CONTAINER BOARD

report no. 99
December 1977

NBS Collaborative Reference
Program for Containerboard

Fourdrinier Kraft Board Group American Paper Institute, Inc. and U.S. Department of Commerce, National Bureau of Standards

```
APPI Paper ind Board (%) times per year)
```

Bursting strength
Tearing strength Tensile breaking strength Elongation to break
Tensile energy absorption
Folding endurance Stiffness Air resistance Grammage

Smoothness
Surface pick strength $K \& N$ ink absorption pH
Opacity
Blue reflectance (brightness)
Specular gloss, 75
Thickness
Concora (flat crush)
Ring crush

```
FKBG-API Containerboard (48 times per year)
Mullen burst of linerboard Concora test of medium
MCCA Color and Appearance (4 times per year)
Gloss at. \(60^{\circ}\)
Color and color difference Retroreflectivity
Rubber (4 times per year)
Tensile strength, ultimate elongation and tensile stress Hardness
Mooney viscosity
Vulcanization properties
ASTM Textiles (3 times per year)
Flammability (FF3-71 and FF5-74)
ASTM Cement (2 times per year)
Chemical (ll chemical components)
Physical (8 characteristics)
```


AASHTO Bituminous

```
Asphalt cement (2 times per year)
Cutbacks (once a year)
```

Collaborative Reference Programs B360 Polymer Building National Bureau of Standards Washington, D.C. 20234

CONTAINER BOARD
 Collaborative Reference report no. 99
 Program for
 Containerboard

E.B. Randall, Jr., J. Horlick
Laboratory Evaluation Technology
Section, Standards Application
and Analysis Division, Institute for
Applied Technology
J. F. Stevenson
NBS Research Associate
Collaborative Testing
Services, Inc.

U.S. Department of Commerce, National Bureau of Standards

Fourdrinier Kraft Board Group American Paper Institute, Inc.

The Collaborative Reference Program for Containerboard is sponsored by the Fourdrinier Kraft Board Group (FKBG) of the American Insititute of Paper, Inc., with the cooperation of the Technical Association of the Pulp and Paper Industry (TAPPI) and the Collaborative Testing Services, Inc. In this program, samples of three weights of linerboard, nominally $26 \mathrm{lb}, 42 \mathrm{lb}$, and 69 lb and of corrugating medium (26 lb) are randomized separately from uniform narrow rolls and packaged for distribution to the participants. Each month, sufficient test material for four weekly tests, the material for each consisting of 20 test pieces of 42 lb board and 20 test pieces of 26 or 69 lb board, the latter in alternate months, is mailed to participants for Mullen bursting strength, or for each week five sheets of corrugating medium, each sheet for four tests of Concord flat crush strength. The participants return their test results to NBS for analysis and receive two monthly reports from NBS: a "preliminary" (individualized report) comparing a laboratory's results with the industrial mean, and a longer report (as illustrated by this report) showing the data from all participants.

Edwin B. Randall, Jr., Administrator Collaborative Reference Programs

Laboratory Evaluation Technology Section
(301) 921-2946

January 31, 1978

TABLE OF CONTENTS

1 Explanation of Tables

Instrument Codes
Use of Average Mean as a Reference Standard Bursting Strength, Linerboard 42H5, weeks 1-4 Bursting Strength, Linerboard 26G2, weeks 1-4 Concora Flat Crush, Corrugating Medium 26C2

Each table shows laboratory test results for Mullen bursting strength of linerboard or Concora flat crush strength of corrugating medium. The data are divided into three time spans. On the left of each table is an analysis for each week of the month. In the center is cumulative data for the month and on the right is cumulative data for up to 16 weeks.

Conservative statistical tests have been used in excluding extreme data from the analyses. Thus, where the mean (average) for one laboratory is compared with the average for many laboratories, limits have been used that would exclude only one laboratory in a hundred if all laboratories followed exactly the same testing procedure. Consequently, laboratories receiving "X" flags should review their testing procedures, instrument calibration, and control processes. Similar conservative criteria were used in flagging within-laboratory standard deviations and other statistics.

	Lab		MEANS THIS MONTH	
WEEKLY VALUES:	CODE V	WK-1	-K-2 WK-3	WE-4

LAB CODE - Confidential laboratory identification number known only to the participant and the Collaborative Reference Program staff.

V - Code for indicating instrument type, units used, and any other variation in test procedure or conditions. A '+' in this column means a non-standard variation. Data marked ' + ' are not included in the combined averages for all laboratories. (see page 4).

MEANS THIS MONTH - For each laboratory each weekly mean is the average of individual test determinations, usually an average of 20 determinations.

FLAGS (following means and standard deviations) -
X - Data excluded from an AV MEAN or average standard deviation because value deviated from the AV MEAN or average standard deviation by more than 2.576 times the appropriate standard deviation. A laboratory following the prescribed test method could obtain such an extreme value by chance only one time in a hundred. Corrective action is almost certainly required.

* - Data included in the CUMULATIVE AV MEAN but the value deviated from this mean by more than 1.960 and less that 2.576 times the SD CUM MEAN. A laboratory following the prescribed test method could obtain such an extreme value by chance only one time in twenty. Corrective action may be desired.

