

NISTIR 7992

Exploring the Methodology and
Utility of Standardized Latent

Fingerprint Matcher Scoring

V.N. Dvornychenko
G.W. Quinn

http://dx.doi.org/10.6028/NIST.IR.7992

NISTIR 7992

Exploring the Methodology and
Utility of Standardized Latent

Fingerprint Matcher Scoring

V. N. Dvornychenko
G.W. Quinn

Information Access Division
Information Technology Laboratory

http://dx.doi.org/10.6028/NIST.IR.7992

March 2014

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

ii

Acknowledgements

The authors would like to thank Michael Garris and Elham Tabassi for their many valuable suggestions
that went into this report.
We also like to thank the Department of Homeland Security, Science and Technology Directorate, and
the Federal Bureau of Investigation’s Criminal Justice Information Services Division and Biometric Center
of Excellence for sponsoring this work.

iii

Table of Contents

1. Introduction
1.1 Types of AFIS (Systems)
1.2 Candidate Lists and Candidate List Reduction
1.3 Matcher Fusion
1.4 Why Score Standardization?

2. NIST’s ELFT Project
2.1 Outline of ELFT
2.2 Matching Process and Output
2.3 Objectives of ELFT
2.4 Representative Information Obtained from ELFT

3. Matcher Scoring as Currently Practiced

4. Algorithms for PLMS

5. Analysis of Scores Provided in SDK Candidate List

6. Improving the Native Score

7. Detailed Definition of the Standardized Score/PLMS

7.1 Survey of Potential Algorithms
7.2 Detailed Development of Algorithm 5

8. References

Appendix A – Metrics for Evaluating Matcher Performance

Appendix B – Invariance of ROC to Global Point Transformations

Appendix C – Examples of OC Functions

Appendix D – CMC Curves

Appendix E – Methods of Evaluating OC Curves

Appendix F -- Numerical Methods for Computing MTE

Appendix G – Likelihood and Likelihood-ratio

Appendix H -- Probability Distributions of Transformed Scores

(No Appendix I)

Appendix J – Numerical Example of Distribution Modification

iv

List of Tables

Table 1 – Some Representative Scores Output by Submitted Automated Matchers

Table 2 – Summary of Performance Gains

Table 3 – Comparison of Potential PLMS Algorithms

Table 4 – Selected Statistics Based on PLMS

List of Figures

Figure 1 – Overview of ELFT Testing Approach

Figure 2 – Automated Candidate List Generation by an AFIS

Figure 3 – Comparison of Achieved Latent Performance with that of Plain-impressions using current AFIS technology

Figure 4 – Comparison of Achieved Latent AFEM Performance Using Different Data Modes; Aggregate of Four
Matchers

Figure 5 – Baseline Method for Producing PLMS; the Final Output Score appears at Bottom of Diagram (labeled
“PLMS”)

Figure 6 – A More Advanced Algorithm for Producing PLMS; This Algorithm is Capable of Re-ordering Candidates;
the Specimen Output Score appears at Top-right of Diagram, and is labeled PLMS

Figure 7 – Highly Advanced Algorithm for Producing PLMS; This Algorithm is Capable of Re-ordering Candidates; the
Specimen Output Score appears at Top Right of Diagram (and is labeled PLMS)

Figure 8 – Comparison of Achieved MTEs for Four Matchers

Figure 9 – Normalized Deltas

Figure 10 – Normalized Deltas Using S* Compared to those Using “prob”

Figure 11 – Actual Distribution of Scores Based on PLMS

Figure C-1 – Experimental Score Distribution and Two Approximations Using Classical Functions

Figure C-2 – Sample Experimental OC Curve and Best Fit using Extended Power-law

Figure E-1 – Representative Experimental OC Curves

Figure E-2 – Comparison of Three Ways of Measuring Quality of OC curves

Figure G-1—Cumulative Distribution of Impostor Scores (Matcher B/LE)

Figure G-2 – Derived Density (based on F-1)

Figure G-3 – Derived Likelihood Ratio (LR) with Smooth Fit

Figure G-4 – Simplified Smooth Approximation for Small PLMS

v

Figure J-1 – Histogram of Score Distributions (raw data)

Figure J-2 – Smoothed Score Distribution – True-Mate/Genuine-Scores Only

Figure J-3 – Empirical Data with Two Candidate Curve Fits

Figure J-4 – Errors in Curve Fit (Deltas)

Figure J-5 – Difference (delta) Between Actual Cumulative Distribution and Ideal Ramp Function

vi

Abstract

Automated searches of fingerprints against a repository/database are important tools of the forensic
community. Systems performing these searches are referred to as Automated Fingerprint Identification
Systems (AFISs). The output of an AFIS is a fairly small set of prospective candidates with attendant
matching scores (allowing for comparison of candidates, and frequently referred to as comparison
scores). These scores provide an indication of how likely a particular candidate is a true mate of the
search fingerprint (i.e., originates from the same individual). One difficulty in interpreting matching
scores in usage is there is no accepted standard for its range and exact meaning (other than “bigger is
better”). Experts need to become very familiar with the scoring of a specific system to make optimal use
of the results. This report proposes that we standardize the scoring system. The standardized score
becomes a number between 0 and 100 and carries two decimal places, for a total of four significant
figures. Seven alternative algorithms for computing matching scores are outlined in this report, ranging
from very simple to quite complex. A mid-complexity algorithm is then selected for detailed
illustration/development. This report also provides a detailed analysis of scoring produced by the
matchers previously tested by NIST.

1

Exploring the Methodology and Utility of Standardized Latent Fingerprint
Matcher Scoring

1. Introduction

Automated searches of fingerprints against a repository of known exemplars constitute an important
tool of the forensic community. Systems performing such searches are referred to as Automated
Fingerprint Identification Systems (AFISs). These are capable of searching large databases and returning
a fairly small set of prospective candidate matches. It is then the job of the fingerprint expert to examine
this list to see if any of the candidates can result in an identification, also called individualization, i.e.,
can uniquely, and with high confidence, determine the individual that produced the print.

Central to the internal workings of an AFIS is the principle of a matching score (or matcher score, or
comparison score). This is a measure of similarity between the search print and any selected print from
the database. The larger the score the greater the presumed similarity between the two. However,
there is no standard for defining the interpretation of this score, nor even its numerical range. This can
cause difficulties in interpreting candidate lists, as discussed in later sections. The purpose of this report
is to explore matching score standardization for latent fingerprint systems.

1.1 Types of AFIS (Systems)

 The nature and accuracy of the search process differ markedly depending upon the type of fingerprint
being searched: ten–print or latent print. The early history and development of AFIS is well covered in
Moses [1].

Ten-print systems are the more advanced of the two types of systems, and are capable of producing
high-confidence results with present technology. The result of a ten-print search will be a list containing
candidates which are considered likely to be true mates, i.e., fingerprints from the same subject. This list
can have three variants: a) no credible mate was found, so the list is empty; b) exactly one candidate
was found (deemed likely to be a true mate); or c) a small number, say two or three, candidates were
found. Outcome (c) might be the result of multiple enrollments of the same subject in the database.
These multiple enrollments may be accidental, and were not previously detected, or they may have
been entered intentionally. At times one or more impostors, i.e., not true mates, will make it on to the
candidate list, either alone or in addition to the true mate. The presence of one or more impostors can
happen for a number of reasons, but poor image quality is often a contributing cause. With top-end
systems impostors are infrequent. According to the Fingerprint Vendor Technology Evaluation (FpVTE)
[18] report, AFIS can achieve a rank-one identification rate for ten-prints of more than 99.4 %, using a
database of 10 000 fingerprint images. (More recent tests have verified this, and have shown even
higher performance.) The important characteristic of ten-print systems to keep in mind is that all
candidates on the candidate list are considered (at least by that AFIS) likely true mates.
For latent fingerprints the situation is markedly different. Latent fingerprints contain considerably less
information than do ten-prints, and current technologies do not permit identifying the true mate with
very high confidence. (Representative figures will be given later.) Therefore, it is standard practice for
latent fingerprint matchers to output the results of the search in the form of a candidate list. This list can

2

be quite long, say twenty or even a hundred candidates. Currently most systems have a fixed, “canned,”
candidate list length. However, in special circumstances it is possible to override the “canned” value.
The length of the list is then specified at the time the search is initiated. Candidates on the list are
ranked by matching score, with the highest score in top position. An important difference from ten-print
is that the latent fingerprint system makes no judgment whether these are likely to be true mates or
not; they are simply the highest scoring candidates, and their similarity to the search print may in fact be
quite low. Further discussion on the challenges of latent AFIS are presented in Meagher [2].

Latent and ten-print systems constitute the two main types, but there are additional types. Notable
types are: a) reverse latent searches, where a ten-print is searched against a database of unsolved
latents; and b) latent to latent search systems, in which a latent is searched against unsolved latents.
These systems are outside the scope of this report.

