
U.S. Department
of Commerce

National Bureau

of Standards

Computer Science
and Technology

NBS

BUC*T>ONS

NAT L INST. OF STAND 4 TECH R.I.C_

NBS Special Publication 500-106

Guidance on
Software

Maintenance

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Chemical Physics —
Analytical Chennistry — Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Manufacturing

Engineering — Building Technology — Fire Research — Chemical Engineering^

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gailhersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

'Some divisions within the center are located at Boulder, CO 80303.

Computer Science
and Technology

NBS Special Publication 500-106

Guidance on
Software Maintenance

Roger J. Martin and Wilma M. Osborne

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrlge, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued December 1983

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

National Bureau of Standards Special Publication 500-106

Natl. Bur. Stand. (U.S.), Spec. Publ. 500-106, 74 pages (Dec. 1983)

CODEN: XNBSAV

Library of Congress Catalog Card Number: 83-60061

1

U.S GOVERNMENT PRINTING OFFICE
WASHINGTON: 1983

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402
Price

(Add 25 percent for other than U.S. mailing)

TABLE OF CONTENTS

Page

1.0 BACKGROUND 2

1 . 1 Introduction 2

2.0 DEFINITION OF SOFTWARE MAINTENANCE 6

2.1 Functional Definition 6

2.1.1 Perfective maintenance 7

2.1.2 Adaptive maintenance 8

2.1.3 Corrective maintenance 9

3.0 THE SOFTWARE MAINTENANCE PROCESS 10

H.O SOFTWARE MAINTENANCE PROBLEMS 12

4.1 Software Quality 12

4.1.1 Poor software design 12
4.1.2 Poorly coded software 13
4.1.3 Software designed for outdated hardware 13
4.1.4 Lack of common data definitions 14
4.1.5 More than one programming language used 14
4.1.6 Increasing inventory 14
4.1.7 Excessive resource requirements 14

4.2 Documentation 15

4.3 Users 16

4.4 Personnel 16

5.0 THE IDEAL MAINTAINER 18

6.0 SYSTEM MAINTENANCE VS SYSTEM REDESIGN 20

6.1 Frequent System Failures 21

6.2 Code Over Seven Years Old 21

6.3 Overly Complex Program Structure And Logic Flow.... 22

6.4 Code Written For Previous Generation Hardware 22

6.5 Running In Emulation Mode 23

6.6 Very Large Modules Or Unit Subroutines 23

ill

Page

6.7 Excessive Resource Requirements 23

6.8 Hard Coded Parameters Which Are Subject To Change.. 24

6.9 Difficulty In Keeping Maintainers 24

6.10 Seriously Deficient Documentation 24

6.11 Missing Or Incomplete Design Specifications 25

7.0 CONTROLLING SOFTWARE CHANGES 26

7.1 Controlling Perfective Maintenance 27

7.2 Controlling Adaptive Maintenance 28

7.3 Controlling Corrective Maintenance 30

8.0 IMPROVING SOFTWARE MAINTENANCE 31

8.1 Source Code Guidelines 32

8.1.1 Use a single high-order language 32
8.1.2 Coding conventions 32
8.1.3 Structured, modular software 34
8.1.4 Standard data definitions 35
8.1.5 Well-commented code 35
8.1.6 Avoid compiler extensions 36

8.2 Documentation Guidelines 36

8.3 Coding And Review Techniques 38

8.3.1 Top down/bottom up approach 38
8.3.2 Peer reviews 39
8.3.3 Walkthroughs 39
8.3.4 Chief programmer team 40

8.4 Change Control 41

8.4.1 Change request 41

8.4.2 Code audit 42
8.4.3 Review and approval 42

8.5 Testing Standards And Procedures 43

i v

Page

9.0 SOFTWARE MAINTENANCE TOOLS 44

9.1 Cross Referencer 45

9.2 Comparators 45

9.3 Diagnostic Routines 45

9.4 Application Utility Libraries 46

9.5 On-line Documentation Libraries 47

9.6 On-line/Interactive Change And Debug Facilities.... 47

9.7 Generation And R,etention Of Test Data 48

10.0 MANAGING SOFTWARE MAINTENANCE 49

10.1 Goals Of Software Maintenance Management 50

10.2 Establish A Software Maintenance Policy 51

10.2.1 Review and evaluate all requests for changes.. 53
10.2.2 Plan for, and schedule maintenance 54
10.2.3 Restrict code changes to the approved work.... 54
10.2.4 Enforce coding and documentation standards.... 54

10.3 Staffing And Management Of Maintenance Personnel... 55

1 1 .0 SUMMARY 58

BIBLIOGRAPHY 59

APPENDIX I : Software Maintenance Definitions 65

v

LIST OF TABLES

Page

Table 1 - Software Maintenance Problems 4

Table 2 - Functional Definition of Software Maintenance... 7

Table 3 - Software Maintenance Process 10

Table 4 - Characteristics of Systems Which Are
Candidates for Redesign 20

Table 5 - Suggested Policies for Controlling
Software Changes 26

Table 6 - Factors Which Affect Source Code
Maintainability 31

Table 7 - Documentation Guidance 36

Table 8 - Coding and Review Techniques 38

Table 9 - Controlling Changes 41

Table 10 - Software Maintenance Tools 44

Table 11 - Goals of Software Maintenance 51

Table 12 - Establishing a Software Maintenance Policy. 53

Table 13 - Managing the Software Maintenance Function 57

vi

Guidance On Software Maintenance

Roger J. Martin and Wilma M. Osborne

This report addresses issues and problems of software
maintenance and suggests actions and procedures which
can help software maintenance organizations meet the
growing demands of maintaining existing systems. The
report establishes a working definition for software
maintenance and presents an overview of current
problems and issues in that area. Tools and
techniques that may be used to improve the control of
software maintenance activities and the productivity
of a software maintenance organization are discussed.
Emphasis is placed on the need for strong, effective
technical management control of the software
maintenance process.

Key words: adaptive maintenance; corrective
maintenance; management; perfective maintenance;
software engineering; software maintenance; software
maintenance management; software maintenance tools.

- 1 -

1 .0 BACKGROUND

The Institute for Computer Sciences and Technology (ICST),
within the National Bureau of Standards (NBS), has a

responsibility under Public Law 89-306 (Brooks Act) to
promote cost effective selection, acquisition, and
utilization of automatic data processing resources within the
Federal Government. ICST efforts include research in
computer science and technology, direct technical assistance,
and the development of standards and guidelines for data
processing equipment, practices, and software. As part of
this responsibility and the growing need to improve software
maintenance methods and management, the ICST is developing
software maintenance guidance designed to assist Federal
agencies in the ongoing support of existing computer systems.
While software systems vary in function, type, and size, many
of the functions performed under software maintenance are
universal in scope and the activities required to keep them
operational are generally the same. This is the first in a

series of reports which address both the management and
technical practices, procedures, and methods for software
maintenance

.

This report provides general guidance for managing software
maintenance efforts. It presents an overview of the various
aspects and problems of software maintenance, and identifies
those techniques and procedures designed to assist management
in controlling and performing software maintenance. It
addresses the need for a maintenance policy with enforceable
controls for use throughout the software life cycle. The
underlying theme is that improvements in the area of software
maintenance will come primarily as a result of the software
maintenance policies, standards, procedures, and techniques
instituted and enforced by management.

1 . 1 Introduction

There is a growing interest in software maintenance as
evidenced by the number of articles, reports, and textbooks
on the subject (see Bibliography). This interest has been
spurred by estimates that more resources are required to
maintain existing systems than to develop new ones. Federal
managers responsible for software application systems
estimate that 60% to 70% of the total application software
resources are spent on software maintenance [GA08la] [GA080].

Two of the major causes of this software maintenance burden
are the growth of the inventory of software which must be
maintained and the failure to adopt and utilize improved
technical and management methods and tools. The issue which

- 2 -

must be addressed is not one of reducing the absolute cost of
software maintenance, but rather improving the quality and
effectiveness of software maintenance and thus, reducing the
relative or incremental costs.

In order to improve the quality and effectiveness, it is
necessary to not only improve software maintenance
techniques, methodologies, and tools, but to also improve the
management of software maintenance. This Guide discusses the
problems associated with managing software maintenance and
software maintainers, and examines management methods which
can reduce those problems.

Informal discussions were held with selected Federal agencies
and private sector organizations to gain a better
understanding of the current state of software maintenance.
These discussions provided background information on current
practices, procedures, and policies relating to software
maintenance. This information, along with additional
research, is the basis for this report.

The major topic areas addressed in these discussions were:

1. Definition of software maintenance.

2. Methods and techniques in coordinating and
performing software maintenance.

3. Major maintenance problems.

4. Types of applications being maintained.

5. Developmental history of existing software.

6. Maintenance staff profiles.

7. Management of maintenance activities.

8. Utilization of maintenance tools.

It was expected that there would be some commonality in the
information provided by these discussions. In fact, while
each organization has problems peculiar to its environment,
there was an extremely high degree of consistency in the
comments made and the problems cited.

The primary difficulties and deficiencies encountered in

software maintenance fall into several categories: software
quality, environment, management, users, and personnel.
Specific problems which were consistently mentioned are
listed in Table 1 .

- 3 -

Table 1 Software Maintenance Problems

Software program quality
- software design
- software coding
- software documentation
- programming languages used
lack of common data definitions
increasing inventory
excessive resource requirements

Env ironment growth
evolving/change
new hardware

Management maintenance controls
maintenance techniques
maintenance tool usage
standards enforcement

and procedures

Users

Personnel

- demanding more capabilities

- lack of experience
- image/morale problems
- view of maintenance:

unchallenging, unrewarding

As can be seen from the table, there are both technical and
management problems. It appears, however, that many of the
technical problems are often the result of inadequate
management control over the software maintenance process.
These problems arise for at least two different reasons.
First of all, there is a great deal of code which was not
developed with maintenance in mind. Indeed, the emphasis has
often been to get the program up and running without being
"hindered" by guidelines, methodologies, or other controls.
The second reason is, that over the life cycle of a software
system, the code and logic which may have been well-designed
and implemented often deteriorate due to an endless
succession of "quick fixes" and patches which are neither
well-designed nor well-documented. Thus, in today's vast
inventory of application systems, there are many programs
which at the time of their development were considered
"state-of-the-art," but today are, in fact, virtually
unmaintainable.

- 4 -

The need to maintain old, outdated, poorly documented systems
was consistently cited as a primary problem in software
maintenance. There appears to have been some improvement in
the quality of software over the last four to five years.
These improvements, however, have come mainly on an
individual basis where a programmer, analyst, or line manager
has introduced one or more modern programming practices (e.g.
structured code, top-down design and development, peer
review). There usually has not been a systematic adoption of
these practices at a higher level within an agency. Nor has
there been extensive institutional introduction of standards
and guidelines for software development and maintenance.

Sections 1.0 through 6.0 address the definitions and problems
of software maintenance. These sections present an overview
of the software maintenance process and discuss the primary
technical and management software maintenance issues.
Sections 7.0 through 10.0 address how to control and improve
software maintenance through the adoption or use of various
policies, techniques, and tools.

- 5 -

2.0 DEFINITION OF SOFTWARE MAINTENANCE

Software maintenance is a commonly "understood" term for
which there is no single definition. This lack of a standard
definition often results in confusion for those attempting to
address the problems of software maintenance. Some examples
of software maintenance definitions are included in Appendix
I. The following definition of software maintenance is used
throughout this report.

Software maintenance is the performance of those
activi ties required to keep a software system
operational and responsive after it is accepted and
Placed into production

.

Software maintenance then, is the set of activities which
result in changes to the originally accepted (baseline)
product set. These changes consist of modifications created
by correcting, inserting, deleting, extending, and enhancing
the baseline system. Generally, these changes are made in
order to keep the system functioning in an evolving,
expanding user and operational environment.

2.1 Functional Definition

Functionally, software maintenance activities can be divided
into three categories which were originally proposed by
Swanson [SWAN76] : perfective, adaptive, and corrective.

Many software managers consider requirements specification
changes and the addition of new capabilities to be software
maintenance. Although these areas were not addressed by
Swanson, the definition of perfective maintenance has been
expanded to include them. The three maintenance categories
are defined in the following manner:

Perf ec ti ve maintenance includes all changes, insertions,
deletions, modifications, extensions, and enhancements which
are made to a system to meet the evolving and/or expanding
needs of the user.

Adaptive maintenance consists of any effort which is
initiated as a result of changes in the environment in which
a software system must operate.

Corrective maintenance refers to changes necessitated by
actual errors (induced or residual "bugs") in a system.

- 6 -

Table 2 - Functional Definition of
Software Maintenance

Perfective changes, insertions,
deletions, modi fications,
extensions, and
enhancements

Adaptive : adapting the system
to changes in the
env ironment

Corrective : fixing errors

1.1 Perfective maintenance

Perfective maintenance refers to enhancements made to improve
software performance, maintainability, or understandabil i ty

.

It is generally performed as a result of new or changing
requirements, or in an attempt to augment or fine tune the
software. Activities designed to make the code easier to
understand and to work with, such as restructuring or
documentation updates (often referred to as "preventive"
maintenance) are considered to be perfective. Optimization
of code to make it run faster or use storage more efficiently
is also included in the perfective category. Estimates
indicate that perfective maintenance comprises approximately

%-70% of all software maintenance efforts.