S - This is a warning to the laboratory but does not affect inclusion or exclusion of the laboratory's results from the corresponding AV MEAN. This flag indicates an extremely high or low within-laboratory standard deviation (SDR, not shown) that could occur by chance only one time in a hundred if the laboratory is following the prescribed test method.

AV MEAN - (at bottom of table) - The average for the indicated week of the means for all laboratories, except those laboratories marked '+' in column V and those means marked with an ' X '.

SDR - (not shown) - The standard deviation of within-laboratory measurements; i.e., the Standard Deviation of the Replicate measurements made at one time in one laboratory on one package of test pieces.

AV SDR - The average for the indicated week of the SDR's of all the laboratories, except those omitted from the AV MEAN. Also an extremely high or low SDR as compared with the AV SDR based on the remaining laboratories is omitted from the $A V$ SDR and the letter 'S' is placed after the laboratory mean for that week. The AV SDR is an index of the within-laboratory precision for repeated measurements; i.e., a measure of the ability of an average laboratory to repeat its results over a short period of time. It includes measurement error and sample variation.

SD LABS - For each week the standard deviation of the means about the AV MEAN for that week after omitting those means marked with an ' X ' or noted '+' in column V. The SD LABS is an index of the among-laboratory precision of the test method as applied by the participating laboratories; i.e., a measure of the ability of laboratories to get comparable results.

NO. INCL - The number of laboratory means included in the AV MEAN for that week.

NO. OMIT - The number of laboratory means reported but omitted from AV MEAN because of non-standard equipment, environment or procedure ('+' in column V) or because of extreme results (X following mean).

NOT RCD - The number of laboratories failing to report data on time or in usable form for this week (but who reported data for at least one of the other weeks of this month), or who received test pieces from a different sample of material and whose data therefore are shown in another table of this report.

SD SHTS - (Concora only) The average for the indicated week of the amongsheet within-laboratory standard deviations. The SD SHTS is an index primarily of the variability among sheets.
THIS MONTH
MEAN SDR SDWES

MEAN - The average for the indicated laboratory of the reported weekly MEANS THIS MONTH.

SDR - The average for the indicated laboratory of the weekly SDRs for the current month.

SDWKS - For the indicated laboratory, the standard deviation among the laboratory's weekly MEANS THIS MONTH (including those means marked with an 'X').

CUMULATIVE VALUES: MEAN CUMULATIVE | SDR SDWKS wKS |
| :--- |

MEAN - The average for the indicated laboratory of all its weekly means for the number of weeks indicated, including those for the current month. An '*' or ' X ' following this CUMULATIVE MEAN indicates the laboratory is running consistently low or high. (See above for explanation of these flags).

SDR - The average for the indicated laboratory of the weekly SDRs for the indicated number of weeks.

SDWKS - For the indicated laboratory, the standard deviation among the laboratory's weekly means (including those means marked with an ' X^{\prime}). SDWKS is an index of the week to week precision; i.e., a measure of the ability of a laboratory to repeat its results from week to week.

WKS - Number of weeks for which usable results have been reported by that laboratory. At most, 16 weeks of data are included.
grand averages
GRAND AVERAGES: THIS MONTH CUMULATIVE 12 WEEKS

THIS MONTH - Averages for the four weeks of the quantities shown to the left.
CUMULATIVE - Averages for the indicated number of weeks, including the four weeks of the current month.

INSTRUMENT CODES
FOR
MULLEN BURST TESTERS
(Column V)

CODE DESCRIPTION
A
Unknown Model, assumed to be Model AH, Hydraulic Clamp

B
Model A, Air Operated Clamp
C Model A, Hand Operated Clamp
D Model AH, with Pressure Transducer
E Model A, Converted to AH
F Model AH, Hydraulic Clamp
G Model A, Hydraulic Clamp
$Z \quad$ Unknown Model, Please Describe Instrument Make and Model

If an incorrect instrument code has been assigned to your laboratory, please inform us.

Use of Average Mean as a Reference Standard

A large supply of linerboard in three weights was randomized and placed in sealed packages ready for shipment. The supply for each weight of board was divided into several narrow "rolls" or cross-machine "positions" of a larger roll, and each position was separately randomized. Each package contains test pieces from one position only. The position is designated by the number following the letter in the code marked on the package. Thus 42 H l indicates that this package contains 42 lb board from position l of \bar{l} ot H. Samples from the first position are distributed until exhausted, then from the second position, and so forth for each weight of board. Thus for short periods of time (several weeks to months), the samples that the participants test are from the same position of a lot, and for a longer period from the same lot.

The three weights of linerboard distributed in this program may be used as reference standards. The best reference values are the cumulative grand AV MEANs in the latest reports. These values are given at the bottom right of each table. For each weight of board, comparisons should be made first for measurements made on the same position, i.e., for checking your current measurement, use grand AV MEANs that have the same position code as on the packages being tested. The position is shown in the upper left corner of the table. If no report is yet available on the current position, grand AV MEANs from previously tested positions of the same lot may be used as approximate reference values.

