
Computer
Systems
Technology
U.S. DEPARTMENT OF
COMMERCE
National Institute of

Standards and

Technology

Nisr
NAT L INST. OF STAND & TECH R.I.C,

nIST Special Publication 500-179

Object Database
Management Systems:

Concepts and Features

Christopher E. Dabrowski

Elizabeth N. Fong

Deyuan Yang

A111D3 3aTS7t,

REFERENCE

NIST

PUBLICATIONS

-QC"

100

U57

500-179

1990



NATIONAL MSTrrUTE OF STANDARDS &
TECHNOLOGY

Research Informatm Center
Gaithersburg, MD 20899



NIST Special Publication 500-179
t

Object Database
Management Systems:
Concepts and Features

Christopher E. Dabrowski

Elizabeth N. Fong

Deyuan Yang

National Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

April 1990

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director



Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards)

has a unique responsibility for computer systems technology within the Federal government. NIST's

National Computer Systems Laboratory (NCSL) develops standards and guidelines, provides technical

assistance, and conducts research for computers and related telecommunications systems to achieve

more effective utilization of Federal information technology resources. NCSL's responsibilities include

development of technical, management, physical, and administrative standards and guidelines for the

cost-effective security and privacy of sensitive unclassified information processed in Federal computers.

NCSL assists agencies in developing security plans and in improving computer security awareness train-

ing. This Special Publication 500 series reports NCSL research and guidelines to Federal agencies as well

as to organizations in industry, government, and academia.

National Institute of Standards and Technology Special Publication 500-179
Natl. Inst. Stand. Technol. Spec. Publ. 500-179, 63 pages (Apr. 1990)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1990

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402



PREFACE

The National Computer Systems Laboratory (NCSL) (formerly
Institute for Computer Sciences and Technology (ICST)) within
the National Institute of Standards and Technology (NIST)
(formerly National Bureau of Standards (NBS) ) has a mission
under Public Law 89-306 (Brooks Act) to promote the "economic
and efficient purchase, lease, maintenance, operation, and
utilization of automatic data processing equipment by federal
departments and agencies." When a potentially valuable
technique first appears, NCSL may be involved in research and
evaluation. Later on, standardization of the results of such
research, in cooperation with voluntary industry standards
bodies, may best serve federal interests. Finally, NCSL helps
federal agencies make practical use of existing standards and
technology through consulting seirvices and the development of
supporting guidelines and software.

A new information management technology, called Object
Database Management Systems (ODBMS) is rapidly emerging. A
common definition of ODBMS is needed to avoid confusion among
the users, vendors, and standards developers in the database
community. The purpose of this report is to describe object
concepts and identify a set of features associated with ODBMS.

Certain commercial software products and companies are
identified in this report for purposes of specific illustra-
tion. Such identification does not imply recommendation or
endorsement by the National Institute of Standards and
Technology, nor does it imply that the products identified are
necessarily the best available for the purpose.

iii





ABSTRACT

The last decade has seen the emergence of object
concepts and their infusion into information systems
technology. This phenomenon began with the advent of
programming languages that included object concepts.
More recently, object concepts have been merged with
database management system technology, resulting in the
production of some object database management systems.
As a result, the term object database management system
(ODBMS) is now becoming a recognized and important topic
in the database community. The purpose of this report
is provide managers and software analysts a state-of-
the-art review of object concepts and to describe
features associated with object database management
systems

.

Keywords: class; database; database management system;
object; object-oriented; object database management system;
ODBMS

.

ACKNOWLEDGMENTS

The technical work for this report was done through
extensive review of published literature and hands-on
experimentation with three donated object database manage-
ment systems. We would like to thank these system vendors
for their cooperation and their donation of these systems
to the Knowledge-Based Systems Laboratory of NCSL.

We also acknowledge the contributions of David Jeffer-
son, Joseph Collica, Leonard Gallagher, Wayne McCoy, Bruce
Rosen, and Thomasin Kirkendall of NIST who read early
versions of this paper and provided valuable advice.

V





TABLE OF CONTENTS

1.0 INTRODUCTION 1

1.1 Motivation 1

1.2 New Requirements for Database Management Systems 2

1.3 New Possibilities in Database Management Systems 2

1.4 The Outline of this Report 3

2.0 OVERVIEW OF OBJECT CONCEPTS 5
2.1 What is an Object? 5

2.2 Communicating With Objects: Messages and Methods 6

2.3 Encapsulation of Objects 7

2.4 Classes of Objects 7

2.5 Inheritance 8

2.6 Class Hierarchy 9

2.7 Polymorphic Behavior and Run Time Binding ... 10
2.8 Composite Objects 11

3.0 OBJECT-ORIENTED PROGRAMMING LANGUAGES 13
3.1 The Development of Object-Oriented Programming 13
3.2 Characteristics of Object-Oriented Programming

Languages 14
3.3 The Need for Persistence and Data Sharing ... 14

4.0 DATABASES, DATA MODELS, AND DATABASE MANAGEMENT
SYSTEMS 17
4.1 Databases 17
4.2 Data Models 17
4.3 Database Management Systems 17
4.4 Databases, Database Management Systems, and

Database Systems 19

5.0 THE OBJECT DATA MODEL 21
5.1 The Structural Aspects of the Object Data Model 21
5.2 The Operations of the Object Data Model .... 22
5.3 The Integrity Rules of the Object Data Model . . 2 3

5.4 The Object Data Model versus the Relational Data
Model 2 3

6.0 THE ODBMS ARCHITECTURE AND FEATURES 2 7

6.1 Overview of the ODBMS Architecture 27
6.2 The ODBMS Database Language 3 0

6.3 Message Processing 31
6.4 Schema Definition and Modification 32
6.5 Transaction Management 3 3

6.6 Storage Management 3 5

6.7 Security and Semantic Integrity 3 7

6.8 The Distributed Features 3 7

vii



7.0 RECENT DEVELOPMENTS IN ODBMS 41
7.1 Extending OOPL to Include DBMS Functions ... 41
7.2 Extending Conventional or Relational DBMS ... 41
7.3 Review of ODBMS ................ 43
7.4 Standardization 44

8.0 ISSUES AND CONCLUSIONS 45
8.1 Issues 45
8.2 Conclusions 47

9.0 REFERENCES AND RELATED READINGS 49

APPENDIX - GLOSSARY 57

viii



1.0 INTRODUCTION

The purpose of this report is to provide managers and
software analysts a state-of-the-art review of object concepts
and to describe features associated with object database
management systems (ODBMS)

.

At the present time, there are many areas in computer
science in which object concepts are being applied. The scope
of this report is limited to the object data model and object
database management systems.

1.1 Motivation

In the past 3 0 years, information systems technology has
advanced rapidly and produced remarkable achievements. Data-
bases have evolved from simple file systems to complex and
highly interrelated collections of data that now serve large
communities of users and support numerous and diverse applica-
tions.

The last decade has seen the emergence of object concepts
and their infusion into information systems technology. This
phenomenon began with the advent of programming languages
based on object concepts.^ Object-oriented programming has
since come to be associated with state-of-the-art software
development practices. It has also been connected to new
disciplines such as artificial intelligence and interactive
computer graphics.

More recently, object concepts have been merged with
database management system technology, resulting in the
production of commercial object database management systems
[ZDON90] . As a result, the terms object database and object
database management system have now become commonly used
buzzwords in the database community.

However, among many potential database application develop-
ers and users, little is actually known about this new
technology. Part of the reason is a general lack of knowledge
about what the term "object" means, what object-oriented
programming is, or what an object data model might be.
Similarly, there is a lack of understanding about what an

^SMALLTALK [GOLD83] was the first serious effort in
developing an object-oriented programming language for
industrial use.

1



object database management system is and how it differs from
traditional database management systems.

1.2 New Requirements for Database Management Systems

Database management systems (DBMS) have proven to be cost-
effective tools for organizing and maintaining large volumes
of data. In government and business enterprises, databases
are increasingly becoming the focus of many new and varied
applications. Many of these applications have data processing
requirements which exceed the capabilities provided by
database management systems oriented toward business data
processing.

Applications associated with such emerging technological
disciplines as computer aided design (CAD) , geographic
information systems (GIS) , and knowledge-based systems (KBS)
now require databases which can store large quantities of
information having complex structures. Further, these
applications require support for data types not supported by
conventional systems. For example, a database supporting a
large engineering design system may have to store tremendous
amounts of data in the form of technical design diagrams and
descriptions. The database schema must be able to express the
complexity of the overall design as well as the relationships
which exist between individual design components. Additional-
ly, the database must also support the operations which must
be performed during the course of design activity.

Often, conventional database management systems based on
the relational, network, or hierarchic data models cannot
effectively meet requirements for representing and manipula-
ting complex information. Moreover, engineering or CAD
applications may require display of designs consisting of
groups of complex components which must be combined, separa-
ted, overlaid, and otherwise modified to perform various
design tasks. A new concept is needed to provide a basis for
the development of a database management system that can
effectively represent, retrieve, and update such information,
and also perform other data management functions.

1.3 New Possibilities in Database Management Systems

Object database management systems combine the novel
concepts associated with object-oriented programming languages
with the capabilities of database management systems. Object
database management systems are now at the early stages of
commercialization.

2



ODBMS have some features not traditionally present in
conventional database management systems. The object data
model permits representation of complex data structures and
type hierarchies and provides the ability to define data types
that combine both data structure and procedure definition.
This results in much greater flexibility in the representation
of structure and behavior in real-world systems.

ODBMS combine enhanced data typing capability, the ability
to define and manipulate complex data structures, the functio-
nality of a programming language, and database management
technology. By combining these diverse capabilities, it
creates new application development environments. These
environments can then be used to create large, sophisticated
software systems. The data management requirements of many
of these applications also differ significantly from those of
traditional business systems in such areas as transaction
management. ODBMS are evolving to meet these new require-
ments .

1.4 The Outline of this Report

This report will first provide a description of object
concepts in section 2. Section 3 contains a discussion of
object-oriented programming languages. This will provide the
reader with the necessary understanding of the object paradigm
and how object-oriented programming languages developed.

Section 4 discusses databases, data models and database
management systems. Section 5 presents an informal definition
of the object data model. Section 6 presents a general
description of the architecture of ODBMS. This architecture
will provide a basis for the identification of the key
features of ODBMS. Section 7 discusses recent developments
in ODBMS. Section 8 contains a discussion of ODBMS areas
which are still in the research stage, and then provides a

short conclusion section.

A glossary of terms, as they appear underlined in this
report, are presented in the Appendix.

3





2.0 OVERVIEW OP OBJECT CONCEPTS

There is no single agreed upon definition of what the terms
"object" and "object-oriented" mean. The term "object-
oriented" was originally associated with developments in
programming languages in the 1970s. More recently, new
approaches to data modeling and database managements have
begun to incorporate what are now called simply "object" con-
cepts.^

The foundation for object concepts is derived from advanced
developments in programming languages. Accordingly, for
computer professionals with backgrounds in database management
systems, object concepts are often new and confusing.

