NBS Special Publication 480-2

LEAA Police
 Equipment Survey of 1972, Volume II
 Communications Equipment and Supplies

Law Enforcement Equipment Technology

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards

NBS ${ }^{\dagger}$ Special Publication 480-2

LEAA Police Equipment Survey of 1972, Volume
 Communications Equipment and Supplies

by

S. Mumford, P. Klaus, E. Bunten, R. Cunitz Institute for Applied Technology National Bureau of Standards
Washington, D. C. 20234

prepared by
Law Enforcement Standards Laboratory Center for Consumer Product Technology National Bureau of Standards Washington, D.C. 20234
prepared for
National Institute of Law
Enforcement and Criminal Justice
Law Enforcement Assistance Administration
U.S. Department of Justice

Washington, D. C. 20531

Library of Congress Cataloging in Publication Data

Law Enforcement Standards Laboratory.
LEAA police equipment survey of 1972.
(NBS special publication ; 480-1-480-7)
"CODEN: XNBSAV."
CONTENTS: v. l. Ku, R., Bunten, E., Klaus, P. The need for standards, priorities for police equipment.-v. 2. Mumford, S. et al. Communications equipment and supplies.-v.3. Klaus, P. and Bunten, E. Sirens and emergency warning lights. [etc.]

1. Police-Equipment and supplies-Collected works. I. National Institute of Law Enforcement and Criminal Justice. II. Title. Ill. Series: United States. National Bureau of Standards. Special publication ; 480-1-480-7.
QCl00.U57 no. 480-1-480-7 [HV7936.E7] 602'.1s [363.2'028] 74-28442

National Bureau of Standards Special Publication 480-2

Nat. Bur. Stand. (U.S.), Spec. Publ. 480-2,127pages
CODEN:XNBSAV

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON:

For sale by the Superintendent of Documents,
U.S. Government Printing Office, Washington, D.C. 20402
(Order by SD Catalog No. C13.10:480-2). Stock No. 003-003-01723-0 Price $\$ 2.75$
(Add 25 percent additional for other than U.S. mailing).

ACKNOWLEDGMENTS

We are grateful to the 428 police departments throughout the United States who contributed their time and knowledge to make this report possible. Special thanks go to the police departments whose officers and administrators helped the survey team during the developmental and testing phases of the work. In addition, we thank Marshall J. Treado, Communications Systems Program Manager, Jacob J. Diamond, Chief of the NBS Law Enforcement Standards Laboratory, and Lester Shubin, NILECJ Standards Program Manager, for their support and assistance.

We thank the many members of the Technical Analysis Division who provided support: William L. O'Neal for his help in computerizing the sample selection and for helping design and program the interactive recordkeeping system; Jenny L. Eldreth and P. Clare Peiser for maintaining the computerized recordkeeping system; June R. Cornog for her advice, support, and help with initial interviews; Diane R. Beall for the many typings of the various versions of the questionnaires; Suellen Halpin, Mary L. Friend, and Susan E. Bergsman for making follow-up telephone calls; Lorraine S. Freeman for her administrative support; Karen Jackson for her help with questionnaire coding and recordkeeping; Cassandra Hawkins for typing the report. Michael R. Vogt receives special thanks for his help in carrying out the computerized edit and tabulation of the data. Special thanks also go to Dwight F. Doxey for coding this questionnaire and contributing to the preliminary data analysis.

CONTENTS

Page
Acknowledgments III
List of Tables V:
Foreword XI
Executive Summary XIII

1. Introduction 1
1.1. Project Background 1
1.2. Sample Design 2
1.3. Questionnaire Administration 4
1.4. Development and Design of the Communications DQ 5
1.5. Characteristics of Subsample Groups 5
2. Question by Question Discussion 7
2.1. Advice to the Reader 7
2.2. Discussion 9
2.2.1. Characteristics of Respondents 9
2.2.2. Number of Officers and Characteristics of Jurisdiction 10
2.2.3. Mobile Radios 12
2.2.3.1. Number of Mobile Radios 12
2.2.3.2. Spectrum Utilization: Mobile Radios 13
2.2.3.3. Characteristics of Mobile Radios 17
2.2.4. Portable Radios 21
2.2.4.1. Number of Portable Radios 22
2.2.4.2. Spectrum Utilization: Portable Radios 23
2.2.4.3. Characteristics of Portable Radios 26
2.2.5. Special Systems 33
2.2.5.1. Mobile Repeaters 33
2.2.5.2. Fixed Repeaters 35
2.2.5.3. Portamobile Radios with Voting Systems 37
2.2.5.4. Scrambler Systems 39
2.2.5.5. Communications Helmet 43
2.2.6. General Information 44
2.2.6.1. Need for Standards and Expected Gains from Standards 44
2.2.6.2. Communications Needs 47
2.2.6.3. Problems with and Failures of Communications Equipment 48
2.2.7. Comments 50
Appendix A. Communications QuestionnaireAppendix B. Raw Data Tables

LIST OF TABLES

Page

Table 1.2-1. Stratification categories 3
Table 1.2-2. Number of police departments by region and type 3
Table 1.2-3. Number in sample of departments selected to receive the Detailed Questionnaire: Communications-by region and department type 3
Table 1.3-1. Number of sample of departments returning acceptable Detailed Questionnaires: Communications 4
Table 1.5-1. Activities handled by at least one-third of that department by department type, and percent of total departments having each activity 6
Table 1.5-2. Descriptive data by department type (means) 6
Table 1.5-3. Descriptive data by LEAA region (means) 7
Table i. Rank of primary respondent for communications questionnaire, by department type 9
Table ii. Years of experience in law enforcement of primary respondent 9
Table iii. Average number of full-time officers, by department type 10
Table 5A-1. Average size of communications jurisdiction, by department type 10
Table 5A-2. Comparison beiween average number of officers in department and average size of jurisdiction 11
Table 6. General character of jurisdiction, by LEAA region 11
Table 2A-1. Number of car radios, by department type 12
Table 2A-2. Estimated total population of police car radios in U.S., by department type 13
Table 1A-1. Distribution of transmitting frequencies among bands, by department type (406 departments responding) 14
Table 1A-2. Percent use of more than 1 frequency band for transmitting by the 65 departments reporting concurrent usage 14
Table 1A-3. Mean number of transmitting frequencies per department, by department type and band 15
Table 1B-1. Percent departments whose transmitting and receiving frequencies were not all the same ($\mathrm{n}=130$) 15
Table 1D Comparison of channels authorized with channels in use for and E. mobile radios, by department type (department types listed from largest to smallest based on mean number of full-time officers) 16
Table 1D and Comparison of average number of channels authorized, in use, E and 5B. and in area for mobile radios, by department type 17
Table 1C-1. Frequency count of reported output power for all responding departments 18
Table 1C-2. Percentages of each department type which cited output power of $90-110$ watts 18
Table 1C-3. Average output power, by department type, arranged by average size of jurisdiction 18
Table 3. Cumulative percentages for period of time within which 428 departments bought most of their car radios, by department type 19
Table 4. Cumulative percentages for cost of the car radios most Page frequently used in a department (including base plate, control head, microphone, and speaker), by department type 20
Table 2B-1. Percentages of car radios in use in department made by various manufacturers, by department type 20
Table 2B-2. Proportions of different manufacturers represented within one department 21
Table 9. Use of portable radios, by department type 21
Table 11A-1. Number of portable radios, by department type 22
Table 11A-2. Comparison between mean number of officers per department type, mean number of car radios, and mean number of portable radios 22
Table 11A-3. Comparison of estimated number of police portable radios and car radios in the United States, by department type 23
Table 10A-1. Comparison of percentages of total transmitting frequencies, by band, for mobile and portable radios for all departments 23
Table 10A-2. Percentages of total mobile and portable frequencies, by band, for county and 50 largest city departments 24
Table 10A-3. Mean numbers of portable and mobile radio transmitting frequencies, by department type (department types ordered from largest to smallest by number of full-time officers) 24
Table 10B. Percentages of total portable radio frequencies used for both transmitting and receiving, by department type 24
Table 10D Comparison of channels authorized and in use for and E-1. portable radios, by department type 25
Table 10D Comparison of channels authorized and in use for portable and E-2. and mobile radios, by all department types 25
Table 10C. Mean output power in watts for portable radios, by department type-arranged from smallest to largest mean size of jurisdiction 26
Table 22. Priorities assigned to standards for power supplies for portable radios by 348 departments which used portable radios as compared to average number of portables available, by department type 27
Table 23. Comparison between batteries now in use and batteries and 24. preferred, by the 348 departments using portable radios 27
Table 25. Use of batteries which must be recharged, by 348 departments which used portable radios 28
Table 25A., B.. Length of time to partially and completely recharge
C, and D. batteries: length of time batteries can be used before needing recharging, and needing replacement, by departments which use rechargeable batteries in their portable radios 29
Table 12. Weight of portable radios, by 348 departments using and 13-1. portable radios 29
Table 12. Comparison between weight of most used portable radios and and 13-2. respondents' feeling about that weight 30
Table 12A. When departments bought most of their "most often used" brands of portable radios 31
Table 12B. Cumulative percentages for costs of "most commonly used" portable radios in 348 departments 31
Table 11B. Percentage of portable radios in use in departments made by Page various manufacturers, by department type 32
Table 12. Of the 348 departments using portable radios, percent listing each of two "most used" models, by department type 33
'Table 13-1. Percent departments which need repeaters within their mobile systems, by department type, arranged according to average size of jurisdiction 33
Table 13-2. If "yes," why do you need mobile repeaters? 34
Table 13-3. If "no," why don't you need mobile repeaters? 34
Table 7A-1. Use of fixed repeaters by department type, as compared to average size of jurisdiction 35
Table 7B-1. Percentage of total repeaters in use, and mean number per department of those being repeaters, by department type 36
Table 7B-2. Average number of fixed repeaters, by LEAA region, compared to percentage of departments in region which use fixed repeaters 36
Table 8A. Preference for F1F1 or F1F2 repeaters, by department type 37
Table 14-1. Of the 348 departments with portable radios, percentages of responses about voting systems, by department type 38
Table 14-2. Reasons given for favoring a portamobile radio with a voting system, by 98 departments which favored this system 38
Table 14-3. Reasons given for not favoring a portamobile radio with a voting system, by 58 departments which do not favor this system 39
Table 17-1. Availability of scramblers, by department type 39
Table 17-2. Perceived need for scrambler system by 388 departments which currently do not have the system, by department type 40
Table 18. Purposes for which scramblers were (or would be) used, by all departments currently using scramblers and all departments saying scramblers were needed 41
Table 19. Use of scramblers with car radios, portable radios, and special vehicles, by all departments currently using scramblers and all departments saying scramblers were needed 41
Table 20. Amounts the 265 departments which used or said they needed scramblers would be willing to pay for a reliable scrambler system, by department type 42
Table 21-1. Need for built-in communications in helmets, by department type (all respondents, $\mathrm{n}=428$) 43
Table 21-2. Reasons for needing built-in helmet communications, by 139 departments which said they needed this system 43
Table 21-3. Reasons for not needing built-in communications, by 286 departments which said they did not need this system 44
Table 15-1. Need for standards for communications equipment, by all respondents 45
Table 15-2. Items said to need standards by 40 percent or more of the departments within a department type. Ordered from highest to lowest frequency of response by all 428 departments 45
Table 16-1. Expected gains from standardization of communications equipment, by all respondents 46
Table 16-2. Expected gains from standardization of communications equipment, by department type 47
Table 26-1. Most critical communications needs, by all departments 48
Table 26-2. Most critical communications needs indicated by 40 percent or more of the departments within each department type 48
Table 27. Most serious problems with communications equipment, by all respondents 49
Table 28. Most common equipment failures, by all respondents 49
Table 29. Additional comments/observations about communications equipment, by department type 50

FOREWORD

The Law Enforcement Standards Laboratory (LESL) of the National Bureau of Standards (NBS) furnishes technical support to the National Institute of Law Enforcement and Criminal Justice (NILECJ) program to strengthen law enforcement and criminal justice in the United States. LESL's function is to conduct research that will assist law enforcement and criminal justice agencies in the selection and procurement of quality equipment.

LESL is: (1) Subjecting existing equipment to laboratory testing and evaluation and (2) conducting research leading to the development of several series of documents, including national voluntary equipment standards, user guidelines, state-of-the-art surveys and other reports.

This document is a law enforcement equipment report developed by LESL under the sponsorship of NILECJ. Additional reports as well as other documents are being issued under the LESL program in the areas of protective equipment, communications equipment, security systems, weapons, emergency equipment, investigative aids, vehicles and clothing.

Technical comments and suggestions concerning the subject matter of this report are invited from all interested parties. Comments should be addressed to the Law Enforcement Standards Laboratory, National Bureau of Standards, Washington, D.C. 20234.

Jacob J. Diamond, Chief
Law Enforcement Standards
Laboratory

EXECUTIVE SUMMARY

I. SUMMARY OF BACKGROUND AND METHODOLOGY

A. Background

- Law Enforcement Standards Laboratory (LESL) was established in 1971 under the sponsorship of the NILECJ Advanced Technology Division (ATD).
${ }^{\circ}$ NILECJ asked the Behavioral Sciences Group of the National Bureau of Standards to develop and carry out a procedure to get information from the users of law enforcement equipment.
- "User" information would aid NILECJ in setting priorities for LESL programs and would provide some detailed information in support of the research to develop standards and guidelines.
${ }^{\circ}$ In addition, gathering information from the users would help to make police agencies aware of LESL and ATD.
- A nationwide mail sample survey was selected as the best procedure to collect user information.
- An Equipment Priorities Questionnaire (EPQ) and six Detailed Questionnaires (DQs) were developed and administered. A separate report was prepared for each of these seven questionnaires.

B. Design of Questionnaires

${ }^{\circ}$ Questionnaires were developed in conjunction with NILECJ, LESL, and cooperating police departments. Questionnaires were pretested at various times with approximately 45 police departments.

- The EPQ was designed to provide information about priority needs for standards for various types of equipment.
- In addition, the EPQ asked for data about numbers of full- and part-time officers, activities performed in the department, budget, size of jurisdiction, etc.
- The six DQs (Alarms, Security and Surveillance Equipment; Communications Equipment and Supplies; Handguns and Handgun Ammunition; Sirens and Emergency Warning Lights; Body Armor and Confiscated Weapons; and Patrol Cars) were each developed separately.
- The DQs asked about kinds and quantities of equipment in use, problems with existing equipment, suggestions for improving equipment, needs for standards related to the equipment, etc. Although entitled Detailed Questionnaires, these questionnaires were designed to give an overview of the use of specific items of equipment.

C. Sample

- The population sampled was made up of all police departments listed in a computerized file and maintained by the LEAA Statistical Service.
${ }^{\circ}$ Courts, correctional institutions, forensic labs, special police agencies, etc., were excluded.
- The sample was stratified by LEAA geographic region (10 regions) and by department type (7 department types: state police; county police and sheriffs; city departments with l-9 officers; city departments with 10-49 officers; city departments with 50 or more officers, excluding the 50 largest cities; the 50 largest U.S. cities by population; and township departments).
- Overall, approximately 10 percent of the 12,836 departments in the population were selected as respondents (see table 1.2-2).
- The Equipment Priorities Questionnaire was sent to every sample department $(1,386)$. Each Detailed Questionnaire was sent to all states, to all of the 50 largest cities, and to a randomly selected subsample of the main sample (about 530 departments received each DQ).
- Thus, states and the 50 largest cities were asked to fill in all 7 questionnaires. Each of the remaining 1,286 departments was asked to fill in the EPQ and 2 of the DQs.
- The sample for the Communications DQ consisted of 528 departments (see table 1.2-3).

D. Questionnaire Administration

- Stringent control of administration was required.
- Introductory letters were sent to heads of departments asking cooperation.
- On June 1, 1972, questionnaire packages were mailed.
- In July 1972, follow-up by self-return post card was begun.
- In August 1972, follow-up by telephone was begun. Departments which had not returned questionnaires were called. Also, calls were made to clear up ambiguities in the returned questionnaires. About 1,300 calls were made. About 70 percent of the sample departments were called at least once.
- Each questionnaire was edited and coded by a specialized team to ensure consistency; it was then keypunched and tabulated.
- Completed questionnaires were accepted for tabulation through January 7, 1973.

E. Rates of Return

- Eighty-three percent of the 1,386 departments returned usable EPQs.
- Eighty-one percent of the 528 departments returned usable Communications DQs.
${ }^{\circ}$ Between 81 and 85 percent of the other DQ subsamples returned usable questionnaires.
- Highest rates of return (over 90%) were from states, the 50 largest cities, and cities with 50 or more officers.
- Lowest rates of return were from counties and townships (less than 75\%).

F. Characteristics of Responding Departments

- The activities most commonly carried out by the respondents (to the EPQ) were serving traffic and criminal warrants (88%), traffic safety and traffic control (87%), and intradepartmental communications (87%).
- All of the responding 50 largest cities said they provided inhouse training and criminal investigations. This compared to 68 percent and 86 percent, respectively, of all responding departments.
- Only 13 percent of all respondents had crime laboratories. Seventy-three percent of the 50 largest cities and 55 percent of the states had crime laboratories.
- About three-fifths of the departments in all department types were providing emergency aid and rescue, ranging from 60 percent of the cities with 50 or more officers to 67 percent of the counties.
- Overall, the reported equipment budgets represented somewhat over 10 percent of the total budgets reported.
- Among department types, there was a wide range of total equipment expenditures, from a mean of about $\$ 10,000$ for cities with 1-9 officers to a mean of almost $\$ 2.7$ million for the 50 largest cities.
- One of the 50 largest cities reported an equipment budget of $\$ 4.0$ million.
- Overall, the 50 largest cities reported a mean of 2,491 full-time sworn officers. However, 1 of the 50 largest cities had 27 percent of all the full-time officers reported by that department type and another had about 12 percent.

G. Presentation of Data

- Data in this report are presented in two forms: text tables and full tables (app. B). Text tables do not always present a complete breakdown of the data.
- All tables (text and full) present the data in unweighted form (i.e., numbers and percentages of the responding departments from the sample for this questionnaire, not figures that have been weighted to expand the data to the total population of police departments in the U.S.).
- The sample selected for this questionnaire was not proportional to the total population of police departments. If decisions are to be made which require estimates of population figures, the appropriate extrapolation must be performed. (See app. B, p. B-1.)

II. SUMMARY OF RESULTS

A. Car Radios

- A total of 67,807 car radios were reported by the 428 respondents.
- About nine-tenths of the car radios reported were in state and 50 largest city departments.
- About two-thirds of the car radios were bought within the last 5 years.
- Three-fourths of the car radios reported cost less than $\$ 1,001$.
- Almost 6 out of every 10 car radios were made by 1 manufacturer.

B. Portable Radios

- A total of 22,660 portable radios were reported by the 347 respondents which were using portable radios.
- Almost three-fourths of the portable radios reported were in the 50 largest cities.
- More than four-fifths of these radios were bought within the last 5 years.
- Slightly more than three-fourths of the portable radios cost less than \$901.
- About 7 out of every 10 were made by 1 manufacturer.
- About seven-tenths of them weighed between 1-1/4 and 2-1/2 pounds.
- Nickel-Cadmium batteries were used in about seven-tenths of them.
- Ninety percent of the departments used rechargeable batteries in their portables.

C. Channels and Frequencies

- An average of 3.5 channels per department was authorized to responding departments.
- An average of 3.2 channels per department was currently in use.
- About one-half of the reported channels was being used by the 50 largest cities and state police.

D. Fixed Repeaters

- About one-third of the departments used fixed repeaters.
- About nine-tenths of the departments with fixed repeaters were state or 50 largest cities departments.

E. Scramblers

- Scramblers were currently being used by only 9 percent ($n=40$) of the respondents.
${ }^{\circ}$ Of departments which did not have a scrambler system, almost 60 percent felt they needed that system.
- Departments most commonly used (or would use) scramblers for undercover investigations and long term stakeouts.
- More than four-fifths of the departments which had or said they needed scramblers, said they would be willing to pay no more than $\$ 500$ for a reliable scrambler.

F. Need for Other Communications Equipment

- About one-third of the departments expressed a need for helmets with built-in communications. This need was most often expressed by state police and departments in the 50 largest cities.
- Slightly more than two-fifths of the respondents indicated a need for mobile repeaters.
- Twenty-eight percent of the departments favored the voting system; over half of the departments were unfamiliar with this system.

