
AlllDb T7fl3M0
National Bureau
of Standards

Computer Science
and Technology

NBS Special Publication 500-99
NBS

'"'OPTIONS
Structured Testing: A Software
Testing Methodology Using the

Cyclomatic Complexity Metric

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Chemical Physics —
Analytical Chemistry — Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Manufacturing

Engineering — Building Technology — Fire Research — Chemical Engineering^

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

'Some divisions within the center are located at Boulder, CO 80303.

Computer Science
and Technology

MATIONAL BUFEAO
OF STANDARDS

FEB 1 0 1183

NBS Special Publication 500-99

Structured Testing: A Software
Testing Methodology Using the

Cyclomatic Complexity Metric

Thomas J. McCabe

McCabe & Associates, Inc.

5550 Sterrett Place

Columbia, MD 21044

a

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued December 1982

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 82-600651

Natl. Bur. Stand. (U.S.) Spec. Publ. 500-99, 72 pages (Dec. 1982)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1982

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
Price $5.00

(Add 25 percent for other than U.S. mailing)

Page iii

TABLE OF CONTENTS

Page

Abstract and Acknowledgements viii

PART 1. Measuring and Limiting Program Complexity

I. Introduction 1

-Limiting Program Complexity with a design
structure 1

- Assuring testability of design modules 2

II. The Complexity Measure 4

- How physically small programs can have high
complexity and how physically large
programs can have relatively low complexity 4

- Graph theory representation of program logic 4
- Graph theory notions: 4

- Cyclomatic number of graphs 4

- Strongly connected graphs 4
- The cyclomatic number of a control graph as

its complexity 6
- Basis paths 6
- Linear combinations of basis paths generating

all paths 6

III. Examples 8

- The automation of the complexity calculation 8
- Several examples of live programs in the

order of increasing complexity 9
- Examples of programs that violate the

complexity axioms 11

IV. Simplification 13

- Computing complexity by counting splitting
nodes in the control graph 13

- Computing complexity by counting conditions 14
- Compound predicates and case statements 14
- Euler^s formula: computing complexity by

counting the regions in a planar graph 15

Page iv

PART 2. Testing Methodology

V. The Structured Testing Criteria 16

- The criteria 16
- A FORTRAN example with bugs 18
- Example test data 19
- Test coverage hierarchy 19
- Experience and observations 20

VI. Identifying Test Paths: The Baseline Method 21

- The procedure to generate test paths and
data 21

- An example 2 2

- The FORTRAN program and its bug revisited 23

VII. Integration Testing 25

- Definition of a module 25
- Measuring design complexity 26
- Quantification of the integration effort 26
- Applications 27

VIII. The Reduction Technique 28

- Actual complexity 28
- Reducing program complexity: removing

untested decisions 28
- Examples: the FORTRAN program revisited

yet again 29

PART 3. Maintenance Methodology

IX. Essential Complexity 33

- Structured control flow constructs 33
- The modularization process from a graph

reduction viewpoint 33
- Removing one entry/one exit subgraphs 33
- The measurement of structuredness : essential

complexity 3 5

- Examples 35

Page v

X, Program Modification 37

- The cost of maintenance 37
- Classes of change 37

- Changes to functional statements: the
retest criteria 37

- Modifying control flow 38
- Example of catastrophic change 38
- Retest methodology: 39

- Evaluation of essential complexity 39
- Retest quantification 39

XI. Summary 4 2

- Tieing together all the different pieces 42

Appendix A: Empirical Evidence A-1

Appendix B: A FORTRAN Example B-1

References R-1

\

Page vi

LIST OF FIGURES
Page

Figure I-l Hierarchy Chart 1
Figure II-l Control Graph G 5

Figure II-2 Control Graph G' 5

Figure II-3 Control Graph G with Numbered Paths 6

Figure II-4 Basis for Control Graph G 7

Figure III-l Control Graph with Complexity 3 9

Figure III-2 Control Graph with Complexity 4 9

Figure III-3 Control Graph with Complexity 4 9

Figure III-4 Control Graph with Complexity 5 9
Figure III-5 Control Graph with Complexity 5 10
Figure III-6 Control Graph with Complexity 5 10
Figure III-7 Control Graph with Complexity 5 10
Figure III-8 Control Graph with Complexity 6 10
Figure III-9 Control Graph with Complexity 6 11
Figure III-IO Control Graph with Complexity 7 11
Figure III-ll Control Graph with Complexity 9 11
Figure III-12 Control Graph with Complexity 12 11
Figure III-13 Control Graph with Complexity 47 12
Figure IV-1 Splitting node 13
Figure IV-2 Control Graph G 14
Figure IV-3 IF-THEN-ELSE Control Graph 14
Figure IV-4 CASE Control Graph 15
Figure IV-5 Plane Graph 15
Figure V-1 FORTRAN Example Graph 18
Figure V-2 Flow Graph 19
Figure VI-1 Control Graph G 22
Figure VI-2 Flow Graph 23
Figure VII-1 Design Hierarchy 25
Figure VII-2 Graph of Design Hierarchy 26
Figure VIII-1 Program Control Graph 29
Figure VIII-2 FORTRAN Program 30
Figure VIII-3 FORTRAN Program Revised 31
Figure IX-1 Structured Control Constructs 33
Figure IX-2 Reducing Complexity Example 1 34
Figure IX-3 Reducing Complexity Example 2 34
Figure IX-4 Reducing Complexity Example 3 35
Figure IX-5 Non-Reducible Control Graph 35
Figure IX-6 FORTRAN Example Rewritten 36
Figure X-1 Program Modification 37
Figure X-2 Program Patch 38
Figure X-3 Branching Graph 40
Figure X-4 Branching Graph Amplified 41
Figure XI-1 Structured Testing Tecljnique 43

Page vii

Page

Figure B-1 Blackjack Specification B-2
Figure B-2 Blackjack Graph B-7
Figure B-3 Test 1 B-8
Figure B-4 Test 2 B-8
Figure B-5 Test 3 B-9
Figure B-6 Test 4 B-9
Figure B-7 Test 5 B-10
Figure B-8 Test 6 B-10
Figure B-9 Test 7 B-11
Figure B-10 Test 8 B-11
Figure B-11 Test 9 B-12
Figure B-12 Test 10 B-12
Figure B-13 Test 11 B-13

Page viii

Abstract

Various applications of the Structured Testing methodology are
presented. The philosophy of the technique is to avoid programs
that are inherently untestable by first measuring and limiting
program complexity. Part 1 defines and develops a program
complexity measure. Part 2 discusses the complexity measure in
the second phase of the methodology which is used to quantify and
proceduralize the testing process. Part 3 illustrates how to
apply the techniques during maintenance to identify the code that
must be retested after making a modification.

Keywords: measures; metric; program complexity; software
testing; structured testing.

ACKNOWLEDGEMENTS

This report was produced by Thomas J. McCabe for the National
Bureau of Standards Institute for Computer Sciences and
Technology under U.S. Department of Commerce Contract AE8892.

Acknowledgement and thanks are appropriate for the following
reviewers who donated their time and energy to critiquing the
document

:

John Bailey
Rich Fecher
Karen Hedelius
Raymond C. Houghton, Jr.
Elizabeth Kruesi
David Salazar
Tanya Spitzer

Comments pertaining to the technical content are solicited and
should be directed to:

Systems and Software Technology Division
Room B266 Bldg. 225
National Bureau of Standards
Washington, D.C. 20234

Page ix

PREFACE: How To Read This Document

The main advice to the reader is "Don't become discouraged with
Section II." Section II deals with the derivation of a program
complexity measure from graph theory; it contains mathematical
theorems and notation. While it is critical to include this
material to establish a mathematical basis for program
complexity, it is possible that it may frustrate some readers.
Those readers whose interests lie solely in the application of
the theory (as opposed to the development of the theory) may
safely skip Section II. The rest of the paper contains the
operational procedures which are directly applicable to the
programming process.

The diagram below shows
sections in the paper:

the dependencies between the various

PART

1

IV

SlMPLinCATlON

PART

2

PART

3

ESSENTIAL
COKriEXITY

INTRODUCTION

II

COMPLEXITY
MEASURE

STRUCTURED
TESTING
CRITERIA

MODIFICATION

III

EXAMPLES

VIII

REDUCTION

Page x

If you are a Programmer , and your interest at this time is mainly
how to limit and control complexity and not so much the testing
process, then the sections to concentrate on are I-IV. Start
with Section I, read as much of Section II as you want to. If
you get frustrated, instead of filing the document, skip to
Section III where many examples are presented; then digest
Section IV which explains how to compute the complexity in
programming terms.

If your primary concern is the testing process, then the sections
directly applicable are V through VIII. They contain both the
criteria and procedures to carry out the structured testing
process. If the project's design is not complete and you have
some control over the modularization process, then also read
Sections I-IV. If you are having trouble with an existing
design, concentrate on Sections V, VI, and VIII.

If your job is software ma intenance you should concentrate on
Sections IX and X. They contain the operational steps for
evaluating modifications and producing modification test data.
It will be necessary, however, to understand Sections V, VI, and
VIII to carry out this testing.

If you are a Project Leader or Manage r , and your concern is with
development methodology, test plans, and quality assurance, you
need to understand the complete approach. The document will give
you the essence of the overall methodology; the discrete
operational steps in the methodology are summarized in Section
XI, There is a lot of substance here for quality assurance and
project planning — don't let the theoretics in Section II abort
your journey.

If your concern is Quality Assurance and Methodology Standards ,

Appendix A, which presents live, real world data, may be of
interest. Presented are a number of studies that independently
validated various aspects of the complexity measure. This
validation was performed by extracting empirical data from real
projects

.

For readers already familiar with and practicing the structured
testing methodology, we recommend Section XI - SUMMARY. The
Summary lists the operational steps which can be incorporated
into an overall project plan.

Page 1

Part 1. MEASURING AND LIMITING PROGRAM COMPLEXITY

I. INTRODUCTION

This document discusses a software quality metric, the cyclomatic
complexity metric, and how it may be applied to software testing.
Cjiscussions of other metrics and methodologies may be found in
flPAIG] , [HALS] , [KOLE] , [CHAP] , [CHEN] , [GILB] , [JELI] , [MCAL] ,

dnd [MOHA]

.

ithe testing method described in this paper is performed in two
phases. The first phase is to quantify and to limit the
Complexity of a program to permit thorough testing. This
(Quantification is accomplished using a complexity measure that
suggests a minimum on the number of distinct paths that must be
ttested. The second phase is the actual testing where the number
df test paths is forced to meet the complexity measure.

