
NIST Special Publication 500-176
NAT I. INST OF STAND 4 ItCM U\C

A111D3 3SfiDba
Computer
Systems
Technology
U.S. DEPARTMENT OF
COMMERCE jSjJST
National Institute of

Standards and PUBLICATIONS
Technology

Nisr

iiltroduction to

Heterogeneous

Environments

John F. Barkley

Karen Olsen

NATIONAL INSTITUTE OF STANDARDS &
TECHNOLOGY

Research Information Center
Gaithersburg, MD 20899

NIST Special Publication 500-176

Introduction to

Heterogeneous
Computing
Environments

John F. Barkley

Karen Olsen

National Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

November 1989

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Acting Director

. USl

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards)

has a unique responsibility for computer systems technology within the Federal government. NIST's

National Computer Systems Laboratory (NCSL) develops standards and guidelines, provides technical

assistance, and conducts research for computers and related telecommunications systems to achieve

more effective utilization of Federal information technology resources. NCSL's responsibilities include

development of technical, management, physical, and administrative standards and guidelines for the

cost-effective security and privacy of sensitive unclassified information processed in Federal computers.

NCSL assists agencies in developing security plans and in improving computer security awareness train-

ing. This Special Publication 500 series reports NCSL research and guidelines to Federal agencies as well

as to organizations in industry, government, and academia.

Library of Congress Catalog Card Number: 89-600784

National Institute of Standards and Teclinology Special Publication 500-176
Natl. Inst. Stand. Techinol. Spec. Publ. 500-176, 37 pages (Nov. 1989)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1989

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

ABSTRACT

Computer networks are becoming larger not only in the number of nodes connected

but also in the geographic area spanned. In addition, networks are becoming more diverse

in the variety of equipment from which the network is implemented. This report provides

an introduction to the concept of a heterogeneous computing environment. It character-

izes heterogeneous computing environments from the point of view of the generic services

provided. Standards are necessary in order to implement heterogeneous computing en-

vironments. The report provides an introduction by example to the types of technical

standards that are necessary in a heterogeneous computing environment and illustrates

how such standards can be used to provide services.

iii

Contents

1 Introduction 1

2 Heterogeneous Computing Environments 4

2.1 Distributed File System 6

2.1.1 File System/Device Models 6

2.1.2 Types of Clients 7

2.2 Distributed Computing 8

2.2.1 Login 8

2.2.2 Remote Execution . 9

2.2.3 Transaction Processing 10

2.2.4 Cooperative Processing 11

2.3 Messaging 11

2.4 Standards 12

3 Examples of Standards for Heterogeneous Computing Environments 13

3.1 Network File System 14

3.2 External Data Representation 16

3.3 Remote Procedure Call . 17

3.3.1 Model 17

3.3.2 Implementation 19

3.4 Advanced Program to Program Communication 21

3.4.1 Example 21

3.4.2 Conversation Verbs 23

3.5 X Window System 25

4 Conclusions 27

A References and Related Reading 28

v

List of Tables

1 Location of example protocols in ISO Beisic Reference Model 14

List of Figures

1 Client/Server Model 4

2 Client access to remote mass storage on server 5

3 Single-Tree File System/Device Model 7

4 Device Based File System/Device Model 8

5 Login (Client A) vs. Remote Execution (Client B) 9

6 RFC model 18

7 Example of query/response conversation in APPC 22

8 X Window System connectivity 26

vi

1 Introduction

Computer networks are becoming larger and more diverse. Networks are becoming larger

not only in the number of nodes connected but also in geographic arezis spanned. Net-

works are becoming more diverse in the variety of equipment from which the network is

implemented. This equipment includes not only the communication equipment but also

the systems which make up the nodes of the network. The conununication equipment

includes local area networks of different transmission media (e.g., CSMA/CD and token

ring) interconnected by means of bridges, routers, and gateways to form wide area net-

works. The nodes may be, for example, mainframes, minicomputers, workstations, and/or

personal computers. Components of the communication equipment and the nodes of the

network can be provided by many different producers. Such a communication network is

referred to as a heterogeneous computing environment. Nodes connected to such a network

become part of this heterogeneous computing environment.

On the cover of this report, there is an illustration of a local site which is part of a

heterogeneous computing environment. The installation is made up of three different local

area networks each with a different transmission medium and each consisting of personal

computers, workstations, and minicomputers/mainframes with terminals. The three local

area networks are interconnected with routers. One laxge computer connects the local area

networks at this site into a wide area network made up of many such local sites.

This report^ provides an introduction to heterogeneous computing environments, such

as that depicted on the cover, by:

1. Characterizing heterogeneous computing environments from the point of view of the

generic services provided.

2. Presenting some examples of standards that are currently used to provide these

generic services.

This report is intended for managers and users in government and industry to assist in their

evaluation, management, and use of computer networks. This introduction discusses how

applications are evolving to make increasing demands on the communication capabilities of

a heterogeneous computing environment. Section 2 characterizes heterogeneous computing

environments by the services they provide in support of more sophisticated applications.

Section 3 describes some examples of communication, application programming interface,

and user interface standards needed to support a heterogeneous computing environment.

The information in section 3 is provided for the more technically advanced reader.

^Because of the nature of this report, it is necessary to mention vendors and commercial products. The

presence or absence of a particular trade name product does not imply criticism or endorsement by

the National Institute of Standards and Technology, nor does it imply that the products identified are

necessarily the best available.

1

There are many standards which are necessary in order for a heterogeneous computing

environment to be able to function. For example, the Government Open Systems Inter-

connection Profile (GOSIP, FIPS^ 146) and the Applications Portability Profile (POSIX,

FIPS 151-1, Appendix A) are available to assist Federal Agencies and other organizations

in acquiring and using equipment within heterogeneous computing environments. It is not

the goal of this report to list all of the formal and defacto standards which can apply to

a heterogeneous computing environment, nor to recommend or imply that the standards

presented here as examples are the best choices. The standards used as examples in this

report are among those currently in widespread use. In the future, this may not be the

case. Section 3 provides an introduction by example to the kinds of standards that are

necessary in a heterogeneous computing environment and illustrates how such standards

can be used to provide services.

Heterogeneous computing environments have evolved in response to the ever increasing

need for applications to be able to communicate more easily and effectively. For example,

consider how two applications, spreadsheet and electronic publishing, are becoming more

sophisticated in their use of communications.

When spreadsheets first appeared as an application, they ran exclusively on personal

computers. Spreadsheet data was shared by exchanging floppies. As personal computers

became nodes on networks, spreadsheet data was shared by transferring files between

personal computers and then integrating them into the local copy. Sharing spreadsheet

data required much hands-on operation by the user.

The spreadsheet applications now being developed permit this data sharing to occur

without the user being forced to leave the keyboard. In many cases, sharing spreadsheet

data can happen without the user being aware that sharing is taking place. Users inter-

acting with spreadsheet applications often need not know whether the data resides locally

or remotely. The spreadsheet application fills in cells with data automatically obtained

remotely from other text, spreadsheet, and database information.

Electronic publishing has emerged as an application much more recently than spread-

sheets. Electronic publishing currently is used in the following manner. Small personal

computers are used to create parts of large documents. These parts are transferred to

sophisticated graphics workstations which assemble and finish the document in both draft

and final versions. Since the personal computers and workstations are usually on a net-

work, the transfer of text and graphics can be done on the network. However, this often

involves several operational steps on the part of users in order to coordinate their efforts.