Perfective maintenance is required as a result of both the
failures and successes of the original system. If the system
works well, the user will want additional features and
capabilities. If the system works poorly, it must be fixed.
As requirements change and the user becomes more
sophisticated, there will be changes requested to make
functions easier and/or clearer to use. Perfective
maintenance is the method usually employed to keep the system
"up-to-date", responsive and germane to the mission of the
organization

.

There is some disagreement whether the addition of new
capabilities should be considered maintenance or additional
development. Since it is an expansion of the existing system
after it has been placed into operation, and is usually
performed by the same staff responsible for other forms of

maintenance, it is appropriately classified as maintenance.

Fine tuning existing systems to eliminate shortcomings and
inefficiencies and to optimize the process is often referred
to as "preventive maintenance". It can have dramatic effects
on old, poorly written systems both in terms of reducing
resource requirements, and in making the system more
maintainable and thus, easier to change or enhance.
Preventive maintenance may also include the study and
examination of a system prior to occurrence of errors or
problems. Fine tuning is an excellent vehicle for
introducing the programmer to the code, while at the same
time reducing the likelihood of serious errors in the future.

2.1.2 Adaptive maintenance

Adaptiv e maintenance refers to modifications made to a system
to satisfy or accomodate changes in the processing
environment. These environmental changes are normally beyond
the control of the software maintainer and consist primarily
of changes to the:

rules, laws, and regulations that affect the system
hardware configurations, e.g., new terminals, local
printers
data formats, file structures
system software, e.g., operating systems, compilers,
utilities.

Changes to rules, laws and regulations often require the
performance of adaptive maintenance on a system. These
changes must often be completed in a very short time frame in
order to meet the dates established by the laws and
regulations. If rules and their actions are implemented
modularly, the changes are relatively easy to install.
Otherwise, they can be a nightmare.

Changes to the computer hardware (new terminals, local
printers, etc.) which support the application system are
usually performed to take advantage of new and/or improved
features which will benefit the user. They are normally
performed on a scheduled basis. The usual goal of this
maintenance is to improve the operation and response of the
application system.

Changes to data formats and file structures may require
extensive maintenance on a system if it was not properly
designed and implemented. If reading or writing of data is
isolated in specific modules, changes may have less impact.
If it is embedded throughout the code, the effort can become
very lengthy and costly.

- 8 -

Changes to operating system software (compilers, utilities,
etc.) can have varying effects on the existing application
systems. These effects can range from requiring little or no
r eprogr amming , to simply recompiling all of the source code,
to rewriting code which contains non-supported features of a

language that are no longer available under the new software.

Maintenance resulting from changes in the requirements
specifications by the user, however, is considered to be
perfective, not adaptive, maintenance.

2.1.3 Corrective maintenance

Correc tiv e maintenance consists of activities normally
considered to be error correction required to keep the system
operational. By its nature, corrective maintenance is
usually a reactive process where an error must be fixed
immediately. Not all corrective maintenance is performed in
this immediate response mode; but all corrective maintenance
is related to the system not performing as originally
intended

.

There are three main causes which require systems to undergo
corrective maintenance:

1 . Design errors
2. Logic errors
3. Coding errors

Design errors are generally the result of incomplete or
faulty design. When a user gives incorrect, incomplete, or
unclear descriptions of the system being requested, or when
the analyst/designer does not fully understand what the user
is requesting, the resulting system will often contain design
errors

.

Logic errors are the result of invalid tests and conclusions,
faulty logic flow, incorrect implementation of the design
specifications, etc. Logic errors are usually attributable
to the designer or previous maintainer. Often, the logic
error occurs when unique or unusual combinations of data,
which were not tested during the development or previous
maintenance phases, are encountered.

Coding errors are the result of either incorrect
implementation of the detailed logic design, or the incorrect
use of the source code. These errors are caused by the
programmer. They are usually errors of negligence or
carelessness and are the most inexcusable, but usually the
easiest to fix.

- 9 -

3.0 THE SOFTWARE MAINTENANCE PROCESS

The life cycle of computer software covers its existence from
its conception until the time it is no longer available for
use. There are a number of definitions of the software life
cycle which differ primarily in the categorization of
activities or phases. One traditional definition is:
requirements, design

,
impleme ntation

,
testing , and o peration

and maintenance

.

The r equi rements phase encompasses problem definition and
analysis, statement of project objectives, preliminary system
analysis, functional specification, and design constraints.
The design phase includes the generation of software
component definition, data definition, and interfaces which
are then verified against the requirements. The
implementation phas e entails program code generation, unit
tests, and documentation. During the test phase ,

system
integration of software components and system acceptance
tests are performed against the requirements. The o peration s

and maintenance phase covers the use and maintenance of the
system. The beginning of the maintenance phase of the life
cycle is usually at the delivery and user acceptance of the
software product set.

Table 3 - Software Maintenance Process

1 . Determination of need for change
2. Submission of change request
3. Requirements analysis
4. Approval/rejection of change request
5. Scheduling of task
6. Design analysis
7. Design review
8. Code changes and debugging
9. Review of proposed code changes

10. Testing
11. Update documentation
12. Standards audit
13. User acceptance
1M. Post installation review of changes and

their impact on the system
15. Completion of task

- 10 -

The process of implementing a change to a production system
is complex and involves many people in addition to the
maintainer. Table 3 outlines the software maintenance
process. This process begins when the need for a change
arises and ends after the user has accepted the modified
system and all documentation has been satisfactorily updated.

Although the process is presented in a linear fashion, there
are a number of steps where iterative loops often occur. The
change request may be returned to the user for additional
clarification; the results of the design review may
necessitate additional design analysis or even modification
of the change request; testing may result in additional
design changes or recoding; the standards audit may require
changes to the design documents, oode, and/or documentation;
and the failure of the users to accept the system may result
in return to a previous step or the cancellation of the task.

One way of describing the activities of software maintenance
is to identify them as successive iterations of the first
four phases of the software life cycle, i.e. req ui rements

?

desig n , implementation , and tes ting . Software maintenance
involves many of the same activities associated with software
development with unique characteristics of its own, some of
which are discussed in the following paragraphs.

Maintenance activities are performed within the context of an
existing framework or system. The maintainer must make
changes within the existing design and code structure
constraints. This is often the most challenging problem for
maintenance personnel. The older the system, the more
challenging and time-consuming the maintenance effort
becomes

.

A software maintenance effort is typically performed within a

much shorter time frame than a development effort. A

software development effort may span one, two, or more years
while corrective maintenance may be required within hours and
perfective maintenance in cycles of one to six months.

Development efforts must create all of the test data from
scratch. Maintenance efforts typically take advantage of
existing test data and perform regression tests. The major
challenge for the maintainer is to create new data to
adequately test the changes to the system and their impact on
the rest of the system.

-11-

4.0 SOFTWARE MAINTENANCE PROBLEMS

The responses to the ICST survey of selected Federal and
private sector ADP organizations consistently cited a common
set of software maintenance problems. Generally, these
problems can be categorized as technical and management.
Most of these problems, however, can be traced to inadequate
management control of the software maintenance process. This
section presents an overview of the technical aspects of the
maintenance problems identified in the survey. Management
control issues are addressed in subsequent sections of this
report

.

4.1 Software Quality

Modern programming practices, which utilize a well-defined,
well-structured methodology in the design and implementation
of a software system, address at least one major software
maintenance problem - poor program quality. The importance
of these methodologies, whether they are formal or informal
is to give structure and discipline to the process of
developing and maintaining software systems. While this may
alleviate some of the software maintenance problems for
systems developed using these methodologies, it does not
solve the problem of existing systems which were designed,
developed, and maintained without utilizing a disciplined
structure.

A lack of attention to software quality during the design and
development phases generally leads to excessive software
maintenance costs. It should be clearly understood during
the design and development phases that the maintainability of
the system is directly affected by the quality of the
software

.

4.1.1 Poor software design

The design specifications of a software system are vital to
its correct development and implementation. Poor software
design can be attributed to:

- a lack of understanding by the designer of what the user
requested.

- poor interpretation of the design specifications by the
developers.

- the use of convoluted and complex logic to meet a

requirement.
- disjointed segments which do not fit together into a

nicely integrated whole.
- a lack of discipline in design which results in

inconsistent logic.
- large, unmodular systems (or worse yet one large system

- 12 -

with no component segments) which are bulky, unwieldy,
and very difficult to understand.

4.1.2 Poorly coded software

A great deal of existing software contains poorly written
code. As computer programming evolved, much of the code
development was performed in an undisciplined, unstructured
manner. This resulted in a great deal of software which does
not effectively utilize the programming language in which it
is coded. Poor programming practices exhibited by this lack
of discipline include:

- unmeaningful variable and procedure names
- few or no comments
- no formatting of the source code
- overuse of logical transfers to other parts of the

program
- use of non-standard language features of the compiler
- very large, poorly structured programs.

The task of understanding poorly written cede becomes even
more arduous for the maintainer when the program has been
modified by different individuals and there is a multiplicity
of programming styles. Often, such code simply does not do
what it was intended to do. Even if this code produces
expected results, it is sometimes harder to use than
anticipated; is not suited for the skill level available to
use it; or is slow and unresponsive. Attempting to change
such code without the aid of up-to-date specifications or
other documentation is often a time-consuming effort.

4.1.3 Software designed for outdated hardware

There are many problems associated with maintaining software
which was designed to run on previous generation, outdated
hardware. Oftentimes, the investment in the software is such
that it cannot be discarded or rewritten and must be kept
functioning as efficiently as possible. The first difficulty
is in finding maintainers who are ready, able and willing to
maintain these systems. Few 'good' programmers will be
willing to work on hardware which is unique and for which the
acquired skills are not relevant to other potential work.
The career advancement opportunities from working on such a

system are minimal to non-existent. Additionally, most
systems of this type are very difficult to maintain.

- 13 -

Lack of common data definitions

An application system (whether it is large or small) should
have common data definitions (variable names, data types,
data structures, etc.) for all segments of the system. These
common definitions entail the establishment of global
variable names which are used to refer to the same data
values throughout the system. In addition, the structure of
any data array or record should be defined and used for all
programs in the system. Problems invariably arise when two
or more programmers independently create data names and
structures which conflict or do not logically associate with
one another.

4,1.5 More than one programming language used

The use of more than one programming language in an
application system (for example, assembly language
subroutines to perform specific processes in a Cobol program)
is often the cause of many software maintenance problems. If
the maintainer is not proficient in the use of each of the
specific languages, the quality and consistency of the
maintenance can be affected. Changes to any of the
languages, or corresponding compilers, may also necessitate
changes to the application system.

4.1.6 Increasing inventory

Rapidly changing technology and its impact on the practices,
procedures, and requirements in many organizations has
resulted in a substantial growth in the number of new
application systems. In addition, the average life
expectancy of a software system has increased from about
three years, a decade ago, to seven-to-eight years today
[GREE81]

.

4.1.7 Excessive resource requirements

While some types of maintenance (especially enhancements) may
legitimately result in increased resource requirements, other
maintenance often results in needless increases. This occurs
primarily because of the maintainer's inability to correctly
and quickly determine the optimum solution for the required
change. The changes are accomplished by making a "patch" to
the source code (or worse, to the object code) which does not
fit well and is not carefully integrated into the system.
Subsequent maintenance efforts may compound this problem
until the resource requirements become excessive.

- 14 -

4.2 Documentation

One of the major problems in software maintenance can be
summarized in the single phrase - " a failure to
communicate." The maintainer who receives the assignment to
perform maintenance on the system must first understand what
the program is doing, how it is doing it, and why. This job
is greatly simplified if the original requester, the
designer, the developer, and the previous maintainers have
communicated all the pertinent information about the system.
This communication should include design specifications, code
comments, programmer notebooks, and other documentation.

Too often, the maintainer receives little, no, conflicting,
or incorrect communication from those who have previously
handled the system. There is often inadequate documentation;
no detailed record of the original request and subsequent
updates; no explanation of existing code and changes which
have been made to the code; a weak understanding of new user
requests; and no explanation concerning why seemingly
complex or convoluted logic and coding structures were
selected over a more simple implementation.

Thus, the problems of software maintenance begin simply with
a breakdown in communication between those involved with
ensuring that the system does what it is supposed to do.
This communication is hampered by the inability of those
involved to speak the same language (jargon), the inability
to understand the basic requirements (users not understanding
computing; programmers not understanding user requirements),
and most im;:^or tantly the time frame in which the actions
occur. There may be months or years between the original
development of a system and each subsequent maintenance
activity. When a problem occurs, none of the individuals
involved with the original design, implementation, and
previous maintenance may be available. The only source of
information available may be the documentation and the code.
Thus, good documentation is the only means for good
communication. The more complete, clear, and concise this
communication is, the greater the chance that maintenance can
be performed in a timely, efficient, and accurate manner.

