
A11103 DDimi

NArL INST OF STANDARDS & TECH R.I.C. iST

ATioNs Computer Systems
A111 03001 411

Osborne, Wllma M/Software configuration
QC100 .US7 NO.500-161 1989 V19 C.I NIST

(formerly National Bureau of Standards)

Technology

NIST Special Publication 500-161

Software Configuration l\/lanagement:

An Overview

Wilma M. Osborne

QC-

100

.U57

500-161

1989

C.2

NATIONAL msmrrrE of standards &
TECHNOLOGY

Research Monnatioa Center
Gaithersburg, MD 20699

Computer Systems
Technology

NIST Special Publication 500-161

Software Configuration l\/lanagement:

An Overview

Wilma M. Osborne

National Computer Systems Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899

March 1989

NOTE: As of 23 August 1988, the National Bureau of

Standards (NBS) became the National Institute of

Standards and Technology (NIST) when President

Reagan signed into law the Omnibus Trade and
Competitiveness Act.

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

Ernest Ambler, Acting Under Secretary for Technology

National Institute of Standards and Technology

Raymond G. Kammer, Acting Director

Library of Congress Catalog Card Number: 89-600728

National Institute of Standards and Technology Special Publication 500-161
Natl. Inst. Stand. Technol. Spec. Publ. 500-161, 33 pages (March 1989)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1989

For sale by the Superintendent of Documents, U.S. Government Printing Office, Wasfiington, DC 20402

ABSTRACT

Today as software systems become more complex, it is essential
that system components be identifiable, traceable, reuseable, and
maintainable. The more these characteristics are present, the
more likely the end products will satisfy user requirements.
However, in order to produce such products, there must be
consistency in the management and control of software changes.
These efforts are made more difficult by the frequency with which
software changes are requested, approved, and incorporated into
production systems, without the aid of either formalized or
automated change control. Software configuration management
(SCM) provides a discipline for planning and implementing change
control throughout the software lifecycle. While SCM is not an
end in itself, and its use does not assure the success of a

project, it is a powerful tool for providing management with
greater visibility into the software process, thereby enabling
management to make the "right" decisions and to deliver correct
products on time and within budget. This Guide presents an
overview of the software configuration management discipline, and
identifies how SCM helps to improve and control lifecycle
software change management.

KEYWORDS

change; change control; CI; CPCI ; CPM; CSCI ; environment;
libraries; SCM plan; software; software configuration management;
software management; software tools; tools.

i i i

TABLE OF CONTENTS

1.0 BACKGROUND 1
1.1 Introduction 1

1.2 Purpose 2

1.3 Organization 2

1.4 Definition of SCM 2

1.5 The Goals of SCM 3

1.6 Benefits of SCM 4

1.7 Levels of SCM 5

2.0 CHANGE MANAGEMENT AND CONTROL ISSUES 5

2 . 1 Change Management Issues 5

2.2 Control Issues 6

3.0 SOFTWARE CONFIGURATION MANAGEMENT 7

3.1 Configuration Identification 7

3.2 Configuration Control.. 11
3.2.1 Change requests 11
3.2.2 Change evaluation 11
3.2.3 Change approval/disapproval 12
3.2.4 Change implementation 12

3.3 Configuration Status Accounting 12
3.4 Configuration Audits and Reviews 13

4.0 THE ROLE OF SCM TOOLS 14
5.0 USING SCM LIBRARIES 16
6.0 SCM STANDARDS AND GUIDELINES 18
7.0 THE SCM PLAN 2 0

8.0 SUMMARY 22

GLOSSARY 2 3

REFERENCES 2 6

RELATED MATERIAL 27
FIGURES

FIGURE 1 - SW LIFECYCLE PRODUCT ASSURANCE
PROCESSES 4

FIGURE 2 - SCM FUNCTIONS 7

FIGURE 2A- SCM FUNCTIONS AND ACTIVITIES 8

FIGURE 3 - BASIC TOOL SET 14
FIGURE 4 - ADVANCED TOOL SET 15
FIGURE 5 - ON-LINE TOOL SET 15
FIGURE 6 - LIBRARY CONTROL 17
FIGURE 7 - STANDARDS AND GUIDELINES:

WHERE TO LOOK 19

TABLES
TABLE 1 - HIERARCHICAL STRUCTURE OF

CONFIGURATION ITEMS 9

iv

1 . 0 BACKGROUND

The National Computer Systems Laboratory (NCSL) of the National
Institute of Standards and Technology (NIST) , has a responsibility
under Public Law 89-306 (Brooks Act) , as amended by the Computer
Security Act (P.L. 100-235) to promote cost effective selection,
acquisition, and utilization of computer systems within the Federal
Government. NCSL efforts include research, technical assistance,
and the development of standards and guidelines for computer and
related telecommunications systems. The NCSL is developing
software configuration management (SCM) guidance designed to assist
Federal agencies in improving software quality, as well as
controlling the cost of software development and management.

This Guide provides an overview of software configuration
management, a support function dedicated to making both the
technical and managerial software activities more effective. It
addresses the problems associated with managing software changes;
the importance of implementing SCM procedures early ; and the
application of those procedures throughout the software lifecycle.
A brief summary of SCM tools and their applicable functionality is
provided. SCM extends to more than just the code (source,
relocatable, executable) and documentation (e.g., system and
software requirements and design specifications) . It also covers
control files, test data, test suites, support tools, and other
components used to develop and maintain the software product.