Electronic publishing applications now being developed allow for a less labor intensive

effort in the cooperative development of large documents. In a manner similar to new

spreadsheet applications, the finishing workstations can automatically access the text and

graphics pieces of large documents over the network. Moreover, users of the small personal

computers can generate draft copies of the completed document from their keyboards so

^Federal Information Processing Standard.

2

they can see how their parts fit into the whole. These draft copies can be automatically

assembled and printed remotely.

In order to support the demand for more flexible and transparent communications in

applications such as spreadsheet and electronic publishing, large communication systems

of diverse hardware and software components have emerged. In the peist, sophisticated

computer communication systems and the applications which ran on them came from

a single producer, i.e., they were homogeneous computing environments. For better or

worse, this is no longer the case. Complex computer communication systems and their ap-

plications come from many different producers. Thus, the name heterogeneous computing

environment was coined.

The emergence of heterogeneous computing environments results in organizations hav-

ing a larger number of communication equipment producers from which network compo-

nents can be acquired. In many cases, this larger community of producers results in both

a lower total network cost and/or a greater network functionality. While many organiza-

tions still choose a homogeneous computing environment, for Federal Agencies, this choice

is rarely available because of the requirements for full and open competition in acquisitions.

To describe a heterogeneous computing environment as a collection of systems and

components from different producers is not very informative. It is useful to know what a

heterogeneous computing environment can do for a user, whether that user is an application

developer or an end user. In the next section, heterogeneous computing environments are

characterized from the point of view of the generic services they provide.

3

Client Client/Server

Client Server

Figure 1. Client/Server Model.

2 Heterogeneous Computing Environments

A client/server model is used to describe the generic services provided in a heterogeneous

computing environment. While other models may also apply, client/server models serve

well as a means of describing the services outlined in this section.

In a client/server model, a node in a heterogeneous computing environment (e.g., per-

sonal computer, workstation, minicomputer, mainframe) may be characterized either as a

client, a server, or a client/server. A client node provides no services to any other node.

A client is only able to be the recipient of services provided by other nodes. A node that

provides services is a server. Often a server can also be a client. Such a node is referred to

as a client/server. The term client may also refer to a process which runs on a client node

or to the person on whose behalf a client process is acting. Similarly, the term server may
also refer to a process which runs on a server node. In this report, the term client refers

to a client node and the term server refers to a server node.

In figure 1, a personal computer and a workstation are clients. They provide no services

to any other node, but they may be the recipient of a service, such as mounting a file

system or directory, from either the server or client/server. The client/server may also be

the recipient of services.

Originally, nodes of computer networks were exclusively mainframes and minicomput-

ers. The user accessed the network only by means of a terminal connected to one of the

nodes. The services provided by the network were usually login (sometimes called vir-

4

Client Server

root SysDisk UserDisk

/\
/users /etc /bin UserDisk: [NetUsers] UserDisk: [LocUsers]

Figure 2. Client access to remote mass storage on server.

tual terminal or remote login), file transfer, and mail. Each node of the network was a

client/server for these three services. Users were provided with an interactive terminal

session with any node on the network. They were able to transfer files between any two

nodes. Finally, they were able to send mail to any node and receive mail from any node.

With the advent of the personal computer, networks were implemented whose nodes

were exclusively small computers. Such a personal computer network provided file service

and mail. Each node of a personal computer network was usually either a client or a server

and typically, there were no client/server nodes. There was no login service provided since

each personal computer ran applications locally. Although applications may be downloaded

from a server, their primary function was to provide file service for data (i.e., transparent

access to data on mass storage). File transfer between clients was accomplished by copying

files to and from a server. Additionally, servers sometimes acted as a post office for

electronic mail. Clients accessed the mail server to send and receive mail.

This distinction between large computer networks and personal computer networks

has somewhat disappeared. In a heterogeneous computing environment, the services

of the large computer network and the personal computer network are integrated into

three basic types of services which are available to all sizes of clients from all sizes of

servers or client/servers. In a heterogeneous computing environment, clients, servers, and

client/servers may be, for example, mainframes, minicomputers, workstations, or personal

computers. Most services can be grouped into three major categories: distributed file

system, distributed computing, and messaging.

5

2.1 Distributed File System

The concept of a distributed file system is the generalization of the concept of file service.

File service provides a client with transparent access to part of the mass storage of a remote

server. Transparent access means that, to the user on a client, the remote mass storage

of the server is available on the client as though it were mass storage locally connected to

the client.

Figure 2 illustrates the concept of transparent access. The notation is used to

indicate the location of a file within the directory tree of the client. The ":" and "."

notation is used to indicate the location of a file on the server (see sec. 2.1.1). The client

has, as part of its file system, a part of the file system of a remote system which is providing

file service. The directory tree which begins at /users/Jane on the clients directory tree

physically resides on the server's directory tree at the point UserDisk:[NetUsers.JaneJ

which is part of the server's mass storage device UserDisk. Note that, in this example,

although the syntcix of file reference diff^ers between the client and the server, the client

uses its file reference syntax (i.e., the "/" notation) for all file references including those

which physically reside on the server. The fact that the client and server use different

file reference syntax notations implies that the client and server have different operating

systems. In a heterogeneous computing environment, a client may have access to several

servers simultaneously. In addition, on some servers, a client may have transparent access

to peripheral devices on servers other than mass storage, such as, printers and modems.

Since a client and server may be from different producers, a user on a client is provided

with transparent access to remote peripherals in the user interface paradigm of the client,

not the server. This means that, once remote mass storage is attached, users issue the same

commands (e.g., copy, rename, delete) to access remote mass storage as they do to access

local mass storage. Similarly, once a remote printer is attached, the commands to print

on the remote printer are the same as the commands to print on the local printer. The

file system/device model (i.e., how file or device references are supported in the command
language) used by each client is the access provided by servers to clients in a heterogeneous

computing environment.

2.1.1 File System/Device Models

Most clients have one of two types of file system/device models: single-tree and device-

based. The single-tree model is one in which all physical devices are part of a single

directory tree (see fig. 3). The directory trees of each mass storage device axe attached to

a node in the system's single directory tree. A file reference in the command language is

a path in the single directory tree, such as, /users/jane/file2. Physical devices other than

mass storage are also attached to the single directory tree. Thus, a printer is simply a

file reference in the single directory tree. In figure 3, /dev/xd, /dev/ttyl, and /dev/printer

represent a disk, a terminal, and a printer. The directories /bin and /etc respectively

contain system executable files and system configuration files.

6

root

/users/jane/filel /users/jane/file2

Figure 3. Single-Tree File System/Device Model.

The device-based model is one in which each physical device must be specifically ref-

erenced (see fig. 4). Each mass storage device, such as SysDisk and UserDisk, has its own
collection of files. A file reference includes the name of the physical device and the name of

the file. K the file system is hierarchical (i.e., supports directory trees), then a file reference

includes the name of the physical device and the path in the directory tree on that device.

For the file reference UserDisk:[jane.file2j^ UserDisk is the name of the physical device,

jane is the name of the directory, and fHe2 is the name of the file. Devices other than

mass storage simply have names and are treated in the command language in a manner

specific to the type of device. For example, a printer device would have commands in the

command language specific to printers like print and interrogate print queue.

