NATIONAL BUREAU OF STANDARDS REPORT

10434

A SEARCH AND RESCUE SIMULATION MODEL FOR THE UNITED STATES COAST GUARD VOLUME V

PROGRAMMER LEVEL DOCUMENTATION FOR "POSTPROCESSOR"

Sponsored by
U. S. Coast Guard

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ' was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.
The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.
THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics-Electricity-Metrology-Mechanics-Heat-Atomic and Molecular Physics—Radio Physics "-Radio Engineering "-Time and Frequency "-Astrophysics ${ }^{2}$-Cryogenics. ${ }^{2}$
THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry-Polymers-Metallurgy—Inorganic Materials—Physical Chemistry.
THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards-Weights and Measures - Invention and Innovation - Vehicle Systems Research—Product Evaluation-Building Research—Instrument Shops—Measurement Engineering-Electronic Technology-Technical Analysis.
THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation-Linac Radiation-Nuclear Radiation-Applied Radiation.
THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards-Computer Information - Computer Services - Systems Development-Information Processing Technology.
THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government: promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data-Clearinghouse for Federal Scientific and Technical Information "—Office of Technical Information and Publications-Library-Office of Public Information-Office of International Relations.

[^0]
NATIONAL BUREAU OF STANDARDS REPORT
 NBS PROJECT
 NBS REPORT

4314561
June 1971
10434

A SEARCH AND RESCUE SIMULATION MODEL FOR THE UNITED STATES COAST GUARD
VOLUME V
PROGRAMMER LEVEL DOCUMENTATION FOR
"POSTPROCESSOR"
by
W. Elliott, S. S. Karp

Sponsored by
U. S. Coast Guard

IMPORTANT NOTICE

NATIONAL BUREAU OF STA for use within the Government. E and review. For this reason, the whole or in part, is not authoriz Bureau of Standards, Washington the Report has been specitically F

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015.
accounting documents intended ubjected to additional evaluation isting of this Report, either in Office of the Director, National the Government agency for which jies for its own use.

U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

PREFACE

This volume is one of a series which documents a Search and Rescue Simulation Model for the United States Coast Guard. The material reported in this documentation was developed by an interdisciplinary team at the National Bureau of Standards with representation from the U.S. Coast Guard under MIPR Z-70099-0-01935.

The complete documentation is comprised of the following:
Volume I Executive Level Documentation
Volume II Analyst Level Documentation
Volume III Programmer Level Documentation for "PREPROCESSOR"
Volume IV Programmer Level Documentation for "OPSIM"'
Volume V Programmer Level Documentation for "POSTPROCESSOR"
Appendix A Flow Charts for Programmer Level Documentation
Appendix B Program Listings for Programmer Leve1 Documentation The study was initially conducted under the supervision of Martin J. Aronoff; subsequently efforts were supervised by Richard T. Penn, Jr. Technical Profect Leadership was supplied throughout the project by Stephen S. Karp. Other participants from the National Bureau of Standards Technical Analysis Division included the following:

Susan S. Chamberlin	Elizabeth E. Leyendecker
Linda K. Cummings	Marcia D. Maltese
Mary Jane Duberg	Patsy L.B. Saunders*
William E1liott, III	Wayne A. Steele
Walter G. Leight	Michae1 R. Vogt
Joel Levy	Arnold L. Weber

Valuable advice was received from Alan J. Goldman* and Prof. Gustave J. Rath of Northwestern University.
U.S. Coast Guard participants included:

Pau1 D'Zmura Gera1d L. Underwood
Thomas T. Matteson Robert R. Wells
Support services were furnished by the following members of the NBS Technical Analysis Divison:

Mary M. Abbott	Frances E. Jones
Theresa I. Conrad	Lucinda I. Farre11

* Staff members of the NBS Applied Mathematics Divison

TABLE OF CONTENTS
page
I. Introduction 1
II. User's Guide and Description 3
A. FDM. 3
B. Quick Query. 14
III. Interpretation of QQ Output for Displayed Cases. 43
Figure 1 File Definition and Maintenance Form 8
Figure 2 Subroutine USERRD Listing 9
Figure 3 Flow Chart for a Read Routine. 10
Figure 4 A Comprehensive Example of the Function of the Read Routine 11
Figure 5 Deck Setup 12
Figure 6 FOM Computer Printout 13
Figure 7 Program 1 of 5 Batch Processed QO Programs 21
Figure 8 Program 2 of 5 Batch Processed QQ Programs 22
Figure 9 Program 3 of 5 Batch Processed 00 Programs 23
Figure 10 Program 4 of 5 Batch Processed QQ Programs 24
Figure 11 Program 5 of 5 Batch Processed QQ Programs 25
Figure 12 Summary Statistics from Program 1 26
Figure 13 Partial Output of Program 1 27
Figure 14 Partial Output of Program 1 28
Figure 15 Partial Output of Program 1 29