1.1 Introduction

Today as software systems become more complex, it is essential that
system components be identifiable, traceable, reusable, and
maintainable. The more these characteristics are present, the more
likely the end products will satisfy user requirements. However,
in order to produce such products, there must be consistency in the
management and control software changes. These efforts are made
more difficult by the frequency with which software changes are
requested, approved, and incorporated into production systems,
without the aid of either formalized or automated change control.
Software configuration management is not an end in itself, and its
use does not assure the success of a project. It is, however, a

powerful tool for providing management with greater visibility into
the software process, thereby enabling management to make the
"right" decisions and to deliver correct products on time and
within budget.

1

1.2 Purpose

The purpose of this Guide is to identify issues that managers
should consider when planning to implement SCM. It is intended to
provide answers to the following questions:

1. What should a manager consider when planning for SCM?

2. What level of control or authority will be required for
the various users under SCM?

3. What are the basic steps in formal SCM?

4. Is it possible to integrate formal SCM with existing
informal project management procedures?

5. What should be considered when determining the
appropriate level of SCM for an organization?

6. What SCM tools are appropriate for a specific
environment?

1.3 Organization

The sections in this Guide are organized as follows:

- 2 describes issues associated with software change.
- 3 describes SCM activities.
- 4 describes SCM benefits.
- 5 describes tool sets for different environments.
- 6 describes the types and function of libraries

typically utilized in SCM.
- 7 describes SCM standards and guidelines.
- 8 describes requirements for an SCM Plan.
- 9 presents a summary.

1.4 Definition of SCM

Software configuration management is the management of software
change. The Institute of Electrical and Electronics Engineers
(IEEE) Guide for Configuration Management Plans (IEEE Std. 1042-
1988) defines SCM as "a formal discipline which provides methods
and tools: to identify the components and baselines of a software
development or maintenance effort, and to control changes to those
components" [1]. The Department of Defense (DOD) MIL-STD-490
states that "Configuration management (CM) is a discipline applying
technical and administrative direction and surveillance to (a)

identify and document the functional and physical characteristics

2

of a configuration item; (b) control changes to those
characteristics; and (c) record and report change processing and
implementation status" [2]. Bryan and Siegel, in Software
Product Assurance, Techniques For Reducing Software Risk, state
that "SCM is a discipline for visibly, traceably, and formally
controlling software evolution" [3].

Increasingly, organizations are recognizing that effective change
control management is a key to assuring that the product
delivered is indeed the product intended and expected [4,5]. SCM
provides a method for logically grouping related components
throughout the various phases of development, from the time a
change is requested, approved, implemented, and tested, until it
is released for production and into maintenance [6,7,8]. It is
simply the use of a common sense approach to the complex problem
of software development and management.

1.5 The Goals of SCM

SCM, like other aspects of product assurance, is a lifecycle
discipline which should begin when the first system related
document is prepared (see fig. 1) . Organizations have typically
considered SCM to be something akin to "bean counting" with
little influence on how well intermediate or final products
satisfy predefined requirements. Today, while there is still an
emphasis on identification of part numbers, etc., SCM is clearly
key to the product assurance program. It serves not only as a
check and balance against the quality assurance process, but as
the last point at which a product is determined ready or not
ready for release. The goals of SCM are similar to those of
product assurance. SCM is, in fact, integral to product
assurance. The goals of SCM are to manage evolutionary changes
to the software system responsively , and to make the entire
software development process both visible and traceable. The
goals of product assurance include not only the management of
product development, but the responsibility for assuring that
high quality, correct, reliable products are produced.

3

Quality Assurance SW Configuration Mgt.

QA: conform to

SW standards

SCIVI: control of

SW changes

V&V: engineering

and test

FIGURE 1. SW LIFECYCLE PRODUCT ASSURANCE PROCESSES

1.6 Benefits of SCM

SCM is needed by anyone involved in, or responsible for, software
development and maintenance. The entire organization benefits
from effective configuration management of the software systems.
Management at all levels needs accurate and timely information to
determine the impact of a proposed change; to be aware of the
status of changes, and to make the right decisions. An effective
SCM program helps to assure persons responsible for developing,
modifying, and managing software, as well as users of the
software, that the correct version and baseline are released for
operations. It also helps to ensure that two or more persons do
not work on the same file at the same time, and keeps team
members aware of what other changes have been made or are being
made to the software.

As software systems grow and become more complex, so does the
task of managing the associated problems of change. And as more
persons are needed to accomplish the tasks, and more procedures
are required to ensure proper coordination and approval, there is
a corresponding need for SCM. Perhaps one of the greatest
advantages provided to management by SCM is the formalized
control over access and change to the systems.

Another benefit of SCM is the formalized structure for
identifying documentation, interfaces, software, and databases to
support all lifecycle phases and disciplines. If SCM is
consistently applied, it reinforces the chosen development and
maintenance methodology that fits the requirements, standards,
policies, and organization and management philosophy [9].
Finally, SCM, through its status accounting functions provides
management and product information concerning the status of
baselines, change control, tests, releases, and audits.