G. Need for Standards for Communications Equipment

- The three items most commonly chosen as needing standards were mobile radios, portable radios, and batteries.
- State police and larger city departments chose more items as needing standards than did other department types.
${ }^{\circ}$ Gains expected from standardization were more often expected to come from interchangeability of equipment than from either savings in training costs or savings in equipment costs.

H. Most Critical Communications Needs

- The four most critical communications needs of the respondents were for new equipment, more frequencies, personal transceivers for each officer, and standardization of all equipment.
- Personal transceivers for all officers was the most critical need of larger city departments.
- New equipment was the greatest need of small city departments and counties.
${ }^{\circ}$ More channels was the greatest need of state police.

LEAA POLICE EQUIPMENT SURVEY OF 1972

Volume II: Communications Equipment and Supplies

S. Mumford, P. Klaus, E. Bunten, and R. Cunitz
Institute for Applied Technology, National Bureau of Standards, Washington, D. C. 20234

Abstract

The report outlines the methodology of and summarizes a portion of the data from the LEAA Police Equipment Survey of 1972. One of a series of 7 reports resulting from this nationwide mail survey of a stratified random sample of police departments, the present report summarizes the answers of 428 police departments concerning their communications equipment and supplies: Use of mobile radios and portable radios; power supplies for portable radios; scramblers; portable/mobile radios; helmets with built-in communications; and needs for standards and problems associated with communications equipment and supplies. The data are presented by all responding departments and by seven department types.

Key words: Communications; mobile radio; police; police equipment; portable radio; standards.

1. INTRODUCTION

1.1. Project Background

During the past several years, law enforcement agencies in the United States have become more aware of the importance of equipment in the performance of their duties. Much of their equipment had originally been designed for other uses and had to be modified. Other equipment items had to be used as given. No standards existed against which equipment performance could be measured nor were any standard test methods or procedures available. It has been difficult for agencies to compare the performance of equipment items. Recognizing this problem, the Law Enforcement Assistance Administration (LEAA) of the Department of Justice began a concentrated program in 1971, toward the improvement of law enforcement equipment.

As the first step in its program, LEAA in cooperation with the Department of Commerce established a Law Enforcement Standards Laboratory (LESL) at the National Bureau of Standards (NBS). The broad goal of LESL is to prepare performance standards which can be promulgated by LEAA as voluntary aids for the selection of equipment by law enforcement agencies. Additionally, LESL is developing standard test methods and procedures, so that the relative performance of similar items may be evaluated by departments themselves.

In order to provide equipment user information for the program, in 1971 the National Institute of Law Enforcement and Criminal Justice (NILECJ) of LEAA asked the Behavioral Science Group of the Technical Analysis Division at NBS to gather information from the users of law enforcement equipment about their specialized equipment needs and problems. Although face-to-face interviews with a large sample of representatives from law enforcement agencies would have been desirable, time and manpower constraints led to the development of a nationwide mail sample survey having two general objectives: (1) To assist NILECJ in the establishment of priorities for LESL's standards development activities; and (2) to obtain detailed information about certain broad equipment categories in support of the research to develop standards and guidelines in these areas.

This report fulfills part of the second general objective and the associated survey questionnaire (see app. A) will be referred to as the Communications Detailed Questionnaire (DQ). The remainder of the second objective is accomplished in the reports of the other five DQs: Alarms, Security and Surveillance Systems; Handguns
and Handgun Ammunition; Sirens and Emergency Warning Lights; Body Armor and Confiscated Weapons; and Patrol Cars. The first general objective (above) is accomplished in the report on the Equipment Priorities Questionnaire (EPQ). ${ }^{\text { }}$

1.2. Sample Design

Although the objective of ATD is to serve all types of law enforcement agencies, this particular study was purposefully limited to police departments as the largest single group of law enforcement agencies with identifiable equipment needs. No attempt was made to survey correctional institutions, courts, forensic laboratories, or special police agencies such as park police, harbor patrols, or university police. The computerized directory of approximately 14,000 police agencies, compiled and maintained by LEAA's Statistics Division, provided the population from which the sample was drawn. Care was taken to exclude the double listings that existed for some agencies. (Details of the selection process are given in app. B of the Equipment Priorities Questionnaire.)

The final list of 12,842 departments was cross-stratified by LEAA geographic region and department type by the mutual agreement of NBS and NILECJ. The assignment of states to regions and the seven department types chosen for study are shown in table 1.2-1.

The breakdown of the population of police departments by cross-strata is exhibited in table 1.2-2. As can be seen from the table, there were no townships in regions $4,6,7$, $8,9,10$. Almost 63 percent of the departments were city police, 43 percent having l-9 full-time officers. County departments comprised about 24 percent of the population. By region, the smallest (region 10) contained only 3.4 percent of the police departments, while region 5, the largest, had 22.5 percent. The variation in the number of departments in a cell (region/department type combination) was even greater than that across the strata, i.e., the number of departments in each cell ranged from 0 to 1,470 .

The considerations discussed in the previous paragraph led to the sampling plan discussed briefly below. All of the state departments and the 50 largest city departments were included in the sample and were asked to complete all 6 DQs , i.e., they were sent the entire package of 7 questionnaires. For the remaining cells the variation in cell size presented a problem: If the same fraction of the entire population was to be selected from the members of each cell, a constant sampling fraction small enough to make the total sample manageable would yield too few sample units in small cells. To solve this problem, a fixed sample of 30 police departments/cell was chosen, wherever possible, resulting in a different sampling fraction for each cell. A fixed sample size of 30 departments/cell was chosen to facilitate the equitable distribution of the 6 DQs. This plan resulted in sending the Communications DQ to 528 departments.

The departments were selected randomly within each cell, from the total cell population, each department (other than the states and 50 largest cities) receiving 2 DQs. Thus, in cells having 30 sample units, the Communications DQ was mailed to 10 departments; cells having fewer sample units were allocated proportionally fewer Communications DQs. Table 1.2-3 presents the total sample for the Communications DQ by region and department type.

Once the sample was selected, each sample unit was assigned a unique seven-digit identification number, coding region, type, and questionnaire assignment.

[^0]| Department types | LEAA geographic region |
| :--- | :--- |
| State police | $1=$ Conn., Maine, Mass., N.H., R.I., Vt. |
| County police and sheriffs | $2=$ N.J., N.Y. |
| City with $1-9$ officers | $3=$ Del., Md., Pa., Va., W. Va., D.C. |
| City with $10-49$ officers $^{\text {City with } 50 \text { or more officers }}{ }^{1}$ | $4=$ Ala., Fla., Ga., Ky., Miss., N.C., S.C., Tenn. |
| The 50 largest U.S. cities ${ }^{2}$ | $5=$ Ill., Ind., Mich., Ohio, Wis., Minn. |
| Township departments | $6=$ Ark., La., N. Mex., Okla., Tex. |
| | $7=$ Iowa, Kans., Mo., Nebr. |
| | $8=$ Colo., Mont., N. Dak., S. Dak., Utah, Wyo. |
| | $9=$ Ariz., Calif., Nev., Hawaii |
| | $10=$ Alaska, Idaho, Oreg., Wash. |

${ }_{2}^{1}$ Does not include the 50 largest cities.
${ }_{\text {By population, U.S. } 1970 \text { census. }}$
${ }^{2}$ By population, U.S. 1970 census.

Table 1.2-2. Number of police departments by region and type

Department type	LEAA region										
	1	2	3	4	5	6	7	8	9	10	Total
State	6	2	5	8	6	5	4	6	4	4	50
County	66	84	257	764	536	506	413	288	103	120	3,137
City (1-9 officers)	27	348	713	979	1,470	703	611	283	135	217	5,486
City (10-49 officers)	40	237	166	344	508	230	142	71	168	79	1,985
City (50 or more officers)	60	64	36	83	119	46	23	19	87	17	554
50 largest cities	1	4	5	8	10	8	3	1	8	2	50
Township	629	349	362	-	234	-	-	-	-	-	1,574
Total	829	1,088	1,544	2,186	2,883	1,498	1,196	668	505	439	12,836

Questionnaires were actually sent to 56 state police departments since there were 6 state departments which listed 2 police agencies without reference to a common central agency. However, only one set of questionnaires was accepted from each of these six agencies as described in vol. I, app. B, p. B-2.

Table 1.2-3. Number in sample of departments selected to receive the detailed questionnaire: Communications - by region and department type

Department type	LEAA geographic region										
	1	2	3	4	5	6	7	8	9	10	Total
State ${ }^{1}$	6	2	5	8	6	5	4	6	4	4	50
County	10	10	10	10	10	10	10	10	10	10	100
City 1-9 officers	9	10	10	10	10	10	10	10	10	10	99
City 10-49 officers	10	10	10	10	10	10	10	10	10	10	100
City 50+ officers	10	10	10	10	10	10	8	6	10	5	89
50 largest cities	1	4	5	8	10	8	3	1	8	2	50
Townships ${ }^{2}$	10	10	10	.	10	40
Total	56	56	60	56	66	53	45	43	52	41	528

[^1]
1.3. Questionnaire Administration

From the beginning of the project, it was evident that stringent control would be required in administering the questionnaires to ensure a high rate of response. Computer-stored daily status records were input via a teletypewriter for each sample department. In general, the following procedure was used:
(1) Each department in the sample was mailed a letter, signed by the director of NILECJ, addressed to the head of the department. This letter introduced the survey and requested cooperation.
(2) About l week later, the questionnaire packages were mailed.
(3) Departments not returning the questionnaires within a month were identified by the computer and were sent a self-return post card requesting information as to the status of the questionnaires. Departments not receiving the questionnaire package were sent another; those not returning the post card were placed on a list for telephone follow-up.
(4) About a month and a half later, departments with which no contact had been made were called by telephone.
(5) Returned questionnaires were reviewed for completeness and either coded for keypunching or filed for telephone callback to supply missing data or to resolve ambiguities.

Considerable effort was expended to ensure a high rate of response, and this effort was rewarded with an 80 percent response for the Communications DQ, and between 80 percent and 85 percent for each of the other questionnaires. In the course of the survey more than 70 percent of the sample departments were contacted at least once by telephone. More than 1,300 phone calls were made by the survey team.

The distribution of respondents (departments which returned usable Communications DQs) is exhibited in table 1.3-1. The highest percentages of response were from the states and larger cities ($89-94 \%$), while counties and townships had the poorest response rates (under 70\%).

Table 1.3-1. Number of sample of departments returning acceptable
detailed questionnaires: Communications

	LEAA geographic region											
Department type	1	2	3	4	5	6	7	8	9	10	Total	Percent total sample
State ${ }^{1}$	6	2	5	8	6	5	3	6	3	3	47	94
County	5	7	5	7	8	6	8	6	10	7	69	69
City 1-9 officers	6	8	8	9	9	10	7	5	9	7	78	79
City 10-49 officers	7	9	9	6	10	8	8	10	9	10	86	86
City 50+ officers	8	9	10	10	7	9	7	5	9	5	79	89
50 largest cities	1	3	4	7	9	8	3	1	8	2	46	92
Townships ${ }^{2}$	8	8	5	-	2	-	-	-	-	-	23	58
Total	41	46	46	47	51	46	36	33	48	34	428	80
Percent total sample	73	82	77	84	77	87	80	77	92	83	81	

[^2]
1.4. Development and Design of the Communications DQ

The survey plan and questionnaire design (of all seven questionnaires) evolved over a 12 -month period. During this time, the survey team consulted at length with NILECJ equipment experts, LESL program managers, and equipment manufacturers. In addition, the officers and administrators of about 40 police departments served as consultants and/or as respondents for pretests of various versions of the questionnaires.

The Communications DQ, in its final form, is reproduced in appendix A. This DQ asked respondents to provide data about car radios and portable radios in use in their departments; to answer questions about the power supplies used in portable radios; to provide information about other kinds of communications equipment such as scramblers, helmets with built-in communications and portable/mobile radios; to indicate the need for standards for various kinds of communications equipment and to discuss problems with communications equipment. The questionnaire was limited to general topics because: (1) It was not possible, considering the scope of the present survey, to explore in a detailed manner all of the many facets of the various communications systems in use in police departments throughout the United States, and (2) it was felt that the general data gathered in the present effort would provide important direction for research in the development of standards, the main objective of the survey.

1.5. Characteristics of Subsample Groups

The EPQ of the LEAA Police Eqaipment Survey requested data from each department about population served, physical size of jurisdiction served, type of jurisdiction, number of full- and part-time officers, approximate total, equipment, and personnel budgets during 1971, and activities handled by the department.

Table 1.5-l presents a partial tabulation, by department type, of the responses to a checklist of 30 typical police activities by the respondents to the EPQ. (The EPQ respondents include, but are not limited to, the respondents to the Communications DQ. See sec. 1.2.) The activities most frequently checked by all departments were: (1) Serve traffic and criminal warrants (88%), (2) traffic safety and traffic control (87%), and (3) communications for own department (87%). The activity with the most consistent level across all department types was that of emergency aid and rescue, ranging from 60 percent (cities with $50+$ officers) to 67 percent (counties).

Higher percentages of state and 50 largest city departments than of other department types were handling certain of the 30 activities. For example, all of the 50 largest city departments responding, and 98 percent of the responding state departments said that their departments provided police training for their own department. These compare to 68 percent for all responding departments. All of the responding 50 largest cities said that they handled criminal investigation in their own departments. This compares to 86 percent of the total sample of departments. Although only 13 percent of the departments overall had crime laboratories, 73 percent of the 50 largest cities and 55 percent of the states had them.

Counties appeared to be the only department type with significant responsibilities for custody and detention for more than 1 week. Seventy-eight percent of those departments had custody/detention up to 1 year, as compared with 22 percent of all responding departments.

Tables 1.5-2 and 1.5-3 present summaries of descriptive data by department type and LEAA region, respectively. As can be seen from the column for "Annual equipment budget" (table 1.5-2), there was a wide range of expenditures among different department types: from a mean of about $\$ 10,000$ for cities (1-9) to almost $\$ 2.7$ million for the 50 largest cities. Overall, equipment budgets represented somewhat over 10 percent of the annual total budgets.

Table 1.5-1. Activities handled by at least one-third of the departments by department type, and percent of total departments having each activity

Description of activity	State	County	$\begin{aligned} & \text { City } \\ & 1-9 \end{aligned}$	City 10-49 (in \%)	$\begin{aligned} & \text { City } \\ & 50+ \end{aligned}$	$\begin{gathered} 50 \\ \text { largest } \end{gathered}$	Township	Total
Serve traffic and criminal warrants	70	89	84	89	94	87	93	88
Traffic safety and traffic control	92	56	94	96	96	98	94	87
Communications for own department	94	86	76	95	94	96	70	87
Criminal investigation	66	86	71	95	97	100	79	86
Police training for own department	98	55	48	77	87	100	42	68
Custody/detention-less than 1 day	.	79	51	73	72	80	43	65
Breath-alcohol test	89	46	47	72	83	91	49	64
Emergency aid and rescue	62	67	62	63	60	67	62	63
Public building protection	.	40	63	60	58	44	68	54
Service function	-	-	48	55	60	60	42	48
Animal control (dogeatcher)	-	-	58	63	42	-	37	44
Highway patrol	96	38	48	36	-	-	88	43
Maintenance of police buildings	51	36	34	41	48	47		40
Custody/detention-l week or less	.	73		36	46	49		38
Communications for other agency	66	56		40	-	.		36
Serve civil process	-	88			-	-		32
Police training for other agency	77	-			42	84		24
Custody/detention-up to l year	-	78			-	-		22
Underwater recovery	34	42			-	42		19
Bomb disposal	45				-	82		17
Polygraph	62				36	90		17
Vehicle inspection	55					.		17
Crime laboratory	55					73		13
Narcotics laboratory analysis	43					62		11
Harbor patrol	.					-		7
Lab analysis for blood alcohol	34					53		7
Other	-							6
Coroner	-							5
Test for driver's license	34							3
Custody/detention-more than 1 year								3

Table 1.5-2. Descriptive data by department type (means)

Department type	Area $\left(\mathrm{mi}^{2}\right)$	Population	Number of full-time officers	Number of part-time officers	Annual total budget	Annual equipment budget	Annual personnel budget
50 largest	187	851,342	2,491	1,115	$\$ 43,268,865$	$\$ 2,669,990$	$\$ 34,712,818$
State	62,580	$3,936,410$	889	18	$16,377,358$	$2,304,339$	$-2,020,572$
County	1,518	130,254	60	25	$1,089,919$	58,539	859,984
City (50+)	31	83,334	132	26	$1,733,340$	173,099	$1,407,177$
City (10-49)	12	15,849	22	9	257,927	24,362	206,187
Township	28	13,228	14	8	175,654	20,854	141,675
City (l-9)	9	5,038	8	5	82,381	9,764	60,061

$\mathrm{T}_{\text {Able }}$ 1.5-3. Descriptive data by LEAA region (means)

LEAA region	Area $\left(\mathrm{mi}^{2}\right)$	Population	Number of full-time officers	Number of part-time officers	Annual total budget	Annual equipment budget	Annual personnel budget
1	750	158,112	96	18	$\$ 1,360,155$	$\$ 135,130$	$\$ 979,911$
2	648	240,781	365	97	$7,148,315$	148,172	$5,265,546$
3	1,096	245,733	216	7	$3,412,567$	435,153	$2,879,293$
4	3,691	340,996	151	11	$2,318,382$	248,600	$1,767,292$
5	2,652	448,174	288	8	$4,916,607$	431,478	$3,879,374$
6	5,738	271,386	160	17	$2,193,823$	160,363	$1,709,910$
7	2,379	112,094	84	9	$1,220,385$	121,001	983,696
8	6,346	83,023	54	9	728,549	77,081	568,463
9	4,218	372,094	281	46	$5,743,553$	728,801	$4,528,692$
10	3,580	104,877	69	9	$1,253,894$	82,198	$1,011,604$

The mean number of part-time officers was based on those respondents having part-time officers in their departments. Of the 45 responding from the 50 largest cities, only 6 had part-time officers, including 1 city which had nearly 6,000 . Thus, the mean value of 1,115 for this department type is somewhat misleading. It should be noted that the category part-time officers included officers described as auxiliary, volunteer, reserve, school-crossing guard, dispatcher, summer, special agent, traffic supervisor, posse, and cadet. All of these classifications were counted in the part-time officer category since it has different meanings for different departments.

Variations in these descriptive averages by LEAA region (table 1.5-3) were considerably smaller than variations by department type. Regions 1 and 8 had smaller budgets than the others, primarily because each had only 1 of the 50 largest cities.

2. QUESTION BY QUESTION DISCUSSION

2.1. Advice to the Reader

In reading section 2, certain points should be kept in mind:
(l) This report is not an evaluation of any of the equipment described or discussed within it. It is a presentation of information and opinions of a stratified random sample of police departments given in response to a specific set of questions. It does not, in any way, reflect objective testing of any equipment by the National Bureau of Standards.
(2) The report reflects only what police departments were willing and able to say in response to a specific set of questions. In most cases, no attempt was made to verify the accuracy of the information given or the level of sophistication of the respondent.
(3) Each discussion begins with the presentation of the question that appeared in the questionnaire, and in most cases the choices supplied, if any, set off in bold face type. However, the reader is cautioned to become familiar with the questionnaire sent to sample departments (see app. A) and to evaluate the data in terms of the exact questions asked.
(4) The text tables that appear in section 2 are almost never the complete tables that were tabulated for that question. Data categories for text tables may have been collapsed from the full table, or certain categories of interest may have been singled out for fuller discussion. Appendix B contains the complete tables from which the text
tables were extracted. Text tables have been numbered after the question number (e.g., the text tables for question 6A would be numbered 6A-l, 6A-2, etc.) The tables in appendix B are also numbered the same as question number, in the same manner. In some cases, tables that appear in appendix B will not have been discussed at all in the text.
(5) Data in the text of this report are usually presented by nearest whole percent of the group under consideration. In appendix B, the data are usually presented by number of respondents and percent. Because of statistical limitations imposed by the sample sizes used in this study, the reader is cautioned to be wary of assigning importance to percentage differences of less than 5 percent when percentages are based on the total number of respondents, and to percentage differences of less than 10 percent when percentages are based on one of the subsample groups (e.g., a particular department type or region). No statistical tests of significance are reported.
(6) Data were always tabulated by each of the choices supplied, if any, in the questionnaire. Any "other" choices written in by the respondents were also tabulated and/or recorded verbatim. In most cases, the numbers of respondents giving a specific "other" response do not reflect the numbers of respondents who might have marked that choice if it had been one of those provided. Therefore, in most cases, this report lists or gives examples of "other" responses, but does not present numbers or percents of departments giving that response. For those questions for which choices were not provided in the questionnaire, coding categories were developed after approximately one-fourth of the questionnaires had been returned.
(7) The following convention has been adopted in the report to designate the four city department types:

City with 1-9 officers = city (1-9)
City with $10-49$ officers $=\operatorname{city}$ ($10-49$)
City with 50 or more officers $=\operatorname{city}(50+)^{2}$
The 50 largest cities $=50$ largest ${ }^{3}$
In table headings this same convention has been used except that the parentheses have been removed.
(8) Questions which asked departments to identify manufacturers of their equipment were asked in this manner only to make the question clearer; not to evaluate a manufacturer's product.
(9) In an attempt to make this report more readable, the main topics of the questionnaire have been reordered in the report; the discussion of the findings does not follow the order of the questions. To find the discussion of a particular question quickly, consult the Contents or the List of Tables.
(10) When the subsample groups are discussed (e.g., "counties said..." or "cities (1-9) said...") the reference is to the responding departments from one of the sample strata. It is particularly important to note that when the text or tables refer to "all departments" or "all responding departments," the reference is to all responding departments from the sample described in section 1.2. This sample was not proportional to the total population of police departments, and although it is possible to do so, the data in this report have not been weighted to allow direct extrapolation to the total population. (See app. B, p. B-1.)