1.2 Candidate Lists and Candidate List Reduction

Increasing the length of the candidate list is one way of increasing the probability the true mate will
appear on the list -- but this increase is surprisingly modest. Theory shows the probability a candidate is
a true mate diminishes approximately inversely with its ranking on the list. (Thus the 10th candidate is
only half as likely to be a true mate as the fifth, etc. See [19, 20].) Therefore enhancing performance by
lengthening the list has diminishing return beyond some length, while adding burden to the human
expert. In addition, there is the distinct possibility a true mate is not in the database, and in fact, this is
quite common. Obviously in such cases increasing the length of the list is counterproductive. This is
discussed in more detail in Meagher [2].

As a result, the latent expert needs to exercise considerable judgment in selecting how many, and
which, candidates to examine in detail (see [2]). In their selection the expert is assisted by the matching
score. A very low scoring candidate might simply be dismissed out-of-hand. For “reasonable scores” the
expert will call up the file print (image) of the candidate, and examine it. A cursory glance is often
sufficient to exclude the candidate from further consideration. For example, it might be obvious the two
prints have different pattern classes -- so cannot possibly be mates.

To be able to dismiss a candidate purely on score requires high familiarity with that AFIS system. Since
the expert must often search a latent on several systems -- not all of which might be equally familiar --
this can cause difficulty. At a minimum, more work will be required to process multiple candidate lists;
at worst, some true mates might be missed. Standardizing the matcher scores would greatly assist the
process.

There are two other justifications for standardizing the score. Many candidate lists – especially the
longer ones – may contain “weak” candidates, ones very unlikely to be true mates. It would be
extremely helpful to the examiner if these were eliminated from the list. We refer to this process as
candidate list reduction, and is further discussed in Section 4.

Candidate list reduction was identified as a highly desirable goal in the Evaluation of Latent Fingerprint
Technology (ELFT) Concept of Operations (CONOPS), [3]. The method for accomplishing this closely

3

follows the steps performed by the human expert: all very low scoring candidates are dismissed out-of-
hand (except in very high value criminal cases). The remaining candidates are examined by a special kind
of matcher which looks to see if the pattern classes, or more generally the ridge flow, are “reasonably”
close. Candidates passing could be sent to an advanced matcher, capable of extracting and matching
many types of features. Since this advanced matcher makes only a few comparisons, it does not need to
be fast. Having a standardized score greatly assists in the first round elimination (of frivolous
candidates). These ideas are further explored in Section 4.0.

1.3 Matcher Fusion

The third reason for standardizing matcher scores is to facilitate multi-matcher-fusion. Fusing
(combining) the results of two or more matchers can greatly improve accuracy. Experiments have
demonstrated gains of 15 % points or more in the identification rate in select cases (ref. [4]). One
problem encountered in matcher fusion is that two matchers may produce native scores1 differing by
orders of magnitude. Although this can be overcome by collecting statistics from a number of candidate
lists (so as to calibrate the score), at the very least this requires gathering many lengthy candidate lists.
This effort is justified if a dedicated fusion matcher is to be produced, which will frequently be used.
However, if we consider the possibility we might have to fuse candidate lists from potentially many
sources, such a procedure is impractical. Standardizing the matcher score obviates this necessity, and
also allows for the fusion algorithm to be made more generic. Additional information on matcher fusion
is found in ref. [4].

1.4 Why Score Standardization?

Summarizing the three reasons for score standardization:

a) To assist the human expert
b) To assist and simplify candidate list reduction
c) To assist and simplify multi-matcher fusion

Since much of the information that went into this study is based upon results of NIST’s Evaluation of
Latent Fingerprint Technology (ELFT) study, we next provide a brief overview of the ELFT project.

2. NIST’s ELFT Project

The ELFT project was initiated by the Image Group of NIST/ITL to explore fundamental scientific and
technological questions in automatic matching of latent fingerprints. The ELFT project was launched via
a NIST-sponsored workshop, ref. [5]. This was followed by the publication of the CONOPS [ref. 3]
detailing the goals and methodology of the project. One of the major goals was the testing and
evaluation of automated latent matchers. The AFIS performance data used in this report largely comes
from these tests.

1 The native score is the score used internal to the matcher. It is not required to standardize this score. It might, or
might not, appear on the candidate list in addition to any standardized score.

4

2.1 Outline of ELFT

The following diagram outlines the steps involved in the ELFT testing cycle.

 Figure 1 – Overview of ELFT Testing Approach

Matchers for testing were solicited from volunteer organizations. (These tended to be commercial AFIS
developers.) Participants submitted their matchers to NIST in the form of Software Development Kits, or
SDKs. These SDKs are dynamic-link (.dll) library modules, linked at NIST to a main driver program. The
resulting executable software was then hosted on NIST computers and run using NIST sequestered input
datasets. (Here “sequestered” means the datasets are not available outside of NIST.) Additional
information and best practices for SDKs are covered in Marshall, [6].

2.2 Matching Process and Output

Figure 2 provides a schematic of the actual matching process as well as the nature of the output
candidate list. Candidates on this list are ranked by matching score, that is to say, by the internal or
native score. (The sample scores shown in Figure 2 are representative of matchers using larger
magnitude scores. Not all matchers use this range of values.) Although the diagram seems to imply a list
length of twenty, the actual output of the SDKs in ELFT was 100 candidates. The candidate list also
contained additional information, not shown in Figure 2, such as the finger number, and the number of
minutiae extracted.

The ELFT Approach

Acquire Latent
Matchers (SDKs) Configure Hardware

Compile Latent Test Sets

Latent Testbed
•1-to-N
Matcher Test
Protocol

•Analysis
Reports

•Standard
Ref. Sets

•Quality
Metrics

Re-iterate process Follow-up Workshop:
Present results.
Discuss future
directions.

5

Figure 2 – Automated Candidate List Generation by an AFIS

Test data (fingerprint images and extracted features) for input to the matchers were compiled by
NIST from several sources, including actual law enforcement case work, and controlled data
collected from volunteers.

2.3 Objectives of ELFT

The principal objectives of ELFT testing, ref. [3], were:

a) Determine the overall state-of-the-art in automated latent fingerprint searching. By
“automated” we mean that searches are performed without any human assistance. (This is
strictly true for the image-only mode, where the matcher was given the latent image, and no
other info.)

b) Performance of a matcher was mainly assessed by the percentage of hits (true mates) found in
first place on the candidate list.

c) Some searches also included human-extracted features, either by themselves or in conjunction
with the latent image. The purpose was to determine how much performance would increase
using these additional features.

d) Measurements were also made on how much performance was affected by latent image
quality.

e) Experiments were performed to study how much performance could be boosted by fusing two
or more matchers. (See ref. [4].)

The output of each match was a candidate list, nominally 100 long. Following the ranking number,
the candidate list contained the matcher score, the subject ID2 in database, and the finger number.

2 An alphanumeric identifier pointing to the fingerprint image, etc. No actual personal identification data is kept on
file.

Latent
Fingerprint
Image

Input Output

Automated Feature
Extraction and Matching

System (AFEM)

Automatic
Feature
Extractor

Latent
Fingerprint
Matcher

features

Candidate List

Rank Subject Score

1 0731 2903
2 1303 1805
3 3950 1754
…

20 0121 350

6

In addition, test participants (SDK submitters) were asked to supply supplemental data, including:
the number of minutiae the matcher found on the latent; the number of minutiae the matcher was
able to match; and perhaps most important for this paper, a probability-like matcher score (PLMS).
The PLMS was intended as a prototype standard score. However, as no details were specified, each
developer was free to develop their own PLMS. The only firm specification (in the API) was that the
PLMS be an integer between 0 and 100. It was strongly recommended that the score reflect the
likelihood that the candidate is a true mate, but the method of measuring this “likelihood” was
unspecified.

Restricting the PLMS to integer values may have been a minor mistake, as this provided insufficient
resolution, and resulted in excessive ties. A detailed analysis of PLMS submitted to NIST will be
presented in Section 5.

2.4 Representative Information Obtained from ELFT

The series of ELFT tests conducted by NIST/ITL resulted in considerable insight on latent AFIS
performance, and the state-of-the-art in general. The following graph is a representative example.

Figure 3 – Comparison of Achieved Latent Performance with that of Plain-impressions using current
AFIS technology

The graph shows the difference in performance between: a) searches using a plain impression (a
type of controlled capture – sometimes called a “dab” or “slap”); versus, b) an actual latent. The
graph shows that while the plain impression has a 95 % chance of appearing at the top of the
candidate list, the latent has only a 58 % chance. This is a very significant performance difference,
and confirms the earlier statements that latents present a much greater challenge.

 Output

7

The following graph shows another kind of performance comparison.

Figure 4 – Comparison of Achieved Latent AFEM Performance Using Different Data Modes;
Aggregate of Four Matchers

Figure 4 shows that when operating in image-only mode (only the latent image is supplied, and no other
information) about 58 % of the time the correct mate will be in first place. Using IAFIS3-type features
only as input, and no image, produces a lower result of about 45 %. Adding IAFIS-type features
(extracted manually) to the image increases performance by about 4 % from image-only. Highest
performance achieved, using all available features, is about 71 %. For definitions of the extended
features see ref. [7] and [8]. Supplemental information on ELFT is found in ref. [9, 10, & 11].