Similarly a large supply of a 26 lb corrugating medium was randomized, after dividing into several narrow rolls or positions. The above discussion for linerboard also applies to the corrugating medium.

We are currently using the third lot of linerboard and the second lot of corrugating medium:

$\frac{\text { Lot }}{}$	Material
2	linerboard
3	linerboard
1	corrugating medium
2	corrugating medium
3	corrugating medium

Codes
A, B, C
D, E, F
G, H, I
(A) May 1973 - March 1976

B April 1976 - February 1977
C March 1977 - REPGRT NH. 99
QURETING STRENGTH (MULLEN). PSI

LAR			MEANS IH	s mentr		TH	5 MAN			CUMUL	TIVE	
CADE	v	$W K=1$	WK-2	WK-z	WK=4	MEAN	SDR	SDWRS	MEAN	SDR	SDMES	WES
100	A	122.6	123.7	121.6	119.5	121.9	9.2	1.8	122.4	8.8	1.5	10
101	F	120.4	120.5	120.6	115.9	120.4	5.0	. 4	118.2	5.2	2.4	10
103	A	116.4	118.65	120.4	120.2	118.9	6.8	1.8	115.5	8.5	4. 5	10
105	A	114.8	111.8	115.1	117.3	114.8	9.7	2.3	116.7	10.1	3.8	10
106	A	121.4	118.5	122.1	119.0	120.4	9. 3	1.6	120.2	10.8	1.5	10
107	C	132.6	123.9	116.9	125.8	122.3	8.4	3.8	121.0	8.3	2.7	10
108	0	123.0	123.7	119.6	127.2	123.4	11.3	3.1	124.3	10.2	2.6	10
109	F	120.2	122.4	120.2	120.5	120.8	10.5	1.1	118.2	10.0	2.8	10
110	I'	124.4	127.5	118.5	115.4	121.5	7.4	5.5	121.0	7.3	4.4	6
111	D	120.8	122.1	117.5	126.2	121.7	8. 7	3.6	122.5	10.1	3. 5	10
112	A	123.7	129.0	129.7 x	115.0	125.4	11.6	5.0	124.5	10.8	4.4	10
113	B	121.4	120.5	121.3	115.8	120.8	9.1	. 7	121.1	7.3	1.3	10
114	C	125.5	126.1	121.4	126.2	124.8	¢. 8	2.3	123.9	10.7	2.3	10
115	R	121.1	124.5	121.5	124.1	122.8	7.4	1.8	120.4	8.3	2. 9	10
116	R	121.9	121.7	119.5	119.2	120.6	8.3	1.4	119.7	8.3	1.7	7
117	A	115.6	117.5	115.3	114.7	116.9	7.0	2.3	119.0	7.9	3.0	10
119	A	118.1	118.7			118.4	10.2	. 4	117.7	5.2	5.7	6
120	H	125.8	:24.E	114.9	118.7	121.1	S. 1	5.2	119.2	10.8	3.5	10
121	D	124.6	122.0	128.0	115.0	123.4	8.5	3.8	125.3*	8.1	4.0	10
123	A	$12 \in .0$	125.5	124.3		125.3	10.2	. 9	125.8*	9.2	1.8	9
125	F	120.4	125.7	118.8	121.7	121.7	6.7	3.0	120.4	7.5	2.5	10
127	4.	123.8	123.2	121.2	121.3	122.4	6.9	1.3	122.E	6.2	1.1	10
128	F	$1: 8.4$	127.5	122.6	125.8	123.E	S. 0	4.0	122.5	e. 7	2.6	10
129	A	120.4	123.9	117.0	125.5	121.t	8.4	3.8	119.5	$\rightarrow .1$	2.9	10
130	A	:21.9	123.3	125.0	123.7	123.5	9.8	1.3	124.8	9.0	2.2	10
131	R	125.1	120.25	116.2	1: 6.4	119.5	11.7	4. 2	120.0	10.5	4.2	10
133	R	121.9	121.1	115.2	117.5	115.9	7.5	1.6	119.8	9.0	1.4	10
134	F	1:5.9	117.5	120.4	125.8	115.9	8.0	4.4	118.5	7.5	3.1	10
135	1	118.0	118.6	118.2	120.4	118.8	10.0	1.1	120.4	5.9	2.8	10
136	A	116.0	11 . $\frac{\text { E }}{}$	116.7	116.5	116.5	6.7	. 3	116.4	6.7	- 9	8
137	F	:13.3	115.1	116.9	116.2	115.3	9.3	1.4	117.0	10.0	2.3	10
138	A	122.4	128.3	125.0	$12 \epsilon .5$	125.6	10.1	2.5	126.9x	9.8	2.8	10
139	8	121.5	124.3	123.0	122.4	122.8	10.6	1.2	120.a	5.5	2.4	10
140	F	114.1	115.7	117.1	115.8	115.7	5.8	1.2	118.3	5.5	5.2	10
141	F	118.6	117.:	114.3	114.6	116.2	6.8	2.0	115.8	6.7	3.6	8
14.2	C	123.4	121.2	121.4	126.0	123.0	8.2	2.2	121.9	8.8	2.0	10
143	A	1-2.2	121.7	121.0	122.0	121.8	7.5	. 5	122.2	7.5	2. 3	9
145	F	122.2	122.5		119.1	121.4	7.0	2.0	120.7	6.6	2.4	6
147	A	116.8	118.5	115.3	118.55	117.4	12.0	1. ${ }^{\text {a }}$	116.0	11.0	1.3	10
149	F	131.4	127.5	115.8	110.3	121.4	9.0	a.s	121.?	9.6	3.2	10
$1 \subseteq_{1}$	F	119.2	121.0			120.1	6.3	1.2	120.6	7.5	- ${ }^{-8}$	7
153	r		130.1	125.4x	128.5	129.3X	7.2	- 8	:29.9	7.6	- 9	\rightarrow
155	F	120.5	115.3	121.2	117.5	119.7	8.4	1.5	:17.3	e. 1	3.2	10
157	A	110.6 X	117.5	110.5		113.0	8.R	3.9	116.9	8. 5	5.2	9
$!55$	A	120.1	121.7	118.3	117.6	110.4	8.1	1.5	117.8	-. 5	2.3	10
: 61	A	125.7	1<2.5			124.1	9.9	2.2	120.7	10.5	a. 7	6
165	8	111.9 X	112.5	122.3		115.6	c. 6	5.9	115.9	9.3	4.2	-
166	F	117.0	121.4	111.7	114.7	116.2	5.7	4.1	115.9	7.6	3.6	10
167	F	115.2	115.8	115.7	119.4	11 c .5	6.4	1.9	117.8	6.2	3.0	10
168	A	115.5	105.5x	115.5 s	118.2	114.7	12.8	3.7	122.3	10.5	7.0X	10
169	A	120.5	120.4	122.6	123.6	121.8	S. 5	1.6	121.1	G. 1	1.4	10
170	A	117.4	119.5	113.9	116.2	116.7	8.9	2.7	120.*	9.6	4.2	10
171	A	118.7	121.5	122.6	117.8	120.2	7.7	2.3	119.2	7.3	1.e	10
172	A	121.1	121.5	121.2	120.3	121.0	6.9	. 5	122.5	6.7	1.6	10
173	A	122.4	122.5s	123.8	125.0	123.4	4.4	1.2	122.2	5.7	1.4	10