[^3]
2.2. Discussion

2.2.1. Characteristics of Respondents

a. Rank/Title of Respondents

All of the questionnaires in the LEAA Police Equipment Survey were mailed to the chief (or highest official) of the department with a request that the questionnaires be directed to the person or persons within the department who were felt to be best qualified to answer the questions.

The communications questionnaire was usually filled in by the chief/unit head in smaller city departments and townships and by a communications specialist in states and the 50 largest cities. (See table i.)

In cities (50+) about one-fourth (28\%) of the primary respondents were communications specialists and one-fifth (20%) were either chiefs or assistant chiefs. Questionnaires from counties were most often filled in by the sheriff.

Table i. Rank of primary respondent for communications questionnaire, by department type ${ }^{1}$

	Department type (in \%)					
Rank/Title	City	City	City	50		
$1-9$	$10-49$	$50+$	largest	State	Township	
Chief	73	42	14	4	0	52
Assistant chief	3	9	6	0	0	0
Communications specialist	0	2	28	67	77	4

```
1 Excluding counties
```


b. Number of Years of Law Enforcement Experience of Respondent

In general, the questionnaire was filled in by experienced officers. About threefourths of the respondents had more than 5 years of experience. Although a majority of the respondents had more than 10 years of experience in law enforcement, there were variations among department types. More than 70 percent of the respondents in the states and 50 largest cities had this much experience, while less than half of the respondents in counties, cities (1-9), and townships had more than 10 years in law enforcement work. (See table ii.)

TABLE ii. Years of experience in law enforcement of primary respondent

	Number of years of law enforcement experience (by $\%$ of department types) More than Department type	More than 5 years	More than 20 years	More than 20 years
50 largest	88	77	24	13
State	81	72	17	4
City (10-49)	84	57	13	5
City (50+)	77	61	22	14
City (1-9)	62	43	21	13
County	58	36	17	13
Township	57	48	9	9

2.2.2. Number of Officers and Characteristics Of Jurisdiction

The communications needs and requirements of police departments are usually based on two prime considerations: (1) Number of officers in the department and (2) size of jurisdiction.

Data about the average number of officers per department type are reproduced in table iii.

The largest mean number of officers per department was in the 50 largest cities. States averaged slightly less than one-third as many officers as the 50 largest cities. counties averaged about five times as many officers as did cities (10-49). (See table 5A-1.)

Table iii. Average number of full-time officers, by department type

Department type	Number of full-time officers
50 largest	2,491
State	890
City (50+)	125
County	113
City (10-49)	23
Township	16
City (l-9)	9

TABLE 5A-1. Average size of communications jurisdiction, by department type

	Size $\left(\mathrm{mi}^{2}\right)$		
Department type	Overall mean	Minimum	Maximum
State	62,704	1,497	263,449
County	2,551	14	64,000
50 largest	237	24	841
City (10-49)	68	1	2,000
City (1-9)	67	1	1,200
City (50+)	34	2	310
Township	32	5	67

5A. What is the total area within your jurisdiction which must be covered lby a communications system? (In Square Miles)

Square Miles

The average sizes of communications jurisdictions which state and county police had to cover were larger than those of all types of city departments and townships. The larger cities, in terms of number of officers, were not necessarily larger in geographical size. Cities (1-9) and cities (10-49) had geographically larger jurisdictions than cities (50+). The relationship between number of officers and geographical size can be seen more clearly n table 5A-2.

	Number of officers and size of jurisdiction Mean number of full-time officers	Mean size of jurisdiction $\left(\mathrm{mi}^{2}\right)$
Department type largest	2,491	237
State	890	67,704
City (50+)	125	34
County	113	2,551
City (l0-49)	23	68
Township	16	32
City (l-9)	9	67

> 6. Which of the following best describes the general character of your jurisdiction? (Mark X by More Than One, if Necessary)

> Skyscrapers, many tall buildings
> Some tall buildings
> Almost no tall buildings
> Primarily mountainous or very hilly
> Valley area surrounded by mountains
> Generally flat with some hills
> Flat area, no hills

The departments which characterized their jurisdictions as being mountainous or in a valley surrounded by mountains were most often located in LEAA regions 1 (New England), 8 (Mountain States), 9 (Far West/Hawaii), and 10 (Northwest/Alaska). Respondents who reported flat, with some or no hills, were most often in LEAA regions 6 (South/Southwest) and 7 (Midwest). There were few differences among the LEAA regions in the percentages of departments which said they had almost no tall buildings. Departments in region 5 (Great Lakes) gave the greatest percentage of responses for skyscrapers, many tall buildings, or some tall buildings; this response was given least often by departments in region 1 (New England). (See table 6.)
$\mathrm{T}_{\text {Able }}$ 6. General character of jurisdiction, by LEAA region

LEAA region	Flat/some or no hills	Character (by \% of region) Valley surrounded by mountains/or moun- tainous, very hilly	Almost no tall buildings	Skyscrapers or some tall buildings
New England	31	81	32	12
New York/New Jersey	63	43	33	31
Middle Atlantic	33	67	20	35
South	79	36	28	30
Great Lakes	73	22	27	53
South/Southwest	91	18	28	28
Midwest	86	11	28	28
Mountain	45	81	27	24
Far West/Hawaii	46	80	35	31
Northwest/Alaska	35	70	26	18

2.2.3. Mobile Radios

2.2.3.1. Number of Mobile Radios

2A. How many car radios are there in your department? Number

State departments accounted for slightly more than half (51%) of all the car radios reported by the 428 responding departments. The 50 largest cities accounted for an additional 40 percent of all radios reported. Thus, less than 10 percent of all radios reported were found in the other five department types. (See table 2A-1.)

Within the seven department types, there were wide ranges of minimum and maximum numbers of mobile radios reported. For example, some county departments had as few as 1 car radio, while 1 county had 900 .

Total numbers of car radios were compared with the numbers of patrol cars reported in response to the patrol cars questionnaire. ${ }^{4}$ A total of 67,807 car radios was reported by the respondents to the communications questionnaire. A total of 46,462 patrol cars was reported by the respondents to the patrol cars questionnaire. Therefore, about 46 percent more car radios than patrol cars were reported by these subsample groups.

Calls were made to a few departments to determine possible reasons for the large observed difference between the number of cars and the number of car radios. Several reasons were given for this apparent discrepancy: (1) Many departments said that they kept extra mobile radios available; some said that they kept a $10-20$ percent backup inventory. (2) Many departments are using communications channels on two different frequency bands, and needed two radios in each patrol car in order to operate on both bands. In some departments, one band was used for emergencies (and was sometimes part of an area or statewide communications) and the other was used to handle local jurisdiction communications. (3) In a smaller number of departments, it appeared that errors in reporting the numbers of mobile radios may have occurred. For instance, some of the county departments contacted said that they had included other mobile radios in their jurisdictions which, although they were not used by the county police, were tied

[^4]Table 2A-1. Number of car radios, by department type

Department type	Number of respondents	Total number radios	Percent total radios	Mean no. per department	Maximum in any department	Minimum in any department
State	47	36,365	51	731	3,510	97
50 largest	46	27,221	40	592	4,275	101
County	69	2,653	4	38	900	1
City (50+)	79	2,597	4	33	177	7
City (10-49)	86	631	1	7	21	1
City (1-9)	78	239	$*$	3	28	1
Township	23	101	$*$	4	26	1
All departments	428	67,807	100	158	4,275	1

[^5]into the central dispatch system operated by the county. It was also possible that a small number of departments may have included portable radios in their statistics on car radios, even though information about portable radios was specifically requested in Question 11A. In summary, while it appears that departments did, in fact, have considerably more mobile radios in their departments than they had patrol cars, there is reason to believe that the total of 67,807 car radios reported in the survey may have been somewhat high. Nevertheless, the estimate of the total number of police mobile radios in the country, shown in table 2A-2, is not likely to have been seriously affected.

Table 2A-2. Estimated total population of police car radios in U.S., by department type

Department type	Mean number car radios per department	Number departments that type: total population	Estimated number car radios
County	38	3,137	119,206
State	731	50	36,550
50 largest	592	50	29,600
City (50+)	33	554	19,282
City (1-9)	3	5,486	16,458
City (10-49)	7	1,985	13,895
Township	4	1,574	6,296
Total			240,287

2.2.3.2. Spectrum Utilization: Mobile Radios

In this section, mobile communications are considered in terms of police department spectrum utilization. The frequency bands used for transmitting and receiving and the number of channels authorized and in use by the responding departments are reported.

1. Give the following information about your car radios:

1A. List ALL transmitting frequencies (in $\mathrm{kHz}, \mathrm{MHz}$, etc.)
The reported frequencies were compiled in four categories: VHF low band (30-50 MHz), VHF high band ($150-174 \mathrm{MHz}$), UHF band ($450-470 \mathrm{MHz}$), and an "other" category which included such answers as call letters, which could not be eategorized by band.

VHF high band and UHF frequencies can usually be received in buildings. VHF high band has better penetration, while UHF frequencies are more likely to pass through windows and other nonmetallic openings. One of the main attractions of the UHF band is the availability of unused frequencies compared to VHF low and high bands, which are relatively saturated.

Of all the transmitting frequencies reported by responding departments, almost half (49%) were in the VHF high band ($150-174 \mathrm{MHz}$). The VHF low band ($30-50 \mathrm{MHz}$) accounted for 29 percent of the reported frequencies and only 19 percent were in the UHF band.

Since VHF low band frequencies provide the greatest range and are least affected by terrain and foliage, they are more suitable for those departments with the largest jurisdictions, such as states and counties. In both of these department types, over half of the reported transmitting frequencies were in the VHF low band. (See table 1A.1.)

The three largest city department types and townships reported the greatest proportions of VHF high band transmitting frequencies. VHF high band, being more line-of-sight, does not provide as much range as low band does, but does transmit farther than UHF for the same transmitter output power. VHF frequencies have been available for law enforcement use longer than the UHF frequencies. As shown by the data, UHF frequencies were not generally being used, with the exception of the 2 largest city department types (50+ and 50 largest).

Of the responding departments, 79 percent said all their transmitting frequencies were in a single band. The remaining 21 percent used one of the combinations shown in table 1A-2. Only five departments reported using transmitting frequencies in all three bands.

The means shown in table 1A-3 were calculated by counting the total number of transmitting frequencies reported within a particular band by departments within a particular department type and dividing this total by the number of departments within that department type who reported at least one transmitting frequency within the band in question. Thus, for example, if 20 departments of a particular type reported using a total of 30 transmitting frequencies in the VHF low band, the statistic entered in the table would be "1.5."

Historically, the VHF low band has been available for police department use longer than the other two bands. Increasing pressure for channel assignments and technological improvements have permitted the opening of the VHF high band and,
$\mathrm{T}_{\text {ABLE }}$ 1A-1. Distribution of transmitting frequencies among bands,
by department type (406 departments responding)

Frequency band	All depts.	Department type (by \% of frequencies)						
		State	County	$\begin{aligned} & \text { City } \\ & 1-9 \end{aligned}$	$\begin{array}{r} \text { City } \\ 10-49 \end{array}$	$\begin{aligned} & \text { City } \\ & 50+ \end{aligned}$	$\begin{gathered} 50 \\ \text { largest } \end{gathered}$	Township
$30-50 \mathrm{MHz}$	29	59	51	37	28	13	3	29
$150-174 \mathrm{MHz}$	49	35	42	40	61	63	53	61
$450-470 \mathrm{MHz}$	19	6	5	12	8	23	42	- 8
Other	1	0	0	2	1	1	3	0
	($\mathrm{n}=1,333$)	($\mathrm{n}=292$)	($\mathrm{n}=168$)	($\mathrm{n}=109$)	($\mathrm{n}=153$)	($\mathrm{n}=181$)	($\mathrm{n}=393$)	($\mathrm{n}=37$)

T ${ }_{\text {Able 1A-2. Percent }}$ use of more than one frequency band for transmitting by the 65 departments reporting concurrent usage

Band combination	Percent of all departments which were using more than one band $(\mathbf{n}=65)$
$30-50$ and $150-174 \mathrm{MHz}$	60
$30-50$ and $450-470 \mathrm{MHz}$	10
$150-174$ and $450-470 \mathrm{MHz}$	30

| Frequency
 band | All
 departments | State | County | City
 1.9 | Department type
 City
 $10-49$ | City
 $50+$ | 50 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |\quad Township

most recently, the UHF band for law enforcement communications. With the exception of counties, all department types, if they had made the switch to UHF at all, were using more channels per department in the UHF band than in the lower two bands. This trend was particularly noticeable in the 50 largest cities which reported 5.6 and 6.8 frequencies per department in the VHF high and UHF bands, respectively, vs. only 1.7 frequencies per department in the VHF low band. Increased spectrum space and the absence of co-channel interference at the UHF frequencies should result in an increase in the proportion of frequency assignments (now 19%, see table lA-1) in this band.

1B. List ALL receiving frequencies; if different from Question 1A.

About two-thirds of the 50 largest city departments indicated that they were using at least 1 receiving frequency which was different from their transmitting frequencies. Their responses imply the use of some type of duplex system. ${ }^{5}$ The majority of departments in other department types appeared to be operating in the simplex mode. Since the 50 largest cities were the primary users of different receiving frequencies, as well as being the primary users of the UHF band, they heavily influenced this picture. (See table 1B-1.)

[^6]Table 1B-1. Percent departments whose transmitting and receiving frequencies were not all the same ($n=130$)

Department types	Different transmitting and receiving frequencies
Township	14
City $(10-49)$	20
City (1-9)	24
County	25
State	36
City (50+)	40
50 largest	67

11D. Number of Channels Authorized
 1E. Number of Channels in Use

Although the data for this question (and for Question 5B to follow) are reported, the reader is cautioned to interpret them carefully. Discussions with departments and the FCC after the survey was conducted, revealed that the term "channel" was defined differently by different people. The major area of confusion was concerned with the meaning of simplex and duplex channel assignments.

In terms of all responding departments, 1,452 authorized channels were reported and 1,332 channels were reported in use. At the time of this survey, of the channels authorized but not in use (120 channels), state departments and the 50 largest cities accounted for just over half (68). (See table 1D and E.)

In general, the more officers in the department, the greater was the number of channels authorized for its communications, and departments were using almost all (92%) of the channels authorized to them. The overall average number of authorized channels per department was 3.5 and the average number in use was $3: 2$.

TABLE 1D and E. Comparison of channels authorized with channels in use for mobile radios, by department type (department types listed from largest to smallest based on mean number of full-time officers)

Department type	No. channels authorized	No. channels in use	Percent of authorized in use
50 largest	411	378	92
State	309	274	89
County	195	186	95
City (50+)	184	174	95
City (10-49)	169	158	94
City (1-9)	144	124	86
Township	40	38	95
All departments	1,452	1,332	92

$5 B$. If possible, please tell us how many different law enforcement channels serve this area. This figure would include not only those channels used by your department, but also those used by other law enforcement agencies operating in the same geographical area (e.g., state and local police).

Channels

Don't Know
Responding departments reported an average of 11.6 law enforcement communications channels in use in their areas. This is slightly over three times the average number reported for their own use. However, of the 428 departments which returned Communications Questionnaires, 132 departments (31%) did not answer or did not know the number of different law enforcement channels serving their areas. (See table 1D and E and 5B.)

Although state departments who answered this question (18 departments) reported the greatest number of channels in their areas, they also had by far the largest areas. The 50 largest cities had slightly less than half as many authorized channels in their areas as state departments, but these channels were concentrated in much smaller jurisdictions.
$\mathrm{T}_{\mathrm{AbLE}} 1 \mathrm{D}$ and E and 5B. Comparison of average number of channels authorized, in use, and in area for mobile radios, by department type ${ }^{1}$

Department type	Authorized $(\mathrm{n}=417)$	Channel In use $(\mathrm{n}=418)$	In area $(\mathrm{n}=296)$
50 largest	9.1	8.	32.6
State	6.6	5.8	71.7
County	2.9	2.8	5.7
City (50+)	2.4	2.5	6.2
City (10-49)	2.0	1.8	4.9
City (1-9)	2.0	1.7	4.0
Township	1.7	1.6	5.1

'"No Answers" were excluded from the calculation of averages.

> 5C. Do you have one common frequency for routine and emergency traffic?
> Yes
> No (If "No") Do you think you need a common frequency?
> Yes
> No

This question was originally intended to obtain information on interdepartmental sharing of frequencies. That is: Did the different departments in one district or region have a common frequency for communicating with each other on both a routine and emergency basis? It was subsequently discovered that it had sometimes been interpreted to refer to intradepartmental capability. Consequently, the data received in answer to this question are not presented here.

2.2.3.3. Characteristics of Mobile Radios

1. Give the following information about your car radios:

1C. Output power (in watts)
This was a difficult question for some departments to answer and 39 of the respondents did not answer it. Four departments gave output powers under 10 watts (they were using repeaters) and 36 departments gave output powers above 110 watts (probably their base station output power since the maximum power available from commercial mobile radios is 110 watts). (See table lC-1.)

The frequency count shows that the most frequently cited output power was in the $90-110$ watt range. State departments, as expected by the size of their jurisdictions, showed the greatest use (81%) of high ($90-110$ watts) output power. Only in the 50 largest cities did the highest proportion of departments cite one of the lower ranges of output power (i.e., 33% of the 50 largest cities reported output in the $30-49$ watt range while 26% reported output powers of $90-110$ watts). (See table $1 \mathrm{C}-2$.)

The overall average (mean) output power reported by police departments in this survey was 70.9 watts, the median was 75 watts, and the most often cited (mode) output power was 100 watts. The average output power per department type arranged according to average size of jurisdiction is shown in table $1 \mathrm{C}-3$. County and state departments had the highest average output power and also were larger in physical size than other department types.

T Able 1C-1. Frequency count of reported output power, for all responding departments

Output power in watts	All department types Number Percent	
	4	
$10-29$	28	1
$30-49$	73	7
$50-69$	65	17
$70-89$	24	15
$90-110$	159	6
More than 110	36	37
No answer	39	8
Total	428	9

TABLE 1C-2. Percentages of each department type which cited output power of $90-110$ watts

Department type	Percent of department type citing $90-110$ watts
State	81
County	52
Township	35
City (50+)	34
50 largest	26
City (10-49)	24
City (1-9)	22

Table 1C-3. Average output power, by department type, arranged by average size of jurisdiction

Department type	Output power mean number watts	
(smallest)	Township	74
	City (50+)	68
	City (1-9)	64
	City (10-49)	64
	50 largest	56
	County	84
(largest)	State	91

3. How recently were most of the car radios bought by your department? (Mark X by Your Best Estimate)

Within the last calendar year

$1-3$ years ago
4.5 years ago

More than 5 years ago
Almost half (47%) of the responding departments (evenly across department types) had purchased the bulk of their car radios within the last 3 years and about two-thirds of the departments (65%) had bought most of their car radios within the last 5 years. The other one-third (34%) bought them more than 5 years ago. ${ }^{6}$

Of the 65 percent which had bought most of their radios within the last 5 years, about half had bought them 1 to 3 years ago, about one-fourth had bought them 4 to 5 years ago and the remaining one-fourth had bought them within the last year. (See table 3.)