3. Matcher Scoring as Currently Practiced

In Section 2 we provided some background on NIST’s ELFT project and the type of information we
obtained. Another example of information garnered is the range of scores used by various matchers.
These are summarized in the table below.

Matcher
& Data
Set Pair

Max
Observed
Score

Matcher
& Data
Set Pair

Max
Observed
Score

1 2 635 000 10 394.9

3 IAFIS = Integrated Automated Fingerprint Identification System; formerly the FBI’s principal fingerprint search and
identification system; recently replaced by the newer Next Generation Identification System, or NGI

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Image +
EFS

EFS only Image +
IAFIS

Image
only

IAFIS
only

Hi
t r

at
e

Observed hit rate when using various
combinations of data
-- aggregate results

8

2 2 133 000 11 100

3 34 765 12 100

4 9 966 13 85.7

5 8 894 14 1

6 4 022 15 0.991

7 3 000 16 0.218

8 1 474 17 0.147

9 1 208 18 0.128

Table 1 – Some Representative Scores Output by Submitted Automated Matchers

Table 1 was compiled from candidate lists generated during NIST’s testing of automated latent
fingerprint matchers. (Not all came from the same test. Some of these data can be gleaned from
references [12, 13, and 14].) Examination of the above data suggests there are basically three schools of
thought regarding score magnitude:

1) Scores adhering to a “scientific” scale. These scores fall into the unit interval; alternatively, they
can be expressed as a percentage.

2) Scores subscribing to the school of thought that larger numbers have more resolution. These
scores tend to range from a few hundred, upwards to many thousands.

3) Scores which strike a compromise, and have values around a hundred. We prefer this option.

What we termed “scientific scale” is similar to what mathematicians adopted long ago for mathematical
probability, namely [0, 1]. This is an obvious extension of the convention that 0 = FALSE and 1 = TRUE.
Numbers between zero and unity represent various degrees of truth or likelihood. Correlation
coefficients have a similar scale, but here the range is [-1, +1]. Negative scores are not normally used by
matchers – they could be used for identifying incomplete data, very poor images, or similar types of
problems.

The wide spectrum of prospective score values causes practical difficulties. When dealing with an
unfamiliar matcher, human experts must familiarize themselves with the range of possible outputs for
that specific matcher, so as to know what constitutes a “significant” value. Using normalized scores
largely obviates these problems.

NIST Recommendation for Scoring Range

In this report we explore methods of standardizing the score. Details of how a score might be computed
and its interpretation are deferred to Section 7. The proposed score is a variant of the second (mid-
range) category, and has values between 0 and 100. To provide finer discriminating power, two decimal
places are always carried, for example, 0.08, 37.08, or 97.43.

9

The score should provide a clear indication of the likelihood the candidate is a true mate. Thus, (using
the previously quoted scores) 0.08 would indicate “very unlikely to be a true mate;” 37.08 would
indicate “potential for a true mate, and should be examined;” while 97.43 would indicate “very likely to
be a true mate.”

4. Preliminaries to Algorithms for PLMS

Recall that the PLMS is a type of normalized matcher score with a strong connection to the likelihood a
candidate is actually a true mate. This candidate list will originally be ranked by the native score
produced by the matcher. For our studies we began with a candidate list of 100, and reduced this to
smaller size, for example 20.

The algorithms considered fall into two basic classes: 1) algorithms which always preserve the original
ordering; and 2) those potentially capable of increasing the score of certain candidates so as to move it
ahead of others which previously outranked it. We consider both types here. The first is simpler, and can
be implemented without significant additional information, computation, or software. The second type
is the more desirable, as it potentially allows us to reclaim true mates (potential identification, or
individualizations, or so-called ”hits”) which might be relatively far down the candidate list, and unlikely
to be examined if not promoted upward on the list.

Consider for example, a case where in the original (native) score placed the true mate in 17th place. It is
unlikely that this candidate would survive candidate list reduction, and probably would not be looked at
by the expert. But if additional information can be applied to the scoring (e.g., PLMS), it is possible that
this candidate might be elevated to higher place. We have encountered many such cases during our
investigation of matcher fusion [4]. Fusion accomplishes this by introducing new information. Analyzing
the candidate list can also provide additional information, though generally of lower quality.

Figure 5 shows one of the simplest algorithms for implementing PLMS. It is of the first category, which
preserves the original ordering of candidates. It uses a global point transformation to remap the native
score into a PLMS. It is shown in Appendix B that such a transformation cannot change the order, and
the only gain is that the score is now standardized, so more easily interpreted.

10

Figure 5 – Baseline Method for Producing PLMS; the Final Output Score appears at Bottom of Diagram
(labeled “PLMS”)

The following “walk through” might be helpful:

1) An intermediate score is computed based on the familiar Z-score:

Z_score = (native_score – mean_impostor_score)/standard_error_impostor … (1)

2) The mean impostor score is ideally a global estimate of impostor scores. It would therefore
be a stored, predefined value. (Should this be not available, a local value, based on the 99
candidates beginning with candidate two, can be used; but this will introduce more
uncertainty. Also, a larger database/background will generally result in a larger mean,
because it will be based on the largest 99 values obtained. It might be necessary to adjust
for this effect using extreme value theory.)

3) Finally, using either a look-up-table or a pre-computed analytic approximation (based on
statistics collected from the development set) we compute the PLMS based on the
algorithm selected. See for example Table 2. (In the above diagram this appears as 87.03.)

4) Note that as the transformation to the PLMS is based on a global point transformation, and
so cannot improve performance (see Appendix B), other than making the score easier to
interpret.

 Input /Search Data

 Matcher

 Interim candidate
l ist – e.g., 100 top candidates

 Matcher - Matches search
against database

 Subject = M731
Finger = 2
Score = 3513

 Database/
Repository

Compute:

1) Local 2) Z - scores
3) Probability that

true - mate

 Predefined
Translation Table

Z - score to Probability

 Subject = M731
Finger = 2
PLMS = 87.03

 Final Candidate list–
e.g., 5 top candidates
(only one shown)

 Postprocessor - recomputes scores

11

To potentially change the order of candidates (“bubble up” the true mate) we need to inject
additional information. This can be done by processing the candidates on the list through a new
matcher, called Matcher B, as shown in Figure 6. (This may be considered a type of fusion.)

Figure 6 – A More Advanced Algorithm for Producing PLMS; this Algorithm is Capable of Re-ordering
Candidates; the Specimen Output Score appears at Top-right of Diagram, and is labeled PLMS

Surprisingly, it is possible to reduce “matcher B” to a minimalist matcher employing only
information already on the original candidate list. There is then no need to go back to the repository
(as implied in the above figure). The principle behind this is that the distribution of scores on the
candidate list carries additional information, which was not used in the original scoring (native
score). In Section 6 we give an example of such score improvement.

In the more sophisticated version shown in Figure 6, Matcher B is an actual matcher and is a variant
of the primary matcher, Matcher A. Matcher B looks only at the candidates output by Matcher A.
The objective is to use the information available to Matcher A more fully and without incurring the
cost of computing additional features.

The third and final algorithm, this time using additional features, is shown in Figure 7.

 against all database files

 Input /Search Data

 Matcher A

 Interim candidate
l ist – e.g., 100 top candidates

 Matcher A -- Matches input

 Subject = M731
Finger = 2
Score = 3513

 Compute:
1) New scores

2) Local statistics
3) Z - scores

4) Probability that
true - mate

 Database/
Repository

 Predefined
Translation Table
Z - score to Probability

 Subject = M731
Finger = 2
PLMS = 93.78 Final candidate

l ist – e.g., 2 top candidates
(only one shown)

 Matcher B Matcher B -- Matches input
only against subjects
o n Interim List

 Matcher B output includes:
1) Which features matched
2) Which did not match

 Database/
Repository

12

Figure 7 – Highly Advanced Algorithm for Producing PLMS; this Algorithm is Capable of Re-ordering
Candidates; the Specimen Output Score appears at Top Right of Diagram (and is labeled PLMS)

The principal difference from the prior diagram (Figure 6) is the inclusion of a more advanced matcher,
labeled Matcher C. This matcher has the option of going back to the images and extracting additional
features. There is also the option of matching against both the rolled and the plain impression, then
fusing the two results. This has been shown to be quite powerful [refs. 4, 12, 14].