- 15 -

4.3 Users

Users are often unable to concisely specify what they want
from an application system. The initial requirements
definition and design often lack the detailed specificity
which would enable the developer to create a system which
accurately performs all of the functions the user needs.
Thus, an incomplete system is placed into production. The
maintainer must enhance the system using the initial,
inadequate specifications and the new, sometimes vague,
sometimes conflicting, often incomplete, change requests from
the user.

If a system is well-specified, well-designed,
well-implemented, and does what the user needs, the user will
often think of things to add. The old adage that "nothing
succeeds like success" holds true for software development
and maintenance. The more successful a system is, the more
additional features the user will think of. If the system
works well, the user will be constantly demanding more
features. If it does not work well, there will be a constant
demand for remedial action to make it function properly.
Therefore, it is essential that management establish and
enforce controls to ensure that the change requests are both
justified and do not interfere with the maintenance workload.

User requests for changes and enhancements which are
excessive, conflicting, or vague have a major impact on the
maintenance of an application system. Much of the difficulty
in this area stems from the fact that the user is often
unaware of the impact that one change can have on both the
system and the maintenance workload. The number of user
requests for a specific system is usually directly
proportional to the success of the original system and the
previous maintenance efforts. A careful and thorough
management review of user change requests is essential for
controlling the level of software maintenance and ensuring
adequate feedback to the user on the cost and consequences of
each request.

M.4 Personnel

A common and widespread complaint by maintenance personnel is
that software maintenance is considered to be unimportant,
unchall enging

,
unrewarding, uncreative work which is not

appreciated by the user or by the rest of the ADP
organization. Software maintenance requires the efforts of
experienced, well-qualified, dedicated professionals. It
should not be solely the responsibility of the new or junior
staff. With the development of more multi-purpose, complex
software systems, there is a greater need for software

- 16 -

maintainers who can readily understand the entire system.

Traditionally, management has not rewarded personnel who
performed software maintenance as generously as those who
performed software development. It was generally thought
that systems analysts, designers, and developers were
responsible for the most difficult, challenging tasks, and
therefore, must be more capable.

While this attitude is still common, there is an increasing
awareness by management of the importance of software
maintenance to the successful, smooth operation of an
organization. Many technical personnel, however, still view
software maintenance as an assignment to be avoided at all
costs. There is too often a general lack of recognition that
a good maintainer must be a highly skilled, competent
programmer and analyst concerned both with making the actual
changes and with assessing the impact of those changes on the
system and its environment.

- 17 -

5.0 THE IDEAL MAINTAINER

Software maintenance is the lifeblood of an ADP organization.
Persons assigned to perform maintenance must effectively meet
the challenge of maintaining a software system while keeping
the user satisfied, costs down, and the system operating
efficiently

.

The characteristic qualities of this ideal maintainer
include

:

Flexibility - The ability to adapt to different or
changing styles of coding, user requests, and priorities.

Self-motivation - the abilii^ty to independently initiate
and complete i-ork after receiving an assignment.

Responsibility - reliability; performance of assigned
tasks in a dependable, timely manner.

Creativity - the ability to apply innovative and novel
ideas which result in practical solutions.

Discipline - the ability to be consistent in the
performance of duties and not prone to trying haphazard
approaches

.

Analytic - the ability to apply well thoughtout analysis
to a problem.

Thorough - to address even the smallest detail to ensure
that all aspects of the problem are understood and nothing
is left untested.

Experience - to have been exposed to a variety of
applications and programming environments.

The ideal maintainer should be a senior, experienced
professional who can perform all of the functional activities
which occur during the software life cycle. Equally
important from a maintenance standpoint, the maintainer
should be extremely knowledgeable about the existing system
before attempting to change it.

The maintainer must be able to analyze the problem and the
impact on the program, determine the requirements and design
changes necessary for the solution, test the solution until
the desired results are obtained, and then release the
revised software to operations or the user. The maintainer's
task is both intellectually and technically difficult.
Maintenance is an activity where everything that can go wrong
eventually does.. The problems will continue to surface and

- 18 -

enhancements will be requested as long as the system is used.
It is a function which must be anticipated and planned for.
It is also a function for which there may be an unending
succession of emergencies to which staff must be assigned
from other "more important" work.

The maintainer is also an intermediary between the
application systems support staff and the users.
Maintenance, unlike development, cannot start with a clean
slate and not be affected by previous decisions and work. It
often takes a great deal of time and patience to analyze both
the users needs and the existing system, and then to
carefully and adequately implement the existing changes.

In the final analysis, the most important function of an
application system software support activity is software
maintenance. It is the maintenance, and the response to the
user problems which arise, which are always in the spotlight.
Unfortunately, there is usually far less attention paid to
maintenance when it is done well and the users are pleased.
Maintenance is an ongoing, almost always intense, effort
which should be spotlighted for its successes, as well as its
failures

.

- 19 -

6.0 SYSTEM MAINTENANCE VS SYSTEM REDESIGN

Although maintenance is an ongoing process, there comes a

time when serious consideration should be given to
redesigning a software system. A major concern of managers
and software engineers is how to determine whether a system
is hopelessly flawed or whether it can be successfully
maintained. Admittedly, the thought of software redesign may
not be a comfortable one. Nevertheless, the costs and
benefits of the continued maintenance of software which have
become error-prone, ineffective, and costly must be weighed
against that of redesigning the system.

While there are no absolute rules on when to rebuild rather
than maintain the existing system, some of the factors to
consider in weighing a decision to redesign or maintain are
discussed in this section. These characteristics are meant
to be general "rules of thumb" which can assist a manager in
understanding the problems in maintaining an existing system
and in deciding whether or not it has outlived its usefulness
to the organization.

Table 4 - Characteristics of Systems Which
Are Candidates for Redesign

1 . Frequent system failures
2. Code over seven-to-ten years old
3. Overly complex program structure and logic
4. Code written for outdated hardware
5. Running in emulation mode
6. Very large modules or unit subroutines
7. Excessive resource requirements
8. Hard-coded parameters which are subject to

change
9. Difficulty in keeping maintainers
10. Seriously deficient documentation
11. Missing or incomplete design specifications

When a decision has been reached to redesign or to stop
supporting a system, the decision can be implemented in a

number of ways. Support can simply be removed and the system
can die through neglect; the minimum support needed to keep
it functioning may be provided while a new system is built;
or the system may be rejuvenated section by section and given

- 20 -

an extended life. How the redesign is affected depends on
the individual circumstances of the system, its operating
environment, and the needs of the organization it supports.

The potential for redesign as opposed to continued
maintenance is directly proportional to the number of
characteristics listed in Table 4. The greater the number of
characteristics present, the greater the potential for
redesign

.

6.1 Frequent System Failures

A system which is in virtually constant need of corrective
maintenance is a prime candidate for redesign. As systems
age and additional maintenance is performed on them, many
become increasing fragile and susceptible to changes. The
older the code, the more likely frequent modifications, new
requirements, and enhancements will cause the system to break
down

.

An analysis of errors should be made to determine whether the
entire system is responsible for the failures, or if a few
modules or sections of code are at fault. If the latter is
found to be the case, then redesigning those parts of the
system may suffice.

6.2 Code Over Seven Years Old

The estimated life cycle of a major application system is
seven-to-ten years. Software tends to deteriorate with age
as a result of numerous fixes and patches. If a system is
more than seven years old, there is a high probability that
it is outdated and expensive to run. A great deal of the
code in use today falls into this category. After
seven-to-ten years of maintenance, many systems have evolved
to where additional enhancements or fixes are very
time-consuming to make. A substantial portion of this code
is probably neither structured, nor well-written. While this
code was adequate and correct for the original environment,
changes in technology and applications may have rendered it
inefficient, difficult to revise, and in some cases obsolete.

However, if the system was designed and developed in a

systematic, maintainable manner, and if maintenance was
carefully performed and documented using established
standards and guidelines, it may be possible to run it
efficiently and effectively for many more years.

- 21 -

6.3 Overly Complex Program Structure And Logic Flow

"Keep it simple" should be the golden rule of all programming
standards and guidelines. Too often, programmers engage in
efforts to write a section of code in the least number of
statements or utilizing the smallest amount of memory
possible. This approach to coding has resulted in complex
code which is virtually incomprehensible. Poor program
structure contributes to complexity. If the system being
maintained contains a great deal of this type of code and the
documentation is also severely deficient, it is a candidate
for redesign.

Complexity also refers to the level of decision making
present in the code. The greater the number of decision
paths, the more complex the software is likely to be.
Additionally, the greater the number of linearly independent
control paths in a program, the greater the program
complexity. Programs characterized by some or all of the
following attributes are usually very difficult to maintain
and are candidates for redesign:

- excessive use of DO loops
- excessive use of IF statements

* - unnecessary GOTO statements
- embedded constants and literals
- unnecessary use of global variables
- self-modifying code
- multiple entry or exit modules
- excessive interaction between modules
- modules which perform same or similar functions.

6.4 Code Written For Previous Generation Hardware

Few industries have experienced as rapid a growth as the
computer industry, particularly in the area of hardware. Not
only have there been significant technological advances, but,
the cost of hardware has decreased ten-fold during the last
decade. This phenomenon has generated a variety of powerful
hardware systems. Software written for earlier generations
of hardware is often inefficient on newer systems. Attempts
to superficially modify the code to take advantage of the
newer hardware is generally ineffective, time-consuming and
expensive

.

- 22 -

5 Running In Emulation Mode

One of the techniques used to keep a system running on newer
hardware is to emulate the original hardware and operating
system. Emulation refers to the capacity of one system to
execute a language written for another machine. In effect,
it extends the architecture (hardware and software) of the
host machine to include the range of the machine being
emulated. This is normally done when resources are not
available to convert a system, or the costs would be
prohibitive. These systems run a very fine line between
functional usefulness and total obsolescence. One of the
major difficulties in maintaining this type of system is
finding maintainers who are familiar with the original
hardware and who are willing to maintain it. Since the
hardware is outdated, the specific skills developed in
maintaining the system, have little applicability elsewhere.
Thus, the career development potential of supporting such a

system is not very promising.

6 Very Large Modules Or Unit Subroutines

"Mega-systems" which were written as one or several very
large programs or sub-programs (thousands or
tens-of-thousands of lines of code per program) can be
extremely difficult to maintain. The size of a module is
usually directly proportional to the level of effort
necessary to maintain it. If the large modules can be
restructured and divided into smaller, functionally related
sections, the maintainability of the system will be improved.

7 Excessive Resource Requirements

An application system which requires a great deal of CPU
time, memory, storage, or other system resources can place a

very serious burden on all ADP users. These "resource hog"
systems which prevent other jobs from running, may not only
require the addition of an extra shift, but may degrade the
service to all users. Questions which should be answered
when deciding what to do about such a system include:

- Is it cheaper to add more computer power or to
redesign and reimplement the system?

- Will a redesign reduce the resource requirements?
If it won't, then there is no use in redesigning.

- 23 -

6.8 Hard Coded Parameters Which Are Subject To Change

Many older systems were designed with the values of
parameters used in performing specific calculations "hard
coded" into the source code rather than stored in a table or
read in from a data file. When changes in these values are
necessary, (withholding rates, for example) each program in
the system must be examined, modified and recompiled as
necessary. This is a time-consuming, error prone process
which is costly both in terms of the resources necessary to
make the changes and the delay in getting the changes
installed.

If possible, the programs should be modified to handle the
input of parameters in a single module or to read the
parameters from a central table of values. If this can't be
done, serious consideration should be given to redesigning
the system.

6.9 Difficulty In Keeping Maintainers

Programs written in low level languages, particularly
assembler, require an excessive amount of time and effort to
maintain. Generally, such languages are not widely taught or
known. Therefore, it will be increasingly difficult to find
maintainers who already know the language. Even if such
maintainers are found, their experience with low-level
languages is probably dated.

6.10 Seriously Deficient Documentation

One of the most common software maintenance problems is the
lack of adequate documentation. In most organizations, the
documentation ranges from nonexistent to out-of-date. Even
if the documentation is good when delivered, it will often
steadily and rapidly deteriorate as the software is modified.
In some cases, the documentation is up-to-date, but still not
useful. This can result when the documentation is produced
by someone who does not understand the software or what is
needed

.

Perhaps the worst documentation is that which is
well-structured and formatted but which is incorrect or
outdated. If there is no documentation, the maintainer will
be forced to analyze the code in order to try to understand
the system. If the documentation is physically deteriorated,
the maintainer will be skeptical of it and verify its
accuracy. If it looks good on the surface, but is
technically incorrect, the maintainer may mistakenly believe
it to be correct and accept what it contains. This will

- 24 -

result in serious problems over and above those which
originally necessitated the initial maintenance.

6.11 Missing Or Incomplete Design Specifications

Knowing "how and why" a system works is essential to good
maintenance. If the requirements and design specifications
are missing or incomplete, the task of the maintainer will be
more difficult. It is very important for the maintainer to
not only understand what a system is doing, but how it is
implemented, and why it was designed. Missing or incomplete
design specifications often result in end products which do
not perform as intended. The user must then request new
changes and enhancements.

- 25 -

7.0 CONTROLLING SOFTWARE CHANGES

The key to controlling software maintenance is to organize it
as a visible, discrete function and, to the extent possible,
plan for it. It is not enough for the software manager to
manage the budget, people, and schedules. It is equally
important that the software changes be managed and
controlled

.

