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Abstract 

Automated searches of fingerprints against a repository/database are important tools of the forensic 
community. Systems performing these searches are referred to as Automated Fingerprint Identification 
Systems (AFISs). The output of an AFIS is a fairly small set of prospective candidates with attendant 
matching scores (allowing for comparison of candidates, and frequently referred to as comparison 
scores). These scores provide an indication of how likely a particular candidate is a true mate of the 
search fingerprint (i.e., originates from the same individual). One difficulty in interpreting matching 
scores in usage is there is no accepted standard for its range and exact meaning (other than “bigger is 
better”). Experts need to become very familiar with the scoring of a specific system to make optimal use 
of the results. This report proposes that we standardize the scoring system. The standardized score 
becomes a number between 0 and 100 and carries two decimal places, for a total of four significant 
figures. Seven alternative algorithms for computing matching scores are outlined in this report, ranging 
from very simple to quite complex. A mid-complexity algorithm is then selected for detailed 
illustration/development. This report also provides a detailed analysis of scoring produced by the 
matchers previously tested by NIST. 
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Exploring the Methodology and Utility of Standardized Latent Fingerprint 
Matcher Scoring 

 
1. Introduction 

Automated searches of fingerprints against a repository of known exemplars constitute an important 
tool of the forensic community. Systems performing such searches are referred to as Automated 
Fingerprint Identification Systems (AFISs). These are capable of searching large databases and returning 
a fairly small set of prospective candidate matches. It is then the job of the fingerprint expert to examine 
this list to see if any of the candidates can result in an identification, also called individualization, i.e., 
can uniquely, and with high confidence, determine the individual that produced the print. 

Central to the internal workings of an AFIS is the principle of a matching score (or matcher score, or 
comparison score). This is a measure of similarity between the search print and any selected print from 
the database. The larger the score the greater the presumed similarity between the two. However, 
there is no standard for defining the interpretation of this score, nor even its numerical range. This can 
cause difficulties in interpreting candidate lists, as discussed in later sections. The purpose of this report 
is to explore matching score standardization for latent fingerprint systems. 

1.1 Types of AFIS (Systems) 

 The nature and accuracy of the search process differ markedly depending upon the type of fingerprint 
being searched: ten–print or latent print. The early history and development of AFIS is well covered in 
Moses [1]. 

Ten-print systems are the more advanced of the two types of systems, and are capable of producing 
high-confidence results with present technology. The result of a ten-print search will be a list containing 
candidates which are considered likely to be true mates, i.e., fingerprints from the same subject. This list 
can have three variants: a) no credible mate was found, so the list is empty; b) exactly one candidate 
was found (deemed likely to be a true mate); or c) a small number, say two or three, candidates were 
found. Outcome (c) might be the result of multiple enrollments of the same subject in the database. 
These multiple enrollments may be accidental, and were not previously detected, or they may have 
been entered intentionally. At times one or more impostors, i.e., not true mates, will make it on to the 
candidate list, either alone or in addition to the true mate. The presence of one or more impostors can 
happen for a number of reasons, but poor image quality is often a contributing cause. With top-end 
systems impostors are infrequent. According to the Fingerprint Vendor Technology Evaluation (FpVTE) 
[18] report, AFIS can achieve a rank-one identification rate for ten-prints of more than 99.4 %, using a 
database of 10 000 fingerprint images. (More recent tests have verified this, and have shown even 
higher performance.) The important characteristic of ten-print systems to keep in mind is that all 
candidates on the candidate list are considered (at least by that AFIS) likely true mates. 
For latent fingerprints the situation is markedly different. Latent fingerprints contain considerably less 
information than do ten-prints, and current technologies do not permit identifying the true mate with 
very high confidence. (Representative figures will be given later.) Therefore, it is standard practice for 
latent fingerprint matchers to output the results of the search in the form of a candidate list. This list can 
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be quite long, say twenty or even a hundred candidates. Currently most systems have a fixed, “canned,” 
candidate list length. However, in special circumstances it is possible to override the “canned” value. 
The length of the list is then specified at the time the search is initiated. Candidates on the list are 
ranked by matching score, with the highest score in top position. An important difference from ten-print 
is that the latent fingerprint system makes no judgment whether these are likely to be true mates or 
not; they are simply the highest scoring candidates, and their similarity to the search print may in fact be 
quite low. Further discussion on the challenges of latent AFIS are presented in Meagher [2]. 

Latent and ten-print systems constitute the two main types, but there are additional types. Notable 
types are: a) reverse latent searches, where a ten-print is searched against a database of unsolved 
latents; and b) latent to latent search systems, in which a latent is searched against unsolved latents. 
These systems are outside the scope of this report.  

1.2 Candidate Lists and Candidate List Reduction 

Increasing the length of the candidate list is one way of increasing the probability the true mate will 
appear on the list -- but this increase is surprisingly modest. Theory shows the probability a candidate is 
a true mate diminishes approximately inversely with its ranking on the list. (Thus the 10th candidate is 
only half as likely to be a true mate as the fifth, etc. See [19, 20].) Therefore enhancing performance by 
lengthening the list has diminishing return beyond some length, while adding burden to the human 
expert. In addition, there is the distinct possibility a true mate is not in the database, and in fact, this is 
quite common. Obviously in such cases increasing the length of the list is counterproductive. This is 
discussed in more detail in Meagher [2]. 

As a result, the latent expert needs to exercise considerable judgment in selecting how many, and 
which, candidates to examine in detail (see [2]). In their selection the expert is assisted by the matching 
score. A very low scoring candidate might simply be dismissed out-of-hand. For “reasonable scores” the 
expert will call up the file print (image) of the candidate, and examine it. A cursory glance is often 
sufficient to exclude the candidate from further consideration. For example, it might be obvious the two 
prints have different pattern classes -- so cannot possibly be mates.  

To be able to dismiss a candidate purely on score requires high familiarity with that AFIS system. Since 
the expert must often search a latent on several systems -- not all of which might be equally familiar -- 
this can cause difficulty. At a minimum, more work will be required to process multiple candidate lists; 
at worst, some true mates might be missed.  Standardizing the matcher scores would greatly assist the 
process.  

There are two other justifications for standardizing the score. Many candidate lists – especially the 
longer ones – may contain “weak” candidates, ones very unlikely to be true mates. It would be 
extremely helpful to the examiner if these were eliminated from the list. We refer to this process as 
candidate list reduction, and is further discussed in Section 4.  

Candidate list reduction was identified as a highly desirable goal in the Evaluation of Latent Fingerprint 
Technology (ELFT) Concept of Operations (CONOPS), [3]. The method for accomplishing this closely 
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follows the steps performed by the human expert: all very low scoring candidates are dismissed out-of-
hand (except in very high value criminal cases). The remaining candidates are examined by a special kind 
of matcher which looks to see if the pattern classes, or more generally the ridge flow, are “reasonably” 
close. Candidates passing could be sent to an advanced matcher, capable of extracting and matching 
many types of features. Since this advanced matcher makes only a few comparisons, it does not need to 
be fast. Having a standardized score greatly assists in the first round elimination (of frivolous 
candidates). These ideas are further explored in Section 4.0. 

1.3 Matcher Fusion 

The third reason for standardizing matcher scores is to facilitate multi-matcher-fusion. Fusing 
(combining) the results of two or more matchers can greatly improve accuracy. Experiments have 
demonstrated gains of 15 % points or more in the identification rate in select cases (ref. [4]). One 
problem encountered in matcher fusion is that two matchers may produce native scores1 differing by 
orders of magnitude. Although this can be overcome by collecting statistics from a number of candidate 
lists (so as to calibrate the score), at the very least this requires gathering many lengthy candidate lists. 
This effort is justified if a dedicated fusion matcher is to be produced, which will frequently be used. 
However, if we consider the possibility we might have to fuse candidate lists from potentially many 
sources, such a procedure is impractical. Standardizing the matcher score obviates this necessity, and 
also allows for the fusion algorithm to be made more generic. Additional information on matcher fusion 
is found in ref. [4]. 