10 11 12

Figure I-l Hierarchy Chart

Attention is first given to limiting the complexity of a program
t|o assure testability. This viewpoint, however, is an
oversimplification of the problem. A "program" of any reasonable
size is typically developed and represented as the interaction of
several procedures, subroutines, or paragraphs. In designing a
"program," the design stage typically results in a hierarchy
chart as shown in Figure 1-1, that explicitly shows the
decomposition of a program's functions into distinct modules. If
tjhe programming language used is FORTRAN, the top module
typically is the mainline code and each of the other modules are
usually subroutines, functions, or externally-called programs.

Page 2

If COBOL is the programming language, the top is mainline code
and the other modules are typically paragraphs.

The design modularization is critical to the quality of the end
product. Each of the modules should have the following
properties:

- Testability - the testing effort to validate each
module should be manageable.

- Comprehensibility - each of the modules should be
readable and understandable.

- Reusability - if the modules are well-defined, they
may be reusable in a different system.

- Maintainability - the job of modifying and retesting
each of the modules in the operational phase
should be manageable.

This design modularization process is governed by two principles:

- The functional decomposition represented by the
design hierarchy should result in several
independent, cohesive modules which provide a
natural decomposition of the problem.

- The modularization must also be governed by "size" or
"testability" of each of the modules. That is, the
modularization should avoid modules that are
inherently so complex that they are untestable.

The process of evaluating a module's cohesiveness and relative
independence is largely a heuristic and creative process.
Currently, it is virtually impossible to measure these attributes
of a design. It is important to emphasize the second principle
(testability of the modules) so, in fact, the design can be
reliably implemented. Whereas a module's cohesiveness or
independence is not measurable, we will in this document, present
techniques that quantify the testability attributes of the
modules. This quantification of the testing effort can then be
incorporated into test plans and a quality assurance phase that
the product would have to satisfy before being accepted.

The structured testing principles in this paper will constrain a

program's complexity by limiting the complexity of each of its
internal modules to the point that they can each be tested
rigorously. If it is found that a particular module exceeds the
complexity threshold, a further design refinement would be
required. For example, if module 11 in Figure 1-1 is found to be
too complex, the creation of several testable modules below 11
would be required. So, in short, a program's testability is

Page 3

assured by limiting the complexity of each of the modules within
the program.

Page 4

II. THE COMPLEXITY MEASURE

The complexity measure will limit the number of independent paths
in a program at the design and coding stages so the testing will
be manageable during later stages. One of the reasons for
limiting independent paths, instead of a limitation based on the
length of a program, is the following dilemma: a relatively
short program can have an overwhelming number of paths. For
example, a 50-line FORTRAN program consisting of 25 IF statements
in sequence, will have 33.5 million potential control paths. The
approach taken here is to limit the number of basis (or
independent) paths that will generate all paths when taken in
combination.

One definition and one theorem from graph theory are needed to
develop these concepts. In this section we will treat graphs
with only one connected component - Section VII will deal with
the more general case. See [BERG] for graph theory concepts and
a more formal treatment of connected components.

Definition 1. The cyclomatic number v(G) of a graph G with n
vertices, e edges, and 1 connected component is:

v(G) = e - n + 1.

Theorem 1.. In a strongly connected graph G, the cyclomatic
number is equal to the maximum number of linearly independent
paths.

The application to computer programs will be made as follows:
given a program module, associate with it a graph that has unique
entry and exit nodes; each node in the graph corresponds to a
block of statements where the flow is sequential and the edges
represent the program's branches taken between blocks. This
graph is classically known as the control graph [LEGA75] ; and it
is assumed that each node can be reached by the entry node and
each node can reach the exit.

For example, the control graph in Figure II-l has seven blocks
((a) through (g)) , entry and exit nodes (a) and (g) , and ten
edges

.

To apply Theorem 1, the graph must be strongly connected which
means that given two nodes (a) and (b) , there exists a path from
(a) to (b) and a path from (b) to (a) . To satisfy this, we
associate an additional edge with the graph which branches from
the exit node (g) to the entry node (a) as shown in Figure II-2.

Page 5

Figure II-2 Control Graph

Theorem 1 now applies, and it states that the maximal number of
independent paths in G' is 11 - 7 + 1 . (G has only one connected
component so we set p = 1.) The generalized case where p > 1 is
used for design complexity, see Section VII. The implication,

Page 6

therefore, is that there is a basis set of five independent paths
that when taken in combination, will generate all paths. For
example, the set of five paths shown below form a basis.

bl: a beg
b2: a (be) *2g
b3: abefg
b4: adefg
b5: adfg

Note: The notation (be) *2 means iterate the (be) loop twice.

If any arbitrary path is chosen, it should be equal to a linear
combination of the basis paths bl - b5. For example, the path
abcbefg is equal to b2 + b3 - bl, and path a(be)*3g equals 2 * b2
- bl . To see this, it is necessary to number the edges in G
Figure II-3 and show the basis as edge vectors Figure II-4.

Figure II-3 Control Graph G with Numbered Paths

The path abcbefg is represented as the edge vector sho'^n in
Figure II-4, and it is equal to b2 + b3 - bl where the addition
and subtraction are done component-wise. In similar fashion, the
path a(bc)*3g shown in Figure II-4 is equal to 2 * b2 - bl.

Page 7

Basis

1 2 3 4 5 6 7 8 9 1(

bl :: 1 0 0 1 0 0 0 0 1 0

b2 !: 1 0 1 2 0 0 0 0 1 0

b3 : 1 0 0 0 1 0 0 1 0 1

b4 : 0 1 0 0 0 1 0 1 0 1

b5 •

: 0 1 0 0 0 0 1 0 0 1

abcbefg :
- 1 0 1 1 1 0 0 1 0 1

a(bc)*3g : 1 0 2 3 0 0 0 0 1 0

Figure II-4 Basis for Control Graph G

It is important to notice that Theorem 1 states that G has a
basis set of size five but it does not tell us which particular
set of five paths to choose. For example, the following set will
also form a basis.

adfg
abefg
adefg
a(bc)*3befg
a (be) *4g

When this is applied to testing, the actual set of five paths
used will be dictated, by the data conditions at the various
decisions in the program. The Theorem, however, guarantees that
we will always be able to find a set of five that form a basis.

It should be emphasized that the process of adding the extra edge
to G was performed only to make the graph strongly connected so
Theorem 1 would apply. When calculating the complexity of a
program or testing the program, the extra edge is not an issue,
but rather it is reflected by adding 1 to the number of edges.
The complexity v, therefore, is defined as:

v = (e + 1) - n + 1

or more simply
V = e - n + 2

.

Page 8

III. EXAMPLES

Several actual control graphs and their complexity measures are
presented in Figures III-l through III-12, to illustrate these
concepts. These graphs are from FORTRAN programs on a PDP-10.
The programs were analyzed by an automated system, called FLOW,
that recognizes the blocks and transitions in a FORTRAN program,
computes the complexity, and draws the control graphs on a DATA
DISK CRT. The straight edges represent downward flow (e.g., in
Figure III-2 below, the line between (2) and (3) means that (2)
branches to (3)). The curved arcs represent backward branches
(e.g., in Figure III-2 (5) branches back to (2)).

The graphs in Figures III-l through III-12 are presented in the
order of increasing complexity to suggest the relationship
between the complexity numbers and our intuitive notion of the
complexity of the graphs.

One essential ingredient in any testing methodology is to limit
the program logic during development in order that, first, the
program can be understood, and second, the amount of testing
required to verify the logic is not overwhelming. To illustrate
what goes wrong when this principle is violated, the graph in
Figure III-13 is presented. According to its author, the program
below is "one of my simpler programs; it required four or five
tests to verify."

The size of the program that gave rise to the graph in Figure
III-13 is only 70 lines of source code. The size of several of
the programs producing the 12 previous graphs exceeded 70 lines.
In practice, often large programs have low complexity and small
programs have very high complexity. Because of this, the common
practice of attempting to limit complexity by controlling only
how many pages a routine will occupy is entirely inadequate.
This complexity measure has been used in production environments

1 imi t ing the complexity of every module to 10. Programmers
have been required to calculate the complexity as they develop
routines, and if it exceeded 10, they were required to recognize
and modularize subfunctions or redesign the software. The only
situation where the limit of 10 seemed unreasonable and an
iexception allowed, is in a large CASE statement where a number of
{independent blocks follow a selection function. (reference
iFigure III-8 for an example of a CASE statement graph)

.

Figure III-3
Control Graph with

Complexity 4

Figure III-4
Control Graph with

Complexity 5

Figure III-5
Control Graph with

Complexity 5

Figure III-6
Control Graph with

Complexity 5

Figure III-7
Control Graph with

Complexity 5

Figure III-8
Control Graph with

Complexity 6

Page 11

Figure III-9 Figure III-IO
Control Graph with Control Graph with
Complexity 6 Complexity 7

Figure III-ll
Control Graph with

Complexity 9

Figure III-12
Control Graph with
Complexity 12

Page 12

V-A7

Figure III-13 Control Graph with Complexity 47

Page 13

IV. SIMPLIFICATION

Since the calculation of e - n + 2 is error-prone and tedious,
alternative methods of calculating complexity are presented. The
results are presented without proof. The interested reader is
referred to [MCCA] for proofs.

The first simplification allows the calculation of v by counting
"splitting nodes" in the graph. A splitting node has more than
one outcome and is associated with some conditional in the source
program. A splitting node in the control graph is illustrated in
Figure IV-1.

Figure IV-1 Splitting Node

In FORTRAN a splitting node would be associated with an IF,
conditional GOTO, computed GOTO, or DO statement. If S is the
number of splitting nodes in a graph, then v = S + 1. For
example, in Figure IV-2 the splitting nodes are (a), (b) , (c)

,

and (d) , so v=4+l

.

Since each one of the splitting nodes in the graph is associated
with some predicate or condition in the program, the expression v
= S + 1 can be calculated by simply counting conditions in the
source program. In fact, the number of conditions is a better
complexity indicator than the number of predicates since a
compound predicate can have more than one condition, e.g.:

IF cl OR c2 THEN bl ELSE b2

Since there are at least two ways the predicate can be true, the
statement is modeled in Figure IV-3.