BURSTING STRENGTH (MOLLEN). PSI

LAB			MEANS TH	S ment		TH	S MON			CUMuL	TIVE	
CODE	v	WK-1	WX-2	WK-3	W8-4	MEAN	SDR	SDWES	MEAN	SDR	8DWES	URS
174	A	115.3	124.2	120.9	119.4	120.0	11.6	3.7	120.6	10.7	2.6	10
175	A	123.9	128.3	130.1X		127.4	7.6	3.2	122.5	0.5	5.4	9
176	A	117.7	118.8	119.2	114.8	117.6	9.0	2.0	118.5	0.6	3.0	10
177	A	117.3	108.7X			113.0	9.1	6.0	111.6x	0.8	5.0	7
178	A	124.2	118.8	121.2		121.4	7.3	2.7	123.9	8.2	2.9	9
182	A	118.9	119.2	118.2	118.4	118.7	9. 7	- 4	119.3	8.9	2. 5	10
184	F	121.3	116.6	122.7	120.5	120.3	7.9	2.6	121.9	9.2	2.6	10
186	E	116.5	118.4	121.8		118.9	6.6	2.7	117.9	6.6	3.0	9
188	E	122.6	122.6	118.5	119.4	120.9	8.1	2.0	120.4	7.6	2.2	10
198	B	118.6				118.6	6.6		118.1	7.1	1.7	6
274	A	120.6	121.9	121.5	122.7	121.7	6.0	- 9	121.6	6.9	1.3	10
283	A	121.6	121.3	122.6	122.0	121.9	5.1	. 6	121.1	5.6	- 9	10
287	c	122.6	122.3	115.2	120.2	120.1	8.1	3.4	188.0	8.8	3.9	10
313	A	126.8	128.5	128.9	125.6	128.4X	7.8	1.2	127.3x	7.4	2.4	9
327	F	113.8	114.7	114.2	122.5	116.3	9.9	4. 2	118.5	9.8	3.3	10
350	F	121.2	121.45	121.9	$110.4 \times \mathrm{S}$	118.7	11.6	5.5	117.8	9.9	3.8	10
375	G	123.1	116.8	118.9	118.3	119.3	8.0	2.7	120.0	8.7	3.3	10
562	A	123.2	121.2	119.1	122.0	121.4	S. 7	1.7	125.1	10.3	5.1	10
568	A	116.6	115.5	116.7	110.1 X	114.8	9.9	3.2	119.6	10.1	5.8	10
569	A	115.2	116.8	120.0	115.6	116.9	7.8	2.2	119.6	8.6	$4 \cdot 3$	10
590	A	120.7	114.3	98.6x	SE.8X	108.1X	9.4	11.2	112.51	$9 \cdot 3$	7.54	10