Table 5 - Suggested Policies for Controlling
Software Changes

1. Require formal (written) requests for all changes.

2. Review all change requests and limit changes to
those approved.

3. Analyze and evaluate the type and frequency of
change requests.

4. Consider the degree to which a change is needed
and its anticipated use.

5. Evaluate changes to ensure that they are not
incompatible with the original system design and
intent. No change should be implemented without
careful consideration of it ramifications.

6. Emphasize the need to determine whether a proposed
change will enhance or degrade the system.

7. Approve changes only if the benefits outweigh the
costs

.

8. Schedule all maintenance.

9. Enforce documentation and coding standards.

10. Require that all changes be implemented using
modern, programming practices.

11. Plan for preventive maintenance.

- 26 -

7.1 Controlling Perfective Maintenance

Perfective maintenance comprises an estimated 60% of the
total maintenance effort. It deals primarily with expanding,
extending, and enhancing a system to give it greater power,
more flexibility, additional capabilities, or greater
reliability. Requests for perfective maintenance are
initiated by three different groups: the user, upper
management, and the maintenance staff.

The user is almost never completely satisfied with a system.
Either it does not perform up to expectations, or, as the
user gains confidence in the system, additional features
become obvious and the maintenance staff is asked to add
those features. This is a normal evolution in all software
systems and must be planned for when developing budget
requests and resource allocation schedules.

Upper management drives the perfective maintenance process by
requesting new and enhanced features which must be
incorporated into existing application systems. Once again,
this is a normal part of the functioning of any organization
and must be planned for in the maintenance budget.

Finally, the maintenance staff drives the perfective
maintenance process. As a maintainer works with a system,
inefficiencies and potential problems are often found. These
problems, while not requiring immediate attention, are such
that at some point in time they could have a significant
impact on either the functioning of the system or on the
ability to maintain it. Thus, the "cleaning up" of code
(often referred to as "preventive maintenance") is an
important perfective maintenance process which should be
planned for and included in the resource allocation schedule.
The proverbial "stitch in time" of preventive maintenance can
often prevent minor problems in a systems from becoming major
problems at some later date. This undoubtedly will make
future maintenance easier as a result of the "cleaning up" of
the code.

The management of perfective maintenance deals primarily with
maintaining an orderly process in which all requests are
formally submitted, reviewed, assigned a priority, and
scheduled. This does not mean that unnecessary delays should
be built into the process, or that in small organizations
these steps are not consolidated. Rather, it defines a

philosophical approach which can help the maintenance manager
bring order to the maintenance environment.

There should be a centralized approval point for all
maintenance projects. This may be the maintenance project
manager or, for larger systems or organizations, a review

- 27 -

board. Changes should not just happen to a system. When the
need for a change or enhancement arises, a formal written
request should be submitted. Each request should be
evaluated on the basis of resource requirements, time to
complete the work, impact on the existing system and other
maintenance efforts, and justification of need. The
centralized approval process will enable one person or group
of persons to have knowledge of all the requested and actual
work being performed on the system. If this is not done,
there is the likelihood that two or more independent changes
to the system will be in conflict with one another and as a

result, the system will not function properly. Additionally,
different users will often request the same enhancements to a

system but will have small differences in the details. By
coordinating these requests, details can be combined and the
total amount of resources required can be reduced.

If the system requires maintenance as a result of changes in
policy or procedures in the organization, an evaluation of
the cost and effects of the changes should be prepared for
upper management. Ideally, this should be prepared prior to
the decision to institute the changes, but even if it is not,
management and the users must be aware of the costs. Users
often request enhancements to a system because it "would be
nice to have" or another system has a similar feature. These
requested enhancements should be evaluated and the estimated
costs reported to the user. Regardless of whether or not the
users are responsible for funding the work, it is important
to keep them aware of the actual costs of their requests.
Doing so will help to minimize the amount of unneeded or
marginally needed enhancements which must be installed on the
system. In addition, this type of interchange with the user
will help the maintenance manager in evaluating and assigning
priorities to the work requests.

In many organizations there is a significant backlog of
maintenance work requests. Users need to understand the
level of effort required to meet their requests and the
relative priority of the work in relationship to other user
requests. This can only be accomplished by involving all
parties in the discussions and keeping everyone informed of
the schedules and actual progress.

2 Controlling Adaptive Maintenance

Adaptive maintenance comprises approximately 20% of the
maintenance burden. It consists of any effort required to
keep a system functioning as a result of changes in the
environment in which it must operate, and is, to a great
degree, beyond the control of the software maintenance
manager. Changes to the operating system, system utilities.

- 28 -

terminal devices, and the rules, laws, and regulations which
the software must incorporate, are the primary causes of
adaptive maintenance. The maintenance efforts required are
usually non-productive in terms of improving the application
system.

There is little that the software maintainer can do to
control changes to rules and legislation. These changes, to
the extent possible, should be anticipated and the code
structured in a manner which facilitates making the needed
changes. This type of adaptive maintenance usually must be
performed whenever it is required. Management should always
be given feedback regarding the impact that changes in
policies and regulations have on the maintenance of a system,
especially the cost. This feedback will improve the future
decision making process and may reduce the level of adaptive
maintenance.

In many organizations, the application support organization
functions independently of the computer facility
organization. As a result, there is inadequate communication
and understanding by each group regarding the impact of
decisions and work on the other function. Thus, changes may
be made to the environment and announced to the user
community without giving the application support function an
opportunity to analyze the impact of the changes and the
effect on the application system. Similarly, changes or
additions to an application system which increase the
computer resource requirements may cause serious problems
with the functioning of all applications using the computer.

Therefore, it is very important that the facilities
organization and the applications support organization work
closely to minimize the impact of one organization's work on
the other organization. There are times when a choice simply
does not exist, but usually, through adequate planning and
evaluation, both organizations can accomplish their
objectives with a resulting net improvement for each.

The application support manager has the responsibility to
know what changes to the environment are being planned and
considered, and to keep management informed of their
potential impact (both negative and positive). In doing
this, the total costs and the implications of the changes can
be reviewed by management. Decisions can then be made
regarding which organization should bear the costs of the
resulting required adaptive maintenance of the application
sy stems

.

- 29 -

3 Controlling Corrective Maintenance

Corrective maintenance is primarily the identification and
removal of errors, bugs, and other code defects that either
reduce the effectiveness of the software or render the
product useless. This category of maintenance is concerned
with returning the code to an operational state. Controls
are needed to ensure that the occurrence of errors or bugs
are the exception rather than the rule.

Most of the cost of software maintenance is often assumed to
be the result of poor workmanship during development and
prior maintenance phases of the system. While this is a

contributing cause, it is very rare for even a "perfect"
system to not require significant maintenance during its
lifetime. While software does not "break" in the sense that
a piece of hardware can fail, it can become non-functional,
or faulty due to changes in the environment in which it must
operate, the size or sophistication of the user community,
the amount of data it must process, or damage to code which
is the result of other maintenance efforts on other parts of
the system. Corrective maintenance is necessitated by
discovery of a flaw which has always existed in the system or
was introduced during prior maintenance.

Difficulties encountered during corrective maintenance can be
reduced significantly by the adoption and enforcement of
appropriate standards and procedures during the development
and maintenance of the software. While it is probably not
possible to eliminate corrective maintenance, the consistent
and disciplined adherence to effective design and programming
standards can, and will, significantly reduce the corrective
maintenance burden.

- 30 -

8.0 IMPROVING SOFTWARE MAINTENANCE

Maintainability is the ease with which software can be
changed to satisfy user requirements or can be corrected when
deficiencies are detected. The maintainability of a system
must be taken into consideration throughout the life cycle of
that system. Many techniques and aids exist to assist the
system developer, but there has been little emphasis on aids
for the maintainer. However, since the processes which occur
in the maintenance phase are similar to those of the
development phase, there is considerable overlap in the
applicability of the development aids in the maintenance
environment.

The philosophies, procedures, and techniques discussed in
this section should be utilized throughout the life cycle of
a system in order to provide maintainable software. Software
systems which were not developed using these techniques can
also benefit from their application during major maintenance
activities. In other words, if a system must be maintained,
the maintainability of the system can be improved by applying
the ideas discussed in this section to the parts of the
system which are modified during the maintenance process.
While the effect will not be as pronounced as when programs
are "developed with maintenance in mind", future maintenance
efforts can be made easier by utilizing the techniques
described in this section to "maintain systems with future
maintenance in mind".

Table 6 - Factors Which Affect Source
Code Maintainability

1 . Use of a single high order language

2. Coding conventions for variable names,
structures, format, grouping, etc.

3. Structure and modularity

4. Standard data definitions

5. Meaningful comments in the code

6. Avoidance of compiler extensions

- 31 -

8.1 Source Code Guidelines

Source code guidelines and standards aid maintainability by
providing a structure and framework within which systems can
be developed and maintained in a common, more easily
understood, manner.

8.1.1 Use a single high-order language

The use of more than one programming language or the use of
machine, assembler or outdated languages, when it is not
absolutely necessary to do so, can seriously impact the
maintainability of a system. When more than one language is
employed, the potential for communication problems between
modules is increased. Systems written in low-order or
outdated languages are difficult to maintain because they
generally require more source code to perform the same amount
of work. Wherever possible, a single high order language
(HOL) should be used. Advantages of using a HOL include:

- HOLs resemble English and are easy to learn, read
and understand.

- There are standards for the commonly used HOLs
(COBOL and FORTRAN)

.

- There are a substantial number of programmers who
understand and can use HOLs effectively.

- Many of the older machine languages are no longer
supported by the manufacturer.

- Fewer programmers understand machine languages, and
fewer still can use them effectively.

- HOLs are self-documenting to a large degree.

- It is easier to move from one environment to another
with an HOL.

8.1.2 Coding conventions

The first obstacle a maintainer must conquer is the code
itself. Unfortunately, a great deal of the source code
written by developers and maintainers is not written with the
future maintainer in mind. Thus, the readability of source
code is often very poor.

Source code should be sel f-documentinR sjaA kg written
in a structured format

- 32 -

Regardless of the programming language(s) used, simple rules
regarding the use of the language(s) and the physical
formatting of the source code should be established. Code
standards do not have to be lengthy or complex in order to be
effective. In fact, like the code itself, the best standards
are simple and short. The following techniques can improve
program readability and should be used as the basis for a

code standard.

- Keep it simpl

e

. Complicated, fancy, exotic, tricky,
confusing, or "cute" constructions should be avoided
whenever a simpler method is available. Use common
sense and write code as if you had to pick it up and
maintain it without ever having seen it before.

- Indentation , when properly utilized between sections of
code, serves to block the listing into segments. Inden-
tation and spacing are both ways to show subordination.
It is very difficult to follow code which continues line
after line without a break or change in form.

- Extensively comment the code with meaningful comments.
Do not comment for comment's sake. Rather, comment in
order to communicate to subsequent maintainers not only
what was done and how it was done, but why it was done
in this manner.

- Use of meaningful variable names is one of the most
important coding principles to follow when developing
and maintaining programs. The name of a variable should
convey both what it is and why it is used.

- Similar variable names should be avoided. Each variable
name should be unique in order to prevent confusion.

- When numeric s are used, they should be placed at the end
of the variable. Some of the more common errors are
caused by mistaking variable names which begin with the
numerics 0,1,2,5 for 0,I,Z,S, respectively. Numbers
used as program tags or labels should be sequential.

- Logically related functions should be grouped together
in the same module or set of modules. It is extremely
difficult to analyze the program flow when execution
jumps in and out of different portions of code. To the
extent possible, the logic flow should be from top to
bottom of the program.

- Avoid non-standard features of the version of the
language being used unless absolutely necessary. Fail-
ure to do so will exacerbate problems of conversion or
movement of the program to another machine or system.

- 33 -

1.3 Structured, modular software

While there has been considerable debate regarding structured
programming, the consensus is that generally, such code is
easier to read. A structured program is constructed with a

basic set of control structures which each have one exit and
one entry point. Structured programming techniques are
well-defined methods which incorporate top-down design and
implementation and strict use of structured programming
constructs. Whether the strict definition, or a more general
approach (which is intended to organize the code and reduce
its complexity) is used, structured programming has proven to
be useful in improving the maintainability of a system.

Modularity refers to the structure of a program. A program
comprised of small, hierarchical units or sets of routines,
where each performs a particular, unique function, is said to
be modular. It is not, as is often thought, mere program
segmentation. A module is said to have two basic
determinants: cohesiveness and coupling.

Cohesion refers to the degree to which the functions or
processing elements within a module are related or bound
together. It is the intra-module rela tiveness . The greater
the cohesion, the less impact changes will have on the
software

.

Coupling refers to the degree that modules are dependent upon
each other. The less dependency or interaction there is
between modules, the better, from both a functional and a

maintenance standpoint. A high degree of cohesion almost
always assures a lower degree of coupling. Controlling
cohesion and coupling are very effective techniques in the
design and maintenance of structured, modular software.