2.1.2 Types of Clients

There are three types of clients in a heterogeneous computing environment: diskless, data-

less, and datashaxe. A diskless client has no mass storage of its own. All file access is

provided by the distributed file system. A diskless client boots, loads applications, and

stores its data on servers. A dataless client has only enough local mass storage to enable it

to boot and perhaps, load applications. All of its data is kept on servers. A datashare client

can function more autonomously. It has some applications and some data stored locally

but, at the same time, may have some data and applications stored remotely. Figure 2

shows a dataless client which uses a single-tree file system/device model which is attached

to a server which uses a device based file system/device model. The files in /users/Jane

on the client appear to be local but actually reside on the server.

7

SysDisk Ttyl Printer UserDisk

/\
SysDisk: [Execs] SysDisk: [Configs] UserDiskl:[jane] UserDisk 1: [joe]

UserDisk: [jane.filel] UserDisk: [jane.filel]

Figure 4. Device Based File System/Device Model.

Although the distributed file system in a heterogeneous computing environment is avail-

able over a large geographic 3«F6di^ cLS a practical matter, clients typically attach to servers

which are close geographically, such as, within the same building or building complex.

This is because most long distance network links operate at much slower speeds (e.g., 1.5

Megabits) than short distance links (e.g., 10 Megabits). The convenience of a distributed

file system is diminished by slow speed communication.

A common solution to this problem is first to perform a file transfer over low speed links

to local (i.e., geographically close) servers where clients have higher speed access. Then,

clients may have transparent access at suitable speeds. For the purpose of file transfer,

files are referenced in the file system/device model of the server rather than the client. A
file reference is usually of the form: [network-node-name, file-reference).

2.2 Distributed Computing

The second major category of service in a heterogeneous computing environment is dis-

tributed computing. Distributed computing refers to the concept of running an application

or applications on remote node(s). Distributed computing is not the downloading of an

application to be run locally. Such downloading is a service of the distributed file system.

Distributed computing is the execution of an application on a remote server or servers

with the results transmitted over the network to the client. Distributed computing takes

four forms: login, remote execution, transaction processing, and cooperative processing.

2.2.1 Login

Login is the service which provides a user on a client with an interactive session on a

server. By means of the login service, the client behaves as though it were a terminal

directly connected to a host where the host is a login server on the network. Typically,

the login session is conducted using the user interface of the login server. Some clients

8

client> rlogin server

password:

Logged into server

server> 1 s

filel file2

server> logout
Connection Closed

client>

1 1

Client A

client> rsh

filel file2

client>

server Is

Client B

Figure 5. Login (Client A) vs. Remote Execution (Client B).

are able to have several login sessions to multiple servers active simultaneously. Normally,

each login session requires a dedicated process on the client and a dedicated process on the

server. For those clients with mouse/window user interfaces, each login session is usually

a separate window. If the client is also a server, then remote interaxrtive applications can

access local mass storage for data by means of the distributed file system. K not, then file

transfer to a server may be used to allow access to data. Login permits access to remote

applications which are highly interactive in nature.

Figure 5 shows the interaction between a user on client A and a login server in the

typical login session. The purpose of the session is to obtain a directory listing of a directory

on the login server. The bold indicates what the user enters.

In the future, the need for a login service will diminish. Users will interact with

applications as though the application were resident locally, whereas, in fact, the processing

of the application may be taking plax:e on several different nodes (see sec. 2.2.4).

2.2.2 Remote Execution

Remote execution is the service which provides a user on a client access to remote applica-

tions which are not highly interactive in nature. Remote execution is diff"erentiated from

login in several ways. With login, the user on the client interacts with each server in the

command language (i.e., user interface paradigm) of the server. With remote execution,

the user issues commands to the server using the user interface of the client, i.e., commands

9

executed by the server are issued in the same language as commands to the client. From
an implementation point of view, a login session requires a process on the client and a

process on the server dedicated to each interactive session throughout its establishment.

On the other hajid, remote execution normally only requires the client to execute a single

process in order to access multiple servers at the same time. Moreover, a single process on

the server is usually sufficient to manage processing requests from all clients.

Figure 5 shows the interaction between a user on client B and a remote execution

server. As is the case with the user on client A accessing a login server, the user on client

B is obtaining a directory listing from a remote system. The bold indicates what the user

enters. Note that the user on client B is not logged into the server, but is simply entering a

command which happens to be carried out on the server. In many cases, remote execution

happens without the user's knowledge. With remote execution, all operations can appear

as though they are happening locally even when they take place remotely.

Remote execution is also different from the venerable concept of remote job entry.

Remote job entry is the remote initiation of batch processing on a host. Remote execution

on a server normally proceeds at interactive priorities (i.e., the same priorities as interactive

sessions). Batch priorities are usually less than interactive priorities. In addition, the

concept of remote execution includes the concept of applications on different nodes closely

interact with each other in a highly synchronized manner.

In the future, the need for remote execution services will diminish. The functionality

of remote execution (as shown in the example of fig. 5) will be replaced by applications

that access remote nodes on behalf of, and unbeknownst to the user (see sec. 2.2.4).

2.2.3 Transaction Processing

The concept of transaction processing services evolved from the requirements of database

applications. A transaction is an update (i.e., change) made to information in a database.

Many transactions involve a query as well. The database is queried, a decision made
on the basis of the information obtained from the query, and then a change made to

the database. An application maintaining a database on a server in a heterogeneous

computing environment must be capable of managing transactions, which arrive virtually

simultaneously from clients, in a manner which insures the integrity of the information.

In a heterogeneous computing environment, transaction processing services are pro-

vided in order to meet the special needs of distributed database applications. A transac-

tion applied against a database on a server can cause the server to generate transactions

against databases on other servers, and so on. The initial transaction generates a flow of

transactions which may be depicted as a flow through a tree structure. Each leaf of the tree

represents a server running an application maintaining a database. Transax;tion processing

services help the server database application control and synchronize these transaction

flows so that the information contained in all of the databases is reliable and up-to-date.

10

2.2.4 Cooperative Processing

The availability of remote execution services and transaction processing services ha^ given

rise to the concept of a distributed application. A distributed application is an application

in which the interaction between the user and the application appears as though all of the

processing is taking place locally, but, in fact, the processing may be distributed across

several nodes of the network. The most common example of a distributed application can

be found in a distributed database application. The user on a client initiates queries to

a database whose data is distributed among several nodes of the network. To the user,

the data appears to be local. A server (or servers) accepts the queries, generates the

information, and sends the results back to the client. Implementations of spreadsheet and

electronic publishing applications now becoming available (as described in sec. 1) are also

examples of distributed applications.

Distributed applications make use of cooperative processing services. The application

programmer uses cooperative processing services for processing required by the application

and, in some cases, need not be aware of the location where the processing is taking place.

The cooperative processing service may be able to determine automatically where process-

ing is to take place. Cooperative processing services include the functionality provided by

both remote execution and transaction processing services. In the future, the concepts of

cooperative processing and distributed applications should replace the concepts of login,

remote execution, and transaction processing. Users will only interact with distributed

applications that are implemented using cooperative processing services.

2.3 Messaging

Messaging services are associated with mail and conferencing applications. Electronic

mail has been available on computer networks from their beginning. Mail servers in a

heterogeneous computing environment act like local post offices. Users on a client must

normally obtain their mail remotely from the server to which it was sent, but may send

mail directly. Only client/servers can both send and receive mail locally.