The purpose of this section is to introduce some of the
general concepts and terms associated with object techniques
and to compare and contrast these concepts, where possible,
to those found in database management systems.

2.1 What is an Object?

Conceptually, an object is something which is perceived as
an identifiable, self-contained unit, which is distinguish-
able from its surroundings. An object may be described by a
set of attributes that constitute an internal state, and a set
of operations which defines its behavior.

In the real world, we can easily identify many objects.
An example might be an airplane. An airplane is readily
identifiable and is distinguishable from its surroundings.
An object has a set of attributes that constitutes an internal
state which can change over time. The attributes for an
airplane might be direction, altitude, groundspeed (if it is
in motion) , weight, and color. An object also has a behavior
consisting of a set of operations. The operations of an
airplane might be the ability to move, change velocity, and
respond to stimuli such as wind or external temperature.

In a computer program, the concept of an object is imple-
mented as a software component. This component consists of
data structures and procedures. The object's data structures
represent its attributes while the object's procedures can be
invoked to perform the operations which define the behavior
of a real world entity it represents. For example, the object
AIRCRAFT can have variables for AIRCRAFT-ALTITUDE, AIRCRAFT-

^The word "oriented" is largely a noise word. In this
report, "oriented" will be omitted unless it is used to refer
to "Object-Oriented Programming Language."

5



DIRECTION, AIRCRAFT-GROUNDSPEED, AIRCRAFT-POSITION, and
AIRCRAFT-FUEL-CONSUMPTION. AIRCRAFT can also have defined
procedures to carry out its operations: SET-ALTITUDE, SHOW-
DIRECTION, COMPUTE-GROUNDSPEED, SHOW-GROUNDSPEED, COMPUTE-
FUEL-CONSUMPTION, SHOW-FUEL-CONSUMPTION, etc.

Objects are unique. Each object has an internal identifier
assigned to it known as an object ID ^ or handle . Hence, there
may be many AIRCRAFT objects, each with a unique object ID.

It is possible to think of the data structures associated
with objects in terms of the definition of an individual
database schema. In the AIRCRAFT example, altitude, direc-
tion, position, groundspeed, and fuel consumption might be at-
tributes of the schema. In a conventional database, the
attributes of AIRCRAFT might be stored as a record in the
database. However, conventional database management systems
generally do not support the specific association of proce-
dures with data.

2.2 Communicating With Objects: Messages and Methods

Communication with an object is accomplished by sending a
messacre to it. An object has a set of messages it responds
to which constitutes its public interface, or protocol .

Messages consist of the name of the message, the name of the
target object to which it is being sent, and the necessary
arguments, if any. When an object receives a message, one of
its procedures is invoked. The procedure then performs an
operation which may return a result. In most object systems,
procedures are referred to as methods, a term that will be
used throughout this report. A method may itself send
messages to the object or to other objects.

To see how this works in the AIRCRAFT example introduced
above, a computer program simulating the flight of airplanes
may model the effect of winds on an aircraft by sending a
COMPUTE-GROUNDSPEED message to an AIRCRAFT object. This
message would include arguments stating the direction and
speed of the wind. The COMPUTE-GROUNDSPEED method for the
AIRCRAFT object is then invoked and a new groundspeed and
direction are calculated. The corresponding variables are
updated, thus changing the object's internal state.

In an object system, message passing between objects is the
predominant mode of computation. The conventional top-down
program organization characterized by program control through
subroutine invocation is replaced by a collection of autono-
mous objects, which send and receive messages.

6



2.3 Encapsulation of Objects

The details of the operation performed are not specified
in the message and are not visible to the message sender. An
object's internal state is accessible only by the object
itself. An object's data structures may not be accessed and
updated directly by an external agent, but can only be
effected indirectly through message passing and method
invocation. This characteristic hiding of the object's
internal state is known as object encapsulation . Intuitively,
encapsulation of an object makes it into a "black box".

Objects can also be thought of in terms of data abstrac-
tion . Data abstraction is a technique used in many programm-
ing languages in which the operations and internal representa-
tion of a computational entity are partially removed from
external view. Abstraction allows the results of the entity's
computation to be seen while hiding the means by which the
computation is performed. An object is thus effectively
divided into two parts: an interface part and an implementa-
tion part. The interface part is the object's protocol, or
the messages to which it will respond. The implementation
part is the object's internal state and methods.

To return to the example, when the AIRCRAFT object receives
the COMPUTE-GROUNDSPEED message, the details of the method
performing the computation and the updates to the object's
internal state are not seen. However, the new groundspeed
and direction of the AIRCRAFT object may be obtained using the
object's protocol; by sending SHOW-GROUNDSPEED and SHOW-
DIRECTION messages to it which cause the values of AIRCRAFT-
GROUNDSPEED and AIRCRAFT-DIRECTION to be returned.

2.4 Classes of Objects

Objects having the same data structures and behavior can
be considered to be instances of the same type, or class . A
class has a description consisting of a set of common data
structures, known as instance variables , a common protocol
consisting of the set of messages that class instances will
respond to, and the set of methods for implementing common
operations.^ Classes are also sometimes referred to as
abstract data types [JOSE89].

Class descriptions serve as templates from which new
objects are created. Many classes may be defined in a

^ Not all object-oriented programming languages support
the class concept. For an example of an object-oriented
language without classes, see [UNGA87].

7



particular application. Each object is an instance of one of
the classes and has the same data structures provided in its
class description. However, the object ID or handle of each
instance is unique, and the internal states of different
instances, e.g., the values of their instance variables, may
differ. Each object responds to the same messages and
implements the same operations defined in the methods of the
object's class.

From the database viewpoint, a class can be thought of as
a record type consisting of the metadata which provides all
the information necessary to construct and use a particular
object. Similarly, it is possible to think of the instances
of a class as being records stored in a file. New records
having different values can be added to the file. A data
dictionary for the database management system may contain
descriptions of many different record types each with a
different set of attributes.

2 . 5 Inheritance

Complex applications which make use of objects, such as
CAD systems, often require the definition of many different
classes. It is possible to have a separate class definition
for each kind of object needed. However, if some objects are
more specific kinds of other objects, it would be natural to
take advantage of this relationship when defining classes.
This could be done by having class definitions in which a
specific class can share or borrow part of the definition of
a more general class.

The mechanism for creating a class definition that derives
instance variables and methods from another class definition
is called inheritance . When a class inherits instance
variables and methods from another class, it is referred to
as a subclass. The class from which the instance variables
and methods are inherited is a superclass . The concepts of
superclass and subclass are analogous to the concepts of
generalization and specialization familiar in data modeling
methodologies [SMIT77].

In the example, PASSENGER_AIRCRAFT and CARGO_AIRCRAFT may
be specialized types of AIRCRAFT. A PASSENGER_AIRCRAFT would
have all the attributes and derive much of its behavior from
AIRCRAFT. But it may have additional attributes, such as
number of passengers. PASSENGER_AIRCRAFT may also have a more
specific behavior not shared with AIRCRAFT, determined by
constraints such as maximum rate of descent.

PASSENGER_AIRCRAFT can thus be defined as a subclass of
AIRCRAFT, inheriting all the instance variables in the defini-

8



tion of the class AIRCRAFT, but also one of its own: NUM-
BER_OF_PASSENGERS . All instances of PASSENGER_AIRCRAFT will
have the instance variables of AIRCRAFT, but will also have
NUMBER_OF_PASSENGERS

.

Similarly, PASSENGER_AIRCRAFT may inherit SHOW-GROUNDSPEED
and SHOW-DIRECTION methods from AIRCRAFT, but have a separate
SET-ALTITUDE method defined for it with special constraints
on maximum rates of descent. The SET-ALTITUDE method defined
in PASSENGER_AIRCRAFT replaces or shadows the method of the
same name defined in AIRCRAFT. Additional methods may also
be defined for PASSENGER-AIRCRAFT giving it the capability to
respond to messages that its superclass cannot.

2.6 Class Hierarchy

With inheritance, class hierarchies can be created which
reflect natural relationships found in real world domains.
For instance, we may further specialize PASSENGER_AIRCRAFT
into subclasses, for example, COMMUTER_PLANES and AIRLINERS.
Figure 2.1 shows an example of class hierarchy.

AIRCRAFT

CARGO AIRCRAFT PASSENGER AIRCRAFT

COMMUTER PLANE AIRLINER

Figure 2.1 - Example Of Class Hierarchy

By extensive inheritance of instance variables and methods,
class hierarchies can be created which significantly reduce
the amount of code needed to implement an application. For
this reason, object-oriented programs are said to promote code
reuse .

It is also possible for a class to have more than one
superclass. This is known as multiple inheritance . Object-

9



oriented languages which support multiple inheritance can be
used to produce class structures which are nonhierarchical

.

For this reason, multiple inheritance is often advantageous
in programming applications with more complex modeling
requirements. Issues relating to multiple inheritance are
discussed in [CANN82] and [CARD90]

.

2.7 Polymorphic Behavior and Run Time Binding

Polymorphism adds an important dimension to an object's be-
havior. Polymorphism means that an object's response to a
message is determined by the class to which the object
belongs.^ Instances of different classes can be addressed in
a uniform manner, e.g., receive the same messages, yet exhibit
different behaviors.

In the example, polymorphic behavior can be achieved by
first defining two classes of airplanes: PASSENGER_AIRCRAFT
and CARGO_AIRCRAFT . Then, a COMPUTE-FUEL-CONSUMPTION method
may be defined for each class, but with a different procedure
specified in each method definition. Instances of either
class can respond to COMPUTE-FUEL-CONSUMPTION messages,
however the calculation of the fuel consumption rate will
differ depending on the class of the airplane object.

Another kind of polymorphic behavior is associated with
inheritance. An object's response to a message can be
determined by methods inherited from a superclass. For
instance in the example described above, PASSENGER_AIRCRAFT
inherited SHOW-GROUNDSPEED and SHOW-DIRECTION methods from
AIRCRAFT. When a SHOW-GROUNDSPEED message is sent to an
instance of PASSENGER_AIRCRAFT, the response is made by the
method obtained from the definition of AIRCRAFT.

Multiple Inheritance permits definition of complex forms
of polymorphic behavior which can sometimes involve combining
methods from two or more superclasses.

Polymorphic behavior is closely associated with run time
binding, or dynamic binding . Run time binding means that the
selection of the method to respond to the message is made at
run time, as opposed to compile time. This means that the
precise method which will be executed is not known until run
time. The selection is actually performed by an internal
mechanism maintained by the system for this purpose.

More generally, polymorphism refers to being able to
apply a generic operation to data of different types. For
each type, a different piece of code is defined to execute the
operation.