Notice that the complexity of the graph and the statement are
both three. Notice, also, that the following statement is

equivalent and also has complexity three.

IF cl THEN bl
ELSE IF c2 THEN bl

ELSE b2

Page 14

Figure IV-2 Control Graph G

Figure IV-3 IF-THEN-ELSE Control Graph

If a program contains an n-way predicate, such as a CASE
statement with n cases, the n-way predicate contributes n - 1 to
the count of S. For example, in Figure IV-4 the CASE predicate
(a) has three outcomes so it contributes two to S. This gives us
V = 2 + 1. Notice that a CASE statement with n cases can be
simulated with n - 1 nested IF-THEN-ELSE statements, which again
produce the same complexity.

Page 15

A second simplification allows the calculation of e - n + 2 by
counting regions in the control graph. It uses Euler's formula:

If G is a connected plane graph (a graph with
no edges crossing) with n vertices, e edges,
and r regions, then n - e + r = 2.

Figure IV-4 Case Control Graph

By changing the order of the terms, we get r=e-n+2. So if
the graph is planar, the calculation of complexity reduces to
counting regions as illustrated in Figure IV-5.

Figure IV-5 Plane graph

Page 16

PART 2. TESTING METHODOLOGY

V. THE STRUCTURED TESTING CRITERIA

The criteria that must be satisfied to complete the structured
testing technique for a program with complexity v is:

1. Every outcome of each decision must be executed at least
once, and

2. At least V distinct paths must be executed.

It is important to understand that this is purely a criterion
that measures the quality of the testing and not a procedure to
identify test cases. In other words, the criteria above are a
measure of the completeness of the testing that a programmer must
satisfy. The criteria do not indicate how to arrive at the test
data - we will discuss such a procedure in the Section VI.

For example, a program of complexity five has the property that
no set of four test paths will suffice (even if there are, for
example, 39 distinct tests that concentrate on only these four
paths) . The Theorem in Section II establishes that in the case
where only four paths have been tested, there must be,
independent of the programming language or the data within the
program, at least one additional test path that can be executed.
On the other hand, the Theorem in Section II also establishes for
a program of complexity five, that a 6th, 7th, 8th ... path in a
fundamental sense is redundant. That is, a combination of five
basis paths will generate the additional paths.

Notice that most programs with a loop will have an arbitrarily
high number of possible control paths, the testing of which is
unrealizable. The power of the theorem in Section II is that it
establishes a complexity number of v test paths that have two
critical properties:

1. a test set of v paths can be realized (when this is violated.
Section VIII will demonstrate that a program with lesser
complexity will satisfy the same requirement)

.

2. testing beyond v independent paths is redundantly exercising
linear combinations of basis paths.

Several studies have shown that the distribution of run time over
the statements in the program has a peculiar shape. Typically,
50% of the run time within a program is concentrated within only
4% of the code [KNUT] . When the test data is derived from only a

requirements point of view and is not sensitive to the internal
structure of the program, it likewise will spend most of the run

Page 17

time testing a few statements over and over again. The testing
criteria in this paper establishes a level of testing that is

inherently related to the internal complexity of a program's
logic. One of the effects of this is to distribute the test data
over a larger number of basis paths. Often the experience with
the technique is that a lesser volume of testing is found to be
more effective because it forces spreading the test data over
more basis paths.

Operationally, the following experience with this technique has
been observed. If a program''s complexity is small (range 1-5),
then conventional testing techniques usually satisfy the
structured testing criteria. However, as complexity increases,
the experience is that conventional testing techniques will
typically not execute a complete set of basis paths. Explicitly
satisfying the structured testing criteria will in these cases
yield a more rigorous set of test data.

The criteria is illustrated with an example. The FORTRAN program
in Figure V-1 is designed to recognize strings of the form:

(i) A(B/C)*X

A string satisfying (i) has an ' K' followed by zero or more
occurrences of 'B' or 'C' followed by an 'X'. If the string
satisfies (i), the program is supposed to return the parameter
BOOL 'true' and set the parameter COUNT to the total number of
occurrences of 'B' and 'C . If the string does not satisfy (i),
the program is to return the parameter BOOL as 'false'.

Notice that in the program, statements have been numbered to
facilitate drawing the flowgraph. The style used in producing
the graph is a matter of individual taste - the reader may have
to try drawing a few graphs to be comfortable with this
technique.

There are several techniques, such as numbering statements and
highlighting labels that help. Many of the nodes in the graph in
Figure V-1 have one entry and one exit and, therefore, can be
deleted. Also, it helps to label edges coming out of a decision
according to the conditions they represent. The flowgraph in
Figure V-2 employs both these techniques and it is generally
easier to work with than the original.

Page 18

SUBROUTINE SEARCH { STR ING , PTR , BOOL , COUNT)
INTEGER A,B,C,X
INTEGER STRING(80), COUNT, PTR
LOGICAL BOOL
DATA A,B,C,X/"101,"102,"103,"130/
BOOL = .FALSE.
BCOUNT =0
COUNT = 0

1 IF (STRING (PTR) .NE. A) GO TO 40
2 10 CONTINUE
3 PTR = PTR + 1

4 IF (STRING (PTR) .NE. B) GO TO 20
5 BCOUNT = BCOUNT + 1

6 GO TO 10
7 20 CONTINUE
8 IF (STRING (PTR) .NE. C) GO TO 30
9 COUNT = COUNT + BCOUNT + 1

10 BCOUNT = 0

11 GO TO 10
12 30 CONTINUE
13, 14 IF (STRING (PTR) .EQ. X) BOOL = .TRUE.
15 40 RETURN
16 END

Figure V-1 FORTRAN Example Graph

Page 19

v-5

Figure V-2 Flow Graph

The error in the program in Figure V-1 is that BCOUNT should be
added to COUNT after recognizing a B. We will examine some
testing schemes and see how effective they are in detecting this
bug

.

A methodology often used [MILL] requires that

1) all statements must be executed

2) each decision must be executed both ways

Page 20

A typical set of test data that fulfills these criteria is:

tl: # (# denotes any character except A)

t2: ABC'' C denotes any character except X)
t3: ABCX

The program SEARCH executes correctly in each test tl through t3
so the test data fails to detect the error.

Applying the testing criterion discussed in Section V, we need at
least five distinct paths that cover all the edges in order to
test SEARCH. The following set of five will do.

bl : ABCX
b2< #

b3<: ACX
b4:: ABX
b5!: ABC"

Test b4 results in BOOL = 'true' and COUNT =0, so it shows that
the program does not meet the specification.

A few comments about practical experience using this technique
may be in order. One misconception the reader may get is that it
is necessary to have an automated system in order to use this
method. Although an automated system can help, particularly in
seeing the control graphs on a CRT, the main application of this
technique has been by hand. Control graphs are drawn by hand,
and the graph, the complexity v, and the data for the v distinct
paths that are tested are all included as part of the standard
documentation. Experience has shown that having the graphs and
the actual test data proves invaluable later in modification and
maintenance phases because the programmers know exactly which
cases worked previously and they do not have to guess or take it
on faith. Part III of this paper elaborates on the use of the
test data in maintenance.

Often more than one test is performed on a path. The validation
process for a particular path often consists of more than just
exercising it once; all the functional requirements the path
implements should be tested. Also, the programmer should
explicitly look for data values that could produce errors along
the path. This process may result in a large number of distinct
test cases; however, it is critical that within this set of test
cases, there are v distinct paths that cover every edge.

Page 21

VI. IDENTIFYING TEST PATHS: THE BASELINE METHOD

The technique described here gives a specific methodology to
identify a set of control paths and test data to satisfy the
structured testing criteria. The technique, when applied,
results in a set of test data and control paths equal in number
to the cyclomatic complexity of a program. The technique is
currently called the baseline method; it strengthens the
structured testing method because it gives a specific technique
to identify actual test data and test paths.

THE METHOD

The first step is to pick a functional "baseline" path through
the program which represents a legitimate function and not just
an error exit. The selection of this first baseline path is
somewhat arbitrary. The key, however, is to pick a
representative function provided in the program as opposed to an
error path that results in an error message or recovery
procedure. To test the baseline, exercise all the functional
requirements implemented on the baseline. Also look for data
that would produce errors on the baseline.

It is to be realized that this functional baseline path
represents a sequence of decisions taken in a particular way.

The second step is to identify the second path by locating the
first decision in the baseline path and flipping its result while
simultaneously holding the maximum number of the original
baseline decisions the same as on the baseline path. This is
likely to produce a second path which is minimally different from
the baseline path. Apply the same testing process described
above to this path.

The third step is to set back the first decision to the value it
had on the baseline path and identify and flip the second
decision in the baseline path while holding all other decisions
to their baseline values. This, likewise, should produce a third
path which is minimally different than the baseline path. Test
this path.

This procedure continues until one has gone through every
decision and has flipped it from the baseline value while holding
the other decisions to their original baseline values.

Since v= S + 1 if, for example, v=7, there are 6 such decisions
which one flips resulting in 6 paths that differ from the
baseline path; all of which adds up to 7 distinct paths.

Since the selection of the baseline path is somewhat arbitrary,
there is not necessarily "the" right set of test data for a

program. That is, there may be several sets of test data that

Page 22

satisfy the structured testing criteria. The application of this
baseline method will, however, generate a set of test data with
the right properties:

o V distinct independent paths will be generated
o every edge in the program graph will be traversed.

An Example:

The graph G, Figure IV-1, discussed in Section II is used to
illustrate the method. The reader will have to trace through G
to follow the discussion.

Figure VI-1
STEP 1: Choose a Baseline path, path 1. As shown in G by dark
lines, the path A-B-C-B-E-F-G is chosen as the baseline. It is
assumed that this path represents one of the main functions in
the program as opposed to an error path. This initial choice is
somewhat arbitrary; keep in mind that the baseline path ideally
performs the major full function provided in the program. Try to
pick a baseline path that intersects a maximal number of
decisions in the graph.

STEP 2: The first decision to be flipped is A. Path 2 should be
chosen to differ minimally from the baseline - this yields the
path A-D-E-F-G to be tested.

STEP 3: Now flip decision D in path 2 yielding the third path:
A-D-F-G.