4

1.7 Levels of SCM

The level of formality of a SCM implementation depends on the
structure, resources, and needs of the organization. The key to
effectively managing software change is the exercise of clearly
defined levels of control by both management and technical
personnel. The authority for allocation of resources,
scheduling, software change, release of new baselines, and other
decisions related to the change control should be known and
followed. Depending on the existing environment and procedures,
it may be practical to retain the existing structure making only
those changes that will help to assure effective change control
management. For example, automated SCM tools may be essential to
ensure the level of tracking, traceability , and control required
for air traffic control systems, banking systems, space station
systems, payroll, and other large systems. Such tools may not be
required for small, less critical systems or in a small
organization where SCM is performed by the same person or group
who identifies the need for change, performs and tests the
change, and approves the new baseline. More important is that
persons who will have responsibility for implementing SCM are
involved in the initial planning for SCM, and are not
overburdened with SCM procedures.

2.0 CHANGE MANAGEMENT AND CONTROL ISSUES

2 . 1 Change Management Issues

Anytime it is possible for two persons to simultaneously modify a
software system, there is a change control problem. If someone
changes the code, but not the associated user manuals and
documentation, leaving subsequent users to find out the hard way,
there is a breakdown in the change management. Neither of these
incidents should occur in an environment with effective change
management. Barry Boehm, in Software Economics [5], estimates
the cost of documentation to be 50% of the software development
costs. Numerous studies including those conducted as part of the
NIST software maintenance project [10] have concluded that the
cost of incorrect and obsolete documentation accounts for a
significant portion of the software dollar. Such documentation
can result in improperly functioning software, failed missions,
and lost time. In the case of critical software systems where
such breakdowns in change control could result in loss of life,
an effective change management system is essential. Thus, the
cost of not having adequate software change management and
control is too high. Cost is cited here as one of the primary
issues because that is the bottom line whether the systems in
question support defense, transportation, education, health,
insurance, food production, or any other business. Software
change is an evolutionary process integral to the growth and

5

effectiveness of most systems. Everything that happens to a
software system as it evolves is dependent upon the access or
privilege to change it and the extent that the documentation of
the system reflects the intent, functionality, and use of the
system.

Other change management issues of concern include:

o lack of visibility into what is occurring

o lack of traceability of software changes to
requirements specifications

o ad hoc changes in the absence of impact analysis.

2.2 Control Issues

Everything that is used to produce the end product is to some
extent important. Recognizing that it would be impossible to
control such a large volume of information, it is essential to
identify and assign a name and version/release number to the
requirements and design documents, source code, control language,
tools, and any documentation considered useful to the
development, understanding, and use of the system. A unique
identifier makes it possible to control the various library
versions and baselines. Some examples of what should be
controlled by SCM through the use of version numbers or other
identification include:

o project management plans
o product assurance plan
o software management plan
o requirements specifications
o design plans and documents
o test plans, designs, data, cases, and procedures
o software maintenance plan
o source code, relocatable code, executable code
o common blocks
o prototype (baseline/final version)
o control language
o libraries
o tools
o hardware configuration
o firmware
o other system information as determined.

Prototyping is becoming an increasingly important approach for
software development. Prototyping is a low cost, quick method of
iterating to a solution. It is unnecessary to baseline each
prototype since this would not only constrain flexibility, but
could increase product development costs. However, once the

6

prototype satisfies the user requirements, it is often accepted
as a deliverable and becomes part of the system. Whenever such
decisions are made, whether the prototype is a design document or
a software product, the prototype must be placed under
configuration management.

3.0 SOFTWARE CONFIGURATION MANAGEMENT

The four key SCM functions are configuration identification,
configuration audits and reviews, configuration status
accounting, and configuration control (see figs. 2 & 2A.) . While
each of these functions is important, the configuration
identification of software components is the most critical for
effective SCM.

0 CONFIGURATION IDENTIFICATION

identifies, labels, and captures physical and functional

characteristics of project data

0 CONFIGURATION CONTROL
covers the process by which changes to baseline configurations

are requested

0 CONFIGURATION STATUS ACCOUNTING

covers the recording and reporting status of project configuration

entities

0 CONFIGURATION AUDITS AND REVIEWS

covers verification and validation activities to determine the

extent that the configuration entity reflects the physical and

functional status and content.

FIGURE 2. SCM FUNCTIONS

3.1 Configuration Identification

Configuration Identification activities identify, label, and
capture the physical and functional characteristics of project
configuration entities and baselines (e.g., documentation,
systems, program versions, modules) . The configuration entities

7

0)

<D £

z
o

<

UJ
Q

ntitii

up
ese

ke

on
CO

E o
T3 (/)

o (5 Q.
!f=
w

D) (/3 c
c .9
rdi titi

TO o
o <Do o
s? 03 eai

•D oC
m CD 0)

ro o TO ies

belini

hat
rod

hat ntiti

o. 5 Q)

ro
_i o o

CO
w
H
H
H
>
H
u
<
Q
<

o
H
U
D

S
U
CO

w

o
H

8

are defined in terms of the hierarchical structure of software
elements which comprise the project configuration items and the
software elements which are based on required levels of control.
An example of a hierarchical structure of a configuration item is
shown below.