1.4 Why Score Standardization? 

Summarizing the three reasons for score standardization: 

a) To assist the human expert 
b) To assist and simplify candidate list reduction 
c) To assist and simplify multi-matcher fusion 

Since much of the information that went into this study is based upon results of NIST’s Evaluation of 
Latent Fingerprint Technology (ELFT) study, we next provide a brief overview of the ELFT project. 

2. NIST’s ELFT Project 

The ELFT project was initiated by the Image Group of NIST/ITL to explore fundamental scientific and 
technological questions in automatic matching of latent fingerprints. The ELFT project was launched via 
a NIST-sponsored workshop, ref. [5]. This was followed by the publication of the CONOPS [ref. 3] 
detailing the goals and methodology of the project. One of the major goals was the testing and 
evaluation of automated latent matchers. The AFIS performance data used in this report largely comes 
from these tests.  

                                                           
1 The native score is the score used internal to the matcher. It is not required to standardize this score. It might, or 
might not, appear on the candidate list in addition to any standardized score.  
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2.1 Outline of ELFT 

The following diagram outlines the steps involved in the ELFT testing cycle.  

   

  Figure 1 – Overview of ELFT Testing Approach 

Matchers for testing were solicited from volunteer organizations. (These tended to be commercial AFIS 
developers.) Participants submitted their matchers to NIST in the form of Software Development Kits, or 
SDKs. These SDKs are dynamic-link (.dll) library modules, linked at NIST to a main driver program. The 
resulting executable software was then hosted on NIST computers and run using NIST sequestered input 
datasets. (Here “sequestered” means the datasets are not available outside of NIST.) Additional 
information and best practices for SDKs are covered in Marshall, [6]. 

2.2 Matching Process and Output 

Figure 2 provides a schematic of the actual matching process as well as the nature of the output 
candidate list. Candidates on this list are ranked by matching score, that is to say, by the internal or 
native score. (The sample scores shown in Figure 2 are representative of matchers using larger 
magnitude scores. Not all matchers use this range of values.) Although the diagram seems to imply a list 
length of twenty, the actual output of the SDKs in ELFT was 100 candidates. The candidate list also 
contained additional information, not shown in Figure 2, such as the finger number, and the number of 
minutiae extracted. 

The ELFT Approach

Acquire Latent
Matchers (SDKs) Configure Hardware

Compile Latent Test Sets

Latent Testbed
•1-to-N 
Matcher Test 
Protocol

•Analysis 
Reports

•Standard 
Ref. Sets

•Quality  
Metrics

Re-iterate process Follow-up Workshop:
Present  results.
Discuss future 
directions.
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Figure 2 – Automated Candidate List Generation by an AFIS 

Test data (fingerprint images and extracted features) for input to the matchers were compiled by 
NIST from several sources, including actual law enforcement case work, and controlled data 
collected from volunteers.  

2.3 Objectives of ELFT 

The principal objectives of ELFT testing, ref. [3], were: 

a) Determine the overall state-of-the-art in automated latent fingerprint searching. By 
“automated” we mean that searches are performed without any human assistance. (This is 
strictly true for the image-only mode, where the matcher was given the latent image, and no 
other info.) 

b) Performance of a matcher was mainly assessed by the percentage of hits (true mates) found in 
first place on the candidate list.  

c) Some searches also included human-extracted features, either by themselves or in conjunction 
with the latent image. The purpose was to determine how much performance would increase 
using these additional features. 

d) Measurements were also made on how much performance was affected by latent image 
quality.   

e) Experiments were performed to study how much performance could be boosted by fusing two 
or more matchers. (See ref. [4].) 

The output of each match was a candidate list, nominally 100 long. Following the ranking number, 
the candidate list contained the matcher score, the subject ID2 in database, and the finger number. 

                                                           
2 An alphanumeric identifier pointing to the fingerprint image, etc. No actual personal identification data is kept on 
file. 

Latent 
Fingerprint
Image

Input Output

Automated Feature 
Extraction and Matching 

System (AFEM)

Automatic 
Feature 
Extractor

Latent 
Fingerprint 
Matcher

features

Candidate List

Rank Subject Score

1 0731 2903
2 1303 1805
3 3950 1754
…

20 0121 350
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In addition, test participants (SDK submitters) were asked to supply supplemental data, including: 
the number of minutiae the matcher found on the latent; the number of minutiae the matcher was 
able to match; and perhaps most important for this paper, a probability-like matcher score (PLMS). 
The PLMS was intended as a prototype standard score. However, as no details were specified, each 
developer was free to develop their own PLMS. The only firm specification (in the API) was that the 
PLMS be an integer between 0 and 100. It was strongly recommended that the score reflect the 
likelihood that the candidate is a true mate, but the method of measuring this “likelihood” was 
unspecified.  

Restricting the PLMS to integer values may have been a minor mistake, as this provided insufficient 
resolution, and resulted in excessive ties. A detailed analysis of PLMS submitted to NIST will be 
presented in Section 5. 

2.4 Representative Information Obtained from ELFT 

The series of ELFT tests conducted by NIST/ITL resulted in considerable insight on latent AFIS 
performance,  and the state-of-the-art in general. The following graph is a representative example. 

     

 

 

 

 

 

 

 

 

 

Figure 3 – Comparison of Achieved Latent Performance with that of Plain-impressions using current 
AFIS technology 

The graph shows the difference in performance between: a) searches using a plain impression (a 
type of controlled capture – sometimes called a “dab” or “slap”); versus, b) an actual latent. The 
graph shows that while the plain impression has a 95 % chance of appearing at the top of the 
candidate list, the latent has only a 58 % chance. This is a very significant performance difference, 
and confirms the earlier statements that latents present a much greater challenge.  

  Output 
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The following graph shows another kind of performance comparison. 

   

Figure 4  – Comparison of Achieved Latent AFEM Performance Using Different Data Modes; 
Aggregate of Four Matchers 

Figure 4 shows that when operating in image-only mode (only the latent image is supplied, and no other 
information) about 58 % of the time the correct mate will be in first place. Using IAFIS3-type features 
only as input, and no image, produces a lower result of about 45 %. Adding IAFIS-type features 
(extracted manually) to the image increases performance by about 4 % from image-only. Highest 
performance achieved, using all available features, is about 71 %. For definitions of the extended 
features see ref. [7] and [8]. Supplemental information on ELFT is found in ref. [9, 10, & 11]. 

 

3. Matcher Scoring as Currently Practiced  

In Section 2 we provided some background on NIST’s ELFT project and the type of information we 
obtained. Another example of information garnered is the range of scores used by various matchers. 
These are summarized in the table below.  

Matcher 
& Data 
Set Pair 

Max 
Observed 
Score 

Matcher 
& Data 
Set Pair 

Max 
Observed 
Score 

1 2 635 000 10 394.9 

                                                           
3 IAFIS = Integrated Automated Fingerprint Identification System; formerly the FBI’s principal fingerprint search and 
identification system; recently replaced by the newer Next Generation Identification System, or NGI 

0
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2 2 133 000 11 100 

3 34 765 12 100 

4 9 966 13 85.7 

5 8 894 14 1 

6 4 022 15 0.991 

7 3 000 16 0.218 

8 1 474 17 0.147 

9 1 208 18 0.128 

  
Table 1 – Some Representative Scores Output by Submitted Automated Matchers 

Table 1 was compiled from candidate lists generated during NIST’s testing of automated latent 
fingerprint matchers. (Not all came from the same test. Some of these data can be gleaned from 
references [12, 13, and 14].) Examination of the above data suggests there are basically three schools of 
thought regarding score magnitude:  

1) Scores adhering to a “scientific” scale. These scores fall into the unit interval; alternatively, they 
can be expressed as a percentage.   

