
A111D3

The State of State Tables in the AMRF

*8

Don Libes

Integrated Systems Group

National Bureau of Standards

Gaithersburg, MD 20899

AMRF Technical Report #1

NBSIR 87-3541

ABSTRACT

This paper discusses the representation of automation

control algorithms by state tables. Earlier papers favoring state

tables are discussed in light of experience since they were writ-

ten. It is suggested that the disadvantages of state tables out-

weigh their advantages and that we ought to look to more pow-

erful representations.

This paper is concerned with representational adequacy

for humans, and unless explicitly stated otherwise, the word
"representation" will refer to this. This paper does not discuss

"representations for computers".

Keywords: Automation Control Algorithms, State Ta-

bles, Algorithm Representation, Programming Languages

Background - The Automated Manufacturing Research Facility

The National Bureau of Standards Automated Manufacturing Research Facility

(AMRF) [Nanzetta84J is addressing issues related to computer/machine/robot/tool interface

standards as they relate to small batch manufacturing. An automated factory is envisioned

using a generic control schema at all levels. The factory at all levels is seen as a hierarchy

much like a real factory or other natural hierarchical systems (such as a bureaucracy). Each

process may communicate or control several processes but is controlled, itself, by only one

other process.

nr
ierarchical structure of a factory can be represented as a tree with the facility

1 00 the root. Below the facility controller are shop controllers, which in turn com-
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mand cell controllers. Below each cell controller are workstation controllers, and below this,

equipment controllers. Each of these controllers is internally hierarchical. For example, the

robot hierarchy includes controllers for an arm and gripper at a high level, while at the lower

levels these are broken down into many individual controllers, one for each motor. For more

information, see [Simpson82].

State Tables for Process Control

It is believed that computation can be broken down in this manner so that the levels

themselves are computationally simple. Furthermore, each level can be in one of a very few

states. [Barbera82] suggests 7±2, the size of human short-term memory according to many
psychologists. One would be able to understand the states of such a state table in its entire-

ty-

In practice, however, state tables are much larger than 7±2. We have programmed

state tables requiring over a hundred states and several times as many transitions to

achieve those states.

It is not clear if state tables are a relief from complexity at all considering

[Barbera82], "...the entire input state, not just some subset of the input state, must be evalu-

ated for each output. In order to implement a system that accomplishes this while remaining

comprehensible, the system has been structured so that each control level is a state-table

process where all of the inputs are sampled each time an output is to be generated."

[Barbera82] goes on to say that "The input state is defined by the data that encode

the input command, the processed sensory information, the status from lower levels and the

internal state values." These input values are matched against a preprogrammed set of val-

ues that select sets of outputs (via procedures) to be triggered.

In the AMRF, the number of variables referenced at one level of the hierarchy is large

(say, 25 to 100). The researcher is thus potentially faced with building an immense state ta-

ble. Needless to say, this is not what is done. In actual practice, several tricks are used to

cut down on the number of variables appearing in the tables. Before a state table is evaluat-

ed, raw variables may be "preprocessed" into a much smaller number of state variables. This

preprocessing (and a similar phase after state table evaluation called "postprocessing") step

is programmed in a conventional high-level language. State selection during state table eval-

uation may also trigger execution of conventionally-programmed procedures.

The ability to execute conventional procedures is useful (and necessary). It can re-

move nitty-gritty details from the state tables and allow them to remain unencumbered from

trivia. However, it is not clear what variables belong in the state table; or what decisions

should be performed with the state table vs the pre- and post-processing steps. In general,

researchers are inclined to push processing details into the conventional programming lan-

guage when the the number of variables is unwieldy (say, greater than 7). Similarly, ioels

which are rather trivial encourage state tables to be filled with minutiae, since otherwise the

tables would be virtually empty.



-3-

In other respects, a process’ internal exposition is not unusual. Subroutines may be

called by subroutines much as in any programming system. Only the highest routine must

(and can) be a state table. Of what benefit is this?