Software Element is Defined By

Configuration Item Specification

Cor^Donent Desigh. Documentation

Unh. Source Code

Executable Code/Data Electronic Media Chip

TABLE 1. HIERARCHICAL STRUCTURE OF CONFIGURATION ITEMS

Baselines refer to a specification or product: that has been
accepted by the responsible management; that will serve as the
basis for further development; and that can be changed only
through formal change procedures. A baseline represents the
assignment of a unique identifier to each configuration item
(CI) , computer program configuration item (CPCI) , or computer
software configuration item (CSCI) , and the associated entities.
(See glossary for further discussion.) Baselines provide a
means of releasing (internally or externally) each CI, CPCI, or
CSCI from one phase of development to another. The associated
entities include the software designs, source code, relocatable
code, executable code, engineering changes, files used in the
process of executable code, documentation, and tools used to
support software development and maintenance. The baselines are
also used to control these entities during various stages of the
software development process.

The three most commonly used baselines are the functional,
allocated, and product baselines, although an organization may
specify others as appropriate. The functional baseline is
generally referred to as the one approved by the user or customer
after a review of the system/software requirements.

9

The allocated baseline is generally established after the user or
customer reviews the specifications and requirements
documentation. Before the software product can be released, it
must pass both a physical configuration audit and a functional
configuration audit. The product baseline is established after
the user or customer has approved the product specification
following the functional configuration audit. All of these
baselines must be approved by the user or customer in
coordination with the developer or other approval authority.

Baselines should be defined in terms of:

1. The event that creates the baselines.
2. The entities that are controlled.
3. The procedures used to establish and change a baseline.
4. The authority required to approve changes to a

baseline.

Classes of entities that are to be managed include:

1. Configuration items and dependent software elements
to be newly developed. They should be given
unique identification schemes.

2. Configuration items and dependent software elements
to be modified. They should be given
identification schemes compatible with current usage.
Version and revision labeling is an example of
re-identification techniques.

3. Third party software to be identified. It should be
identified in a manner consistent with configuration
items to be incorporated. Vendor proprietary software
should be uniquely identified in a configuration item
to preserve its logical and legal integrity.

4. Support software to be used. This includes support
software used during the development and maintenance of
project configuration items.

SCM procedures should also address such activities as
acquisition, library storage, retrieval, and reproduction of
configuration entities as they relate to configuration
management. Each is described in more detail below.

1. Acquisition. Activities to be considered include:

(a) Identification of vendor/subcontracted software,
reused software, and system software used in
support of development and maintenance activities
(i.e., definition of version/revision schemes).

10

(b) Inclusion of configuration elements into a
controlled library (i.e., entering a unit into a
controlled computer data base)

.

(c) Establishment of project baselines (i.e.,
preparation of version description documentation)

.

(d) Receiving and inspection activities.

2. Library Storage. The SCM procedures should describe
the labeling activities associated with the physical
storage of documentation and magnetic media. Steps
should be taken to guard against the loss of
information due to fire, theft, etc.

3. Retrieval. The SCM procedures should describe the
procedures to retrieve entities from library storage.
These activities should include: verification of
marking and labeling, tracking of data, and security
of proprietary information where applicable.

4. Reproduction. The SCM procedures should describe the
necessary marking and labeling for reproducing and
distributing a configuration item. Activities may
include: version/revision marking, labeling of
documentation and executable software elements,
serialization and altered item marking for executable
code or data embedded on a microchip, and identifica-
tion of physical packaging data.

3.2 Configuration Control

The Configuration Control activities include the process by which
changes to baseline configuration entities are requested,
evaluated, approved, disapproved, and if applicable, implemented.
The SCM procedures should discuss methods of controlling
configuration entities residing in project libraries.

3.2.1 Change requests

SCM procedures should define the specific steps taken to analyze
and evaluate the change request, clarify the meaning of the
request, and resolve the problem described.

3.2.2 Change evaluation

SCM procedures should identify the appropriate individuals or
organization responsible for evaluating the change requests. The
procedures should also discuss the procedures for submission of

11

the evaluation results to the appropriate review board or
individuals for approval/disapproval.

3.2.3 Change approval/disapproval

SCM procedures should identify the individuals or organizations
with the authority to approve change requests. The level of
authority may be predicated upon the degree of system complexity
and impact. However, during the system lifecycle, the approval
authority may change several times. If project review boards are
established to have approval authority, the plan should indicate
for each board: (a) the period it will be in effect, (b) its
membership, (c) its voting and veto powers, and (d) if
applicable, its relationship to other project review boards.

3.2.4 Change implementation

Care must be taken to insure that persons who will have respon-
sibility for implementing SCM are involved in the initial
planning for SCM, and are not overburdened with SCM procedures.
The information associated with implementation of the change
should contain as a minimum the:

(a) referenced change request number
(b) date implemented
(c) date verified
(d) person or organization responsible for verification
(e) person or organization responsible for installing

change
(f) components/units of the CI affected (if applicable)

Additional information related to the change implementation,
such as the identification of the supporting software used to
implement the change, may be included.

3.3 Configuration Status Accounting

Configuration Status Accounting activities are associated with
the recording and reporting of the status of project
configuration entities throughout the system lifecycle. Data
elements to be tracked and reported include the initially
approved configuration of an entity, the status of requested
changes to the entity, and the implementation status of approved
changes. The level of detail required may vary according to the
project or customer's information needs.