2) Scores subscribing to the school of thought that larger numbers have more resolution. These 
scores tend to range from a few hundred, upwards to many thousands. 

3) Scores which strike a compromise, and have values around a hundred. We prefer this option. 

What we termed “scientific scale” is similar to what mathematicians adopted long ago for mathematical 
probability, namely [0, 1]. This is an obvious extension of the convention that 0 = FALSE and 1 = TRUE. 
Numbers between zero and unity represent various degrees of truth or likelihood. Correlation 
coefficients have a similar scale, but here the range is [-1, +1]. Negative scores are not normally used by 
matchers – they could be used for identifying incomplete data, very poor images, or similar types of 
problems.  

The wide spectrum of prospective score values causes practical difficulties. When dealing with an 
unfamiliar matcher, human experts must familiarize themselves with the range of possible outputs for 
that specific matcher, so as to know what constitutes a “significant” value. Using normalized scores 
largely obviates these problems. 

NIST Recommendation for Scoring Range 

In this report we explore methods of standardizing the score.  Details of how a score might be computed 
and its interpretation are deferred to Section 7. The proposed score is a variant of the second (mid-
range) category, and has values between 0 and 100.  To provide finer discriminating power, two decimal 
places are always carried, for example, 0.08, 37.08, or 97.43.  
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The score should provide a clear indication of the likelihood the candidate is a true mate. Thus, (using 
the previously quoted scores) 0.08 would indicate “very unlikely to be a true mate;” 37.08 would 
indicate “potential for a true mate, and should be examined;” while 97.43 would indicate “very likely to 
be a true mate.”  

4. Preliminaries to Algorithms for PLMS 

Recall that the PLMS is a type of normalized matcher score with a strong connection to the likelihood a 
candidate is actually a true mate.  This candidate list will originally be ranked by the native score 
produced by the matcher. For our studies we began with a candidate list of 100, and reduced this to 
smaller size, for example 20. 

The algorithms considered fall into two basic classes: 1) algorithms which always preserve the original 
ordering; and 2) those potentially capable of increasing the score of certain candidates so as to move it 
ahead of others which previously outranked it. We consider both types here. The first is simpler, and can 
be implemented without significant additional information, computation, or software. The second type 
is the more desirable, as it potentially allows us to reclaim true mates (potential identification, or 
individualizations, or so-called ”hits”) which might be relatively far down the candidate list, and unlikely 
to be examined if not promoted upward on the list.  

Consider for example, a case where in the original (native) score placed the true mate in 17th place. It is 
unlikely that this candidate would survive candidate list reduction, and probably would not be looked at 
by the expert. But if additional information can be applied to the scoring (e.g., PLMS), it is possible that 
this candidate might be elevated to higher place. We have encountered many such cases during our 
investigation of matcher fusion [4]. Fusion accomplishes this by introducing new information. Analyzing 
the candidate list can also provide additional information, though generally of lower quality. 

Figure 5 shows one of the simplest algorithms for implementing PLMS. It is of the first category, which 
preserves the original ordering of candidates. It uses a global point transformation to remap the native 
score into a PLMS. It is shown in Appendix B that such a transformation cannot change the order, and 
the only gain is that the score is now standardized, so more easily interpreted. 
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Figure 5  – Baseline Method for Producing PLMS; the Final Output Score appears at Bottom of Diagram 
(labeled “PLMS”) 

The following “walk through” might be helpful: 

1) An intermediate score is computed based on the familiar Z-score: 

Z_score = (native_score  –  mean_impostor_score)/standard_error_impostor  … (1) 

2) The mean impostor score is ideally a global estimate of impostor scores. It would therefore 
be a stored, predefined value. (Should this be not available, a local value, based on the 99 
candidates beginning with candidate two, can be used; but this will introduce more 
uncertainty. Also, a larger database/background will generally result in a larger mean, 
because it will be based on the largest 99 values obtained.  It might be necessary to adjust 
for this effect using extreme value theory.) 

3) Finally, using either a look-up-table or a pre-computed analytic approximation (based on 
statistics collected from the development set) we compute the PLMS based on the 
algorithm selected. See for example Table 2. (In the above diagram this appears as 87.03.) 

4) Note that as the transformation to the PLMS is based on a global point transformation, and 
so cannot improve performance (see Appendix B), other than making the score easier to 
interpret.   
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To potentially change the order of candidates (“bubble up” the true mate) we need to inject 
additional information. This can be done by processing the candidates on the list through a new 
matcher, called Matcher B, as shown in Figure 6. (This may be considered a type of fusion.) 

    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  – A More Advanced Algorithm for Producing PLMS; this Algorithm is Capable of Re-ordering 
Candidates; the Specimen Output Score appears at Top-right of Diagram, and is labeled PLMS 

Surprisingly, it is possible to reduce “matcher B” to a minimalist matcher employing only 
information already on the original candidate list. There is then no need to go back to the repository 
(as implied in the above figure). The principle behind this is that the distribution of scores on the 
candidate list carries additional information, which was not used in the original scoring (native 
score). In Section 6 we give an example of such score improvement. 

In the more sophisticated version shown in Figure 6, Matcher B is an actual matcher and is a variant 
of the primary matcher, Matcher A. Matcher B looks only at the candidates output by Matcher A. 
The objective is to use the information available to Matcher A more fully and without incurring the 
cost of computing additional features. 

The third and final algorithm, this time using additional features, is shown in Figure 7. 

 

 

  

  

  

 
  
 
   

      
     
        

  
 
 

  
  
    

   
 
  

   
  

   
  
 

 

  
 

 
   

 
 

 
 

 

 

 against all database files 

  

 

  

 

 

  

  
  
     
           

    
 
          

 
  

     
      

 

 
 

 
 
   
 

  

 

 Input  /Search Data 

   

   

 Matcher A 

 Interim candidate 
l ist – e.g., 100 top candidates 

 Matcher A -- Matches input 

 

 

  Subject  = M731 
Finger = 2 
Score = 3513 

  

  

  

  Compute: 
1) New scores 

2) Local statistics 
3) Z - scores 

4) Probability that  
true - mate             

   Database/ 
Repository   

  Predefined 
Translation Table   
Z - score to Probability 

 

 

  Subject  = M731 
Finger = 2 
PLMS = 93.78  Final candidate 

l ist – e.g., 2 top candidates  
(only one shown) 

  Matcher B   Matcher B -- Matches input 
only against subjects 
o n Interim List 

  Matcher B output includes: 
1) Which features matched 
2) Which did not match 

  

  

   Database/ 
Repository   



12 
 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 7  – Highly Advanced Algorithm for Producing PLMS; this Algorithm is Capable of Re-ordering 
Candidates; the Specimen Output Score appears at Top Right of Diagram (and is labeled PLMS) 

The principal difference from the prior diagram (Figure 6) is the inclusion of a more advanced matcher, 
labeled Matcher C. This matcher has the option of going back to the images and extracting additional 
features. There is also the option of matching against both the rolled and the plain impression, then 
fusing the two results. This has been shown to be quite powerful [refs. 4, 12, 14]. 