	$W K-1$	$W K-2$	$W E-3$	$W K-4$
AV MEAN	120.4	121.2	115.5	120.5
AV SDR	8.4	6.6	6.5	8.4
SD LABS	3.3	4.0	3.5	3.8
NG. INCL	73	73	66	62
NB. OMIT	2	2	4	3
NBT RCD	1	1	6	11

GRAMD AVERAGES

 IHIS VONTMCUMULATIVE 10 WEEKB
120.3
8.4
3.7
68.8
2.9
2.5

BUREIING STRENGTH (NULLEN). PSI

LA8			MEANS TH	MONT		TH	MEN			UMULA	TIVE	
CODE	v	W $K=1$	-K-2	WR-3	WR=4	MEAN	SDR	SDWRS	MEAN	SDR	SDEES	WK S
100	A	76.3	73.5	72.7	72.9	73.9	7.7	1.7	74.1	7.1	1.8	16
101	F	74.3	74.7	74.E	75.0	74.6	6.0	- 3	74.8	6.1	1.1	12
103	A	74.6	74.1	76.4	75.7	75.2	5.6	1.0	73.7	6.0	1.6	15
105	A	72.0	7A.5	71.1	75.9	73.5	7.8	2.3	73.5	7.7	2.5	12
106	A	77.1	7E.2	72.7	74.4	74.1	7.1	1.6	74.0	7.6	2.2	16
107	C	75.0	76.0	76.8	73.4	75.3	6.7	1.5	75.5	7.0	1.7	16
108	D	72.95	77.6	75.5	7 ¢.2	75.7	7.7	2.0	75.2	8.0	2.7	16
105	F	73.7	73.7	74.0	73.7	73.8	7.0	. 2	73.7	6.5	- 7	16
110	D	78.9	81.1	80.0	72.3	78.1	6. 4	3.9	77.7	6.6	2.8	15
111	D	77.7	78. 5	76. 3	7E. 6	77.3	6.0	1.0	$\rightarrow 8.7$	7.3	2.5	15
112	A	76.7	77.5	78.7	74.5	77.0	6.7	1.6	76.1	7.0	1.5	15
113	8	74.3	74.E	74.6	75.0	74.6	6.3	- 3	75.1	6.2	. 9	15
114	C	76.7	77.3	72.E	80.0	76.6	8.0	3.1	76.4	6.5	2.5	16
115	8	73.1	72.1	72.2	72.5	72.5	5.7	. 4	72.2	6.7	1.8	15
116	8	76.5	76.7	73.9	77.5	76.3	e. 7	1.5	75.7	7.2	2.4	13
117	A	81.3	76.9	74.7	77.2	77.5	6.3	2.7	76. 2	5.5	2.6	15
119	A	76.4	77.0			76.7	5.t	. 5	72.9	6.8	3.1	12
120	A	73.7	76.2	77.2	82.1	77.3	E. 1	3.5	73.8	6.9	3.1	16
121	D	78.1	78.6	82. $6 x$	77.4	79.2	8.0	2.3	78.7	8.0	3.5	16
123	A	78.4	83.07	80.1		80.5	6.4	2.4	74.8	6.9	4.9X	15
125	F	\rightarrow ¢. 3	80.7	78.75	74.8	77.4	7.9	2.8	78.1	6.9	2.5	16
127	A	72.9	75.3	74.9	75.8	74.7	5.1	1.3	74.3	5.1	1.0	16
128	F	81.1	83.4X	77.2	78.5	80.0	E. 5	2. ${ }^{\text {P }}$	77.7	7.2	2.8	16
129	A	75.2 S	74.9s	77.8	78.4	76.t	E. 7	1.8	74.7	4.4X	2.1	15
130	A	80.1	81.4	80.5	78.8	80.2	7.6	1.1	79.8*	7.6	1.6	15
131	日	72.2	73.E	70.2	74.1	72. 5	8. 8	1.7	74.0	8.3	4.0	16
133	8	75.5	73.8	$75 . ?$	73.9	74.8	6.6	1.1	73.4	6.2	2.3	16
134	F	76.6	74.3	7E.8	7 8.4	76.5	7.5	1.7	74.0	7.1	2.6	16
135	A	72.5	70.6	73.1	72.3	72.1	8.7	1.1	71.6	8.1	3.1	15
136	A	72.4	74.2	71.3	72.4	72.6	6.3	1.2	73.7	5.9	1.0	12
137	F	67.7	69.1	65.7	E8. 5	68.8x	9. 1	. 9	70.4\%	7.4	2. 2	15
138	A	80.2	75.8 S	79.9	79.8	79.0	9.6	2.1	78. ${ }^{\text {B }}$	8.1	2. 2	16
139	B	7 ¢. 1	76.3	73.4	72.2	74.5	9.5	2.0	75.7	8.1	1.E	16
140	F	74.9	71.0	76.5	74.4	74.2	4.4	2.3	75.6	5.9	1.8	16
141	F	72.5	71.8	72.7	72.7	72.4	5.5	-4	73.0	4.9	- 8	12
142	C	68.6	70.6	73.4	75.8	72.1	7.1	3.2	72.2.	8.1	2.4	1ϵ
143	B	74.2	-5.6	75.6	75.5	75.2	7.7	. 7	73. ${ }^{\text {a }}$	6.8	2.0	16
145	F	82.0	75.9		81.7	75.9	6.4	3.5	77.9	6.0	?.8	\bigcirc
147	A	71.8	68.2	70.6	71.7	70.6	8.2	1.7	74.7	7.3	3.0	16
149	F	77.5	81.1	76.4	73.0	77.0	6.0	3.4	78.2	6.2	2.5	15
151	F	75.0	77.5			76. 3	7.2	1.8	75.5	6.6	1.0	14
153	E		76.0	76.0	75.5	7E.8	4.6	- 3	76.6	5. 3	1.2	15
155	F	74.5	72.7	74.3	71.9	73.4	6.7	1.2	73.4	E. 5	1.4	15
157	A	78.0	76.4	73.1		75.8	7.9	2.5	78.5	7.8	5. 7 X	15
$1 E 5$	A	73.3	72.7	72.0	73.5	72.9	7.3	. 7	72.8	7.7	1.7	15
161	A	74.9	77.5			76.4	8.7	2.2	75.7	7.6	2.8	10
165	8	71.9	70.0	76.2		72.7	7.2	$3 . ?$	72.c	7. 2	3.3	15
$1 \in 6$	F	69.7	71.5	70.2	71.6	70.8	6.7	1.0	74.1	6. 3	3.9	16
167	F	74.1	$7 \in .1$	72.8	73.5	74.1	E. 3	1.4	74.5	5.3	2.5	16
168	A	68.3	64.6X	69.75	64.0X	6E. 7 X	9.8	2.8	74.7	8.6	5. 5 X	16
169	A	80.0	78.6	80.4	81.3	80.1	8.2	1.1	79.0 \%	7.8	1.7	15
170	A	73.1	76. 5	72.2	71.6	73.4	¢. 2	2.2	73.4	8.2	2.0	15
171	A	71.3	73.4	73.6	75.3	73.4	7.1	1.6	72.6	7.0	1.6	15
172	A	74.7	78.7	77.5	7 ¢.4	76.8	E.E	1.7	76.6	6.5	2.0	16
173	A	74.2	75.E	76.2	7E.4	76.1	E. 2	1.8	76.0	6.4	1.2	15