The following are examples of the type of questions that should
be addressed:

1. What kind of data elements are to be tracked and
reported?

12

2. How is information about the configuration entities to
be collected, verified, stored, processed and
reported?

3. What types of status accounting reports are to be
generated and how frequently?

4. Who is responsible for the tracking, controlling and
reporting of data?

3.4 Configuration Audits and Reviews

Configuration audits are verification and validation activities
that determine to what extent the configuration entity reflects
its actual physical and functional status and content. The
functional audit is performed on the configuration item after
acceptance tests have been completed. The physical audit of the
configuration item is performed to verify that the final listings
and the final version of the specifications conform to the built
configuration item. Configuration audits and reviews are planned
for any release of a baseline that elevates the level of
authority required to approve changes to the new baseline. Both
the user or customer and others as designated, participate in
the audits and reviews [1,3,4].

The management of reviews and audits should include:

1. Requirements and procedures for conduct of meetings

2. The list of participants, schedules and organizational
responsibilities

3. Documentation which is to be supplied at each review or
audit

4. The process for approval, corrective action, and
follow-up

.

The reviews that have been scheduled or that are required should
be described. The objectives of each review should be defined
and the baseline to be established or transferred should be
listed by its prescribed title, e.g., Product Baseline.

The audits that have been scheduled or that are required should
be defined. Such audits will either verify that the functional
software requirements have been tested successfully as reflected
in the resulting test data or that the physical software is
described in the documentation to be delivered with the software.
Together, these functions help to control the interim, as well as
completed, versions of the software system.

13

4.0 THE ROLE OF SCM TOOLS

There are numerous SCM tools available which have a wide range of
capabilities. Some do little more than version control, while
others keep track of every access, change, and release. Others
can identify when files should be replaced, deleted, or merged,
and can facilitate comparison of versions for differences. Still
others support a methodology that permits linking the physical
change document to the change as it is incorporated in the
system. Many of the SCM tools are bundled as part of the
operating system. A number of these tools can be put into use
after only a few days of training. Some firms provide SCM tools
as part of their support service or maintenance agreements.

One way to classify tools is according to the characteristics of
the products for which they will be used. Another way is to
examine the functions they perform. Finally, tools may be
classified according to how they fit into the software
engineering environment.

There are several classifications of tool sets found in SCM
environments. The three most common are a basic tool set, an
advanced tool set, and an on-line tool set. As indicated by the
figures below, the set depicted in figure 4 is more comprehensive
and provides more capability than the one in figure 3; while the
set depicted in figure 5 provides more capability than the set in
figure 4. The selection of tools used to aid software change
management, however, will depend on the specific environment and
the requirements of the organization.

0 a basic database management system

0 a report generator

0 a means for maintaining separate libraries

o a file system for managing and capturing results

FIGURE 3. BASIC TOOL SET

14

0 items in the basic tool set

0 source code control programs for version control

0 compare programs for verifying changes

0 tools for building executable code

0 documentation/word processing system to

and maintain files

capture

0 change request/authorization system for

change requests in machine readable form

tracking

FIGURE 4. ADVANCED TOOL SET

o generic tools of the advanced tool set integrated

so that they can work from a common database

0 system/software change request/authorization(SCR/SCA)
tracking system that permits generations, reviews, and
approval of changes on-line

o report generators which use common database and handle

on-line queries

FIGURE 5. ON-LINE TOOL SET

15

5.0 USING SCM LIBRARIES

SCM libraries are generally composed of hard copy and software on
machine readable media. The libraries are an integral part of
the software engineering environment. They provide the means for
identifying and labeling baseline entities and for capturing and
tracking the status of changes.

The number and kinds of libraries will vary from project to
project according to variations in the access rights and needs of
their users. However, there are fundamentally three kinds of
libraries for the controlled collection of configuration entities
associated with defined baselines (see fig. 6) . They are:

dynamic library This library is sometimes referred to as the
. "programmers library" used for newly created

or modified software elements. It is used for
developing code and is freely accessible to
the programmer.

controlled library This library is sometimes called the "master
library" and is used for managing current
baselines and controlling changes to them.
This is the library where components of
configuration items that are ready to be
integrated are maintained. Copies may be
made available to programmers and others, but
use of this library must be authorized by a
delegated authority.

static library This library is the "software repository" and
is for general use baselines. This is where
the master copies of the computer program
configuration items are maintained.

16

Promote
Actions

I

Release
Actions

Dynamic Library

Controlled by

Generation

Activity

Controlled Library--[USER]
Controlled by

Affected Operations

I

Impound
Actions

Static Library

Maintained by
Managing Entity

FIGURE 6. LIBRARY CONTROL

17

6.0 SCM STANDARDS AND GUIDELINES

The Department of Defense (DOD) has a number of SCM standards for
the various services; the MIL-STD-490 is the most widely used
[2]. However, DOD Std. 2167A which was published in 1987 and
revised in 1988 [11], provides a data item description (DID) for
SCM functions and activities. The Office of the Secretary of
Defense is currently conducting a survey of SCM guidance, and is
compiling a list of the existing Federal SCM standards and
guidelines with the intent of eliminating redundancy. While
most organizations have and employ some formal or informal change
control procedures, many software managers agree that
comprehensive Federal and industry SCM standards and guidelines
are needed [4]

.