Page 23

STEP 4: Since A has been flipped from the baseline, the next
decision to flip is B. This results in the path 4, A-B-E-F-G.

STEP 5: The nodes E, F, and G in the baseline path A-B-C-D-E-F-G
are not decisions. Since A and B have been flipped, the only
decision remaining to reverse is C. This yields the fifth and
last path: A-B-C-G.

Since we have flipped every decision once, this completes the
procedure. Notice that the baseline procedure satisfied the
structured testing criteria. The complexity of G is 5 (v(G) = 11
- 7 + 1) ; we have generated 5 independent paths that have
traversed each edge.

Refer back to the sample FORTRAN program in Section V, Figure
V-1, and its graph which is repeated as Figure VI-2. It is
interesting to apply the baseline method to this program.

Figure VI-2 Flow Graph

Page 24

Assume the path 1-2-3-4-2-3-4-7-8-2-3-4-7-8-12-13-14-15-16, as
shown by dark lines, representing the test data ABCX, is chosen
as the baseline. The baseline procedure then yields paths with
the following test data.

bl: ABCX

b2: # (# denotes any charcter except A)

b3: ACX

b4: ABX

b5: ABC" (denotes any charcter except x)

This is the same test data presented in Section V - here we have
shown how to derive it.

Page 25

VII. INTEGRATION TESTING

In Section II, the notion of complexity was derived from the
cyclomatic number of a graph. The discussion, however, was
limited to graphs with only one component. In this section we
will generalize the approach to cover graphs that have several
components. The application will be to measure design
complexity; specifically, we will quantify the effort required
to perform integration testing of several modules within a design
structure.

Our focus up to this point has been on one module at a time and
the testing application has been at the unit level. A module
will typically be represented in a FORTRAN, PLl, or PASCAL
program as a procedure, function, or the main line code. In
COBOL, a module is typically expressed as a paragraph which is
referenced from several distinct places within the program.

Figure VII-1 is a standard representation of a design where M is
the top level and calls module A and module B. The design in
Figure VII-1 implies the following: M, A, and B are all distinct
modules. They have their own internal specifications and will
have their own unique test data. Modules A and B are called from
M. They, however, may also be called in a different context by
other modules and could be on a program library. Notice that
this is quite different from a situation where A's code and B's
code would be embedded within M.

Figure VII-1 Design Hierarchy

Page 26

Figure VII-2 Graph of Design Hierarchy

Figure VII-2 is a graph which shows the algorithm we might find
"inside" modules M, A, and B. The graph in Figure VII-2 has
three components, M, A, and B - each of the graphs we have
previously discussed had only one component.

We have to add an extra edge to each component in a graph to
satisfy the

,
strong connectivity condition of Theorem 1.

Therefore, the more general expression is v = e - n + 2p; this
expresses the system complexity of a design with several
component graphs as opposed to the more specific v = e - n + 2,
which applies to a single component.

When the number of components is 3 (P=3) , the complexity
calculation yields v = 13 - 13 + 2 * 3. This design complexity
of 6 represents the testing effort required to perform a top down
integration of the three modules M, A, and B. For example, using
a top down integration strategy, the following tests occur:

- One test is required to verify the code within M. Stubs
that simulate the actions of A & B are called to allow
this testing of M.

- Two tests are required to verify A's logic. Each of
these calls on A are driven through M in order to invoke
A. During A^s testing, the stub for B is still in place.

- Three tests are likewise required to verify B's logic.
As above, each of the three calls on B would be driven
"top down" through M.

As the complexity quantification indicated, it is indeed the case
as shown above that six tests are required to integrate the three
modules.

Page 27

Notice that the design complexity in a graph with several
components is equal to the summation of the unit level
complexity. With the example above, the complexity can be
computed as v = v(M) + v(A) + v(B) =1+2+3. For a formal
proof of this, see [MCCA]

.

The application of the design level complexity is different in
nature than the application of unit level complexity. Design
level complexity is not limited in the sense that the unit level
complexity is controlled. The main application of the design
complexity is to quantify the integration effort of a collection
of the modules.

There are occasions, however, when the design level complexity
can be used to make a comparison of the relative complexity of
subsystems within an overall design. This quantitative view of
the subsystems complexity will give a more stable predictor of
several project attributes than the more customarily used lines
of code. For example, if the design level complexity of one
subsystem is 2000, and a second subsystem complexity is 30, there
are several implications - for example, the subsystem testing and
integration are more closely correlated with this design
complexity quantification than the subsystems' physical size in
terms of lines of code.

Page 28

VIII. THE REDUCTION TECHNIQUE

When this methodology is applied to an ongoing project or when an
existing testing practice is analyzed, the usual outcome is that
the actual number of paths tested is less than the cyclOF,; :ic
complexity. The concept behind this methodology is to quantify
and to limit the complexity of a program and then to require the
testing to be at least as thorough as the quantification.

The idea in this section is that if the actual testing does not
meet the cyclomatic complexity, then either the testing can be
improved or the program logic can be simplified.

Let us assume that a program has been written. Its complexity v
has been calculated. The number of distinct paths traversed
during the test phase is ac (actual complexity). If ac is less
than V, one of the following conditions holds:

1. The program contains additional paths that can be tested.

2. The complexity of v can be reduced by v - ac (v - ac
decisions can be removed from the program)

.

3. Portions of the program can be reduced to in-line code
(constant length loops have been used in order to conserve
space)

.

The actual paths that are tested in a program are determined by
the data flow and data conditions at the various decisions.
Because of the data flow, a number of paths may not be realizable
in a given program. The point of this section is that when the
data flow and data conditions are considered, there must be at
least V distinct paths or else the program can indeed be reduced.

Several examples are shown to illustrate case 2, the reduction
technique; it should be noted that, in practice, the most
frequent outcome is case 1 and the existing testing can, in fact,
be improved.

Consider the following program:

J = 1;
IF I < 3 THEN 1=2

ELSE J = 14;
IF (I + J) < 6 THEN OUTPUT (I, J);

The complexity is 3 and the control graph is shown in Figure
VIII-1.

Page 29

Figure VIII-1 Program Control Graph

It is clear that ac = 2 since the only realizable paths on the
graph are TT, FF. That is, one path where I _< 3 is true and (I +

J) _< 6 is also true, and a second path where both conditions are
false.

Since there are no additional paths to test, and there are no
constant length loops, the program can be reduced to complexity
2:

J = 1

IF I < 3 THEN
BEGIN
1 = 2

OUTPUT (I , J)

;

END
ELSE

J = 14;

As a second example, we will use the FORTRAN program in Section
V. Let us assume that the tests used are:

(# denotes any character except A)

A'^ C denotes any character except X)

ABCBCX

Page 30

Recall that these tests satisfy the C2 testing criterion that
each decision outcome is executed at least once, but we have ac =

3 whereas v = 5. Now, if we believe that the tester really
cannot find any additional tests, then the program can be reduced
to complexity 3. In fact, if the tester insists that no more
paths exist, a programmer must admit that the program in Figure
VII-2 containing these three paths will suffice.

SUBROUTINE SEARCH (STRING, PTR, BOOL, COUNT)
INTEGER A, B, C, X
INTEGER STRING (80) , COUNT, PTR
LOGICAL BOOL
DATA A, B, C, X /"lOl", "102", "103", "130"/
BOOL = .FALSE.
COUNT = 0

IF (STRING (PTR) .NE. A) GO TO 40
PTR = PTR +1
IF (STRING (PTR) .NE. B) GO TO 40
COUNT = 4

BOOL = .TRUE.
40 RETURN

- END

Figure VI I 1-2 FORTRAN Program

The point here is not that the program in Figure VI3I-2 is the
desired one, but rather that the testing process can, and should,
be improved.

A frequent error in testing strategy is to test only the expected
data and overlook testing the error conditions. The third
example illustrates this with the program SEARCH, in a case where
test data checks only the expected conditions.

ABCBBCBBX
AX
ACCX

Once again, if the programmer claims that these are the only
paths, the program can be reduced to the following complexity 3

code

:

Page 31

SUBROUTINE SEARCH (STRING, PTR, BOOL, COUNT)
INTEGER A, B, C, X
INTEGER STRING (80) , COUNT, PTR
LOGICAL BOOL
DATA A, B, C, X /"lOl", "102", "103", "130"/
BOOL = .TRUE.
COUNT = -1

20 PTR = PTR + 1

COUNT = COUNT + 1

IF ((STRING(PTR) .EQ. B) OR (STRING (PTR) .EQ. C)) GO TO 20
RETURN
END

Figure VIII-3 FORTRAN Program Revised

The one case where it may in fact be impossible to find v
distinct paths is the situation where the programmer increases
complexity to conserve space. For example, if the program
contains a fixed-length loop, where the increment and limits are
constant and are not modified by the body, then a loop that
iterates n times is equivalent to n in-line copies of the body.
For instance, the following code:

DO 10 I = 1,3
10 A(I) = I

is equivalent to

A(l) = 1

A(2) = 2

A(3) = 3

which has complexity 1.

In summary, the cyclomatic complexity v of a program can be
thought of as specification for testing the paths. If a given
program does not have at least v distinct tested paths, then
either the testing is incomplete or there is excessive logic that
can be removed. The guideline is: if there is any logic that is

untestable, then that logic is removable.

For large systems and certain applications, it is recognized that
this objective may be very difficult and not practical to attain.
Some cases in which reduction may not be possible are:

- defensive programming
- hardware mistrust
- fault tolerant programming

Page 32

Nonetheless, every effort should be made to accomplish this goal.

Page 33

Part 3. Maintenance Methodology

IX. ESSENTIAL COMPLEXITY

An interesting question associated with a program's complexity is
quantifying how well-structured a program is. That is, how do we
quantify the degree to which a program has been written using
only the standard structured control flow constructs in Figure
IX-1.

SEQUENCE IF WHILE UNTIL CAS£

o-o <!Q>o

Figure IX-1 Structured Control Constructs

This is an important concern since one of the basic ways to
reduce the complexity of a program where v exceeds 10 is to
recognize and to remove subfunctions from the main control flow
so they become separate subroutines or functions. It turns out
that if a program is structured (i.e., it uses only the
constructs SEQUENCE, UNTIL, WHILE, IF, CASE) , its complexity can
be reduced in a straightforward manner. For
graphs in Figures IX-2 and IX-3, the original
can be reduced to a program of complexity
one-entry-one-exit subgraphs into functions.

example, in the
structured program
1 by making the

The reduction process, more formally, is the process of replacing
proper subgraphs with single-entry and exit nodes. Essential
complexity is defined below in order to reflect how well a
program is structured.