QURSTING STRENGTA（MULLEN》．PSE

LAB			MEANS THIS MONTH			THIS MONTH			CUMULATIVE			
CODE	V	WE－1	W区－2	WK－3	WR－4	MEAN	SDR	SDurs	UEAN	SDR	SDIES	WK8
174	A	68.6	69.9	73.0	73.5	71．3	7.1	2．4	71．2	6.9	2.1	16
175	A	80.5	83.81	91．0x		85．1X	7．4	6.4	76． 6	7.2	5．81	15
176	A	72.8	76.7	71.4	74．6	73.9	7.2	2.3	74．5	7.6	2.1	16
177	A	75.4	72.9			74．2	6.7	1.8	72.6	6.4	4.4	13
178	A	71.4	68.6	73.5		71，2	7.4	2.5	76．1	7.3	3.4	15
182	A	78.2	74.8	75.5	73.9	75．6	8.0	1.9	76.5	7.9	2.7	16
184	F	76.3	74.5	78．3	75．6	77．2	6.6	2.2	75.2	6.5	2.4	15
186	E	73.1	73.5	73.5		73．5	4.3	－	74．3	4.7	1．4	15
188	E	75.6	74.0	73.8	74．9	74．6	7.4	． 8	76．0	6.3	1．3	16
198	R	75．4				7E，	5.8		73.8	6.9	1.9	13
274	A	74.9	74.7	74.8	75．2	74.9	5．2	． 2	74．2	4.9	． 6	16
283	A	73.2	76．5	75.5	76．4	75．4	6．${ }^{\text {a }}$	1.5	74．5	5．4	1.2	16
287	C	76.5	77.9	76.7	77．4	77．1	6.1	． 7	76.1	7．4	3.6	16
313	A	86．4X	88．1X	86.5 X	85．7x	66．7T	6.0	1.0	86．81	5．6	． 9	8
327	F	75.5	76.3	77.4	73.8	75．8	7.0	1.5	77.0	7.5	2.2	16
350	F	76.1	74．3	72.8	73.35	74．1	7.9	1.5	74．8	7.5	1.8	16
375	G	72.9	72.3	75.3	77.8	74．6	7.9	2.5	74．8	8．3	2． 5	16
562	A	76.3	76.0	76.1	80，0	77．1	7.2	1.9	77.2	7.7	1.9	8
568	A	71.6	72.45	73.2	71.2	72.1	7． 5	． 9	73．4	7.3	1.7	16
569	A	71.9	73.1	73.2	74.8	73．3	¢．3	1.2	73.6	6.5	2.3	16
590	A	69.3	73.8	62． 2 X	60.58	66．4x	7．4	6.2	69．1X	6.5	4.2	13

