – Increment for new interval
Continue in this fashion, changing the increment at each interval bounded by the censoring 
boundaries. 
Check: The Prob Level for the censoring values should differ by the probabilities of detec-
tion in each interval. In this example, the probability at 0.9 is 0.700 and the probability at 
0.5 is 0.485. The difference of these is 0.215 which is the detection probability of the inter-
val ≥0.5 and <0.9.

• Calculate the normal score (z-score) associated with each probability level by using the 
inverse of the normal distribution function. (See Normal Score column.)

2. Take the natural logarithm of the detected values. (See ln(Data) column.)

3. Graph the ln(Data) versus the Normal Score and calculate the equation of the regression line.

The portion of the spreadsheet resulting from these steps is shown below.

Censor 
Value

#
Cnsrd

Detected 
Data

Prob 
Level

Normal 
Score ln(Data)

2.8 0.957 1.718 1.03
1.900 0.914 1.368 0.64
1.500 0.871 1.133 0.41
1.300 0.829 0.949 0.26
1.000 0.786 0.792 0.00
0.900 0.743 0.652 -0.11

0.9 1 0.700
0.890 0.657 0.404 -0.12
0.730 0.614 0.289 -0.31
0.680 0.571 0.178 -0.39
0.600 0.528 0.069 -0.51

0.5 4 0.485
0.380 0.412 -0.223 -0.97
0.290 0.339 -0.415 -1.24
0.240 0.267 -0.623 -1.43

0.2 1 0.194
0.120 0.097 -1.299 -2.12

y = 1.0322x - 0.7143
R2 = 0.9873

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Normal Score

ln
(D

at
a)
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ROS Method —Data Interpretation Example 7 (continued) (page 3 of 3)

Part 2—The regression equation is used to calculate fill-in values to represent the censored 
values in the calculation of summary statistics.

1. Compute normal scores for the censored values.

• Recall the probabilities associated with each censoring level. 
  P(<0.9) = 0.700   P(<0.5) = 0.485   P(<0.2) = 0.194

• Calculate probability level increments as: P(nondetection) / (number of nondetections + 1) 
  @ 0.9: Increment = 0.700/2 = 0.350 
  @ 0.5: Increment = 0.485/5 = 0.097 
  @ 0.2: Increment = 0.194/2 = 0.097

• Create a list of probability levels for censored values. (See Censored Prob column, below.) 
  Beginning with: Censored Prob = P(nondetection) – Increment 
  For subsequent values: Censored Prob = Previous Censored Prob – Increment

• Calculate the normal score (z-score) associated with each probability level by using the 
inverse of the normal distribution function. (See Censored Norm column.)

2. Use the regression equation from Part 1 to calculate the natural logarithms of the fill-in values. 
(See ln(Fill-in) column).

3. Calculate the fill-in data values from their natural logarithms. (See Fill-in Values column.).

The portion of the spreadsheet 
resulting from these steps is shown 
at the right.

Part 3—The noncensored values 
(all 14 values in the Detected Data 
column on the previous page) and 
the fill-in values (all 6 values in the 
Fill-in Values column at the right) 
are combined and used to calculate 
summary statistics. The reader can 
verify the summary statistics calculated from this hybrid data set. Note that fill-in values do 
not correspond to any specific samples and should never be reported as data. 

0.9 1 0.350 -0.385 -1.112 0.329

0.5 1 0.388 -0.285 -1.009 0.365
0.5 2 0.291 -0.551 -1.283 0.277
0.5 3 0.194 -0.864 -1.606 0.201
0.5 4 0.097 -1.299 -2.055 0.128

0.2 1 0.097 -1.299 -2.055 0.128

ln
(Fill-in)

Fill-in
Values

Censor 
Level

ND
Index

Censored 
Prob

Censored 
Norm
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Data Interpretation Example 8

How do I group my data using one or more cutoff or benchmark values?

Description: A data user would like to compare groups within a data set or develop a 
model that relates constituent concentration to ancillary factors such as population den-
sity, geological substrate, or land use. A large proportion of the data set, however, is 
comprised of nondetections and detections below the LRL. How does the data user han-
dle this situation?

Analysis: The data user has a variety of options that are all based on the same gen-
eral approach—the data user picks a “cutoff” value or values and transforms the data 
into a categorical response. Then, an appropriate statistical method such as chi-square 
analysis or logit regression is used to analyze the categorical data. Several options for 
the cutoff value are described below. In all cases, it is important that the data user docu-
ment what was used as the cutoff value.