TABLE OF CONTENTS (continued)
page
Figure 16 Partial Output of Program 1 30
Figure 17 Partial Output of Program 1 31
Figure 18 32
Figure 19 33
Figure 20 Deck Setup for Batch Processing Quick Query Jobs 34
Figure 21 Program to Compute percent of Cases with Initial Priority Greater than or Equal to 3 and Case not Served within Tolerance 35
Figure 22 Program to Compute percent of Cases with Initial Priority Equal to 1 and Case not Served within Tolerance 36
Figure 23 Program to Compute Average Time to Vector to Case 37
Figure 24 Program to Compute Average Wait Time Between Arrival into System and Time First Resource Reaches Case 38
Figure 25 Program to Compute Percentage of Cases with Number of Tows Greater than ZERO 39
Figure 26 Program to Compute Percentage of Cases with Number of Tows Greater than ZERO and Number of Non-Tow Needs Equal Zero 40
Figure 27 Program to Compute Percentage of Long Search Cases 41
Figure 28 Program to Compute Percentage of Short Search Cases 42

POSTPRO Programmer's Documentation

I. Introduction

In order to examine the voluminous amount of data generated by a complex simulation such as SARSIM, an efficient post-processor is a definite requirement.

The reader is reminded that the Standard Output display from OPSIM) is given for each run of OPSIM. The OPSIM Section explains this output and the calculations. The processing of data other than that presented in the Standard Output is an option to the SARSIM user. To explain further, it is recalled that the Standard Outnut consists mostly of summary statistics on resource and station utilizations derived and output in several ways. In contrast, the output relative to each case after being simulated in the system, can be filed, so that the simulation user can examine any aggregate of case attributes or simply the case attributes themselves. A means had to be devised such that the user can access the data fairly simply and extract it in summary form as he wishes.

A generalized information retrieval system with the additional capability to supply a variety of options such that the user can tailor the output to his requirements can be found in Quick Query. 1

1/ Developed for the Economic Development Administration by Consolidated Analysis Centers Inc.

Basically, Quick Query offers the user the ability to supply the criteria for selection of specific data on file; the formulae for any calculations he wishes; and the sequence in which he wishes the output to be produced.

Quick Query is used in conjunction with software necessary to define the case attributes and set-up the file. The File Definition $\&$ Maintenance (FDM) software does the file set-up and is applied to the output once. Quick Query is applied to this new file as often as the user desires. It is noted that the user may wish to batch several requests when using Quick Query, and can therefore obtain any number of special processing requests at any one time.

The next part describes the application of Quick Query and File Definition \& Maintenance to SARSIM and how Quick Query can be used to fulfill the user's needs.
A. FDM

This section describes the File Definition and Maintenance (FDM ${ }^{(1)}$ Program which was developed by Consolidated Analysis Centers, Incorporated, for the Economic Development Administration (EDA).

The purpose of FDM is to define new Quick Query Program (QOP) files or to modify existing QQP files. FDM works in conjunction with QQP: FDM is a system which actively constructs or modifies the file structure which QQP passively accesses for data retrieval, manipulation, and display.

Since QQP is described in detail elsewhere, this section will concern itself solely with FDM. The standard reference manuall/ for FDM provides more complete and detailed information and should be consulted before significant changes are made to the existing FDM program. This section will discuss only FDM as implemented for SARSIM in order to provide the user easy access to the relevant information.

The FDM program employs six types of control cards labeled A through F and a FORTRAN subroutine called USERRD. The FORTRAN routine will be discussed later. We concern ourselves now with the six types of control cards and how they were used in SARSIM. To facilitate understanding the following explanation, the reader is urged to consult the standard FDM form, Figure 1, and FDM computer printout, Figure 6. Both are contained on the next few pages. Lastly, if more than one card of a given type was used in FDM, e.g., the B card, then only the first card of the given type is explained.

[^1]| Columns | | Entry |
| :---: | :---: | :---: |
| 1 | | A |
| $3-14$ | Cummings L | |
| $16-23$ | | $12-15-70$ |
| 26 | | |
| 33 | X | |
| $37-38$ | 29 | |

34-35 6 Size of the heading field. This number must

3-5	CRE
$7-18$	SEQN

19 I
20-21 5

23	X
$27-28$	1
$29-33$	1

34-35 6

B

RE

EQNOI5
X11

Card Type Identification
This name tells the FDM program that we wish to create an attribute.
Name of the attribute created
The attribute is integer data
Field width of attribute. Includes two extra digits since attribute will be subtotaled.
Indicates a sum should not be computed for this attribute when subtotaling is requested.
Number of words occupied by this attribute when returned by USERRD subroutine. Integer fields require only 1 word. Right adjusted.
Tells FDM program where the attribute is located in the array IA passed from USERRD. Right justified. be at least as large as the longest word in the following three fields.
First line of heading. Free form.
Second line of heading. Free form.
Third line of heading. Free form.

Card

Type Columns		Entry	
C	1	C	
$3-14$	SEQNO		Card Type Identification This sequencing attribute determines the order of the entity cases.
15	L		The sequencing attribute is collated low to high.