	WK－1	TK－2	WR－3	湢－4		THIS	GRAND MENT	AVERAGES CUMOLATIVE	16	merss
AV MEAN	74.8	75.0	74.8	75.4	Av	MEAN	75．0	75.0		
$A V$ SDR	7.0	7.1	6.8	6．8	AV	SDR	6.9	6.9		
SD LABS	3.1	2.9	2.7	2.9	ED	LABS	2.9	2.8		
NO．INCL	74	70	E6	62	NG．	INCL	68．0	69.4		
NO．OMIT	1	5	4	3	AV	SD包 5	1.8	2.1		
NGT RCD	1	1	6	11	SD	CUM MEA		2.0		

FLAT CRUSB STRENGTB (CONCORA). IB

LAB			MEANS TE	Mente		TH	m6N			CUMUI	TIVE	
CODF	v	-x-1		WI-3	1804	MEAN	SDR	SDEES	MEAN	SDR	SDWES	WES
100		63.9	63.2	62.2	62.3	62.9	2.5	- 8	63.3	2.7	1. 2	12
102		63.3	63.1	63.0	64.4	63.5	2.7	. 7	63.2	2.6	- 5	8
105		62.2	E4. 2	61.3	61.9	62:4	3.5	1.3	65.0	3.7	4.4 X	12
106		65.2	C4.3	62. 2 S	60.1	63.9	3.5	1.3	65.2	3.5	1.6	12
110		60.2	63.1	61.8	62.7	62.0	2.8	1.3	63.4	2.5	2.1	8
113		64.6	63.0	62.7	ES.2	63.9	2.6	1.2	63.6	2.7	- 9	12
114		E2.1	C2.7	63.6	63.4	63.0	3.2	. 7	62.5	3.0	1.2	12
115		C5.5	66.6	67.7	63.3	65.8	2.6	1.9	64.0	2.5	2.0	12
116		60.9	61.6	61.0	E1.0	61.1	2.1	- 3	61.2	2.2	. 4	10
119		62.6	61.8			62. 2	3.0	. 6	62.4	3.2	1.1	8
120		66.8	62.6	69.01	65.4	66.0	3.1	2.7	63.9	3.2	2.7π	12
125		68.71	68.5X	66.3	Eヒ, 3	C7. 5	2.9	1.4	67.2 \%	3.0	1.7	12
128		62.0	61.7	61.6	E1.0	61.6	3.2	. 4	62.1	3.0	. 8	12
138		E3.8	65.3	64.1	EE.1	64.6	3.3	. 7	64.7	3.4	1.0	12
140		E4.9	65.4	E2. 1	E3.9	64.1	2.9	1.5	64.2	3.1	1.2	12
143		62.0	C1. 2	61.7		61.6	2.1	-4	62.1	2.6	- 7	11
161		65.8	68.4X			67.1	3.4	1.8	65.5	3.4	2.0	6
164		E2. 0	64.4	62.1		62.9	2.6	1.3	62.9	2.8	. 9	11
167		63.7	63.3	63.2	C4. 2	63.6	2.6	. 5	64.1	2.8	. 8	12
177		59.5	63.1			61.3	2.4	2.5	62.1	2.4	1.7	s
182		62.E	64.9	67.6	68.91	66.0	3.0	2.8	64.7	2.9	1.9	12
188		60.1	E1.3	62.4	61.7	61.4	1.9	. 9	61.6	2.3	. 9	12
198		61.7				61.7	3.3		63.0	3.6	1.5	9
237		C2. 3	59.5	61.7	62.6	61.7	3.0	1.2	62.4	2.9	1.0	12
268		61.6	62.3	61.4	61.1	61.6	1.8	. 5	61.9	2.3	1.0	12
274		63.4	63.3	63.4	63.3	63.4	1.8	. 0	63.7	1.8	. 4	12
283		64.0	E4. ${ }^{\text {c }}$	63.5	C4. 1	64.0	1.9	- 4	64.0	1.9	- 3	12
284		6 ¢. 2	64.0	62.7	CA. 2	64.1	3.4	1.0	64.2	3.2	1.6	12
287		63.9	64.6	66.1	EG.5	65. 3	3.4	1.2	65.3	3.8	1.0	12
292		C 1.3	61.3	CO. 5	C3.5	61.7	2.6	1.3	C1. 1	2.6	1.4	12
350		66.0	67.0	E5.0	71.015	67.3	3.5	2.6	66.8 \%	2.7	1.7	12
351		E1. 2	62.1	E7. 1	¢3.3	63.5	1.9	2.6	61.7	2.0	2.0	12
353		62.7	E2.4	64.0		E3.1	2.4	- 9	63.5	2.5	1.3	11
355		62.5	62.0	57.5x	E1. 3	60.9	2.8	2.4	61.8	2.6	1.7	12
357		C 1.6	63.9	64.3	C2. 6	63.1	2.4	1.2	63.4	2.2	. 9	11
361		63.7	63.1	C3.e	63.7	63.6	2.1	. 3	64.3	2.1	1. 3	10
363		60.5	60.15	C2.5	C1.1	61.1	3.5	1.0	61.4	3.2	1.1	12
365		60.9	58.8 x	60.7	62.2	60.7	2.6	1.4	59.8 \%	2.7	1.6	12
369		E3.7	62.6	62.2	62.8	62.8	2.5	. 7	63.0	2.9	. 7	12
377		63.5	61.8			62.7	2.2	1.2	63.5	2.9	1.8	10
375		C1. 3	63.4	63.6		62.8	3.2	1.3	63.6	3.1	1.6	11
381		61.7	62.8	62.3	C3.1	62.5	2.3	. 6	62.2	2.6	. 8	12
383		65.4	62.5	61.7	62. 2	63.0	3.0	1.6	63.1	3.0	1.4	12
385		66.9	C2.3	61.2	C4.5	63.7	2.8	2.5	62.5	3.1	2. 3	12
387		C2. 5	62.3	63.4	61. 3	62.4	2.9	. 9	63.1	2.5	1.7	12
391		60.8	64.2	64.4	C4.4	63.5	2.4	1. ${ }^{\text {a }}$	62.8	2.6	2.1	11
393		63.9	62.3	E4. 3	63.4	63.5	2.5	. 9	63.0	2.3	- 8	12
395		4.5	64.5	65.5	64.7	64.9	2.8	-4	65.0	3.0	. 8	11
397		E4.)	64.e	65.3	65.8	65.2	3.0	. 5	64.4	2.9	1.6	12
399		65.6	63.0	59.7	E1.0	62.3	2.2	2.5	62.1	2.6	1.8	12
555		68.3x	67.15	C6. 0	EE.4	67.0	3.8	1.0	67.00	3.8	1.0	4
562		E 1.8	63.7	64.63	62.1	63.1.	3.8	1.3	63.6	3.5	1.1	12
568		62.4	62.3	61.2	E4.3	C2. 6	2.8	1.3	61.2	3.1	1.4	12
572		68.3x	64.9	68.2	E6.0	66.9	3.3	1.7	65.8	3. 5	1.7	10
578		61.7	38.81	62.7	63.8	56.7x	2.8	12.0	61.7	3.2	7.8x	12
579		64.2	66.55	67.9	66.9	66.4	3.6	1.6	66.4*	3.6	1.6	4