In 1982, the IEEE Computer Society's Standards Board established
a Working Group for the development of a Standard for SCM Plans.
The first standard was published in 1983 (IEEE Std. 828-1983)

.

The Guide for Developing SCM Plans was completed in 1988 (IEEE
Std. 1042-1988) . This Guide contains two key features: SCM plans
for four different environments, and a "Things to Consider"
section after each major discussion throughout the document. The
four SCM plans are based on actual plans used in production
environments. The purpose for including actual plans was to
provide additional guidance for individuals faced with the
responsibility of implementing a SCM program. Areas addressed by
the plans are:

1 - a large software development,
2 - a mission critical software effort,
3 - a software maintenance effort, and
4 - a small product line.

The IEEE Computer Society Standards' policy requires that all
standards be revisited and revised as appropriate every 5 years.
Work on the 828-1983 SCM Standard is underway. The revised SCM
standard should be published in early 1989. An IEEE Tutorial on
SCM published in 1985 provides a comprehensive review of
technical SCM papers and case studies from industry and
government. The Software Engineering Institute conducted a
workshop on software configuration management in 1987. The
proceedings from that workshop may be obtained from the address
listed in figure 7.

18

ORGANIZATION INDEX

1. American National Standards Institute

1430 Broadway

New York, NY 10018

Catalog

2. Electronic Industries Association

2001 Eye St. NW
Washington, DC 20006

Catalog

3. IEEE Computer Society Service Center

445 Hoes Lane

Piscataway, NJ 08854

Catalog

4. National Technical Information Sen/ice

5285 Port Royal Road

Springfield, VA 22161

NIST/FIPS

INDEX

5. Superintendent of Documents

U.S. Government Printing Office

Washington, DC 20402

DOD INDEX

6. Naval Publications and Forms Center

5801 Tabor Avenue

Philadelphia, PA 19120

Individual

DOD Standards

7. International Standards Organization

Case Postale 256, CHI-1211

Geneva 20, Switzerland

Catalog

8. Software Engineering Institute

Carnegie-Mellon University

Pittsburgh, PA 15213

Technical

Reports

FIGURE 7. STANDARDS AND GUIDELINES: WHERE TO LOOK

19

7.0 THE SCM PLAN

The SCM Plan (SCMP) is the blueprint for implementing SCM
effectively. It documents what SCM is to be done, how it is to
be done (including how it fits with the supported activity) , who
is responsible and when it is to happen. In essence, the plan
should address the SCM operational concept over the product
lifecycle; the identification, traceability , control, audit,
review and transfer of the specified baselines; and the SCM
process itself. The plan is a living document which should be
updated to keep current with the product lifecycle phase and the
project management approach. The structure and content of an SCM
Plan may vary, but there are some basic criteria that must be
included. As a minimum, the SCM plan should contain the
following:

Introduction of
Plan

Describes
scope of
terms

.

the plan's purpose,
application, and key

o SCM Management Identifies the responsibilities and
authorities for accomplishing the
planned activities.

o SCM Activities Identifies all project activities
to be performed in applying SCM.

o SCM Schedules Identifies required coordination
of SCM activities with the overall
project schedule.

o SCM Resources Identifies tools, and physical and
human resources required for plan
execution.

o SCM Plan
Maintenance

Identifies how SCM plan information
will be kept current while in use.

o SCMP Appendices Identifies attachments
supplement the SCMP.

which may

20

The Introduction of the plan provides a synopsis of the essential
SCM functions for the project. It contains an overview of the
project SCM activities to be described in the plan. Software
configuration management plans take many different forms. They
range from stand-alone, fully enriched documents to a single
section of another project document (e.g., project plan, software
development plan) that references other sections of the project
document for actual detailed content.

At a minimum, introductory information should address three
topics: the purpose of the plan, the scope, and definition of
key terms and phrases. Terminology utilized should be familiar
to the reading audience and should simplify the discussion of SCM
activities so that those approving, those performing, and those
interfacing with the SCM activities obtain a clear and basic
understanding of what the document offers. The introduction
should be as brief as possible yet provide adequate understanding
without requiring the reader to review the complete set of SCM
planning documentation.

The purpose should provide the following information:

o Where the SCM planning information is located

o Overview description of the program or project

o Identification of other software and/or project data to
be included as part of the plan (e.g., support or test
software)

o Establishment of limitations such as time constraints
that may apply to the SCM plan

o All organizational units which participate in or are
responsible for any SCM activity on this project

o Interface relationships between organization units

o Organizational charts, supplemented by statements of
function and interfaces.

The sections under management should address responsibilities,
activities, schedules, resources, and maintenance of the plan.
The allocation of SCM activities to organizational units should
be concisely described, and for each activity listed in the "SCM
Activities" section, the name of the organization or individual

21

performing this activity should be provided. A matrix that
relates the organization units to the SCM functions, activities,
and tasks can be used to document the SCM responsibilities.