5. Analysis of Scores Provided on Candidate Lists 

In Section 2 we provided a synopsis of the ELFT project. As stated, a major objective of the ELFT project 
was testing of matchers provided by participants (principally commercial AFIS vendors). These matchers 
were run on NIST compiled and sequestered datasets, and produced output candidate lists. The 
candidate lists contained two types of scores: 1) native score, and 2) a PLMS-like score, referred to as 
“probability of true mate,” or simply “prob” The exact algorithm for computing this “prob” was not 
specified, except that (i) it should be an integer between 0 and 100; (ii) it should have significant 
correlation with whether the candidate is a true mate or not; finally (iii) it was encouraged (but not 
required) that the calculation for “prob” should take supplemental information into account, beyond the 
native score. The reason for (iii) was to encourage the development of a score more powerful than the 
native score.  
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Analysis of candidate lists (produced by submitted matchers) led to significant insights, many of which 
found their way into this report. First, analysis showed that developers had adhered to instructions, but 
not all matchers produced enhanced scoring. Some matchers produced values more or less spanning the 
range, while others tended to cluster: a low cluster with values around 10, and a high one around 90. It 
also became apparent that limiting the output to 101 values resulted in too many ties. These tied scores 
caused, in some cases, a slight loss of performance (due to the tied scores being presented (sorted) in 
the arbitrary order).  

In this section we examine to what extent stipulation (iii) (see above) was in fact achieved. If “prob” is 
computed by means of a global point transformation of the native score, and no new information is 
added, then it will be no more powerful than the native score, though perhaps easier to interpret. The 
figure-of-merit (FOM) we used to gauge the efficacy of “prob” was the minimum-total-error, or MTE. 
This is essentially the sum of type I and type II errors, taken at the threshold which minimizes this sum. 
(Types of errors and methods for gauging these are discussed in the Appendixes, and in ref. [15, 16, and 
17].) If it turns out “prob” is no more powerful than the native score, its MTE should be the same or 
larger than for the native score. The following figure shows the results for the five matchers, called A-D. 
For each matcher three datasets were used: LA, LE, and LG. The first (LA) consists of only the image of 
the latent; the second (LE) consists of the image plus selected and pre-extracted feature; the third (LG) 
of IAFIS-style features only. Figure 8 provides a comparison of the MTE achieved by the four different 
matchers. Each matcher uses three types of input data, for a total of twelve cases. 

 

 

 

 

       

 

      

 

          

    

    

 

Figure 8 – Comparison of Achieved MTEs for Four Matchers 
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The bar on the right (red) of each pair of bars represents the MTE based on the native score (internal 
score used by matcher); the bar on the left (blue) is obtained when using “prob.” In interpreting Figure 8 
keep in mind that “smaller is better,” so shorter bars represent better performance. In some cases the 
two bars appear to be nearly the same height; in other cases there is a marked difference. A more 
sensitive gauge than casual visual inspection is required to make these differences clear. To achieve this, 
we first compute the standard error of the MTE calculation. This is defined as the root-mean-square 
(RMS) variation of the MTE when arbitrary (but reasonable) changes are made in the numerical 
calculations. These variations (or errors) are primarily due to bin boundaries used in computing the 
histogram, and secondarily to the quadratic interpolation for estimating the minimum. (Additional 
information appears in Appendix F.) 

From a number of trials we determined the standard error (SE) is approximately 0.005. We then took 
the difference between the MTE of “prob” and the MTE of native-score and divided this by the above SE, 
specifically: 

 Normalized_delta = (MTE_prob – MTE_score)/SE   … (2) 

The results are shown in Figure 9. 

 

    Figure 9 – Normalized Deltas 

Note that the scales on the graphs are different. In assessing the results we take a conservative 
approach: an absolute delta less than unity is considered insignificant. (Why? It is common practice to 
consider a one-sigma variation as insignificant, partly because experience shows that most standard 
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error estimates are too small.) A value between one and two units is considered marginal; while a 
change exceeding 2 units is considered significant. It then appears that for Matcher C, and possibly also 
for Matcher A, the differences are not significant. For Matcher B they are definitely significant. (2 sigma 
errors are associated with 95 % confidence interval.)  We conclude that Matcher B (and possibly E) used 
additional information beyond the native score.  

6. Improving the Native Score 

The previous section showed it is possible to improve upon native score by judiciously adding 
information. In this section we show that this can be done with minimal additional resources. In fact, by 
using only the native scores on the candidate list and repackaging it, it is already possible to produce a 
degree of improvement.  

A number of variant algorithms were tried. Some were unsuccessful. One method producing positive 
results is related to a principle used by latent experts: a large increase in score from the adjacent 
candidate immediately beneath might indicate a true mate.  We used this observation in the following 
way: 

1) Sort the candidates using the native score and retain the top 100. 
2) Modify each score on the list by subtracting from it a (fixed) fraction of the score immediately 

below it. 
3) Reorder the resulting scores. 

(This algorithm fails for the 100th candidate, because there is no candidate below it – we simply ignore 
the last candidate.) Explicitly, if Si denotes the original “native score,” and S*i the “improved score,” then 

 

  S*i = Si – k Si+1      … (3) 

where k is a constant. This multiplicative constant (for the subtraction term) was determined 
experimentally so as to minimize the MTE. Based upon a small number of trials, a value of 0.3 was 
selected for k. (No attempt was made to optimize the algorithm of eq. (3) as the purpose was only to 
demonstrate a concept.) The following figure shows the resulting improvement in MTE when using S* 
vs. S. For comparison, the corresponding deltas based upon p/”prob”4 are also shown.  

                                                           
4 See first para. of Section 5; p and “prob” will be used interchangeably. 



16 
 

 

 

   Figure 10 – Normalized Deltas Using S* Compared to those Using “p/prob” 

In the above, the green bars, labeled “delta_S*,” represent the improvement in MTE due to using S* in 
lieu of p (= prob). Also shown for reference, are the blue bars resulting from “prob.” (These are the same 
as those of Figure 9.) It will be seen that in all cases the green bars demonstrate improved performance 
of S*, and except for Matcher B, the improvement is greater than that of prob. (We found it somewhat 
surprising that such a simple algorithm could produce such results.) 

The overall results are summarized in the following table. The numbers shown are the averages over the 
three input datasets. 

Matcher Delta-p Delta-S* 
A 1.5 (marginal 

gain) 
2.7 

B 6.7 4.5 
C 0.3 (no gain) 6.2 
E 2.8 5.0 

    Table 2 – Summary of Performance Gains 

(The improvement in performance in terms of reduction of MTE is obtained by multiplying these values 
by .005.) 

7. Detailed Definition of the Standardized Score/PLMS 
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In Section 3.0 we established some desirable characteristics for a standardized score. One of these was 
that it should correlate with the likelihood of the candidate being a true mate. We referred to a score 
having this characteristic as a PLMS. We first define the standardized score/PLMS in terms of an intuitive 
interpretation, and follow this with an algorithm for calculating this score. First the simple, intuitive 
explanation: 

The standardized score is a positive number between 0. and 100, and carried to two decimal places 
(e.g., 93.76).  

7.1 Survey of Potential Algorithms 

The following table outlines nine algorithms for computing the PLMS. These range from simplest (alg. 1), 
to the most complex (alg. 7).  

Alg. 
No. 

Algorithms synopsis Positive 
attributes/advantages 

Negative 
attributes/disadvantages 

1 Scale the “native” score (internal matcher 
score) of all candidates, both genuine and 
impostor, linearly. Lowest score becomes 
zero, highest 100. (Zero to 10 000 has also 
been suggested, with no decimals carried.) 

Simplest possible 
implementation. Might be 
adequate. Can be used in 
conjunction with other 
algorithms/scores. This 
transformation retains the 
matcher’s natural 
distribution. 

Too “lumpy” – scores not uniformly 
distributed.  Not clear where 
transition from impostors to true 
mates occurs. 

2 Use only non-mate scores (impostors). Scale 
these based on the inverse of the cumulative 
distribution function (CDF). Again, result will 
be between zero and 100, or zero and         
10 000 depending upon preference. 

Simple to implement. Also, 
there is always an abundance 
of non-mate scores.   