Conferencing services allow messages to be sent and received immediately. Conferencing

in a heterogeneous computing environment is similar in concept to using a telephone.

While mail messages can be transferred and stored without the active participation of the

users, conferencing messages are lost if the receiver does not take immediate action. A
notification that a message was received is displayed on a user's screen and if the response

is not forthcoming, the message is lost. This form of message passing can be just between

two users (like a telephone call) or among several users (like a telephone conference call).

In most cases, users on clients can use conferencing directly without the support of any

servers.

11

2.4 Standards

The heterogeneous computing environment is supported by standards. Three major kinds

of standards are necessary in a heterogeneous computing environment: conmiunication pro-

tocols, application programming interfaces, and user interfaces. Standard communication

protocols are necessary so that systems from different producers can connect to a commu-
nication network and understand the information being transmitted. Standard commu-
nication protocols result in interoperability between diverse computer systems. Standard

application programming interfaces are necessary so that software developers can imple-

ment applications whose source code runs almost unchanged on systems from different

producers. Standard application programming interfaces result in portable applications.

Standard user interfaces are necessary so that users are able to interact with remote ap-

plications on systems from different producers in the same manner as they interact with

applications locally. Standard user interfaces result in portable users, i.e., users who can

easily access applications regardless of the hardware platform on which the applications

are run.

In section 3, several standards which axe currently used as a means of implementing

some of the services described in this section are presented. The standards discussed in

section 3 are communication protocols and/or application programming interfaces.

12

3 Examples of Standards for Heterogeneous Comput-
ing Environments

In this section, several standards needed by heterogeneous computing environments and

already in use in network implementations are examined. Such standards include those

necessary in order to implement the services described in section 2 and can be categorized

cLS either communication protocol standards and/or application prograiimiing interface

standards. This section is provided for the more technically advanced reader.

Implementations of the services described in section 2 require certain lower level capa-

bilities. For example:

• In order to implement a distributed file system for a client, a set of file manipulation

primitives must be defined. These file manipulation primitives would be essentially

the ones common to local file systems (e.g., read, write, delete, rename). Moreover,

they would be passed as messages between clients and servers and would be accessible

to applications through procedure calls.

• In order to implement remote execution and transaction processing, processes on

different nodes must be able to coordinate their activities almost as though they

were processes on the same system. This implies that there must be a standard set of

process control and interprocess communication primitives. Just as is the case with

file manipulation primitives, process control and communication primitives would

have two forms: messages and procedure calls.

• In a heterogeneous computing environment, there is no commonality of data represen-

tation. Even systems from the same producer may have dissimilar data formats. In

addition, different programming languages have different ways of representing simple

data types and aggregate data types. If file systems are to be shared among het-

erogeneous systems and if processes on heterogeneous systems are to communicate,

then there must be a common data representation between systems and languages.

• Beyond a standard data representation, heterogeneous computing environments must

provide some means of user identification and authentication. In a distributed file

system, servers must identify users in order to invoke file protection mechanisms. For

remote execution and transaction processing services, servers must be able to invoke

processes which can act on resources (e.g., the distributed file system) in the name

of a user.

Required lower level capabilities such as those listed above are provided by standards.

Network File System, External Data Representation, Remote Procedure Call, Advanced

Program to Program Communication, and X Window System are examples of such stan-

dards. They fit into the International Standards Organization (ISO) Basic Reference Model

13

Table 1. Location of example protocols in ISO Basic Reference Model

Application Presentation Session Presentation/Session

Network File System

X Window System

External Data

Representation

Remote
Procedure Call

Advanced Program to

Program Communication

as indicated in table 1. However, they are not ISO standards. None of the standards used

as examples in this section axe formal standards. The standards in this section are defa<:to

standards that are widely used and which are either being considered by various standards

organizations for inclusion in a formal standard or have already formed the basis for a

standard which is under development by a standards organization.

3.1 Network File System

The Network File System (NFS), initially developed by Sun Microsystems, is a commu-
nication protocol and application programming interface which is emerging as a defacto

standard for distributed file system services in a heterogeneous computing environment.

It permits a partition of a server's file system to be associated with either a device or a

subdirectory on a client depending on the file/device model of the client's file system (see

sec. 2.1.2 and fig. 2). Although NFS was first implemented within a Unix environment,

NFS is now implemented within several different operating system environments. File

manipulation primitives supported by NFS include: read, write, create a file or directory,

remove a file or directory, lookup file name. NFS includes an Application Layer proto-

col and is usually paxt of a Transmission Control Protocol/Internet Protocol (TCP/IP)

protocol stack.

NFS is referred to as a stateless system. This means that the server does not maintain

the state of files, from the client's point of view, in file systems mounted by clients. There

are no open or close primitives in NFS. Each file manipulation request from the client

contains all of the information necessary for the server to complete the request. The server

responds fully to every client's request without being aware of the conditions under which

the client is making the request. Thus, for example, if the server fails, the client may just

continue to request file access until the server is able to respond. Only the client knows

the state of a file for which service is requested. In a system where a server maintains the

states of files as they are accessed by each client, the failure of a client, a server, or the

network is difficult to recover from in an acceptable manner that will restore the states of

clients and servers to the conditions in place before the failure.

14

However, the absence of knowledge on the part of the server concerning what clients

are doing to files can lead to unpleasant consequences. For example, one client may have

a file open on a server and another client may delete the open file. The server is unaware

that a client has the file open. In particular, a fully stateless mechanism cannot be used

in database applications. Record and file locking inherently involves managing the current

state of a file by a server.

In order to permit database applications, the record locking mechanism specified in the

System V Interface Definition (SVID) is supported by another protocol, the Network Lock

Manager, which works in conjunction with NFS. The Network Lock Manager uses Status

monitors, daemon processes on both clients and servers, to initiate recovery procedures in

the event of failure. By means of status monitors, clients and servers notify each other

concerning their operational state. If a client fails, then when the client is restarted, the

server removes all lock information for that client and the client resubmits all lock requests.

If a server fails, then when the server is restarted, it notifies all clients and clients resubmit

their lock requests.

Most NFS implementations use Remote Procedure Call. Such implementations usually

support the user authentication methods of Remote Procedure Call discussed in section 3.3.

Another example of a conmiunication protocol and application programming interface

for distributed file systems is Remote File System (RFS) developed by AT&T. However,

RFS only supports a distributed file system among nodes which have Unix compatible file

systems.

RFS is an example of an approach to distributed file systems which is termed stateful,

i.e., the server maintains information about the state of the file on the client, such as,

whether the file is open. This is necessary in order for RFS to support the full Unix

file system semantics. The file systems of many operating systems do not support the

semantics of a Unix file system. Participation in a distributed file system implemented

using NFS does not require the semantics of a Unix file system. Thus, file systems from

many different producers are able to be part of a distributed file system implementation

using NFS.

Since RFS supports the full semantics of a Unix file system, the application program-

ming interface for RFS is the Unix input/output (I/O) application progranmiing interface.

Since NFS is intended to support operating systems other than Unix, NFS can be de-

scribed as having two layers of application programming interface. The high layer is the

I/O application programming interface of the client operating system. The low layer is

the NFS Remote Procedure Calls which provide direct access to the NFS file manipula-

tion primatives. Typically, the NFS client's high layer application programming interface,

which provides the file system semantics of the client's operating system, is implemented

using the low layer interface. For example, if the client operating system is Unix, then the

Unix I/O application programming interface would also provide access to NFS file systems

on servers.