There were no major differences among department types, although townships were slightly more likely than the others to have bought their car radios within the last 5 years.

Table 3. Cumulative percentages for period of time within which 428 departments bought most of their car radios, by department type

	Within the last year	Time period 3 years ago or less	5 years ago or less
Department type			
City (50+)	25	42	62
Township	22	44	79
City (10-49)	19	56	65
County	13	40	63
City (1.9)	10	48	61
50 largest	7	48	68
State	6	46	67
All departments	15	47	65

Abstract

4. About how much did each of the car radios cost that are most frequently used in your department (including base plate, control head, microphone, and speaker)? For example, if most of the radios now in use are Motorolas, please give us the cost of one set. (Mark X by Your Best Estimate Below)

Less than \$700
\$701-\$800
\$ 801 -900
\$901-1,000
\$1,001-1,500
Over \$ 1,500
More than half (56%) of the responding departments paid $\$ 900$ or less for their most frequently used car radios. Very few departments (4% overall) paid more than $\$ 1,500$ per unit; state departments paid significantly less per unit; and counties and townships paid significantly more per unit. It might have been expected that states and

[^7]counties would pay more per unit because of a need for higher output power and increased channel capacity to serve their larger jurisdictions. However, this hypothesis held true only for the counties, suggesting, perhaps, that a further examination of the purchasing practices of these two department types would be needed to explain the survey results. (See table 4.)

Table 4. Cumulative percentages for cost of the car radios most frequently used in a department (including base plate, control head, microphone, and speaker), by department type

Cost	All departments	Department type Cumulative percentages of departments					$\begin{gathered} \text { City } \\ 50+ \end{gathered}$	Township
		State	$\begin{aligned} & \text { City } \\ & 1-9 \end{aligned}$	$\begin{gathered} 50 \\ \text { largest } \end{gathered}$	$\begin{aligned} & \text { City } \\ & 10-49 \end{aligned}$	County		
\$700 or less	22	51	29	24	15	14	13	9
\$800 or less	40	64	52	44	38	23	33	22
\$900 or less	56	83	70	57	54	32	53	31
\$1000 or less	73	87	79	61	81	54	75	57
\$1500 or less	96	98	97	91	98	93	94	87

2 B . (How many car radios are there in your department?) Of those car radios, about how many were made by each of the following manufacturers?

Number Manufacturer
Motorola
RCA
GE
Other
Ninety-nine percent of all the car radios reported were manufactured by only three companies, and over half (57%) were produced by just one manufacturer. The three largest city department types seemed to favor manufacturer C for roughly two-thirds of their car radio purchases. State departments distributed their buying equally between manufacturers B and C. Manufacturer A captured only 8 percent of the reported market. Other manufacturers combined represented l percent of the respondents' police mobile radio purchases. (See table 2B-1.)

Table 2B-1. Percentages of car radios in use in depariment made by various manufacturers, by department type

	Manufacturer			
Department type	A	B	C	Other
50 largest	5	23	71	0
City (10-49)	6	23	69	2
City (50+)	14	22	63	0
County	3	38	59	0
City (1-9)	5	37	52	5
Township	3	44	52	1
State	11	44	45	1
All departments	8	34	57	1

Thirty-nine percent of the responding departments had a mixture of brands of mobile radios within their departments. Radios produced by different manufacturers are not always compatible, that is, control heads, microphone jacks, etc. may not mate, and interchangeability of equipment is difficult. This problem was mentioned by many departments (see sec. 2.2.6). On the other hand, these data may only be a reflection of the fact that many departments (see sec. 2.2.3.2) operated communications equipment on more than one band and consequently may have purchased the radios for use on one band from one manufacturer and those for use on the other band from another manufacturer (see sec. 2.2.3.1). (See table 2B-2.)

Table 2B-2. Proportions of different manufacturers represented within one department

Radios made by	Percent all departments
One manufacturer	60
Two manufacturers	30
Three manufacturers	8
Four manufacturers	1
No answer	1

2.2.4. Portable Radios

9. Do you now use portable (hand-held) radios in your department?

Yes
No
Most of the responding departments (81%) used portable radios, with the greatest proportions of users in the larger departments. All of the responding state and 50 largest city departments reported using them. (See table 9.)

Table 9. Use of portable radios, by department type

Department type	Departments using portable radios (\% dept. type)
50 largest	100
State	100
City (50+)	99
City (10-49)	90
Township	70
County	62
City (1-9)	53

2.2.4.1. Number of Portable Radios

11A. How many portable radios do you now have in your department? Number

Almost three-fourths (72%) of the portable radios reported were used in the 50 largest cities. Although departments in the 50 largest cities averaged about 356 portable radios per department, use of these radios varied greatly among particular cities. For example, the numbers of portable radios available in any single police department, within the 50 largest cities group, ranged from a maximum of 4,500 radios in 1 of these departments to a minimum of only 15 radios in another. (See table 11A-1.)

As the mean number of officers per department type increased, the mean number of portable radios per department type increased. As was discussed in section 2.2.3.1 (and is repeated in table 11A-2, below), state departments averaged many more mobile radios per department than did the 50 largest cities, even though they averaged fewer officers per department. This anomaly did not occur with respect to portable radios. (See table 11A-3.)

Table 11A-1. Number of portable radios by department type

Department type	No. of respondents	Total no. portable radios	Percent total radios	Mean no. per department	Maximum in any department	Minimum in any department
50 largest	46	16,363	72	355.7	4,500	15
State	47	3,621	16	77.0	419	5
City	78	1,682	7	21.6	108	2
County	42	464	2	11.1	125	1
City (10-49)	77	366	2	4.8	21	1
City (1-9)	41	109	$*$	2.7	11	1
Township	16	55	$*$	3.4	17	1
All departments	347	22,660	100	65.3	4,500	1

[^8]TABLE 11A-2. Comparison between mean number of officers per department type, mean number of car radios and mean number of portable radios

Department type	Mean no. officers	Mean no. car radios	Mean no. portable radios
50 largest	2491	591.8	355.7
Siate	890	731.2	77.0
City (50+)	125	32.9	32.6
County	113	38.5	11.1
City (10-49)	23	7.3	4.8
Township	16	4.4	3.4
City (1-9)	9	3.1	2.7

Department type	Estimated no. portable radios	Estimated no. car radios
50 largest	17,785	29,600
State	3,850	36,550
City (50+)	11,966	18,282
County	34,820	119,206
City (10-49)	9,528	13,895
Township	5,352	6,296
City (1-9)	14,812	16,458
Total	98,113	240,287

2.2.4.2. Spectrum Utilization: Portable Radios

10. Give the following information about your portable radios. A. List all transmitting frequencies (in $\mathbf{k H z}, \mathbf{M H z}$, etc.)

Five percent of the 348 departments using portable radios did not report their transmitting frequencies. Of the remaining 329 departments, the most used transmitting band for portable radios was the VHF high band ($150-174 \mathrm{MHz}$), with approximately the same proportion of total frequencies as was found for mobile radios. (See table 10A-1.)

Within department types, in all but two cases (counties and 50 largest cities), the band in which the highest percentage of total mobile transmitting frequencies were used was also the band in which the highest percentage of portable transmitting frequencies existed. In contrast, over half of the portable radio transmitting frequencies reported by counties were in the VHF high band, while the majority of their mobile transmitting frequencies were VHF low band. The 50 largest cities, which tended to use a greater proportion of UHF frequencies for their mobile radios, tended to use a greater proportion of VHF high band frequencies for their portable radios. (See table 10A-2.)

Within the seven department types, the numbers of transmitting frequencies per department for mobile and portable radios were very similar, except for state departments. It is probable that the higher mean number of mobile radio transmitting frequencies reported by states was a reflection of their relative emphasis on highway patrol activities. (See table 10A-3.)

> Table 10A-1. Comparison of percentages of total transmitting frequencies, by band, for mobile and portable radios for all departments

	Percent of frequencies in:		
Radio	VHF low band	VHF high band	UHF band
Mobile	29	49	19
Portable	22	51	24

Table 10A-2. Percentages of total mobile and portable frequencies, by band, for county and 50 largest city departments

	Department type			
Frequency band	County Percent mobile	Percent portable	Percent mobile	Percent portable
$30-50 \mathrm{MHz}$	51	36	3	3
$150-174 \mathrm{MHz}$	42	59	33	50
$450-470 \mathrm{MHz}$	5	1	42	44

TABLE 10A-3. Mean ${ }^{l}$ numbers of portable and mobile radio transmitting frequencies, by department type (department types ordered from largest to smallest by number of full-time officers)

Department type	Portable radios Mean no. frequencies	Mobile radios Mean no. frequencies
50 largest	8.6	8.7
State	4.1	6.2
City (50+)	1.9	2.4
County	2.1	2.6
City (10-49)	1.4	1.8
Township	1.7	1.7
City (1-9)	1.5	1.6

${ }^{1}$ Means calculated only for those departments reporting any mobile transmitting frequencies or any portable transmitting frequencies.

$10 B$. List ALL receiving frequencies, if different from 10 A .

Most departments were using the same set of frequencies for receiving as for transmitting to their portable radios. Only 62 departments reported receiving frequencies that were different from their transmitting frequencies, and the majority of these were departments in the 50 largest cities. (See table 10B.)

Table 10B. Percentages of total portable radio frequencies used for both transmitting and receiving, by department type

Department type	Percent same
City (1-9)	97
City (10-49)	93
State	91
Township	87
County	82
City (50+)	77
50 largest	43

10. Give the following information about your portable radios.

10D. Number of Channels Authorized

10E. Number of Channels in Use

The three largest department types (by average number of officers) accounted for 71 percent of all the authorized portable radio channels reported by responding departments and 72 percent of those actually in use. These department types also accounted for almost two-thirds (64%) of the authorized but not yet used channels. A total of 162 channels (14% of all authorized channels) was reported to be authorized but not used. (See table 10D and E-1.)

The number of channels used for mobile communications exceeded that for portable radios. (See table 10D and E-2.)

TABLE 10D and E-1. Comparison of channels authorized and in use for portable radios, by department type

Department type	Channels			
	Authorized		In use	
	No.	Percent	No.	Percent
50 largest	431	37	374	37
State	228	19	205	20
City (50+)	171	15	148	15
City (10-49)	126	11	111	11
County	96	8	84	8
City (1.9)	95	8	65	6
Township	27	2	25	2
All departments	1,774	100	1,015	100

$\mathrm{T}_{\mathrm{AbLe}}$ 10D and E-2. Comparison of channels authorized and in use for portable and mobile radios, by all department types

	Channels				
	Portable			Mobile	
Use category	Total no.	Average	Total no.	Average	
Authorized	1,174		3.4	1,452	
In use	1,012	2.9	1,332	3.5	
	$(\mathrm{n}=247)$			$(\mathrm{n}=417)$	

2.2.4.3. Characteristics of Portable Radios

10. Give the following information about your portable radios:

10 C . Output Power in Watts
As was expected, due to the nature of the power supplies employed, the average output power for portable radios was far lower than the output power for mobile radios. The mean output power, for all departments, for portable radios was 3.9 watts, while the mean output power for mobile radios was 70.9 watts. (Most portable radios currently on the market transmit with an RF output of five watts or less.)

In general, the larger the average size of department type jurisdiction, the greater the mean reported output power for portable radios. There was only one exception to this general trend: The 50 largest cities, which had the third largest mean size of jurisdiction, reported the lowest mean output power for their portable radios. (See table 10C.)

A few departments reported very high portable radio output powers, but the problem was not as great, either in frequency or degree, as for mobile radios. Follow-up telephone calls to some of these departments revealed that they had estimated the output power of their portable equipment rather than actually checking the specifications.

Table 10C. Mean output power in watts for portable radios, by department type-arranged from smallest to largest mean size of jurisdiction

Department type	Mean output power in watts
Township	3.4
City (50+)	3.4
City (1-9)	3.6
City (10-49)	4.2
50 largest	2.8
County	4.6
State	5.1

22. Should standards for power supplies such as charging equipment, and batteries for portable radios be given

High Priority
Medium Priority
Low Priority
Standards are not needed for these items
About three-fourths of departments which used portable radios felt that either high or medium priority should be assigned to developing standards for power supplies for portable radios. These departments were evenly divided between those which assigned high vs. medium priorities. About 25 percent of all departments using portables either said that no standards for power supplies were needed or that such standards should have low priority. The 50 largest cities, which were the biggest users of portable radios, were most likely to assign high priority to standards for power supplies for portable radios. (See table 22.)

Table 22. Priorities assigned to standards for power supplies for portable radios by 348 departments which used portable radios as compared to average number of portables available, by department type

Department type	High priority	Medium priority (in	Low priority of department types)	Don't need standards	Average no. of portable radios
50 largest	61	26			
City (50+)	37	33	19	7	355.7
State	36	36	11	9	21.6
County	37	35	7	17	77.0
City (10-49)	30	44	17	19	11.1
Township	25	50	12	12	4.8
City (1-9)	24	37	22	17	3.4

23. What types of batteries do you now use for your portable radios? (Mark X by Each Item That Applies)
24. What types of batteries do you prefer to use for your portable radios? (Mark X by One of the Following)

Alkaline-Manganese
 Carbon-Zine
 Mercury
 NiCad (Nickel-Cadmium)
 Silver Oxide Other

More than 80 percent of the 348 departments which were using portable radios said that they were using Nickel-Cadmium batteries for those radios. A similar percentage also said that Nickel-Cadmium was the battery they would prefer to use with their portable radios. Although 25 percent of the portable radio users said they were currently using at least some Alkaline-Manganese or some Mercury batteries, less than half of those who used these two types of batteries said that they would prefer to use them. (See table 23 and 24.)
$\mathrm{T}_{\text {Able }} 23$ and 24. Comparison between batteries now in use and batteries preferred, by the 348 departments using portable radios

	All departments using portable radios (in \%)	
Battery type	(Question 23) Now using	(Question 24) Would prefer to use
Alkaline-Manganese	11	6
Carbon-Zinc	6	1
Mercury	14	6
Nickel-Cadmium	82	83
Silver Oxide	0	0
Other	3	1
No answer	3	4

[^9]25. Do you use batteries for your portable radios which must be recharged:
Yes No
Nine out of every 10 departments which had portable radios used batteries which had to be recharged. There were no major differences among department types, although percentages of departments using batteries which must be recharged were slightly smaller for state, county and small city (1-9) departments than for larger city types. These differences may not be statistically significant. (See table 25.)

Table 25. Use of batteries which must be recharged, by 348 departments which used portable radios

	Batteries must be recharged
Department type	Percent of department type
50 largest	98
City (50+)	94
City (10-49)	94
Township	94
County	84
State	83
City (l-9)	80
All departments	90

(Do you use batteries for your portable radio which must be recharged?) YES
25A. How long can you use the battery before it must be recharged?

Hours
25B. How long does it usually take to recharge the battery to a point where it can be used again?

Hours

25C. How long does it usually take to fully recharge the battery? Hours
25D. How long can you usually use these batteries before they must be replaced?

Months
Responses from the departments using rechargeable batteries showed that they averaged 8 hours of battery use before recharging was required. This was also the most commonly reported figure by all department types (modal response).

On the average, departments reported that a portable radio could be recharged enough to be usable in a little more than half the time it took for a full charge: Mean time to fully recharge was 9.2 hours; mean time to recharge to usable point was 5.6 hours. There was, however, considerable variability to their answers. Some departments said that it took a minimum of 24 hours to recharge portable radio batteries to a usable point while others said it required only 1 hour. Similarly, for full recharging, some departments said 1 hour was sufficient, several said 24 hours were required, and at least one county department said full recharging took 48 hours. This wide range of responses probably was a reflection of the use of "quickcharge" and "slow-charge" systems, the
ages of the charging systems in use, and the design parameters of many different portable radio/battery systems in use. (See table 25A and B and C and D.)

Departments replaced their rechargeable batteries, on the average, every 16.7 months. Excluding those departments (8%) who had never needed to replace their batteries (no data is available on how long these batteries had been in use), battery life ranged from as little as 3 months to as long as 5 years.

The larger departments-states, 50 largest, cities (50+), and cities (10-49)-reported average battery lives between $1-1 / 2$ and 2 years. On the other hand, counties and cities (l-9) were only able to use their batteries for 6 or 7 months before replacement. Followup phone calls revealed that few departments kept actual battery use and life records; these data, therefore, are probably based, in large measure, on estimates. (See table 12 and 13-1.)

T Able 25A. and B. and C. and D. Length of time to partially and completely recharge batteries: Length of time batteries can be used before needing recharging, and needing replacement, by departments which use rechargeable batteries in their portable radios

Question	Departments recharging batteries		
	Mean no. hours	Maximum no. hours	Minimum no. hours
A. No. of hours battery can be used before needing recharging (261 responses)	8.0	50	1
B. No. of hours required to recharge battery to point where it can be used again (260 responses)	5.6	24	1
C. No. of hours required to fully recharge battery (259 responses)	9.2 Months	48 Months	
D. No. of months battery can be used before being replaced (206 responses) No. of departments never needing to replace batteries: 26 (8\%)	16.7	60	3

Table 12 and 13-1. Weight of portable radios, by 348 departments using portable radios

Weight	Percent of departments using portables
Less than 20 oz	5
20 oz to 26 oz	26
27 oz to 32 oz	25
33 oz to 38 oz	20
More than 38 oz	21
No answer	2

```
12. Albout how much does one of these " most used" portable
radios weigh?
    Less than 20 oz
    20 oz to 26 oz
    27 oz to 32 oz
    33 oz to 38 oz
    More than 38 oz
13. How do you feel about the weight of the "most used" portable
radios?
The weight is about right
The unit is somewhat heavy
The unit is entirely too heavy
```

About 7 out of every 10 departments reported that their portable radios weighed between 20 and 38 oz (. 567 to 1.077 kg). About one-fifth of the departments had radios weighing more than 1.077 kg . (See table 12 and $13-2$.)

Departments with units weighing over 1.077 kg (38 oz) more frequently reported that the radios were entirely too heavy than those which had lighter weight sets.

Table 12 and 13-2. Comparison between weight of most used
portable radios and respondents'feeling about that weight

	Reported weight of portable radios (in \% of departments)					
How respondents feel about weight	$\begin{array}{r} \text { Less } \\ \text { than } \\ 20 \mathrm{oz} \end{array}$	$\begin{array}{r} 20 \mathrm{oz} \\ -26 \mathrm{oz} \end{array}$	$\begin{array}{r} 27 \mathrm{oz} \\ -32 \mathrm{oz} \end{array}$	$\begin{gathered} 33 \mathrm{oz} \\ -38 \mathrm{oz} \end{gathered}$		No answer
Weight is right	7	38	29	17	9	1
Somewhat heavy	2	17	28	36	23	3
Entirely too heavy	4	6	8	18	60	4

12A. When did you buy most of these "most used" portable radios?

Within the last calendar year
1-2 years ago
4-5 years ago
More than 5 years ago
Half of the departments in the sample had bought the portable radios most commonly used in their department 1 to 3 years ago. ${ }^{7}$ About one-fourth had bought them 4 to 5 years ago. Seventeen percent had purchased their radios within the previous year and the remaining 10 percent had radios which were not more than 5 years old. All seven department types reflected roughly these same proportions.

It appears that departments had made major purchases of portable radios more recently than they had made major purchases of mobile radios (90% of the departments had purchased portables and 65% had purchased mobile radios in quanitity within the last 5 years). This finding may have resulted in part because of improved portable radio technology, the recent availability of federal purchase funds, and/or the relatively shorter life of portable radios.

[^10]TABLE 12A. When departments bought most of their "most often used" brands of portable radios

When purchased	Percent of departments using portables $(\mathrm{n}=348)$
Within last year	17
3 years ago or less	67
5 years ago or less	90
No answer	1

```
12B. About how much did you pay for one of these "most used"
portable radios (including antenna, carrying case, and spare
batteries)?
    Less than $500
    $501-$700
    $ 701-$900
    $ 901-$ 1,100
    $ 1,101-$ 1,500
    Over $1,500
```

Forty-four percent of the departments paid between $\$ 700$ and $\$ 900$ apiece for their portable radios and 77 percent of them paid $\$ 900$ or less. About one-fourth of cities (l-9) had bought their portables for less than $\$ 500$. These small cities along with the 50 largest cities paid a wide range of prices. Two percent of cities (1-9) paid more than $\$ 1,101$ as did 13 percent of the 50 largest cities. Counties, in general, paid higher prices for their portable radios and states paid lower prices. (See table 12B.)