5. Analysis of Scores Provided on Candidate Lists

In Section 2 we provided a synopsis of the ELFT project. As stated, a major objective of the ELFT project
was testing of matchers provided by participants (principally commercial AFIS vendors). These matchers
were run on NIST compiled and sequestered datasets, and produced output candidate lists. The
candidate lists contained two types of scores: 1) native score, and 2) a PLMS-like score, referred to as
“probability of true mate,” or simply “prob” The exact algorithm for computing this “prob” was not
specified, except that (i) it should be an integer between 0 and 100; (ii) it should have significant
correlation with whether the candidate is a true mate or not; finally (iii) it was encouraged (but not
required) that the calculation for “prob” should take supplemental information into account, beyond the
native score. The reason for (iii) was to encourage the development of a score more powerful than the
native score.

w ith all database files

 Input /Search Data

 Matcher A

 Interim candidate
l ist – e.g., 100 top candidates

 Matcher A -- Matches input

 Subject = M731
Finger = 2
Score = 3513

 Compute:
1) New scores

2) Local statistics
3) Z - scores

4) Probability that
true - mate

 Database/
Repository

 Predefined
Translation Table
Z - score to Probability

 Subject = M731
Finger = 2

PLMS = 97.97 Final candidate
l ist – e.g., 2 top candidates

 Matcher C Matcher C -- Matches input
only against subjects
o n Interim List Matcher C is a totally

different matcher from A & B
1) It extracts new features
from images (search & file)

2) matches against rolled and flat
3) fuses results

 Database/
Repository

 Subject = M731
Finger = 2
S core= 5527

13

Analysis of candidate lists (produced by submitted matchers) led to significant insights, many of which
found their way into this report. First, analysis showed that developers had adhered to instructions, but
not all matchers produced enhanced scoring. Some matchers produced values more or less spanning the
range, while others tended to cluster: a low cluster with values around 10, and a high one around 90. It
also became apparent that limiting the output to 101 values resulted in too many ties. These tied scores
caused, in some cases, a slight loss of performance (due to the tied scores being presented (sorted) in
the arbitrary order).

In this section we examine to what extent stipulation (iii) (see above) was in fact achieved. If “prob” is
computed by means of a global point transformation of the native score, and no new information is
added, then it will be no more powerful than the native score, though perhaps easier to interpret. The
figure-of-merit (FOM) we used to gauge the efficacy of “prob” was the minimum-total-error, or MTE.
This is essentially the sum of type I and type II errors, taken at the threshold which minimizes this sum.
(Types of errors and methods for gauging these are discussed in the Appendixes, and in ref. [15, 16, and
17].) If it turns out “prob” is no more powerful than the native score, its MTE should be the same or
larger than for the native score. The following figure shows the results for the five matchers, called A-D.
For each matcher three datasets were used: LA, LE, and LG. The first (LA) consists of only the image of
the latent; the second (LE) consists of the image plus selected and pre-extracted feature; the third (LG)
of IAFIS-style features only. Figure 8 provides a comparison of the MTE achieved by the four different
matchers. Each matcher uses three types of input data, for a total of twelve cases.

Figure 8 – Comparison of Achieved MTEs for Four Matchers

0

0.1

0.2

0.3

0.4

LA LE LG

Matcher C
 -- min total err.

C_prob

C_score

0
0.1
0.2
0.3
0.4
0.5

LA LE LG

Matcher E
 -- min total err.

E_prob

E_score

14

The bar on the right (red) of each pair of bars represents the MTE based on the native score (internal
score used by matcher); the bar on the left (blue) is obtained when using “prob.” In interpreting Figure 8
keep in mind that “smaller is better,” so shorter bars represent better performance. In some cases the
two bars appear to be nearly the same height; in other cases there is a marked difference. A more
sensitive gauge than casual visual inspection is required to make these differences clear. To achieve this,
we first compute the standard error of the MTE calculation. This is defined as the root-mean-square
(RMS) variation of the MTE when arbitrary (but reasonable) changes are made in the numerical
calculations. These variations (or errors) are primarily due to bin boundaries used in computing the
histogram, and secondarily to the quadratic interpolation for estimating the minimum. (Additional
information appears in Appendix F.)

From a number of trials we determined the standard error (SE) is approximately 0.005. We then took
the difference between the MTE of “prob” and the MTE of native-score and divided this by the above SE,
specifically:

 Normalized_delta = (MTE_prob – MTE_score)/SE … (2)

The results are shown in Figure 9.

 Figure 9 – Normalized Deltas

Note that the scales on the graphs are different. In assessing the results we take a conservative
approach: an absolute delta less than unity is considered insignificant. (Why? It is common practice to
consider a one-sigma variation as insignificant, partly because experience shows that most standard

15

error estimates are too small.) A value between one and two units is considered marginal; while a
change exceeding 2 units is considered significant. It then appears that for Matcher C, and possibly also
for Matcher A, the differences are not significant. For Matcher B they are definitely significant. (2 sigma
errors are associated with 95 % confidence interval.) We conclude that Matcher B (and possibly E) used
additional information beyond the native score.

6. Improving the Native Score

The previous section showed it is possible to improve upon native score by judiciously adding
information. In this section we show that this can be done with minimal additional resources. In fact, by
using only the native scores on the candidate list and repackaging it, it is already possible to produce a
degree of improvement.

A number of variant algorithms were tried. Some were unsuccessful. One method producing positive
results is related to a principle used by latent experts: a large increase in score from the adjacent
candidate immediately beneath might indicate a true mate. We used this observation in the following
way:

1) Sort the candidates using the native score and retain the top 100.
2) Modify each score on the list by subtracting from it a (fixed) fraction of the score immediately

below it.
3) Reorder the resulting scores.

(This algorithm fails for the 100th candidate, because there is no candidate below it – we simply ignore
the last candidate.) Explicitly, if Si denotes the original “native score,” and S*i the “improved score,” then

 S*i = Si – k Si+1 … (3)

where k is a constant. This multiplicative constant (for the subtraction term) was determined
experimentally so as to minimize the MTE. Based upon a small number of trials, a value of 0.3 was
selected for k. (No attempt was made to optimize the algorithm of eq. (3) as the purpose was only to
demonstrate a concept.) The following figure shows the resulting improvement in MTE when using S*
vs. S. For comparison, the corresponding deltas based upon p/”prob”4 are also shown.

4 See first para. of Section 5; p and “prob” will be used interchangeably.

16

 Figure 10 – Normalized Deltas Using S* Compared to those Using “p/prob”

In the above, the green bars, labeled “delta_S*,” represent the improvement in MTE due to using S* in
lieu of p (= prob). Also shown for reference, are the blue bars resulting from “prob.” (These are the same
as those of Figure 9.) It will be seen that in all cases the green bars demonstrate improved performance
of S*, and except for Matcher B, the improvement is greater than that of prob. (We found it somewhat
surprising that such a simple algorithm could produce such results.)

The overall results are summarized in the following table. The numbers shown are the averages over the
three input datasets.

Matcher Delta-p Delta-S*
A 1.5 (marginal

gain)
2.7

B 6.7 4.5
C 0.3 (no gain) 6.2
E 2.8 5.0

 Table 2 – Summary of Performance Gains

(The improvement in performance in terms of reduction of MTE is obtained by multiplying these values
by .005.)

7. Detailed Definition of the Standardized Score/PLMS

17

In Section 3.0 we established some desirable characteristics for a standardized score. One of these was
that it should correlate with the likelihood of the candidate being a true mate. We referred to a score
having this characteristic as a PLMS. We first define the standardized score/PLMS in terms of an intuitive
interpretation, and follow this with an algorithm for calculating this score. First the simple, intuitive
explanation:

The standardized score is a positive number between 0. and 100, and carried to two decimal places
(e.g., 93.76).

7.1 Survey of Potential Algorithms

The following table outlines nine algorithms for computing the PLMS. These range from simplest (alg. 1),
to the most complex (alg. 7).

Alg.
No.

Algorithms synopsis Positive
attributes/advantages

Negative
attributes/disadvantages

1 Scale the “native” score (internal matcher
score) of all candidates, both genuine and
impostor, linearly. Lowest score becomes
zero, highest 100. (Zero to 10 000 has also
been suggested, with no decimals carried.)

Simplest possible
implementation. Might be
adequate. Can be used in
conjunction with other
algorithms/scores. This
transformation retains the
matcher’s natural
distribution.

Too “lumpy” – scores not uniformly
distributed. Not clear where
transition from impostors to true
mates occurs.

2 Use only non-mate scores (impostors). Scale
these based on the inverse of the cumulative
distribution function (CDF). Again, result will
be between zero and 100, or zero and
10 000 depending upon preference.

Simple to implement. Also,
there is always an abundance
of non-mate scores.

True mates will be crowded into a
small range of top scores. Many true
mates will simply score 100, and
there will be no discrimination
between “ordinary” hits, and
“monster” hits. [Monster hits are
typically several magnitudes larger
than mean impostor scores.] Most of
the range of scores will be of little
use.

3 Same as (2) but use a logarithmic scale to
stretch the top-most portion of score
distribution. Rescale this to fit into the
interval [0, 100].

Simple to implement. Also,
there is always an abundance
of non-mate scores. Gives
better separation at top than
does (2). Worth further
investigation.

Somewhat more complicated in the
details. Unclear where the breakpoint
is. Some searches produce higher
scoring non-mates than others. These
might produce the bulk of impostors.
[By “breakpoint” we mean values
high enough that a candidate
deserves further scrutiny.]

4 Similar to (2), but use only true mate scores. Simple, and puts the
emphasis on true mates –
which is what we want to
identify.

Since it does not take non-mates into
account, it gives no indication of
breakpoint.

5

Hybrid system. Similar to (4), but counts only
true mates which appear in first place.
This method is developed in detail in the
report.
May be generalized by counting all hits up to
rank L. (Prior version has L=1.)

Takes impostor distribution
into account. Provides good
indication of what is a strong
hit.