Option 1: The data user picks the LT-MDL as the “cutoff” value. This is the common 
method of using detection to categorize data. For a method that is not information-rich, 
this method is simple. All values that are greater than or equal to the LT-MDL are consid-
ered detections, and results reported as <LRL are considered nondetections. 

Data from information-rich methods have the added challenge that detections less 
than the LT-MDL are reported. These values could be grouped with the nondetections 
using the LT-MDL as the cutoff value. Alternatively, they could be grouped with the detec-
tions if the data user had good results on low-level QC spikes. In this concentration 
range, there is a high risk of false negatives and false positives, and results are likely to 
be influenced greatly by matrix effects, sample handling and instrument performance on 
a given day.

The main advantage of this method is its simplicity. A disadvantage of this method is 
that grouping all detections together (low concentrations with high concentrations) may 
obscure too much information. Perhaps a more important disadvantage is that using the 
LT-MDL as the cutoff value allows a characteristic of a particular analytical method to 
determine the interpretation of environmental data. Had the samples been analyzed 
using a different chemical assay, the categorical grouping probably would be different. 

Option 2: The data user divides the data into three groups: not-detected, low-level 
detection, and quantifiable. A likely candidate for the upper cutoff value is the LRL. Val-
ues greater than or equal to this value are considered quantifiable. Depending on the 
needs of the data user, a higher value might be used for the upper cutoff. Some groups, 
such as the American Chemical Society (Keith and others, 1983) advocate using 10 
times the standard deviation (about four times the LT-MDL) as a cutoff limit for quantifica-
tion. The lower cutoff could be the LT-MDL. In this case, the low-level detection category 
would include all values reported between the LT-MDL and LRL. Data users might also 
choose to include detections that are less than the LT-MDL (information-rich methods) in 
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the category of low-level detection. This method has the advantage of placing detections 
with greater relative uncertainty into a separate category. It still has the disadvantage of 
allowing the analytical method to determine the data interpretation.

Option 3: The cutoff value chosen by the data user is a benchmark that has mean-
ing relative to the purpose of the study. Examples are as varied as study objectives, but 
some possible benchmarks include a criterion for the protection of aquatic life, a maxi-
mum contaminant level for drinking water, or a reported average background value. Data 
then would be classified relative to the benchmark. Choosing a cutoff value in this way 
decouples the interpretation of data from the chemical analytical method. Applying this 
method is straightforward, provided that the benchmark is greater than or equal to the 
LRL. If the benchmark is less than the LRL, see Data Interpretation Example 9.

Option 4: The data user divides the data into three groups based on a benchmark 
and the confidence levels required for exceedence or nonexceedence. The categories 
would be (1) greater than the benchmark with “x”% certainty, (2) less than the bench-
mark with “y”% certainty, and (3) too close to call. In this case, the data user must spec-
ify the certainties required (which could be the same) and calculate cutoff values based 
on the benchmark and the performance of the chemical method. This approach requires 
the most work on the part of the data user, but also provides the most meaningful results. 

To determine the cutoff values, the data user must have an estimate of the standard 
deviation of the analytical method in the vicinity of the criterion of interest. The standard 
deviation could be obtained three different ways depending on the amount of data avail-
able and on where the criterion of interest falls within the range of the analytical method. 
If all samples were analyzed as replicates, the data user could calculate a standard devi-
ation from the pooled replicates. Typically, this will not be the case and the data user will 
have to rely on statistics from the LT-MDL or the Blind Sample Program. In this case, the 
data user first must ensure that the analytical method seems to be behaving properly 
(see Quality Assurance Examples 1–8). If the criterion of interest is in the low range of 
the analytical method (near the LRL), the standard deviation from the LT-MDL can be 
used. If the criterion of interest is outside of the low range of the method, then the stan-
dard deviation for the appropriate range can be obtained from the Blind Sample Pro-
gram’s data.

For this example, suppose that the LT-MDL for the chemical analysis is 0.02 (based 
on a standard deviation of 0.008 with 19 degrees of freedom). The data user wants to 
compare values to an aquatic life criterion of 0.050 with the following certainties speci-
fied: the upper cutoff identifies values that have no more than a 20% chance of being 
reported as less than 0.050, and the lower cutoff identifies values that have no more than 
a 10% chance of being reported as greater than 0.050. Calculation of each cutoff value is 
shown on the following page with the appropriate illustration. (Note that this example 
assumes no bias in the analysis and 100% recovery.)
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Option 5: One or more cutoff values are chosen based on observable breaks in the 
data. In this case, the data user plots the data as a cumulative distribution function and 
examines the plot for natural breaks. Such breaks may represent observed conditions or 
an underlying explanatory variable and may point the way to future work. Once the break 
points are determined, they can be applied in the same way that cutoff values are 
described in options 3 or 4.