	- $\mathrm{E}-1$	WE-2	WE-3	VI-4	GRAND			AVERAGES CUMOLATIVE
						THIS	MONTR	
Av MEAN	63.1	63.3	63.4	63.5	AV	MEAN	63.3	63.2
AV Str	2.7	2.6	2.8	2.8	AV	SDR	2.7	2.8
SD LABS	1.8	1.6	2.1	1.6	SD	LABS	1.8	1.8
NG. INCL	§3	51	49	45	N6.	1 NCL	49.5	50.7
NO.6M1T	3	-	2	2	AV	301需S	1.4	1.3
NGT RCD	0	1	5	9	SD	CUM ME		1.6
SD SHTS	2.0	1.9	2. 1	1.9				

U.S. DEPT. OF COMM BIBLIOGRAPHIC DATA SHEET	1. PUBIIC:ATION OR RIEPORT NO, FKBG CRP 99	2. Gov't Acceession No.	3. Recipient's Accession No.
4. TITIIE AND SUBTITII: CONTAINERBOARD Collaborative Reference Program for Containerboard Report \#99			5. Publication 1)ate $1 / 31 / 78$ 6. Performing Organization Code
7. AUTHOR(S) E. B. Randall, J. Horlick, J. F. Stevenson			8. Performing Organ. Report No. NBSIR 78-1328
9. PERFORMIN(; ORGANIZATION NAME ANI) ADIIRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234			10. Project/Task/Work Unit No. \qquad 11. Contract/Grant No.
12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP) Collaborative Testing Services, Inc., 9241 Wood Glade Drive, Great Falls, VA 22066; and American Paper Institute/ Fourdrinier Kraft Board Group			13. Type of Report \& Period Covered Final
			14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES
16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a sıgnificant bibliography or literature survey, mention it here.)

Collaborative Reference Programs provide participating laboratories with the means for checking periodically the level and uniformity of their testing in comparison with that of other participating laboratories. An important by-product of the programs is the provision of realistic pictures of the state of the testing art. This is one of the periodic reports showing averages for each participant, within and between laboratory variability, and other information for participants and standards committees.
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word untess a proper name; separated by semicolons)

Collaborative reference program; Containerboard; Laboratory evaluation; Precision, Reference samples, Testing calibration
18. AVAILABILITY $\quad \square^{-}$Unlimited

XX For Official Distribution. Do Not Release to NTIS
[Order From Sup. of Doc., U.S. Government Printing Office W'ashington, D.C. 20402 , SD Cat. No. C13
\square Order From National Technical Information Service (NTIS) Springfield, Virginia 22151
19. SECURITY CLASS
(THIS REPURT)

UNCL ASSIFIED
20. SECURITY CLASS (TIIIS PAGE)

UNCLASSIFIED
21. NO. OF PAGES

17
22. Price