However, because NFS is a stateless systems, i.e., the server does not maintain infor-

15

mation about the state of a file on a client, NFS, by itself, is unable to support the full

file system semantics of many operating systems. Thus, when an application applies the

I/O application programming interface of the client's operating system, only some of the

client's file system semantics may be supported. NFS is neither a specification of file sys-

tem semantics for operating systems nor a specification of an I/O application programming

interface for operating systems. NFS is a specification of a network protocol, a set of file

manipulation primatives, and an application programming interface to those primatives.

The Institute of Electrical and Electronics Engineers (IEEE) Standards Committee

P1003, which developed the POSIX standard, is developing a standard file semantics for

file access over networks. This standard is referred to as POSIX Transparent File Ac-

cess (TFA). The TFA standard specifies file semantics for file access between clients and

servers over networks. In addition, TFA will specify an application programming interface,

an enhancement of the POSIX application programming interface, which may be used by

applications on clients of TFA file systems regardless of the native operating system of the

client. The TFA standard will specify file semantics which are operating system indepen-

dent and capable of being supported by both stateless systems, such as NFS, and stateful

systems, such as RFS. The TFA committee is using the POSIX standard, which speci-

fies file semantics for standalone systems, as the starting point for its efforts. However,

conformance to the TFA standard will not require conformance to the POSIX standard.

Another example of a protocol related to the manipulation of files over a network is

the protocol defined by the ISO File Transfer, Access, and Management (FTAM). FTAM
is a stateful system. FTAM was initially developed as an Application Layer protocol for

the transfer of files from one network node to another. Although FTAM has been used to

implement distributed file systems, FTAM currently has no protocol mechanisms for the

manipulation of directories on file servers. Each distributed file system implementation

using FTAM must develop its own mechanism for dealing with directories. Currently,

FTAM includes a protocol for manipulating files ax:ross a network while NFS is a protocol

for manipulating file systems across a network. However, FTAM is now being modified to

include directory manipulation capabilities.

3.2 External Data Representation

External Data Representation (XDR) is an encoding of simple and aggregate data types

enabling the exchange of information between different systems and programming lan-

guages. The simple and aggregate data types specified by XDR resemble those in the C
programming language. In order to transmit data between nodes, a data stream is trans-

lated from the internal data format of the sending node to the XDR encoding. The XDR
encoded data are sent over the network to the receiving node which translates the data

from the XDR encoding to its native representation. XDR resides in the Presentation

Layer and is usually part of a TCP/IP protocol stack. XDR was initially developed by

Sun Microsystems, whose implementation includes an application programming interface.

16

XDR uses implicit typing of data in its encoding. This means that the receiving node

may have to have a priori knowledge of the sequence of data types in the stream transmitted

by the sending node. Information as to what data types are in the stream is not necessarily

part of the encoding, i.e., the stream consists of only the encoded data and not the type

information for the data. The type information for the data stream may be included in the

stream (i.e., explicit typing) but how typing is included in a data stream must be agreed

upon by the sending and receiving nodes. A methodology for explicit typing is not part of

the XDR standard.

The Abstrax;t Syntax Notation One (ASN.l) and Basic Encoding Rules for ASN.l

ISO standards are another approach to data representation. The acceptance of these

standards, from the point of view of their use in implementations, is increasing and is

expected to dominate in the future. ASN.l requires that explicit typing be used in data

streams and specifies the encoding for the explicit typing. The disadvantage of explicit

typing is that the data streams are necessarily longer because of the inclusion of the typing

information. Moreover, added processing is needed by the receiving side to interpret the

typing information in order to translate the encoded data. In many ca^es, communicating

processes already know what data types to send and receive. The extra space in messages

and the extra processing required for explicit typing is not required. However, in the

future, with the advent of more powerful processors and higher speed networks, these

disadvantages will become less of a concern.

3.3 Remote Procedure Call

Remote Procedure Call (RFC) is a model that specifies how cooperating processes on

different nodes in a heterogeneous computing environment can communicate and coor-

dinate activities. RFC is an approach to providing distributed computing services in a

heterogeneous computing environment. The paradigm of RFC is based on the concept

of a procedure call in a higher level programming language. The semantics of RFC are

almost identical to the semantics of the traditional procedure call. The major difference is

that while a normal procedure call takes place between procedures of a single process in

the same memory space on a single system, RFC takes place between processes on clients

and servers in a heterogeneous computing environment.

3.3.1 Model

Figure 6 illustrates the basic operation of RFC. A process on a client issues a normal

procedure call to a client stub. The client stub is a library routine which accepts the call

parameters from the calling procedure, creates a message containing the call parameters,

and calls the transport layer interface. The transport layer interface transmits the message

with the call parameters to the server transport layer interface. The server transport layer

interface issues a call to the server stub which takes the call parameters from the message

17

Client Server

client process

procedure

transport

\^ layer

server process

procedure
return

caU

server

stub

return

call

J transport

layer

Figure 6. RPC model.

and calls the procedure which does the processing.

When the server process procedure has completed, it returns to the server stub with

the return parameters. The server stub encapsulates the return parameters into a message

which is pcLSsed to the transport layer of the server. The server transport layer sends on

the network the return parameter message to the transport layer of the client which passes

the message to the client stub. Finally, the client stub extracts the return parameters from

the message and returns them to the calling procedure in the required form.

Like a normal procedure call, RPC is a synchronous operation, i.e., the client process is

blocked until processing by the server is complete. This is not acceptable for many applica-

tions. As a consequence, the RPC model is enhanced to include the concept of a lightweight

process. A lightweight process (also known as a thread) is an independent execution path

within a normal process. A normal process can consist of several lightweight processes,

each behaving like a normal process from the point of view of CPU usage. However,

all lightweight processes of the same process share the same address space. Thus, con-

text switches between lightweight processes may be done more economically than context

switches between normal processes. A client process can initiate a RPC in a lightweight

process and then proceed with other processing. The completion of the RPC can then be

indicated either by a status check or a software interrupt.

Note that the RPC model does not explicitly deal with the problem of systems which

have different data representations. However, almost all implementations provide a mech-

anism to solve the problem of different data representations.

18

3.3.2 Implementation

Several producers have implemented the RFC model. Some make use of the same com-

munication protocol and have similar application programming interfaces. Many others

have announced their intention of implementing the RFC model. In order to provide a

more in-depth description of the functionality of RFC, this section describes the RFC
implementation from Sun Microsystems. In this section, the term RPC refers to this im-

plementation. RFC is the primary mechanism used in the implementation of NFS (see

sec. 3.1). RFC is a session layer protocol which is part of a TCF/IF protocol stack. It

uses either TCF or UDF as a transport layer protocol. In addition, RFC uses XDR «ls its

data representation (see sec. 3.2).

The RFC implementation includes an application programming interface which has

three layers. An increasing amount of control over the functioning of the RFC mechanisms

is provided from the highest application programming interface layer to the lowest layer.

The highest layer provides the least amount of control. The lowest layer provides the

maximun amount of control.

The highest layer is the boundary between the client procedure and the client stub (see

fig. 6). Library routines (e.g., rnusers, which returns the number of users on a remote

node) are used by client applications just as they would use any other library procedures.