Upper Cutoff0.050

20%

Lower Cutoff 0.050

10%

The value of t for a 1-tail test 
with α=20% and 19 degrees of 
freedom is -0.861. Substitut-
ing the t-value, criterion, and 
standard deviation into the 
equation for t yields:

0.861– 0.050 UpperCutoff–
0.008

-----------------------------------------------------= =0.057

=0.039

The value of t for a 1-tail test 
with α=10% and 19 degrees of 
freedom is 1.328. Substituting 
the t-value, criterion, and stan-
dard deviation into the equation 
for t yields:

1.328 0.050 LowerCutoff–
0.008

-----------------------------------------------------=
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Summary: An example data set is shown in the table below with categorizations 
based on the different options just described. An information-rich analytical method was 
used. The LT-MDL value is 0.020 and the LRL is 0.040. 

Data as 
reported 

from 
NWQL

Option 1
(cutoff = LT-MDL)

Option 2
(cutoff = LRL)

Option 3
(cutoff = benchmark)

Option 4
(cutoff = benchmark)

<0.040 Below LT-MDL Not Detected Below 0.050 Below 0.050, ≤10% error
<0.040 Below LT-MDL Not Detected Below 0.050 Below 0.050, ≤10% error
E0.006 Below LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.006 Below LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.007 Below LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.008 Below LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.012 Below LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.012 Below LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.013 Below LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.015 Below LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.016 Below LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.017 Below LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.017 Below LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.023 Exceeds LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.037 Exceeds LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.037 Exceeds LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.038 Exceeds LT-MDL Low-Level Detection Below 0.050 Below 0.050, ≤10% error
E0.039 Exceeds LT-MDL Low-Level Detection Below 0.050 Too close to call

0.045 Exceeds LT-MDL Exceeds LRL Below 0.050 Too close to call

0.048 Exceeds LT-MDL Exceeds LRL Below 0.050 Too close to call

0.052 Exceeds LT-MDL Exceeds LRL Exceeds 0.050 Too close to call

0.058 Exceeds LT-MDL Exceeds LRL Exceeds 0.050 Exceeds 0.050, ≤20% error
0.060 Exceeds LT-MDL Exceeds LRL Exceeds 0.050 Exceeds 0.050, ≤20% error
0.071 Exceeds LT-MDL Exceeds LRL Exceeds 0.050 Exceeds 0.050, ≤20% error
0.082 Exceeds LT-MDL Exceeds LRL Exceeds 0.050 Exceeds 0.050, ≤20% error
0.090 Exceeds LT-MDL Exceeds LRL Exceeds 0.050 Exceeds 0.050, ≤20% error
0.110 Exceeds LT-MDL Exceeds LRL Exceeds 0.050 Exceeds 0.050, ≤20% error
0.134 Exceeds LT-MDL Exceeds LRL Exceeds 0.050 Exceeds 0.050, ≤20% error
0.138 Exceeds LT-MDL Exceeds LRL Exceeds 0.050 Exceeds 0.050, ≤20% error
0.175 Exceeds LT-MDL Exceeds LRL Exceeds 0.050 Exceeds 0.050, ≤20% error
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Data Interpretation Example 9
How do I compare my data to a value that is less than the LRL?

Description: In some cases the aquatic criterion, health guideline, or comparison 
value of interest is less than the LRL. This becomes a problem in data analysis when the 
data user tries to determine if a value that is reported as <LRL does or does not exceed 
this comparison value. For example, suppose that the data user wants to compare data 
to a criterion of 0.030. The LT-MDL for the method is 0.025 and the LRL is 0.050.

Analysis: A result that is reported as “<LRL” does not mean that the laboratory quan-
titatively measured the concentration and found it to be less than the LRL. The LRL is 
simply the default reporting value that the laboratory uses for samples that don’t meet 
minimum detection criteria. For a typical method, < LRL will be reported for samples in 
which the laboratory found a concentration less than the LT-MDL. For an information-rich 
method, it means that the laboratory did not have sufficient identification information to 
report that the analyte was present. When the laboratory reports nondetections as 
“<LRL,” they assumed a maximum false negative error rate of 1%, meaning that the 
chance of reporting a nondetection is only 1% when the sample’s true concentration 
equals the LRL. That level of certainty may or may not meet your needs as a data user.