8 . 0 SUMMARY

The larger and more complex the project, the greater the need for
unanticipated, as well as planned changes. Under these
conditions, communications between change requestors, change
implementors , and change managers can often become convoluted and
misinterpreted. The prohibitive cost of software changes made
under these conditions has forced organizations to examine the
software management process for areas that can be improved.
Managing and controlling software change has been identified as
an area in need of improvement. SCM, one of the key components of
product assurance, can help to assure that change occurs in an
orderly and controlled manner, and that the software products
satisfy the stated requirements. When consistently enforced, it
is a tool which management can use to verify that the baselines
of a software development and maintenance effort reflect the
actual status of the system and its associated products.

SCM can effectively control changes to those baselines and help
to assure system integrity and traceability throughout the
software lifecycle by providing a foundation for product and
performance measurement. SCM accomplishes this by providing the
means to: identify the software developed; establish baselines;
control changes to these baselines; record and track change
status; and support the auditing of controlled systems.

SCM is a discipline that can be introduced into an existing
environment. It is important, however, that SCM concepts are
integrated into existing procedures, as opposed to just adding on
a new set of procedures. SCM is the means through which the
continuity of the software system is recorded, communicated, and
controlled. Implementation of a SCM program can help to place
control of the software system where it should be, while
providing the appropriate levels of access to those who need to
use it.

22

GLOSSARY

Component. This is also known as Computer Program Component/CPC

,

Computer Software Component/CSC, Subsystem, Unit, Package,
Program. Components are collections of units or other
components. Multiple component levels may exist within a
configuration item. [*]

Configuration control. The process of evaluating, approving or
disapproving, and coordinating changes to baseline configuration
items or their entities. [*]

Configuration entities. All the outputs of a software project,
both intermediate and final, and the elements of the project
support environment which are to be managed by SCM disciplines
during the lifecycle of development and maintenance. Examples of
intermediate outputs are management plans, specifications, test
cases, and test plans. Examples of final output are source code,
executable code, user documentation, databases, and program
listings. Examples of support environment are compilers,
operating systems, programming tools, SCM tools, and test
beds. [*]

Configuration identification. (1) The systematic process of
designating the configuration entities in a system and recording
the characteristics, both physical (marking and labeling) and
functional (engineering documentation) , of a configuration item
and its entities. (2) The approved documentation that defines
configuration items. [*]

Configuration Item. This is also, referred to as Computer
Software Configuration Item (CSCI), Computer Program
Configuration Item (CPCI) ,

System, System Segment, and Program.
The final output of a software project, composed of a hierarchy
of configuration items can be structured into a hierarchy of
control levels referred to as elements. Elements can be further
separated into components and elements as in the example
below. [*

]

CONFIGURATION ITEM

component component

I
I

elements elementsII I I. I.

unit unit unit unit unit

[*] - Adapted from IEEE Standards Glossary of Software
Terminology (IEEE Std. 729) and IEEE Guide to Software
Configuration Management Plans (IEEE Std. 1042) for consistency.

23

Configuration validation. The process of validating that an
identified configuration fulfills the system/software function to
be performed at each chosen milestone point. [*]

Configuration verification. The process of verifying that a CI
and/or its hierarchical elements and associated entities are
correct and complete for a stated baseline; verifying that
identified system/software configurations are what they were
intended to be and proclaimed to be.[*]

Elements. The parts of a software program which have been
designated as control levels for configuration management
purposes. Elements make up the hierarchical structure of a
configuration item's software program (s) .

[*]

Interface control. The process of identifying all characteris-
tics relevant to the interfacing of two or more configuration
items and ensuring that proposed changes to these characteristics
are evaluated and approved prior to implementation.

Promotion. An informal process of establishing a baseline
internal to the project for a configuration item or its entities.

Release. The process of moving a baseline configuration item
between organizations, such as from vendor to customer.

Review board. The authority responsible for evaluating and
approving or disapproving proposed changes to a system and
ensuring implementation of approved changes.

Revision. A change to a baseline configuration item that
encompasses error correction, minor enhancements, or adaptations
but to which there is no change in the functional capabilities.

Software library. The controlled collection of configuration
entities associated with defined baselines. Libraries can be
considered in three generic categories:

dynamic library - used for newly created or modified
software elements

controlled library - used for managing current baselines
and controlling changes to them

static library - used to archive baselines [*]

[*] - Adapted from IEEE Standards Glossary of Software
Terminology (IEEE Std. 729) and IEEE Guide to Software
Configuration Management Plans (IEEE Std. 1042) for consistency.

24

Unit. The smallest logical element in a software program to
which configuration management can be effectively and efficiently
applied. Unit is also referred to as a procedure, routine,
and module.

Version. A change to a baseline configuration item that modifies
its functional capabilities. As functional capabilities are
added to, modified within, or deleted from a baseline
configuration item, its version identifier changes.

[*] - Adapted from IEEE Standards Glossary of Software
Terminology (IEEE Std. 729) and IEEE Guide to Software
Configuration Management Plans (IEEE Std. 1042) for consistency.

25

IEEE Guide For Software Configuration Management Plans ,

IEEE Standard 1042 1988, IEEE Computer Society Press, August
1988

,

Military Standard MIL-STD-490, Configuration Management
Practices for Systems, Munitions, and Computer Programs .

December 31, 197 0.

Bryan, William L. and Siegel, Stanley G. , Software Product
Assurance, Techniques for Reducing Software Risk. New York,
NY: Elsevier, 1988.