The client application need not be aware that it is using RFC.
The intermediate layer of the RFC application programming interface is used to im-

plement RFC client and servers for specific applications. The intermediate layer can be

used to develop client and server stubs and consists of the three routines: registerrpc,

svc_run, and callrpc. The routine registerrpc identifies to the server the server process

and the procedures that the server process is to handle. The server process is identified

to the server by two numbers: the program number and the version number. When the

server process is started, it identifies itself using registerrpc and then calls svc_run,

which places the server process in a suspended state waiting to be called. From this point

on, when a client initiates a call to one of the server procedures using callrpc, the server

activates the selected server process which calls the selected procedure. The client identi-

fies the remote procedure by specifying in the call to callrpc the server node name, the

program number, the version number and the procedure number. Server process program

numbers must be unique on the network.

The intermediate layer is suitable only for single applications. It does not permit

user authentication, nor allow timeouts to be specified, nor permit a choice of transport

mechanisms (i.e., TCF or UDF). The lowest layer must be used in order for these and other

parameters to be controlled. The lowest layer consists of several routines which permit fine

control over the operation of client and server stubs. Both the intermediate and lowest

layers of the RFC implementation use XDR for data representation. The XDR library has

many routines for the translation of both simple and aggregate data types into and out

of XDR. In addition, the routines in the library may be used to develop new routines to

19

translate aggregate data types for specific applications.

The implementation of client stubs and server processes is fax:ilitated by the use of

rpcgen, a program generator, rpcgen receives as input specifications of client and server

procedures along with declarations of the data types to be represented in XDR and gen-

erates C code for client stubs and server processes. Although rpcgen does not permit

the fine control of RPC parameters that is possible when developing directly using the

lowest layer of the application programming interface, rpcgen generates code which uses

the lowest layer. The generated code may then be modified to meet specific needs.

Lightweight processes are available to be used in conjunction with RPC. The lightweight

process library has many routines for the creation and removal of lightweight processes,

for communication and synchronization between lightweight processes, for optional user

scheduling of lightweight processes, and for optional user management of lightweight pro-

cess stacks. Lightweight processes exist within a single Unix process and all lightweight pro-

cess scheduling takes place within the CPU time allocated for the Unix process. Lightweight

processes belonging to different Unix processes do not compete directly with each other for

CPU time. Because the lightweight processes are not implemented in the Unix kernel but

by means of library routines, developers using lightweight processes must be aware that a

system call within a lightweight process may block all of the lightweight processes within

the single Unix process.

The RPC implementation is capable of supporting several different methods of user

identification and authentication. There are four kinds of user authentication: none, two

types of Unix style authentication, and DES authentication, a technique which uses the

Data Encryption Standard^ (DES). A client can request RPC service and supply no iden-

tification. This enables the server to provide services without the overhead of user authen-

tication. For many applications, e.g., read-only access to files, this may be appropriate.

Unix style authentication involves identifying a user to a server by means of the Unix

user ID and group ID. The client's user must have an account on the RPC server. Each

service request from the client is accompanied by the user's Unix style identification.

Having identified the user, the server is able to process the request according to the access

to which the user is entitled. Unix style authentication is implemented in two ways. In the

first method, each RPC request includes the user's user ID and group ID. Upon receipt of

the request, the server must check the password file. The second method eliminates the

checking of the password file for each request. When the first request is made, the server

returns a short identification structure. Subsequent requests may now include only the

short identification structure. The server keeps a table which permits quick access to a

user's original credentials using the short identification structure.

The fourth type of authentication is DES authentication. This approach fixes two

shortcomings of Unix style authentication:

1. The use of Unix style identification may not be meaningful to a non-Unix node.

^Data Encryption Standard, FIPS 46-1.

20

2. The lack of some verification mechanism to help insure that the user making the

request is really that user.

With DES authentication, each user is given a network name which is unique network-

wide. To this name is applied a verification procedure by the server each time a request

is made. With the first request, the user includes a DES key, called the conversation key,

which is used in subsequent requests. The client uses the key to DES encrypt the time and

include this encrypted timestamp in subsequent service requests. The server decrypts the

timestamp using the conversation key. If the timestamp is greater than the one seen on the

previous request and within a selected window of the server's time, the user identification

is verified and the request processed.

3.4 Advanced Program to Program Communication

Database applications are an important part of a heterogeneous computing environment.

Consequently, the transaction processing services which support database applications

(see sec. 2.2.3) should be available in heterogeneous computing environments. Advanced

Program to Program Communication (APPC) is a communication protocol and application

programming interface standard initially developed by IBM in order to provide transaction

processing services. However, APPC is now used as a general purpose mechanism for

providing distributed computing services in a heterogeneous computing environment. Like

NFS, APPC has been implemented within several operating system environments including

Unix. APPC is a protocol in the Presentation and Session Layers. APPC was used as input

for the ISO Transaction Processing Standard which is now a Draft International Standard

(DIS). The ISO Transaction Processing Standard is very similar to the communication

protocol of APPC except that the ISO standard permits full duplex communication links.

However, the ISO standard does not specify an application programming interface.

3.4.1 Example

APPC provides primitives, called verbs, which enable procedures, called transaction pro-

grams and network application programs, to communicate and synchronize activities with

each other over a network. The basic functioning of APPC can be understood by looking

at a sample communication session between two transaction programs as summarized in

figure 7. The example demonstrates how a query and response is carried out in APPC.
Network nodes in APPC are referred to as logical units (lu). Communication between

transaction programs (tp) running on logical units in APPC is accomplished in a conver-

sation, i.e., a grouped set of messages passed between procedures. The example of figure 7

illustrates a conversation between tp(a) on lu(a) and tp(b) on lu(b).

tp(a) on lu(a) initiates the conversation by means of the ALLOCATE verb. tp(a) is

requesting lu(b) to activate tp(b). tp(a) then sends a long query, too long to be sent

by one call to SEND_DATA because the query is longer than lu(a)'s internal buffer. The

21

ALLOCATE(lu(b), tp(b))

SEND_DATA {length greater than buffer size}

SEND_DATA {rest of data) {start tp(b)}

{get TP_E), CONV_ID}

RECEIVE_AND_WAIT

RECEIVE AND WAFT

data_incomplete

PREPARE_TO_RECEIVE

RECEIVE AND WAIT

1
data_complete ^

RECEIVE_AND_WAIT confirm_deallocate

CONFIRMED

W data_complete

RECEIVE_AND_WAIT send

SEND_DATA

DEALLOCATE(confirm

DEALLOCATE

{end conversation)

{end conversation}

Figure 7. Example of query/response conversation in APPC.

arrows crossing the vertical center line representing the network in figure 7 indicate when
a message is actually sent on the network. The smaller arrows indicate a status indication

returned to a transaction program from the call to the verb. Note that nothing is sent on

the network until a buffer is filled as a result of the second SEND.DATA call. Procedures

on logical units must be aware of the buffering mechanism in APPC so that they can be

sure that a message was sent and not hang waiting for a response.

At this point, lu(b) has received the ALLOCATE request and the first part of the

query. The rest of the query remains in a buffer on Iu(a). tp(a)'s second SEND_DATA
started a new buffer but did not fill it. The transaction program tp(b) is started and

obtains its transaction program ID (TP_ID) and conversation ID (CONVJD), which it

needs cls parameters for conversation verbs. tp(b) now reads the message by using RE-

CEIVE_AND_WAIT. The first RECEIVE_AND_WAIT returns a status of dataJncomplete.