D 1 D

3-14 OPFAC
17-28 NOCAS
31-42 IDLOC
45-56 OCCUR
59-70 BOX

E	1	E
	$3-5$	CRE

10-12 FOR

16-27 NOMASTER The only keyword recognized for CRE.

F
None used since it was not necessary to define intermediate attributes.

FORTRAN subroutine USERRD is used by FDM to read the values of attributes from data cards. These values are used by FDM to update or create a file record. Figure 2 is a hard copy of the USERRD.. Figure 3-1/ is the flow chart for USERRD and Figure $42 /$ is an example of the function of the read I/Ibid., p. 83.
2/Ibid. p. 82
routine. Figure 51/ gives the deck sequence necessary for an FDM run. For a complete explanation of USERRD, the user should study pp. 79-84 of the FDM manual. A brief discussion of the routine follows:

NCOND and NSTAT are flags for passing information between FDM and USERRD. NCOND is set by FDM and indicates: 1 to open file; 2 for moving a record, or 3 to close file. Initially NCOND is set to one. NSTAT is set by USERRD as follows: 1 for normal return, -2 for end of file, or -3 for read error. IA is the data and position array, and LEN is the length of the IA array. NSTAT is set to one initially by USERRD. NOENT counts the number of entities processed, and is used only in card 39 of USERRD.

The function of each statement of USERRD should be clear to users having a working knowledge of FORTRAN. Thus only a few sections of the code will be discussed. Cards 9-12 pass the IA array to FDM informing FDM how many words of the IA array each variable will occupy when filled by the read statements. The numbers filling IA should correspond to reading down column 27 of the B-cards. Cards 16-27 fill the IA array with the attributes of a particular entity. Cards 31-33 close the file after all the entities are processed. Cards $34-41$ are used to print one of two types of messages indicating normal or abnormal termination: of processing.

As stated above, if the number of attributes is to be changed for the entity CASE, certain changes must be made to USERRD. First, the DIMENSION statement should reflect the number of attributes of the entity. Second, LEN should equal the number to which IA is dimensioned. Third, the read statements and their associated FORMAT statements should be changed to read the proper number of attributes.

1/ Ibid. p. 70

If the field size of an attribute is changed, the FORMAT statement associated with reading the attribute should reflect that change. Also Columns 20-21 of the B card for that attribute should be changed.

MULTIPLE

号 \square

 $\square$$\xrightarrow{\text { UPDATE FLLE }}$

\square U

\square
 \qquad
Figure 2 - USERRD
OPEN FILE.
C READ ENTITY203 FORMAT (5(F2,0,F6.4,F4.2.F3.0))
READ (7,204,ENO $=302, E R R=304)(1 A(1) .1=63.67)$

$$
\begin{aligned}
& \text { NSTAT }=1 \\
& \text { GO TO }
\end{aligned}
$$

$$
60 \text { TO 1100.200.3n01. NCOND }
$$

 202 FORMAT $1 F 5,0, F 10,0,4 F 8,2, F 5,0, F 2,0, F 3,0,2 F 1,0, F 10,2, F 1,0,2 F 2.0$. READ (7,203.END=302.ERR=304) (1A(1), $=43.62)$
RETURN204 RORMAT (5F3.O)
NOENT=NOENT +1
PETURN
CLOSE FILE

$$
301 \text { FORMAT }{ }^{\circ} 0^{\circ}, 3 X, \text { OFIIE CLOSEDO,T } 32,15,{ }^{\circ} \text { ENTITIES PROCESSEDOI }
$$

NETURNRETURN

$$
\begin{array}{r}
302 \text { NSTAT }=-2 \\
\text { WRTTE } 16
\end{array}
$$

$$
\text { FORMAT }(0,3 X, \text { END OF FILE: }
$$

RF:TURN

$$
304 \text { NSTAT }=-3
$$

Figure 3 Flow Chart For a Read Routine

FIGURE 4

of the Read Routine

Figure 5
Deck Setup
3) N3-

घ0) 20
2070
$5 \forall 20 i$
$2 \forall 100$
$4 i v 25$
TIME OF
TO SERVE
NEED
-TIME FOR
TO SERVE
NEED
-TIME FOR
TO SERVE
SERVE NEED
SERVE NEED
SERVE NEED
SERVE NEED
SERVE NEED

$x y \cap J 00$
$s 10$
$35 \forall 3$
$\forall 15$
35

 IST RES
 MR
ON-SCEHE
IST RES
MR
ON-SCEHE
IST RES
IST RES TO
IST RES TO
ISTRES TO
ISTRES TO
$1 S T R E S T O ~$

IDLOC
ANN
OCCIIR
GAMMA

BOX
$\begin{array}{ll}\alpha \\ \vdots \\ \vdots \\ 0 & \\ 0\end{array}$

$\begin{array}{ll}B & C R \\ A & C R \\ A & C R \\ H & C R \\ B & C R \\ B & C R \\ B & C R \\ A & C R \\ B & C R \\ B & C R \\ B & C R \\ A & C R \\ B & C R \\ A & C R \\ B & C F \\ B & C R \\ B & C R \\ B & C P\end{array}$
$\begin{array}{lllll}\omega & \frac{\omega}{x} & \omega & L & \frac{a}{a} \\ a & a & a & \alpha\end{array}$
g 0
0