10



2.8 Composite Objects

Composite objects ^ or complex objects , are among the most
recent developments in object technology. A composite object
is made up of other objects. In other words, it is con-
structed from a collection of parts, each of which is itself
an object.

For instance, an AIRCRAFT might be defined as a composite
object consisting of separate parts for JET_ENGINE, FUSELAGE,
COCKPIT, etc. Each component part is an object and an
instance of a class. The process can be extended to produce
a part hierarchy , illustrated below in Figure 2.2.

AIRCRAFT

FUSELAGE JET_ENGINE COCKPIT

INSTRUMENT PANEL PILOT_SEAT

Figure 2.2 - Example of a Part Hierarchy

Individual components are said to be in an "Is-Part-Of"
relationship to the composite object. For instance, INSTRU-
MENT_PANEL and PILOT_SEAT are in an "Is-Part-Of" relationship
to COCKPIT.

Composite objects have proven useful in many application
domains. Some examples are the modeling of part hierarchies
in engineering design systems, and representing spatial data
in geographic information systems.

Composite objects have special requirements for generic
operations on their components [DAYA90]. These include opera-
tions for manipulation of the composite object as a whole, for
manipulation of component subsets; and the ability to define
operations which can be propagated to components via relation-
ships. Experimental implementations which support composite
objects are described in [DAYA90], [BLAK87], and [KIMW87a]

.

11





3.0 OBJECT-ORIENTED PROGRAMMING LANGUAGES

The purpose of this section is to describe how object-
oriented programming languages (OOPL) developed and to provide
an understanding of what an object-oriented language is.

3.1 The Development of Object-Oriented Progreunming

The forerunner of object-oriented programming languages is
Simula [DAHL66]. Invented in the 1960s, Simula was based on
the Algol language. Simula was intended for simulation of
real world events and is usually credited with introducing
the concepts of encapsulation and class [HOR083]. One of the
first programming languages that supported objects as computa-
tional entities was CLU [LISK77].

The term "object-oriented" originated during the course of
the development of Smalltalk [GOLD83], [HOR083]. Smalltalk
resulted from a research effort undertaken in the 1970s at the
Xerox Palo Alto Research Center to develop new and more
productive ways of programming. The product of this work was
Smalltalk-80 , a comprehensive software development system
which included the Smalltalk programming language, an interac-
tive development environment and operating system, and a

personal computer workstation.

Smalltalk was the first programming language in which all
information was represented in objects and in which message
passing was the dominant mode of computation. The concepts
of class, inheritance, and class hierarchy became fundamental
parts of Smalltalk in its early stages.

The advent of Lisp machines in the early 1980s gave further
impetus to the development object-oriented languages. Among
these were Flavors, an object-oriented programming system
implemented on the Symbolics Lisp Machine, and LOOPS, an
object-oriented programming system developed at the Xerox Palo
Alto Research Center [STEF83]. Influenced heavily by Small-
talk-80, Lisp-based object-oriented programming systems were
crucial to the design and implementation of Lisp machine
operating systems and graphics software [CANN82]. At the
writing of this report, an ANSI Common Lisp standard is being
developed for the Lisp Language which will include a Common
Lisp Object System (CLOS) [BOBR88].

In the middle 1980s, Bjarne Stroustroup introduced an
object-oriented system for the C language called C++ [STR08 6]

.

This language implemented most of the object concepts pre-
sented in section 2 of this report and quickly became popular
among C developers.

13



More recently, a number of commercial programming lan-
guages have facilities which include at least some of the
object concepts presented in section 2. These include such
languages as ADA and OBJECT PASCAL.

3.2 Characteristics of Object-Oriented Progrcunming Languages

The commercial object-oriented languages of today vary
significantly as to which features they support. Yet, for the
purpose of this report, it is useful to have some sense of
which of the concepts described in section 2 constitute a core
set of features available in an object-oriented language.

The following list constitutes a generalized intersection
of features supported in the most widely used object-oriented
languages, e.g., Smalltalk, C++, and the CLOS:

o objects as definable programmatic entities,
o object encapsulation in some degree or form,
o definition of object classes,

o message passing,
o definition of class methods,
o run time binding.

o class inheritance,
o polymorphism.

Multiple inheritance and complex objects, while available in
some languages, are excluded from the list presented here.
There are also popular languages which do not support classes
or class inheritance but which are sometimes regarded as
object-oriented [UNGA87].

3.3 The Need for Persistence and Data Sharing

Data created by computer programs is transient, existing
only in the virtual memory system of the computer. Once the
program terminates, or if the machine crashes, the data may
disappear or be lost. Data persistence means that the data
a program uses can exist after the program terminates.
Persistent data is stored permanently on a secondary storage
device, such as a disk.

Similarly, in most programming languages, access to data
resident in the workspace of a computer program cannot be
shared among several users in a controlled manner which
ensures that the consistency and integrity of the data is
maintained. That is, mechanisms to control concurrent access

14



to data are not generally available in programming languages.

Yet, data persistence and concurrency control are necessary
for applications which require large amounts of data that must
be shared among many users. During the 1980s, experimental
programs using OOPL became more common, finally resulting in
the first commercial applications. As the amount of data
manipulated by object systems increased, and as the object
paradigm has begun to be used in design applications and in
other sophisticated domains of endeavor, the need for per-
sistence and data sharing became obvious. The solution to
this need has been to combine OOPL with DBMS capabilities,
resulting in the emergence of object database management
systems

.

Similar requirements motivated the development of the first
database management systems 2 decades ago.

15





4.0 DATABASES, DATA MODELS, AND DATABASE MANAGEMENT SYSTEMS

This section describes those database concepts necessary
to support the requirements for an ODBMS. The combination of
object concepts with features of DBMS forms the basis for an
ODBMS

.

4 . 1 Databases

The most important element of data management applications
is the data which resides in secondary storage. Every
database is a model of some portion of the real world.
Applications access the database and use this model. At all
times, the contents of a database represent a snapshot of the
state of an application environment. Therefore, it is
appropriate that the structure of a database mirror the
structure of the system that it models.

4.2 Data Models

The pattern used to organize the database and the relation-
ships within the data is called the data model [C0DD81] . A
data model can be considered as consisting of three com-
ponents:

o Data structure - the basic building blocks describing
the way data is organized.

o Operators - the set of functions which can be used to
act on the data structures.

o Integrity rules - the valid states in which the data
stored in the database may exist.

The primary purpose of any data model is to provide a
formal means of representing information and a formal means
of manipulating the representation. A good data model can
help describe and model the application effectively.

Data models differ in their capabilities for expressing
properties of applications. The three popular data models for
most commercially available DBMS are the relational model, the
hierarchical model , and the network or CODASYL model

.

4 . 3 Database Management Systems

A database management system understands the structure of
the data, and provides a language for defining and manipulat-
ing stored data. The primary functions of the database
management system are to store data and provide operations on

17



the database. The operations usually include create, delete,
update, and search of data.

Not all DBMS provide the same set of features, and varying
degrees of functionality exist for the same features. Some
essential features generally supported by a modern DBMS are
summarized as follows:

o Persistence

Persistence is the property wherein the state of the
database survives the execution of a process in order to
be reused later in another process.

o Data Sharing

Data sharing is the property that permits simultaneous use
of the database by multiple users. A DBMS that permits
sharing must provide some concurrency control mechanism
that prevents users from executing inconsistent actions on
the database. Locking and serializability of operations
are concurrency control mechanisms offered by a DBMS.

o Recovery

Recovery refers to the capability of the DBMS to return its
data to a consistent and coherent state after a hardware
or software failure.

o Database Language

The database language permits external access to the DBMS.
The database language may include the Data Definition
Language (DDL) , the Data Manipulation Language (DML) , the
Data Control Language (DCL) , and an ad hoc query language.
The DDL is used to define the database schema. Sometimes,
a separate schema manipulation language may also exist to
modify schema definitions. The DML is used to examine and
manipulate contents of the database. The DCL is used to
specify parameters needed to define the internal organiza-
tion of the database, such as indexes, buffer size, etc.
An ad hoc query language is provided for interactive
specification of queries.

The DBMS, and the ODBMS, may offer additional desirable
features, such as versioning, view definition, integrity
checking, security and authorization control, database
administration utilities, etc.

18



4.4 Databases, Database Management Systems, and Database
Systems

It is important to distinguish between the terms "data-
base," "database management system," and "database system."
These terms can be defined as follows:

o Database (DB)

The term database refers to the stored data. The stored
data includes the schema information (or metadata) that
defines the structure of the data and the actual data
itself. An object database (ODB) will therefore refer to
the database schema together with the stored application
data. In an ODB, the database schema is described in class
definitions which also include the definition of methods.
In an ODB, the stored data consists of objects.

o Database Management System (DBMS)

The DBMS is a software system that provides capabilities
for the definition and manipulation of databases. The DBMS
also provides additional functionalities such as recovery,
concurrency control, security, etc. An object database
management system (ODBMS) , thus, will be considered to be
a software system that provides DBMS functions together
with the mechanisms for definition and manipulation of ODB.
The ODBMS provides a connection between the application
program and the database.

o Database System (DBS)

The DBS consists of the complete set of application
programs, the database management system, and the stored
data. In this report, an object database system (ODBS)
will consist of ODB, ODBMS, and the set of user applica-
tions.

19





5.0 THE OBJECT DATA MODEL

In the past 2 decades, many alternative data models have
been formulated, including the entity-relationship data model
[CHEN76], the semantic data model [HAMM81], and the functional
data model [SHIP81], etc. In all of these efforts, the goal
has been to provide a more natural and richer way of represen-
ting the semantics of complex application domains.

Several papers have been written describing the object data
model including [MARI88] and [BANE87]. So far, there is no
complete consensus on the object data model. This section
summarizes concepts that have been generally accepted as
belonging to the object data model.

5.1 The Structural Aspects of the Object Data Model

Objects, classes, and inheritance form the basis for the
structural aspects of the object data model. More specifi-
cally, this means the following:

o Objects, as presented in section 2, are basic entities
which have data structures and operations.

o Every object has an object ID that is a unique, system
provided, identifier.

o Classes describe generic object types. Class descrip-
tions are used to create individual objects, or class
instances. All objects are members of a class.

o Classes are related through inheritance. Classes can
be related to each other by superclass or subclass
relationships to form class hierarchies.

o Class definition is the mechanism for specifying the
database schema. The database schema consists of all
the classes that have been defined for a particular
application. Class definitions include both inheritance
relationships (superclass to subclass) and structural
relationships between classes (analogous to relation-
ships in the entity-relationship-attribute model)

.

o A complete database schema may consist of one or more
class hierarchies together with structural relation-
ships. Individual schema descriptions refer to the
instance variables of individual classes.

o The definition of a class can include instance variables
having any allowable system defined or user defined
type, including types consisting of other classes. For

21



example, the class PERSON has an attribute SPOUSE whose
data type is also PERSON.