Thus, state tables may always seem to be "about the right size" when in fact this

goal has been artificially (and subconsciously) achieved. In empirical observation, the num-

ber of transitions (state table lines) tends to be of the order of the square of the number of in-

put and state variables. For example, a state table with 6 variables tends to have close to

36 transitions.

transitions = 0( input variables2)

Figure 1 - Empirical observation of size of state tables

One way to reduce the large number of states that this implies, is to group related

states into smaller tables which are selected based on a primary test of one variable. This

was actually done in several of the projects at the AMRF that used state tables. Of course,

the remaining tables could be split similarly (and split ...) until the system would look like it

was programmed in a conventional programming language. I will discuss why or why not

this is good.

State Tables - Advantages & Disadvantages

An early paper [Albus82] in the project cited many advantages for using state tables,

that will be presented further on. Experience has shown that some of these advantages,

while theoretically sound, do not work well in practice. Some claimed advantages are simply

wrong. I will discuss and explain these as well as the real advantages of state tables, as 1

see them.

In [Albus82], state graphs, petri nets and state (transition) tables were all suggest-

ed as possible representations. The authors suggested algorithms could be represented as

state graphs and by using a procedure (given in the paper) automatically be converted to

state tables. However, the meat of the paper is spent citing advantages of using state ta-

bles themselves as appropriate representations for control algorithms. Seven advantages of

state tables over conventional high-level languages (HLL) are elaborated. One disadvan-

tage is mentioned.

I will discuss these advantages and disadvantages of state tables in the light of expe-

riences using them. The claimed advantages of state tables are as follows:

1 ) "clarify and simplify design and synchronization of simultane-

ous processes."

State tables have no facilities for handling synchronization (cf. Petri nets). This must

be handled by hand. For example, initiating n independent processes and then waning for
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their completion requires l+2n states. (1 state to initiate them and 2
n

to wait for them, since

they may complete in any of 2
n
orders.)

2) "at each cycle the system deals only with the present state and

the present input. This enormously simplifies ... control ... be-

cause it partitions the problem domain and restricts it to a small

number of variables with a limited time horizon."

There are several misleading ideas here.

First, the phrase "present state" means a subset of the entire present state. After

all, with complete knowledge of the present (and enough computing power) you could accu-

rately predict the future as well as have complete history from then on. The idea is to select

a small number of variables, such that you are not computationally overwhelmed and yet can

make informed decisions about what to do next. This idea is no different from high-level lan-

guage programming. The assumption that programs have more context (history) than state-

tables is a superficial view, probably based on the observation that the context of programs

is more obvious than state tables.

Second, while decisions at any one moment rest upon a small set of variables, (a

place for) each state table variable is present in every line of the state table whether it is

germane or not. This may simplify control, but readability suffers.

Last, a limited time horizon is easier to achieve with state tables (as opposed to con-

ventional programming languages) but this has its pitfalls, such as the horizon effect

[Winston]. (See (3) for an example of this.)

3) "unanticipated error conditions ... can simply be ... added to the

state table."

While it is possible to easily add lines in a state table for unanticipated states, such a

"no match" condition may be indicative of a more serious fault, where the actual error oc-

curred far back in time, but wasn’t caught at that time. For example, indexing beyond the

end of memory is not an indication that more memory is needed (the local view). Rather, it

points to an error in a loop termination condition (the global view). (This is an example of

the horizon effect, referred to in (2).) In practice, symptoms such as unanticipated states are

not as easily fixed as by adding a line to a state table.

4) "new sensors or tests are easily handled by inserting a new line

in the state table. ...inserting new lines into the tables ... does

not alter the operation of the previously entered lines."

Adding a new sensor or test impacts all states in the state table. Each possible set of

conditions must now be considered anew with respect to the new test.

Also, adding state table lines (tests) tends to dramatically increase state table rows

(transitions). If an independent n-valued test is added, the addition of such a <h-w line can
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cause the number of total states in the state table to increase n-fold. If a dependent test is

added, the size of the state table increases by at least the number of extant tests. In each

case, the addition of one additional test significantly increases complexity. If a test is added

that causes no increase in transitions, it was redundant to begin with.

By representing conditions as in a set of production rules, "don’t care" conditions are

obviated and the increase in state transitions becomes linear. This technique was used in

the HCSE [BBN80] system, however the HCSE shares all of the other faults of state tables.