Let denote the reduced graph that results from removing all
proper, single-entry, single-exit subgraphs. Also, leading edges
and trailing edges should be removed so the first node is a

decision node and the last node is a collection node. The
essential complexity of a graph G is defined as ev = v(G').

Although Gl through G3 has v = 5, Figures IX-3 through IX-5, each
of the subgraphs of Gl could be removed whereas G3 cannot be
reduced at all. If the graphs were highly complex, this would be
crucial since Gl could be reduced into subroutines, each with
complexity less that 10, but G3 could not be reduced. Therefore,
a further modularization would require that the G3 program be
thrown out and a new program be designed.

Page 34

Figure IX-3 Reducing Complexity, Example 2

Page 3 5

Figure IX-4 Reducing Complexity, Example 3

Figure IX-5 Non-Reducible Control Graph

An example of reducing complexity by adhering to standard
structured control flow constructs is Figure IX-6. This is a
rewrite of Figure V-1, the string recognition problem. The
complexity of the original program is 6 while the complexity of
the rewrite is 4. The essential complexity of the original
program is 3 while the essential complexity of the rewrite is 2.

Page 36

SUBROUTINE SEARCH (STRING, PTR, BOOL, COUNT)
INTEGER A,B,C,X
INTEGER STRING (80), COUNT, PTR
LOGICAL BOOL
DATA A,B,C,X/"101","102","103'',"130/
COUNT=0
BOOL=. FALSE.

1 IF STR(PTR) .EQ. A
2 THEN PTR = PTR+1
3 WHILE STR(PTR) .EQ. B .OR. STR(PTR) .EQ. C DO
4 C0UNT=C0UNT+1
5 PTR=PTR+1
6 END
7 IF (STR(PTR) .EQ. X)) BOOL=.TRUE.
9 ENDIF
10 40 RETURN

v=4

Figure IX-6 FORTRAN Example Rewriten

Page 37

X. PROGRAM MODIFICATION

X.l The Problem

Several studies have indicated that software maintenance and
modification often takes as much as 70% of the total life-cycle
cost. Much of this maintenance activity involves the
modification and retesting of existing programs, for which very
little methodology exists. This section introduces procedures
for performing modifications and their tests in a more orderly
manner.

X,2 Modifying Functional Statements

If a patch or modification to a program does not change the
control flow structure, the change is typically confined to a
functional node (a node with not more than one output edge) . In
programming terms, this type of change involves modifying
functional statements such as: input, output, and statements
that perform calculations. In contrast to this, a control flow
change involves the modification or insertions of statements such
as GOTO's, IF's, and DO-LOOPS which affect program control.

V = 5

Tests

:

1

.

2.

3.

4.
5,

1 cx
iaecx
i adbecx
i bdbecx
i adbdcx

If, for example, node e is changed, then the minimal
amount of retesting is the subset of test paths that
contain e

:

2 . iaecx
3. iadbecx
4. ibdbecx

Figure X-1 Program Modification

Page 38

The method of verifying a functional statement change follows:

1. identify all structured test paths that contain the changed
node - these test paths should be contained in the Unit
Development Folder or other suitable documentation

2. re-execute all such paths that contain the changed node

The example in Figure X-1 illustrates the procedure.

Notice that the retention of such unit test data forms a local
test bed that can be used to regressively establish that the
change does not destroy the original functions provided.

X.3 Modifying Control Flow

X.3.1 Example of Catastrophic Change

Patch in

b end c

G

Figure X-2 Program Patch

Assume the program in Figure X-2 is being modified. Assume also
that at the node X the programmer wants to have the code (b) and
(c) execute.

Page 39

A common way to achieve this is to patch in the conditional
GOTO's shown as dotted lines that branch to a point before (b)

and then return after node C. This may seem innocent and, in
fact, desirable, since the size of the blocks (b) and (c) could
be large and the programmer may be enthusiastic about the space
being saved. The point usually missed, however, is the
structural change in the program. The two patches only had a
modest effect on the cyclomatic complexity, which changed from 6

to 8. And, in general, cyclomatic complexity changes slowly with
patches to control nodes (v goes up 1 per conditional GOTO, and v
is insensitive to the deletion or addition of functional nodes
like (a)).

The essential complexity has, on the other hand, changed
substantially with the patches: from 1 in the original to 8.

The original program could be decomposed into several independent
functions whereas the modified program could not, and the
functions that were independent are now coupled. The main point
here is that our common maintenance practices often have the
effect of changing a well-structured program into a completely
unstructured program. This can happen by changing only one
source statement without being aware of the dramatic structural
change

.

X,3.2. Re-Test Methodology

The next two sections give the operational steps in performing
maintenance testing. The first step identifies changes that are
virtually untestable; it precludes such changes from being
introduced. The second step actually quantifies the number of
tests to be run given a structural change.

X.3.2.1, Evaluate Essential Complexity

The previous example in Section X.3.1 illustrates the first step
of the maintenance discipline:

"Evaluate the effect of a control flow change on
essential complexity ; do not allow a well-structured
program to severely degrade.

"

X.3.2.2. Re-test Quantification

This leads to the central procedure for maintenance testing.
This procedure quantifies the number of tests required to
validate such a change.

Figure X-3 depicts a situation where Y is the name of the code
being branched into and X is the code being branched from.

Page 40

X

9-
Y

Figure X-3 Branching Graph

The three particular cases arising in practice are shown in
Figure X-4.

In cases where Y is a subgraph with unique entry and exit nodes,
we can compute the cyclomatic complexity v{Y), In such cases,
the number of paths to verify the patch is 2*v(Y) + 1. Cases 1)

and 2) satisfy this since code Y that was branched into has a
single entry and exit.

For example, in Case 2, v(Y) =3, so 7 tests are required to test
the patch. Three paths should be tested through the normal entry
of Y to demonstrate that the branch back into X is not taken.
Three more paths that take the new branch into Y, traverse Y in
three different ways and then return to X. And finally, one last
test has to be made of the path that does not take the new path
but falls into X instead.

In case 3) the block Y does not have a single entry and exit, so
the expression 2*v(Y) + 1 does not apply. This type of
modification should be avoided since it will have a disasterous
effect on the program's structure; the evaluation of essential
complexity cited in X.3.2.1 would have precluded such a change.

Page 41

Figure X-4 Branching Graph Amplified

Page 42

XI. SUMMARY

In this section the operational steps of structured testing are
consolidated and listed below.

DESIGN STAGE

If the algorithm is written in a high level program design
language, limit complexity to seven. Experience has shown
that when the coding takes place, complexity will approach
10.

If the internal specifications of software modules include
the number of conditions that must be tested internally,
limit such conditions to six.

If the above information is not available at the design
phase, break modules you intuitively feel will exceed
complexity 10 into submodules with complexity less than or
equal to 10.

CODING PHASE

Make an explicit flow graph organic to the programming
process.

Calculate the cyclomatic complexity v with any of the three
methods described in Section IV.

When complexity exceeds 10 go back to the design phase and
refine the logic into modules, each with complexity 10 or
less (the exceptions are the CASE statement or project
specific contraints).

UNIT TESTING PHASE

Use the baseline method to identify test paths and data
until the number of such paths satisfies the following
cr i ter ia

:

V independent paths are represented.
Every edge in the flowgraph is covered at least one time.

If the above criteria are not satisfied, then either:

More test paths exist that can be exercised or
The program contains redundant logic that can be removed.

Keep documentation on the paths tested available for the
maintenance phase; typically in a unit development folder.

Page 43

MAINTENANCE PHASE

Classify a proposed change to the code as a funct iona

1

statement change or a control statement change.

In the case of funct iona

1

statement change, regressively
retest all original test paths in the unit development
folder that intersect with changed functional statements.

In the case of a control statement change:

If the essential complexity will substantially increase,
do not make the change; the program will become
unmaintainable. Take a different approach to the
modification.

Where the essential complexity will not increase, quantify
and retest by the 2*v(T)+l rule.

Figure XI-1 illustrates the main steps in the structured testing
technique.

Figure XI-1 Structured Testing Technique

Appendix A Page 1

APPENDIX A
Empirical Evidence

We have been introducing this subject by graph theory, example,
and intuition. Independent empirical data that validates this
approach in the real world would be useful. In software,
empirical evidence typically takes years to collect; data on the
use of V, the cyclomatic complexity, is at this time sparce.
However, the results are encouraging.

In a series of controlled experiments conducted at General
Electric [CURTa] and [CURTb] , v was found to predict the
performance of programmers on comprehension, modification, and
debugging tasks. For example, on the debugging task, programmers
were asked to locate and correct a single error in each of three
programs. A statistically significant correlation was found
between the complexity of the programs, as measured by v, and the
time required to locate and correct the bugs. V, in fact, was a

considerably better predictor of debugging time than was the
number of lines of code.

A comparison of the programs [BASI] produced by disciplined
teams, conventional teams, and individuals was done in 1979. The
participants in this experiment consisted of advanced
undergraduate and graduate students at the University of
Maryland. Their task was to design and implement a relatively
simple compiler. The entire project required approximately two
staff-months of effort and resulted in systems averaging about
1200 lines of code. The disciplined teams were required to use a

set of state-of-the-art techniques such as top down design,
walkthroughs, and chief programmer team organization. The
conventional teams and individuals were given no such requirement
and, in fact, had received no formal training in these
techniques. The software produced by the disciplined teams was
completed with less effort and with fewer errors than that
produced by the conventional teams and individuals; the program
modules were less complex as measured by v. Thus, the
disciplined methodology in this study led to more reliable, less
complex software.

Henry, Kafura, and Harris [HENR] reported empirical error data
collected on the UNIX operating system. The authors obtained a
list of errors from the UNIX User''s Group and performed
correlations on three metrics. The cyclomatic complexity v was
the most closely related to errors of the three - the correlation
between v and number of errors was .96.