Osborne, Wilma M. , "All About Software Maintenance: 50
Questions and Answers," Journal Information Systems
Management, Vol. 5, No. 3, published by Auerbach, Summer
1988 .

Boehm, Barry W. , Software Engineering Economics , Englewood
Cliffs, NJ: Prentice-Hall, 1981.

SEI, "Support Materials for Software Configuration
Management," SEI Curriculum Module SEI-SM-4-1-1 , Software
Engineering Institute, Carnegie Mellon University,
September 1986.

SEI, "Support Materials for Software Configuration
Management," SEI Support Material, SEI-SM-4-1-0 , Software
Engineering Institute, Carnegie Mellon University, September
1986.

Harvey, Katherine, "Summary of the Version Control: Software
Configuration Management," Software Engineering Institute,
Carnegie Mellon University, September 1986.

Tichy, Walter F. , "RCS - A System For Version Control,
" Software - Practice and Experience . Vol. 15, No. 7, July
1985.

NBS-SP 106, "Guidance on Software Maintenance," 1983.

FIPS PUB 106 "Guidelines on Software Maintenance," 1984.

26

RELATED MATERIAL

[1] Bersoff, E.H., Henderson, V.D., and Siegel, S.G., Software
Configuration Management: An Investment in Product
Integrity . Englewood Cliffs, NJ: Prentice-Hall, 1980.

[2] Freedman, Daniel P., and Weinberg, Gerald M. , Handbook of
Walkthroughs. Inspections, and Technical Reviews; Evaluating
Programs, Projects, and Products, 3rd ed. Boston: Little,
Brown, and Company, 1982.

[3] "General Electric Quality Assurance Procedures and Software
Configuration Management Procedures", January 1982.

[4] NBS FIPS 132, "Standard for Software Verification and
Validation Plans," 1988.

[5] Feller, Peter H. , "The Project Management Experiment,"
CMU/SEI-88-tr-7 , ESD-TR-* *-008 , Software Engineering
Institute, Carnegie Mellon University, July 1988.

[6] Wilburn, N.P., "Standards and Guidelines Applicable to
Scientific Software Cycle." Hanford Engineering Development
Laboratory, Westinghouse Hanford Company, HEDL-TC-2 314

,

Richland, WA.
,
January 1983.

27

NBS-114A (REV. 2-8C)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NIST/SP- 500/161

2. Performing Organ. Report No. 3. Publication Date

March 1989

Software Configuration Management: An Overview

5. AUTHOR(S)

Wilma M. Osborne

6. PERFORMING ORGANIZATION (If joint or other thon NBS. see instructions)

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
(formerly NATIONAL BUREAU OF STANDARDS)
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG. MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

Same as Item 6

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 89-600728

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most si gnificant information. If document includes a significant
bibliography or literature survey, mention it here)

Today as software systems become more complex, it is essential
that system components be identifiable, traceable, reuseable, and
maintainable. The more these characteristics are present, the
more likely the end products will satisfy user req-.iirements

.

However, in order to produce such products, there must be
consistency in the management and control of software changes.
These efforts are made more difficult by the frequency with which
software changes are requested, approved, and incorporated into
production systems, without the aid of either fcrrialized or
automated change control. Software configuration znanagement
(SCM) provides a discipline for planning and implementing change
control throughout the software lifecycle. While SCM is not an
end in itself, and its use does not assure the success of a
project, it is a powerful tool for providing management with
greater visibility into the software process, thereby enabling
management to make the "right" decisions and to deliver correct
products on time and within budget. This Guide presents an
overview of the software configuration management discipline, and
identifies how SCM helps to improve and control lifecycle
software change management.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and seoorote key words by semicolon sj

change; change control; CI; CPCI; CPM; CSCI; environment; libraries; SCM plan;

software; software configuration management; software management; software tools;

tools.
13. AVAILABILITY

qX] Unlimited

1 1
For Official Distribution. Do Not Release to NTIS

rn Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

Q Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

33

15. Price

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Institute of Standards and Technology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

i tXx3 a Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research
and development in those disciplines of the physical and engineering sciences in which the Institute

is active. These include physics, chemistry, engineering, mathematics, and computer sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey articles

on topics closely related to the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the
Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) de-
veloped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports,

and other special pubHcations appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physi-

cists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in

scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed un-

der a worldwide program coordinated by NIST under the authority of the National Standard Data
Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD)
is published quarterly for NIST by the American Chemical Society (ACS) and the American Insti-

tute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Six-

teenth St., NW., Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treat-

ment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST
under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Com-
merce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally

recognized requirements for products, and provide all concerned interests with a basis for common
understanding of the characteristics of the products. NIST administers this program as a supplement
to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NIST research and experience, cov-

ering areas of interest to the consumer. Easily understandable language and illustrations provide use-

ful background knowledge for shopping in today's technological marketplace.

Order the above NISTpublications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NISTpublications—FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series col-

lectively constitute the Federal Information Processing Standards Register. The Register serves as

the official source of information in the Federal Government regarding standards issued by NIST
pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law
89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed
by NIST for outside sponsors (both government and non-government). In general, initial distribu-

tion is handled by the sponsor; public distribution is by the National Technical Information Service,

Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce
National Institute of Standards and Technology

(formerly National Bureau of Standards)

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

		Superintendent of Documents
	2022-04-16T05:37:39-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