22

Therefore, tp(b) issues a second RECEIVE_AND_WAIT which causes tp(b) to block until

the rest of the query arrives.

Meanwhile, tp(a) wants to be able to receive messages from tp(b). APPC is a half-

duplex protocol, i.e., the communication link between tp(a) and tp(b) is uni-directional.

Only one side of the conversation has permission to send data at any one time. When a

conversation begins, the transaction program which initiates the conversation has the send

permission. PREPARE_TO_RECEIVE is used by tp(a) to pass the send permission to

tp(b) so that tp(b) can respond to the query. At that time, the partially filled buffer in

lu(a) containing the rest of the query is sent to lu(b) along with a message passing the

send permission. tp(b) is unblocked and receives a status indication that the complete

query has been received. tp(b) initiates another RECEIVE_AND_WAIT and receives a

status indication that it has received send permission. tp(b) sends the response back to

tp(a) and terminates the conversation by means of the DEALLOCATE verb. tp(b) uses

the confirm parameter to DEALLOCATE which causes the conversation to terminate only

if tp(a) answers that the response wa^ received.

Meanwhile, tp(a) was blocked on a RECEIVE_AND_WAIT for the response to its

query. The DEALLOCATE with confirm from tp(b) caused the response data to be

sent from tp(b) along with a confirmation request message. tp(a) receives the response

data with a status of data_complete. tp(a) does another RECEIVE_AND_WAIT and

gets a status of confirm_deallocate indicating that tp(b) is waiting for a confirmation

to the receipt of the response data in order to terminate the conversation. tp(a) uses

the CONFIRMED verb to do this. tp(b) and tp(b) both terminate their ends of the

conversation.

3.4.2 Conversation Verbs

The following list summarizes APPC conversation verbs by functional categories and in-

dicates their use.

1. St axt/Terminate

ALLOCATE and DEALLOCATE respectively initiate and terminate conversations

between procedures on logical units.

2. Send/Receive Data

SEND_DATA and RECEIVE_AND_WAIT respectively send and receive data be-

tween procedures on logical units.

3. Change Link Direction

REQUEST_TO_SEND and PREPARE_TO_RECEIVE allow a procedure to respec-

tively ask for send permission or give up send permission.

23

4. Bulfer Control

FLUSH forces the contents of a buffer which holds conversation data to be sent on

the network.

5. Conversation Synchronization

CONFIRM requests a receiving procedure to send a confirmation that data was

received. CONFIRMED allows the receiving procedure to send a confirmation.

6. Asynchronous Processing

RECEIVEJMMEDIATE, POST_ON_RECEIPT, TEST, and WAIT allow a proce-

dure to interrogate the status of incoming data without being blocked. SEND_DATA
never blocks.

7. Procedure Synchronization

During a conversation, a procedure may invoke SYNCPT which sends a message

to a receiving procedure to synchronize his activities on the receipt of the message.

BACKOUT requests the receiving procedure to reset its state to the time of the last

receipt of a SYNCPT message.

The Procedure Synchronization verbs are designed with database applications in mind.

An example of their use is as follows. When a SYNCPT message is received, the receiv-

ing procedure applies all transactions received up to this point to its databcise. As new
transactions arrive after receipt of the SYNCPT, they are applied to the database in such

a manner that they can be backed out, i.e., the database can be restored to the condition

it was in at the receipt of the last SYNCPT message. If something goes wrong during the

conversation, the BACKOUT verb can be used by the procedures to reset their databases

to a known point. ,
-

The application programming interface of APPC addresses the needs of two types of

procedures which run on logical units, namely, network application programs and transac-

tion programs. Network application programs are those written by application developers

in high level languages. The verbs POST_ON_RECEIPT, TEST, WAIT, SYNCPT, and

BACKOUT are not directly available for use in network application programs. Transaction

programs implement system level functions on logical units and are intended for system

programmers. All of the conversation verbs listed above are available for transaction pro-

grams. In addition, another class of verbs called the control verbs are available for use in

transaction programs. Control verbs provide the functions necessary for the direct man-

agement of the communication hardware and other resources of the logical unit. Control

verbs differ in their functionality according to a particular APPC implementation.

24

3.5 X Window System

The X Window System is a communication protocol and an application programming

interface which defines an interface between user interactive devices (e.g., mouse, keyboard,

display) and application programs. It was developed as part of Project Athena at MIT.

The X Window System is a protocol in the Application and Presentation Layers and may
be part of any protocol stack. However, most often, the X Window System is part of a

TCP/IP protocol stack.

The X Window System enables a user at a workstation, the X server, to interact with

several application programs, the X clients, which can be running on different nodes. For

example, in figure 8, workstation A has two windows on its display. One window is con-

trolled by client application Ai running on host Hi. The other window is controlled

by client application A2 running on host H2. Similarly, workstation B displays a win-

dow controlled by client application Ai on host H2 and another window controlled by

client application A2 running on host Hi. For both workstations A and B input to the

appropriate application can be controlled by the location the mouse cursor on the display.

Note that, in the X Window System, the location of clients and servers is conceptually

reversed from some of the other network services. In the example of figure 8, the work-

station is the X server and the application programs residing on the hosts are the clients.

From the point of view of other network services, such as, distributed file system or remote

execution, the workstation is the client and the host is the server. In the example, the

workstations could have attached part of the file systems of the hosts in which case, the

workstations would be clients receiving file service from the hosts. Moreover, since the

applications controlling the interactive devices of the workstations are running on remote

hosts, the hosts are remote execution servers for the client workstations. Conceptually,

what constitutes a client and what constitutes a server depends on the nature of the service

relationship and not on whether a node is normally thought of as a workstation or a host.

The example of figure 8 also illustrates how the X Window System can be a participant

in providing remote execution services in a heterogeneous computing environment. X client

application programs can be implemented in any language on any systems 2is long as they

adhere to the X protocol. Likewise, a workstation need only implement the X protocol by

providing device handlers to its specific interactive devices. As a result, the workstation is

able to run any available X client application on any node. In addition, remote execution

services provided by means of Remote Procedure Call or Advanced Program to Program

Conmiimications could be used to invoke the remote X application and exchange data.

25

workstation A
host

Figure 8. X Window System connectivity.

26

4 Conclusions

This report has noted the ever increasing demand on communication systems made by

applications. From this demand has evolved the heterogeneous computing environment,

a computer communications system made up of hardware and software components from

many different producers.

It is useful to characterize heterogeneous computing environments from the point of

view of the generic services which are provided to users who may be either application

developers or end users. Heterogeneous computing environments provide services in three

broad areas: distributed file system, distributed computing, and messaging. The dis-

tributed file system can apply to any type of device but most often supports mass storage

devices and display devices. Distributed computing services include login, remote execu-

tion, transaction processing, and cooperative processing. Messaging services include mail

and conferencing.

Heterogeneous computing environments can only exist because of the communication

protocol, application programming interface, and user interface standards agreed upon by

users and producers. Some examples of such standards have been presented. Standards

which enable distributed file systems include Network File System and External Data

Representation, Standards which permit distributed computing include Remote Procedure

Call, Advanced Program to Program Communication, and the X Window System. In

addition to supporting distributed computing services, the X Window System also supports

the implementation of user interfaces.

27

A References and Related Reading

Advanced Program to Program Communication for the IBM Personal Com-
puter Programming Guide, First Edition, Paxt Number 61X3813, IBM Corpo-

ration, February 1986.