Walsh [WALS] collected data on the number of software errors
detected during the development phase of the AEGIS Naval Weapon
System. The system contained a total of 276 modules,
approximately half of which had a v of less than 10 and half a v

of 10 or greater. The average error rate for modules with a

Appendix A Page 2

complexity of less than 10 was 4.6 per 100 source statements
while the corresponding error rate for the more complex modules
was 5.6. As Walsh pointed out, one would expect a similar
pattern for undetected errors as well. It would be expected that
fewer errors should appear for the less complex modules during
the maintenance phase.

Myers [MYER] calculated v for the programs contained in the
classic text by Kernigan and Plauger [KERN] . For every case in
which an improved program was suggested, this improvement
resulted in a lower value of v. Myers describes one interesting
case in which Kernigan and Plauger suggested two simplified
versions of a program which has a v of 16. The two improvements
were done and Myers found that both had a v of 10.

In a recently-completed study [SHEP] , the performance of
programmers in constructing programs from various specification
formats was examined. An automated data collection system
recorded the complete sequence of events involved in constructing
and debugging each program. An analysis of the error data
revealed that the major source of difficulty was related to the
control flow and not to such factors as the sheer number of
statements or variables. The most difficult program had the most
complex decision structure while a considerably easier program
performed extremely complex arithmetic calculations but had a
simpler decision structure. Thus, v can be used to measure a
truly difficult aspect of programming. A similar result was also
reported by Curtis, Sheppard, and Milliman [CURTa]

.

Not only does v have a solid foundation in mathematics, but the
studies cited illustrate that it predicts the difficulty
experienced by programmers in working with software, the number
of errors detected in program modules, and it conforms to
subjective judgments of complexity.

Appendix B Page 1

APPENDIX B

A FORTRAN Example

An example is given to illustrate the structured testing
technique. It is virtually impossible to choose an example that
would interest everybody. It seems that the best choice is a
program that plays a game with which hopefully, many people are
familiar. Blackjack. We will give an informal specification of
the game, show a design of a Blackjack playing system, and
finally concentrate on one of the modules and apply the
structured testing process to it.

The rules of Blackjack are somewhat parochial. Even if you are
an expert, read the following specification because the rules may
differ from your experience.

BLACKJACK

The program, as the dealer, deals two cards to itself and two
cards to the player. The player's two cards are shown face up,
while only one of the dealer's cards is shown. Both the dealer
and the player may draw additional cards, a hit. The player's
goal is to reach 21 or less, but be closer to 21 than the
dealer's hand - in which case, the player wins. Ties go to the
dealer. If the player's or the dealer's hand totals greater than
21, the hand is busted. The King, Queen and the Jack all count
as 10 points. All other cards, except the Ace, count according
to their face value. The Ace counts as 11 unless this causes the
hand to be over 21. In this case, the Ace counts as one.

If both the dealer and the player get Blackjack, which is a

two-card hand totaling 21, neither wins; it is a push.
Blackjack beats all other hands - if the player has Blackjack, he
wins "automatically" before the dealer has a chance to take a

hit. The Player can also win automatically by having five cards
without busting. The player may take any number of hits - as
long as the hand is not a bust. The dealer must hit while the
hand is less than or equal to 16; at 17, the dealer must stand.

The program checks the player for Blackjack; 'hits' the player;
checks the dealer for Blackjack; 'hits' the dealer. The
protocol to receive a card is a hit and to stop where you are is
a stand. The program periodically shuffles and asks for a cut of
the deck. When queried by the program, type a "1" if the answer
is yes, and "0" if the answer is no.

DESIGN

The design hierarchy for the Blackjack system we will be using is

shown in the Figure B-1. The top module, BLACKJACK, first calls
subroutine SETUP that initializes the deck. It then calls a

Appendix B Page 2

module MIX which shuffles the deck; MIX asks the player to cut
the deck . The third module called is HAND which contains the
logic for a one-hand session of Blackjack, HAND, in turn, calls
a subroutine, HIT, which determines the next card in the deck and
handles the Ace which can have two values. A typical use of the
system is that Blackjack is called and calls SETUP one time,
calls MIX for an initial shuffle; then calls HAND for a
Blackjack session. At the end of one Blackjack hand, the player
Yi 5 the option to play again. If so, several calls on HAND are
made as shown by the inner loop on the hierarchy chart figure.
The outer loop represents MIX being periodically called when the
end of the deck is approaching. Our interest in this example is
the module HAND. The code for the other modules is included at
the end of this section for completeness but need not be focused
on for this exercise. We will assume the other modules are
working correctly in this exercise and focus on the testing of
the logic within HAND.

The specification for Blackjack that we use follows:

Figure B-1 Blackjack Specification

SUBROUTINE "HAND"

We will introduce the logic within HAND in pieces in order to
make it understandable.

At several points within HAND, there are calls on subroutine HIT
- the code follows.

Appendix B Page 3

ITS Q C**
] 76 • 0 C* *

177

.

0 SUnROtlTI NE HIT (TOTAL, ACES)
17fi

.

0 TNTF'CFR TOTAL, AC F.S

179. 0 INTFCF.R 1 , CARD'^ (5?) , DFBtIG

IBO. 0 COMMON /DKCK/CARDS, I , OKIUIG

181 . n

1B7. 0 IF (DFBUC .to. 1) THEN
183. 9 WRITE(* ,

• {A$) '

)

'

184. 6? READ(* .
• (BN, 12)

•) CARDS (I

)

185. 109 EMDIF
186. 109 c**
187. 109 TOTAL=TOTAL+CARDS (I

)

188. 129 IF (CARDS(I) .EO. 11) THEN
189. 148 ACES»ACES+1
190. 154 ENDIF
191 . 154 1=1 + 1

19?. 167 IF ((TOTAL .GT. 21) .AND. (ACES
193. 178 TOTAL>=TOTAL-10
194. 184 ACES-ACES-l
195. 190 ENDIF
196. 190 c«*

NEXT CARD?'

(ACES .GE. 1)) THEN

The parameters passed to HIT are, the player's or dealer's total
and number of aces. It adds the next card to the total (line
187) . If the total exceeds 21, the program changes the value of
aces on lines 192 through 196.

The first section of subroutine HAND contains several
declarations and initialization.

en. 0 C**
89. 0 C**
90. n C**
91 . 0 SUriROUTINE HAND(WTN)
92. 0 C**
9:1. 0 INTEGER P, D, PACE, DACE, 1,CARIS(62) , DERIJG, COUNT, WIN
94. 0 COMMON /DECK/CARDS, I, DEBUG
95. 0 €•*
9fi. 0 P':^0

97. 3 D=0
9B. 6 PACE=0
99. 9 DACF.=0

100. 1? WTN=0
101

.

15 C** WIN WILL BF 0 IF DEALER WINS.I IF PLAYER WINS. 2 IF
102. 15 CALL HIT(P,PACE)
103. 21 CALL HIT(D, DACE)
104. 27 CALL H1T(P, PACE)
105. 33 CALL HIT(D,DACE)
106. 39 COUNT=0
107. 42 c**
lOR. 42 WPITE(*, (A, 12) •) 'DEALER SHOVJS ',CARDS(I-1)
109. ion 960 FORMAT ('PLAYER = ',12,' NO OF ACES - ',11)
110. lOfl WRITE(* ,960)P, PACE

A PUSH

Appendix B Page 4

The parameter 'WIN' is an output that HAND sets: it is "1" if
the player wins, "0" if the dealer wins, and "2" if it is a tie.
The code above initializes P and D to "0", which represent
respectively the player's and dealer's total. Also PACE and DACE
are initialized to be "0" - they represent , respect ively, the
number of player aces and the number of dealer aces. Lines 102 -

105 deal the first four cards by calling subroutine HIT. The
player gets the first and third card; the dealer gets the second
and fourth. Lines 108 through 110 display the player's total and
dealer's card to the CRT.

The next section of code handles the various Blackjack outcomes.
If the player has Blackjack, lines 111 and 112 will write out the
message and set WIN to "1".

m

.

1 37 IF (P .EG. 21) THEN
112. 142 WmTE(*, • (A) *

) TLAYER HAS BLACKJACK'

113. IRH WIN-1
128. 367 ENDIF
129. 367 C** HANDLE THE BLACKJACK SITUATIONS, CASE WHEN DEALER HAS

1 30. 367 IF(n .EC 21) THEN
1 31

.

37? WRITE(*, (A) ') "DEALER HAS BJ

'

132. 43 1 IF(WIN .EQ. 1) THEN
133. 417 WRITE(*. (A) •

) PUSH'
134. 453 WIN=2
135. 456 GO TO 13

136. 45R ELSE
137. 46n WRITE(*, ' (A)) 'DEALKR AUTOMATICALLY WINS'

13R. 51 1 GO TO 13

139. 51 3 ENDIF
140. 51 3 ELSE
141 . 51 S c** CASE WHERE DEALER DOESN'T HAVE MLACKJACK:

142. 51 5 c** CHECK FOR PLAYER BLACKJACK OR FIVE CARD HAND:

143. 515 IF ((P .EC 21) .OR. (COUNT .GE. 5)) THEN
144. 574 WRITE(* ,' (A) ')' PLAYER AUTOMATICALLY WINS '

145. 576 WIN=1
146 . 579 GO TO 13

147. 5B1 ENDIF
140. 5^1 ENOl F

If the dealer has Blackjack (line 130) , the program checks the
variable WIN. If it is "1", the player also has Blackjack; line
133 writes out the message 'PUSH'. Otherwise, the player does
not have Blackjack and line 137 writes out the message 'DEALER
WINS'. Label 13 is the end of the program HAND. Line 143 deals
with the situation where the dealer does not have Blackjack: if

the player has Blackjack or the player's card count is greater
than or equal to five, the player wins.

Lines 150 - 161 hit the dealer. Label 13 is the end of the
program.

Appendix B Page 5

J50. sni

151 . 605 Q70
15?. 605 1

}

153. 61 0

154. 616
155. 641
156. 646
157. 69B
15B. 701
159. 703
160. 703
161 . 705

WIMTF(* ,970)n
FORMAT (' DF.ALF.P HAS ',1?)