May be limited by availability of large
background and sufficient searches
with mates.
Tends to de-emphasize lower non-
mates. Breakpoint still somewhat
dependent on size of background.
(But only minimally so.)

6 Computes likelihood-ratio (LR) – ratio of Theoretically one of the best Difficult to compute: may require

18

probabilities: a) that candidate comes from
true mate population, to b) candidate comes
from impostor population.

indicators -- if accurate
information exists.

extreme value theory as foundation.
Maybe misleading if information
upon which it is based is unstable.
Also, the dynamic range of the
output can be very large, say 1E-6 to
1E6.

7 Same as 8, but take log() of LR, then remap
to 0 to 100 (or 10,000).

Better than 8 because
numbers are more user
friendly. May be theoretically
the best if information it is
based on is sufficiently stable.

Difficult to compute. [We do not say
it should be abandoned, but the extra
effort might be unproductive.]

Table 3 – Comparison of Potential PLMS Algorithms

At this point in our investigation it is not possible to definitively select the optimum algorithm. Our
impression is that algorithm 1 is too simple, and does not take sufficiently into account the differences
between systems. Algorithms 6 and 7, on the other hand, are somewhat on the complicated side, and
require detailed information, which might not be available, or even unstable.

In view of the above, we have selected an algorithm in the middle, algorithm 5, for further development.

7.2 Detailed Development of Algorithm 5

The standardized score, or PLMS, is a positive number between 0 and 100, and is carried to two decimal
places. For algorithm 5 the exact interpretation of this score is that it represents the percent of true
mates in first (top) position that have equal or lower native scores than the candidate being considered.
For example, a score of 93.76 would indicate that 93.76 of true mates appearing in first position will
have less or equal score -- and this will of course be true whether using the standardized score or the
native score. The same transformation (score remapping) is used regardless of position on the candidate
list. For example, a PLMS of 12.77 for a candidate in third place (third position on list) means that only
12.77 % of true mates in first place have equal or lower scores. Note that this definition depends to an
extent on the size of the background. We propose to use one million (fingers) as the standard size.

There are several approaches to arriving at the PLMS. Below we outline a stepwise approach, which is
intuitively easy to understand. Later on in this section we outline a more terse mathematical approach.
We begin with the optimized native score, S*. (See Section 6.) From S* we compute an intermediate
score, of the Z-score type:

 Z = (S* - μimp)/σimp … (4)

Here μimp is the mean of all imposter (non-mate) scores (S*), and σimp is the standard deviation of these
scores. These values are computed from the development set. As it stands, eq. (4) already encompasses
some normalization properties: a) the mean value is close to zero; b) the standard deviation is close to
unity; and exceptionally high scores (say produced by true mates) have values on the order of ten or
twenty.

The next step is to transform eq. (4) into the final desired normalized score (PLMS). This can be done in
many ways. We selected a simple approach, via the exponential function:

19

 Z* = 100.*(1 – exp((Z + 2)/c)) … (5)

The constant c is experimentally chosen. We found c = 18 to work reasonably well. The purpose of the
+2 in eq.(4) is to eliminate (or at least minimize negative) values. (For example, a value of Z = -2 will
produce Z* = 0, while a value of Z = -3 will result in Z* = -5.71.) If negative values are to be avoided
entirely, this can be done via a clamp function, such as:

 Z** = max(Z*, 0) … (6)

To test the result, we collect a histogram (of Z* or Z**) for all true mates in first position using the
development set. This requires choosing bin boundaries for the histogram. To illustrate, we might have a
bin with boundaries at 0.90 and 0.95. All scores ≥ 0.90 but < 0.95 will fall into this bin, and be so
counted. Normalizing this count by the total number of hits in first place (regardless of score) will give a
number which represents a probability. This value ideally should be near 0.925 (the center of the bin).
Suppose that after conducting the above procedure we obtain 0.96. This might be deemed accurate
enough, but if a more precise value is desired we can correct eq. (4) using a low-order polynomial (say a
cubic). Calling this polynomial p(Z*), we then arrive at an equation of the form:

 Z** = Z* + p(Z*) … (7)

The corrections produced by p(x) should be fairly small, on the order 10 % or less. (In the previous
example p(92.5) ≈ - 3.5.)

The following figure shows a plot of the standardized score derived from the above algorithm, using the
exponential plus a quadratic correction term. (This uses Matcher B and dataset LE – but the choice does
not appear critical.)

 Figure 11 – Actual Distribution of Scores Based on PLMS

Ideally, the blue line should follow the principal diagonal. The actual curve shown has noticeable
“squiggles.” We could attempt to refine this further, using eq. (7), but a limit is soon reached due to
uncertainties in the histogram data. Probably Figure 11 is close to what can easily be achieved.

The following table provides some interesting statistics based on the standardized score derived above.

20

Statistic Observed Value
Max score obtained (true mate) 95.3
Min true mate score (in first place) 3.7
Max impostor score (in first place) 80.85
Min impostor score (in first place) 2.1
Mean true mate score (in first place)

49.9

Standard dev. of true mate score 31.6
Mean impostor score 5.3
Standard dev. of impostor score 5.2
Mean hit position (mean rank on list, assuming on
list of 100 candidates)

 3.7

Table 4 – Selected Statistics Based on PLMS

In the above we deliberately took a roundabout procedure to make it intuitively clear. Mathematically, a
much more compact method is to: a) empirically compute the cumulative distribution function (based
on the development set; b) find a good analytic approximation to this histogram (this depends upon
specifics of the native score, and might require the error function, erf(x), the Rayleigh function, etc.); c)
finally, we take the resulting analytic cumulative distribution and scale it by 100 to arrive at the PLMS.
Details are found in Appendices H and J.

We have not addressed the question: what specific threshold should alert us of a possible hit? Insight is
provided by the point at which the minimum total error occurs. This is generally near 10, suggesting that
a value somewhat larger than 10 would be a reasonable threshold for declaring a “hit.” This topic is
examined in detail in Appendix F.

Summary: This report shows the need for standardizing the matcher score. Three specific reasons are
given: i) To assist the human expert in examining candidate lists; ii) for candidate list reduction
(eliminating obviously weak candidates); and iii) for multi-matcher fusion. We propose that the score
should range from zero to 100, with two additional decimal places; or else from zero to 10 000, with no
decimals carried. Seven potential algorithms were listed, ranging from very simple to quite complex. A
mid-range algorithm was then selected for detailed development. This report expresses the opinion that
additional evaluation and input from human experts is required for a definitive selection. Seven
appendices are provided so support the mathematical underpinnings.

21

8. References

[1] Moses, K., et al, “Automated Fingerprint Identification System (AFIS),” Chapter 6 & 7 of The
Fingerprint Sourcebook; McRoberts, A., McRoberts, D., Eds.; National Institute of Justice: Washington,
D.C.; 2011.

 https://www.ncjrs.gov/pdffiles1/nij/225326.pdf

[2] S. Meagher, V. Dvornychenko, M. Garris, “Characterization of Latent Print “Lights-Out” Modes for
Automated Fingerprint Identification Systems (AFIS),” 2013, in publication

[3] V.N. Dvornychenko, P. Grother, M. Indovina, “Concept of Operations (CONOPS) for Evaluation of
Latent Fingerprint Technologies”, NIST Publication 2007 (NIST website)

 http://biometrics.nist.gov/cs_links/latent/elft07/elft07_concept.pdf

[4] Dvornychenko, V. N., “Evaluation of Fusion Methods for Latent Fingerprint Matchers,” 5th IAPR
International Conference on Biometrics, New Delhi, India, April 2012

 http://www.nist.gov/manuscript-publication-search.cfm?pub_id=910369
 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6199806

[5] V. Dvornychenko, M. Garris, “Summary of NIST Latent Testing Workshop,” 2006,
 http://www.nist.gov/customcf/get_pdf.cfm?pub_id=50876

[6] K. Marshall, et al., “Incorporating Biometric Software Development Kits into the Development
Process,” NISTIR 7929, April 2013.
 http://dx.doi.org/10.6028/NIST.IR.7929

[7] Brad Wing, Editor, “Data Format for the Interchange of Fingerprint, Facial, and Other Biometric
Information,” NIST SP 500-290, September, 2011.

http://niatec.info/ViewPage.aspx?id=242
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=51174

[8] A. Hicklin, “Instructions for Extended Friction Ridge Features”, version 1.0, March 2012
 http://www.noblis.org/interop

[9] Dvornychenko, V. N. and Indovina, M., “Roadmap of ELFT – Past, Present, and Future,” Presentation
dated March 2009
http://biometrics.nist.gov/cs_links/latent/workshop09/proc/latent_nist_dvornychenko.pdf

[10] Indovina, M., “NIST Forensic Science Activities: Latent Fingerprint,” NIST/ITL/IAD presentation
material, March 2012
 http://www.nist.gov/director/vcat/upload/12-INDOVINA-Fingerprints-10_14-FINAL.pdf