RESA3
NEED 4
OSTA
DELTAY
RESAA
NEEDS
OSTS
DELTAS
RESAS
RESAG
RESA 7
RESAB
RESAG
RESAIT

FILE SEOUEHCE ATTRIPUTES
ONO35 2
フryoulj
O FFRI

DISFLAY ATTRIWUTES
UPRAYFCFCIFICATMODS

B. Quick Query

The Quick Query Program (QQP) is used in SARSIM to access and display case data which is input to or output from a simulation run. The first use of QQP in SARSIM is to display all attributes of each case and to derive cross cases statistics for each of these attributes. The second use is to compute cross case statistics where the only cases considered satisfy particular attribute selection criteria. These two uses will be described separately and more completely below.

The QQP manual I/ contains more complete and detailed information than the following explanation and should be consulted before any major changes are made to the QQP. Since QQP passively accesses an existing file structure, all information used in building a QQP program should be compatible with the information used by FDM to build that file.

A QQP program may contain eleven types of control cards labeled A through K and a special report generator section. The special report generator option was not used in SARSIM, as the standard QQP output format satisfied the project's needs.

1. General application of QQP. This section describes the use of QQP for displaying and computing cross case statistics for attributes of all cases in a simulation run. Because the total field width of all attributes is so large, it was necessary to write five batch processed QQ programs to properly display the attributes by computer printout. Copies of programs one through five are shown in Figures 7 through 11

[^2]respectively. Part of the summary statistics for program one is displayed in Figure 12. An example of part of the output of programs one through five is shown in Figures 13 through 17. Figures 18 and 19 are standard QQP forms. With reference to Figures 7, 18, 19, the reader can comprehend the following chart easily. This chart contains an explanation only for program one; the others are very similar. Only the first D-card in each program will be explained as the other Dcards are filled in exactly the same manner.

CARD TYPE

COLUMN

ENTRY
EXPLANATION
A

B

C

D

Card Type Identification
User Identification
Organization of User
Report Identification

File Name as defined in FDM

Card Type Identification
Requested for Summary Statistics
(Mean, Standard Deviation, Sum,
Minimum, Maximum) of each attribute defined on a D-card.

Card Type Identification
Free form heading that will appear above QQP output.

Card Type Identification
An attribute of CASE to be displayed. This is also the attribute we use for sequencing the cases.

E

1	E
$4-15$	SEQNO
16	L

Card Type Identification
The attribute of CASE that we use for sequencing.

Informs QQP the user wishes Low-to-High sequencing.

Figure 20 shows the deck sequence necessary to run the batch processed program just mentioned.
2. Special Requests Using $Q Q P$. This section describes the use of QQP for computing cross case statistics where the only cases included in the computation are those that possess attributes satisfying certain selection criteria. Because each request has its own unique set of selection criteria, a separate program must be written for each query. Special request programs one through eight appear in Figures 21 through 28 respectively. Since cards A, B and E are exactly the same for programs one through eight, they will only be discussed for program one. Card type C will be discussed for program one since it is of free form and is used only for a header. Card D merely labels the attribute computed by the G cards for display and only need be discussed for the first program. The F and G cards differ for each of the eight special request programs and will be explained separately. For clarity and completeness, the discussion of these two card types will be different from the way card types A through E were described.

CARD TYPE	COLUN	ENTRY	EXPLANATION
A	1 $3-14$	A Elliott WH	Card Type Identification User Identification $-16-$

The purpose of program one, Figure 21, is to compute the percent of cases with the initial priority, FPRI, greater than or equal to three where the case was not served within tolerance. Symbolically, we state the conditions as: $(\mathrm{ITOL}=\theta) \wedge(F P R I \geq 3)$. This is exactly what is coded on the two F cards. The simulation run for which these special requests were made had 881 cases. The reciprocal of this number is approximately 0.001135 . Thus, to compute the desired percentage all that need be done is to find the number of cases satisfying the given requirements and multiply this number by 0.1135 .

Let Z equal the number of cases that satisfy the selection criterion. The following equations yield the desired percentage:

$$
\%=(z / 881) \times 100=z \times(0.001135) \times 100=z \times(0.1135)
$$

By placing $\mathrm{PCTONE}=0.1135$ on the G card and requesting a subtotal for only this temporary attribute and by subtotaling across only those cases that satisfy the selection criteria, we compute the desired statistic.

The purpose of program two, Figure 22, is to compute the percentage of cases with the first priority equal to one is where the case was not served within tolerance. Symbolically this is stated as:

$$
(\text { FPRI }=1) \wedge(\text { ITOL }=0) .
$$

These selection conditions are foum on the two F cards. The remainder of the program is exactly the same as program one with the exception that PCTTWO is substituted for PCTONE.