Table 12B. Cumulative percentages for costs of "most commonly used" portable radios in 348 departments

	Department type						
	Cumulative percentages						
	$\begin{aligned} & \text { City } \\ & (1-9) \end{aligned}$	Township	County	$\begin{gathered} \text { City } \\ (10-49) \end{gathered}$	State	$\begin{gathered} 50 \\ \text { largest } \end{gathered}$	$\begin{aligned} & \text { City } \\ & (50+) \end{aligned}$
Less than \$500	24	12	9	6	2	2	0
\$700 or less	41	24	15	35	54	24	22
\$900 or less	78	74	66	89	89	52	69
\$1100 or less	98	93	78	98	99	85	96
No answer	0	6	5	0	0	2	0

11B. (How many portable radios do you now have in your department?) Of those portable radios, about how many were made by the following manufacturers?

Number Manufacturer
Manufacturer A made roughly 7 out of every 10 portable radios used by the respondents. There were no major differences among department types, except that a smaller percentage of portables in states and cities (1-9) was made by this company than in the larger city department types. Manufacturer B made slightly more than 1 out of every 10 portable radios and manufacturers C and D each made only l out of every 20 radios reported. Only in cities (1-9) did a manufacturer other than manufacturer A capture a significant proportion of the reported market (35%, manufacturer B). (See table 11B.)

Table llB. Percentage of portable radios in use in departments made by various manufacturers, by department type

	Manufacturer (by \% of radios)				
Department type	A	B	C	D	Other
50 largest	76	10	3	6	5
City (10-49)	76	14	4	0	6
Township	75	2	7	0	16
City (50+)	72	17	6	4	0
County	67	11	0	0	22
City (1-9)	54	35	0	0	11
State	48	14	13	2	23

12. What model of portable radio do you have more of in your
department than any other?

Manufacturer
 Model or Model No.

Although only 1 percent of the portable radio users failed to answer this question at all, 14 percent gave a manufacturer but not model, and 6 percent gave insufficient information to identify a particular model. A total of 26 different portable radio models were mentioned by the respondents, but half of those 348 respondents listed 1 of 2 models: 27 percent for 1 model and 23 percent for another. Both of these models are produced by the same manufacturer. (See table 12.)
$\mathrm{T}_{\mathrm{AbLE}}$ 12. Of the 348 departments using portable radios, percent listing each of two "most used" models, by department type

		Model (\% of department type)	
Department type	Model X	Model Y	No answer, manufacturer only, model uncertain
State	36	4	15
50 largest	36	33	6
City (10-49)	31	26	20
City (50+)	27	29	18
County	23	14	33
City (1-9)	17	20	29
Township	12	31	37

2.2.5. Special Systems

2.2.5.1. Mobile Repeaters

13. A portable radio can be used with a repeater by a patrolman when he is out of his car. The portable radio transmits to the car radio which then relays the signals to the base radio. Do you need repeaters like this in your communications system?
Yes No Why?

(See table 13-1.)
Almost half of the respondents (43%) indicated a need for a mobile repeater system (i.e., a system in which a mobile car radio is used to relay transmissions from a low powered portable radio to a base station location). Generally, the larger the average size of the department type jurisdiction, the higher the percentage of departments saying they needed mobile repeater systems. In exception to this pattern, only 26 percent of the 50 largest cities indicated a need for mobile repeater systems. (See table 13-2.)

Since there is a relationship between jurisdiction size and frequency of need for mobile repeaters (except for the 50 largest cities), it was not surprising that the most frequently given reason for needing this system was to overcome distance (range) problems. The other four most commonly given reasons for choosing this system were

Table 13-1. Percent departments which need repeaters within their mobile systems, by department type, arranged according to average size of jurisdiction

Department type	Percent of all departments saying yes
Township	31
City (50+)	35
City (1-9)	44
City (10-49)	40
50 largest	26
County	58
State	68

Table 13.2. If "yes," why do you need mobile repeaters?

Reasons	Percent of all departments saying yes $(\mathbf{n}=150)$
1. To overcome distance (range)	
problems	
2. To improve or strengthen	23
portables	
3. Constant communication necessary	21
4. To overcome terrain-caused	18
problems	16
5. Mobility of officers improved	11
6. Good for special assignments	9
Other	7
No answer	11

Note: Percentages add to more than 100 percent because the respondents
could give more than one reason.

Table 13-3. If "no," why don't you need mobile repeaters?

Reasons	Percent of all departments saying no $(\mathrm{n}=194)$
1. Not needed-current equipment	
adequate	21
2. Use or prefer other syster	19
3. Not needed-area not large	
enough to warrant use	18
4. Have no hand and/or car radios	2
Other	9
No answer	38

Note: Percentages add to more than 100 percent because respondents
could have given more than one reason.
all somewhat related to the problems of covering large areas of territory (to strengthen the portable system, to remain in constant communication, to overcome terrain-caused problems, and to increase officer mobility). (See table 13-3.)

Departments usually indicated that they did not need a mobile repeater system when their current equipment was adequate, when their area was not large enough to warrant use, or when they used or preferred other systems for handling problems of distance, such as fixed repeaters and/or voting systems.

Half of the 32 departments in the 50 largest cities which did not need mobile repeater systems said that they use or prefer other systems. This probably accounted for the atypical response of the 50 largest cities which often indicated that they did not need a mobile repeater system even though they had larger average jurisdictions to cover than townships and other city departments.

2.2.5.2. Fixed Repeaters

7A. Do you use fixed repeaters in your area (to cover dead spots in communication which otherwise would exist)?

Yes
 No

Fixed repeaters can be used to overcome obstacles, either natural or manmade, which would otherwise create dead spots in communications and to increase the range of system coverage. They are also used to cut mobile transmitter costs because, in general, less powerful transmitters are needed when repeater systems are employed.

About one-third of the 428 responding departments used repeaters. State police and police in the 50 largest cities were the 2 most frequent users of this equipment.

It might be hypothesized that there could be a relationship between the size of the jurisdiction to be covered and the use of fixed repeaters. It can be seen that state police departments, which were the most frequent users of fixed repeaters, did have the largest jurisdictions to cover. However, less than one-third of county police, who had the second largest average size of jurisdiction, used repeaters. Within city department types, the frequency of use of repeaters increased with the size of the department type in terms of number of officers, rather than in terms of average size of jurisdiction. (See table 7A-1.)

TABLE 7A-1. Use of fixed repeaters by department type, as compared to average size of jurisdiction

	Use of repeaters and jurisdiction size	
Department type	Percent use of repeaters	Mean size of jurisdiction $\left(\right.$ mi $\left.^{2}\right)$
State	77	64,704
50 largest	65	237
City (50+)	37	33
County	30	2,551
City (10-49)	20	68
City (1.9)	13	67
Township	9	31

7B. (If "Yes" to Question 7A) How many fixed repeaters does your department have?
 Fixed Repeaters

Most of the fixed repeaters were found in state police departments or in the 50 largest cities. About three out of every five repeaters cited were used by state police departments. A little more than one-fourth of all repeaters were operated by the 50 largest cities. Thus, almost 90 percent of fixed repeaters were employed by these two groups. Of the departments reporting fixed repeater operations, state police departments each operated 21 repeater units and the 50 largest cities each operated 11 repeater units (means). Between 20 percent and 37 percent of other larger department types (at least 10 officers or more) and county police, reported using fixed repeaters (Question 7A) but these department types generally had an average (mean) of only 1 or 2 repeaters in each department. (See table 7B-1.)

The largest mean numbers of repeaters were found in departments along the East Coast (in the Middle Atlantic and New York/New Jersey areas) and along the West
$\mathrm{T}_{\text {Able }}$ 7B-1. Percentage of total repeaters in use, and mean number per department of those using repeaters, by department type

Department type	Percent total reported repeaters $(\mathbf{n}=1,197)$	Mean no. repeaters per department of those using any repeaters
State	62	20.6
50 largest	27	10.9
City (50+)	5	2.1
County	4	1.9
City (10-49)	2	1.1
City (l-9)	1	$* *$
Township	$*$	$* *$
All departments	100	

*Less than 1 percent.
**Mean probably not valid; number of respondents too small.
$\mathrm{T}_{\mathrm{ABLE}}$ 7B-2. Average number of fixed repeaters, by LEAA region, compared to percentage of departments in regions which use fixed repeaters

| | | Number and use of repeaters |
| :---: | :---: | :---: | :---: |

Coast (in the region which includes California, Nevada, Arizona, and also Hawaii). Although more than two-thirds of departments in region 10 (which includes the northwestern states of Washington, Oregon, Idaho, and Alaska) reported using fixed repeaters, this region had the smallest average number of repeaters per department. (See table 7B-2.)

8. If you use, or will be using fixed repeaters, which of the

 following types do you prefer?
Will not use fixed repeaters

F1Fl repeater (same frequency in and out)
F1F2 repeater (two different frequencies)
No preference
The F1Fl system, in which communications are transmitted and received on the same frequency, is not generally being marketed because it has not yet been perfected. Thus, state departments and large city departments (50 largest and $50+$) preferred the F1F2 (in which communications are transmitted and received on different frequencies). Smaller department types also selected this system if they indicated a preference at all. (See table 8A.)

Table 8A. Preference for FlFl or FlF2 repeaters, by department type

Department type	Favoring F1F2 repeaters	Favoring F1F1 repeaters	Having no preference	Indicating will not use or no answer
State	79	6	6	8
50 largest	76	7	4	13
City (50+)	54	6	11	28
County	21	11	23	44
City (10-49)	19	9	22	50
Township	17	4	22	56
City (l-9)	10	5	33	52
All departments	37	7	19	37

2.2.5.3. Portamobile Radios with Voting Systems

14. Some law enforcement agencies use portamobile radios with several receivers and a voting system. Do you favor such a system?

$$
\begin{aligned}
& \text { Yes If "Yes" or "No," why? } \\
& \text { No If "Y } \\
& \text { Unfamiliar with voting system }
\end{aligned}
$$

More than half of the respondents who used portable radios ($\mathrm{N}=348$) were unfamiliar with voting systems, an arrangement which provides more reliable communications by employing l or more satellite receivers for each channel. These receivers are situated at scattered locations throughout the coverage area. The audic output signals of the satellite receivers are transmitted to a selector or comparator at the base station by radio or land lines. The comparator performs the voting process by selecting the strongest of the several possible signals received from the portable or mobile radio via the satellite receivers. State police and police in the 50 largest cities were the only department types in which most respondents had knowledge of voting systems. About three-fourths (74%) of the respondents in the 50 largest cities and about half (53%) in the state departments favored the system.

Data from this question further explained why, in Question 13 , only 26 percent of the 50 largest cities said they needed mobile repeaters and most often gave as a reason their preference for other systems. About three-fourths of the 50 largest cities favored
the voting system. Twenty-eight of the 45 respondents (65%) familiar with the concept favored the use of such a system. (See table l4-l.)

The 3 reasons most often given for favoring the voting system (by all respondents, and also by the 50 largest cities) were: (1) That the system improves transmitting/receiving coverage and extends range, (2) that the department already uses the system and likes it and (3) that the system increases the flexibility and usefulness of the portable radios. (See table 14-2.)

Departments which did not favor the voting system most commonly gave as reasons that they had no need or practical use for the system or that they considered the voting system inadequate. (See table 14-3.)

TABLE 14-1. Of the 348 departments with portable radios, percentages of responses about voting systems, by department type

	Do you favor a voting system? (by \%)		
Department type	Yes	No	Unfamiliar with system
Township	0	0	100
City (10-49)	10	12	78
County	16	12	72
City (1-9)	5	24	71
City (50+)	28	17	55
State	53	32	15
50 largest	74	13	13
All departments	28	17	55

$\mathrm{T}_{\mathrm{ABLE}}$ 14-2. Reasons given for favoring a portamobile radio with a voting system, by 98 departments which favored this system
\(\left.$$
\begin{array}{lc}\hline \text { Reasons } & \begin{array}{c}\text { Percent of departments } \\
\text { favoring voting system } \\
\\
(\mathrm{n}=98)\end{array}
$$

\hline 1. Improves transmitting/receiving

coverage and extends range\end{array}\right]\)| 2. Already use and/or think it's a |
| :--- |
| \quad good system |
| 3. Increases portable usefulness and |
| \quad flexibility |
| 4. Voter relays best signal |
| 5. For extra backup |
| 6. Miscellaneous |
| No answer |

[^11]Table 14.3. Reasons given for not favoring a portarnobile radio with a voting system, by 58 departments which do not favor this system

Reasons	Percent of departments not favoring voting system $(\mathrm{n}=58)$
1. No need or practical use	21
2. Consider voting system inadequate	17
3. Current system adequate	10
4. Area too small to warrant use	10
5. Too expensive	7
6. Important calls voted out ${ }^{2}$	3
7. Miscellaneous	10
\quad No answer	31

[^12]
2.2.5.4. Scrambler Systems

17. In some areas, police use voice privacy systems which scramble messages so that they cannot be received by people other than police. Do you HAVE a system of this type?

Yes
No
(If "No") Do you $N E E D$ a scrambler system of this type?
Yes
No (If "No," skip to Question 21)
Scramblers were in use in less than 10 percent of the 428 responding departments. Cities ($50+$), states, and the 50 largest cities tended to have greater percentages of departments using scramblers. Counties and the two smallest city department types tended to have lower percentages of users. (See table 17-1.)

TABLE 17-l. Availability of scramblers, by department	
Department type	Have scramblers: percent of department type
City (50+)	18
State	13
50 largest	11
Township	9
City (10-49)	8
City (1-9)	5
County	3

Almost three-fifths of departments which did not have scramblers felt that they needed this system. Medium-sized cities (10-49) were much more likely than state police to perceive a need for these systems. There were no major differences between the 50 largest cities and smaller departments such as townships, counties and cities (1-9) in their responses to this question. These data represent the departments' assessments of their need for scramblers and did not distinguish between various degrees of need such as "essential to the functioning of the department" and "desirable but not essential." (See table 17-2.)

Table 17-2. Perceived need for scrambler system by 388 departments which currently do not have the system, by department type

Department type	Need scrambler system (\% of department type)	
City (10-49)	71	No answer
City (50+)	65	4
County	61	5
Township	57	3
50 largest	54	0
City (1-9)	46	10
State	44	3

> 18. (If "Yes" to Question 17) For which of the following purposes do you need, or would you like, a scrambler system? (Mark X by Each Item That Applies)

> General communications
> During robberies
> Long term stakeout
> Demonstrations or protests
> Undercover investigations
> Other (Specify)

Departments which had scramblers ($n=40,9 \%$) and departments which said they needed scramblers ($n=225,53 \%$) were asked to answer this question. For three of the choices (undercover investigations, robberies, and long term stakeout) the percentages of votes from the "have" and the "need" groups were fairly comparable. However, departments which did not currently have scramblers were much more likely to say they would use them for general communications (49%) than were those departments which already had them (15%). In contrast, those departments which were already using scramblers were more likely to say they would use them during demonstrations or protests (60%) than were those departments which said they needed but did not yet have scramblers (45%). (See table 18.)

Nineteen percent of departments which had, or needed, scramblers indicated other uses for scramblers. Some of the more commonly mentioned other uses were: For fires and accidents, for administrative operations, for crimes in progress (in addition to robberies), and for use in command units (communications vans).

TABLE 18. Purposes for which scramblers were (or would be) used, by all departments currently using scramblers and all departments saying scramblers were needed

	Percent of departments	
Use for scrambler	Using scramblers ${ }^{\prime}$ $(\mathrm{n}=40)$	Needing scramblers ${ }^{1}$ $(\mathrm{n}=225)$
Undercover investigations	82	78
Demonstrations	60	45
Robberies	52	42
Long term stakeouts	50	63
General communications	15	49
Other	37	16

${ }^{1}$ Percentages add to more than 100 since multiple answers were allowed.

```
19. (If "Yes" to Question 17) How do you (would you) use your
scramblers? (Mark X by One of the Following)
    With car radios
    With portable radios
    With both car radios and portable radios
    Only in special vehicles (Specify)
```

The perceptions of the 225 departments which did not have, but said they needed scramblers were very different from the answers of the 40 departments which were currently using scramblers. More than half (58%) of the users of scramblers said they were using them with car radios only. An additional 35 percent of the current users said they were using their scramblers with both car radios and portable radios.

In contrast, three-quarters (75%) of the departments which said they needed scramblers said they would use them with both car radios and portable radios. Only 15 percent said they would use them with car radios only. (See table 19.)

Table 19. Use of scramblers with car radios, portable radios, and special vehicles, by all departments currently using scramblers and all departments saying scramblers were needed

	Percent of departments	
Use with	Using scramblers $($ Question 17) $(\mathbf{n}=40)$	Needing scramblers $($ Question 17) $(\mathbf{n}=227)$
Car radios only	58	15
Portable radios only	2	3
Both car and portable radios	35	76
Special vehicles	18	8

[^13]
20. (If "Yes" to Question 17) How much do you think your

 department would pay for a good, reliable scrambler system? (Mark X by your best estimate lbelow)Less than $\$ 250$ per unit
\$251-\$500 per unit
\$501-\$ 750 per unit
\$ 751 -\$ 1,000 per unit
More than $\$ \mathbf{1 , 0 0 0}$ per unit
These data were useful as an indication of the accuracy of the respondents' perceptions of the costs of voice privacy systems. The simplest scramblers now on the market are inverters. They cost between $\$ 200$ and $\$ 400$ each, provide good intelligibility but offer only a low degree of privacy (an electronic hobbyist can easily build a low cost unscrambler). Eighty-three percent of the respondents which had (or needed) scramblers said that they were willing to pay $\$ 500$ or less for a "good, reliable scrambler system." These departments would only be able to buy a "low privacy" inverter system.

Scramblers using cryptographic techniques provide many different key settings, a substantial degree of privacy, and cost $\$ 800-\$ 2,000$. Only 2 percent of the respondents with an interest in scramblers said they would be willing to pay more than $\$ 750$-enough to buy a cryptographic type system. More of the 50 largest cities (30%) than of any other department type said they would be willing to pay more than $\$ 500$ for a reliable scrambler system. (See table 20.)
$\mathrm{T}_{\text {Able }}$ 20. Amounts the 265 departments which used or said they needed scramblers would be willing to pay for a reliable scrambler system, by department type

Department type	Amount (by \%)				
	Less than $\$ 250$	$\begin{array}{r} \$ 251 \\ -\$ 500 \end{array}$	$\begin{array}{r} \$ 501 \\ -\$ 750 \end{array}$	More than $\$ 750$	No answer
City (50+)	52	43	2	0	4
City (10-49)	52	30	8	0	10
City (1-9)	50	42	0	3	5
County	49	30	2	2	16
State	42	37	8	4	8
50 largest	30	37	30	0	4
Township	21	43	14	7	14

2.2.5.5. Communications Helmet

21. Helmets with built-in communications have been developed and are now on the market. Is there a need for such helmets in your department?

Yes

No
Why? or Why Not?

Although only about one-third of all 428 respondents to the communications questionnaire said they needed helmets with built-in communications, almost threequarters of the state and 50 largest city departments said they needed them. (See table 21-1.)

Half of the 139 departments which expressed need for helmet communications gave as their reason the usefulness of this system in crowd control or riots. About onethird of those departments said it would be useful for motorcycle duty. These two reasons were also most often chosen by the states and 50 largest cities. For state police, motorcycle duty was most often chosen while crowd control was second; the reverse was true of departments in the 50 largest cities. (See table 21-2.)