True mates will be crowded into a 
small range of top scores. Many true 
mates will simply score 100, and 
there will be no discrimination 
between “ordinary” hits, and 
“monster” hits. [Monster hits are 
typically several magnitudes larger 
than mean impostor scores.] Most of 
the range of scores will be of little 
use. 

3 Same as (2) but use a logarithmic scale to 
stretch the top-most portion of score 
distribution. Rescale this to fit into the 
interval [0, 100].  

Simple to implement. Also, 
there is always an abundance 
of non-mate scores. Gives 
better separation at top than 
does (2). Worth further 
investigation. 

Somewhat more complicated in the 
details. Unclear where the breakpoint 
is. Some searches produce higher 
scoring non-mates than others. These 
might produce the bulk of impostors. 
[By “breakpoint” we mean values 
high enough that a candidate 
deserves further scrutiny.] 

4 Similar to (2), but use only true mate scores.  Simple, and puts the 
emphasis on true mates – 
which is what we want to 
identify. 

Since it does not take non-mates into 
account, it gives no indication of 
breakpoint.   

5 
 

Hybrid system. Similar to (4), but counts only 
true mates which appear in first place. 
This method is developed in detail in the 
report. 
May be generalized by counting all hits up to 
rank L.  (Prior version has L=1.) 

Takes impostor distribution 
into account. Provides good 
indication of what is a strong 
hit. 
 

May be limited by availability of large 
background and sufficient searches 
with mates. 
Tends to de-emphasize lower non-
mates. Breakpoint still somewhat 
dependent on size of background. 
(But only minimally so.) 

6 Computes likelihood-ratio (LR) – ratio of Theoretically one of the best Difficult to compute: may require 
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probabilities: a) that candidate comes from 
true mate population, to b) candidate comes 
from impostor population. 

indicators -- if accurate 
information exists. 

extreme value theory as foundation. 
Maybe misleading if information 
upon which it is based is unstable. 
Also, the dynamic range of the 
output can be very large, say 1E-6 to 
1E6.  

7 Same as 8, but take log() of LR, then remap 
to 0 to 100 (or 10,000). 

Better than 8 because 
numbers are more user 
friendly. May be theoretically 
the best if information it is 
based on is sufficiently stable. 

Difficult to compute. [We do not say 
it should be abandoned, but the extra 
effort might be unproductive.] 

Table 3 – Comparison of Potential PLMS Algorithms 

At this point in our investigation it is not possible to definitively select the optimum algorithm. Our 
impression is that algorithm 1 is too simple, and does not take sufficiently into account the differences 
between systems. Algorithms 6 and 7, on the other hand, are somewhat on the complicated side, and 
require detailed information, which might not be available, or even unstable. 

In view of the above, we have selected an algorithm in the middle, algorithm 5, for further development. 

7.2 Detailed Development of Algorithm 5 

The standardized score, or PLMS, is a positive number between 0 and 100, and is carried to two decimal 
places. For algorithm 5 the exact interpretation of this score is that it represents the percent of true 
mates in first (top) position that have equal or lower native scores than the candidate being considered. 
For example, a score of 93.76 would indicate that 93.76 of true mates appearing in first position will 
have less or equal score -- and this will of course be true whether using the standardized score or the 
native score. The same transformation (score remapping) is used regardless of position on the candidate 
list. For example, a PLMS of 12.77 for a candidate in third place (third position on list) means that only 
12.77 % of true mates in first place have equal or lower scores. Note that this definition depends to an 
extent on the size of the background. We propose to use one million (fingers) as the standard size. 

There are several approaches to arriving at the PLMS. Below we outline a stepwise approach, which is 
intuitively easy to understand. Later on in this section we outline a more terse mathematical approach. 
We begin with the optimized native score, S*. (See Section 6.) From S* we compute an intermediate 
score, of the Z-score type: 

    Z = (S* - μimp)/σimp   … (4) 

Here μimp is the mean of all imposter (non-mate) scores (S*), and σimp is the standard deviation of these 
scores. These values are computed from the development set. As it stands, eq. (4) already encompasses 
some normalization properties: a) the mean value is close to zero; b) the standard deviation is close to 
unity; and exceptionally high scores (say produced by true mates) have values on the order of ten or 
twenty.  

The next step is to transform eq. (4) into the final desired normalized score (PLMS). This can be done in 
many ways. We selected a simple approach, via the exponential function: 
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   Z* = 100.*( 1 – exp((Z + 2)/c))   … (5) 

The constant c is experimentally chosen. We found c = 18 to work reasonably well. The purpose of the 
+2 in eq.(4) is to eliminate (or at least minimize negative) values. (For example, a value of Z = -2 will 
produce Z* = 0, while a value of Z = -3 will result in Z* = -5.71.)  If negative values are to be avoided 
entirely, this can be done via a clamp function, such as: 

    Z** = max(Z*, 0)   … (6) 

To test the result, we collect a histogram (of Z* or Z**) for all true mates in first position using the 
development set. This requires choosing bin boundaries for the histogram. To illustrate, we might have a 
bin with boundaries at 0.90 and 0.95. All scores ≥ 0.90 but < 0.95 will fall into this bin, and be so 
counted. Normalizing this count by the total number of hits in first place (regardless of score) will give a 
number which represents a probability.  This value ideally should be near 0.925 (the center of the bin). 
Suppose that after conducting the above procedure we obtain 0.96. This might be deemed accurate 
enough, but if a more precise value is desired we can correct eq. (4) using a low-order polynomial (say a 
cubic). Calling this polynomial p(Z*), we then arrive at an equation of the form: 

    Z** = Z* + p(Z*)    … (7) 

The corrections produced by p(x) should be fairly small, on the order 10 % or less. (In the previous 
example p(92.5) ≈ - 3.5.)  

The following figure shows a plot of the standardized score derived from the above algorithm, using the 
exponential plus a quadratic correction term. (This uses Matcher B and dataset LE – but the choice does 
not appear critical.)  

 

  Figure 11 – Actual Distribution of Scores Based on PLMS 

Ideally, the blue line should follow the principal diagonal. The actual curve shown has noticeable 
“squiggles.” We could attempt to refine this further, using eq. (7), but a limit is soon reached due to 
uncertainties in the histogram data. Probably Figure 11 is close to what can easily be achieved. 

The following table provides some interesting statistics based on the standardized score derived above. 
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Statistic Observed Value 
Max score obtained (true mate) 95.3 
Min true mate score (in first place)   3.7 
Max impostor score  (in first place) 80.85 
Min impostor score  (in first place)   2.1 
Mean true mate score (in first place) 
 

49.9 

Standard dev. of true mate score 31.6 
Mean impostor score   5.3 
Standard dev. of impostor score   5.2 
Mean hit position (mean rank on list, assuming on 
list of 100 candidates) 

  3.7 

Table 4 – Selected Statistics Based on PLMS  

In the above we deliberately took a roundabout procedure to make it intuitively clear. Mathematically, a 
much more compact method is to: a) empirically compute the cumulative distribution function (based 
on the development set; b) find a good analytic approximation to this histogram (this depends upon 
specifics of the native score, and might require the error function, erf(x), the Rayleigh function, etc.); c) 
finally, we take the resulting analytic cumulative distribution and scale it by 100 to arrive at the PLMS. 
Details are found in Appendices H and J. 

 

We have not addressed the question: what specific threshold should alert us of a possible hit? Insight is 
provided by the point at which the minimum total error occurs. This is generally near 10, suggesting that 
a value somewhat larger than 10 would be a reasonable threshold for declaring a “hit.” This topic is 
examined in detail in Appendix F. 