[11] Evaluation of Latent Fingerprint Technologies (ELFT) (Website Homepage)

https://www.ncjrs.gov/pdffiles1/nij/225326.pdf
http://biometrics.nist.gov/cs_links/latent/elft07/elft07_concept.pdf
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=910369
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6199806
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=50876
http://dx.doi.org/10.6028/NIST.IR.7929
http://fingerprint.nist.gov/standard/index.html
http://fingerprint.nist.gov/standard/index.html
http://niatec.info/ViewPage.aspx?id=242
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=51174
http://biometrics.nist.gov/cs_links/latent/workshop09/proc/latent_nist_dvornychenko.pdf
http://www.nist.gov/director/vcat/upload/12-INDOVINA-Fingerprints-10_14-FINAL.pdf

22

 http://www.itl.nist.gov/iad/894.03/latent/

[12] M. Indovina, V. Dvornychenko, E. Tabassi, G. Quinn, P. Grother, S. Meagher, M. Garris, “ELFT Phase
II - An Evaluation of Automated Latent Fingerprint Identification Technologies”, NISTIR 7577, April 2,
2009
 http://www.nist.gov/customcf/get_pdf.cfm?pub_id=901870

[13] M. Indovina, A. Hicklin, G. I. Kiebuzinski, “ELFT-EFS Evaluation of Latent Fingerprint Technologies:
Extended Feature Sets [Evaluation #1],” NISTIR 7775, March 2011
 http://biometrics.nist.gov/cs_links/latent/elft-efs/NISTIR_7775.pdf

[14] M. Indovina, et al., “ELFT-EFS Evaluation of Latent Fingerprint Technologies: Extended Feature Sets
[Evaluation #2],” NISTIR 7859, May 2012
 http://biometrics.nist.gov/cs_links/latent/elft-efs/NISTIR_7859.pdf

 [15] M. Garris, C. Wilson, “NIST Biometrics Evaluations and Developments,” NISTIR 7204, Feb. 2005

A Receiver Operator Characteristic (ROC) analysis measures the trade-off of TAR and FAR. A threshold is
swept across the range of scores such as those in Fig. 3. At each step, the percentage of match scores above
the threshold is recorded as TAR, and the percentage of non-match scores above the threshold is recorded
as FAR. Plotting these (TAR, FAR) points creates an ROC curve like the ones shown in Fig. 4. This serves
as a primary measurement of verification performance.

 ftp://sequoyah.nist.gov/pub/nist_internal_reports/ir_7204.pdf

[16] A. Martin, et al., “THE DET CURVE IN ASSESSMENT OF DETECTION TASK PERFORMANCE,” NIST/ITL
web publication

 http://www.itl.nist.gov/iad/mig/publications/storage_paper/det.pdf

[17] V. Sravya, et al., “A Survey on Fingerprint Biometric System,” International Journal of Advanced
Research in Computer Science and Software Engineering, April 2012
 www.ijarcsse.com
 http://www.ijarcsse.com/docs/papers/April2012/Volume_2_issue_4/V2I40016.pdf

[18] C. Wilson et al., “Fingerprint vendor technology evaluation 2003: Summary of results and analysis
report,” NISTIR7123, 2004

 http://fpvte.nist.gov/report/ir_7123_analysis.pdf

[19] V. N. Dvornychenko, “Latent Fingerprint System Performance Modeling,” Proc. of SPIE-IS&T, 2008

 http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=811697

[20] Lael Rayfield, “Simplified Analysis of Fingerprint Matchers, NIST Internal Presentation,” 2012

http://www.itl.nist.gov/iad/894.03/latent/
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=901870
http://biometrics.nist.gov/cs_links/latent/elft-efs/NISTIR_7775.pdf
http://biometrics.nist.gov/cs_links/latent/elft-efs/NISTIR_7859.pdf
ftp://sequoyah.nist.gov/pub/nist_internal_reports/ir_7204.pdf
http://www.itl.nist.gov/iad/mig/publications/storage_paper/det.pdf
http://www.ijarcsse.com/
http://www.ijarcsse.com/docs/papers/April2012/Volume_2_issue_4/V2I40016.pdf
http://fpvte.nist.gov/report/ir_7123_analysis.pdf
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=811697

23

 Appendix A – Metrics for Evaluating Matcher Performance

This appendix covers the most common and useful metrics for evaluating matcher performance. While
these are generally well known, we include them for completeness, and as an introduction to the other
appendices.

Two metrics/statistics are of prime importance in gauging the performance of an AFIS: a) the true
acceptance rate, TAR; and b) the false acceptance rate, FAR. The first, TAR, is a measure of the
probability that the true mate will appear on the candidate list (output list) given that the true mate is in
the database that is searched. The FAR is a measure of the probability that a false mate, or impostor,
will appear on the candidate list. A seminal report by Garris of NIST, ref. [15], explains this concept in
detail.

There are several variants of TAR and FAR, depending on how long of a candidate list is under
consideration. When counting impostors (for FAR) we might only include impostors outranking the true
mate (if present). Alternatively, we might only consider impostors appearing in first position.

For TAR we often count only candidates in first position, as is typically the case in this paper. This
simplifies the statistics but may prevent the detection of multiple mates in the database (multiple
enrollments).

An important performance measure employing TAR is the cumulative match characteristics, or CMC.
This is defined as the probability that the true mate will appear on a candidate list of specified length.
Later on we give some examples.

Closely related to the CMC, but more powerful, is what is termed the receiver operating characteristics,
or ROC. The name betrays the radar origins of the concept, and is something of an anachronism. A more
up-to-date name is relative operating characteristics, or even simply operating characteristics, or OC.
The ROC concept is described in detail in [15]. The mathematical expression for the ROC is developed in
Appendix B. A closely related concept, the DET, is detailed in [16]. Ref. [17] provides a more recent
overview of these concepts.

In essence, the OC shows the dependence of TAR upon FAR. The OC was used in this report for
computing performance, principally in the form of MTE (viz.).

24

Appendix B – Invariance of the ROC to Global Point Transformation.

We derive the fundamental equation for the Operating Characteristics curve, or OC,5 based on the
distribution of true mate scores (genuine scores) and non-mate scores (impostors). We have several
reasons for doing this, but ultimately we wish to show that the result is independent of simple score
transformations.

Let S denote the (native) matching score produced by a system; let N denote the size of the
database/background/repository; next, let f1(S) denote the probability distribution of scores (density
function) when matching against a non-mate, and let f2(S) denote the corresponding function when
matching against a true mate. Finally, let F1(S) and F2(S) denote the respective cumulative distribution
functions, i.e., the integrals of f1 and f2.

Suppose we assign a score threshold, τ, with the idea that only scores exceeding or equaling this
threshold will be counted. The fraction of the database expected to exceed this threshold (when
matched against the search) is 1 - F1(τ). Or put another way

 N(1 - F1(τ)) = FAR … (B-1)

(If there is exactly one true mate in the repository, then N should really be replaced by N-1 – but this is
obviously unimportant for large N.)

From eq. (B-1) we can solve for τ, obtaining:

 τ = F1
-1(1 – FAR/N) … (B-2)

The quantity FAR/N is just the normalized FAR, that is, the fraction of the repository passing the
threshold.

The probability that a true mate will exceed the threshold τ is given by

 p = 1 - F2(τ) … (B-3)

Combining (B-2) and (B-3) we arrive at

 TAR = 1 - F2(F1
-1(1 – FAR/N)) … (B-4)

Suppose now we wish to use a different score, S*. We assume S* is derived from S by means of a global
point transformation, S* = G(S). (By a global point transformation, we mean a function of a single
variable. Also the function may not contain “hidden” variables which are allowed to change from case to
case.)

5 Also called ROC

25

Assuming that the function G() is invertible, the distribution functions will now be given by F1(G-1(S*))
and F2(G-1(S*)). When these expressions are substituted into (B-4) we obtain the following expression:

TAR = 1 - F2G-1GF1
-1(1 – FAR/N) … (B-5)

Provided that the function G has a regular inverse, G will drop out of (B-5), and we are left with the
same result as before, namely (B-4). If however the function G exhibits jumps or flat spots, then this
argument does not apply, because now there is information loss, and the new OC will be lower.

The important conclusion to take away is:

A point transformation of the score cannot improve performance. If the transformation is regular, it
will leave performance the same; otherwise performance will diminish. Note that the transformation
of eq. (3), Section 6, is not a point transformation since it involves two adjacent values.

26

 Appendix C – Examples of OC Functions

It is often claimed that actual distribution functions for the scores do not closely follow any classical
distributions (e.g., normal, log-normal, etc.), and therefore OC functions derived from such distributions
are of no use. There is a measure of truth to this, but the conclusions are overstated.

Sometimes the distributions can be represented with good accuracy by classical functions for most of
the score range. The following graph is such an example.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0 1000 2000 3000 4000 5000 6000

Empirical (measured) density of true-mate
scores and two computed approximations

measured

Weibull

normal

Figure C-1 – Experimental True Mate Score Distribution and Two Approximations Using Classical
Functions

The fit is generally quite good, except at the very low end, say 0 to 700. Some of the deviation is almost
certainly due to “sampling errors,” i.e., peculiarities of the specific test data, but it remains true that
such approximation often fail at the tails of the distributions.

It is possible to improve the fit of the tails by using a min-max-error criterion. This will improve the error
in the tails at the expense of slightly increasing errors elsewhere.