The database schema can be dynamically and incrementally
extended by the definition of new classes. Extensibility
refers to the generic ability to define and add new data
types, including those types unavailable in conventional
database management systems such as voice, graphics, and
images. In the object data model, the database schema may be
extended by defining and adding new classes that contain data
structures and operations for representing and manipulating
unconventional data types.

5.2 The Operations of the Object Data Model

As described in section 2, message passing is the basis for
the operations of the object data model. The operations may
be described as follows:

p Objects communicate through messages. Methods are
procedures that determine how an object responds to a
message. Methods are defined for classes.

o Polymorphic behavior is a consequence of being able to
send the same message to instances of different classes.
An object's behavior in response to a message is deter-
mined by selecting the appropriate method defined for
the object's class or for a superclass.

o The object data model supports operations to create and
delete class instances.

o The object data model supports operations to create,
delete, and modify class definitions. Class modifica-
tion is analogous to schema modification or redefini-
tion in conventional DBMS.

o A class instance may be updated by methods that change
the values of its instance variables, thus changing the
object's internal state. In a conventional DBMS, this
is analogous to updating fields in a single record.

It is important to note that in several implementations,
including [GOLD83] and [BOBR88], class definitions are them-
selves objects, called class objects . Class objects are
instances of a generic class, or metaclass. Hence, operations
to create, modify, and delete class definitions can also be
implemented as messages.

22



5.3 The Integrity Rules of the Object Data Model

In the object data model, integrity rules are a consequence
of the model's structure and operations. The following rules
are important to note:

o All objects must obey the protocol specified by their
class definitions. That is, an object can respond only
to those messages allowed by the class it belongs to.

o Objects are encapsulated. Encapsulation is achieved by
limiting access to objects through use of the message
protocol defined for the object's class.

o In principle, object ID supports referential integrity.
Unique object IDs are assigned to each object when it
is created. An object does not exist unless an object
ID has been assigned to it. If an object is deleted or
removed, its object ID is also deleted, thus prevent-
ing any reference to the deleted object.

However, commercial ODBMS do not necessarily support all
of the implications of referential integrity. For instance,
the concept of cascading deletes is not currently supported
by most commercial ODBMS. That is, when an object is deleted,
it is not possible to specify the automatic deletion of other
objects that reference the deleted object.

5.4 The Object Data Model versus the Relational Data Model

While the pure object theorist may not agree with equating
object data model concepts with those of the relational data
model, the following tables provide such equivalences. It is
presented not to demonstrate any direct equivalence, but is
intended to serve merely as an intuitive aid for persons
already familiar with mature database technology.

23



Table 5.1. Comparison of Structure

JC\.c J.ct L. J.vJIlct J. i'iOUcX

Class hierarchy Database schema

Class definition Table definition

Class instance (object) Tuple or record

Instance variable Column or field

Object ID Primary key or identifier

Class inheritance <no correspondence>^

Table 5.2. Comparison of Operations

Object Model Relational Model

Define, delete and modify Define, delete and modify
a class or instance variable a relation or field

Define, delete and modify <no correspondence>
method

Create class instance, e.g., Add a row (record) to a
create an individual object table (file)

Send/receive message <no correspondence>
u

<no correspondence> Select

<no correspondence> Join

<no correspondence> Project

^The emerging SQL3 standard may include the ability to
define schema hierarchies.

'^In practice, many ODBMS provide a query language with
Select, Join, and Project operations.

24



Table 5.3. Comparison of Integrity Rules

Object Model Relational Model

Object protocol <no correspondence>

Encapsulation <no correspondence>

Object ID Referential integrity

The structure, operators, and integrity rules of the data
model are realized in the olDject database management system.
Section 6 describes the overall architecture of the ODBMS.

25





6.0 THE ODBMS ARCHITECTURE AND FEATURES

The overall framework of a typical ODBMS and the major
components of the architecture will be discussed in this
section. This will be followed by more detailed descriptions
of the individual features of the ODBMS including the database
language, message processing, facilities for schema definition
and modification, transaction management, storage management,
and security and semantic integrity considerations. Finally,
the distributed features of ODBMS will be shown.

6.1 Overview of the ODBMS Architecture

The term architecture refers to an abstract description of
the organization of a system for purposes of showing function-
al components and the interfaces between them. There is no
single agreed upon architecture for ODBMS. Moreover, arch-
itecture can be a matter of perspective, being dependent upon
whether the ODBMS is being viewed by a developer, end-user,
or system administrator.

To aid the illustration of features, the ODBMS architec-
ture will be characterized as consisting of three major com-
ponents :

1) The Object Manager , which provides the interface between
external processes and the ODBMS;

2) The Object Server , which is responsible for providing
basic DBMS services such as transaction management and
object storage management; and

3) The Persistent Object Store , or the ODB, itself.

External processes may be generated by various users accessing
the ODBMS. Figure 6.1 shows the basic components of the ODBMS
architecture

.

27



OBJECT

MRNRGER

OBJECT

SERUER

PERSISTENT

OBJECT STORE

Figure 6.1. Overall Architecture of the ODBMS

28



External end users and application developers may use
software tools such as text editors, graphics editors, class
and object browsers, automated database design aids, and
CAD/CAM design system interfaces. These systems may serve as
front-end tool kits that interface with the Object Manager.

The Object Manager provides a complete implementation of
the object data model to the external developer or user. This
would include the ability to define the structures and execute
the operations specified by the model.

The Object Manager receives requests to create class
definitions, modify existing class definitions, handle
messages generated by an executing application program, and
process ad hoc queries using a query translator. The Object
Manager performs run time binding, necessary syntax and type
checking operations. Requests are then submitted to the
Object Server as transactions.

The Object Manager's functions, as depicted in figure 6.1,
consist of:

1) performing message processing functions including run
time binding and type checking, as well as query
translation; and

2) providing facilities for definition and modification of
the database schema including integration of new or
revised class definitions into existing class hierar-
chies or lattices.

The Object Server manages the actual retrieval, insertion,
deletion, and update of stored objects in the persistent
object store. A single server may handle transactions
submitted from more than one Object Manager. The Object
Server's functions consist of:

1) transaction management including concurrency control,
buffer management, and recovery services; and

2) physical storage management including the placement of
objects and implementation of access methods.

Backup and archiving services may also be provided by the
Object Server.

It must be noted that the features identified for Object
Manager and Object Server are, to some extent, arbitrary. For
example. Object Server can be a simple fetch system based upon
a physical address on disk or it can be a complete back-end

29



DBMS. More discussion on back-end DBMS will appear later in
this section.

6.2 The ODBMS Database Language

At the present time, commercial ODBMS are accessed primarily
through object-oriented programming languages such as Small-
talk, Common Lisp, and C++. The interface between the OOPL
and the ODBMS is the database language. As discussed in
section 4.3, a DBMS must provide a database language to permit
definition and manipulation of the database schema and the
stored data. The ODBMS must have a database language to
permit access and manipulation of the object data model and
to retrieve and update objects.

In contrast to many conventional DBMS, the ODBMS database
language is firmly embedded in the OOPL. That is, database
language statements are not part of a separate language having
its own interpreter. Since OOPL existed before ODBMS, many
DDL and DML statements are adaptations of previously existing
OOPL statements. The ODBMS database language consists of the
following:

o Data Definition Language (DDL)

The ODBMS must provide a DDL for schema definition. The
DDL must permit definition of classes including inheritance
links and definition of methods that specify object
behavior. The DDL also must be able to specify additional
constraints and semantic integrity rules if appropriate.

o Data Manipulation Language (DML)

The ODBMS must provide a DML for retrieving, creating,
deleting, and updating individual objects. In the ODBMS,
this is achieved through the message passing mechanism.

o Ad Hoc Query Language

Nearly every commercial DBMS supports retrieval of database
subsets by specifying logical conditions based on values
using an ad hoc query language. The object data model, as
presented in section 5, permits retrieval of individual
objects referencing the object's ID. To provide for subset
retrievals over groups of objects, some ODBMS (and some
OOPL implementations) provide an ad hoc query language
[FISH89], [KIMW89]. In many implementations, the query
language relies on message passing for selection and
retrieval of objects (this will be discussed in subsequent
sections)

.

30



The ODBMS can be expected to interface to one or more commer-
cial object-oriented programming languages. The issue of
having one database language for all OOPL interfaces is
discussed in section 7.

As stated in section 5.2, class definitions (including
methods) are implemented as class objects. DDL statements to
create class definitions are messages to a generic class, or
metaclass, to create an instance of itself, e.g., a class
object. Therefore, in keeping with the object paradigm, all
of the operations specified by the ODBMS database language can
be implemented through message passing.

6.3 Message Processing

The Object Manager provides the interface between external
processes and the ODBMS. It receives messages for individual
objects, performs run time binding and type checking opera-
tions, and dispatches the external request for objects to the
Object Server. To perform these services, the Object Manager
must have access to a copy of the class definitions being used
by the processes that are currently active.

Message passing and query processing can be summarized as
follows

:

o Session Control

This includes necessary functions such as maintaining the
external user's local workspace for database operations.

o Run Time Binding

As discussed in section 2, run time binding refers to the
selection of a method for a message sent to an object at
run time. The basis for the selection is the class
hierarchy to which the object belongs. If not directly
available, the Object Server may be requested to provide
the correct method. Run time binding is the mechanism by
which polymorphic behavior is implemented.

o Creation of New Objects

Creation of new class instances must be initiated in the
Object Manager and object IDs must be assigned. If type
checking on instance variable values is enforced, these
values must be checked to ensure they are of the type
defined for the variable and are within a valid range, if
this range is defined.

31



o Dispatch of Object Requests and Object Updates

External requests for objects, newly created objects, and
updated objects, must be forwarded by the Object Manager
as transactions to the appropriate Object Server.

o Query Translation

To support an ad hoc query language, an ODBMS should have
a query translator and perhaps a query optimizer. Queries
can be translated into execution plans in which selection
and retrieval of objects is accomplished through message
passing. This presupposes that the message protocol for
the object's class is defined to permit access to the
instance variables necessary to select the object. Support
for ODBMS query languages raises issues that will be dis-
cussed in section 7.

Objects, class definitions, and methods requested by the
Object Manager are retrieved by the Object Server from the
Persistent Object Store.

6.4 Schema Definition and Modification

Support for schema definition and modification consists of
the following:

o Providing Access to Existing Class Definitions

Class definitions may themselves be implemented as objects
and stored internally as such. Definitions of all classes
provided by the ODBMS, as well as classes created by
developers, can be stored permanently in the Persistent
Object Store, possibly in a class library , or a data dic-
tionary. Class libraries may consist of a set of specific
classes used in a specific domain. The Object Manager must
make available to the developer those class definitions
necessary for particular applications.

o Extensibility of the Database Schema

This includes processing database language statements
specifying creation, removal, or modification of class
definitions. It must also include support for class
inheritance. Additions and modifications of class defini-
tions must be checked for syntactic correctness and to
ensure that they constitute valid changes to the database
schema in accordance with the inheritance rules in effect.
Newly created or modified class definitions must be
forwarded as transactions to the Object Server.