The purpose of program three, Figure 23, is to compute the average time to vector to a case. To do this (TWAIT-TQUE1)/881 is computed for each case, and then a subtotal is requested of this temporary
attribute. Since no F cards appear in this program, by default all cases are considered to have passed the selection criterion.

Program four, Figure 24, was designed to compute the average time a case must wait between its arrival into the system and the time when the first resource reaches the case. By computing (TWAIT/881) for each case and then summing these temporary attributes, the required percentage is derived. In this program no F cards are used so all cases are included in the calculation.

Program five, Figure 25, computes the percentage of cases with the number of tows, MMM, greater than zero. The selection criterion is on the F card and the temporary attribute, MGRZ, used for subtotaling, is on the G card. The reason MGRZ equals 0.1135 has been previously explained.

The purpose of program six, Figure 26 , is to compute the percentage of cases with the number of tows greater than zero and the number of non-tow needs equal to zero. Symbolically stated the selection criterion is:
$(M M M>0) \Lambda(N N N=0)$. This criterion is coded on the F cards. The G card has been previously explained.

Program seven, Figure 27, computes a cross case statistic under more complicated selection criterion than before. This request is for the percentage of long search cases, completed in the simulation. Symbolically the criterion is stated:
$[($ RESA6 > 0) v (RESA7 > 0) $\mathrm{v}($ RESA8 > 0) v (RESA9 > 0) v (RESA10 > 0)]
$\Lambda[$ S1S $=-1] \Lambda[T S M>0]$. Since a logical $O R$ is dominant over a logical AND, for conciseness it is necessary to define a termorary attribute called TEMP. If at least one of the RESA6 through RESA10 is greater than zero, TEMP is considered to be TRUE because of the way it is defined on the F cards. Thus the selection criterion is reduced to:
$($ TEMP $=$ TRUE $) ~ \Lambda(S 1 S=-1) \Lambda(T S M>0)$. This criterion is coded on the F cards. The G card has been previously explained.

Program eight, Figure 28, is very similar to program seven and can be used to find the percentage of cases with a short search. In this program, however RESA(I) must equal zero for all $I=6$, 7, 8, 9, 10. Symbolically written the criteria is: $($ RESA6 $=0) ~ \wedge(R E S A 7=0) ~ \wedge(R E S A 8=0) ~ \Lambda(R E S A 9=0) ~ \Lambda(R E S A 10=0) ~ \wedge(T S M>0)$. These conditions are coded in the F cards. The G card has been previously described.

Figure 20 contains the deck sequence necessary for batch processing this group of special requests.
LISTIAG OF QUERY IVPUT CARDS

CASE
OEMAND TAPE AMALYSIS
FIGURE 7: Program 1 of 5 Batch Processed QQ Programs
12345678901234567890123456789012345678901234567890123456799012345678901234567890 \square
CASE

DEMANO TAPE AHALYSIS

$$
n
$$

 CDEMRAD TAPE ANALYSIS
 D SEQNO
D CNRES
D RESAD
D PRI
D REA
D COSTC
D ITOL
D NOINT
D NQUE
D TINT
D TOUE
D TQUEI
D YSVC
E SEQNO
C DEMAAD TAPE ANALYSIS
D SEQNO
D CNRES
D RESAO
D PRI
D REA
D COSTE
D ITOL
D NOINT
D NQUE
D TINT
D TQUE
D TQUEI
D YSVC
E SEQNO
CDEMRAD TAPE ANALYSIS
D SEQNO
D CNRES
D RESAD
D PRI
D REA
D COSTC
D ITOL
D NOINT
D NQUE
D TINT
D TOUE
D TQUEI
D YSVC
E SEQNO
CDEMRAD TAPE ANALYSIS
D SEQNO
D CNRES
D RESAD
D PRI
D REA
D COSTC
D ITOL
D NOINT
D NQUE
D TINT
D TOUE
D TQUEI
D YSVC
E SEQNO
CDEMRAD TAPE ANALYSIS
D SEQNO
D CNRES
D RESAD
D PRI
D REA
D COSTC
D ITOL
D NOINT
D NQUE
D TINT
D TOUE
D TQUEI
D YSVC
E SEQNO
CDEMRAD TAPE ANALYSIS
D SEQNO
D CNRES
D RESAD
D PRI
D REA
D COSTC
D ITOL
D NOINT
D NQUE
D TINT
D TOUE
D TQUEI
D YSVC
E SEQNO
∞
C DEMAAD TAPE ANALVSIS
CDEMRAD TAPE ANALYSIS
D SEQNO
D CNRES
D RESAD
D PRI
D REA
D COSTC
D ITOL
D NOINT
D NQUE
D TINT
D TOUE
D TQUEI
D YSVC
E SEQNO
CDEMRAD TAPE ANALYSIS
D SEQNO
D CNRES
D RESAD
D PRI
D REA
D COSTC
D ITOL
D NOINT
D NQUE
D TINT
D TOUE
D TQUEI
D YSVC
E SEQNO
tan
A CIMMIRGS LK
PAGE:
19:31:11
DECEMBER 14. 1970
CASE
חFMAlID TAPE AIIALYSIS
LISTING OF RUERY IPPUT CARDS

$$
\varepsilon
$$

∞
$6 \quad 7$
CASE

WIIdINIW

802	0
05	0
96	0
66	0
$000000 \cdot 0 \mathrm{~h}$	000000
66	$8 h$
000066°	000000
91	0
Z	0
5	1
WOW8	WIId！N！