A second observation is that many distribution functions lead to the identical OC function. (See for
example eq. (B-5).) In principle, it is therefore possible for non-standard empirical distributions to lead
to an OC function derived from classical distribution functions.

The third observation is: even allowing that we have a classical OC function which is not sufficiently
accurate in certain sections of its domain, we can consider this function to be a first approximation, then
add corrections terms. These “not quite accurate enough” OC functions often can lead to essentially
correct conclusions, and so are useful.

One of the easiest classes of distribution functions to work with are the Weibull distributions. Here the
general equation is

Fi(s) = 1 – exp(- (s/λi)ni) , s ≥ 0 … (C-1)

27

Note that there are two parameters, or degrees-of-freedom, λi and ni. Assuming that both the true mate
and the impostor distribution follow the form of (C-1), and using eq. (B-4), we obtain

 TAR = exp(-α◦ln1+β((N/FAR)) …(C-2)

where

 α = (λ2 / λ1)n1 and β = (n1 – n2)/n2 …(C-3)

When n1 = n2 this simplifies to what is known as the power-law form:

TAR = (FAR /N)α …(C-4)

The power law is very simple and is often a very good first approximation, not only for OC curves, but for
CMC curves as well.

The following provides an example of a good fit between a classically derived OC curve and an empirical
one.

Figure C-2 – Sample Experimental OC Curve and Best Fit using Extended Power-law

Conclusion: “Classically derived” OC function may give good approximations to empirical data
providing the parameters are properly selected. Remaining deviations (from empirical data) may then
provide a clue to the matcher architecture.

0

0.2

0.4

0.6

0.8

1

-5 -4 -3 -2 -1 0
log10 of False Acceptance Rate (F or FAR)

Pr
ob

ab
ili

ty
 o

f T
ru

e
D

et
ec

tio
n

(P
d

or
 T

A
R

)

Actual TAR (Pd)

Best min/max f it

28

Appendix D – CMC Curves

The CMC was briefly mentioned in Appendix B. It is a kind of distribution function, and provides the
probability the true mate will appear on the candidate list (given there is exactly one true mate in the
database). It is normally presented as a cumulative distribution, so that P(L) is the probability that the
true mate will appear somewhere on a candidate list of length L.

The expression for P(1), the probability the true mate is in first place, is given by

 P(1) = Pfirst = ∫0
∞ (F1(s))N-1 f2(s)ds … (D-1)

Where the probability distributions are as defined in Appendix B.

This expression is more complicated than eq. (B-4) for the OC, although there is a close connection
between the two. For most functions the above integral cannot be evaluated exactly. However, for
Weibull distributions with the same n (see eq. (C-1)) a closed-form solution can be obtained:

 P(1) = α◦B(N, α) … (D-2)

In the above, B denotes the beta function, and α is as defined by (C-3). For large N (say a million) (D-2)
can be shown to be well approximated by

 P(1) ≈ Γ(α+1)/Nα … (D-3)

This can be generalized to arbitrary candidate list lengths, L:

P(L) ≈ Γ(α+1)*(L/N)α … (D-4)

Since α needs to be small for a reasonably performing system (say 0.05 or smaller), we can
approximate Γ(α+1) as 1 – 0.56 α, to arrive at

P(L) ≈ (1 – 0.56 α)*(L/N)α … (D-5)

Further simplification gives

 P(L) ≈ (L/N)α … (D-6)

Note that this is just the power law, analogous to eq. (C-4). This analogy is not coincidental, as shown by
the following argument. A candidate list of length L allows up to L impostors to appear on the list; that is
to say, FAR = L if the true mate is not on the list, and FAR = L-1 otherwise. This will be seen to be very
similar to the OC of (C-4).

Conclusion: The power law often provides a good approximation to both the CMC and OC.

29

 Appendix E – Methods of Ranking OC Curves

Given two OC curves, we often need to determine which of the two represents superior performance.
There are four methods in common use: 1) dominance; 2) area above curve; 3) minimum total error;
and 4) equal error rate. Some of these concepts are discussed in ref. [17].

1. Dominance

This simply means that one curve is always higher than the other. Whatever FAR we pick, the superior
curve will always have higher TAR. But in the general case the two curves might cross, in which case
dominance does not apply.

The following graph illustrates these concepts.

 Figure E-1 – Representative Experimental OC Curves

Four curves, A, B, C and E are shown. (D is not shown.) Curve A dominates the other three. Curves B and
C cross, so neither dominates the other.

2. Area above curve

The first quantitative measure of goodness, or figure-of-merit (FOM), for an OC curve is the area-above-
curve. It represents the area above the OC curve, and below the line y =1. It also equals: 1 -
area_below_curve. Note that smaller values indicate the better system, and for very high performance
this will be a small number. For a random-guessing system it will be ½.

30

3. Minimum total error (MTE)

This is the second FOM, and is given by the minimal value of the sum of the two errors: i) the miss rate,
1 – TAR, and ii) the FAR. A factor of ½ is included to make the result consistent with a random-guessing
system. The equation is therefore MTE = min{ (1 – TAR + FAR)/2}.

4. Equal error rate (EER)

The point along the OC curve where the two types of errors are equal is known as the equal error
point. At this point 1 – TAR = FAR. The EER is then the value of FAR at this point. This is our third
FOM. (See ref. [17].)

The three FOMs are related, though generally do not give identical results. As will appear shortly, area-
above-curve is the “easiest grader,” while EER is the toughest. To investigate the relationship between
the three we assume a power-law for the OC. This of course only represents special cases, but was
shown in Appendix D to be often a good approximation. Also it allows for analytic expressions for the
three error measures (FOMs). The power-law assumes

 TAR = FARα … (E-1)

Where α is a positive constant between zero and unity. Zero represents a perfect system; and unity
represents a random guessing (“clue-less”) system (this is essentially (B-4) with F1≡ F2.)

For the above functional form the value of area-above-curve (FOM #1) is given by

 area_above_curve = α/(1 + α) ≈ α – α2 … (E-2)

and is therefore very nearly given by α for small α.

The expression for MTE (FOM #2) can be shown to be

 MTE = (1 – αα/(1 – α) + α1/(1 – α))/2 … (E-3)

This cannot be given a power expansion around zero, as was done for (E-2), because there is a
singularity at zero. However, a good approximation is provided by

 MTE ≈0.5 α (1 – ln(α)) … (E-4)

No simple analytic expression appears to exist for EER, but a good analytic approximation – along the
lines of (D-4) – is provided by

 (-0.458*ln(α) + 1.1911)* α1/(1 – α) …(E-5)

The following graph compares the three types of error measures.

31

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

Pe
rf

or
m

an
ce

 m
ea

su
re

Value of alpha (α)

Three performance measures of OC

MTE

EER

area

 Figure E-2 – Comparison of Three Ways of Measuring Quality of OC curves

As is seen from this figure all three measures are about the same. Area-above-curve is the “easiest
grader” (gives most favorable (lowest) scores). MTE and EER are nearly the same, but EER is slightly
“tougher.”

These results were used in this report to assess the accuracy of MTE estimates.

32

Appendix F -- Numerical Methods for Computing MTE

In Appendix E we provided algorithms for computing MTE, EER, and area-above-curve. However, these
were based on idealized forms of the OC curve. This appendix provides practical algorithms applicable to
more general cases. We emphasize MTE as this is extensively used in this report. The algorithms are
based on three points taken from the OC. In the first algorithm we used these three points to fit a
power-law to the arc spanned by these three points. Several algorithms can be used to find α. Among
the best is min-abs-error. That is, we pick that α which makes the errors at the end-points of equal
magnitude but opposite sign. We then use eq. (E-3) to actually compute the MTE.

The second algorithm uses quadratic approximation, and does not depend on the power law. Assume
the three points are given by (x1, y1), (x2, y2) and (x3, y3), where x1 = FAR1, and y1 = TAR1, etc.. Next
compute a, b, and c using the following expressions:

a = y1/((x1 - x2)(x1 - x3)) + y2/((x2 - x1)(x2 - x3)) + y3/((x3 - x1)(x3 - x2)) … (F-1)

b = -y1(x2 + x3)/((x1 - x2)(x1 - x3)) + -y2(x1 + x3)/((x2 - x1)(x2 - x3)) + -y3/(x1 + x2)/((x3 - x1)(x3 - x2)) … (F-2)

c = y1(x2 x3)/((x1 - x2)(x1 - x3)) + y2(x1 x3)/((x2 - x1)(x2 - x3)) + y3/(x1 x2)/((x3 - x1)(x3 - x2)) … (F-3)

(These are not the simplest expressions for a, b, c, but are the most symmetric.)

From these we can then compute

 MTE = (1 + 4a – 2b + b2– 4ac)/(8a) … (F-4)

The expression for EER is slightly more complicated (in agreement with the analysis of Appendix D):

 EER = (-1 -b - √((b+1)2 - 4a(c -1)))/(2a) … (F-5)

As a check we take three points check these equations against the results of Figure D-2. We take α = 0.2,
and using this α we compute the following three data points : (0.1, 0.631), (0.2, 0.725), (0.3, 0.786). The
assumed FAR values are arbitrary; the TAR value follow from the assumed α. From these three points we
compute a = -1.65, b = 1.44, and c = 0.504. These result in MTE = 0.234, and EER = 0.244. Both values are
in excellent agreement with the graph of Appendix E.