32



o Dyneunic Class Redefinition (Schema Evolution)

Prototyping of complex applications requires frequent
changes to the database schema, even after the database
has been populated with objects. Therefore, the ODBMS must
provide not only the ability to dynamically modify class
definitions, but it must also ensure structural consistency
between modified definitions and previously existing
objects of that class. Further, it must ensure consis-
tency between references in existing programs and objects
of changed classes. The actual modification of the struc-
ture of existing class instances would be performed by the
Object Server.

The Object Manager submits requests for retrieval and update
of class definitions to the appropriate Object Server. The
Server processes these operations as transactions.

6.5 Transaction Management

Transaction management is an important service provided by
the Object Server. The ODBMS transaction management mechanism
may receive requests for retrieval or update of stored objects
and class definitions from one or more Object Managers.
Transaction management consists of the following features:

o Support for Sharing and Concurrency Control

The ODBMS must support concurrent sharing of data by
multiple users. In order to maintain database integrity
when concurrently executing transactions are attempting to
access the same objects, the ODBMS must provide a mechanism
for guaranteeing that such transactions are serialized.
Alternative implementations of concurrency control have
been proposed and implemented in commercial systems,
including both optimistic concurrency control and pessi-
mistic concurrency control based on locking.

o Transfer of Objects between Secondary Storage and User
Workspace and Buffer Management

Retrieving data from secondary storage is a basic function
provided by any DBMS. Data retrieval is accomplished
through access paths discussed in section 6.7. Management
of buffers may be the responsibility of either the ODBMS
or the host operating system.

o Recovery

In the event of transaction failure or hardware failure,
the database must remain intact and consistent. A transac-

33



tion log must be maintained for this purpose. This is a
service provided by most commercial DBMS.

In addition, the transaction processing requirements
associated with design activities has motivated the proposed
addition of advanced transaction management capabilities to
object database systems. These include:

o Support for Cooperative Transactions

During development of design applications, a portion of the
design is often worked on by a group of individuals in a
cooperative effort. This effort could last several hours
or even days. Substantial numbers of objects (possibly
composite objects) constituting the design may be updated
in extended sequences of transactions taking place in long
design sessions involving several cooperating users. Under
these circumstances, individual transactions may be
required to communicate, or even interact, with each other.
The established criteria for strict serialization, based
on locking protocols, must be relaxed and replaced by more
flexible, design specific criteria. This more flexible
criteria might ensure that the updated information is
correct, but also permit a more random mix of transac-
tions. For further information, see [SKAR89].

o Support for Versioning

Version management is a facility for tracking and recording
changes made to data over time. Version management systems
are essential for recording the history of design changes.
A versioned object may have a number of alternative states,
each of which corresponds to a distinct version of the
object over time. The version management system tracks
version successors and predecessors. When objects con-
stituting a portion of the design are retrieved, the system
must ensure that versions of these objects are consistent
and compatible. Prototype implementations of version
management systems in ODBMS are described in [FISH89] and
[KIMW88b]

Cooperative transaction processing and versioning appear to
be probable requirements for future CAD systems, office
information systems, and sophisticated artificial intelligence
systems. At the writing of this report, these features are

Versioning is considered part of the larger topic of
change management. For further information about versioning,
change management, and object database management systems,
refer to [BJOR89], [JOSE90], and [FORD88].

34



being studied extensively in universities and research
institutions, but have not yet been commercialized.

Transaction management relies on storage management to
perform the actual retrieval and update of stored objects.

6 . 6 Storage Management

Storage Management refers to maintenance of the physical
level organization of the ODB and support for access paths
necessary to ensure efficient access to stored objects.
Storage management is performed by the Object Server, which
may partially be implemented with a conventional DBMS back-
end. Basic data storage functions may be characterized as
consisting of:

o Support for Persistence

Objects that are created and added to the ODBMS must be
retained after the session ends. That is, objects must be
persistent. They must be maintained in file structures in
secondary storage for access by subsequent users. Just as
in a conventional DBMS, file level structures for storage
and access must be supported.

o Support for Large Objects

The ODBMS must be able to support storage and manipulation
of variable length objects of any size, including those
which span more than one physical storage block. This is
necessary to ensure that the database schema can be
extended to support a wide variety of applications. For
instance, voice or image applications require unusual data
types involving long streams of data, sometimes called
Binary Large Objects (BLOBs)

.

o Backup/Archiving Facilities

Just as in any DBMS, it must be possible to offload the
Persistent Object Store to an offline medium such as
magnetic tape for archiving purposes.

The complexity of logical organization of information in
object databases, the large quantity of stored objects, and
the volume of transactions which access objects (either
individually or in groups) make performance a critical issue
for the ODBMS. Ensuring fast response times in an ODBMS
requires special indexing mechanisms together with use of
advanced capabilities to optimize physical organization of
data. Features supporting retrieval and update of stored
objects may consist of some or all of the following:

35



o Support for Access Paths

Support for access paths is necessary to ensure efficient
retrieval and update of data stored in large databases.
This includes indexing of objects on the basis of Object
ID, to permit efficient retrieval of individual objects,
as well as indexing of objects by instance variable values,
for retrieval of subsets of objects in range queries.

o Specialized Types of Indexes for Objects

To improve performance, special forms of indexes have been
developed for objects. Compound indexes may be specified
combining several instance variables belonging to objects
of possibly different classes. These objects may be
related in such a way that an instance variable of one
object has as its value the Object ID of one, or possibly
several, different objects. The relationship may be
extended to form complex paths of objects, particularly in
the case of composite objects. Creating indexes on these
paths permits rapid access of groups of objects. It also
speeds navigation through networks of interconnected
objects.

o Object Clustering

Clustering of objects in the same secondary storage sector
is also important. This permits efficient retrieval of
groups of objects which are accessed together, particularly
in the case of composite objects.

o Segmentation of Stored Objects

Similarly, large objects may be divided and stored in
separate physical structures to enhance performance. For
instance, there may be objects that have instance variables
that are frequently accessed and instance variables with
long text or character strings that are seldom retrieved.
Frequently accessed instance variables can be stored in
one record structure while rarely accessed instance
variables can be stored in another.

It should be noted that, in general, use of access methods,
clustering, and segmentation are techniques that are not
peculiar to ODBMS, but may also be used for optimization of
performance in any DBMS. However, these techniques can be
expected to have special relevance in an ODBMS. In the case
of clustering, it can be a particularly useful mechanism for
storing objects referenced together such as composite objects.
Access paths, clustering and segmentation may be used by a

36



database administrator to fine tune the physical database
design of the ODBMS for improved performance.

6.7 Security and Semantic Integrity

Just as in conventional database management systems,
security and semantic integrity features are important
considerations

.

o Security

Security refers to the protection facilities offered by a
DBMS to prevent unauthorized access to the database. There
are many ways of authenticating users and controlling
access to data.

o Semantic Integrity

Semantic integrity refers to the declaration of semantic
and structural integrity rules and the enforcement of these
rules. There are many different kinds of rules, such as
typing constraints, values of domain constraints, unique-
ness constraints, etc. Depending on the implementation of
the ODBMS, integrity rules may be automatically enforced
at run time, at compile time, or may be performed only when
a message is sent.

6.8 The Distributed Features

The requirements of design applications may necessitate
that the ODBMS exist on several hardware platforms that can
communicate over a computer network. In a CAD design system,
several designers using software development tools, working
on different platforms, may access data stored in the ODBMS.
Using a CAD tool, each designer may conduct an interactive
session for which an individual copy of the Object Manager is
created as a process. More than one Object Manager may submit
transactions to the same Object Server concurrently.

The Object Server with which the Object Manager communi-
cates may also exist on the same platform as the Object
Manager, or the Manager and Server may exist on different
platform. Similarly, an organization with a set of interre-
lated design activities may require more than one Object
Server, each of which manages a separate Persistent Object
Store. To facilitate communication across separate hardware
platforms, network communications software may be required.
Figure 6.2 illustrates a networked system with several Object
Managers and Servers.

37



CflD DESIGNER 1 CRD DESIGNER 2

OBJECT
MflNflGER 1

OBJECT

MflNflGER 2

OBJECT
SERUER 1

GRRPHICRL
EDITOR

OBJECT

MflNflGER 3

CRD
DESIGNER 3

OBJECT
MflNflGER 4

OBJECT
SERUER 2

Figure 6.2. The ODBMS Networked Architecture.

38



In some implementations, the functions of the Object Seirver
can be partially implemented by a relational DBMS. In this
case, the Server consists of two distinct components: a front-
end module which maintains an internal representation of a
limited portion of the object data model and handles requests
for objects in the form of Object IDs, and a back-end rela-
tional DBMS which is responsible for transaction management
and storage of object data in relational tables. The back-
end component may itself exist on a different platform. In
such cases, a specialized remote data access (RDA) protocol
based on the SQL standard can be used. Currently, an RDA
standard is under development [IS089].

In order to support distributed processing, the ODBMS must
automatically manage the access of objects stored on separate
hardware platforms. The linkage between Object Manager and
Object Server must be explicitly initiated by the system user.
As the complexity of design applications and organizational
usage increases, the emergence of distributed ODBMS can be
expected.

39





7.0 RECENT DEVELOPMENTS IN ODBMS

Efforts at developing ODBMS have generally proceeded by
combining the special nature of object-oriented programming
with DBMS. Thus, ODBMS products in both the commercial market
and the research world seem to be developed from two direc-
tions :

1. Using an object-oriented programming language as a basis
for adding database management system capabilities, and

2 . Extending conventional database management systems based
on established data models (such as the relational) to
support the functions of object systems.

7 . 1 Extending OOPL to Include DBMS Functions

One way of developing the ODBMS is to add DBMS services to
an object-oriented programming language. This has been the
approach taken in the development of many of the commercial
ODBMS available today. These database services include:

o Persistent storage of objects and archiving facilities.

o Transaction management including sharing, concurrency
control and recovery.

o Support for query languages and access paths.

Other features can be supported in an ODBMS such as version-
ing and cooperative transactions.

7.2 Extending Conventional or Relational DBMS

Efforts at extending database management systems to support
nontraditional database applications are also under way.
Motivated by the requirements of design applications, these
efforts have focused on augmenting conventional database
management systems with the ability to define and manipulate
data types not supported by traditional systems.

Some of these new capabilities are considered to reflect
the influence of object concepts. Yet, as a whole, these
systems may be distinguished from ODBMS.