SUM	NEAN	STANDARO REVIATION
1422	1.614075	1.000000
654	． 747338	.000000
$4{ }^{4} 1$.500568	8.000000
7.950000	0009024	.000000
64746	73.498487	7.810250
3987.544800	4.526157	24.186092
6464	7.337117	10.862780
7325	8.314415	5.916080
1057	1.199773	2.000000
71864	24.817253	15.329780
	12：Summary	tatistics From Program 1

CUNMIAGSLKTAD
SLICK SUERY
ATTEIGUTE

0
0
∞
j
j
0
0
0
0
$9+409$
000056%
17969
7325
1057

> STATISTVCS
FIGURE 12：Summary Statistics From Program 1告
－26－
空
21864 $-$

ORIG
－INAL

옹
 믐

$\begin{aligned} & w_{0} \\ & \square \end{aligned}$		
		－
$\underline{z} \mathrm{~m}_{\alpha}^{x} \frac{x}{x}$		
w		
Σ		
－		
w z		ω
玉		ว
		\bigcirc

TOLER NO OF NO DF
TOTAL ANCR NHTER TIMES

Σ
IST RES
TO SERVE
TVEED 3

00000 mOOOONOOOOOOOOOOOOOOOO
O－10 O

－＇！MF
50t：ct
ニちがい

[^3]$15 T$ RFSTO
0000000000000000000000000000000 c IST HESTO
 ISTKEG IST KES IT
TO SEEVF SEFVE MFET

CN-CCENE
TINE FCF
NEECS

$M F$
T. FEC
5

Figure 20
DECK SETUP FOR BATCH
PROCESSING QUICK QUERY JOBS
listing of query liput cards
2

C*39*14ds ONV $0^{\circ} 03 \cdot 7011$ H114. S3SVO dO1 SISA7VNV
FIGURE 21: Program to Compute Percent of Case 3 and Case Not
Served Within Tolerance.
12345678901234567890123456789012345678901234567896123456789012345678901234567890
SELECTED CASE ANALYSIS
8 D
C CROSS CASE ANALYSIS FOR CASES WITH FPRIEL AND ITOL BO

$L P S$
EQ
EQ
ELLIOTT W TAD SELECTED CASE ANALYSIS
CASE
SELECTED CASE ANALYSIS
ELLIOTTWHTAD
QUICK GUERY
FIGURE 22: Program to Compute Percent of Cases With
PAGE:
PAGE:
$12: 50: 59$
UECEME゙EK 29.1970
case
selecien case analysis
ELLIOTt . h h tad
QuICK QUERY
$12: 51: 03$
$12: 51: 03$

12:51:11 PAGE:

GR 0
EQ 0
C PERCENT OF CASES HAVING MMMOGR.O AND NNNOEG.D
LPS
MMM
NNN
G PCT3 a 11135
PERCENT DF CASES HAVING MMM.GR.O AND NNN.EQ.O
FIGURE 26: Program to Compute Percentage of Cases With
-40-
PAGE:
$12: 51: 14$

DECEMGER 29. 1970
CASE
06
9
${ }^{6}$

3svo

ELLIOTT W H TAD

GUICK QUERY

0

2123456
$\begin{array}{ccc}2 & 3 & 4 \\ 901234567890123456789012345678901\end{array}$
SELECTED CASE ANALYSIS
LISTIAG JF QULKY NPUYCARUS

$$
2345679901234567890
$$

$$
515 A 7 \forall N \forall \quad 35 \forall 2 \quad 03123735
$$

ELLIOTT \therefore H TAD

$$
D
$$

CASE

C PERCENT OF CASES HAVING TSM.GR.O
C RESA(I).GR, D,FORIE6,7,8,9,10.