In conventional programming languages, dependent tests are typically added in a

more ad hoc manner. Often a section of code will be rewritten or restructured so that it

"makes sense" again. Because of this, the growth of size and complexity is linear and strictly

local to the affected area. Independent tests cause the same polynomial growth as in state

tables but such tests can be localized from interacting with other tests, thereby significantly

diminishing this growth.

5) the if/then structure of state table lines resembles production

systems, and "state tables have all the characteristics of an AI

expert system"

This statement indicates a common misunderstanding of AI production systems

(which I intend to stamp out right here). Only on the surface are state tables like the if-then

rules of expert systems. In such rule-based expert systems, the knowledge of the system is

encoded in if-then rules which trigger actions. Rules can be weighted according to their rele-

vance. In "programming", an expert congeals a rule or guideline that he has found to be use-

ful ("almost always true"). The rules are sometimes hunches and educated guesses about

the way to proceed in problem solving. Expert systems are characterized by "inexact rea-

soning, using hunches or heuristics to guide and focus what would otherwise be a search of

an impossibly large space" [Barr]. In general, such systems are heuristic - they are not

guaranteed to give the optimal answer, just a usable one. Rules may be incorrect, contradic-

tory and misleading and yet the system will still work. (This is much the case with the

knowledge of most humans.)

In contrast, when a rule from a state table is selected, it must be the correct, best and

only rule that is appropriate to the situation. In this case, the programmer must understand

the impact of any change or small addition to a rule may have on all other state table rules.

When designing or debugging a state table, the programmer must understand the state table

in its entirety. One of the original bases for using state tables is that the limited number of

states and interactions allowed an easy and total grasp of a state table.

6) debugging, "since the set of conditions that lead to and from a

state are clearly specified, it is easy to perform traces, set break

points and to reason backwards from error states. The system

is completely deterministic and errors in logic are possible to re-

construct. Bugs are ... simple to locate and correct."

This brings us to one of the primary disadvantages of state tables. State tables are
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not "easy to debug". This is primarily because there is no explicit previous!next state infor-

mation. By looking at a state, you cannot tell what the previous state was, nor can you tell

what the next will be. For this reason, "reasoning backwards" is extremely difficult. If you

explicitly sequence the state table, you may as well use an HLL where sequencing is implic-

it. In practice, adding new lines during debugging forces one to explicidy reconsider state se-

quences, whether they are explicit in the table or not. Also, see (3) and (4).

For the same reason, state tables are not easy to read. (They may be clear for "toy"

examples using a limited number (i.e. 2 or less) of variables as early examples show.)

Additionally, state tables are thoroughly unexpository as far as displaying algo-

rithms. The tabular notation, complete with its "don’t cares" lends no help in expressing the

basic components of any algorithm or data structure. As an example, a simple "bounded-

loop" requires 4 state transitions. (See figure 2.)

INPUTS OUTPUTS

comment current-state test next-state procedure

initialize

test succeeds

test fails

increment

exit

initial-state

test-state

test-state

increment- state

exit-state

don’t care

true

false

don’t care

don’t care

test-state

increment-state

exit-state

test-state

initialize

body

don’t care

increment

Figure 2 - bounded loop rendered as a state table

This is a trivial state table - it has no synchronization, handshaking or other difficult

problems; it only has two input variables - and yet it is completely opaque! Now imagine a

state table with 5 inputs and 25 state transitions. Or 9 inputs and 81 state transitions.

Figure 3 shows the same loop rendered as a state graph. The primary difference here

is that sequencing, rather than done implicitly or explicidy, is embedded in the representa-

tion. A secondary advantage is that "don’t cares" are realized as truly redundant and do not

appear in the graph. In other ways, however, a state graph representation is not much better

than the original state table. (The interested reader may compare this state graph to one



- 7 -

directly derived from the state table in figure 2.)

y

Figure 3 - bounded loop rendered as a state graph

Figure 4 shows the same "bounded- loop” in a high-level programming language,

for ( initialize test increment ) body

Figure 4 - bounded loop rendered in a high-level programming language

7) "...make it possible to develop programs which learn complex

skills incrementally."