Extensible database management svstems are database
management systems intended to provide database support for
computer applications that are difficult to implement using
conventional database management systems [ZDON90]. The goal
of extensible database management systems is to provide the

41



application developer with both the ability to design database
systems based on a richer and more expressive data model and
the data management services needed for application domains
which cannot easily make use of conventional DBMS.

Much of the research in extensible database management
systems has focused on developing semantic constructs, that,
although not directly supported in relational systems, might
be added relatively easily. Extensible database management
systems include features such as:

o Extended Data Typing which Enhances Modeling Capability
in Domains such as Design and Artificial Intelligence.

This includes support for data typing facilities that allow
an extended set of system defined data types (including
types such as text, graphics, voice, and image) , abstract
data types, and incorporation of procedure definitions in
declarations of data types. It may also be possible to
define generic data types from which more specific,
application level, data types can be created dynamically.

o Definition and Manipulation of Type Hierarchies and
Object Hierarchies.

These capabilities are similar to those provided in the
object model. This includes the ability to specify type
hierarchies based on inheritance, to define composite or
aggregate data types, as well as to specify shared object
hierarchies.

o Support Extensions to Query Languages

The ability to define extended data types must be accom-
panied by a query language that supports additional
operations for selection and retrieval of information.

o Provide Facilities for Active Databases and Inferencing

The term active database refers to database systems where
retrieval and update operations can automatically cause
invocation of procedures. Procedures known as alerters and
triggers can be associated with fields. When the field is
accessed, the procedure is invoked. More extensive
inferencing capabilities can be provided, including
production rules, to permit implementation of knowledge-
based systems applications.

42



o Support for Versioning and Long Duration Transactions

Extensible database systems in design environments may also
require support for version controls and long duration,
cooperative transactions.

7 . 3 Review of ODBMS

The approach of adding DBMS capability to an object-
oriented programming language has been taken by some private
companies. This approach has resulted in many of the commer-
cial object database management systems available today.
Examples are the Statice system from Symbolics [WEIN88] and
G-base from Graphael (distributed by Object Database Incor-
porated) [GRAP87]. Both systems are Lisp-based ODBMS.
Further, GemStone from Servio Logic Development Corporation
[COPE84], [MAIE86a], [MAIE86b] , [MAIE87] offers a Smalltalk-
based language, OPAL, for data definition, data manipulation,
and general computation. Recently, ONTOS from Ontologic
Incorporated [ONT089] uses a C++ language binding to interface
with an Object Server.

The approach of extending the conventional DBMS has been
evident in research efforts to develop experimental systems,
particularly in the case of extensible database systems. Some
of these systems, while they do not incorporate all aspects
of the object data model, as presented in section 5, do
support many of the functions associated with object systems.
Examples are the POSTGRES project at the University of
California at Berkeley [STON86a], [STON86b] , [STON87a]

,

[STON87b], [STON88], [ROWE86], [ROWE87] which uses INGRES as
the underlying DBMS. Iris at Hewlett-Packard [LYNG86],
[FISH87a], [FISH89] uses the ALLBASE relational DBMS as its
storage manager. Other extensible database systems are
Starburst by IBM Almaden Research Center [SCHW86], [LIND87],
the EXODUS project at University of Wisconsin [CARE86],
[GRAE87], [RICH87], and the GENESIS project at the University
of Texas-Austin [BAT088a], and [BAT088b]

.

There are also some research prototype ODBMS which do not
seem to be developed along either of these two approaches.
These are the CACTIS project at the University of Colorado
[HUDS87], the ROSE project at the Rensselaer Polytechnic
Institute [HARD87], [HARD88a] , [HARD88b] , [HARD88c] , and the
Zeitgeist project at Texas Instruments [F0RD88].

The above list of systems is not meant to be exhaustive.
There are at least a dozen industrial research projects around
the world developing prototype ODBMS, and recently several
startup companies are now in various stages of readiness to
offer their versions of ODBMS.

43



7.4 Standardization

Despite the emergence of ODBMS prototypes and products,
there is currently no identified standard for the object data
model and ODBMS. Various groups are now attempting to specify
standards for different components of the object technology.
These groups include the Object Management Group, Open
Software Foundation, and the ANSI Object-Oriented Database
Task Group (OODBTG) , operating under the X3/SPARC Database
System Study Group. The OODBTG is currently working on a
reference model for ODBMS to identify potential areas for
standardization [OODB90].

Standards are under development for the Common Lisp Object
System (CLOS) and the C++ language.

In the area of database standards, relational SQL has now
firmly taken root [ANSI89]. Thus any standards for the ODBMS
must address new application areas or must explore the
relationship of SQL to the object database language.

44



8.0 ISSUES AND CONCLUSIONS

The state-of-the-art in object database management systems
is presented in this report. The review of ODBMS technology
is based upon published literature and actual experimentation
with selected ODBMS products.

Although some commercial ODBMS have appeared, this techno-
logy is still in the process of rapid development and is
likely to remain so for at least the remainder of this decade.
Many of the ideas have been discussed from the point of view
of programming languages. Designers of DBMS are trying to
incorporate these object-oriented notions into a framework
that has been established for databases. Hence, many issues
and questions are continuing to be topics of intensive
research in the database community.

8.1 Issues

Most commercial ODBMS provide an ad hoc query language to
permit users to specify conditional queries, such as retrieval
of all objects belonging to a certain class that have a
certain value or range of values for an instance variable.
However, the semantics of the object data model are not
necessarily expressible in query language provided by rela-
tional DBMS.

o The Need for an Object Query Language

The query language for an ODBMS may have to express query
conditions involving inheritance relationships. For
instance, queries may specify retrieval of objects belong-
ing to a class, or to a class and some or all of its
subclasses. Similarly, it may be necessary to state query
conditions which specify retrieval of a composite object
together with all or some of its parts. A relational query
language could not easily be used to state these queries,
and in fact, may not be able to state them at all. This
suggests the need for development of an object algebra, to
support an object query language.

o Object Structured Query Language (OSQL)

Structured Query Language (SQL) is an ANSI and ISO standard
developed for relational systems [ANSI89]. OSQL has been
discussed in the last 2 years within the SQL standards
group. Preliminary enhancements for SQL to support object
concepts might include facilities such as: user-defined
data types; generalization hierarchy for tables with the
ability for a subtable to inherit the columns, key attri-
butes, and integrity constraints from a more general table

45



definition; and features that support encapsulation with
the use of assertions, triggers, and external procedure
calls

.

o Query Optimization and Object Encapsulation

In principle, in an ODBMS, encapsulation precludes know-
ledge of, and direct access to, an object's instance
variables. On the other hand, in a relational database
management system, query processing generally assumes far
fewer restrictions on access to fields in a record. For
instance, specification of access methods for query
optimization requires access to, and knowledge of, informa-
tion about type, length, and range of values for the
attributes of a relation. In an ODBMS, using the message
passing mechanism to retrieve large numbers of objects may
impose additional overhead that degrades performance.
Retrieving objects by means other than message passing,
such as through use of inverted indexes, might improve
performance. Differences in response times will likely be
even greater in the case of very large object databases.
However, accessing objects without using message passing
protocols seems to violate the principle of encapsulation,
allowing an object's instance variables to be directly
accessed. This issue may have implications not only on
ODBMS architecture but also on the development of the
Object Data Model.

o Kinds of Indexes for Objects

Indexing objects (discussed in sec. 6.3) raises questions
about what kinds of indexes might be useful. For instance,
it may be desirable to index objects not only on the basis
object ID and instance variable value, but also to create
indexes on values returned by methods that have been
invoked in response to a message. The indexes may be for
objects of one class or several different classes.

o Object Boundary

An object has structural relationships with other objects
(see sec. 5.1). For instance, CARGO_AIRCRAFT may have a
relationship with objects representing its CARGO_ITEMs.
This relationship may be implemented by storing the Object
IDs of the related CARGO_ITEMs in an instance variable of
the CARGO_AIRCRAFT object. The issue of object boundary
concerns an object's scope. Does the object consist of
only its own immediate internal state, e.g. , the values of
its own instance variables? Or, does the object also
include the internal state of the objects it has relation-
ships with? That is, does retrieving the CARGO_AIRCRAFT
object mean that the objects representing its cargo should

46



also be retrieved? Determining the extent or scope of the
CARGO_AIRCRAFT object is part of the object boundary issue.
The answer may depend on the semantics of a particular
application. This question has important implications for
performance, access methods, and concurrency control e.g.

,

determination of locking granularity. Object boundary is
also a possible issue in implementing composite objects and
database security.

o Integration of Progrzunming Language and Database
Languages (achieving seaLinlessness)

The OOPL and the DBMS are generally not integrated, and may
be considered separate components. An ODBMS may also have
to interface with application development tools that use
different OOPLs, such as Smalltalk or C++. An important
issue is ensuring that the ODBMS and the different OOPLs
share a common data model, and that they also share a
single database language for defining the database schema
and for performing data manipulation operations. There
should also be a common query language which can be used
both in application programs and by external users.

o Encapsulation and Database Security

The property of object encapsulation and its relationship
to security is an important issue. The question is whether
encapsulation is related to specification of database, or
object views?

The above issues will remain as active research topics for
several more years.

8.2 Conclusions

The major focus of this report is to describe object
concepts and identify features for ODBMS.

The research and development of ODBMS is far from complete.
No commercial ODBMS or prototype system, at present, supports
all of the features identified in this report.

The projected future for object database systems is that
ODBMS will first be widely used in system development environ-
ments with data-intensive applications. These environments
could include CAD/CAM, hypermedia, engineering and expert
systems, etc. The relational databases and the SQL standard
will still likely be used in conventional types of applica-
tions .

47



It is possible that a new collection of federated heteroge-
neous databases will emerge to tie together object-oriented,
relational, and high-throughput transaction-oriented systems.
However, it will likely take another 5 to 10 years before such
technology is commercially accepted.

The object paradigm will be spreading not only to database
systems, but to all software engineering activities including
user interfaces, requirements specification, logical design,
physical design, and testing. Exciting research in this
technology will challenge computer scientists for the next
decade.

48



9.0 REFERENCES AND RELATED READINGS

[ANDR87] Andrews, T. , and Harris, C. "Combining Language and
Database Advances in an Object-Oriented Development
Environment," Proceedings OOPSLA 1987.

[ANDR88] Andrews, T. Using an Object Database to Build

[ANSI89]

Integrated Design Environments
^

Technical Report, 1988.
Ontologic Inc.

ANSI "American National Standard - Database
Language SQL with Integrity Enhancement," Number
X3. 135-1989, American National Standards Institute,
1989.

[BANC89] Bancilhon, F. et al. "The Object-Oriented Database
Manifesto," Draft paper for the Conference on
Deductive and Object-Oriented Databases in Kyoto,
Japan, December 1989.