One of the most obvious advantages of designing and coding
structured modules is that if it is determined that a

function is no longer needed, only that module is affected.
The size of a module is dependent upon its function. It
should, however, be kept as small as possible. Modules
should be constructed using the following basic design
principles

:

- Modules should perform only one principal function.

- Interaction between modules should be minimal.

- Modules should have only one entry and one exit point.

- 311 -

8.1.4 Standard data definitions

It is very important that individual modules of a system not
only be able to communicate with one another, but that the
maintainer understand what is being communicated. A typical
problem in a large multi-module system is that one person
will use a set of names for data items which do not match the
names used by another person on the team. Even more serious
is the use of the same names to represent two different data
items. Thus, it is imperative that a standard set of data
definitions be developed for a system. These data
definitions will define the name, physical attributes,
purpose, and content of each data element utilized in the
system. These names should be as descriptive and meaningful
as possible. If this is consistently and correctly done, the
task of reading and understanding each module and ensuring
correct communication, between each module is greatly
simpl if ied

.

8.1.5 Well-commented code

Good commentary increases the intelligibility of source code.
In addition to making programs mor'e readable, comments serve
two other vital purposes. They provide information on the
purpose and history of the program, its origin (the author,
creation and change dates), the name and number of
subroutines, and input/output requirements and formats. They
also provide operation control information, instructions, and
recommendations to help the maintainer understand aspects of
the code that are not clear.

Maintainers (and managers) often mistakenly confuse quantity
for quality when writing comments. The purpose of comments
is to convey information needed to understand the process and
the reasons for implementing it in that specific manner, not
how it is being done. Comments should be thought of as the
primary form of documentation. They should include the
following

:

- what the code is doing,
- why a process is being performed,
- why it is implemented in the specific manner,
- how this section of code affects and interacts

with other sections of code,
- any known or potential problems,
- when the changes were made,
- who made the changes,
- what specific code was modified,
- any other information which might help a future

maintainer in understanding and modifying the code.

- 35 -

8.1.6 Avoid compiler extensions

The use of non-standard features of a compiler can have
serious effects on the maintainability of a system. If a

compiler is changed, or the application system must be
transported to a new machine, there is a very great risk that
the extensions of the previous compiler will not be
compatible with the new compiler. Thus, it is best to
refrain from language extensions and to stay in conformance
with the basic features of the language. If it is necessary
to use a compiler extension, its use should be
well- documented

.

8.2 Documentation Guidelines

The documentation of a system should start with the original
requirements and design specifications and continue
throughout the life cycle of the system. Good software
documentation is essential to good maintenance.

Table 7 - Documentation Guidance

1. Keep it simple and concise.

2. The maintainer's first source of documentation is
the source code.

3. The manager's first source of documentation is the
design specifications and implementation reports.

4. The user's first source of documentation is the
Users Guide and the maintainer.

5. Do not under document. Do not over document.

6. Documentation cannot be "almost correct". Either
it is up-to-date, or it is useless.

7. Documentation maintenance is a vital part of
system maintenance.

8. Documentation should be available to the
maintainer at all times.

- 36 -

The documentation must be planned so a maintainer can quickly
find the needed information. A number of methodologies and
guidelines exist which stress differing formats and styles.
While preference may differ on which methodology to use, the
important element is to adopt a documentation standard and to
then consistently enforce adherence to it for all software
proj ec ts

.

The success of a software maintenance effort is dependent on
how well information about the system is communicated to the
maintainer. Documentation should support the useable
transfer of pertinent information. Documentation guidelines
should include instructions on what information must be
provided, how it should be structured, and where the
information should be kept. In establishing these guidelines
and standards, keep in mind that the purpose is to
communicate necessary, critical information, not to
communicate all information.

Basically, the documentation standards should require the
inclusion of all pertinent material in a documentation folder
or notebook. This material should cover all phases of the
software life cycle and must be kept fully updated.
Management must enforce documentation standards and NQT
permit short cuts. There should be a requirement to complete
and/or update documentation before new work assignments are
begun

.

The key to successful documentation is that not only must the
necessary information be recorded, it must be easily and
quickly retrievable by the maintainer. On-line documentation
which has controlled access and update capabilities is the
best form of documentation for the maintainer. If the
documentation cannot be kept on-line, a mechanism must exist
to permit access to the hard-copy documentation by the
maintainer at any time.

If documentation guidelines, or any other software guidelines
or standards, are to be effective, they must be supported by

a level of management high enough within the organization to
ensure enforcement by all who use the software or are
involved with software maintenance. Such guidelines, when
supported by management, will help direct attention toward
the need for greater discipline in the software maintenance
process

.

For further information on documentation guidelines and
standards, see [FIPS38], [FIPS64], and [NBS87].

- 37 -

8.3 Coding And Review Techniques

The techniques listed in this section have been found to be
very effective in the generation of maintainable systems.
Not all techniques are generally applicable to all
organizations, but it is recommended that they be considered.

Table 8 - Coding and Review Techniques

1 . Top down / Bottom up design and implementation

2. Peer reviews

3. Walkthroughs

4. Chief programmer team

8.3.1 Top down/bottom up approach

A top-down design approach (development or enhancements)
involves starting at the macro or overview level and
successfully breaking each program component or large,
complex problem into smaller less complicated segments.
These segments are then decomposed into even smaller segments
until the lowest level module of the original problem is
defined for each branch in the logic flow tree.

In general, top-down implies that major functions are
considered first. Once it is clear how they fit together,
the next, lower level functions are designed. During the
first phase, the lower level functions are often created as
empty black boxes or modules that simply return control to
the major level or calling functions.

The bottom-up design approach begins with the lowest level of
elements. These are combined into larger components which
are then combined into divisions, and finally, the divisions
are combined into a program. A bottom-up approach emphasizes
designing the fundamental or "atomic" level modules first and
then using these modules as building blocks for the entire
system

.

Both of these approaches are valid and superior to a random
"sea t-of-the-pants" approach. In most situations, a

combination of top-down and bottom-up can be utilized to

- 38 -

develop a clear, concise, maintainable system. The adoption
and adherence to either approach provides a structure or
methodology which enables persons working on a system to
communicate with one another in a manner which is consistent
and understandable.

8.3.2 Peer reviews

Peer review is a quality assurance method in which two or
more programmers review and critique each other's work for
accuracy and consistency with other parts of the system.
This type of review is normally done by giving a section of
code developed by one programmer to one or more other peer
programmers who are charged with identifying what they
consider to be errors and potential problems. It is
important to establish and to keep clearly in the
participants' minds that the process is not an evaluation of
a programmers capabilities or performance. Rather it is an
analysis and evaluation of the code. As stated in the name,
such reviews are performed on a peer basis (programmer to
programmer) and should never be used as a basis for employee
evaluation. Indeed, project managers should not, if
possible, be involved in the peer reviews,

8.3.3 Walkthroughs

Walkthroughs of a proposed solution or implementation of a

maintenance task can range from informal to formal,
unstructured to structured, and simple to full-scale. The
principle involved in walkthroughs is simply that "two heads
are better than one." In its simplest form, a walkthrough can
be two maintainers sitting down and discussing a task which
one of then is working on. In its more complex forms, there
may be a structured agenda, report forms, and a recording
secretary. Managers may or may not participate in
walkthroughs. However, this is an excellent way for a

manager to keep informed about the work being performed by
the team.

The basic format of a walkthrough is for the person whose
work is being reviewed to describe in detail the proposed
solution or the draft of the code. The reviewer(s) ask(s)
questions to clarify areas where questions arise and point
out any errors or potential problems which are spotted. The
goal, as in peer reviews, is to minimize the number of
design, logic, and/or coding flaws which remain in the
system. Walkthroughs are similar to peer reviews, but differ
in that the manager may be present; the reviewers meet as a

group to discuss the work under consideration; and there are
often formal recording and reporting mechanisms.

- 39 -

Two important points should be stressed regarding the
manager's role in a walkthrough:

1 . Walkthroughs should never be used as part of an employee
evaluation. The goal is an open, frank dialogue which
results in the refinement of good ideas and the changing
or elimination of bad ones.

2. The manager's role should only be as active as his or
her technical expertise regarding the subject matter
permits. The manager must recognize that the other
members of the walkthrough team probably have greater
technical knowledge about the specific subject being
discussed. Participating in a passive manner can be an
excellent means to attain an understanding of the main-
tenance effort and to improve the manager's technical
understanding of the system.

8.3.^ Chief programmer team

The chief programmer team is based on the premise that an
experienced programmer, supported by a team of programmers,
can produce computer programs with greater speed and
efficiency than a group of programmers working under the
traditional line and staff organization. The size of the
team can range from 3-10, with the chief programmer being
responsible for overall design, development, review, and
evaluation of the work performed by the members of the team.
This can include the establishment and enforcement of rules
regarding programming style, control, and the integrity of
the programs.

The chief programmer functions as the focal point of the
maintenance team and is required to be aware and familiar
with all work performed by the team. There is an enormous
amount of administrative and technical responsibility placed

. on the chief programmer. This person must have impeccable
leadership abilities, a strong technical capability, and the
ability and willingness to delegate work and responsibility.

- 40 -

8.4 Change Control

Change control is necessary to ensure that all maintenance
requests are handled accurately, completely, and in a timely
manner. It helps assure adherence to the established
standards and performance criteria for the system and
facilitates communication between the maintenance team
members and the maintenance manager.

Table 9 - Controlling Changes

1 . Change request

2. Code audit

3. Review and Approval

8.4.1 Change request

All changes considered for a system should be formally
requested in writing. These requests may be initiated by the
user or maintainer in response to discovered errors, new
requirements, or changing needs. Procedures may vary
regarding the format of a change request, but it is
imperative that each request be fully documented in writing
so that it can be formally reviewed. The review may be
performed by the project manager or a change review board.
The key, however, is that there must be a formal,
well-defined mechanism for initiating a request for changes
or enhancements to a system. Change requests should be
carefully evaluated and decisions to proceed should be based
on all the pertinent areas of consideration (probable effects
on the system, actual need, resource requirements vs resource
availability, budgetary considerations, priority, etc.). The
decision and reasons for the decision should be recorded and
included in the permanent documentation of the system.

The change request should be submitted on forms which contain
the following information:

- 41 -

- name of requester
- date of request
- purpose for request (error reported, enhancement, etc)
- name of program(s) affected
- section of code/line numbers affected
- name of document(s) affected
- name of data file(s) affected
- date request satisfactorily completed
- date new version operational
- name of maintainer
- date of review
- name of reviewer
- review decision

8.4.2 Code audit

The code review or audit is a procedure used to determine how
well the code adheres to the coding standards and practices
and to the design specifications. The primary objective of
code audits is to guarantee a high degree of uniformity
across the software. This becomes a critical factor when
someone other than the original developer must understand and
maintain the software. Audits are also concerned with such
.program elements as commentary, labeling, paragraphing,
initialization of common areas, and naming conventions. The
audit should be performed by someone other than the original
author. Questions addressed during an audit should include:

Are comments well constructed?
Do the comments provide meaningful information?
Are the comments consistent throughout the code?
Are the constants centrally defined and locally
initialized?
Are the statement labels descriptive and sequential?

- Is the code formatted in a readable manner?
Is indentation and paging used to make the code
easier to read and understand?

8.4.3 Review and approval

Review and approval is the final phase of the software change
control process. Prior to installation, each change
(correction, update, or enhancement) to a system should be
formally reviewed. In practice, this process ranges from the
review and sign-off by the project manager or user, to the
convening of a change review board to formally approve or
reject the changes. The purpose of this process is to ensure
that all of the requirements of the change request have been
met; that the system performs according to specifications;
that the changes will not adversely impact the rest of the

- 42 -

system or other users; that all procedures have been
followed and rules and guidelines adhered to; and that the
change is indeed ready for installation in the production
system. All review actions and findings should be added to
the system documentation folder.

8.5 Testing Standards And Procedures

Testing, like documentation, is an area of software
maintenance which is often not done well. Whenever possible,
the test procedures and test data should be developed by
someone other than the person who performed the actual
maintenance on the system. The testing standards and
procedures should define the degree and depth of testing to
be performed and the disposition of test materials upon
successful completion of the testing.

Testing is a critical component of software maintenance. As
such the test procedures must be consistent and based on
sound principles. Whether the testing is performed on the
entire system or on a single module within the system, the
same principles are required. They include the following:

- The test plan should define the expected output.

- Whenever possible, the test data should be prepared by
someone other than the tester.

- Both the valid, invalid, expected, and unexpected cases
should be tested.

- The test should examine whether or not the program is

doing what it is supposed to.

- Testing is done to find errors, not to prove that errors
do not exist.

For further information on testing, see [FIPS101], [NBS75],
[NBS93J, [NBS98].

- 43 -

0 SOFTWARE MAINTENANCE TOOLS

Software tools are computer programs which can be used in the
development, analysis, testing, maintenance, and management
of other computer programs and their documentation. This
section discusses some tools which can be useful in
maintaining a software system. Generally, these tools can be
divided into two categories: technical and management. The
technical tools can be further subdivided into those which
process, analyze, and test the system, and those which help
the maintainer manipulate and change the source code and the
documentation. The management tools assist the maintenance
manager in controlling and tracking all of the maintenance
tasks. Table 10 lists some of the tools available to the
maintainer and the maintenance manager. A glossary of
software tools and techniques can be found in [REIF??].