TF(r> .I.r. 16) TIIFN

CALL inT(ri, OACK)
WPITE(* , 970)D
IF (D .GT. 21) THEN

WRITE(*, (A) ') 'DEALER BUSTS - PLAYER WINS*

W1N«=1
GO TO 13

ENDIF
GO TO 12

ENDIF

The logic for hitting the player is on lines 115 - 127 below:

114. 191 ELSE
115.]03 COUNT-?
116. 196 11 WRITE(*, ' (A$) '

) 'HIT?*

117. 2?6 RF-An(*, • (II) '
) K

118. ?58 1F(K .EQ. 1) THEN

119. J63 CALL HIT (P, PACE)

l?o! 269 COLINT=COUNT+l
121* 274 WR1TE(* .960)?, PACE
12?' 303 IF(P .GT. 21) THEN

^23! 30a WRITE(*,' (A)'
)

• PLAYER BUSTS - DEALER WINS'

124'. 363 GO TO 13

125. 365 ENDIF
126. 365 GO TO 11

127. 367 ENDIF

Count is set to be "2" and bumped for every hit (line 120) . If
the player exceeds 21, line 123 writes a player bust message;
the GOTO on line 124 jumps to the exit label.

The entire program is shown below. The only new code is in lines
173 through 174. This code determines the winner and contains
label 13 on the END statement.

Next we will discuss testing the program flow. Its graph is
shown in Figure B-2.

Appendix B

on a ft C* *

oo ft C* •

• •

4

1

p c* •

sunRoirriNE HANn(wTN) P3^e 6
c**

y .» • 0 INTFCFR p n PACF DACF 1 CARi<;f^''^ npniir. roiiMT wtn
94

.

0 COMMON /DECK/CAPDS , I , DEBUG
95 ^ 0 c* *

9<> • f)

07' • 3

OA PACE"«0
DACE«=0

1 no I ^ W T N«0
1 n 1iUJ • J 3 c* * WTN WTT I RF O TF nFfll FD WTMQ 1 TF D! &VFO UTMC T TP & Dftcit

1 no1 IJ if > 1 3 CAT r. HTTfP PACFl
/ i

1 n^ PAT f HTTf P PAPP^
1 AC
1 CiSiA * •

1 AT ^ 0

lOR • ^ 0

1 no 2 OR FORMAT f ' PTJVVFR =r • TO ' MH OP APPC — • Tl^
t 1 A 1 AQ WPTTPf* OftO^P PAPP
111ill* i .1 / TP fP PO 01 \ TMPM
110X a£ • 1 AO WPfTPf* • I Jy\ * \ 'PT^ VPO llAC nTAP^TAPl^*
111 W TMb 1

Xx4 • X 7 1
PT CP

lie POI1MT«0
1 1 1 1X 1 WPTTP^* • fA<^ ' A 'UT Tf»0 •

117 00ft

118- 758
119- Z w ^ PATT HTTfP PAPP

\

1?0 • Z O 7

1 3 2 • 274 WPTTPf* QAO^D DAPP
12? • 303 TPfP rVT 01 ^ THPM
123 • 308 fvniiLl « l"^ / fLiATLK HU5T5 — DEALER WINS
1 74

.

363
125

.

365
126. 365 no TO 1

1

127 • 3ft7 ENDIF
126 • 367 ENDI

F

190 367 C* * firtW uijCi I n L o L-Au i\j nciv 3 1 I u/\ 1 i UNo , t-Ab t. WHEN UCALER HAS B LACKjACK

;

1 ^n TP^n PO Ol \ TTIPM

1 31 •
^70 UPTTPf* •fA**nPAfirO U&C DT*

132. 4)1 TP/ WTTsI PO 1 ^ TUPH
11^ 117 LJP TTP t * * (k \ * \ * DI1C1J>WKl 1 t V » lA/ / PUbH
1 ^4 •t 3 J UT MkO
135

.

456 no TO 1 T11.^ A3
136

.

4SA PT CP
J 37

,

460 wuiir. (a lA/ ^ Uc.Ai .r.K AU i UMAT ICALLY W I NS
1 3R. 51 1 CO TO 1 3
1 ')0 3) 3 ITUA T P
1 ^A 3 1 J ELSK
14 1 3 1 ' \. PACE* LJUCDE* r\r & T IT D rv^ ircfci*^ utii rc riT noi^ tn/^i/'^_Ar>r Hnr. Hp. Ut,AL,t.K IXJr.r«N T rlAvr. IiLACKJACK

:

« • 3 1 3 cnr-CK rUK ruA y r, r H LAC KJACrv OK rl Vr. CAR D HAND

:

1 Al 3 13 Ir IIH .tt'- 21 J .OR. i COUNT . GE . 5)) THEN
144

.

3 Z H WRlit-l , lAJ ; PLAYLH AUTOMATICALLY WINS
245

.

576 W I N=l
146

.

579 GO TO 2 3

147. 5ftl ENDT F
24n. 58

1

F.NDl F
249

.

5R\ C* *

1 5n. 5P

1

WPTTP/* Q7f1^n

152 . 605 Q70 PODMft'T/*nFArpD tIfVC •
r \.JT\r\/\ I \ Ur.A Li r.K llAr* ^A/f

1 <^ 0 Dl) 1 J / Ir(D .LF. . 1*^) TMhN
1 3 J • 1. 1 nD 1 U CALL 11 1 T (P , 1 jACh)

1 •
£ 1 £ WP ITE (

" , 970)

D

1 3 3 « t>4 J IF (D . GT . 21) THEN
1 CA1 30 • WRITE (

* #
* (A

)
•

)
' DEALER BUSTS - PLAYER WINS *

1 S7A3'* WIN" 1

1 56 • 70t \jU 1 U 1 J
159. 701 E>r«ui r

260. 7m PO TO 1

O

1 &1 f '
' 3 ENDI F

Ave* 7nc
lit 1 ' "3 a 0 A FORMATl PLAYkR » »I2, DF.ALER » ,12)
1m One/1 13 WHlTEl .980) F.U
165 • 733 IF(P .GT. D) THKN
166 • 738 WRITE(*, ' (A) ') 'PLAYER WINS'
167 • 775 WIN-1
166. 778 ELSE
107 •

00 A/oO WRITE(*, * (A) '

) 'DEAL£R WINS'
J70. 81 7 ENDIF
171. 817
172. 81 7

17p. 817 c«»
174. 817 13 END

Appendix B Page 7

Figure B-2 Blackjack Graph

We will next step through the structured testing process
test-by-test. The first step is to establish a baseline test. A
representative flow through the program could be the data shown
in the Figure B-3 where the player takes a hit; the dealer takes
a hit; and the dealer wins. This baseline path is shown in
Figure B-3 with Test 1 as a darkened path.

Test 1 is the actual output of the computer run. Where it says
"NEXT CARD?", a debug option has been turned on that allows the
testing person to supply the next card in order to select
particular paths. This debugging data is indented to the right.
Test 1 conforms to the blackjack specification and shows no
errors.

Appendix B Page 8

NEXT CAR0710
NEXT CAR0710
NEXT CARD75
NEXT CARD74

DEALER SHOWS 4

PLAYER = 15 NO OF ACES - 0

HIT?1
NEXT CARD74

PLAYER = 19 NO OF ACES - 0

HIT70
DEALER HAS 14

NEXT CARD76
DEALER HAS 20

PLAYER = 19 DEALER = 20

DEALER WINS

Figure B-3 Test 1

Using the baseline method to select the second path, we must flip
the first decision (p = 21) , This results in the data and path
shown in Figure B-4 with hash marks. No error results.

NEXT CARD710
NEXT CARD710
NEXT CARD711
NEXT CARD76

DEALER SHOWS 6

PLAYER = 21 NO OF ACES -

PLAYER HAS BLACKJACK
PLAYER AUTOMATICALLY WINS

Figure B-4 Test 2

Appendix B Page 9

Test 3 is performed by flipping the second decision in the
baseline path and comming back to the baseline. This means that
the player would not take a hit. The test data in Figure B-5
realizes this path and shows no errors:

NEXT CARD710
NEXT CARD710
NEXT CARD78
NEXT CARD75

DEALER SHOWS 10

PLAYER = 18 NO OF ACES -

HIT?!3
DEALER HAS 15

NEXT CARD75
DEALER HAS 20

PLAYER = 18 DEALER = 20
DEALER WINS

0

Figure B-5 Test 3

Test 4 is done by flipping the third decision in the baseline
(P>21) . This tests busting the player. This path and test data
are shown in Figure B-6; no error is found.

NEXT CARD710
NEXT CARD79
NEXT CARD77
NEXT CARD710

DEALER SHOWS 10

PLAYER = 17 NO OF ACES - 0

HIT71
NEXT CARD76

PLAYER = 23 NO OF ACES - 0

PLAYER BUSTS - DEALER WINS

Figure B-6 Test 4

Appendix B Page 10

Test 5 is to flip the fourth decision (D = 21) . To do this from
the baseline path results in the test path and data in Figure
B-7. It conforms to the specification - no error is found.

DEALER
PLAYER
HIT?1

PLAYER
HIT?0
DEALER
DEALER

NEXT CARD710
NEXT CARD710
NEXT CARD74
NEXT CARD711

SHOWS 11
= 14 NO OF ACES - 0

NEXT CARD??
= 21 NO OF ACES - 0

HAS BJ
AUTOMATICALLY WINS

Figure B-7 Test 5

Test 6 we get by flipping the 5th decision in the baseline. We
must have the player equal to 21 after a hit, the test path is
shown in Figure B-8. An error is found - the player
automatically wins with 3-card 21 before the dealer has a chance
to hit.

DEALER
PLAYER
HIT?1

PLAYER
HIT70
PLAYER

SHOWS
= 16

NEXT
NEXT
NEXT
NEXT

NO

CARD710
CARD77
CARD76
CARD710

- 10
OF ACES -

NEXT CARD75
= 21 NO OF ACES - 0

AUTOMATICALLY WINS

Figure B-8 Test 6

Appendix B Page 11

Test 7 is realized by flipping
the baseline. The path and
show no error.

T

sixth decision (COUNT >= 5) in
I are shown in Figure B-9 which

NEXT CARD?6
NEXT CARD710
NEXT CARD74
NEXT CARD710

DEALER SHOWS 10
PLAYER =9 NO OF ACES - (9

HIT71
NEXT CARD74

PLAYER = 13 NO OF ACES - 0

HIT71
NEXT CARD72

PLAYER = 15 NO OF ACES - 0

HIT71
NEXT CARD711

PLAYER = 16 NO OF ACES - 0

HIT70
PLAYER AUTOMATICALLY WINS

Figure B-9 Test 7

Test 8 is encountered by flipping the seventh decision which
implies the dealer will not take a hit. The path and data are
shown in Figure B-10 which conforms to the blackjack
specification.