[BANE87] Banerjee, J. et al . "Semantics and Implementation
of Schema Evolution in Object-Oriented Databases,"
SIGMOD Record . Vol 17, No. 3, 1987, pp 311-322.

[BAT088a] Batory, D. "Concepts for a Database System Com-
piler," Proceedings of the 1988 ACM Principles of
Database Systems Conference , Austin, TX, March
1988

.

[BAT088b] Batory, D. "GENESIS: An Extensible Database
Management System," IEEE Transactions on Software
Engineering , 14,11, November 1988.

[BJOR89] Bjornerstedt
, A., and Hulten, C. "Version Control

in an Object-Oriented Architecture," in Kim, W. ,

and Lochovsky, F. (eds.) Object-Oriented Concepts,
Databases, and Applications , ACM Press, Addison-
Wesley Publishing Company, 1989.

[BLAK87] Blake, E., and Cook, S. "On Including Part Hierar-
chies in Object-Oriented Languages with an Im-
plementation in Smalltalk," in ECOOP '87 Conference
Proceedings , June 1987.

[B0BR88] Bobrow, D. G. et al . Common Lisp Object System
Specification , X3J13 Technical Report 88-002R, June
1988.

49



Cannon, H. "Flavors, A Non-hierarchical Approach
to Object-Oriented Programming," Draft Document
1982

.

Cardelli, L. "A Semantics of Multiple In-
heritance," in Readings In Object-Oriented Database
Systems , Zdonik, S., and Maier, D. (eds.) Morgan
Kaufmann Publishers, Inc., San Mateo, CA, 1990.

Carey, M. et al. "The Architecture of the EXODUS
Extensible DBMS," Proceedings of ODBS . 1986.

Chen, P.P.S. "The Entity-Relationship Model -

Toward a Unified View of Data," ACM Transactions
on Database Systems . 1:1, March 1976, 9-36.

Codd, E.F. "Data Models in Database Management,"
SIGMOD Record . Vol. 11, No. 2, Feb 1981.

Copeland, G. , and Maier, D. "Making Smalltalk a
Database System," SIGMOD Record 1984, pp 316-326.

Dahl, O., and Nygaard, K. "Simula - An Algol-Based
Simulation Language," Communications of the ACM ,

9, 9, 1966, 671-678.

Dayal, U. , and Smith, J. "PROBE: A Knowledge-
Oriented Database Management Systems," in Brodie,
M. , and Mylopoulos, J. (eds.) On Knowledge Base
Management Systems . Springer-Verlag, 1987.

Dayal, U. et al. "Simplifying Complex Objects: The
PROBE Approach to Modelling and Querying Them, " in
Readings In Object-Oriented Database Systems ,

Zdonik, S., and Maier, D. (eds.) Morgan Kaufmann
Publishers, Inc., San Mateo, CA, 1990.

[FISH87a] Fishman, D. et al. "Iris: An Object-Oriented
Database Management System," ACM Transaction on
Office Information Systems . Vol. 5, No. 1, 1987 pp
48-69

.

[FISH89] Fishman, D. et al. "Overview of the Iris DBMS," in
Object-Oriented Concepts, Databases, and Applica-
tions , edited Kim, W. , and Lochovsky, F. ACM Press,
New York, 1989, pp. 219-250.

[FORD88] Ford, S. et al . Zeitgeist: Database Support for
Object-oriented Programming , Lecture Note 3 34,
1988.

[CANN82]

[CARD90]

[CARE86]

[CHEN76]

[C0DD81]

[COPE84]

[DAHL66]

[DAYA87]

[DAYA90]

50



[GARZ88] Garza, J., and Kim, W. "Transaction Management in
an Object-Oriented Database Systems," SIGMOD
Records . Vol 17, No. 3 September 1988.

[GOLD83] Goldberg, A., and Robson, D. Smalltalk-80 . The
Lancfuaqe and Its Implementation . Addison-Wesley

,

Reading, MA, 1983.

[GRAE87] Graefe, G. , and DeWitt, D. "The EXODUS Optimizer
Generator," SIGMOD Record . 1987, pp 160-172.

[GRAP87] Graphael, "G-Base Tools," The G-Base Manual
written by Emma Callaghan, 1987.

[HAMM81] Hammer, M. , and McLeod, D. "Database Description
with SDM: A Semantic Database Model," ACM Transac-
tions on Database Systems . 6,3 (1981), 351-386.

[HARD87] Hardwick, M. "Why ROSE is Fast: Five Optimiza-
tions in the Design of the Experimental Database
System for CAD/CAM Applications," SIGMOD Record .

1987.

[HARD88a] Hardwick, M. , and Spooner, D. The ROSE Data
Manacfer

;

Using Object Technology to Support
Interactive Engineering Applications . RPI Report
1988.

[HARD88b] Hardwick, M. , and Spooner, D. "ROSE: An Object-
Oriented Database System for Interactive Computer
Graphics Applications," Lecture Notes: Advances
in Object-Oriented Database Systems

^ 334, Springer-
Verlag, 1988.

[HARDS 8c] Hardwick, M. User Manual for ROSE, a Database
System for Engineering Design. Interactive Computer
Graphics and Other Object-Oriented Applications .

RPI Report 1988.

[HOR083] Horowitz, E. Fundamentals Of Programming Lan-
guages . , Computer Science Press, Rockville, MD,
1983.

[HUDS87] Hudson, S.E,, and King, R. "Object-Oriented
Database Support for Software Environments, " SIGMOD
Record, Vol. 16, No. 3, December 1987.

[IS089] ISO "Information Processing Systems - Open Systems
Interconnection - Remote Database Access - SQL
Specialization," ISO Working Draft, Document
ISO/JTC1/SC21/WG3 N844, June 2, 1989.

51



[JOSE89] Joseph, J.V. et al. "Object-Oriented Databases:
Design and Implementation," Draft Report from Texas
Instruments, 1989.

[KIMW87a] Kim, W. et al. "Composite Object Support in an
Object-Oriented Database System," in OOPSLA '87
Proceedings , 1987.

[KIMW88a] Kim, W. et al . "Integrating an Object-Oriented
Programming System with a Database System," in
OOPSLA '88 Proceedings . 1988, pp 142-152.

[KIMW88b] Kim, W. , and Chou, H. "Versions of Schema for
Object-Oriented Databases," Proceedings 14th Very
Large Databases . August 1988.

[KII4W89] Kim, W. et al. "Features of the ORION Object-
Oriented Database System," in Obi ect-Oriented
Concepts. Databases, and Applications , edited Kim,
W. , and Lochovsky, F. ACM Press, New York, 1989,

. pp. 250-282.

[LECL88] Lecluse, C. , Richard, P., and Velez, F. "02, an
Object-Oriented Data Model," SIGMOD 88 Conference
Proceeding , pp 424-433.

[LIND87] Lindsay, B. , McPherson, J., and Pirahesh, H. "A
Data Management Extension Architecture," Proceed-

1 ings of the 1987 SIGMOD Conference . San Francisco,
CA, May 1987.

[LISK77] Liskov, B.
,

Snyder, A., Atkinson, R. , and Schaf-
fert, C. "Abstraction Mechanisms in CLU," Com-
munications of the ACM . (20, 8), 1977, 564-576.

[LYNG86] Lyngbaek, P., and Kent, W. "A Data Modeling
Methodology for the Design and Implementation of
Information Systems," Proceedings of ODBS . 1986,
pp 6-17.

[MAIE86a] Maier, D. , Otis, A., and Purdy, A. "Object-
Oriented Database Development at Servio Logic,"
Database Engineering , 18:4, December 1986.

[MAIE86b] Maier, D. et al . "Development of an Object-
Oriented DBMS," Proceedings of the OOPSLA . Sept
1986.

[MAIE86C] Maier, D. , and Stein, J. "Indexing in an Object-
Oriented DBMS," Proceedings of the ODBS . 1986.

52



[MAIE87] Maier, D. , and Stein, J. "Development and Implemen-
tation of an Object-oriented DBMS," in Shriver, B.

,

and Wagner, P. (eds.) Research Directions in
Object-Oriented Programming . MIT Press, Cambridge
MA 1987, pp 355-392.

[MAN086] Manola, F.A. , and Dayal, U. "PDM: An Object-
Oriented Data Model," International Workshop on
ODBS, September 1986,

[MARI88] Mariategui, F. , Eich, M. , and Rafiqi, S. "The
Object-Oriented Data Model Defined . " Southern
Methodist University Technical Report 88-CSE-28,
April 1988.

[OBRI86] O'Brien, P. et al. "Persistent and Shared Objects
in Trellis/Owl," Proceeding International Workshop
on ODBS . September 1986.

[0BRI87] O'Brien, P. et al. "The Trellis Programming
Environment," in OOPSLA Proceedings . 1987.

[OODB90] Object-Oriented Database Task Group, A Reference
Model for an Object Database ^ Draft Report to
X3/SPARC Database System Study Group (DBSSG)

,

Available from Elizabeth Fong, NIST, Technology
Bldg. A 266, Gaithersburg MD 20899, 1990.

[ONT089] Ontologic Inc. "ONTOS Technical Overview,"
Viewgraphs used by T. Andrews, Ontologic Inc.
Burlington, MA 1989.

[PENN87] Penney, D. , and Stein, J. "Class Modification in
the GemStone Object-Oriented DBMS," Proceedings of
the OOPSLA Conference . 1987, pp 111-117.

[RICH87] Richardson, J.E., and Carey, M. "Programming
Constructs for Database System Implementation in
EXODUS," SIGMOD Record . Vol. 16, No. 3, Dec. 1987.

[R0WE86] Rowe, L. "A Shared Object Hierarchy," Proceeding
International Workshop on OODBMS . September 1986.

[ROWE87] Rowe, L. , and Stonebraker, M. "The POSTGRES Data
Model , " Proceeding 13th Very Large Databases
Conference , September 1987.

[SCHW86] Schwarz, P. et al. "Extensibility in the Starburst
Database System," Proceedings of the International
Workshop on Object-Oriented Database Systems ,

Pacific Grove, CA, September 1986.

53



[ SHIPS 1] Shipman, D.W. "The Functional Data Model and the
Data Language DAPLEX , " ACM Transactions on Database
Systems . 6(1), March 1981.

[SKAR89] Skarra, A., and Zdonik, S. B. "Concurrency Control
. and Object-Oriented Databases," in Kim, W. , and

Lochovsky, F, (eds.) Object-Oriented Concepts,
Databases, and Applications . ACM Press, Addison-
Wesley Publishing Company, 1989.

[SMIT77] Smith, J.M. , and Smith, D. "Database Abstractions:
Aggregation and Generalization," ACM Transactions
on Database Systems . 2(2) June 1977.

[STEF83] Stefik, M. et al. "Knowledge Programming in LOOPS:
Report on an Experimental Course," AI Magazine .

Vol. 4, No. 3, Fall 1983.