Table 10 - Software Maintenance Tools

Technical Tools
Processing Tools

Compil ers
Cross referencer
Comparator
Traces/Dumps
Test data generator
Test coverage analyzer
Preprocessor
Verification/Validation

Clerical Tools
On-line Editor
Documentation Library
Archival Capabilities
Ref orma tter
Data Dictionary

Management Tools
Problem Reporting
Status Reporting
Schedul ing
Configuration Management

- H4 -

9.1 Cross Referencer

One of the single most useful aids to the maintainer is the
cross reference list which accompanies the compiler source
listing. It usually provides a concise, ordered analysis of
the data variables, including the location and number of
times the variables are used, as well as other pertinent
information about the program.

In large systems, it is often difficult to determine which
modules are called or used by other programs, and where
within the system a specific module or parameter is used.
What is often needed too is the capacity to produce and
develop a cross reference listing on an interprogram rather
than on an intraprogram basis. This information can be
obtained from some of the available cross reference
generators. To the maintainer, such information is useful
when attempting to backtrack to determine where an error
occurred

.

9.2 Comparators

Comparators are software tools which accept two (or more)
sets of input and generate a report which lists the
discrepancies between the input data sets. This tool can be
used for finding changes in the source code, input data,
program output, etc. It is extremely useful to the
maintainer who must ascertain if a change made to the system
caused it to fail or work differently. It can also be used
to ensure that one set of test results is identical to a

previous set, or identify where the results have changed.
Most comparators are developed for a specific system. They
may be general in nature or work on specific parts of the
system and perform specific functions. They are relatively
simple to build and are very valuable tools in the
maintainer's tool box.

9.3 Diagnostic Routines

Diagnostic routines assist the maintainer by reducing the
amount of time and effort required for problem resolution.
Some of the more commonly used routines include:

trace which generates an audit trail of actual
operations during execution

breakpoint which interrupts program execution to

initiate debug activities

- 45 -

save /res tart which salvages program execution status
at any point to permit evaluation and re-initiation

dum ps which give listings (usually unformatted or
partially formatted) of all or selected portions of
the program memory at a specific point in time.

Compilers often provide diagnostic capabilities that can be
optionally selected to assist the programmer in analyzing the
execution flow, and capture a myriad of data at predetermined
points in the process. In the hands of a skilled maintainer,
these diagnostics can help identify the sections of code
which cause the error, as well as what is taking place there.
While these aids are extremely useful, they are usually
"after the fact" tools used to help determine what has gone
wrong with an operational system. Far more useful are
diagnostic capabilities which are designed and implemented
within the source code as it is developed. This latter type
of diagnostic is normally disabled, but can be turned on
through the use of one or more control parameters.

9.4 Application Utility Libraries

Most operating systems provide support and utility libraries
which contain standard functional routines (square roots,
sine, cosine, absolute values, etc.). In addition, HOL
compilers have many built-in functions which can be utilized
by the programmer to perform standard functions. Just as
these libraries provide standardized routines to perform
processes which are common to many applications systems,
large application systems should have a procedure library
which contains routines which are common to various segments
of the application system. These functions and utility
routines should be available to all persons working on the
system from the developer to the maintainer. Application
support utility libraries assist by:

- saving time (the programmer does not have to reinvent
the wheel)

.

- simplifying the changing of common code (changes all
programs which utilize a module). This usually requires
relinking or recompiling each affected program, but
it eliminates the need to change lines of code in each
of the programs.

- enabling wider use of utility procedures, developed by

one person or group, by all persons working on the
system

.

- facilitating maintenance of the system by keeping the
code in a central library or set of libraries.

- 46 -

In addition to the stored library routines, all the source
code for the applications system should be stored in a

centralized, on-line library. Access to this library should
be controlled by a librarian who has the duty of maintaining
the integrity of the library and the code.

9.5 On-line Documentation Libraries

System documentation normally consists of one or more folders
or files in hardcopy form which are stored at a central
location. The need for the maintainers to have access to the
information in these documentation folders and the need to
keep the documentation up-to-date and secure are sometimes at
cross-purposes with one another. Thus, it is recommended
that as much documentation as practical also be kept on-line
in documentation libraries which the maintainer can access at
any time. Updating of this library should be controlled by a

librarian

.

9.6 On-line/Interactive Change And Debug Facilities

Interactive debugging provides significant advantages over
the batch method because of the convenience and speed of
modification. With interactive processing, the maintainer
can analyze the problem area, make changes to a test version
of the system, and test and debug the system immediately.
The alternative, to submit a batch job to perform the
testing, requires much more time to complete. While in some
instances this may be necessary because of system size or
resource requirements, most maintenance activities (including
perfective maintenance) are highly critical problems which
must be addressed and solved as quickly as possible.
Interactive processing provides a continuity which enables
greater concentration on the problem and quicker response to
the tests. Although the estimates of the increase in
productivity vary widely, it is clear that there is a

substantial improvement when the maintainer has on-line
interactive processing capabilities.

- 47 -

9.7 Generation And Retention Of Test Data

Standardized procedures (often developed in-house) for
generating and retaining test data are recommended. One of
the perennial problems in software maintenance is the lack of
test data. While in most instances, test data are generated
by the maintainer, studies have found that more errors and
inconsistencies are uncovered when test data are prepared by
the user, and testing is more effective if samples of the
actual data are included in the test data.

Once a test data set has been generated and the system
successfully run against it, the data should be retained for
use in future maintenance regression testing. Regression
testing is the selective retesting of the system to detect
any faults which may have been introduced and to verify that
the maintenance modifications have preserved the
functionality of the system. The system testing verifies
that the system produces the same results and continues to
meet the requirements specifications. In addition, the
results of the testing should be saved in machine readable
form so that the results of future maintenance testing can be
compared with the previous test results through the use of a

comparator

.

Although some test data set generators are commercially
available, most are developed either as part of the original
development effort of a large system or as part of the
maintenance effort. A test data generator is usually built
for a specific system and designed to test the system to a

selected level of detail. Guidance on testing is available
in several NBS/ICST publications [FIPS101], [NBS75], and
[NBS93].

- 48 -

.0 MANAGING SOFTWARE MAINTENANCE

The effective use of good management techniques and
methodologies in dealing with scheduling maintenance,
negotiating with users, coordinating the maintenance staff,
and instituting the use of the proper tools and disciplines
is essential to a successful software maintenance effort.
Software maintenance managers are responsible for making
decisions regarding the performance of software maintenance;
assigning priorities to the requested work; estimating the
level of effort for a task; tracking the progress of work;
and assuring adherence to system standards in all phases of
the maintenance effort. A software maintenance manager must
not only be a good technician, but also a good manager.
While this may seem to be an obvious point, it is, in actual
practice, far too often ignored.

There appears to be a common failure to recognize the
importance of the word "management" in the phrase "software
maintenance management". In many instances, technical
persons are promoted to positions of management within an
organization with the assumption that technical expertise is
all that is required to manage effectively a software
maintenance operation. On the contrary, a software
maintenance function has the same organizational needs and
managerial problems as any other function.

The primary duties of a software maintenance manager include:

1. Evaluate, assign, prioritize, and schedule
maintenance work requests.

2. Assign personnel to scheduled tasks.
3. Track progress of all maintenance tasks and ensure

that they are on or ahead of schedule.
4. Adjust schedules when necessary.
5. Communicate progress and problems to the user.
6. Communicate progress and problems to upper

management

.

7. Establish and maintain maintenance standards and
guidelines

.

8. Enforce standards and make sure that the software
maintenance is of high quality.

9. Deal with problems and crises as they arise.
10. Keep the morale of the maintenance staff high.

This list is not complete, but is sufficient to illustrate
the point that if the words "software maintenance" were
deleted, it would simply be a list of management duties for
any other organizational function. Thus, it is imperative
that a software maintenance manager be qualified both
technically and managerially to hold such a position. If the
person is not, the ability to be an effective maintenance

_ il9 -

manager will be severely diminished.

Just as the importance of management skills has not been
recognized in the selection of many software maintenance
managers, in other instances the need for technical
maintenance expertise has not been addressed. While many of
the required skills involve dealing with and coordinating
people, the software maintenance manager also has the
responsibility to control the technical aspects of the
process. Without a strong technical background and actual
experience in performing software maintenance, the manager
may not be able to deal with the conflicting needs and
requirements of many maintenance tasks.

The software maintenance manager should be aware of, and
familiar with, all of the work being performed by the
software maintenance staff. While this is not always
practical or possible in large organizations, each specific
application system must have a central authority who is
responsible for controlling and coordinating the maintenance
of that system. Too often, a form of anarchy exists in
software maintenance organizations. The maintainers are not
adequately coordinated and are permitted to address problems
as they arise without adhering to established standards and
procedures. In the short term this may be the most effective
manner of addressing immediate problems. The long term
consequences, however, are usually a decreased level of
maintainability for the system, and an increased need for
maintenance. This section discusses standards, guidelines,
procedures, and policies which will facilitate the management
of the software maintenance function and will improve the
capability to maintain application systems.

10.1 Goals Of Software Maintenance Management

The goal of software maintenance management is to keep all
systems functioning and to respond to all user requests in a

timely and satisfactory manner. Unfortunately, given the
realities of staffing limitations, computer resource
limitations, and the unlimited needs and desires of most
users, this goal is very difficult to achieve. The realistic
goal, then, is to keep the software maintenance process
orderly and under control. The specific responsibility of
the software maintenance manager is to keep all application
systems running and to facilitate communication between the
three groups involved with software maintenance.

The user must be kept satisfied that everything possible is

being done to keep each system running as efficiently and
productively as possible.

- 50 -

Table 11 - Goals of Software Maintenance

1 . Keep the maintenance process orderly and
under control.

2. Keep the application systems running.

3. Keep the users satisfied.

4. Keep the maintainers happy.

5. Keep maintenance viewed as a positive aspect
of ADP - one which contributes to the meeting
of the goals of the organization; not some-
thing that has to be done because the ADP
staff just can't do it right the first time.

Upper management must be kept informed of the overall success
of the software maintenance effort and how software
maintenance supports and enhances the organization's ability
to meet its objectives. In dealing with upper management,
one of the primary responsibilities of the software
maintenance manager is to keep maintenance viewed in a

positive perspective. Software maintenance is an important
effort which supports and contributes to the ability of the
organization to meet its goals. Too many of the problems
encountered in software maintenance are the result of the
negative attitude that it is a function which exists because
the software support staff can "never do it right". Rather,
the emphasis should be on the concept that software
maintenance enables an organization to improve and expand its
capabilities using existing systems.

Finally, the software maintenance manager has the
responsibility for keeping the maintenance staff happy and
satisfied. Software maintenance must be thought of as the
challenging, dynamic, interesting work it can be.

.2 Establish a Software Maintenance Policy

A software maintenance policy should employ standards which
describe in broad terms the responsibilities, authorities,
functions, and operations of the software maintenance
organization. It should be comprehensive enough to address

- 51 -

any type of change to the software system and its
environment, including changes to the hardware, software and
firmware. To be effective, the policy should be consistently
applied and must be supported and promulgated by upper
management to the extent that it establishes an
organizational commitment to software maintenance. When
supported by management, the standards and guidelines help to
direct attention toward the need for greater discipline in
software design, development, and maintenance.

The software maintenance policy must specifically address the
need and justification for changes, the responsibility for
making the changes, the change controls and procedures, and
use of modern programming practices, techniques and tools.
It should describe management's role and duties in regard to
software maintenance and define the process and procedures
for controlling changes to the software after the baseline
has been established. (Baseline refers to a well-defined
base or configuration to which all modifications are
applied.) Implementation of the policy has the effect of
enforcing adherence to rules regarding the operating software
and documentation from initiation through completion of the
requested change. Once this is accomplished, it is possible
to establish the milestones necessary to measure software
ilnain tenance progress. Plans, however, are of little use if
they are not followed. Reviews and audits are required to
ensure that the plans are carried out.

The primary purpose of change control is to assure the
continued smooth functioning of the application system and
the orderly evolution of that system. The key to controlling
changes to a system is the centralization of change approval
and the formal requesting of changes. The software
maintenance surveys found that each successful organization
had a formal trouble report/change request process with a

single person or a change review board approving all
changes/enhancement requests prior to the scheduling of work.
When this is not done, the confusion which results from
independent maintenance efforts is usually disastrous.

Everything done to software affects its quality. Thus,
measures should be established to aid in determining which
category of changes are likely to degrade software quality.
Care must also be taken to ensure that changes are not
incompatible with the original system design and intent. The
degree to which a change is needed and its anticipated use
should be a major consideration. Consideration should also
be given the cost/benefit of the change: "would a new system
be less expensive and provide better capabilities?". The
policies establishing change control should be clear,
concise, well publicized, and strictly enforced.

- 52 -

Table 12 - Establishing a Software Maintenance Policy

1. Review and evaluate all requests for changes.
- The change must be fully justified.
- The impact on other work and users should be

taken into consideration.