The use of the word "learn" brings so many misleading connotations (such as the im-

plication that a system can improve future behavior by studying past experience), it should

be used extremely carefully. Suffice it to say. none of the AMRF systems are "learning" sys-

tems, nor are they meant to be. I suspect what that was meant was that "programming

could be done incrementally". This is the anathema of any structured programming style

(top-down, bottom-up, step-wise refinement, etc). This inefficient practice leads to incon-

sistent programs, having been patched and juried up as each successive run exposes another

unthought of problem that must be handled. Such kludged programs will always have "yet

another bug" since they are designed with the belief that "we’ll fix it when we come to it",

rather than "lets consider the structure in toto".

8) There are usually "more lines in a state table than are state-

ments in a corresponding procedural program."

This, the sole disadvantage mentioned about state tables, is hardly worth complain-

ing about and I believe the authors knew that. This is an amazingly trivial complaint, espe-
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cially considering that there are much more substantial ones.

Using "more lines" is perfecdy reasonable if there is some gain in ease of representa-

tion. However, readability is never mentioned as a benefit of state tables. (Let the record

show that I don’t know of any truly "readable" HLLs either.) It is possible that some type of

graphical representation (such as a state graph) might be much more readable than either a

state table of a HLL.

Do state tables have any real advantages? or,

What are the alternatives?

It is not clear that state tables have any worthwhile advantages over any decent pro-

gramming language. Certainly the advantages don’t outweigh their disadvantages.

Not really an advantage but worth bringing up is the point that state tables provide di-

rect representations of discrete-time systems, which is what the architecture of the AMRF
is designed around to begin with. However, just because we have found an accurate low-

level description does not mean that we cannot work with a high-level language and auto-

matically generate (i.e. compile, interpret) low-level code for computer consumption. (E.g.

machine code is a very accurate representation of a computer program, but no human commu-
nicates with a computer at that level.)

One benefit is the tabular form, which allows clear association between output values

and states. Although not as graphically clear, the same effect can be accomplished with mes-

sage passing semantics in a high-level language. This is an example, of what 1 mean by a

"seductive misadvantage". The tabular form is extremely neat and clean. It is simple to

evaluate. There is no language to understand or get in the way as you read or write it. But

while these are all true, you suffer exactly for having this simplicity. Its fine for a computer to

work in this fashion, but not for a person.

In a state table, predefined variables are bound with state-driven values at each

cycle. These values may then be referenced by other processes. With a high-level lan-

guage, state changes may be declared whenever convenient. A new state with new outputs

may be declared by calling "synchronize-state" which would send and receive predeclared

(or any, for that matter) variables to and from (for example) a common database. This would

update the current process’ view of the world and the database (which in turn would update

other processes as they performed a "synchronize-state").

In a tightly coupled system, where processes actually share common memory for effi-

ciency (or if there was no message-passing system available), a basic synchronization

mechanism (semaphores, monitors, etc.) could be used to allow processes to temporarily

lock variables while they were being updated. Thus, a process could enter a critical section

in order to perform atomic actions such as updating a set of outputs.

Another benefit is that handling unexpected or erroneous behavior with state tables

is potentially not as ad hoc as HLLs. This is because all variables are checked at the begin-
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ning of each state cycle. However, this has the drawback of enforcing an alien context-free

structuring on the problem. Because of this, the programmer must deal with algorithms on

the level of minutiae, while constantly considering how error conditions impact. This point

should be driven home by comparing Figures 2 and 4.

This might all be worthwhile if state tables were really capable of handling arbitrary

behavior, but in practice the large number of states prohibits all but the simplest type of er-

ror-handling.

For example, if an error is detected, it is possible to try and recover from this error al-

though certainly how this is done will depend on the complete state of the process. I claim

that this will either never be done or that error recovery will be done extremely simplisticly,

primarily due to the number of states that the system could be in. Imagine the state table

that had recovery routines for different errors in all the different states.