C PERCENT OF CASES HAVING TSM,GR.O
C RESA(I),GR.D,FORIE6,7,8,9,10.

$$
\begin{aligned}
& \begin{array}{c}
\text { TRUE } \\
\text { EQ }-1
\end{array} \\
& \begin{array}{ll}
\text { GR } & 0 \\
G R & 0 \\
& \text { TRUE } \\
\text { EQ } & -1 \\
G R & 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { D PCT4 } \\
\text { E } 80 X
\end{array}
\end{aligned}
$$

ETi.
G PCT4
ELLIOTTWHTTAD SELECTEO
ELLIOTTW H TAD
$A y 3 \cap 0 \quad x) I \cap O$
PECENT OF CASES MAVING TSM.GR.O AND SIS.EO.EI AND
RESA(I),GR, O,FORI=6,7,8,9,10.

$$
12: 51: 14
$$

0
0
0
n
n
\vdots
0
0
0
0
0
0
n
PCT OF CASES HAVING TSM.GR.O AND RESAIII.EQ.O.FOR $1=6,7,8,9,10$

2
12345078971234567490123456789012345678901234567890123456789012345678901234567890

$$
35 \forall 2
$$

0
$\begin{array}{ll}0 & 29 \\ 0 & 03 \\ 0 & 03 \\ 0 & 03 \\ 0 & 03 \\ 0 & 03\end{array}$

III. Interpretation of $Q Q$ Output for Displayed Cases

Some of the case parameters output by $Q Q$ need $\operatorname{explanation~because~they~}$ may be derived or updated by OPSIM. Due to the constraints imposed by limited storage and the FDM requirement of a fixed field format for all cases, not all the information on a case could be retained. Trade-offs were indeed necessary in light of these constraints, and were made such that the loss of information would be both minimal and infrequent.

Below is a list of the output parameters retained in every case, that is processed in the system; that is, every completed case. (Recall that exceptional cases are displayed automatically as Standard Output from OPSIM; cases being processed, but not completed at the end of the simulation are also output as part of the Standard Output.) Exceptional cases also appear on the output tape at the end of the case listing and may be used in the $Q Q$ calculations if desired.

The reader's attention is called to the OPSIM Definition discussion for a listing of these parameters and their interpretation in OPSIM. The discussion presented here sketches the ranges of these values when the case is completed and output from the system.
CASE PARAMETER VALUE EXPLANATION
(1) OPFAC

C-130 case which occurred in the district being exercised. This assignment is made in the PREPRO. Other C-130 cases are assigned to E City(East Coast).
>0 The original station to which the case was assigned, in PREPRO. (OPSIM reassigns the primary station to the case and retains this new assignment in STATN). In the situation of multi-unit cases, PREPRO assigned the station which first received the distress call as the OPFAC. (Minimum value of Cl on SAR assistance form.)
(2) NOCAS
(3) IDLOC
(4) OCCUR
(5) BOX
(6) FPRI

The original case identification number; together with OPFAC, these values represent the unique historical case number. The Coast Guard District in which the case occurred.

The date and time the case entered the system. (In decimal days) For example, 26.0156 represents a case that occurred on the 27 th day of the simulation at approximately $00: 23$. (SIMSCRIPT starts with Day $=0$).
$1 \leq B O X \leq$ There are a total of eight categories relative to the day, time, and season, the case entered the system. These include Weekend/Peak/Day (3) ; Weekend/Peak/Night(4); Weekend/Non-Peak/Day (7); Weekend/Non-Peak/Night (8) ; Weekday/Peak/Day(1); Weekday/Peak/Night(2); Weekday/Non-Peak/Day(5) ; Weekday/Non-Peak/ Night(6) .
0
$1 \leq$ FPRIs 5
Indicates that the exogeneous event tape (input to OPSIM) prepared in PREPRO was created using the historical times of occurrence. The first priority of the case; i.e., when it entered the system. (The case's priority is updated during the service of case and the final priority value retained in PRI.)

VALUE
(7) MM
(8) NNN
(9) GAMMA
(10) NEEDO
(11) AIR
(12) OFSHR
$0 \leq M M \mathrm{M} \leq 2$
≥ 0
$0.00 \leq$
GAMMA \leq
0.99°
0.00
$1 \leq$ NEEDO ≤ 19

Identification of the need for a single resource case.

Implies the case could be a multi resource or a pure search case. (If NEED1 through NEED5 have a value greater than zero, then this is a multi-resource case. If S1S is greater than zero, then the case is search case.)

Air temperature ${ }^{\circ} \mathrm{F}$.
Distance in nautical miles, off shore where case occurred

Within the simulation, hand-off tows occur at a $1 / 4$ mile offshore. Thie value is updated from original input value of OFSHR. Position over a $1 / 2$ mile off shore Position over a $1 / 2$ mile but less than 10 miles off shore, (open waters) 999 miles or more.
on shore
(13) VIS
(15) SWELL
(16) L
(17) POB
(18) SIS
$0 \leq$ VIS <99
99
$0 \leq$ WIND ≤ 99
1
$0 \leq$ SWELL ≤ 99
1

Visibility (in miles)
If not known NK; not applicable, NA, or blank.

Wind Force in knots
If NK; NA or Blank
Sea Height in full
if NK; NA or Blank
Length of Client in feet if client is
a boat
Client is an aircraft or some other classification

If client is over 65 feet but less than or equal to 100 feet.

If client is over 100 feet but less than
or equal to 200 feet
If client is over 200 feet
People on board
If greater than 4095
No long search required
Number of search resources on a long search case is input to OPSIM. Each time a resource completes its assigned search miles, SIS is reduced by 1. Therefore, in this mode, SIS can be the remaining number of resources required to fulfill the long

XPT

2
(25) YCY
(26) XC
any signed value
any signed value
>0
>0

Cases with no location data at undefined OPFACs are assigned this value for XCX from the district origin.