Summary: This report shows the need for standardizing the matcher score. Three specific reasons are 
given: i) To assist the human expert in examining candidate lists; ii) for candidate list reduction 
(eliminating obviously weak candidates); and iii) for multi-matcher fusion. We propose that the score 
should range from zero to 100, with two additional decimal places; or else from zero to 10 000, with no 
decimals carried. Seven potential algorithms were listed, ranging from very simple to quite complex. A 
mid-range algorithm was then selected for detailed development. This report expresses the opinion that 
additional evaluation and input from human experts is required for a definitive selection. Seven 
appendices are provided so support the mathematical underpinnings. 
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 Appendix A – Metrics for Evaluating Matcher Performance 

This appendix covers the most common and useful metrics for evaluating matcher performance. While 
these are generally well known, we include them for completeness, and as an introduction to the other 
appendices.  

Two metrics/statistics are of prime importance in gauging the performance of an AFIS: a) the true 
acceptance rate, TAR; and b) the false acceptance rate, FAR. The first, TAR, is a measure of the 
probability that the true mate will appear on the candidate list (output list) given that the true mate is in 
the database that is searched. The FAR is a measure of the probability that a false mate, or impostor, 
will appear on the candidate list. A seminal report by Garris of NIST, ref. [15], explains this concept in 
detail. 

There are several variants of TAR and FAR, depending on how long of a candidate list is under 
consideration. When counting impostors (for FAR) we might only include impostors outranking the true 
mate (if present). Alternatively, we might only consider impostors appearing in first position.  

For TAR we often count only candidates in first position, as is typically the case in this paper. This 
simplifies the statistics but may prevent the detection of multiple mates in the database (multiple 
enrollments).  

An important performance measure employing TAR is the cumulative match characteristics, or CMC. 
This is defined as the probability that the true mate will appear on a candidate list of specified length. 
Later on we give some examples.  

Closely related to the CMC, but more powerful, is what is termed the receiver operating characteristics, 
or ROC. The name betrays the radar origins of the concept, and is something of an anachronism. A more 
up-to-date name is relative operating characteristics, or even simply operating characteristics, or OC. 
The ROC concept is described in detail in [15]. The mathematical expression for the ROC is developed in 
Appendix B. A closely related concept, the DET, is detailed in [16]. Ref. [17] provides a more recent 
overview of these concepts. 

In essence, the OC shows the dependence of TAR upon FAR. The OC was used in this report for 
computing performance, principally in the form of MTE (viz.). 
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Appendix B – Invariance of the ROC to Global Point Transformation. 

 

We derive the fundamental equation for the Operating Characteristics curve, or OC,5 based on the 
distribution of true mate scores (genuine scores) and non-mate scores (impostors). We have several 
reasons for doing this, but ultimately we wish to show that the result is independent of simple score 
transformations. 

Let S denote the (native) matching score produced by a system; let N denote the size of the 
database/background/repository; next, let f1(S) denote the probability distribution of scores (density 
function) when matching against a non-mate, and let f2(S) denote the corresponding function when 
matching against a true mate. Finally, let F1(S) and F2(S) denote the respective cumulative distribution 
functions, i.e., the integrals of f1 and f2.  

Suppose we assign a score threshold, τ, with the idea that only scores exceeding or equaling this 
threshold will be counted. The fraction of the database expected to exceed this threshold (when 
matched against the search) is 1 - F1(τ). Or put another way 

   N(1 - F1(τ)) = FAR    … (B-1) 

(If there is exactly one true mate in the repository, then N should really be replaced by N-1 – but this is 
obviously unimportant for large N.) 

From eq. (B-1) we can solve for τ, obtaining: 

   τ = F1
-1(1 – FAR/N)    … (B-2) 

The quantity FAR/N is just the normalized FAR, that is, the fraction of the repository passing the 
threshold.  

The probability that a true mate will exceed the threshold τ is given by 

   p = 1 - F2(τ)     … (B-3) 

Combining (B-2) and (B-3) we arrive at 

  TAR = 1 - F2(F1
-1(1 – FAR/N))    … (B-4) 

Suppose now we wish to use a different score, S*. We assume S* is derived from S by means of a global 
point transformation, S* = G(S). (By a global point transformation, we mean a function of a single 
variable. Also the function may not contain “hidden” variables which are allowed to change from case to 
case.) 

                                                           
5 Also called ROC 
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Assuming that the function G() is invertible, the distribution functions will now be given by F1(G-1(S*)) 
and F2(G-1(S*)). When these expressions are substituted into (B-4) we obtain the following expression: 

TAR = 1 - F2G-1GF1
-1(1 – FAR/N)    … (B-5) 

Provided that the function G has a regular inverse, G will drop out of (B-5), and we are left with the 
same result as before, namely (B-4). If however the function G exhibits jumps or flat spots, then this 
argument does not apply, because now there is information loss, and the new OC will be lower.  

The important conclusion to take away is: 

A point transformation of the score cannot improve performance. If the transformation is regular, it 
will leave performance the same; otherwise performance will diminish. Note that the transformation 
of eq. (3), Section 6, is not a point transformation since it involves two adjacent values. 

 

  



26 
 

   Appendix C – Examples of OC Functions 

It is often claimed that actual distribution functions for the scores do not closely follow any classical 
distributions (e.g., normal, log-normal, etc.), and therefore OC functions derived from such distributions 
are of no use. There is a measure of truth to this, but the conclusions are overstated.  

Sometimes the distributions can be represented with good accuracy by classical functions for most of 
the score range. The following graph is such an example. 
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Figure C-1 – Experimental True Mate Score Distribution and Two Approximations Using Classical 
Functions 

The fit is generally quite good, except at the very low end, say 0 to 700. Some of the deviation is almost 
certainly due to “sampling errors,” i.e., peculiarities of the specific test data, but it remains true that 
such approximation often fail at the tails of the distributions.   

It is possible to improve the fit of the tails by using a min-max-error criterion. This will improve the error 
in the tails at the expense of slightly increasing errors elsewhere. 

A second observation is that many distribution functions lead to the identical OC function. (See for 
example eq. (B-5).) In principle, it is therefore possible for non-standard empirical distributions to lead 
to an OC function derived from classical distribution functions.  

The third observation is:  even allowing that we have a classical OC function which is not sufficiently 
accurate in certain sections of its domain, we can consider this function to be a first approximation, then 
add corrections terms. These “not quite accurate enough” OC functions often can lead to essentially 
correct conclusions, and so are useful. 

One of the easiest classes of distribution functions to work with are the Weibull distributions. Here the 
general equation is 

Fi(s) = 1 – exp(- (s/λi)ni )  , s ≥ 0                           … (C-1) 
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Note that there are two parameters, or degrees-of-freedom, λi and ni. Assuming that both the true mate 
and the impostor distribution follow the form of (C-1), and using eq. (B-4), we obtain 

  TAR = exp(-α◦ln1+β((N/FAR))       …(C-2)  

where 

   α = (λ2 / λ1)n1 and  β = (n1 – n2)/n2         …(C-3)  

When n1 = n2 this simplifies to what is known as the power-law form: 

TAR = (FAR /N)α         …(C-4) 
 

The power law is very simple and is often a very good first approximation, not only for OC curves, but for 
CMC curves as well. 

The following provides an example of a good fit between a classically derived OC curve and an empirical 
one.  

   

Figure C-2 – Sample Experimental OC Curve and Best Fit using Extended Power-law 
 

Conclusion: “Classically derived” OC function may give good approximations to empirical data 
providing the parameters are properly selected. Remaining deviations (from empirical data) may then 
provide a clue to the matcher architecture.  
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Appendix D – CMC Curves 

The CMC was briefly mentioned in Appendix B. It is a kind of distribution function, and provides the 
probability the true mate will appear on the candidate list (given there is exactly one true mate in the 
database). It is normally presented as a cumulative distribution, so that P(L) is the probability that the 
true mate will appear somewhere on a candidate list of length L. 