In general, values near or less than the LRL will have considerable uncertainty. This 
means that the data user must be aware that comparing values in this range will have a 
relatively large chance of error. The table below gives approximate probabilities and rela-
tive standard deviations for values in this range. Values in this range may be too uncer-
tain to meet the needs of some studies. The probabilities given in the table were 
calculated assuming that the method is behaving properly; they do not apply if this 
assumption is invalid. It is very important to have adequate QA, including blanks and low-
level spikes (Quality Assurance Examples 4–8), before trying to interpret values in this 
range of a method. To reduce uncertainty, the data user can change to a more sensitive 
analytical method or submit replicate samples for analysis (Project Planning Example 1).

Actual 
Concentration

Chance of Being Reported As Approximate 
Relative 
Standard 
Deviation

<LRL (typical method)
Value < LT-MDL 

(info-rich method)

≥LT-MDL 
and <LRL ≥LRL

0 99% 1% 0.0002% —
1/3 LT-MDL 94% 6% 0.005% 130%

2/3 LT-MDL 78% 22% 0.1% 64%

LT-MDL 50% 49% 1% 43%
4/3 LT-MDL 22% 72% 6% 32%

5/3 LT-MDL 6% 72% 22% 26%

2 LT-MDL= LRL 1% 49% 50% 22%
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Case 1—Typical analytical method: The reported data values were <0.050, 
<0.050, <0.050, E0.040, and 0.080. Based solely on these individual measurements, two 
values are greater than the comparison criterion of 0.030 (0.040 and 0.080) and three 
values are less than 0.030 (the <0.050 values). The values reported as <0.050 corre-
sponded to an analytical signal that was less than the LT-MDL (0.025), and therefore 
could be considered less than 0.030, but with considerable uncertainty. The data user 
can get a rough estimate of the potential for error by using the table above. A sample 
with a true value of 0.030 (a value slightly greater than the LT-MDL) has a chance 
between 22 and 50% of being reported as <0.050. Similarly, the data user can estimate a 
confidence interval around the reported concentration of 0.040 using the approximate 
relative standard deviation. This estimated value (0.040) is 1.6 times the LT-MDL and the 
approximate relative standard deviation is about 26%. Given that level of uncertainty, it is 
possible that the true concentration of this sample could be less than the comparison cri-
terion of 0.030. If the data user needs to be confident that a concentration truly does 
exceed 0.030 (for example, a regulatory statute), a value of 0.040 with this uncertainty 
may not be adequate.

Case 2—Information-rich analytical method: The reported data values were 
<0.050, <0.050, E0.010, E0.040.and 0.080. Based solely on these individual measure-
ments, two values are greater than 0.030 (0.040 and 0.080) and three values are less 
than 0.030 (E0.010 and the <0.050 values). Because this is an information-rich method, 
the <0.050 values indicate that the NWQL saw insufficient evidence of the analyte’s 
presence in those samples. This could occur because the analyte was actually not 
present in the sample or if a matrix effect decreased or masked the signal. Information 
from blanks and low-level spikes is vital here. The table above does not provide informa-
tion about the probability of nondetection for information-rich methods. The table is 
based on the analytical method’s variability as measured by the standard deviation of low 
level results and does not take into account the confirming detection used in information-
rich methods. The additional evidence from an information-rich method should decrease 
the incidence of false negatives and false positives, but that decrease has not been sta-
tistically defined. For the E0.010 value, the presence of analyte was confirmed; however, 
the concentration has considerable uncertainty—a relative standard deviation on the 
order of 100% (from the table). In addition, the risk of a false positive result is high at this 
concentration (due to potential carry over from a previous analysis). Replicate values are 
needed to limit the uncertainty in this region. The data user also could consider using the 
method of standard additions (described in analytical chemistry texts, for example, Miller 
and Miller, 1988) to increase precision in this range.

Comparisons to values below the LT-MDL generally should be avoided. The uncer-
tainty in this range is too great. Even using information-rich methods and applying tech-
niques such as the method of standard additions or replicate samples, it is unlikely that 
the data user would obtain adequate certainty for most comparison purposes.
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