2. Plan for and schedule maintenance.
- Each change request should be assigned a priority.
- Work should be scheduled according to priority.
- The scheduled should be enforced and adhered to.

3. Restrict code changes to the approved/scheduled
work

.

4. Enforce documentation and coding standards through
reviews and audits.

.2.1 Review and evaluate all requests for changes

All user and staff requests for changes to an application
system (whether enhancements, preventive maintenance, or
errors) should be requested in writing and submitted to the
software maintenance manager. Each change request should
include not only the description of the requested change, but
a full justification of why that change should be made.
These change requests should be carefully reviewed and
evaluated before any actual work is performed on the system.
The evaluation should take into consideration, among other
things, the staff resources available versus the estimated
workload of the request; the estimated additional computing
resources which will be required for the design, test, debug
and operation of the modified system; and the time and cost
of updating the documentation. Of course, some flexibility
must be built into the process with some delegation of
authority to initiate critical tasks. However, each request
should be reviewed and judged by either the software
maintenance manager or a change review board. Doing so will
reduce the amount of unnecessary and/or unjustified work
which is often performed on a system.

- 53 -

10.2.2 Plan for, and schedule maintenance

The result of the review of all change requests should be the
assignment of a priority to each request and the updating of
a schedule for meeting those requests. In many ADP
organizations, there is simply more work requests than staff
resources to meet those requests. Therefore, all work should
be scheduled and every effort made to adhere to the schedule
rather than constantly changing course in response to the
most visible crisis.

10.2.3 Restrict code changes to the approved work

In many cases, especially when the code was poorly designed
and/or written, there is a strong temptation to change other
sections of the code as long as the program has been "opened
up". The software maintenance manager must monitor the work
of the software maintenance staff, and ensure that only the
authorized work is performed. In order to monitor
maintenance effectively, all activities must be documented.
This includes everything from the change request form to the
final revised source program listing.

Permitting software maintenance staff to make changes other
than those authorized can cause schedules to slip and may
prevent other, higher priority work from being completed on
time. It is very difficult to limit the work which is done
on a specific program, but it is imperative to the overall
success of the maintenance function to do so.

10.2.4 Enforce documentation and coding standards

Some programmers do not like to document, some are not good
at it, but primarily, documentation suffers because of too
much pressure and too little time in the schedule to do it.
Proper and complete communication of necessary information
between all persons who have, are currently, and who will
work on the system is essential. The most important media
for this communication is the documentation and the source
code

.

It is not enough to simply establish standards for coding and
documentation. Those standards must be continually enforced
via technical review and examination of all work performed by
the software maintenance staff. In scheduling maintenance,
sufficient time should be provided to fully update the
documentation and to satisfy established standards and
guidelines before a new assignment is begun.

_ 54 -

10.3 Staffing And Management Of Maintenance Personnel

Selecting the proper staff for a software maintenance project
is as important as the techniques and approaches employed.
There is some debate on whether or not an organization should
have separate staffs for maintenance and development. Many
managers have indicated that separate staffs can improve the
effectiveness of both. However, the realities of size,
organization, budget, and staff ceilings often preclude the
establishment of separate maintenance and development staffs.

Management must apply the same criteria to the maintainers
that are applied to software and systems designers or other
highly sought after professional positions. If an individual
is productive, consistently performs well, has a good
attitude, and displays initiative, it should not matter
whether the project is development or maintenance. Recent
studies on the motivation of programmers and analysts
[C0UG82] indicate that there are three major psychological
factors that can impact the attitude, morale, and general
performance of an individual.

- the work must be considered worthwhile by a set of
values accepted by the individual, as well as by the
standards employed by the organization.

- the individual must feel a responsibility for his or
her performance. There is a need to feel personally
accountable for the outcome of an effort.

- the individual must be able to determine on a regular
basis whether or not the outcome of his or her efforts
is satisfactory.

When these factors are high, the individual is likely to have
a good attitude and be motivated.

Some organizations have attempted to improve morale and the
image of maintenance by simply renaming the maintenance
function. This is a superficial approach. It does nothing
to change what is in fact being done, or the way it is

perceived by the maintainer and supported by management. A

more positive approach is to acknowledge the importance and
value of good maintenance to the organization through career
opportunities, recognition, and compensation.

Often, a maintainer is responsible for large amounts of code,
much of which was developed and previously maintained by

someone else. This code is generally old, unstructured, has
received numerous patches, and is inadequately documented.
The potential for errors, delays, and unhappy users is

considerable. Praise, thanks and recognition are often as

- 55 -

important as salary and challenging assignments in keeping
good analysts and programmers.

It is essential that work assignments offer growth potential.
Continuing education is required at all levels to ensure that
not only the maintainers, but the users, managers, and
operators have a thorough understanding of software
maintenance. Training should include: programming
languages, standards and guidelines, operating systems, and
utilities.

There is a common misperception that maintenance has to be
dull, tedious, non-creative work which offers little chance
for reward or advancement. This view can only be changed
through management initiatives. The maintainer is a critical
part of the process -- the key to delivery of the product
both promised by management and desired by the users.
Indeed, the maintainer is one of the most important members
of the application software staff. The importance of
maintenance must be acknowledged in terms of both position
value and function.

Some points to keep in mind when managing a software
maintenance function are outlined in Table 13.

- 56 -

Table 13 - Managing the Software Maintenance
Function

1 . Maintenance is as important as development and
just as difficult and challenging.

2. Maintainers should be highly qualified, competent,
dedicated professionals. The staff should include
both senior and junior personnel. Do not short
change maintenance. Don't isolate the maintenance
staff.

3. Maintenance should NQT be used as a training
ground where junior staff are left to
"sink-or-swim"

.

4. Staff members should be rotated so they are
assigned to both maintenance and development.
It takes a good developer to be a good maintainer,
and conversely, it takes a good maintainer to be
a good developer.

5. Good maintenance performance and good development
performance should be equally rewarded.

6. There should be an emphasis on keeping the staff
well trained. This will keep performance at an
optimum level and help to minimize morale
probl ems

.

7. Rotate assignments. Do not permit a system or a

major part of a system to become someone's
private domain.

- 57 -

1 1 .0 SUMMARY

While the ICST survey identified software maintenance problems
which were both managerial and technical in nature, management
is clearly the most important factor in improving the software
maintenance process. Most of the problems cited in the survey
were the result of inadequate management control and review of
software maintenance activities. Management must take a closer
look at how the software is maintained, exercise better control
over the process, and ensure that effective software maintenance
techniques and tools are employed.

Recommendations have been made in sections 7.0 through 10.0 of
this report to help a manager gain better control, and to help
the maintainer improve the quality of the maintenance performed.
In order to maintain control over the software maintenance
process and to ensure that the maintainability of the system
does not deteriorate, it is important that software maintenance
be anticipated and planned for.

The quality and maintainability of a software system often
decrease as the system grows older. This is the result of many
factors which, taken one at a time, may not seem significant but
become cumulative and often result in a system which is very
difficult to maintain. Quality programming capabilities and
techniques are readily available. However, until a firm
discipline is placed on how software maintenance is performed,
and that discipline is enforced, many systems will be permitted
to deteriorate to the point where they are impossible to
maintain

.

Software maintenance must be performed in a structured,
controlled manner. It is simply not enough to get a system "up
and running" after it breaks. Proper management control must be
exercised over the entire process. In addition to controlling
the budget, schedule, and staff, it is essential that the
software maintenance manager control the system and the changes
to it. The now frequently cited maxim that a system "must be
developed with maintenance in mind" is insufficient; a system
also must be maintained with future maintenance in mind. If
this is done, the quality and maintainability of the code
actually can improve. Otherwise, today's maintainable systems
are destined to become tomorrow's unmaintainable systems.

- 58 -

BIBLIOGRAPHY

[ARTH83] L.J.Arthur, Programmin g Productivity ^ John Wiley and
Sons, New York, I983.

[BASI82] V.R.Basili and H.D.Mills, "Understanding and
Documenting Programs," IEEE Transactions on Sof twa re
Engineering, Vol SE-8, No 3, May 1982, pp 270-283.

[BERS79] E.H.Bersoff, V.D.Henderson, and S.G.Liegel, "Software
Configuration Management: A Tutorial," Computer

,
January 1979,

pp 6-14.

[BOEH78] B.W.Boehm, J.R.Brown, H.Kasper, M.Lipow, G.J. MacLeod,
and M.J.Merritt, Charact eristics of. Sof twa re Qual i ty ,

North-Holland, Amsterdam-New York-Oxford, 1978.

[BOEH8I] B.W.Boehm, "An Experiment in Small-Scale Application
Software Engineering," IEEE Transactions on Software
Engineering, Vol SE-7, No 5, September I98I, pp 482-M93.

[BOEH82] B.W.Boehm, Software Engineering Economics
,

Prentice-Hall, Englewood Cliffs, I982.

[BRIC83] L.Brice and J.Connell, "A Methodology for Minimizing
Maintenance Costs," AFIPS 1 9 83 National Computer Conference
Proceedings , AFIPS Press, Arlington, Virginia, May 1983, PP
1 13-121

.

[BROO75] F.P.Brooks, The Mythical Man Month
,

Addison-Wesley

,

Reading, Massachusetts, 1975.

[BUCK77] J.K.Buckie, Managing Softwa re Projects . MacDonald and
Jane's, London and American Elsevier Inc, New York, 1977.

[CENT82] J. W. Center, "A Quality Assurance Program For Software
Maintenance," AFIPS 1 9 82 National Computer Conference
Proceedings

f
AFIPS Press, Arlington, Virginia, May 1982, pp

399-407.

[CHAP83] N.Chapin, "Software Maintenance Objectives," AFIP S 1983
National Computer Conference Proceedings , AFIPS Press,
Arlington, Virginia, May 1983, pp 779-784.

[COOP79] J.D.Cooper and M.J.Fisher, editors. Software Qual itv

Management , Petrocelli Books Inc., 1979.

[C0UG82] D.J.Couger and M. A. Colter, "Effect of Task Assignments
on Motivation of Programmers and Analysts," research report.
University of Colorado, 1982.

- 59 -

[CURT79] B.Curtis, S.Sheppard, P.Milliman, M.A.Vorst, T.Love,
"Measuring The Psychological Complexity of Software Maintenance
Tasks With the Halstead and McCabe Metrics," IEEE Transactions
on Software Engineering , Vol SE-5, No 2, March 1979, pp 96-103.

[DITR71] A.E.Ditri, J.C.Shaw, and W.Atkins, Managing the EPF
Function , McGraw Hill, New York, 1971.

[D0NA80] J.D.Donahoo and D . Swear inger , "A Review of Software
Maintenance Technology," Rome Air Development Center,
RADC-TR-80-1 3, February 1980.

[EBER80] R.Ebert, J. Lugger, and R.Goeke, editors. Practice in
Software Adaption and Maintenance

,
North-Holland, New York,

1980 .

[ELSH82] J.L.Elshoff and M.Marcotty, "Improving Program
Reliability to Aid Modification," CACM , Vol 25, No 8, August
1982, pp 512-521

.

[FIPS38] "Guidelines for Documentation of Computer Programs and
Automated Data Systems," NBS Federal Informa tion Processing
Standards Publication 38

,
February 1976.

[FIPS64] "Guidelines for Documentation of Computer Programs and
Automated Data Systems for the Initiation Phase," NBS Federal
Information Processing Standards Publication 64., August 1979.

[FIPS101] "Guideline for Lifecycle Validation, Verification, and
Testing of Computer Software," NBS Federal Information
Processing Standards Publ ica tion 101 , June 1983 .

[FRAN82] W.L.Frank, Critical Issues In Software , John Wiley and
Sons, New York, 1982.

[FREE80] H. Freeman and P.M.Lewis, editors, Software Engineering
,

Academic Press, New York, 1980

[GA080] "Wider Use Of Better Computer Software Technology Can
Improve Management Control And Reduce Costs," Comptroller
General Report to Congress of the United States, FGMSD-80-38,
April 29 1980.

[GA08la] "Govermen t-Wide Guidelines And Management Assistance
Center Needed To Improve ADP Systems Development," Report by the
U.S. General Accounting Office, AFMD-81-20, February 20, 1981.

[GA08lb] "Federal Agencies' Maintenance Of Computer Programs:
Expensive And Undermanaged , " Comptroller General Report to
Congress of the United States, AFMD-81-25, February 26, 1981.

- 60 -

[GLAS79] R.L. Glass, Software Reliability
Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

eboo

[GLAS8la] R.L. Glass and R.A.Noiseux, Softwa re Maintenance
Guidebook

,
Prentice-Hall, Englewood Cliffs, New Jersey, I98I.

[GLAS8lb] R.L. Glass, "Persistent Software Errors," IEEE
Iran sac tions on Software Engineering Vol SE-7, No 2, March I98I

.

[GLAS82] R.L. Glass, Modern Programming Practices: A Repor t From
Industry ^ Prentice-Hall, Englewood Cliffs, New Jersey, I982.

[GREE81] J.F.Green, et al
,

"Dynamic Planning and Software
Maintenance - A Fiscal Approach," Naval Post Graduate School,
Dept. of Commerce, NTIS, I98I.