The expression for P(1), the probability the true mate is in first place, is given by 

  P(1) = Pfirst =  ∫0
∞ (F1(s))N-1 f2(s)ds     … (D-1) 

Where the probability distributions are as defined in Appendix B. 

This expression is more complicated than eq. (B-4) for the OC, although there is a close connection 
between the two. For most functions the above integral cannot be evaluated exactly. However, for 
Weibull distributions with the same n (see eq. (C-1)) a closed-form solution can be obtained: 

   P(1) = α◦B(N, α)        … (D-2)                            

In the above, B denotes the beta function, and α is as defined by (C-3). For large N (say a million) (D-2) 
can be shown to be well approximated by 

 P(1) ≈ Γ(α+1)/Nα         … (D-3) 
 

This can be generalized to arbitrary candidate list lengths, L: 

P(L) ≈ Γ(α+1)*(L/N)α         … (D-4) 
 

Since α needs to be small for a reasonably performing system (say 0.05 or smaller), we can 
approximate Γ(α+1) as 1 – 0.56 α, to arrive at 

P(L) ≈ (1 – 0.56 α)*(L/N)α        … (D-5) 
 

Further simplification gives 

 P(L) ≈ (L/N)α         … (D-6) 
 

Note that this is just the power law, analogous to eq. (C-4). This analogy is not coincidental, as shown by 
the following argument. A candidate list of length L allows up to L impostors to appear on the list; that is 
to say, FAR = L if the true mate is not on the list, and FAR = L-1 otherwise. This will be seen to be very 
similar to the OC of (C-4). 

Conclusion: The power law often provides a good approximation to both the CMC and OC.  
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   Appendix E – Methods of Ranking OC Curves 

 

Given two OC curves, we often need to determine which of the two represents superior performance. 
There are four methods in common use: 1) dominance; 2) area above curve; 3) minimum total error; 
and 4) equal error rate. Some of these concepts are discussed in ref. [17]. 

1. Dominance 

This simply means that one curve is always higher than the other. Whatever FAR we pick, the superior 
curve will always have higher TAR. But in the general case the two curves might cross, in which case 
dominance does not apply. 

The following graph illustrates these concepts. 

   

  Figure E-1 – Representative Experimental OC Curves 

Four curves, A, B, C and E are shown. (D is not shown.) Curve A dominates the other three. Curves B and 
C cross, so neither dominates the other. 

2. Area above curve 

The first quantitative measure of goodness, or figure-of-merit (FOM), for an OC curve is the area-above-
curve. It represents the area above the OC curve, and below the line y =1.  It also equals: 1 - 
area_below_curve. Note that smaller values indicate the better system, and for very high performance 
this will be a small number. For a random-guessing system it will be ½. 
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3. Minimum total error (MTE)  

This is the second FOM, and is given by the minimal value of the sum of the two errors: i) the miss rate, 
1 – TAR, and ii) the FAR. A factor of ½ is included to make the result consistent with a random-guessing 
system. The equation is therefore MTE = min{ (1 – TAR + FAR)/2}.  

4. Equal error rate (EER) 

The point along the OC curve where the two types of errors are equal is known as the equal error 
point. At this point 1 – TAR = FAR. The EER is then the value of FAR at this point. This is our third 
FOM. (See ref. [17].) 

The three FOMs are related, though generally do not give identical results. As will appear shortly, area-
above-curve is the “easiest grader,” while EER is the toughest. To investigate the relationship between 
the three we assume a power-law for the OC. This of course only represents special cases, but was 
shown in Appendix D to be often a good approximation. Also it allows for analytic expressions for the 
three error measures (FOMs). The power-law assumes 

    TAR = FARα     … (E-1) 

Where α is a positive constant between zero and unity. Zero represents a perfect system; and unity 
represents a random guessing (“clue-less”) system (this is essentially (B-4) with F1≡ F2.) 

For the above functional form the value of area-above-curve (FOM #1) is given by 

   area_above_curve = α/(1 + α) ≈ α – α2       … (E-2) 

and is therefore very nearly given by α  for small α.  

The expression for MTE (FOM #2) can be shown to be  

  MTE = (1 – αα/(1 – α) +  α1/(1 – α) )/2      … (E-3) 

This cannot be given a power expansion around zero, as was done for (E-2), because there is a 
singularity at zero. However, a good approximation is provided by 

   MTE ≈0.5 α (1 – ln(α))      … (E-4) 

No simple analytic expression appears to exist for EER, but a good analytic approximation – along the 
lines of (D-4) – is provided by 

  (-0.458*ln(α) + 1.1911)* α1/(1 – α)      …(E-5) 

The following graph compares the three types of error measures. 
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 Figure E-2 – Comparison of Three Ways of Measuring Quality of OC curves  

As is seen from this figure all three measures are about the same. Area-above-curve is the “easiest 
grader” (gives most favorable (lowest) scores). MTE and EER are nearly the same, but EER is slightly 
“tougher.”   

These results were used in this report to assess the accuracy of MTE estimates.  
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Appendix F -- Numerical Methods for Computing MTE 

In Appendix E we provided algorithms for computing MTE, EER, and area-above-curve. However, these 
were based on idealized forms of the OC curve. This appendix provides practical algorithms applicable to 
more general cases. We emphasize MTE as this is extensively used in this report. The algorithms are 
based on three points taken from the OC. In the first algorithm we used these three points to fit a 
power-law to the arc spanned by these three points. Several algorithms can be used to find α. Among 
the best is min-abs-error. That is, we pick that α which makes the errors at the end-points of equal 
magnitude but opposite sign. We then use eq. (E-3) to actually compute the MTE. 

The second algorithm uses quadratic approximation, and does not depend on the power law. Assume 
the three points are given by (x1, y1), (x2, y2) and (x3, y3), where  x1 = FAR1, and  y1 = TAR1, etc.. Next 
compute a, b, and c using the following expressions: 

a = y1/(( x1 - x2)( x1 - x3))   +  y2/(( x2 - x1)( x2 - x3))   + y3/(( x3 - x1)( x3 - x2))         … (F-1) 

b  = -y1(x2 + x3)/(( x1 - x2)( x1 - x3))   +  -y2(x1 + x3)/(( x2 - x1)( x2 - x3))   + -y3/(x1 + x2)/(( x3 - x1)( x3 - x2))  … (F-2)  

c  = y1(x2 x3)/(( x1 - x2)( x1 - x3))   +  y2(x1 x3)/(( x2 - x1)( x2 - x3))   +  y3/(x1 x2)/(( x3 - x1)( x3 - x2))      … (F-3) 

(These are not the simplest expressions for a, b, c, but are the most symmetric.) 

From these we can then compute 

  MTE = ( 1 + 4a – 2b + b2– 4ac)/(8a)          … (F-4) 

The expression for EER is slightly more complicated (in agreement with the analysis of Appendix D): 

  EER = (-1 -b -  √((b+1)2 - 4a(c -1)))/(2a)      … (F-5) 

As a check we take three points check these equations against the results of Figure D-2. We take α = 0.2, 
and using this α we compute the following three data points : (0.1, 0.631), (0.2, 0.725), (0.3, 0.786). The 
assumed FAR values are arbitrary; the TAR value follow from the assumed α. From these three points we 
compute a = -1.65, b = 1.44, and c = 0.504. These result in MTE = 0.234, and EER = 0.244. Both values are 
in excellent agreement with the graph of Appendix E. 