[ST0N86a] Stonebraker, M. , and Rowe, L. "The Design of
POSTGRES," Proceeding ACM SIGMOD Conference . June
1986.

[STON86b] Stonebraker, M. "Object Management in POSTGRES
Using Procedures," Proceeding ODBS . 1986.

[ST0N87a] Stonebraker, M. et al. A Rule Manager for Rela-
tional Database Systems . Memo No. UCB/ERL M86/85,
June 1987.

[STON87b] Stonebraker, M. The Design of the POSTGRES Storage
System . Memo. No. UCB/ERL M86/85, June 1987.

[ST0N88] Stonebraker, M. et al. "The POSTGRES Rule Manager,"
IEEE Transaction on Software Engineering . Vol 14,
No. 7, July 1988.

[STR086] Stroustrup, B. The C++ Programming Language .

Addison-Wesley
,
Reading, MA, 1986.

[UNGA87] Ungar, D. , and Smith, R.B. "SELF: The Power of
Simplicity," OOPSLA '87 Proceedings . Orlando, FL,
1987, 227-241.

[WEGN87] Wegner, P. "Dimensions of Object-Based Language
Design," OOPSLA '87 Proceedings . Oct. 1987, pp 168-
181.

[WEIN88] Weinreb, D. "An Object-Oriented Database System to
Support in Integrated Programming Enyironment ,

"

Data Engineering Vol. 11, No. 2, 1988, pp 33-43.

54



[ZDON90] Zdonik, S. B. , and David, M. (eds.) Readings in
Object-Oriented Database Systems , Morgan Kaufmann
Publishers, Inc. San Mateo, CA 1990.

55





APPENDIX - GLOSSARY

Some of the terms used in this report are found throughout
the literature, occasionally with conflicting meanings. This
Appendix contains short, informal definitions of key concepts
and terms which are underlined in the report.

Abstract Data Type:

A programming technique that defines a data space, hiding
procedures and details the programmer does not need to know
to manipulate the data. The definition of an abstract data
type consists of an internal representation along with a
set of procedures required to access and manipulate the
data

.

Active Database:

A database system in which retrieval and update operations
result in invocation of procedures. Such procedures, known
as triggers, are associated with particular fields. When
the field is accessed, the trigger is activated.

Attribute:

Attributes are properties of an entity. An entity is said
to be described by its attributes. In a database, the
attributes of an entity have their analogues in the fields
of a record. In an object database, instance variables may
be considered attributes of objects.

Class:

A generic description of an object type consisting of
instance variables and method definitions. Class defini-
tions are templates from which individual objects can be
created.

Class Object:

A class definition. In many OOPL and ODBMS implementa-
tions, class definitions are objects that are instances of
a generic class, or metaclass.

Class Hierarchy:

Classes can naturally be organized into structures (tree
or network) called class hierarchies. In a hierarchy, a
class may have zero or more superclasses above it in the
hierarchy. A class may have zero or more classes below,
referred to as its subclasses.

57



Class Library:

A set of related classes belonging to a specific domain.
For example, a graphics library may exist, consisting of
classes of graphical objects.

Code Reuse:

The ability to use a single piece of code for more than one
purpose in a computer application. When a superclass

"• definition is inherited by a subclass, the code associated
with the superclass definition, including method defini-
tions, is reused in the subclass. Code reuse has the
effect of reducing the amount of code needed to implement
an application.

Composite or Complex Object:

An object which is made up of other objects. Composite
objects consist of collections of parts, each of which is

' itself an object. Each part is in an "Is-Part-Of" rela-
tionship with the object of which it is a component.

Concurrency Control:

A mechanism that regulates access to objects and prevents
users from executing inconsistent actions on the database.

Data Abstraction:

A programming technique by which the internal representa-
tion and operations of an object are made only partially
visible, allowing only certain information relevant to a

' particular application to be seen. The actual methods by
which computations are performed remain hidden from
external view. See also encapsulation.

Data Model:

The data model is a specification of the structure of the
database, the operations, and the integrity rules.

Database Schema:

The complete set of individual schema definitions which
describe the logical structure of a database. In an ODB,
the database schema is expressed in the set of class
definitions for a database.

58



Dyneunic Binding:

Also known as run time binding or late binding. Dynamic
binding refers to the association of a message with a
method during run time, as opposed to compile time.
Dynamic binding means that a message can be sent to an
object without prior knowledge of the object's class.

Encapsulation

:

The packaging of data and procedures into a single program-
matic structure. In object-oriented programming languages,
encapsulation means that an object's data structures are
hidden from outside sources and are accessible only through
the object's protocol.

Entity:

A collection of information items which can conceptually
be grouped together and distinguished from their surround-
ings. An entity is described by its attributes. Entities
can be linked, or have relationships to other entities.

Extensible Database Management Systems:

A class of DBMS incorporating additional data modeling
capabilities together with data management services needed
for application domains which cannot easily make use of
conventional DBMS.

Extensibility:

The ability to dynamically augment the database schema.
This includes addition of new data types and class de-
finitions for representation and manipulation of un-
conventional data such as voice data, image data, and data
associated with artificial intelligence applications.

Generalization:

Refers to the relationship between a superclass and its
subclasses. A superclass is a generalization of its
subclasses

.

Handle:

A pointer to, or address of, an object. A handle is a

unique, and nonchangeable reference to an object. In some
systems, the term handle is interchangeable with the term
object identity.

59



Inheritance:

A mechanism which allows objects of a class to acquire part
of their definition from another class (called a super-
class) . Inheritance can be regarded as a method for
sharing a behavioral description.

Instance:

An individual occurrence of an object.

Instance Variable:

An attribute of an object. A class definition may specify
the set of instance variables that constitute the data
structures for objects of the class.

Message:

See message passing.

Message Passing:

The means by which objects communicate. Individual
messages may consist of the name of the message, the name
of the target object to which its being sent, and argu-
ments, if any. When an object receives a message, a method
is invoked which performs an operation that exhibits some
part of the object's behavior.

Method:

A method is the body of code executed in response to a
message. The methods associated with a class definition
effectively describe the behavior of all the instances of
the class.

Multiple Inheritance:

The ability for a class to inherit from more than one
superclass. Thus, a class may inherit instance variables
and methods from multiple superclasses.

Object:

An object is the basic unit of computation. An object has
a set of "operations" and a "state" that remembers the
effect of operations. Classes define object types.
Typically, objects are defined to represent the behavioral
and structural aspects of real world entities.

60



Object ID (object identity)

:

A permanent unique identifier that is assigned to each
object. The identifier is independent of the value of the
instance variables of the object, and remains constant
despite any change in the object's state. Object Identity
is sometimes used interchangeably with the term handle.

Object Server:

An Object Server is the software system which supports
transaction management and storage management functions for
objects.

Part Hierarchy:

A hierarchy of component objects which form parts of a
composite object. A composite object will be made up of
objects which may themselves have components. This is
distinguished from a class hierarchy which consists of
classes related through inheritance.

Persistence:

A property of data or objects implying that it has a
lifetime greater than the process which created it.

Persistent Object Store:

The object database, or ODB.

Polymorphism:

Polymorphism refers to being able to apply a generic
operation to data of different types. For each type, a
different piece of code is defined to execute the opera-
tion. In the context of object systems, polymorphism means
that an object's response to a message is determined by the
class it belongs to.

Protocol

:

The set of messages an object will respond to. The term
protocol can sometimes be used interchangeably with the
term public interface. In an ODBMS, protocols are spec-
ified in class definitions.

Referential Integrity:

In a relational database, referential integrity means that
no record may contain a reference to the primary key of a

nonexisting record.

61



Run Time Binding:

See Dynamic Binding.

Shadowing:

The definition of a method in a class description to
replace a method that would otherwise be inherited from a
superclass. When a message is sent to an object that is
an instance of the subclass, the method defined in the
subclass is invoked. The shadowed method in the superclass
is not invoked.

Specialization:

Refers to the relationship between a subclass and its
superclasses. A subclass is a specialization of its
superclasses

.

State:

The set of values for the instance variables of an object.
When the values of any of the object's instance variables
change, the object's state is altered.

Subclass:

When a class inherits the instance variables and methods
from another class, it is referred to as its subclass.

Superclass:

The class from which the instance variables and methods of
a subclass are inherited.

62



NIST-114A

(REV. 3-89)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER
NIST/SP-500/179

2. PERFORMINQ ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

April 1990
4. TITLE AND SUBTITLE

Object Database Management Systems: Concepts and Features

5. AUTHOR(S)

Christopher E. Dabrowski, Elizabeth N. Fong, and Deyuan Yang

6. PERFORMINQ ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURQ, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

Final
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Same as item #6

10. SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTACHED
11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR

LITERATURE SURVEY, MENTION IT HERE.)

The last decade has seen the emergence of object concepts and their infusion
into information systems technology. This phenomenon began with the advent
of programming languages that included object concepts. More recently,
object concepts have been merged with database management system technology,
resulting in the production of some object database management systems. As
a result, the term object database management system (ODBMS) is now becoming
a recognized and important topic in the database community. The purpose of
this report is to provide managers and software analysts a state-of-the-art
review of object concepts and to describe features associated with object
database management systems.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

class; database; database management system; object; object-oriented; object
database management system; ODBMS.

13. AVAILABILITY 14. NUMBER OF PRINTED PAGES

X UNLIMITED
63

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

X ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

15. PRICE

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

ELECTRONIC FORM



ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

Superintendent of Documents
Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)



ly/Jlk3Ji Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research

and development in those disciplines of the physical and engineering sciences in which the Institute

is active. These include physics, chemistry, engineering, mathematics, and computer sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey articles

on topics closely related to the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) de-

veloped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports,

and other special publications appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physi-

cists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in

scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed un-

der a worldwide program coordinated by NIST under the authority of the National Standard Data
Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD)
is published quarterly for NIST by the American Chemical Society (ACS) and the American Insti-

tute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Six-

teenth St., NW., Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treat-

ment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST
under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Com-
merce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally

recognized requirements for products, and provide all concerned interests with a basis for common
understanding of the characteristics of the products. NIST administers this program as a supplement
to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NIST research and experience, cov-
ering areas of interest to the consumer. Easily understandable language and illustrations provide use-

ful background knowledge for shopping in today's technological marketplace.
Order the above NIST publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information
Service, Springfield VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series col-

lectively constitute the Federal Information Processing Standards Register. The Register serves as

the official source of information in the Federal Government regarding standards issued by NIST
pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law
89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed
by NIST for outside sponsors (both government and non-government). In general, initial distribu-

tion is handled by the sponsor; public distribution is by the National Technical Information Service,

Springfield, VA 22161, in paper copy or microfiche form.



U.S. Department of Commerce
National Institute of Standards and Technology

(formerly National Bureau of Standards)

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300


		Superintendent of Documents
	2022-04-16T05:41:42-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office