Table 21-1. Need for built-in communications in helmets, by department type (all respondents, $n=428$)

Department type	Need built-in communications (\% department type)
50 largest	72
State	72
City (50+)	34
County	22
City (10-49)	19
City (1-9)	15
Township	9

Table 21-2. Reasons for needing built-in helmet communications, by 139 departments which said they needed this system

Reason	Percent of all departments needing helmets with built-in communications $(\mathrm{n}=139)$
For crowd control/riots	50
For motorcycle duty	
Frees hands	30
Improves operations/more efficient	9
Useful when away from base or	
\quad mobile unit	4
Counteracts noise (other than crowds)	4
No answer	3

[^14]The majority of respondents $(67 \%, n=286)$ said that their departments did not need built-in helmet communications. Many of the reasons for saying "No" to Question 21 were simply that the respondents saw no need for that type of communications system in their departments: Use not warranted based on department or area (22%), impractical/don't need (16%), no helmets used by department (13%). The reason given with greatest frequency (expense not warranted, 66%) might also be said to be in the general "no need" category. Only 4 percent of those saying built-in helmet communications were not needed mentioned a perceived negative aspect of this system as their reason. (See table 21-3.)

Table 2l-3. Reasons for not needing built-in communications, by 286 departments which said they did not need this system

Reasons	Percent of departments not needing helmet communications ${ }^{1}$ $(\mathrm{n}=286)$
Expense not warranted	
Use not warranted based on	66
department or area	22
Impractical/don't need	16
No helmets used by department	13
Have or prefer other equipment	6
for same job	3
Too cumbersome/dangerous	2
Low priority	1
Not enough power	2
Other	32
No answer	

${ }^{1}$ Percentages add to more than 100 since multiple answers were allowed.

2.2.6. General Information

2.2.6.1. Need for Standards and Expected Gains from Standards

15. Many policemen have indicated the need for standardization
of communications equipment. Which of the following equipment
and components would you like to see standardized? (Mark X by
Each Item That Applies)
Portable radios
Mobile radios
Batteries for portable radios
Control heads
Microphones
Switches on control heads
Mounting brackets
Cable between microphone and control head
Other (specify)

About two-thirds of the respondents said standards were needed for mobile radios (70%) and portable radios (66%). More than half of the departments said batteries for
portable radios needed standards (56%). No item was selected by less than one-third of the respondents. This interest in standards for communications equipment further supports the findings of the Equipment Priorities Questionnaire of this survey in which communications equipment was either the first or second most important category of equipment for every department type in terms of need for standards. (See table 15-1.)

States and 50 largest cities tended to say that more of the items in the list needed standards than did the other department types. In 5 of the department types (cities 1-9, cities $10-49$, cities $50+$, counties, and townships) portable radios, mobile radios, and batteries for portable radios always received l of the 3 highest percentages of votes. States chose mobile radios and batteries for portable radios among the top three, but not portable radios. The 50 largest cities chose portable radios and batteries for portable radios among the top 3 , but not mobile radios. (See table 15-2.)

Items not listed in the questionnaire which were sometimes mentioned as needing standards included chargers, antennas, crystals, connectors, other controls, and other cables.

Table 15-1. Need for standards for communications equipment, by all respondents

Equipment item	Percent of departments indicating standards are needed
Mobile radios	70
Portable radios	66
Batteries	56
Control heads	42
Mounting brackets	37
Microphones	36
Switches on control heads	36
Cable between microphone and	33
control head	12
Other	
No answer	

Table 15-2. Items said to need standards by 40 percent or more of the departments within a department type. Ordered from highest to lowest frequency of response by all 428 departments

	Department type (by \%)						
Equipment item	State	50 largest	Cities $50+$	Cities $10-49$	County	Township	$1-9$
Mobile radios	64	59	57	76	72	83	79
Portable radios	49	70	68	67	68	70	68
Batteries for portables	66	78	67	55	49	61	
Control heads	68	63	42	43			
Mounting brackets	49	-	41	-			
Microphones	57	46		-			
Switches on con head	49	43		41			
Cable btw mike and con head	51	46					

16. What will your department gain by the standardization discussed above? (Mark X by Each Item That Applies)

> 10% lower cost of equipment
> 25% lower cost of equipment
> $\mathbf{5 0 \%}$ lower cost of equipment
> Interchangeability of radios
> Interchangeability of components
> Savings in training of technicians
> Savings in training of patrolmen
> Interchangeability with other communications systems
> Other (specify)

According to all 428 respondents as a group, and according to each department type, the biggest gain that would be realized by police departments if standards were set for communications equipment would be an improvement in the interchangeability of equipment; about half or more of all respondents chose each interchangeability item. About a quarter of the respondents chose each of the savings in training items. (See table 16-1.)

Among the seven department types, the same general proportions of the responses were found. The states and the 50 largest cities tended to have higher percentages of departments expecting to see better interchangeability of radios and components result from standardization. These two department types also had higher percentages of departments expecting savings in training of technicians. States and townships had higher percentages expecting savings in training of patrolmen. Cities (1.9) appeared to feel they had the least to gain overall from the standardization of communications equipment.

In terms of expected cost benefits from standardization, departments most often said they expected to see costs lowered by 25 percent or less. Only about one-third of the respondents said that they expected any cost benefit from standardization of communications equipment. (See table 16-2.)

TAbLE 16-1. Expected gains from standardization of communications equipment, by all respondents

Expected gain	Percent all departments $(\mathrm{n}=428)$
Interchangeability...	
of radios	62
of components	52
with other communications systems	47
Savings in training...	
of mechanics	28
of patrolmen	23
Lower cost of equipment...	
10 percent lower cost	16
25 percent lower cost	13
50 percent lower cost	3

[^15]Table 16-2. Expected gains from standardization of communications equipment, by department type ${ }^{1}$

Expected gain	Department type (in \%)						
	$\begin{gathered} 50 \\ \text { largest } \end{gathered}$	State	$\begin{aligned} & \text { City } \\ & 50+ \end{aligned}$	$\begin{aligned} & \text { City } \\ & 10-49 \end{aligned}$	County	$\begin{aligned} & \text { City } \\ & 1-9 \end{aligned}$	Township
Interchangeability...							
of radios	78	74	67	63	55	50	43
of components	70	72	59	53	42	28	48
with other systems	52	30	46	55	54	37	57
Savings in training...							
of patrolmen	30	40	32	26	25	17	43
of technicians	57	43	20	12	16	8	35
Lower cost of equipment...							
10 percent lower cost	22	19	18	15	17	14	0
25 percent lower cost	15	19	13	13	13	6	13
50 percent lower cost	4	0	3	2	3	4	4

${ }^{1}$ Percentages add to more than 100 since multiple answers were allowed.

2.2.6.2. Communications Needs

26. What are your most critical communications needs? (Mark X by Each Item That Applies)

More frequencies and channels
New equipment
More reliable equipment
Personal transceivers for each officer
Portamobile voting system
Scramblers
Standardization of all equipment
Other (specify)
Five of the eight choices in the questionnaire were cited as "critical communications needs" by one-third or more of the respondents. Nearly half of the departments said new equipment, more frequencies/channels, and personal transceivers for each officer were critical communications needs. (See table 26-1.)

Personal transceivers for each officer seemed to be the most critical communications need for all city department types with more than 10 officers and townships. Cities (l-9) and counties most often said they needed new equipment. Almost three-quarters of the states said that more frequencies and channels was a critical communications need. The fact that 45 percent of the cities ($10-49$) said the same thing is not surprising in view of their answers to Question 17: 71 percent of the cities (10-49) which did not currently have scramblers said that this equipment was needed in their departments. (See table 26-2.)

Table 26-1. Most critical communications needs, by all departments ${ }^{1}$

Communications need \quad| Percent of |
| :---: |
| all departments |

New equipment 45
More frequencies/channels 44
Personal transceivers 43
Standardize all equipment 38
Scramblers 34
More reliable equipment 21
Portamobile voting system 8
Other 11
${ }^{1}$ Percentages add to more than 100 percent since
multiple answers were allowed.

TABLE 26-2. Most critical communications needs indicated by 40 percent or more of the departments within each department type ${ }^{1}$

Communications need	Department type (by \%)						
	State		$\begin{aligned} & \text { City } \\ & 50+ \end{aligned}$	$\begin{aligned} & \text { City } \\ & 10-49 \end{aligned}$	$\begin{aligned} & \text { City } \\ & 1-9 \end{aligned}$	County	Township
New equipment	45	43	43	41	51	49	-
More frequencies/channels	57	48	46	44		41	-
Personal transceivers	-	74	47	48			52
Standardize all equipment	51	43		42			
Scramblers				45			
More reliable equipment Portamobile voting system							
Other							

${ }^{1}$ Percentages add to more than 100 since multiple answers were allowed.

2.2.6.3. Problems with and Failures of Communications Equipment

27. What are your most serious problems with communications equipment?

Question 27 was "open-ended" allowing respondents to write in their problems with communications equipment and categories, for these narrative responses were developed after the questionnaires were returned. Many of the responses to this question were related to the "critical communications needs" discussed in the previous question. Some of the most commonly indicated problems were: Overcrowding and congestion of channels, problems with old equipment, and problems having to do with repairs, maintenance and lack of reliability of equipment. Since there were many different answers to this question, none of the categories of problems in table 27 was mentioned by as many as one-quarter of the respondents. Perhaps the most important aspect of this question is the fact that more than 75 percent of the departments listed some communications problem that they considered to be serious (11% gave no answer and 13% said "no problems").

Table 27. Most serious problems with communications equipment, by all respondents ${ }^{1}$

	Percent of all
Problem	departments $(n=428)$
Overcrowding/congestion	19
Old equipment/need new or more	16
Malfunctions, breakdowns, failures	14
Repair, maintenance, service	11
Inadequacy of equipment (range, power)	10
Electrical/mechanical interference (skip)	8
Reliability/lack of quality control	6
Character of area/terrain causing dead spots	5
Unauthorized monitoring	4
Standardization, interchangeability needs	3
Expense/high cost	2
Other	6
No problems	13
No answer	11

[^16]
28. What are your most common equipment failures, whether entire units or specific components?

As in Question 27, response categories were developed from the narrative answers supplied to this question. Eighty-two percent of the respondents listed at least one common equipment failure (15% no answer and 12% "no problem"). Three failure categories stood out: Tubes, transistors, capacitors (25%); specific components, normal wear and tear (18\%); mike cables, connectors, wiring (15\%). (See table 28.)
$\mathrm{T}_{\text {able }}$ 28. Most common equipment failures, by all respondents ${ }^{1}$

Failure category	Percent of all departments $(\mathrm{n}=428)$
Tubes, transistors, capacitors	25
Specific components, normal wear and tear	18
Mike cables, connections, wiring	15
Antennas, relays, cables	9
Switches/fuses (circuit breakers)	9
Crystals, trimmers, frequency problems	9
Transmitter problems/failures	7
Portable/mobile radios and accessories	6
Power supplies, vibrators, inverters, reeds	4
Other	7
No failures	12
No answer	16

[^17]
2.2.7. Comments

29. Do you have any other general comments or observations about communications equipment that might be helpful to the people who will be studying and testing this equipment for police use?

No attempt was made to actually code the comments received to this question. They have been retained verbatim, and can be made available for research purposes (without identification of specific respondents).

When a "comments" section is provided at the end of a lengthy questionnaire such as this one, the response rate is usually expected to be low. However, in the case of the communications questionnaire, over one-fourth of the 428 respondents provided an additional comment or statement. (See table 29.).

TABLE 29. Additional comments/observations about communications equipment, by department type	
	Percent of all respondents
Department type	
	45
State	38
City (10-49)	36
50 largest	33
Township	26
City (50+)	18
County	17
City (1-9)	29

The comments appeared to be well thought out and expressed the high degree of concern the respondents felt about their communications equipment. Several areas of particular concern were identified: High expense of communications equipment, maintenance for the equipment, the need for scramblers, overcrowding of frequency bands, and need for improvement in portable radios and power sources. Examples of the expression of these concerns follows.

The High Expense of Communications Equipment

Communications equipment and systems are expensive. It appears each manufacturer adds new features one at a time so obsolescence comes at shorter intervals. An advanced technology by one manufacturer may not be available by another causing a problem in developing an open specification. Or the technology may be similar yet different enough to create not only bidding difficulties but maintenance differences requiring different techniques and test equipment.

Cost of equipment-many P.D.s operate on small limited budgets; therefore, cannot afford to purchase proper amount of equipment for proper security.

Require LEAA expenditures be made only for equipment that meets the same performance standards for best make tested. Money spent for inferior equipment is money wasted.

Some replacement components are priced too high. More standard components are needed.

Would like to see standardized equipment at lower cost so departments with limited budgets can get more equipment.

Small departments are unable to purchase much needed equipment because of budgets and city leaders who think in the past.

Keep the price down.

The Need for Scrambers

The biggest problem that my department has is the monitoring of the frequency that we are assigned. A call can be transmitted and the person we are looking for can be gone upon the arrival of officers, since he or she has heard our transmissions. This will occur daily. Or someone will call by public service wanting to know why their name or their neighbor's name was mentioned or why we are looking for them. To ensure or secure efficient police work we must cut down on outside monitors.

In our department what is needed is a scrambler system which can be used with the base station, mobile radios, and handheld radios, which is priced within reach of the average department.

A well built and high quality scrambler device at a moderate price range is one of the greatest needs of law enforcement today. Studying and testing scramble devices should have a high priority.

For purposes of security, we would like to see an absolutely foolproof scrambler system.

We also need good scramblers at a reasonable cost.

The Problem of Maintenance

There should be a survey on maintenance, new methods of servicing electronic equipment, standards for electronic technicians and some means of providing good in-service training regarding all electronic equipment the men service.

Manufacturers, due to feedback from users, are informed of common equipment failure but they do not pass information on to local repair shops.

Any study of police communications should also consider estimated life of hardware, general maintenance, installation and other long term requirements for reliability and performance. There should be no "down time" on police communication facilities, which are often used 15 years or more. Especially true of base facilities.

Current communications maintenance programs are inadequate. Equipment receives no attention until it fails. Often no "backup" hardware is available, pressuring technicians into "hurry-up" jobs and inadequate service.

The Problem of Overcrowded Frequency Bands

The use of power allocations and frequency allocations should be checked more closely. Crowded conditions and non-essential chatter is causing a great deal of problems in emergency situations.

We are on a frequency with at least 15 other towns. We are constantly drowned out by others who must be overmodulated.

Frequency coordination has always been a problem. At the present time, we have cities operating on our channel which are less than 40 miles away.

We would like to see, in this area, a frequency with a channel of our own with no outsiders.

The Need for Improvements in Portable Radios and Power Sources

Our portables are useless. They almost never work right.
This department purchased two hand portable units. We've had them about 18 months and they have been returned to factories several times for repairs.

Portable radios with capacity for long distance receiving and transmitting.
Consideration should be given to designing a radio for a police officer that would be durable and waterproof under the most extreme condition a police officer may be called upon to perform service.

Hand held radio lighter in weight but retain and improve the present power output levels.

One of the biggest problems is the weight and size of the portable radios. The output power is low, but the weight of the unit makes it cumbersome.

I believe there is a great need for reasonably priced integrated-circuit designed radios to be carried or worn by all officers for constant communication availability. Might eventually eliminate need for radios in cars.

Battery size and weight reduction should receive high priority.
We feel that batteries used in portable and hand-carried equipment are too large and too heavy-that the power source development have not been kept with circuitry sophistication. We would like to see a 5 -watt hand-carried portable transceiver with very small dimensions.

One suggestion is that manufacturers of power source batteries be given the necessary incentive to "catch up" with the communications industry by making compatible batteries that are smaller in size, weigh less, have a longer life and increase the power output.

APPENDIX A

に.Es-885
May 1972

OMB 4l-F72030
Approval Expires June 30, 19'
U.S. Department of Commerce

National Bureau of Standards

DETAILED QUESTIONNAIRE: COMMUNICATIONS

POLICE EQUIPMENT SURVEY

Sponsored By:
National Institute of Law Enforcement and Criminal Justice Law Enforcement Assistance Administration
U. S. Department of Justice

Directed and Conducted By:
Behavioral Sciences Group
National Bureau of Standards
Mashington, D.C. 20234
Phone: 301-921-3558

NOTE: This questionnaire is included in this document as a supplement to the discussion in the text. It has no an intended use.

INTRODUCTION: Maintaining good communications under very poor conditions is important to good police action. Many departments have lost communication when they needed it most. System parts often cannot be interchanged, batteries are unreliable and some equipment is too expensive for many departments to buy. In order to make it easier for law enforcement departments to be able to buy communications equipment that meets their needs, the Law Enforcement Standards Laboratory will be writing performance standards for this equipment. These standards will be available to any department that wishes to use them.

PURPOSE OF THIS QUESTIONNAIRE: The purpose of this "detailed" questionnaire is to get answers from YOU, the user, about the communications equipment you are now using, and the problems you find in using it. Your answers will be used to determine what kinds of testing need to be done, and what sorts of problems must be solved. We must find out what YOUR needs are.

GENERAL INSTRUCTIONS:

l. Fill in the questionnaire completely. Even if you do not have all the information you need "at your fingertips", please make your best effort to supply every answer AS ACCURATELY AS POSSIBLE.
2. Answer all questions FOR YOUR OWN DEPARTMENT. Do not attempt to supply information that might exist in some other department.
3. The results of this questionnaire will be compiled by computer. It is very important that you follow directions and answer every question in the boxes and spaces provided.
4. No individual department will be identified in the report of this survey; the results will be published only in table form.
5. Additional instructions for filling in your answers appear after some questions. Follow the directions given.
6. Please PRINT all answers and comments CLEARLY.
7. When this questionnaire has been completely filled in; place it, with the other questionnaires sent to your department, in the stamped, addressed envelope supplied. Return all of them to: Technology Building, A-110 National Bureau of Standards Washington, D.C. 20234
8. If you have any questions, write to the above address or call collect: E. Bunten, or P. Klaus Phone: 301-921-3558
9. Remember that it is only by getting YOUR DEPARTMENT'S answers to these questions that it will be possible to begin really working on problems that police have with communications equipment and supplies.

1. Give the following information about your car radios:
l.A. List ALL transmitting frequencies (in $\mathrm{KHz}, \mathrm{MHz}$, etc.)
(Attach an additional sheet if necessary.)
(10-17)
1.B. List ALL receiving frequencies; if different from Question 1.A.

Abstract

(18-25)

(26-28) l.C. Output power (in watts)
(29-30) 1.D. Number of Channels Authorized
(31-32) l.E. Number of Channels in Use \qquad
2.A. How many car radios are there in your department?
$(33-36)$
(37-40)
(41-44)
(45-48)
(49-52)
(53-56) Number \qquad
2.B. Of those car radios, about how many were made by each of the following manufacturers?

NUMBER MANUFACTURER
___ Motorola
\qquad RCA
\qquad GE
\qquad Other (Specify) \qquad
3. How recently were most of the car radios bought by your department? (Mark X by your best estimate)

Within the last calendar year
—_1 - 3 years ago
4-5 years ago
More than 5 years ago
***Numbers in parentheses are for computer use only.
4. About how much did each of the car radios cost that are most frequently used in your department (including base plate, control head, microphone, and speaker)? For example, if most of the radios now in use are Motorolas, please give us the cost of one set. (MARK X BY YOUR BEST ESTIMATE BELOW)
(72)
Less than $\$ 700$
$\$ 701-\$ 800$
$\$ 801-\$ 900$
$\$ 901-\$ 1000$
\ldots
5.A. What is the total area within your jurisdiction which must be covered by a communication system? (IN SQUARE MILES)
5.B. If possible, please tell us how many different law enforcement channels serve this area. This figure would include not only those channels used by your department, but also those used by other law enforcement agencies operating in the same geographical area (e.g., state and local police).

5.C. Do you have one common frequency for routine and emergency traffic?
 Yes
\qquad
6. Which of the following best describes the general character of your jurisdiction? (MARK X BY MORE THAN ONE, IF NECESSARY)
_____ Skyscrapers, many tall buildings
Some tall buildings
Almost no tall buildings
Primarily mountainous or very hilly
Valley area surrounded by mountains
Generally flat with some hills
Flat area, no hills
7.A. Do you use fixed repeaters in your area (to cover dead spots in communication which otherwise would exist)?
(10) \qquad Yes
\qquad No
7.B. (IF "YES" TO QUESTION 7.A.) How many fixed repeaters does your department have?
\qquad Fixed Repeaters
8. If you use, or will be using fixed repeaters, which of the following types do you prefer?
(13-16) \qquad Will not use fixed repeaters
___ FlFl repeater (same frequency in and out)
___ F1F2 repeater (two different frequencies)
___ No preference
9. Do you now use portable (hand-held) radios in your department?

___ (IF "NO" SKIP TO PART III, QUESTION 15)
(IF "YES" TO QUESTION 9, ANSWER QUESTIONS 10-14)
10. Give the following information about your portable radios: 10.A. List ALL transmitting frequencies (in $\mathrm{KHz}, \mathrm{MHz}$, etc.) (Attach an additional sheet if necessary.)
(18-25)
\qquad
\qquad
\qquad
\qquad
10.B. List ALL receiving frequencies; if different from Question l.A. (26-33)
(34-35) 10.C. Output power (in watts)
(36-37) 10.D. Number of Channels Authorized \qquad
(38-39) lo.E. Number of Channels in Use \qquad
ll. A. How many portable radios do you now have in your department?
(40-44) Number \qquad
ll. B. Of those portable radios, about how many were made by the following manufacturers?

NUMBER
(45-49)
(50-54)
(55-59)
(60-64)
(65-69)

MANUFACTURER

Motorola
RCA
General Electric
Halicrafters
Other (Specify)
Other (Specify)
\qquad
\qquad
12. What model of portable radio do you have more of in your department than any other?
12.A. When did you buy most of these "most used" portable radios?
13. A portable radio can be used with a repeater by a patrolman when he is out of his car. The portable radio transmits to the car radio which then relays the signals to the base radio. Do you need repeaters like this in your communications system?
(28)

Why? \qquad
\qquad
\qquad
14. Some law enforcement agencies use portamobile radios with several receivers and a voting system. Do you favor such a system?
(29)
\qquad Unfamiliar with "voting system"
\qquad Yes
\qquad No
(IF "YES" OR "NO", WHY?

ERRT III: NEED FOR STANDARDS

15. Many policemen have indicated the need for standardization of communications equipment. Which of the following equipment and components would you like to see standardized? (MARK X BY EACH ITEM THAT APPLIES)
_ Portable radios
\qquad Mobile radios
\qquad Batteries for portable radios
\qquad Control heads
\qquad Microphones
\qquad Switches on control heads
\qquad Mounting brackets
\qquad Cable between microphone and control head
\qquad Other (Specify)
__ Other (Specify)
16. What will your department gain by the standardization discussed above? (X EACH ITEM THAT APPLIES)
10\% lower cost of equipment
25\% lower cost of equipment
50\% lower cost of equipment
Interchangeability of radios
Interchangeability of components
Savings in training of technicians
Savings in training of patrolmen
Interchangeability with other communications systems
Other (Specify) ___
17. In some areas, police use "voice privacy" systems which scramble messages so that they cannot be received by people other than police. Do you HAVE a scrambler system of this type?
\qquad Yes
\qquad No (IF "NO") DO you NEED a scrambler system of this type?
\qquad
___ No (IF "NO" SKIP TO QUESTION 21)
18. For which of the following purposes do you need, or would you use, a scrambler system? (MARK X BY EACH ITEM THAT APPLIES)
(50-55) \qquad General communications
\qquad During robberies
\qquad Long-term stake out
\qquad Demonstrations or protests
\qquad Undercover investigations
\qquad Other (Specify)
\qquad Other (Specify)
___ Other (Specify)
19. How do you (would you) use your scramblers? (MARK X BY ONE OF THE FOLLOWING)
(56-59)
\qquad With car radios
\qquad With portable radios
With both car radios and portable radios
\qquad Only in special vehicles (Specify)
20. How much do you think your department would pay for a good, reliable scrambler system? (MARK X BY YOUR BEST ESTIMATE BELOW.)
(60-64) \qquad Less than $\$ 250$ per unit
\$751-\$1000 per unit
\qquad \$251-\$500 per unit More than $\$ 1000$ per unit

PART V: HELMET COMMUNICATIONS

21. Helmets with built-in communications have been developed and are now on the market. Is there a need for such helmets in your department?
___ Yes
\ldots No
Why? or Why not? \qquad
\qquad
\qquad
\qquad

PART VI: POWER SUPPLIES

22. Should standards for power supplies such as charging equipment, and batteries for portable radios be given? (CHOOSE ONE OF THE FOLLOWING)
(66-69) High priority
__ Medium priority
_ Low priority
___ Standards are not needed for these items
23. What types of batteries do you now use for your portable radios? (MARK X BY EACH ITEM THAT APPLIES)
(70-75)
Alkaline-Manganese
Carbon-Zinc
Mercury
NiCad (Nickel-cadmium)
Silver Oxide
Other (Specify)
24. What type of batteries do you prefer to use for your portable radios? (MARK X BY ONE OF THE FOLLOWING)
___ Alkaline--Manganese
\qquad Carbon-Zinc
\qquad Mercury
___ NiCad (Nickel-Cadmium)
\qquad Silver Oxide
\qquad Other (Specify)
25. Do you use batteries for your portable radios which must be recharged?
\qquad
_ No (IF "NO" SKIP TO QUESTION 26, PART VII)
25.A. (IF "YES" TO Q. 25) How long can you use the battery before it must be recharged?
\qquad Hours
25.B. (IF "YES" TO Q. 25) How long does it usually take to recharge the battery to a point where it can be used again

25.C. (IF " YES" TO Q. 25) How long does it usually take to fully recharge the battery?
\qquad Hours
25.D. (IF "YES" TO Q. 25) How long can you usually use thesc batteries before they must be replaced?
\qquad Months
26. What are your most critical communications needs? (MARK X BY EACH ITEM THAT APPLIES)
(26-31)
___ More frequencies and channels
___ New equipment
___ More reliable equipment
___ Personal transceivers for each officer
___ Portamobile voting system
__ Scramblers
Standardization of all equipment
_ Other (Specify)
_ Other (Specify)
27. What are your most serious problems with communications equipment?
(32-33)
28. What are your most common equipment failures, whether entire units or specific components?
$(34-35)$
29. Do you have any other general comments or observations about communications equipment that might be helpful to the people who will be studying and testing this equipment for police use?
\qquad
\qquad C.
\qquad

Name of Department:

Address: \qquad

Name of person who answered this questionnaire:

Name

Title: \qquad Rank: \qquad

No. of years experience in law enforcement: \qquad

Telephone Number: \qquad

Others who helped: 1. \qquad
Name

Title: \qquad Rank: \qquad

No. of years experience in law enforcement: \qquad

Telephone Number: \qquad
2. \qquad

Title: \qquad Rank: \qquad

No. of years experience in law enforcement: \qquad

Telephone Number: \qquad

APPENDIX B
 Data Tables

B.l. Advice to the Reader

(a) The data presented in the following tables resulted from the responses of a stratified random sample (see sec. 1.2) of police departments in response to a specific set of questions (see app. A). These data do not, in any way, reflect objective testing of any of the equipment by the National Bureau of Standards. The reader is cautioned to become familiar with the questionnaire and to evaluate the data in terms of the exact questions asked.
(b) Tables have been numbered after the question number (e.g., the tables for Question 6A would be numbered 6A-1, 6A-2, etc.). The data are usually presented by number of respondents and nearest whole percentage. Because of the statistical limitations imposed by the sample sizes used in this study, the reader is cautioned to be wary of assigning importance to percentage differences of less than 5 percent when percentages are based on all respondents, and to percentage differences of less than 10 percent when percentages are based on one of the subsample groups (e.g., a particular department type or region). No statistical tests of significance are reported.
(c) These tables are based on the responding departments from the specific sample selected for this questionnaire. This sample was not proportional to the total population of police departments, and although it is possible to do so, the data in these tables have not been weighted to allow direct extrapolation to the total population.
(d) In order to extrapolate to the total population from the respondent data presented in this report, use the following procedure: For each department type, multiply the percentage of respondents of a particular department type giving the answer of interest (see B. 2 Data Tables, app. B) by the total number of departments of that department type in the population (see table 1.2-2, sec. 1.2); add those seven subtotals; and divide the total by the total number of police departments in the population (table 1.2-2). The quotient of this division will be an estimate of the percentage of all U.S. police departments that would choose the answer of interest.

B.2. Data Tables

0		NJOONOOOOOOOONNOONO
$\begin{aligned} & I \\ & n \\ & 2 \\ & 3 \\ & 0 \end{aligned}$		

		コNOOOONNODOJOONNJONO
	$\dot{\circ}$	NHOCOOHMOOCNOOMHNOHO

		OMOOOHONOONONONHONOH
	$\dot{\square}$	士 NOOO-0 Joogon not -0 J J-

w	x	OOOOONJOOONOONOHONO
$\stackrel{\star}{i}$		OMOOOOHNOOOHOONONOMO

TYPE
CITY
(10-49
OFFICERS)
NO.
\%
44
95
13
1

 $31 \forall 15$

state AVERAGE

NへへO $\stackrel{\rightharpoonup}{\grave{c}}$ $\underset{5}{2}$

\[

\]

RESPONSE

$30-50 \mathrm{MHZ}$
$150-174 \mathrm{MHZ}$
FREQUENCY CATEGOKY

1.A. LIST ALL TRANSMITTING FREQUENCIES (IN KHZ. MHZ. ETC.)
RESPONSE
FREQUENCY CATEGORY
$30-50 \mathrm{MHZ}$
$150-174 \mathrm{MHZ}$
$450-470 \mathrm{MHZ}$
OTHER
TOTALS

[^18]T'able 1 B-I
GIVE THE FOLLOWING INFORMATION NBOUT YOUR CAR RADIOS:
1.B. LIST ALL RECEIVING FREQUENCIES: IF DIFFERENT FRON QUESTION 1.A.

 ALL
DEPARTMENT
TYPES
NO. $\%$

RESPONSE

FREQUENCY CATEGORY
$30-50 \mathrm{MHZZ}$
$150-174 \mathrm{MHLZ}$
$150-174 \mathrm{MHHZ}$
$450-470 \mathrm{MHZ}$
OTHER
TOTALS
FIFIY
LARGEST
CITIES
NO.

10	5
47	24
137	70
2	1
1	1
197	101
31	

$\begin{gathered} \text { CITY } \\ \text { (1-9 } \\ \text { OFFICERS) } \end{gathered}$		$\begin{gathered} \text { CITY } \\ (10-49 \end{gathered}$OFFICERS)	
No.	\%	NO.	*
11	33	14	52
10	30	6	22
1	3	5	19
0	0	0	0
11	33	2	7
33	99	27	100
27		19	

$$
\begin{aligned}
& \text { TOWNSHIP } \\
& \text { NO. } \\
& \text { \% } \\
& 2
\end{aligned}
$$

RESPONSE

年

whose transmitting and receiving frequencies are the same.
DEPARTMENT
$\underset{y}{1}$

$\dot{2}$
$\stackrel{\circ}{~}$

Table 1 B-3
(CAR RADIOS)
NUMBER OF DEPART
DEPARTMENTS WITH SAME
TRANS. AND REC. FREQS.

ヨコロでヨべ
56.34

WATTS
ㅇ․
＊＊＊
15
110
100
WATTS
WATTS
ํ.
100
001
$01 t$
GT
WATTS
CITY
50 OR MORE
OFFICERS)
67.54
001
O모N

$$
\sim 0
$$

$$
\begin{aligned}
& \text { Nov in } \\
& + \pm M
\end{aligned}
$$

于
67
CITY
(50 OR MORE
OFFICERS)

67

$$
\dot{\dot{z}}
$$

DEPARTMENT TYPE

[^19]ALL
DEPARTMENT
TYPES
AVERAGE
\[

$$
\begin{aligned}
& \text { RALL } \\
& 15 \\
& 110 \\
& 100
\end{aligned}
$$
\]

[^20]

TOTALS

Table 2 B-1
2.B. OF THOSE CAR RADIOS. ABOUT HOW MANY WERE MADE BY EACH OF THE FOLLOWING MANUFACTUREKS?

 67813100
428

$$
\begin{array}{rl}
\text { FIFTY } \\
\text { LARGEST } \\
\text { CITIES } \\
\text { NO. } & \text { \% } \\
& \\
19385 & 71 \\
1450 & 5 \\
6272 & 23 \\
114 & 0 \\
1 & 0 \\
27222 & 99 \\
46 &
\end{array}
$$

w	-			
$\stackrel{\stackrel{\rightharpoonup}{a}}{\stackrel{a}{n}}$	\dot{i}			

Table 3-1
3. HOW RECENTLY WERE MOST OF THE CAR RADIOS BOUGHT BY YOUR DEPARTMENT?

Q	re	NNINO N NM N	\bigcirc
$\stackrel{\square}{7}$			-
U			\cdots
\sum_{3}	$\dot{0}$		\sim
안	z		

$\stackrel{N}{N}$

DEPARTMENT TYPE

WITHIN THE LAST YEAR $1-3$ YEARS AGO
$4-5$ YEARS AGO OVER 5 YEARS AGO NO ANSWER TOTALS
RESPONSE
UEFARTMENT TYPE
CITY

(1-9 \quad| CITY |
| :---: |
| (10-49 |
| OFFICERS) |\quad OFFICERS)

COIJNTY	
NO.	\%
9	13
19	27
16	23
24	34
2	3
70	100
69	

	20	oonNo	g
$\stackrel{\text { W }}{\leftarrow}$			
『		moono	$\stackrel{ }{*}$
in	\bigcirc		
	2		

ALL
DEPARTMENT
TYPES
NO.

64
139
78
146
142
7

RESPONSE

 HEAD. MICROPHONE, ANDTHE COST OF ONE SET.

LESS THAN $\$ 700$ $\$ 701-\$ 800$
$\$ 801-\$ 900$ $\$ 901-\$ 1000$
$\$ 1001-\$ 1500$ $\$ 1001-\$ 1500$
OVER \$1500 NO ANSWER TOTALS

NUMBER OF RESPONDENTS
Table $5 A-1$
5.A. WHAT IS THE TOTAL AREA WITHIN YOUR JURISDICTION WHICH MUST BE COVEREU BY A COMMUNICATION SYSTEM? (IN SQUARE MILES)
RESPONSE
DEPARTMENT TYPE
FIFTY
ARGEST
CITIES
AVERAGE
236.81
SQ. MI.
~ $\underset{\sim}{\square}$
nro

[^21]

Table 7 A-2
7.A. DO YOU USE FIXEO REPEATERS IN YOUR AREA (TO COVER DEAD SPOTS IN COMIMUNICATION THAT NOULD OTHERWISE EXIST)?

	22	$\begin{array}{cc} m \propto 0 \\ 0 & N \end{array}$
$\underset{\sim}{0}$		$\rightarrow m 0$
	-	$N-$
	2	

RESPONSE	UEPARTMENT TYPE															
	$\begin{gathered} \text { ALL } \\ \text { DEPARTMENT } \\ \text { TYPES } \end{gathered}$		state		COUNTY		$\begin{gathered} \text { CSIY } \\ \text { (1-9 } \\ \text { OFFICERS) } \end{gathered}$		$\begin{gathered} \text { CITY } \\ (10-49 \\ \text { OFFICERS) } \end{gathered}$		$\begin{gathered} \text { CITY } \\ 150 \text { OR MORE } \end{gathered}$OFFICERS		$\begin{gathered} \text { FIFTY } \\ \text { LARGEST } \\ \text { CITIES } \end{gathered}$		TOWNSHIP	
	No.	*	No.	\%	NO.	*	NO.	\%	No.	\%	No.	*	No.	*	No.	\%
WILL NOT USE		23	2	4	14	20	24	31		37	15	19	5		7	
F1F1		7	3	6		11		5	8	9	5	6	3		1	
F1F2		37	38	79	15	21		10			43	54	35		4	
No Preference		19	3	6	15	23		33	19	22	9	11	2		5	
NO ANSWER		14		4		24		21			7	9	1	2	6	
totals	430	100			70	99	78	100	801	100	79	99	46	100	23	
NuMber of respundents	42.8		47		69		78		86		79		46		23	
Table 8-3																
COMPARISON OF USE OF FIXED REPEATERS WIth Preference.																
RESPONSE 8. Which types do you prefer?																
7.A. DO YOU USE FIXED REPEATERS?	total		WONT USE		F1F1		F1F2		NO PREF.		NO ANSNER					
	No.	*	No.	*	NO.	*	NO.	$\%$	NO.	\%	No.	\%				
NO ANSWER		100		14	0	0	0	0	0	7	6	86				
NO							115	78	11	7	52	1				

9. DO YOU NOW USE PORTABLE (HAND-HELD) RADIOS IN YOUR DEPARTMENT?
RESPONSE
NO ANSWER
YES
NO
TOTALS

TOWMSHIP
NO．

	＊
	$\dot{\circ}$

	＊
E号岕	
－	

number of departments whose transmitting and receiving freduencies are the same．
IF YES TO QUESTION 9：（PORTABLE RADIOS）
NUMBER OF DEPARTMENTS WHOSE TRANSMITTING AN

Table $10 \mathrm{C}-1$
UEPARTMENTS WITH SAME
TRANS．AND REC．FREQS．
RESPONSE
$\begin{array}{ccc}\text { z．} & x & \text { m } \\ \text { z } & \dot{3} & \text { m }\end{array}$

ALL DEPARTMENT TYPES	STATE	COUNTY			
NO．	$\%$	NO．	$\%$	NO．	$\%$
267	81	43	91	33	82

（PORTABLE RADIOS）
10．C．OUTPUT POWER
10．C．OUTPUT POWER（IN WATTS）

RESPONSE
FIFTY
ARGEST
CITIES
CITIES
AVERAGE
2.84

Average
\exists
\dot{m}
$\stackrel{\curvearrowleft}{\stackrel{\swarrow}{4}}$
\rightarrow

AVERAGE
$\underset{子}{7}$
$\underset{\frac{a}{3}}{\stackrel{4}{3}}$
\rightarrow
$\stackrel{9}{\square}$

COUNTY
AVERAGE
4.63
WATTS
1
10
$\stackrel{\rightharpoonup}{\omega}$

ALL
EPARTMENT
TYPES
AVERAGE
77ロษヨィ0
18
n
\dot{n}
\dot{n}

MAXIMUM

さ
$\stackrel{5}{9}$
$\hat{6}$

ค
in
$\stackrel{7}{\ddagger}$
a
ì
$\stackrel{y}{7}$

N
sINヨONOdSヨy J0 yヨghnn

TOWNSHIP

$$
\stackrel{\circ}{-1}
$$

 $\stackrel{\infty}{\sim}$ $\stackrel{@}{9}$ N
TYPE
CITY
(10-49

N

$$
=
$$

r

$$
\vec{J}
$$

Table 11 A-1

RESPONSE			
	$\begin{aligned} & \text { ALL } \\ & \text { DEPARTMENT } \\ & \text { TYPES } \end{aligned}$	STATE.	COUNTY
TOTAL NUMBER OF RADIOS	22660	3621	464
PERCENT	100	16	2
AVERAGE NUMBER	65.30	77.04	11.05
MAXIMUM	4500	419	125
MINIMUM	1	5	1
NUMBER OF RESPONDENTS	347	47	42

Table 11 B-1.
11.8. OF THOSE PORTABLE RADIO5. AROUT HOW MANY WERE MADE GY THE FOLLOWING MANUFACTURERS?
RESPONSE

					ART	TYPE	
STA		COUNT		$\begin{array}{r} C \in I \\ \{1- \\ \text { OFF } 1 C E \end{array}$		$\begin{array}{r} C I T \\ (10-1 \\ \text { OFFICE } \end{array}$	9 RS)
NO.	\%	No.	\%	NO.	\%	NO.	*
1741	48	312	67	59	54	278	76
471	13	2	0	0	0	15	4
506	14	49	11	36	35	51	14
60	2	0	0	0	0	0	0
843	23	101	22	12	11	22	6
0	0	1	0	0	0	0	0
3621	100	465	100	109	100	366	100
47		43		41		77	

ALL	
DEPARTMENT TYPES	
NO.	\%
16143	71
1026	5
2647	12
1033	5
1811	8
1	0
22661	101
348	

TOWNSHIP	
NO.	\%
0	0
1.	6
$0{ }^{\circ}$	0
0	0
1	6
0	0
0	0
0	0
0	0
0	0
10	62
1	6
0	0
2	12
1	6
16	100

> 12.C. ABOUT HOW MUCH DOES ONE OF THESE MOST USED PORTABLE RADIOS WEIGH?
> Table $12 \mathrm{C}-1$
Table $12 \mathrm{D}-1$
12.D. HOW DO YOU FEEL ABOUT THE WEIGHT OF THE MOST USED PORTABLE RADIOS?
TOWNSHIP
NO. \%

$$
\begin{array}{lll}
\begin{array}{c}
5 \\
0
\end{array} & \vdots & 0 \\
-1 & -1
\end{array}
$$

Table $12 \mathrm{C}-1$
COMPARISON BETWEEN WEIGHT OF MOST USED PORTABLE RADIOS AND THE RESPONDENTS FEELING ABOUT THAT WEIGHT．
NO
ANSWER
1
4
2
0

MORE THAN
38 OZ．

15
31
29
0

Table 1．3－1
12．0．HOW DO YOU FEEL
ABOUT THEIR WEIGHT？
WEIGHT IS RIGHT
SOMEWHAT HEAVY
SOMEWHAT HEAVY
ENTIRELY TOO HEAVY NO ANSWER
12．C．WEIGHT OF PORTABLE RADIUS

47100
TYPE
CITY
（10－4O
OFFICERS
of
090
がき
った。

FIFTY
LARGEST
CITIES
$\dot{8}$
ง
م
n

41100

RESPONSE

 NO ANSWERTable 13－2
13．A PORTABLE RADIO CAN BE USED WITH A REPEATER BY A PATROLMAV WHEN HE IS OUT OF HIS CAR．THE PORTABLE RADIO TRANSMITS TO
THE CAR RADIO WHICH THEN RELAYS THE SIGNALS TO THE BASE RADIO．DO YOU NEEU REPEATERS LIKE THIS IN YOUR COMMUNICATIONS SYSTEM？ CITY
（50 OR MORE
OFFICERS）
 $\stackrel{き}{\sim}$
\sim

ז	＊	\pm	$\xrightarrow[\sim]{-}$	\cdots	$\stackrel{\sim}{\sim}$	∞	\bigcirc	\bigcirc	σ	$\overrightarrow{0}$	
	$\stackrel{\square}{2}$	¢	$\stackrel{\sim}{\sim}$	\cdots	志	\cdots	へ	\bigcirc	$\underline{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{1}$

Table 13-3

IF NO, WHY NOT?
RESPONSE
state
+
$\dot{2}$
$\dot{2}$
 CITY
(50 OR MORE
$0 \rightarrow 0$

lARGEST
CITIES
$\stackrel{8}{8}$
-

COUNTY

$\dot{¿}$

-

 x \dot{i}
\checkmark

n
ぶ
n
ก \sim
 8
-
n
n 오
Table 14-1
14. SOME LAW ENFORCEMENT AGENCIES USE PORTAMOBILE RADIOS WITH SEVERAL RECEIVERS AND A VOTING SYSTEM.
DO YOU FAVOR SUCH A SYSTEM?