Trying to produce error detecting and correcting code in state tables also has to han-

dle the problems of simultaneous error handling. Since states have no implied ordering or pri-

ority between them, either an ad hoc arbitration scheme must be used in the case of multiple

matches, or the programmer must explicitly provide an exponential number of states to han-

dle all the combinations in which that error condition can happen.

An alternative (and what is done in any sequential programming system) is to check

all commands for errors (which is often what is done in AMRF state tables, anyway). If

problems are encountered, there is knowledge local to that context that can attempt to fix

things. Asynchronous conditions can be handled by asynchronous interrupt handlers. Writ-

ing an interrupt handler for each type of error is much easier than trying to think of all the pos-

sible error states and their combinations that can occur. As opposed to a state table, it is

typical that interrupt handlers are prioritized. (Error handlers must be prioritized in state ta-

bles as well, but this is done artificially.)

State tables are general enough to implement any algorithm when procedures can be

attached to state transitions. Procedures can be used to hide miscellaneous information from

the state tables, enhancing readability. However it is not clear what should be hidden ver-

sus what should be explicit. In practice, an excessive number of state variables are dealt

with by processing them in procedures and vice versa.

Generality is not equivalent to suitability. Consistent standards are nice, but, is it

reasonable to expect that one formalism is appropriate for the complete range of highest to

lowest levels in a control hierarchy (or any two levels for that matter)? The type of control

(and thence programming) occurring at each level becomes quite dissimilar as the distance

between levels increases. For example, high levels of the AMRF handle problems such as

machine scheduling and configuration. Low levels handle operations such as adjusting power

to load or stepping a servomotor.

In [Albus81], the hierarchical control of a human is presented. Even though some of

this physiology is not well understood, it is apparent that the computational units are quite

different in complexity. At the lowest level of the hierarchy, the neuron computes by
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(weighted) summing of inputs, providing a scalar output. This computational device is capa-

ble of performing pattern matching (of which state table evaluation is a subset). At a medi-

um level, the spinal cord is a "formidable computational machine" with a one or two-level

structure. Such a one or two-level structure is capable of computing "flight patterns of a bee"

and other sophisticated control tasks. At the highest level of the brain, computation is total-

ly symbolic, massively parallel and allows explicidy heuristic and conceptually abstract rea-

soning. Even though the brain is made up entirely of neurons, these neurons themselves are

not used individually except at a very primitive level. At higher levels they are combined to

form much more powerful computational machines.

It is true that state tables are capable of describing any type of behavior but only at

the cost of added complexity in building constructs that should normally be ignored. For ex-

ample, iteradon, looping, recursion and other tools all require substantial effort to represent

in state tables, whereas they are effortless in high-level programming languages and human
thought. Is it necessary to force us to deal with all the details at this extremely primitive lev-

el?

Conclusion

State tables are a seductive but deficient representation having so many disadvan-

tages and so few advantages that they should be discarded. It is not clear if there is an ideal

representation (we are still working on that) but either of state graphs or high-level lan-

guages are much easier to work with than state tables. A great deal of work on automatic

programming and graphical programming is currently underway (e.g. [Reiss84]). I expect

that such very-high-level languages will soon be very important to us and that we should be

studying these alternatives now.

The occasional processes or algorithms that are appropriately expressed simply by

state tables can still be represented within a high-level language. Certainly, most modem
high-level languages have facilities (such as a case statement) to provide state table-like

decision processing.

In summary, the primary disadvantages are:

1) State tables force an artificial context-free structuring on pro-

cesses that aren’t.

2) Parallelism and synchronization are hard to represent.

3) Simple algorithms are obtuse when represented using states.

4) Since there is no explicit sequencing, this must either be provid-

ed or done ad hoc.

5) Lastly, the number of states in a state table tends to be expo-

nentially related to the number of variables.
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It is possible that good implementations of a state table system may allow use of

state tables with little pain. For example, one would expect a state-table evaluator to be

able to set breakpoints or keep a history of states. However, providing a sophisticated pro-

gramming environment for state tables is analogous to providing sophisticated tools to mini-

mize logic circuits (i.e. minimize Karnaugh maps) when you should be using microprocessors

to begin with. In other words, one would be better off starting with a more powerful or appro-

priate language to begin with.
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