These results were used in estimating MTE and the associated standard error.

33

Appendix G – Likelihood and Likelihood-ratios

In Section 7.0 we discuss seven alternative candidates for standardizing the matcher score. These range
from simple to quite complex. Simplicity has definite advantages. Such algorithms are easily understood,
easily implemented, and the calculated values tend to be more stable. However, they may not provide
an accurate estimate of the likelihood that a subject is a true mate. For example, consider a zero-
information, or random guessing system. The distribution of scores for true mates and impostors is the
same. Assuming there is one true mate in the database, of size N, the probability it will appear in first
place is just 1/N – regardless of the score indicated.

Of course AFIS are not random guessing systems -- so they should do a lot better. The simplest
assumption is that systems of the same generation perform about the same. This assumption by itself
goes a long way toward calibrating and interpreting the standard score.

The term likelihood is used in statistics to indicate an estimate of a probability. For all practical
purposes this is a probability, but there are technical reasons for differentiating the two. Likelihood
ratio is used to denote the ratio of two likelihoods, ususally in the form of favorable outcome to
unfavorable. This is similar to the gambler’s “odds.” When a gambler states the odds of something
happening are 3:2 say, what he means is that 3/5 = 0.6 the outcome will occur, and 2/5 = 0.4 it will not
occur (and the “opposite” will occur).

Using the same matcher (Matcher B) and dataset (LE) as was used for Figure 11 (Section 7.0), and using
algorithm 5, we obtain the distribution of first-place impostor scores as shown in the following figure.

 Figure G-1—Cumulative Distribution of Impostor Scores (Matcher B/LE)

The blue line (labeled “impostor”) gives the experimentally obtained distribution. The red line (labeled
“recon_imp”) provides an empirically derived fit to the experimental data. The equation for the
reconstruction is a Rayleigh diatribution with parameter 9.9.

The following figure provides the derivative of Figure G-1. This is required for computing the likelihood-
ratio.

0

20

40

60

80

100

0 50 100Cu
m

ul
at

iv
e

am
ou

nt
 le

ss

th
an

 sc
or

e

PLMS (indicated score)

impostor

recon_imp

34

 Figure G-2 – Derived Density (based on G-1)

The density function for true mates, by design, is uniform and equal to unity. Suppose a score of S was
obtained for the candidate in first place. The probability of a true mate score falling in the interval [S –
δ/2, S+δ/2] is simply δ. (Delta (δ) is arbitrary but of course assumed small.) For impostors, the
probability is the value indicated in the above graph times δ. The ratio of these probabilities is then the
likelihood ratio. It is given below.

 Figure G-3 – Derived Likelihood Ratio (LR) with Smooth Fit

A likelihood-ratio of 10 is achieved at a score of about 30, and implies a probability of 10/11 = 0.91. The
next figure shows a smoothed version of the above graph for small scores.

-5

0

5

10

15

0 20 40 60 80 100 120

density

y = 9E-05x4 - 0.0055x3 + 0.1197x2 - 0.7551x + 0.5906
R² = 0.9953

-10

0

10

20

30

40

50

0 10 20 30 40 50

LR

LR

Poly. (LR)

-2

0

2

4

0 5 10 15 20 25

L/R

L/R

35

Figure G-4 – Simplified Smooth Approximation for Small PLMS

From this figure we see that a ratio of 1:1 is achieved at about 12, and a ratio of 2:1 at about 14. Note
that this is in agreement with the concusion at the end of Section 7.0.

The mean value for impostors in first place for this particular matcher and dataset was about 5.3. A
different system will have a somewhat different mean value. Provided the difference is not too great,
we can use the mean impostor score to estimate the critical likelihood ratio (= 1). Assume the mean
impostor score is 10; then it is not unreasonable to assume a likelihood ratio of 2:1 would be achieved
at 20.

36

Appendix H -- Probability Distributions of Transformed Scores

Suppose we start with the native score, S, and wish to transform this to a new score, S*; furthermore,
we would like the new score, S*, to obey a specified distribution function (which might be quite
different from that of S). How can this best be accomplished?

Following Appendix B, we assume that the relationship between S and S* is given by

S* = G(S) … (H-1)

Assume further that the cumulative distribution function for S is given by F2(S), and that for S* is given
by F2*(S*). (We follow the notation of Appendix B, wherein the subscript 2 indicates a true-mate
distribution.) We must then have

 F2(S) = F2*(S*) … (H-2)

In view of (H-1) this can be written as

 F2(G-1(S*)) = F2*(S*) … (H-3)

(G-1() indicates the inverse function of G().) Solving for G we obtain

 G() = F2*-1(F2()) … (H-4)

(For simplicity we omitted the argument in the above. The superscript -1 indicates we are to take the
inverse of F2*().)

A particularly simple case occurs when F2*(x) = x, 0 ≤ x ≤ 1. That is to say, F2*(x) is the ramp (identity)
function on [0, 1]. In this case eq. (H-4) reduces to

 G() = F2() … (H-5)

The cumulative distribution of S*is now a ramp function, while the density function is now a constant
equal to unity.

Suppose however, that – as suggested in the body of this report – we would like S* to take on values
from zero to 100, rather than from zero to 1. Then we need to modify eq. (H-5) to be

 G() = 100*F2() … (H-6)

The resulting density function is again constant, but this time it has value 1/100.

In the above we assumed that it is the distribution of true mates that we would like to modify. Of course
exactly the same procedure can be used to modify the impostor distribution to some specified
functional form. But it is not generally possible to specify both distributions at the same time. For
example, it is not generally possible to find a transformation which reduces both true-mates and
impostors to a uniform distribution, except for very special cases, such as a random guessing system.

37

Appendix J – Numerical Example of Distribution Modification

This appendix comprises a numerical example employing the theory of Appendix H. We begin with
empirically collected data in the form of a histogram. This generally has the appearance of “unkempt
hair,” as in the following graph.

Figure J-1 – Histogram of Score Distributions (raw data)

The next step is to smooth this data by averaging over short intervals taken symmetrically about a point.
The resulting function will now be smooth, as in the following diagram, and hence easier to work with.

Figure J-2 – Smoothed Score Distribution – True-Mate/Genuine-Scores Only

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0 1000 2000 3000 4000 5000 6000
Probability density

True-mate density

38

The deviations between the rough empirical data and its smoothed version are largely due to sampling
errors (i.e., random fluctuations). These sampling errors do not contribute to our understanding, so they
will be removed, and we work with the smoothed version. The next step is to fit the empirical curve with
classical distributions. Two approximating functions were tried: 1) Weibull, and 2) normal (Gaussian).
Note that as the empirical distribution has aspects of being tri-modal: there is an anomalous bump at
low values, around [0, 400], and another at about 1100. These bumps will appear as errors to the fit. The
optimality criterion for the fit was min-max-error. The results of the fit are shown below.

Figure J-3 – Empirical Data with Two Candidate Curve Fits

The errors between the curve fit and the data are shown below.

Figure J-4 – Errors in Curve Fit (Deltas)

0
0.00005

0.0001
0.00015

0.0002
0.00025

0.0003
0.00035

0.0004
0.00045

0.0005

0 1000 2000 3000 4000 5000 6000

Empirical (measured) density and two
computed approximations

measured

Weibull

normal

-0.00005

-0.00004

-0.00003

-0.00002

-0.00001

0

0.00001

0.00002

0.00003

0.00004

0.00005

0 1000 2000 3000 4000 5000 6000

delta1_Weib

delta2_norm

39

Note that the max positive error and max (absolute) negative error are about equal in magnitude – a
hallmark of the min-max-error method. Also note these maximal excursions occur at about 400 and
1100, as anticipated. The table below shows the values of the parameters produced by the curve fit.

The Weibull distribution exhibits the smaller errors (Figure J-4), and also is analytically more tractable;
for these reasons we select it as our working approximation. The equation for the cumulative
distribution is then given by

 F2(S) = 1 – exp(- (S/ λ) α) = 1 – exp(- (S/2525)2.88) … (J-1)

If we want S* to take on values in the interval [0, 100] we need to set

 S* = 100* F2(S) … (J-2)

The resulting cumulative distribution for S* is then given by

 F2*(S*) = S*/100 … (J-3)

And the density function is now

 f2*(S*) = 1/100 … (J-4)

Strictly speaking, (J-3) and (J-4) apply to the Weibull approximating function, and not to the (smoothed)
empirical approximation. The deviation of the cumulative distribution for the empirical data from a
uniform distribution is shown below. In general, these deviations are quite small, averaging less than
0.5 %.

Weibull
λ 2525
α 2.88
Normal
μ 2213
σ 855

40

Figure J-5 – Difference (delta) Between Actual Cumulative Distribution and Ideal Ramp Function

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0 20 40 60 80 100 120

S* -->

delta cumulative probability

delta

		Superintendent of Documents
	2022-04-08T09:43:18-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