Cases whose location fall outside district
limits (non C-130).
Original Y coordinate
Cases with no location data at undefined OPFACs are assigned this value for $Y C Y$. Cases whose location fall outside district limits (non C-130)

Updated X coordinate case location. This value is updated when the client moves during service, such as escort or tow, and must be updated either for interrupt, hand-off or completion.

Similar to XC.
The primary station of the case, as calculated in OPSIM.

The total number of resources that responded to the case.

The resource responding to the need of a case, for a single resource case.
If the case is a multi-need case, this value is zero. See NEEDO and OSTO.

The updated priority of the case. The case's priority can change during the course of service. See FPRI.
(32) REA
(33) COST
(34) ITOL
≥ 0
First Reason the case was put into the queue. See OPSIM definitions. Part II, Section II of OPSIM documentation. $\begin{aligned} & 0=\text { case interrupted } 2= \\ & \text { case never goes } \\ & \text { into a queue }\end{aligned}$ 1 = no available resources

The cost of serving a case. Regardless of the cost option this value is calculated as the accumulated cost of vectoring to scene, and if required, searching for the client. The on scene time for serving needs other than search is not included in this calculation. For cases completed or in the system at the end of OPSIM; the values of interest include: Case not served within tolerance Case not served within tolerance No resource has yet arrived on scene. For cases which are exceptions, the values of interest include:

No capable resource types in system No capable resource types at the primary and adjacents

No capable resource available to serve an air escort case when requested.
(35) NOINT
(36) NQUE
(37) TINT
(38) TQUE
(39) TQUE1
(40) TSVC
(41) TWAIT

The case has an unacceptable set of input parameters. Each time a case's service is intermpted, this value is updated. Total number of times a case is interrupted.
≥ 0 Each time a case is queued, this value is updated. Recall a case can be queued if interrupted and/or if no resource is available at that time to serve the case, i.e. the case waits. Total number of times a case is queued.. When a case is interrupted, the total time spent in this status is recorded.
≥ 0 When a case is queued, the total time it spends queued is recorded.
$\geq 0 \quad$ The elapsed time the case spends in the queue prior to the first resource arriving to the scene.
$\geq 0 \quad$ The total elapsed time the case spends in the system.

The time elapsing between the case arrival to the system and the first resource arriving on scene or to the expected location of the client.

(42)	NEED1	≥ 0	For multi resource cases this is the first need of the case.
(43)	OST1	≥ 0	For multi resource cases, this is the time spent
			on scene serving NEEDI. This value for
			pure search, tow or escort cases will be
			zero. It is also possible that this value be
			zero for cases where the resource is called to
			scene and renders no assistance nor expends
			any time on scene, i.e. returns home immediately.
(44)	DELTAI	$0 \leq$	For multi-resourced cases, this is the frac-
		DELTAI	tion of time into the case, the resource is
		≤ 0.99	to arrive on scene, and expend the associated
			OST1.
(45)	RESAI	≥ 0	For multi-resource cases, this is the re-
			source assigned to the case to serve NEEDI.
(46)	NEED2	≥ 0	For multi - resource cases, this is the second
			need of the case. If the case requires two
			tow or escort resources, the second tow resource
			is recorded in RESA 2, but NEED2 will be zero.
(47)	OST2	≥ 0	See OST1. (Replace OST1 with OST2)
(48)	DELTA	$0 \leqq$	See DELTAI
		DELTA2	
		$\leq .99$	
(49)	RESA2	≥ 0	See RESAI.
(50)	NEED3		See NEED1.

(51) OST 3
(52) DELTA3
(53) RESA3
(54) NEED4
(55) OST4
(56) DELTA4
(57) RESA4
(58) NEED5
(59) OST5
(60) DELTA5
(61) RESA5
(62) RESA6
(63) RESA7
(64) RESA8
(65) RESA9
(66) RESA10
(66) SEQNO

See OST 1.
See DELTA 1.
See RESA 1.
See NEED 1.
See OST 1.
See DELTA 1.
See RESA 1.
See NEED 1.
See OST 1.
See DELTA 1.
See RESA 1.
≥ 0

The sequence number of the case facilitates the cross referencing of parameters in
the Quick Query Output. It also gives
the order in which cases are completed.

[^0]: Headquarters and Laboratories at Gaithersburg. Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
 4 Located at Bou!der, Colorado 80302 .
 Located at 5285 Port Royal Road, Springfield, Virginia 22151.

[^1]: I/ FILE DEFINITION AND MAINTENANCE USERS MANUAL, Bergfried, U.S., and Slack, G. G., Consolidated Analysis Centers Incorporated, December 1969.

[^2]: II Consolidated Analysis Centers Inc., "Quick Query User's Manual for Economic Deve1opment Administration". January 1970

[^3]:

