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Abstract

The purpose of detecting fires early is to provide an alarm when there is an environment which is
deemed to be a threat to people or a building. High reliability detection is based on the
supposition that it is possible to utilize a sufficient number of sensors to ascertain unequivocally
that there is a growing threat either to people or to a building and provide an estimation of the
seriousness of the threat. The current generation of fire detection systems is designed to respond
to smoke, heat, gaseous emission or electromagnetic radiation generated during smoldering and
flaming combustion. Smoke is sensed either by light scattering or changes in conductive
properties of the air, heat by thermocouples and thermistors, the electromagnetic spectrum by
photodiodes, and gas concentrations by chemical cells. There is much additional work in
progress to use solid-state and electrochemical sensors for oxygen, hydrogen, water vapor,
carbon dioxide, chlorine, hydrogen sulfide. The full gamut of fire detection is possible utilizing
currently available sensor technology. This includes very early detection as well as fire
following. It has been shown to be possible to detect fires early and reliably using the analog
signal of the current generation of fire detectors. The best combination for early detection has
been shown to be the complement of ionization, photoelectric, carbon monoxide and
temperature. This is “best” in the sense that it is possible, using current day sensors, to see
characteristic signatures very early, as well as to deduce quantitative information beyond the
normal tenability limits. This paper will demonstrate that low level sensing can achieve the goal
of producing early detection, while improving reliability. The example we use is a neural
network trained with a model of fire growth and smoke spread. This allows us to reduce the time
to detection as well as reduce the error rate for both false alarms as well as missing fires.



Acknowledgment

This work is funded by the NIST/NEMA consortium for developing an advanced fire fighter
interface panel, and includes funds from the consortium as well as appropriated funds.






Background

The Advanced Fire Service Interface project is a systematic approach to providing useful and
consistent information to building managers and emergency response personnel. The intent of
this project is to provide better information, faster and more reliably from systems that monitor
the environment in buildings, to those responsible for emergency response.

There are three parts to this project:

The first is to develop a consistent visual display, including a set of symbols (icons),
which scales from high resolution displays to personal information displays (handheld
computers);

The second part is high reliability detection and feature extraction, through information
processing and presentation;

The third part is to provide a basic "look ahead" capability to provide interpretation of
building sensor information in a way that is efficient and easy-to-understand.

The systems must be scalable, reliable, and robust, and must allow for new sensors and new
algorithms used in the assessment of the environment resulting from unwanted fires and similar
threats. The information should be available whenever and where ever it is needed, and to
whomever will benefit from the knowledge.

The first part of this project, the standard for the graphic annuciator panel, has been
incorporated into the 2002 Edition of the NFPA Fire Alarm Code, 72. A full scale demonstration
of the capability and usefulness of the system was demonstrated at NIST on April 3, 2002' with a
full response to what would have been a flashover fire had the NIST fire department not
responded with the critical information at the appropriate time.

In order to implement the second part we examined the type of information needed to make
good decisions rapidly. Answering that question devolved into understanding two levels of
sensing and concomitant use for that information. The two levels of sensing are low level for
early detection, and high level for fire following. Low level sensing is needed for high reliability
early detection and assured fire safety. It should also provide for graceful degradation as sensors
become unavailable. Sensors can be unavailable for many reasons: physical degradation if it fails
during a fire which would affect fire-following, lack of maintenance from dust accumulation, or
extreme environments such as water damage. High level sensing is needed for feature extraction
from transducers, e.g. the heat release rate (fire size).

The third part is extrapolating current conditions into the future. In order to extrapolate from
current conditions, one must have an understanding of how a fire is behaving in terms of a model
of the environment. The goal is to estimate the environment in a building and to provide this
information to all interested parties in a timely manner. Figure (1) shows the effect of measured
data on simple extrapolation techniques and the necessity of using a physical model for such
parameter estimation.

An example implementation of the visual interface with simple rules for reliability and fire
following was highlighted on April 3, 2002 with a full scale demonstration of showing heat
release rate derived from heat sensors”. Examples of prediction and “what if” (part three) were
presented at the 1998 Fire Suppression and Detection Symposium’.



This paper will concentrate on low level sensing with the aim of producing early and reliable
detection. The context of implementation for this study and analysis in which the information is
to be displayed is shown in figure (2). This is an example of a graphic annunciator panel as
specified in the 2002 Edition of NFPA 72. Of special interest to the fire service is the text item
labeled “Likelihood,” and is the focus of this paper. It is important to emphasize that this study is
aimed at finding a means to indicate the seriousness of a fire, given that an alarm has been
sounded. Within the context of detector acceptance and use, and operating procedures used by
municipalities, all alarms must be treated as actual fires.

Introduction

The purpose of detecting fires early is to provide an alarm consistent with an environment which
is deemed to be a threat to people or a building. High reliability detection is based on the
supposition that it is possible to utilize a sufficient number of sensors to ascertain unequivocally
that there is a growing threat either to people or to a building and provide an estimation of the
seriousness of the threat.

The current generation of fire detection systems* is designed to respond to smoke, heat, gaseous
emission or electromagnetic radiation generated during smoldering and flaming combustion.
Smoke is sensed either by light scattering or changes in conductive properties of the air, heat by
thermocouples and thermistors, the electromagnetic spectrum by photodiodes and photovoltaic
cells, and gas concentrations by chemical cells’. There is much additional work in progress to
use solid-state and electrochemical sensors for oxygen, hydrogen, water vapor, carbon dioxide,
chlorine and hydrogen sulfide. The use of these detectors, what signals they must (and should
not) respond to is mandated by various acceptance tests from Underwriters Laboratories Inc®,
and FM Global Corporation’.

An important facet of the present work is utilization of sensors which are currently in use in fire
detection systems, as well as those available from other systems, such as energy management
and security. While the alarms are based on specific criteria, there is additional information
available in modern systems. The information from the sensors themselves is analog data,
measuring temperature, obscuration, species density, heat flux and other characteristics of the
environment. What is needed is a means to provide earlier warning, and more useful information
before and after alarm using these sensor suites.

Algorithms

There are three principle ways to approach the detection problem: set point and rate of rise (or a
combination), principal component analysis, and neural networks. In all cases, the intent is to
signal the presence of a fire or other threat, while not responding to signals which occur in a
natural, or non-threatening, environment. In logic terms, the intent is to have no false negatives
(missing an alarm) and no false positives (alarm without cause). A difficulty with picking any
algorithm is the fact that many different environments can generate similar signals, and any
threat can generate many different signals.

We are not trying to classify fires into small or large, nuisance or real. Rather, any situation that
might be a threat to people or a structure should be recognized. Signals which show conditions
suitable for rapid growth of fire, or possible transition from non-threatening to a threatening
environment must be bracketed. The use of multi-criteria based detection technology continues
to offer the most promising means to achieve both improved sensitivity to real fires and reduced
susceptibility to nuisance alarm sources.



The overarching concern with any improvement are the issues of scalability and backward
compatibility. Any system proposed for the future must work with current sensing technology
and in existing buildings. It must degrade gracefully as components become inoperable, and
must allow for quantifiable improvements in detection time and reliability as new transducers
and other technologies are introduced. At the present time, the most common detectors are heat,
ion and photoelectric. The addition of carbon monoxide (already exists for other systems) and
carbon dioxide detectors are candidates in the near term, and total volatile carbon compounds
seem to be viable in the not too distant future. Thus, any study should include this set of
transducers. Our effort does not include new means of sensing, such as cross-correlated infrared
detectors® or video imaging. Such systems might hold potential for the future, but are not
common or well characterized at the present time. We will also concentrate on single head,
multi-sensor spot type detectors, with future work examining cooperative transducer interaction’.

There has been a great deal of research into early and reliable detection of fires. Most of the
effort has been to reduce the alarms from nuisance signals (Table 1) while responding to those
signals which emanate from actual fires (Tables 2 and 3)'*'*'**" These tables were developed
from the work focused on combat ships. They have been modified for common civilian
situations. In particular, welding puts a normal building at high risk. While it is reasonable to
provide a warning rather than an alarm for this type of source, in the uncontrolled environment
in common buildings, caution is important.

Rather than try to classify fires with certainty, we are trying to indicate very early detection with
the likelihood that the source will constitute a threat in a short time. In these terms, we would
classify a nuisance environment as a low likelihood of fire, a smoldering condition as a medium
likelihood fire and flaming as a high likelihood fire. Likelihood connotes the relative time to
serious conditions, and how well we can confirm these conditions.

Taxonomy for response indicators

Nuisance (Low Likelihood) - of concern, but no immediate danger; contained or low
toxicity; this includes non-combustion sources of particulates, steam and
controlled combustion which do not constitute a threat to health or safety

Incipient (Medium Likelihood) - long time (% hour or more); can lead to prompt fires over
minutes to hours; uncontrolled combustion

Fires (High Likelihood) - will lead to critical conditions on time scales of seconds to
minutes

We actually have two (consistent) meanings for likelihood, which we will use interchangeably.
The first is a statistical statement, that a fire really does exist given a set of sensor signals. The
second is that given a set of sensor signals, we can know that the environment will become
untenable in a long, medium or short length of time. While these are different mathematically,
for our purpose they are interchangeable. We do not have a clear enough definition of what
constitutes a fire as opposed to a hazard, and not enough data from testing to make a distinction.
From the perspective of alerting occupants or the fire department to respond, the end result (time
to catastrophe) is the essence. The Underwriters Laboratories Inc acceptance criteria does this
implicitly by specifying the time to alarm for various conditions. Their source of the fire is
representative of the range of fuels and combustion modes in normal applications.

Set Point and Rate of Rise

“Set Point” and “Rate of Rise” are the methods used in present day sensors. Modern systems
also use simple correlations to combine multiple sensors to accomplish the aim of high
reliability. Set point values and rate of rise criteria are listed in Table 4. The values cited are the
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ones used initially in this paper. The actual rules for detector acceptability are more complex.

Used with highly sensitive sensors (e.g. smoke detectors), these are good techniques for
discriminating signals indicative of fires. The difficulty in their use lies with the relatively high
nuisance alarm rate inherent in the techniques. Non-fire signatures look similar to those of fire at
low levels of detection. Changes in time-to-detection will be explored using various criteria.

The next level of detection utilizes rules designed to eliminate the low level signals which arise
from purely environmental causes. For example, decreasing the level for alarm of a
photodetector with a high rate-of-rise in temperature. These rules are really simplified forms of
fuzzy logic: “if sensor one is in this range, and sensor two is in this range then it is likely that ...”
It is an appealing approach. While such an approach has not yielded great results as yet, this is a
reasonable choice as the number of available sensor signals increases. If one examines the test
conditions and acceptance criteria enumerated in UL 268 and 521, they lend themselves to such
rules, the basic criterion being the time to alarm. It is recognized that fire is somewhat chaotic
and so the test conditions are written as rules for effluents from the various test fires. Several
such rules will be examined, with a view towards improvement in detection and noise rejection.

Principal Component Analysis

Another technique is principle component analysis (PCA). It is a statistical engineering
approach!!, which looks at signals and “judges” which is the most indicative of a fire by
examining the matrix of response of detectors to various fires. The essence is to convert the
sensors being used to a linear combination which explains most of the variation in transducer
output.

If one has a set of instruments (fire detectors in this case), then the set of data listed over time
forms a matrix of n (number of instruments) x m (number of measurements). This matrix, which
is a function of the vector of instruments, can be changed to another form, where the new
instrument vector consists of linear combinations of the original instrumentation. In
mathematical terms, one is taking the basis vector (the instruments) and changing them to an
orthogonal set of basis vectors, which will have the same resulting matrix when there are
identical sensor readings. These new vectors, the principal components, can then be ordered by
relative size. If the transducers are independent, all components will be identical and the
combination of instrumentation will not improve the predictive capability. If there is some
correlation among the sensors, then the principle components will vary in size, depending on
their relative importance in explaining the results. If all sensors were completely correlated, then
there would be only one principle component.

By using the largest few principal components, rather than the full set of original sensors, one
can analyze a much smaller data set. An extreme example would be if one were to find that a
single number could be used to show the onset of untenable conditions in an entire building.

There are a number of problems with the approach that renders this method unsuitable for this
application. PCA analysis depends on the size of the instrument readings themselves, both from
a absolute value and from a deviation perspective. This is not possible a priori for fire detectors.
It is not known, for example, what the temperature in a compartment will be, nor how much it
might vary, what the maximum and minimum might be and so on. Normalizing such data
automatically introduces an unknown weighting. Further, such an approach is computationally
expensive, and not suitable for real-time analysis. For these reasons, among other, the method
has not been successful to date'” in application to early detection.

On the other hand, an appropriate application in detection would be to consider the historical
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(hours to days) data from sensors, to determine whether an individual sensor was out of an
appropriate range. Given readings over days or weeks, normalization is straightforward and this
could be a useful technique for fault detection and sensor re-calibration for fire protection
signaling systems. The major alarm manufacturers use various techniques to solve the problems
that arise from lowered sensitivity, or changing ambient conditions. For example, the Simplex*
Tru Alarm measures variations from a 256 point moving average of the sensor output signal for
that device. The advantage to a PCA analysis over such approaches is that it elucidates the most
important sensing components as a part of the analysis. The shortcoming of the PCA analysis is
there is not a simple physical interpretation to the few components that result, i.e., what is the
meaning of combining a smoke detector signal with a temperature measurement, other than they
both correlate with the onset of a fire?

Curve Matching

A further improvement comes with curve matching. Unwanted fires in buildings generally have
a characteristic growth rate which is exponential. Usually, the second term in the mathematical
expansion of the growth (the square of time), dominates the heat release curve. For this reason,
fires are often referred to as “time squared” phenomenon. The short hand expression is t*. While
threats can be present from fires which either have reached a steady-state smoldering condition
or arise from some other source, such as carbon monoxide from automobile exhaust or from a
residential furnace, the type of phenomena we are trying to detect have characteristics of at least
t°. Curve matching adds a filtering layer to the basic data detected by set point and rate of rise
algorithms. Curve matching comes in two flavors: neural net and feature extraction. This paper
will focus on neural net implementations which are more suitable for low signal to noise ratio
regimes. As will be seen, although it is necessary to use many points on a curve to train a
network to recognize the shape of the curve, it is possible to discern the shape with just a few of
the early measurements, allowing for very early detection. The error that arises is analogous to
the number of points needed to (uniquely) define a curve - an infinite number of parabolas pass
through 2 points, but only 1 through three.

Neural net applications are most suitable to the type of filtering we are interested in for
likelihood analysis. It is strictly a mathematical technique and provides no information about the
underlying phenomenon. Feature extraction through functional analysis allows one to get
quantitative information about the fundamental measure, such as heat release rate, but usually
requires a higher level of signal. For example, although one can derive the fire size from
thermocouples, these same sensors are not sensitive to an incipient fire.

There are two approaches for neural net implementation, depending on the amount of training
and testing data available. If one is limited in the number of training scenarios, then the
probabilistic neural network (PNN) technique works best. This is for systems which train
quickly, though they may run more slowly. The latter problem can be solved by increasing
processing power. The most definitive work to date is that of Rose-Pherson ef a/."* in which they
have used a probabilistic neural network approach. This improvement provides a further
reduction of the nuisance and false alarm reaction without missing real fires.

The extension of this idea, explored in this paper, is a full neural network'. The difficulty in this
approach is the necessity of a large set of training and testing data. Often this becomes too great
a hurdle, simply because it is impractical to find the required data. Whereas the PNN approach

* Certain commercial equipment, instruments, or materials are identified in this document. Such
identification does not imply recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the products identified are necessarily the best available for the purpose.
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can be done with hundreds to thousands of test cases, a full implementation can require from
thousands to tens of thousands of examples, covering a full range of possibilities for all
parameters. Fire modeling has advanced sufficiently that generating a large training set is
possible.

While both techniques allow one to further improve nuisance signal rejection, both are inherently
“black box” oriented techniques, and so the actual cause for signal matching cannot be well
elucidated. They do, however, substantially reduce the false alarm rate, and this can be
quantified. The advantage the full neural network approach has is that one is assured that it will
reject a higher fraction of signals deemed not to be a threat, yet not miss any threat which can be
quantified as a problem. The disadvantage is the much larger number of training sets needed.
And as pointed out by Williams and Gottuck", one must be careful to separate the data sets used
for training a neural network from those used for testing such systems. Otherwise, the system
will detect what it already knows, rather than being checked against cases which it should detect
but does not know. This is similar to being able to answer a question, given prior knowledge
about the question and the answer. There is a distinct advantage to the PNN approach: one can
estimate the probability of actual alarms from the mathematics, whereas to do this for the full
NN approach requires a great deal more analysis; however, one must classify all signals (no
allowance for negative) whereas the latter only requires a prior adjudication as to whether a
signal is from a real threat, or must be judged only a nuisance signal.

This study is intended to examine means to provide very early detection for conditions which
lead to unacceptable threats. Thus we will be looking for algorithms which can reduce the time
to detect a particular threat.

Experiments for Examples of these Algorithms

In order to give examples of current detection strategies and to illustrate advanced detection
strategies, we have utilized data from two series of full-scale fire tests. The first series is the
Home Smoke Alarm Tests (Part 1, Phase II'®) and the second is the Smoke Toxicity Tests'’.

Smoke Detector Tests

The smoke alarm tests were run in a manufactured home and were designed to look at changes in
efficacy of detection since the original smoke detector tests were performed three decades ago'®.
Fires were set in different areas of the home and the detectors were moved around for each fire
area. Signals were analyzed from inside the burn room when the fire was in the bedroom or
kitchen and signals outside the burn room when the fire was in the living room (the detectors
were located in the hallway outside the remote bedroom). The photoelectric and ionization
signals were only available for the tests when the fire was in the living room and the fire source
was outside of the burn room. In those instances where there was obviously a detector
malfunction (no signal, out of range or alarm prior to the fire) the signal was not considered for
analysis.

The physical layout and location of sensors is shown in figure (3) and the location and fuel type
of fires in Table 5.

The data measured for this series were temperature, carbon monoxide, carbon dioxide, oxygen,
opacity, ionization and photoelectric detectors. The opacity measurements were done with 30 cm
laser signal attenuation probes. That is a different technique than either the photoelectric
detectors (scattering) or the ionization detectors (current).



Toxicity Tests

The toxicity tests were run in a single room with an extension to a corridor. and all
measurements (gas, temperature, velocity) were available for each of the tests. The focus of this
research was to ascertain the toxic gases emanating from various fuels as fires progressed from
incipient to full room involvement. The intent was to provide a sound basis for the measures
cited in the ISO document 13571".

A typical layout is shown in figures (4) and (5) and the fuel types and locations in Table 6. The
data measured for this series were temperature, carbon monoxide, carbon dioxide and oxygen.
No detector or opacity measurements were made.

Existing Algorithms
Set-Point and Rate of Rise

Set-point and rate-of-rise measures are quantified in Underwriters Laboratories Inc 268 and
521standards. The values for carbon monoxide detectors are enumerated in 2034. Although this
latter standard is for hazard warning for the presence of carbon monoxide, it does give a lower
limit of what is acceptable for a fire test. Pfister’® has shown that even lower levels of CO
detection should give comparable results to smoke detection (we use the 2034 criterion). For the
experiments used in this study, temperature, carbon monoxide, carbon dioxide, opacity (from
NIST smoke meters), ionization current (not an ionization chamber but output from commercial
ionization detectors), and light scattering as seen by photoelectric detectors.

Table 4 enumerates the (initial) values used in this study. Generally, these values are those in the
various Underwriters’ Standards, though others such as the CO/CO, ratio are used from other
sources, e.g., Milke™' .

An example of detection time based on these values is shown in figure (6). This test was a set of
8 cushions in the form of a loveseat, set against the back wall of the burn room. This is one of the
sets of data discussed later which will be used to examine various detection strategies.

An observation of differences between photoelectric and ionization detectors is that the former
tend to be better for smoldering fires and the latter for flaming fires, for a given sensitivity. A
common strategy for improving the response of photoelectric detectors is to lower its sensitivity
when the temperature is rising. For example, if we use the alarm point (shown in Table 4) from
0.05 m™ t0 0.025 m™' for the photodetector when the rate-of-rise of temperature is greater than

7 C /min (a commonly used value), as can be seen in figure (7), a detection time comparable to
the ionization detector is obtained.

Correlation of Multiple Signals

Another algorithm which shows a great deal of promise is a carbon monoxide - smoke
correlation™. In this case, a product of

CO (ppm) * Obscuration (% per meter) > 10

signals a fire. In tests run so far, it has shown a higher nuisance signal rejection and a shorter
time to detection, without missing what are considered real fires.

An example of this algorithm for the home smoke alarm tests (#37 and #38) is shown in figure
(8) and figure (9) for a smoldering mattress fire (sdc 37) and a flaming mattress fire (sdc 38).
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This compares the CO*Ion signals in units of “ppm*%/m”. Generally photodetectors do the best
job of detecting smoldering fires whereas ionization based detectors do well with flaming fires.
As can be seen, the CO*Ion algorithm does as well as the photodetector in both cases, and much
better than the ionization detector for the smoldering fire. This would indicate, as the authors
argue, that some additional correlation is needed, and they discuss other permutations, such as
adding the CO or ionization signals linearly.

This type of correlation is the simplest form of curve matching, which we will discuss next. It is
considerably better than discrete rules such as lowering the sensitivity of one detector based on a
reading of a second. However, as discussed in the paper, the choice of correlations is not
obvious. It is a shortcoming of trying to choose a correlation based on a priori knowledge, and
not having a sufficient range of experiments on which to base the choice.

Qualey and Seymouri* discuss another such correlation using photo-detectors and heat-detectors
instead of the product carbon monoxide - ionization. The intent is to maintain the advantage of
photodetectors for smoldering fires but incorporate the same sensitivity as ionization detection
for flaming fires. In their paper, they demonstrate that when there is a high correlation between a
photodetector and a heat sensor (a multiplier as the CO*Ion shown above), the response time
can be similar to an ionization detector. Unfortunately, while results were stated for the reduced
time to detection of flaming fires for the photo/heat combination, no guidance was provided on
the degree of correlation for such multi-criteria detectors, nor what would constitute a minimum
level of detectability.

Curve Matching Algorithms

Curve matching covers a wide range of mathematical techniques, from functional analysis to
neural networks. Functional analysis is most useful when the signal to noise ratio is high® and
one can match the signal to a specific curve of interest, for example, relating a t* signal to a heat
release rate. Neural network analysis is useful when only the general shape of the curve is known
and detail is not justified by the available signal. The regions 1, 2 and 3 in figure (10) show
conceptually such a delineation. For all three regions, a pattern can be discerned. However,
pattern matching is most usefully applied to the early, noisy signals in region 1 which does not
lend themselves to definite statements of functional form, that is, when the signal-to-noise ratio
is not high enough to provide a measure of the environment, typically S/N~2 to 4. Region 2 is
the current range of available detection when point measurements provide sufficient signal to
alarm, typically S/N~3 to 5.2 Region 3 is appropriate for signal extraction for fire following
when the signal to noise ratio is typically greater than 10.

Returning to the earlier discussion, we can also label these regions as low-likelihood (nuisance),
medium-likelihood (incipient) and high-likelihood (fires). We want to push detection capability
into region 1, yet classify it correctly in terms of advice to the fire service or occupants.

Classification of fire types into low, medium and high likelihood consequences has implications
for both fire service as first responders, and building maintenance personnel who might be able
to fix problems before they rise to emergency status.

Figure (11) shows a typical sensor reading from a fire, carbon monoxide in this case. Detecting
the presence of a fire traditionally has been to measure such signals, and provide an alarm when
some condition is reached, for example, when the opacity is high or the carbon monoxide too
high. Shown in the figure are alarm points for several detection strategies, an ionization detector,
a photoelectric detector, and the CO*Ion algorithm discussed previously. The example is a
surrogate for the range of signals which might be used for detection of fires**”. Currently,
temperature (T), opacity (OD), ionization (Ion) and carbon monoxide (CO) are the core signals
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we will focus on. In addition to these, carbon dioxide (CO,), volatile organic hydrocarbons
(VOC), nitrogen-oxygen compounds (NO), oxygen(O,) and water concentration (RH) are
possible future signals to incorporate.

An example of using pattern matching is discussed in the paper by Rose-Phersson et al.® The
focus of the paper was the use a probabilistic neural network to combine signals from several
transducers to reduce the likelihood of both false positives and false negative responses from
detector systems. While this is similar to what we will use to reduce the time delay, the focus
was on more reliable detection. The goal behind their work was to automate response to fires
(e.g. sprinkler activation), so very high reliability is even more important than early detection.
They demonstrated the optimal sensor set to be ionization, photoelectric, carbon monoxide and
carbon dioxide, with temperature providing the best confirmation signal. In our case, we will
work from the premise that the patterns we see will result in an alarm condition from the
installed alarm base, so we want to respond as early as possible to these signals or patterns, in
order to reduce the response time of the firefighters.

An Example of Implementation of a Neural Net Algorithm

An artificial neural networks (ANN) is a collection of mathematical models that emulate some of
the observed properties of biological nervous systems and draw on the analogies of adaptive
biological learning. The key element of the ANN paradigm is the structure of the information
processing system. It is composed of a large number of highly interconnected processing
elements that are analogous to neurons and are tied together with weighted connections that are
analogous to synapses.

Learning in biological systems involves adjustments to the synaptic connections that exist
between the neurons. This is true of ANNs as well. Learning typically occurs by example
through training, or exposure to a “truthed” set of input/output data where the training algorithm
iteratively adjusts the connection weights (synapses). These connection weights store the
knowledge necessary to solve specific problems.

ANNS are being applied to an increasing number of real- world problems of considerable
complexity. They are good pattern recognition engines and robust classifiers, with the ability to
generalize in making decisions about imprecise input data. They offer ideal solutions to a variety
of classification problems such as speech, character and signal recognition, as well as functional
prediction and system modeling where the physical processes are not understood or are highly
complex. ANNs may also be applied to control problems, where the input variables are
measurements used to drive an output actuator, and the network learns the control function. The
advantage of ANNS lies in their resilience against distortions in the input data (blips, noise and
such) and their capability of learning. They are often good at solving problems that are too
complex for conventional technologies (e.g., problems that do not have an algorithmic solution
or for which an algorithmic solution is too complex to be found) and are often well suited to
problems that people are good at solving, but for which traditional methods are not (you know a
fire when you see it!).

There are multitudes of different types of ANNs. Some of the more popular include the
multilayer perceptron (what we used) which is generally trained with the backpropagation of
error. Some ANNS are classified as feedforward while others are recurrent (i.e., implement
feedback) depending on how data are processed through the network. Another way of classifying
ANN types is by their method of learning (or training), as some ANNs employ supervised
training while others are referred to as unsupervised or self-organizing. This work used
supervised training. An improvement over the results discussed below would include a regime of



unsupervised training (see for example the work of Phersson et al."”®) for classification of signals
rather than simple decision aids.

The study of fire occupies a unique niche in the world of science and engineering because an
unwanted fire is considered a failure in the sense that it is not a desirable outcome and is to be
avoided. Detection and suppression are thus posed as means to avoid failure, which can be well
characterized. For detection in particular, we have well defined failures which can be tested
fairly reproducibly. In this highly regulated environment, in order for detectors to be approved
for use they must detect fires as defined in UL 268 and EN 54 tests. In addition, there are
nuisance criteria when the detectors should not alarm. While these latter are well recognized
(dust, for example®), there are no formal tests, though a simple negative (no fire) should in no
case produce an alarm (a false positive). For the UL tests, there is a time prior to when the
alarms should not activate.

The biggest difficulty in training neural networks is the extent of the training scenarios available.
In fire research, the work has been limited to experimental data sets, for example of work of
Rose-Phersson discussed earlier. Typically the training set consists of tens to hundreds of
scenarios, while ANNSs need tens of thousands to produce highly reliable classification. Using
the fire model, CFAST, we can generate a very large set of training and testing scenarios.

For this example, we consider the use of single head (multisensor) detector in a single
compartment. The use and limitations of such detection are covered by NFPA 72, the National
Fire Alarm Code. We have a model for fires which has been extensively tested, CFAST*. We
used this model to generate training and testing scenarios which cover a very fine delineation of
the event to be detected. Using such a model allows us to generate the tens of thousands to
hundreds of thousands of examples necessary to provide sufficient training for a network.

The base case used

Standard atmosphere of 101,300 Pa

A single compartment of 13x13x2.4 m

Two cracks (one vertical, one horizontal) to account for leakage
One door of (0.9 x 2.3) m and One window of (0.9 x 1) m.

Starting with this base case, variations of the base case scenario were generated based on

(3) Ambient conditions: outside to inside temperature the same or +15 °C

(3) Wind: none, into door (away from window if present) or away from door

(3) Fire size: (1, 10, 100) kw - note: no fire at all is a special case

(3) Position of fire: floor, and 0.5 m, 1.0 m above the floor in the center of the room
(4) Door width: open, Y2, 1/4, 1/8 width

(2) Window: open or closed (0.9 m x 2.3 m)

(4) CO: (0.0, 0.001, 0.01 and 0.05) kg/kg or (0%, 0.1%, 1% and 5%) by fraction

(3) Smoke yield (optical depth): (0, 0.01, 0.05) kg/kg or (0%, 1% and 5%) by fraction
(2) Hydrogen carbon ratio in the fuel: (0, 0.2) kg/kg

(Note that the hydrogen carbon ratio is for the fuel, whereas CO and smoke are kg/kg for the
combustion products).

This is 20,768 variations, which were then used to train the neural network. The scenarios were
300 second calculations with a time slice every 30 seconds. While this suite is sufficient to
demonstrate the feasibility of training multisensor networks, a somewhat more comprehensive
set of scenarios might include
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(9) Room size: 2 m' to 5 m ceiling, 3x3 m to 15x15 in 3 increments each
(2) Geometry: rectangular parallel piped, aframe
(3) Radiative fraction: 0.1, 0.2 and 0.3

which would increase the number of scenarios, calculation and training time about an order of
magnitude.

Three training exercises were performed
1) a subset of the parameter space comprising 5000 scenarios, and 5000 for testing
2) a complete set of scenarios (20726), and a small subset for testing (42) (total of 20768),
and
3) preconditioning to supplement training for those cases when a fire is known to exist.

The sensor suite used were four sensors: oxygen, carbon monoxide, opacity and temperature. A
more complete characterization would consider each sensor separately, as well as all
combinations. This would provide a sense of the effect of losing a sensor (fault detection).

There are two aspects of detection which are important if we are to consider the algorithms to be
fast and reliable. In order to be considered fast, the detection scheme must be at least fast as
current detection algorithms. For high reliability, we are looking for means of seeing all real fire
(no false negatives), and not responding to those deemed to be nuisances (no false positives). A
metric for the former will be discussed as part of the analysis of results. The metric for false
positives (nuisance alarms in the present context) and false negatives (missing a real fire), the
scenarios are either fires or nuisance signals. Except for the base case of no heat release, which
by definition is not a fire, the remainder are classified as real or nuisance by whether they pose a
threat at any point in the curve to people or property. The classification is based on the Hazard
I’' methodology and the ISO Toxicity Specification®. For exercises 2 and 3, of the total scenario
space, 15 916 cases were fires and 4 852 non-fires. These latter (23%) are nuisance signals in the
present context. A more complete classification scheme would further classify these according to
Tables 1 through 3.

Mathematically, a neural network is a set of weight matrices which multiply sensor signals, and
use a function (in our case a linear ramp) to combine the results. This provides a classification of
data. Schematically, it is shown in figure (12), where p represents the measurement points, a
vector of length R (in our case, this is the number of sensors), b a bias vector for the algorithm
(always set to zero in our training), w the weight matrix (the answer so to speak). In the
following training cases, we used R=4, but typically, it can range from 1 (a single sensor) to 9
(see ref. 10) which would be a very general multi-criterion sensor head.

The end point of such a system is a weight matrix which when multiplied by the sensor suite (p)
produces a classification number; we used a simple classification of true or false (fire or non-
fire). We trained a network with a single hidden layer of 10 neurons, and a single output layer
using a linear transfer function. Thus we have only one matrix which needs to be adjusted. The
training method used was Levenberg-Marquardt®. We have a set of four sensors, with 31 points
(30 intervals). The data were presented to the learning algorithm, which modified the weight
matrix (w) until a (defined) error level was reached.

We applied this technique using the Matlab* simulation tool, with the Neural Network Toolbox.
Each data set was presented to network, and it adjusted the weight matrix. After completing the
training, the network was presented test data, and classified the new sensor readings as a fire or
non-fire event. Since we are concerned with a binary decision, the results were descritized to 0 or
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1. In actuality, the data was a spectrum and additional training could be provided to further refine
the classification scheme to non-fire, nuisance or significant event.

For the first case, there were no false positives or false negatives. That is, all fires were detected
and no alarms when a fire did not exist. The time to alarm was generally the same for
conventional detection and the trained network. The time to do the CFAST calculations was
approximately 45 minutes, and the training time approximately 1 hour.

The time/temperature curve shown in figure (13) has the alarm points overlaid. The solid lines
are example 1 and the dashed lines example 2. The vertical ticks are the corresponding detection
time for conventional detection (green) and the neural net with training (red).

For the second example, all 20768 scenarios were used. In order to test the network, 42 of the
20768 scenarios were used for testing and not used for training. This then constituted a sampling
of data which the network should be able to recognize. Of the forty two tested, there were no
false positives (nuisance alarms), that is no fire detected when a fire did not exist; however, there
was one false negative, not showing an alarm when a fire was present. This is about a 2% failure
rate. The scenario which failed is marginal for the network, and to improve performance, the
scenario suite needs to be extended to provide a finer resolution. In actual commercial detection
systems, false negatives occur (3 to 20)% of the time* and false positives (30 to 50)% of the
time*, so we have improved on the detection capability as well as reduced the time to detection.

This training was done with a 10 neuron system. A systems with 20 neurons and two hidden
layers was tried as well, without improvement. The time to detection for this second training
example was always as early as, and usually earlier, than conventional detection, as shown in
figure (14). The same notation is used in this figure as earlier. The time to do the CFAST
calculations was approximately 2 hours, and the training time approximately 3 hours. The two
cases shown, 007051 and 017658, are randomly picked from the 42 test cases.

For the third training example, the truth vector (when the fire exists) was preconditioned for
those cases we know a fire will exist. For example, for the 100 kW source, it will at some time
be considered a fire. For these cases we can set the training vector to “true” at after the first
interval. Once again, there were no false positives and a single false negative (same case as
before). The time labeled “preconditioned” in figure (14) was the response for the two cases
shown in the figure for the example 2 testing regimen, 007051 and 017658, thus showing the
value of using additional information in the training regimen.

This third training example takes advantage of the fire problem. We start with the scenarios.
These produce curves of time, temperature, co, and so on. At some point we decide there is a
fire. At the simplest level, used in 1 and 2, it is done the based on commercial detection schemes
or the toxicity assessment discussed earlier. However, we can add to that information base, by
noting that certain scenarios are going to be classified as fires, and tell the system from the
beginning. For example, a 100 kW fire will must be detected, as must a 5 % CO condition. So
for certain scenarios, one tell the system that it is a fire after the first interval. That gets factored
into the weight matrix so that curves of similar shapes trigger an alarm very early. And even
ones that are close do so. It is because we are matching curves (high precision) and not trying to
get detailed information (high accuracy) that this technique is so appealing in this application.

There is additional work which needs to be done before this can be used in actual sensor suites:
final testing for this case needs to include an example experiment such as the Smoke Detector
Tests*®. In addition, the standard qualification tests and a set of nuisance signals must be
included. This latter will require an instrument transfer function, which can be measured using
the FE/DE test apparatus®’. Finally, the training suite ought to be extended to include the wide
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range of geometries which exist in practice rather than just those used for qualification testing.
The training of a neural network should allow this extension and would improve the robustness
of detection systems. This then allows one to include cases which currently cause alarms, such as
steam, but are clearly not fires.

A further extension would be to go beyond the simple alarm/no-alarm classification we have
done here and report on nuisance alarms as distinct from fires. Interestingly, a cursory inspection
of the testing scenarios shows that the network is doing a reasonable characterization of the
scenarios in terms of the type of fires. It is likely that this work could be extended to
classification according to Tables | through 3. This is important in that a nuisance signal is often
a precursor to more serious conditions. The prime example is the case of an oven (and even more
commonly a toaster oven) which can develop the right conditions (and measurable effluent) but
has a low level fire until a door is opened.

Conclusions

The full gamut of fire detection is possible utilizing currently available sensor technology. This
includes very early detection as well as fire-following. It has been shown that it is possible to
detect fires early and reliably using the analog signal of the current generation of fire detectors.
The best combination for early detection has been shown to be the complement of ionization,
photoelectric, carbon monoxide and temperature. This is “best” in the sense that it is possible,
using current day sensors, to see signatures very early, as well as to deduce quantitative
information beyond the normal tenability limits.

The most useful of the algorithms studied is the curve matching concept embodied in neural
network methods. In training such algoritjms, it is important to use a sufficiently large set of
training and testing samples so that that the algorithm is robust. We would expect a single
experiment to provide very early detection for that single response curve. However, as the
number of training sets is increased, incorporating variations in geometry and insult, the time to
reliable detection increases. As the number of sensors used increases, we expect the detection
time to decrease. The trade-off is in the necessity for using large (more than 10,000) sample sets.
With a judicious use of modeling and experimental testing, this should not be a burdensome
exercise. We have demonstrated the training of a neural network to shown that it is possible,
including very early detection. Although we find a 2 % error rate with the present training
regimen, this is still considerably better than current detection (3 to 30)% as well as methods
proposed to date (2 to 10)%.
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Table 1. Nuisance signals (low likelihood)

Hairspray, Nail polish remover , bleach, furniture cleaning agents, disinfectants

Toaster effluents - except as can be classified as incipient fires, for example in toaster ovens

Ovens

Boiling water, coffee, showers and other steam sources

Dust and sawdust, concrete dust, overcooked popcorn and other microwave products

Propane and kerosine heaters and stoves
Candles
Cigarettes and matches

Heating systems (furnace)

Table 2. Incipient (long time to disaster) fires

Toaster oven effluents
Welding torch and arc welding
Cook-top effluents, frying bacon

Smoldering mattress, chair or other cushion furniture: cotton, down

Table 3. Fires (prompt)

Open cellulose fires (crumpled newspaper)

Flaming mattress, chair or other cushion furniture: cotton and foam

Liquid pool fire (heptane, gasoline, alcohol, paint thinner, acetone, vegetable oil)

Wood (wood based) furniture such as bookcases
Smolder mattress, chair or other cushion furniture: foam
Power and signaling cables

Interior wall coverings such as wallpaper
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Table 4. Set point and Rate of Rise Criteria (single point measurements)

The values shown in this table are those used in the study. The actual values which can be
used are somewhat more complex. The applicable tests are Underwriters Laboratories® 217,
268, 521, 529, 2034. Specific values in common usage are given in Ref. (15) except where
noted.

Ion smoke detectors: (2 to 6.4) % obscuration per meter
Typical is 4 % which corresponds to an optical density of 0.017 m'
Photoelectric detectors: (2 to 12) % obscuration per meter

Typical is 11 % which corresponds to an optical density of 0.051m™

Temperature: 57°C.

Temperature rate of rise: 7 °C per minute

Carbon monoxide: 50 ppm (Pfister’® suggests 25)
Carbon dioxide*: 1.5%

Oxygen: 17%

Ratio of carbon monoxide to carbon 0.01

dioxide™:

Table 5 - Test in the Smoke Alarm Series - fuel type and location

SD 37, Smoldering Mattress, Bedroom
SD 38, Flaming Mattress, Bedroom
SD 39, Flaming Mattress, Bedroom
SD 40, Smoldering Mattress, Bedroom
SD 41, Cooking Oil Fire, Kitchen

Table 6 - Tests in the Toxicity Series - fuel type and location
Test series Fuel Location
BW 2 bookcases Rear wall
Ccw 8-12 cushions Rear wall
BW 2 bookcases Rear wall
PW Cable Rear wall
CW 14 cushions Rear wall
BP 2 bookcases/PVC Center
CcC 8 cushions Rear wall
BW 2 bookcases Rear wall
BP 2 bookcases/PVC Center
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Mattress Fire in the Bedroom
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Figure 3. Instrument locations for smoke detector experiments.

Figure 4. Cushion fire prior to flashover
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