[HALS77] M. H. Halstead , Elements of Software Science , Elsevier
Science Publishing Company, New York, 1977.

[HAML79] W.T.Hamlen, "Application Program Maintenance Study
Report to Guide," Proceedings ofl Guide 48., May 1979, PP
1751-1758.

[HURL82] R.B. Hurley, Decision Tables in Software Engineering .

Van Nostrand Reinhold, New York, 1982.

[JENS79] R.W.Jensen and C.C.Tonies, Software Engineering ^

Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

[JONE78a] R.A.Jones, "Maintenance Considered Harmful," ACM
Forum, CACM, Vol 21, No 10, October 1978, p 882.

[LEHM77] M.M.Lehman, "Evolution Dynamics - A Phenomenology of

Software Maintenance," Proceedings of Software , Life Cycle
Management Workshop ^

August 1977, PP 313-323.

[LIEN78] B.P.Lientz, E.B.Swanson, and G.E.Tompkins,
"Characteristics of Application Software Maintenance," CACM , Vol

21, No 6, June 1978, pp 466-471.

[LIEN79] B.P.Lientz and E.B.Swanson, "Software Maintenance - A

User/Management Tug-of-War," Data Management ,
April 1979, PP

26-30.

[LIEN80] B.P.Lientz and E.B.Swanson, Software Maintenance
Management

f
Addison-Wesley ,

Reading, Massachusetts, I98O.

[LIEN8I] B.P.Lientz and E.B.Swanson, "Problems in Application
Software Maintenance," CACM , Vol 24, No 1 1 , November 1981, pp
763-769.

- 61 -

[LY0N81] M.L.Lyons, "Salvaging Your Software Asset (Tools Based
Maintenance)", AFIPS 19 81 National Computer Conference
Proceedings , AFIPS Press, Arlington, Virginia, May 1981, pp
337-342.

[MARS83] N . L . Marselos , "Human Investment Techniques for
Effective Software Maintenance," AFIPS 198^ National Computer
Conference Proceedings , AFIPS Press, Arlington, Virginia, May
1983, PP 131-136.

[MARSH83] R.E. Marsh, "Application Maintenance: One Shop's
Experience and Organization," AFIPS 1 983 National Computer
Conference Proceedings , AFIPS Press, Arlington, Virginia, May
1983, PP 145-153.

[MART83] J.Martin, C.McClure, Software Maintenance - The Problem
and Its Solutions , Prentice Hall, Englewood Cliffs, New Jersey,
1 983.

[MART82] J.Martin, Application Development Without Programmers
,

Prentice Hall, Englewood Cliffs, New Jersey, 1982.

[MCCL81] C.L.McClure, Managing Software Development and
Maintenance , Van Nostrand Reinhold, New York, 1981.

[MILL79] E.Miller, Tutorial ^ Automated Tools for Software
Engineering , IEEE Computer Society Press, Silver Spring,
Maryland, 1979.

[MILL83] H.D.Mills, Software Productivity , Little Brown and Co,
1983 .

[MUNS81] J.B.Munson, "Software Maintainability: A Practical
Concern for Life-Cycle Costs," Computer , Vol 14, Nov 1981, pp
103-109.

[MYER76] G.J.Myers, Software Reliabi lity : Priciple s and
Practices , John Wiley and Sons, New York, 1976.

[MYER79] G.J.Myers, The Art of! Software Testing, John Wiley and
Sons, New York, 1979.

[NAVE79] "Computer Software Life Cycle Management Guide," Naval
Electronics Systems Command, NAVELEXINST 5200.23, March 1979.

[NBS75] W.R.Adrion, M. A. Branstad , and J . C . Chern i av sky

,

"Validation, Verification and Testing of Computer Software," NBS
Special Publication 500-75

,
February 1981.

[NBS87] A.J.Neumann, "Management Guide For Software
Documentation," NBS Special Publication 500-87

,
January 1982.

- 62 -

[NBS93] P.B.Powell, editor, "Software Validation, Verification
and Testing Technique and Tool Reference Guide," NBS Special
Publication 500-93

,
September 1982.

[NBS98] P.B.Powell, editor, "Planning For Software Validation,
Verification and Testing," NBS Special Publication 500-98

,

November 1982.

[PARI83] G.Parikh, N . Zvegin tzov , Tutorial on Software
Maintenance

T
IEEE Computer Society Press, Silver Spring,

Maryland, 1983.

[PARI80] G.Parikh, editor, Techniques of Program and System
Maintenance

),
Ethnotech, Lincoln, Nebraska, 1980 .

[PEER81] D.E.Peercy, "A Software Maintainability Evalualtion
Methodology," IEEE Transactions On Software Engineering ^ Vol
SE-7, No 4, July 1981, pp 343-351.

[PENN80] R.H.Pennington, "Software Development and Maintenance -

Where Are WE?," Proceedings COMPSAC80 , IEEE Computer Society '

s

Four th Interna tional Computer Software and Application
Confe rence, 1980, pp 419-422.

[PERR81] W.E.Perry, Managing System Ma in tenance Q.E.D.
Information Sciences, Inc., Wellesley, Massachusetts, 1981.

[PRES82] R. Pressman, Software Engineering

:

A Prac tioner '

s

Approac h, McGraw Hill, New York, 1982.

[RAYN83] R.J.Raynor and L . D . Speckmann
,

"Maintaining User
Participation Throughout the Systems Development Cycle," AFIPS
1 983 National Computer Conference Proceeding s , AFIPS Press,
Arlington, Virginia, May 1983, PP 173-180.

[REIF77] D.J.Reifer and S.Trattner, "A Glossary of Software
Tools and Techniques," Computer , Vol 10, No 7, July 1977, PP
52-60.

[RICH83] G.L.Richardson and C.W.Butler, "Organizational Issues
of Effective Maintenance Management," AFIPS 1 9 83 National
Com puter Conference Proceedings , AFIPS Press, Arlington,
Virginia, May I983, PP 155-161.

[SCHN79] N.F.Schneidewind, H.M.Hoffman, "An Experiment In

Software Error Data Collection And Analysis," IEEE Transactions
on Software Engine ering. Vol SE-5, No 3, May 1979, pp 276-286.

[SCHN83] G.R.Schneider, "Structured Software Maintenance," AFIPS
1983 National Computer Conference Proceedings , AFIPS Press,
Arlington, Virginia, May 1983, PP 137-144.

- 63 -

[SHNE80] B. Shneiderman , Software Psycholog y
j

Winthrop
Publishers, 1980.

[SWAN76] E.B.Swanson, "The Dimensions of Software Maintenance",
IEEE Computer Society, Proceed ines of the 2nd International
Conferenc e on Software Eng ineering , October 1976, pp 492-497.

[TAUT83] B.J.Taute, "Quality Assurance and Maintenance
Application Systems," API PS 1 983 Na tional Computer Conference
Proceeding s ^ AFIPS Press, Arlington, Virginia, May 1983, pp
1 23-1 29.

[THAY81J R.H.Thayer, A.B.Pyster, and R.C.Wood, "Major Issues in
Software Engineering Project Management," IEEE Transactions on
Softwa re Engineering, Vol SE-7, No 4, July 1981, pp 333-342.

[TINN83] P . C . Ti nni rel lo
,

"Improving Software Maintenance
Attitudes, " AFIPS 19 83 Natio nal Computer Conference Proceedings

,

AFIPS Press, Arlington, Virginia, May I983, pp 107-112.

[WALK81] M.G.Walker, Managing Software Reliability - The
Paradi gmatic Approach

,

North Holl and , New York , 1981

[WEIN72] G. M.Weinberg The Psycholo gy of Computer Programming

,

Van Nostrand Reinhold, New York, 1972.

[YAU78] S.S.Yau, J . S . Col lof el lo , and T.MacGregor, "Ripple Effect
Analysis of Software Maintenance," IEEE Proceedings of COMPSAC
Zl, 1978, pp 60-65.

[ZAK83] J.R.Zak, "When a Data Processing Department Inherits
Software," AFIPS 19 83 National Computer Confere n ce Proceedings

,

AFIPS Press, Arlington, Virginia, May 1983, PP 163-172.

[ZELK78] M . V . Zelkowi tz ,
"Perspectives on Software Engineering,"

Computing Surveys, Vol 10, No 2, June 1978, pp 197-216.

[ZELL83] L.Zells, "Data Processing Project Management: A

Practical Approach for Publishing a Project Expectations
Document," AFI PS 1 9 83 National Computer Conference Proceedings

,

AFIPS Press, Arlington, Virginia, May 1983, pp I8I-I87.

[ZVEG83] N. Zvegintzov , "Nanotrends ,
" Datamation

,
August 1983, PP

106-1 16.

- 64 -

APPENDIX I

Software Maintenance Definitions

"Software maintenance in its broadest sense, includes error
corrections, changes(also called modifications or amendments),
enhancements, and improvements to the existing software. It
includes maintenance of all software, including structured
(software developed using structured technologies) and
unstructured software (software developed without...)."

Girish Parikh , "World of Software Maintenance"
Techniques of Program and System Main tenance,
1981

Maintenance is "the process of modifying existing operational
software while leaving its primary functions intact."

Barry Boehm, "Software Maintenance",
IEEE Transactions on Software Engineering,
December, 1976.

"Maintenance is the continuing process of keeping the program
running, or improving its charateristics"

J.L. Odgen, "Designing Reliable Software,"
reprinted in [PARI81

]

"Most generally, it is the process of adaption, i.e., updating
existing systems functions to reflect new constraints or
additional features."

Chester Liu, "A Look At Software Maintenance",
reprinted in [PARI81

]

"Traditionally, program maintenance has been viewed as a second
class activity, with an admixture of on-the-job training for
beginners and of low-status assignments for the outcasts and the
fallen.

Richard Gunderman, "A Glimpse into Program
Maintenance", reprinted in [PARI81]

- 65 -

"Maintenance is the process of being responsive to user needs
fixing errors, making user-specified modifications, honing the
program to be more useful,"

"Software main tenance is the act of taking a software product
that has already been delivered to a customer and is in use by
him, and keeping it functioning in a satisfactory way."

R.L. Glass and R.A.Noiseux, Software
Maintenance Guidebook , 1981.

"Systems maintenance includes any activity needed to ensure that
application programs remain in satisfactory working condition."

W.E.Perry, Managing Systems Maintenance , 198I.

"...changes that have to be made to computer programs after they
have been delivered to the customer or user."

James Martin and Carma McClure, Software
Maintenance - Ikt PrQfel^m and LL^ SQXijtl.Qn,
1983.

"The maintenance of software includes two major activities - the
removal of defects and the enhancement of operations."

,:r Werner S. Frank, Critical Issues in Software -

A Guide to Softwar e Economics^ Strategy ^ and
Profitabi lity , I983.

- 66 -

HBS-114A IREV. 2-BC)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

MBS SP 500-106

2. Performlnj Organ. Report No. 3. Publication Date

December 1983

4. TITLE AND SUBTITLE Conputer Science and Technology:

Guidance on Software Maintenance

5. AUTHOR(S)

Roger J. Martin and Wilma M. Osborne
6. PERFORMING ORGANIZATION (If joint or other thon N6S, see instructions; 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

WASHINGTON, D.C. 20234
Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

National Bureau of Standards
Department of Commerce
Washington, DC 20234

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 83-600611

I I

Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-worcl or less factual summary of most significant information. If document includes a significant
bi bl iography or literature survey, mention it here)

This report addresses issues and problems of software maintenance and suggests
actions and procedures which can help software maintenance organizations meet
the growing demands of maintaining existing systems. The report establishes
a working definition for software maintenance and presents an overview of
current problems and issues in that area. Tools and techniques that may be

used to improve the control of software maintenance activities and the
productivity of a software maintenance organization are discussed. Emphasis
is placed on the need for strong, effective technical management control of

the software maintenance process.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize on/>/ ^>r^'>'"- -"rr^pr: and ^pi^arat" t-pv word-^ """irn/on

adaptive maintenance; corrective maintenance; management; perfective -maintenance;
software engineering; software maintenance; software maintenance management;
software maintenance tools.

13. AVAILABILITY

[xl Unlimited

I I
For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

74

15. Price

USCOMM-DC 6043-P80

i

I

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to tiie announcement list of new publications to be issued in ttie

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(iNolirication key N-503)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement

methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription: domestic

$18; foreign $22.50. Single copy, $5.50 domestic; $6.90 foreign.

NONPERIODICALS

Monographs— Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications— Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and
studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series— Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under
the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AIP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series— Disseminates technical information

developed at the Bureau on building materials, components,
systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and
environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes— Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at N BS under the sponsorship of other

government agencies.

Voluntary Product Standards— Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations, The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products, NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superinienderti oj Docu-

nienls. Government Printing Office. Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR s—from
the National Technical Information Service . Springfield, VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register, The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 11717(38 FR 12315, dated May II, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Service
,
Springfield, VA 22161,

in paper copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Washington, D.C 20234

Official Business

Penalty for Private Use S300

POSTAGE AND FEES PAID

U S DEPARTMENT OF COMMERCE
COM-215

SPECIAL FOURTH-CLASS RATE
BOOK

		Superintendent of Documents
	2022-04-16T06:55:59-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