NEXT CARD710
NEXT CARD710
NEXT CARD76
NEXT CARD710

DEALER SHOWS 10

PLAYER = 16 NO OF ACES - ^

HIT71
NEXT CARD74

20 NO OF ACES - 0PLAYER
HIT70
DEALER HAS 20

PLAYER = 20

DEALER WINS
DEALER = 20

Figure B-10 Test 8

Appendix B Page 12

Flipping the eighth decision, we get Test 9 - the dealer busts.
This test run conforms to the specification.

NEXT CARD710
NEXT CARD710
NEXT CARD73
NEXT CARD?4

DEALER SHOWS 4

PLAYER = 13 NO OF ACES - 0

HIT?1
NEXT CARD?5

PLAYER = 18 NO OF ACES - 0

HIT?(3
DEALER HAS 14

NEXT CARD?8
DEALER HAS 22

DEALER BUSTS - PLAYER WINS

Figure B-11 Test 9

Test 10 is arrived at by flipping the ninth decision in the
baseline which means we finally let the player win. The run in

Figure B-12 conforms to the specification.

NEXT CARD710
NEXT CARD?10
NEXT CARD?3
NEXT CARD76

DEALER SHOWS 6

PLAYER = 13 NO OF ACES
HIT?1

NEXT CARD??
20 NO OF ACES

- 0

- 0PLAYER
HIT?0
DEALER HAS 16

NEXT CARD73
DEALER HAS 19

PLAYER = 20 DEALER = 19

PLAYER WINS

Figure B-12 Test 10

Appendix B Page 13

We have flipped every decision on the baseline and have 10 tests.
Since the complexity is 11, there must be another decision to
flip (WIN = 1) . We do so and generate the 11th and final test
shown in Figure B-13:

DEALER
PLAYER
PLAYER
DEALER

NEXT
NEXT
NEXT
NEXT

SHOWS ---
= 21 NO
HAS
HAS

BLACKJACK
BJ
--PUSH

CARD710
CARD710
CARD711
CARD711

- 11

OF ACES -

Figure B-13 Test 11

Observations

A few comments about this error and the difficulty of finding it
are in order. One common approach to testing is to use, as a
testing criterion, the rule that every statement be exercised at
least one time. If we use this testing criterion, the following
tests would satisfy it: Test 1, Test 2, Test 4, Test 5, Test 9,
Test 10, and Test 11. Notice that the above sets of tests do,
indeed, exercise every statement in the FORTRAN program at least
one time and unfortunately do not detect the error.

Another more rigorous testing criterion sometimes used is to
require that every edge of the flowgraph be traversed at least
one time. The following set of tests satisfy this criteria:
Test 1, Test 2, Test 4, Test 5, Test 7, Test 9, Test 10, Test 11.
Notice that the above set of tests do indeed cover every edge of
the graph one time but unfortunately the error would not be
detected

.

With this example, the structured testing criteria imposed
additional tests beyond every statement and every edge; this is
typical. The structured testing criteria will guarantee
satisfying the weaker criteria and typically produces several
additional tests. Notice in this particular example, the
structured testing technique forced a combination of edges that
worked properly by themselves but not when taken in combination.

Appendix B Page 14

It is interesting to hypothesize how effective functional testing
would turn out in this case compared to the structured testing
technique we have described. This particular system is
operational and has been field tested for several weeks. Several
people were asked to use the system; they were introduced to the
Blackjack game as an experimental system that is undergoing a
field-type test. They were given a copy of the specification and
told how to interact with the computerized game. At this point,
139 games have been played (the computer won 82; the player won
57) . Several comments have been made about the readability of
the messages and some human factor considerations. Nobody, as of
this date, has reported the error found in Test 6.

Page R-1

REFERENCES

[BASI] Basli, V.R. and Reiter, R.W. "Evaluating Automatable
Measures of Software Development", Workshop on Quantitative
Software Models , New York: IEEE, 197^^;

[BERG] Berge, C. Graphs and Hypergraphs . Amsterdam, The
Netherlands: Nor tF-Holland , 1973.

[CHAP] Chapin, N., "A Measure of Software Complexity," AFIPS
Conference Proceedings, NCC, Vol. 48, 1979, pp. 995-1002.

[CHEN] Chen, E.T., "Program Complexity and Programmer Produc-
tivity", Proceedings of Computer Software and Applications
Conference , 1977, pp. 142"^"4T;

[CURTa] Curtis, B., Sheppard, S.B., & Milliman, P. "Third time
Charm: Stronger Prediction of Programmer Performance by
Software Complexity Metrics", Proceedings of the Fourth
Internationa 1 Conference on Software Engineer ing , New York:
IEEE, 1979.

[CURTb] Curtis, B., Sheppard, S.B., Milliman, P., Borst, M.A., &

Love, T. "Predicting Performance on Software Maintenance
Tasks with the Halstead and McCabe metrics"

,

IEEE
Transactions on Software Engineer ing , 1979, 5, pp. 95-104.

[GILB] Gilb, T. , Software Metr ics , Winthrop Publishers, Inc.,
Cambridge, MA, 1977.

[HALS] Halstead, M.H., Elements of Software Science, Elsevier
North Holland, New York, 1977.

[HENR] Henry, S., Kafura, D. , & Harris, K. "On the Relationships
Among Three Software Metrics", 1981 ACM Workshop/ Symposium
on Measurement and Evaluation of Software Quality , MarcH

[JELI] Jelinski, Z., & Moranda, P.B., Metr ics of Software
Quality , McDonnell Douglas Astronautics Co. , Report
MDC-G7517, Ad-A077896, August 1979.

[KOLE] Kolence, K.W., "Software Physics and Computer Performance
Measurement," Proceed ings of the ACM 1972 Annual Conf reence ,

pp. 1024-1040":

[KERN] Kernighan, B.W, & Plauger, P.J., The Elements of
Programming Style , New Jersey: Bell Telephone
Laboratories, 1974.

Page R-2

[KNUT] Knuth, D.E. "An Empirical Study of FORTRAN Programs",
Software Practice and Experience , April-June 1971,
pp. 105-133.

[LEGA] Legard, H,& Marcotty, M. "A Geneology of Control
Structures", CACM , 18, pp. 629-639, Nov. 1975.

[MCAL] McCall, J. A., et al.. Factors in Software Quality ,

RADC-TR-77-369, Vol. I, II, III (AD-A049-014 , -015, -055),
General Electric Co., Sunnyvale, CA, July 1977.

[MCCA] McCabe, T.J. "A Complexity Measure", IEEE Trans. on
Software Engineering , SE-2 No. 4, pp. 308-320, Dec. 1976.

[MILL] Miller, E.F. "Program Testing: Art Meets Theory,"
Computer, 10, No. 7, pp. 42-51, July 1977.

[MOHA] Mohanty, S.N. & Adamowicz, "Proposed Measures for the
Evaluation of Software," Proceedings of Symposium on
Computer Software Engineering , N. Y. , April 1976 , pp.
485-497.

[MYER] Myers, G.J. "An Extension to the Cyclomatic Measure of
Program Complexity", SIGPLAN Notices , 1977.

[PAIG] Paige, M. "An Analytical Approach to Software Testing,"
Proceedings COMPSAC 78, Chicago, 1978, IEEE Computer
Society, New York, pp. 527-532.

[SHEP] Sheppard, S.B. and Kruesi, E. "The Effects of the
Symbology and Spatial Arrangement of Software Specifications
in a Coding Task", Technical Report TR-81-388200-3 .

Arlington, VA: General Electric Company, 1981.

[WALS] Walsh, T.J. "A Software Reliability Study Using a
Complexity Measure", In Proceedings of the National Computer
Conference. New York: AFIPS, 1979.

NBS-n4A (REV. 2-8C)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA

1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date

SHEET (See instructions) NBS SP 500-99 December 1982
4. TITLE AND SUBTITLE

Ccmputer Science and Technology:
Structured Testing: A Software Testing Methodology Using the Cyclomatic
Complexity Metri

c

5. AUTHOR(S)

Thomas J. McCabe

6. PERFORMING ORGANIZATION (If joint or other tlian NBS. see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS ^^^Cabe & Associ ates . Inc. AE8892

DEPARTMENT OF COMMERCE 5550 Sterrett Place 8. Type of Report & Period covered

WASHINGTON, D.c. 20234 Col umbi a , MD 21044
Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

Patricia Powell

National Bureau of Standards
Room B267, Bldg. 225

Washington, DC 20234

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 82-600651

[3J Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 2Q0-word or less factual sumnnary of most significant infornnation. If (document includes a si gnificant
bi bl iography or literature survey, mention it here)

Various applications of the Structured Testing methodology are
presented. The philosophy of the technique is to avoid programs
that are inherently untestable by first measuring and limiting
program complexity. Part 1 defines and develops a program
complexity measure. Part 2 discusses the complexity measure in
the second phase of the methodology which is used to quantify and
procedura 1 ize the testing process. Part 3 illustrates how to
apply the techniques during maintenance to identify the code that
must be retested after making a modification.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

measures; metric; program complexity; software testing; structured testing

13. AVAILABILITY

^X] Unlimited

I I

For Official Distribution. Do Not Release to NTIS

^X] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

72

15. Price

$5.00

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new pubHcations to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

•i: U.S. GOVERNMENT PRINTING OFFICE : 19B2 O—380-997 (2365)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement

methodology and the basic technology underlying standardization.

Also included from time to lime are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription: domestic

$18; foreign $22.50. Single copy, $5.50 domestic; $6.90 foreign.

NONPERIODICALS

Monographs— Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications— include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and
studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series— Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE; The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AIP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series— Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and

environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at N BS under the sponsorship of other

government agencies.

Voluntary Product Standards— Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from
the National Technical Information Service , Springfield, VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 11717(38 FR 12315, dated May II. 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Service
,
Springfield, VA 22161,

in paper copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Washington, D.C. 20234

Official Business

Penalty for Private Use $300

POSTAGE AND FEES PAID

U S DEPARTMENT OF COMMERCE
COM-215

THIRD CLASS
BULK RATE

		Superintendent of Documents
	2022-04-16T08:11:47-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