These results were used in estimating MTE and the associated standard error. 
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Appendix G – Likelihood and Likelihood-ratios 

In Section 7.0 we discuss seven alternative candidates for standardizing the matcher score. These range 
from simple to quite complex. Simplicity has definite advantages. Such algorithms are easily understood, 
easily implemented, and the calculated values tend to be more stable. However, they may not provide 
an accurate estimate of the likelihood that a subject is a true mate. For example, consider a zero-
information, or random guessing system. The distribution of scores for true mates and impostors is the 
same. Assuming there is one true mate in the database, of size N, the probability it will appear in first 
place is just 1/N – regardless of the score indicated.  

Of course AFIS are not random guessing systems -- so they should do a lot better. The simplest 
assumption is that systems of the same generation perform about the same. This assumption by itself 
goes a long way toward calibrating and interpreting the standard score. 

The term likelihood is used in statistics to indicate an estimate of a probability. For all practical 
purposes this is a probability, but there are technical reasons for differentiating the two. Likelihood 
ratio is used to denote the ratio of two likelihoods, ususally in the form of favorable outcome to 
unfavorable. This is similar to the gambler’s “odds.” When a gambler states the odds of something 
happening are 3:2 say, what he means is that 3/5 = 0.6 the outcome will occur, and 2/5 = 0.4 it will not 
occur (and the “opposite” will occur).  

Using the same matcher (Matcher B) and dataset (LE) as was used for Figure 11 (Section 7.0), and using 
algorithm 5, we obtain the distribution of first-place impostor scores as shown in the following figure. 

 

   

  Figure G-1—Cumulative Distribution of Impostor Scores (Matcher B/LE) 

The blue line (labeled “impostor”) gives the experimentally obtained distribution. The red line (labeled 
“recon_imp”) provides an empirically derived fit to the experimental data. The equation for the 
reconstruction is a Rayleigh diatribution with parameter 9.9.  

The following figure provides the derivative of Figure G-1. This is required for computing the likelihood-
ratio. 
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   Figure G-2 – Derived Density (based on G-1) 

The density function for true mates, by design, is uniform and equal to unity. Suppose a score of S was 
obtained for the candidate in first place. The probability of a true mate score falling in the interval [S –
δ/2, S+δ/2] is simply δ. (Delta (δ) is arbitrary but of course assumed small.) For impostors, the 
probability is the value indicated in the above graph times δ. The ratio of these probabilities is then the 
likelihood ratio. It is given below. 

   

  Figure G-3 – Derived Likelihood Ratio (LR) with Smooth Fit 

A likelihood-ratio of 10 is achieved at a score of about 30, and implies a probability of 10/11 = 0.91. The 
next figure shows a smoothed version of the above graph for small scores.  
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Figure G-4 – Simplified Smooth Approximation for Small PLMS 

From this figure we see that a ratio of 1:1 is achieved at about 12, and a ratio of 2:1 at about 14. Note 
that this is in agreement with the concusion at the end of Section 7.0. 

The mean value for impostors in first place for this particular matcher and dataset was about 5.3. A 
different system will have a somewhat different mean value. Provided the difference is not too great,  
we can use the mean impostor score to estimate the critical likelihood ratio (= 1). Assume the mean 
impostor score is 10; then it is not unreasonable to assume a likelihood ratio of 2:1 would be achieved 
at 20.  
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Appendix H -- Probability Distributions of Transformed Scores 

Suppose we start with the native score, S, and wish to transform this to a new score, S*; furthermore, 
we would like the new score, S*, to obey a specified distribution function (which might be quite 
different from that of S). How can this best be accomplished? 

Following Appendix B, we assume that the relationship between S and S* is given by 

S* = G(S)      … (H-1)  

Assume further that the cumulative distribution function for S is given by F2(S), and that for S* is given 
by F2*(S*).  (We follow the notation of Appendix B, wherein the subscript 2 indicates a true-mate 
distribution.) We must then have 

    F2(S) = F2*(S*)     … (H-2) 

In view of (H-1) this can be written as 

    F2(G-1(S*)) = F2*(S*)    … (H-3) 

(G-1() indicates the inverse function of  G().) Solving for G we obtain  

    G() = F2*-1(F2())     … (H-4) 

(For simplicity we omitted the argument in the above. The superscript -1 indicates we are to take the 
inverse of F2*(). ) 

A particularly simple case occurs when F2*(x) = x, 0 ≤  x ≤ 1. That is to say, F2*(x) is the ramp (identity) 
function on [0, 1]. In this case eq. (H-4) reduces to  

    G() = F2()     … (H-5) 

The cumulative distribution of S*is now a ramp function, while the density function is now a constant 
equal to unity. 

Suppose however, that – as suggested in the body of this report – we would like S* to take on values 
from zero to 100, rather than from zero to 1. Then we need to modify eq. (H-5) to be 

    G() = 100*F2()     … (H-6) 

The resulting density function is again constant, but this time it has value 1/100. 

In the above we assumed that it is the distribution of true mates that we would like to modify. Of course 
exactly the same procedure can be used to modify the impostor distribution to some specified 
functional form. But it is not generally possible to specify both distributions at the same time. For 
example, it is not generally possible to find a transformation which reduces both true-mates and 
impostors to a uniform distribution, except for very special cases, such as a random guessing system. 
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Appendix J – Numerical Example of Distribution Modification 

This appendix comprises a numerical example employing the theory of Appendix H. We begin with 
empirically collected data in the form of a histogram. This generally has the appearance of “unkempt 
hair,” as in the following graph.    

  

Figure J-1 – Histogram of Score Distributions (raw data) 

The next step is to smooth this data by averaging over short intervals taken symmetrically about a point. 
The resulting function will now be smooth, as in the following diagram, and hence easier to work with. 

  

Figure J-2 – Smoothed Score Distribution – True-Mate/Genuine-Scores Only 
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The deviations between the rough empirical data and its smoothed version are largely due to sampling 
errors (i.e., random fluctuations). These sampling errors do not contribute to our understanding, so they 
will be removed, and we work with the smoothed version. The next step is to fit the empirical curve with 
classical distributions. Two approximating functions were tried: 1) Weibull, and 2) normal (Gaussian). 
Note that as the empirical distribution has aspects of being tri-modal: there is an anomalous bump at 
low values, around [0, 400], and another at about 1100. These bumps will appear as errors to the fit. The 
optimality criterion for the fit was min-max-error. The results of the fit are shown below. 

  

Figure J-3 – Empirical Data with Two Candidate Curve Fits  

The errors between the curve fit and the data are shown below. 

 

Figure J-4 – Errors in Curve Fit (Deltas) 
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Note that the max positive error and max (absolute) negative error are about equal in magnitude – a 
hallmark of the min-max-error method. Also note these maximal excursions occur at about 400 and 
1100, as anticipated. The table below shows the values of the parameters produced by the curve fit. 

 

 

 

 

 

 

 

The Weibull distribution exhibits the smaller errors (Figure J-4), and also is analytically more tractable; 
for these reasons we select it as our working approximation. The equation for the cumulative 
distribution is then given by 

  F2(S) = 1 – exp( - (S/ λ) α) = 1 – exp( - (S/2525)2.88)  … (J-1) 

If we want S* to take on values in the interval [0, 100] we need to set 

   S* = 100* F2(S)      … (J-2) 

The resulting cumulative distribution for S* is then given by 

   F2*(S*) = S*/100     … (J-3) 

 

And the density function is now  

   f2*(S*) = 1/100      … (J-4) 

Strictly speaking, (J-3) and (J-4) apply to the Weibull approximating function, and not to the (smoothed) 
empirical approximation. The deviation of the cumulative distribution for the empirical data from a 
uniform distribution is shown below. In general, these deviations are quite small, averaging less than   
0.5 %. 

 

  

Weibull 
λ 2525 
α 2.88 
Normal 
μ 2213 
σ 855 
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Figure J-5 – Difference (delta) Between Actual Cumulative Distribution and Ideal Ramp Function 
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