$\begin{array}{llll}0 & 0000 & 0 \\ \sim & 0 & 0 \\ I & & 000 & 0 \\ & 0 & 0 & 0 \\ 3 & 0 & & \end{array}$

TOTALS
$\begin{aligned} & 0 \\ & \cdots \\ & \sim \\ & \sim\end{aligned}$

RESPONSE	LEPARTMENT TYPE															
	$\begin{gathered} \text { MLL } \\ \text { DEPARTMENT } \\ \text { TYPES } \end{gathered}$		State		COUNTY		$\begin{gathered} \text { CIYY } \\ (1-9 \\ \text { OFFICERS) } \end{gathered}$		$\begin{gathered} \text { CITY } \\ (10-49 \\ \text { OFFICERS) } \end{gathered}$		$\begin{gathered} \text { CITY } \\ \text { (50 OR YORE } \\ \text { OFFICERS) } \end{gathered}$		$\begin{gathered} \text { FIFTY } \\ \text { LARGEST } \\ \text { CITIES } \end{gathered}$		TOWNSHIP	
REASON	NO.	\%	NO.	*	NO.											
IMPROVES XMIT/REC COVERAGE AND EXTENOS RANGE	30	28	7	27	2	22	0	0	2	25	9	37	10	26	0	0
INCREASES PORTABLE USEFULNESS AND FLEXIBILITY	$? 0$	18	1	4.	1	11	\cup	0	1	12	7	29	10	26	0	0
ALREADY USE AND/OK THINK IT IS A GOOD SYSTEM	23	21	5		4	44	1	33	1	12	2	8	10	26	0	0
VOTER RELAYS BEST SIGNAL	10	9	6	23	0	0	1	33	0	0	2	8	1	3	0	0
FOR EXTRA BACKUP	4	4	0	0	\bigcirc	0	0	0	1	12	0	0	3	δ	0	0
OTHEH	11	10	5		1	11	0	0	2	25	0	0	3	\%	0	0
NO ANSWER	11	10	2	8	1	11	1	33	1	12	4	17	2	5	0	0
totals	109	100		100	9		3	99	8		24	99	39	102	0	0
NUMBER OF RESPONDENTS	98		25		7		2		8		22		34		0	

\square
1
1
4

$$
\begin{aligned}
& \text { MICROPHONES } \\
& \text { SWITCHES ON HEADS } \\
& \text { MOUNTING BRACKETS } \\
& \text { CABLE BTWN. MIKE AND HEAD } \\
& \text { OTHER } \\
& \text { NO ANSWER }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MOUNT ING BRACKETS } \\
& \text { CABLE BTWN. MIKE AND HEAD } \\
& \text { OTHER } \\
& \text { NO ANSWER } \\
& \text { TOTALS } \\
& \text { NUMBER OF RESPONDENTS }
\end{aligned}
$$

$$
\begin{gathered}
\text { DEPARTMENT } \\
\text { TYPES }
\end{gathered}
$$

○MーO゙ーローMNO か
$\dot{2}$
～

RESPONSE
Table 18-3
FUNCTIONS FOR WHICH DEPARTMENTS WHICH HAVE SCRAMBLER SYSTEMS USE THEM

All Dept 。
Types

$$
\begin{aligned}
& 6^{C, 9} \\
& 725
\end{aligned}
$$

\[

\]

\[

\]

IF YES IN QUESTION 17 (All Departments Which Had Scramblers.)
19. HON DO YOU USE YOUR SCRAMBLERS? ION DO YOU USE YOUR SCRAMBLERS?
RESPONSE

WITH CAR RADIOS
WITH PORTABLE RADIOS
WITH CAR AND PORTABLE
SPECIAL VEHICLES
SPECIAL VEHICLES
TOTALS
NUMBER OF RESPONDENTS

[^22]NUMBER OF RESPONDENTS

	Table 21-3																
	21. HELMETS WITH GUILT-IN COMMUNICATIONS HAVE BEEN DEVELOPED AND ARE NOW UN THE MARKE IS THERE A NEED FOR SUCH HELMETS IN YOUR DEPARTMENT?																
	IF YES, WHY?																
	RESPONSE					DEPARTMENT TYPE										TOWNSHIP	
		ALL DEPARTM TYPE	$\begin{aligned} & \text { LENT } \\ & \text { S } \end{aligned}$	StATE		COUNTY		$\begin{gathered} \text { CITY } \\ \text { (I-9 } \\ \text { OFFICERS) } \end{gathered}$		$\begin{gathered} \text { CITY } \\ (10-49 \\ \text { OFFICERS) } \end{gathered}$		$\begin{aligned} & \text { CITY } \\ & \text { (50 OR MORE } \\ & \text { OFFICERS) } \end{aligned}$		FIFTY LARGEST CITIES			
	REASON	NO.	\%														
	FOR CROWD CONTROL/RIOTS	70	41	24	56	8	50	0	43	7	39	13	37	11	27	1	
	FOR MOTORCYCLE DUTY	41	24	6	14	1	6	2	14	2	11	13	37	17	41	0	0
\pm	USEFUL WHEN AWAY FROM MOBILE OR BASE UNIT		3	2	5	1	6	0	0	1	6	0	0	1	2	0	0
∞	ELIMINATES OR PREVENTS LOSS OF EQUIPMENT	1	1	1	2	0	0	0	0	0	0	0	0	0	0	0	0
	FREES HANUS	13	8	3	7	1	6	$<$	14	2	11	2	6	3	7	0	0
	IMPROVES OPERATIONG/MORE EFFICIENT	6	4	0	0	1	6	0	0	2	11	2	6	1	2	0	0
	COUNTERACTS NOISE (OTHER THAN CROWOS)	4	2	3	7	0	0	0	0	0	0	0	0	1	2	0	0
	OTHER	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	NO ANSWER	22	13	1	2	4	2.5	4	29	4	22	5	14	3	7	1	50
	TOTALS	169	100	43	100	16	99	14	100	18	100	35	100	41	98	2	100
	NUMBER OF RESPONDENTS	139		34		15		12		16		27		33		2	

21. HELMETS WITH BUILT-IIN COMVUNICATIONS HAVE BEEN DEVELOPED AND ARE NOW ON THE MARKET. IS THERE A NEEU FOR SUCH HELMETS IN YOUR DEPARTMENT?

[^23]
RESPONSE

ALL
DEPARTMENT
TYPES
NO. $\%$

a
 $\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$

286
Table 22
IF YES TO 9: (DO YOU NOW USE PORTABLE RADIOS IN YOUR DEPARTMENT?)
22. SHOULD STANDARDS FOR POWER SUPPLIES SUCH AS CHARGING EQUIPMENT,
22. SHOULD STANDARDS FOR POWER SUPPLIES SUCH AS CHARGING EQUIPMENT, AND BATTERIES FOR PORTABLE RADIOS BE GIVEN?
-
RESPONSE

RESPONSE	ALL DEPARTMENT TYPES						UEP	ART	TYPE					
			STATE		COUNTY		$\begin{gathered} \text { CITY } \\ \text { (I-9 } \\ \text { OFFICERS) } \end{gathered}$		$\begin{gathered} \text { CITY } \\ \text { (10-49 } \\ \text { OFFICERS) } \end{gathered}$		$\begin{gathered} \text { CIT } \\ \text { (50 OR } \\ \text { OFFICE } \end{gathered}$	MORE RS)	$\begin{aligned} & \text { FIFTY } \\ & \text { LARGEST } \\ & \text { CITIES } \end{aligned}$	
	NO.	\%	NO.	\%	NO.	\%	NO.	\%	NO.	*	NO.	\%	NO.	*
HIGH PRIORITY	127	36	1.7	36	16	37	10	24	23	30	29	37	28	61
MEDIUM PRIORITY	127	36	17	36	15	35	15	37	34	44	26	33	12	26
LOW PRIORITY	50	14	5	11	3	7	9	22	13	17	15	19	3	7
STANDARDS NOT NEEDED	41	12	8	17	R	19	7	17	6	8	7	9	3	7
NO ANSWER	3	1	0	0	1	2	0	0	1	1	1	1	0	0
TOTALS	348	100		100		100		100	77	100	78	100		100

$$
-1
$$

RESPoNSE	ueprartment type						
	$\underset{\substack{\text { DEPARTMENT } \\ \text { TYPES }}}{\text { ALL }}$	state	county	$\begin{gathered} \text { cIITY } \\ \text { off } 1 \text { ICERS } \end{gathered}$			
	No. *	No. *	no. *	no. *	no.	No.	no.
		$17 \quad 36$ 17	$\begin{array}{lll}16 & 37 \\ 15 & 35\end{array}$	10 15 15 24 7	23 30 34 44	$\begin{array}{ll}29 & 37 \\ 26 & 33\end{array}$	$\begin{array}{lll}28 & 61 \\ 12 & 28 \\ 18\end{array}$
				$\begin{array}{lll}102 \\ 9 & 22 \\ 7 & 17\end{array}$	[13 17		37 3
Standeasis not netued	41 4 4 12	$\begin{array}{ll}88 \\ 8 & 17 \\ 0 & 0\end{array}$	$\begin{array}{ll}8 & 19 \\ 1 & 2\end{array}$	7 0 0	$\begin{array}{ll}6 & 8 \\ 1 & 1\end{array}$		3 0 0
totals	348100	47100	43100	41100	77100	78100	46100

IF NO TO 9: (DO YOU NOW USE PORTABLE RADIOS IN YOUR DEPARTMENT?)
22. SHOULD STANDARDS FOR POWER SUPPLIES SUCH AS CHARGING EOUIPMENT, AND BATTERIES FOR PORTABLE RADIOS BE GIVEN?
RESPOINSE

2
YES TO 9: (DO YOU NOW USE PORTAQLE RADIOS IN YOUR DEPARTMENT?)
TOWNSHIP

NO. | \% | |
| ---: | ---: |
| 4 | 25 |
| 8 | 50 |
| 2 | 12 |
| 2 | 12 |
| 0 | 0 |
| 26 | 100 |

TOWNSHIP
3.95
16
1
$* * *$
0
1
1

r

$$
\begin{align*}
& 10 \\
& \pm \\
& \dot{6}
\end{align*}
$$

 \qquad

r

	OJOO J 0		○ゴーヅ
	\bigcirc ๑ูO さ 0		ナーMNO

RESPONSE

$$
\begin{aligned}
& 30-50 \mathrm{MHZ} \\
& 150-174 \mathrm{MHZ} \\
& 450-470 \mathrm{MHZ} \\
& \text { OTHER }
\end{aligned}
$$

COMPARISON BETUEEN INADEQUACY OF EQUIPMENT（POWER；PANGE）PROBLEM AND NEED MOUILE REPEATERS AND／OR FAVOR VOTING SYSTEM．
RESPONSE
STATE
00000
ALL
DEPARTMENT
TYPES
－き～～NM
COUNTY
－ーのペ
DEPARTMENT TYPE
6
7
0
0
13
0
DEPARTMENT TYPE

ナーNOO
2
$\stackrel{2}{2}$
0
0
Nooo $\rightarrow 0$
Table 27-4
STATE
RESPONSE

[^24]THOSE UEPARTMENTS WHO INDICATED ELECTRICAL／MECHANICAL INTERFERENCE AS ONE OF THEIR MOST SERIOUS PROBLEMS WITH COMMUNICATIONS EQUIPMENT（QUESTION 27）COMPARED WITH THEIP FREQUENCY CATEGORY．

	＊	$\stackrel{n}{n}$	\sim	r	$\stackrel{\sim}{\sim}$	ง	m	－	ง	0	\wedge	$m N$	$\stackrel{\infty}{0}$
$\begin{aligned} & \frac{\rightharpoonup}{G} \\ & \stackrel{\rightharpoonup}{E} \end{aligned}$	$\stackrel{\circ}{2}$	$\stackrel{ \pm}{\sim}$	∞	ค	\bigcirc	M	～	－	m	\bigcirc	เก	N \sim	∞

RESPONSE

TOWNSHIP

トい	＊	$\stackrel{\sim}{N}$	σ	σ	\cdots	\propto	ナ	\sim	r	\sim	9	-0	\％
といい													
号孚		\cdots	\propto	\propto	$\underset{\sim}{\sim}$	N	ง	\sim	\bigcirc	\bigcirc	\sim	\rightarrow－	8
い」	\bigcirc												－

$\begin{aligned} & \underset{\sim}{x} \\ & \stackrel{\rightharpoonup}{ } \underset{\sim}{n} \end{aligned}$	＊	$\stackrel{\sim}{\sim}$	\cdots	∞	\bigcirc	in	－	๑	\bigcirc	m	m	\square°	\bigcirc
	$\stackrel{0}{2}$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	$\vec{\sim}$	r	\bigcirc	∞	\bigcirc	\sim	m	Э	\sim	$\stackrel{\infty}{7}$

28．WHAT ARE YOUR MOST COMMON EQUIPMENT FAILURES，WHETHER ENTIRE UNITS OR SPECIFIC COMPONENTS

> TOWNSHIP

ANNOUNCEMENT OF NEW PUBLICATIONS ON NATIONAL CRIME AND RELATED SUBJECTS

Superintendent of Documents, Government Printing Office, Washington, D.C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued on the above subjects (including this NBS series):

Name \qquad
Company \qquad
Address \qquad
City \qquad State \qquad Zip Code \qquad

U.S. DEPARTMENT OF COMMERCE

National Buraau of Standards

Washington. D.C. 20234

OFFICIAL BUSINESS U.S. OEPARTMENT OF COMMERCE COM-215

SPECIAL FOURTH-CLASS RATE BOOK

[^0]: ${ }^{1}$ LEAA Police Equipment Survey of 1972, Vol. 1: The Need for Standards-Priorities for Police Equipment.

[^1]: Questionnaires were actually sent to 56 state police departments since there were 6 state departments which listed 2 police agencies without reference to a common central agency. However, only one set of questionnaires was accepted from each of these six agencies.
 Township departments exist only in regions $1,2,3$, and 5 .

[^2]: ${ }^{1}$ Questionnaires were actually sent to 56 state departments since there were 6 state departments which listed 2 police agencies without reference to a common central agency. However, only one set of questionnaires was accepted from each of these six agencies.
 ${ }^{2}$ Township departments exist only in regions $1,2,3$, and 5.

[^3]: ${ }^{2}$ Excluding the 50 largest U.S. cities.
 ${ }^{3}$ By population, 1970 U.S. Census.

[^4]: ${ }^{4}$ These 2 questionnaires were sent to different but equivalent subsamples, except for state and the 50 largest cities always filled in both.

[^5]: *Less than 1 percent

[^6]: ${ }^{5}$ Note, that if one wishes, it is possible to determine the number of departments using simplex and duplex systems by calculating the number o different transmitting and receiving frequencies (from Question 1 A and Question 1B) and the number of channels (Question 1D).

[^7]: ${ }^{6}$ Data about purchase of equipment was provided as of summer 1972 . The term "most" in the question was used to solicit responses concerning the most recent major purchase(s) of mobile radios.

[^8]: -Less than 1 percent.

[^9]: Note: Percentages add to more than 100 percent since departments could give more than one answer to Question 23.

[^10]: Data about purchase of equipment was provided as of summer 1972.

[^11]: ${ }^{1}$ Percentages add to more than 100 since departments allowed multiple answers.

[^12]: ${ }_{2}^{1}$ Percentages add to more than 100 since departments allowed multiple answers.
 ${ }^{2}$ This answer cannot really be considered a valid reason for not favoring a voting system. It is probably better interpreted as an indication of lack of knowledge about this system.

[^13]: ${ }^{1}$ The categories were meant to be mutually exclusive. However, a number of departments marked more than one of the available choices. The first three categories were made mutually exclusive in the tabulations. Double responses using the special vehicles category were permitted and therefore the total percentages add to more than 100 percent.

[^14]: ${ }^{1}$ Percentages add to more than 100 since multiple answers were allowed.

[^15]: Note: Percentages add to more than 100 percent since multiple answers were allowed. The reader should be particularly careful in interpretations of tables $16-1$ and $16-2$ because of the multiple responses. It is much more likely, for example, that a respondent would have selected only one of the three lower cost of equipment choices than it is that he would have selected only one of the two or three choices in the other two general categories.

[^16]: ${ }^{1}$ Percentages add to more than 100 since multiple answers were allowed.

[^17]: ${ }^{1}$ Percentages add to more than 100 since multiple answers were allowed.

[^18]: RANGE
 30-50 MHZ $450-470 \mathrm{MHZ}$ OTHER

[^19]: RESPONSE

[^20]: NUMBER OF RESPONDENTS
 RESPONSE

[^21]: dIHSNMO1

 Table $5 \mathrm{~B}-1$
 5.B. IF POSSIBLE, PLEASE TELL US HOW MANY DIFFERENT LAW ENFORCEMENT CHANNELS SERVE THIS AREA. THIS FIGURE WOULD INCLUDE NOT ONLY THOSE CHANNELS USED AY YOUR DEPARTMENT, BUT ALSO THOSE USED
 GY OTHER LAW ENFOHCEMENT AGENCIES OPERATING JN THE SAME GEOGRAPHICAL AREA (E.G. ' STATE AND LOCAL POLICE).

 CITY
 (50 OR MORE
 OFFICERS)

 $\because \approx$
 FIFTY
 ARGEST
 CITIES
 average
 膏

 $\vec{\sim}$
 STATE
 AVERAGE
 71.72
 29

 $$
 \begin{aligned}
 & \text { ALL } \\
 & \text { OEPARTMENT } \\
 & \text { TYPES } \\
 & \text { AVERAGE } \\
 & 11.55 \\
 & 132
 \end{aligned}
 $$

 RESPONSE
 NUMBER OF CHANIVELS
 NO ANSWER/DONT KNOW

[^22]: Table 2l-1

[^23]: IF NO, WHY NOT?

[^24]: NEED MOBILE REPEATERS
 DONT NEED MOBILE REPEATERS
 UNFAMILIAR WITH VOTING SYST
 DUNT FAVOR VOTING SYSTEM