Ahuja, v., "Common Communications Support in Systems Application Architecture",

IBM Systems Journal, 27, 3, 1988.

Balkivich, E., Lerman, S., Parmelee, R. P., "Computing in Higher Education: The Athena

Experience", Communications of the ACM, November 1985.

Birrell, A. D., Nelson B. J., "Implementing Remote Procedure Calls", ACM Transactions

on Computer Systems, February 1984.

Cheriton, D., "The V Distributed System", Communications of the ACM, March 1988.

Demers, R. A., "Distributed Files for SAA", IBM Systems Journal, 27, 3, 1988.

Gifford, D. K., Needham, R. M., Schroeder, M. D., "The Cedar File System", Communi-

cations of the ACM, March 1988.

Government Open Systems Interconnection Profile (GOSIP), Federal Informa-

tion Processing Standards Publication 146, National Institute of Standards and Tech-

nology, 1989.

Grey, J. P., Hansen, P. J., Homan, P., Lerner, M. A., Pozefsky, M., "Advanced Program

to Program Communication in SNA", IBM System Journal, 22, 4, 1983.

Hedrick, C. L., "Introduction to the Internet Protocols", Laboratory for Computer Science

Research, Computer Science Facilities Group, Rutgers University, July 3, 1987.

IEEE Standard Portable Operating System Interface for Computer Environ-

ments (POSIX), IEEE Std 1003.1-1988, Institute of Electrical and Electronics

Engineers Inc., 1988.

International Standard ISO 7498 - Information Processing Systems - Open
Systems Interconnection — Basic Reference Model, Reference Number:ISO

7498:1984(E), ISO TC97/SC21 Secretariat, ANSI, New York, New York, 1984.

International Standard ISO 8571-1 - Information Processing Systems — Open
Systems Interconnection — File Transfer, Access and Management, Refer-

ence NumberrlSO 8571-1:1987(E), ISO TC97/SC21 Secretariat, ANSI, New York,

. New York, 1987.

28

International Standard ISO 8824 - Information Processing Systems - Open
Systems Interconnection - Specification of Abstract Syntax Notation One
(ASN.l), Reference Number:ISO 8824:1987(E), ISO TC97/SC21 Secretariat, ANSI,

New York, New York, 1987.

International Standard ISO 8825 — Information Processing Systems - Open
Systems Interconnection - Specification of Basic Encoding Rules for Ab-
stract Syntax Notation One (ASN.l), Reference Number:ISO 8825:1987(E),

ISO TC97/SC21 Secretariat, ANSI, New York, New York, 1987.

Liskov, B., "Distributed Programming in Argus", Communications of the ACM, March

1988.

McWilliams, G., "Developers Ponder Choices Among Graphic Environments", DATAMA-
TION, August 15, 1988.

Morris, J. H., Satyanarayanan, M., Conner, M. H., Howard, J. H., Rosenthal, D. S. H.,

Smith, F. D., "Andrew: A Distributed Personal Computing Environment", Commu-
nications of the ACM, March 1986.

Network Programming, Sun Microsystems, Part Number:800-1779-10, Revision A,

May 9, 1988.

"Next-generation NOSs Already Are Yielding Practical Benefits", Data Communications,

May 1988.

Notkin, D., Black, A. P., Lazowska, E. D., Levy, H. M., Sanislo, J., ZaJiorjan, J., "Inter-

connecting Heterogeneous Computer Systems", Communications of the ACM, March

1988.

Notkin, D., Hutchinson, N., Sanislo, J., Schwartz, M., "Heterogeneous Computing Envi-

ronment: Report on the ACM SIGOPS Workshop on Accommodating Heterogene-

ity", Communications of the ACM, February 1987.

POSIX: Portable Operating System Interface for Computer Environments,

Federal Information Processing Standards Publication 151-1, National Institute of

Standards and Technology, 1989.

Quarterman, J. S., Hoskins, J. C, "Notable Computer Networks", Communications of the

ACM, October 1986.

Reinsch, R., "Distributed Database for SAA", IBM Systems Journal, 27, 3, 1988.

Rifkin, A. P., Forbes, M. P., Hamilton, R. L., Sabrio, M., Shah, S., Yueh, K., "RFS

Architectural Overview", Summer Usenix Conference Proceedings, Atlanta 1986.

29

Roux, E., "OSI's Final Frontier: The Application Layer", Data Communications, January

1988.

"SAA: Big Blue's Distributed Processing Road Map Takes Place" , Data Communications^

November 1987.

Satyanarayanan, M., "A Survey of Distributed File Systems" , Annua/ Review of Computer

Science, Volume 4, 1989.

Scheifler, R. W., Gettys, J., "The X Window System", ACM Transactions on Graphics,

April 1986.

Scherr, A. L., "SAA Distributed Processing", IBM Systems Journal, 27, 3, 1988.

Spanier, S., "Comparing Distributed File Systems", Data Communications, December

1987.

Stevens, E. E., Bernstein, B., "APPC: The Future of Microcomputer Communications

within IBM's SNA", Data Communications, July 1986.

Svobodova, L., "File Servers for Network-based Distributed Systems", ACM Computing

Surveys, December 1984.

System V Interface Definition, Volumes 1-3, AT&T, 1986.

Tannenbaum, A. S., Computer Networks, Prentice-Hall Inc., 1981.

30

<rU.S. GOVERNMENT PRINTING 0FFICEil989-26t-913/00I02

NBS-lUA IREV. 2-BC)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NIST/SP-500/176

2. Performing Organ. Report No, 3. Publication Date

November 1989

4. TITLE AND SUBTITLE

Introduction to Heterogeneous Computing Environments

5. AUTHOR(S)

John F. Barkley, Karen Olsen

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions) 7. Contract/Grant No.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
(formerly NATIONAL BUREAU OF STANDARDS)

8. Type of Report & Period Covered
U.S. DEPARTMENT OF COMMERCE
QAITHERSBURG, MD 208S9

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)

National Institute of Standards and Technology
Gaithersburg, MD 20899

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 89-600784

I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual sumnrtary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

Computer networks are becoming larger not only in the number of nodes connected

but also in the geographic area spanned. In addition, networks are becoming more diverse

in the variety of equipment from which the network is implemented. This report provides

an introduction to the concept of a heterogeneous computing environment. It character-

izes heterogeneous computing environments from the point of view of the generic services

provided. Standards are necessary in order to implement heterogeneous computing en-

vironments. The report provides an introduction by example to the types of technical

standards that are necessary in a heterogeneous computing environment and illustrates

how such standards can be used to provide services.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Communications; computer; distributed computing; networks; protocols

13. AVAILABILITY

Unlimited

I I

For Official Distribution. Do Not Release to NTIS

[Xn Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

Q Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

37

15. Price

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Institute of Standards and Technology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

NIST.Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research
and development in those disciplines of the physical and engineering sciences in which the Institute

is active. These include physics, chemistry, engineering, mathematics, and computer sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey articles

on topics closely related to the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) de-

veloped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports,

and other special publications appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physi-

cists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in

scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed un-

der a worldwide program coordinated by NIST under the authority of the National Standard Data
Act (PubUc Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD)
is published quarterly for NIST by the American Chemical Society (ACS) and the American Insti-

tute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Six-

teenth St., NW., Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durabihty and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treat-

ment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST
imder the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Com-
merce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally

recognized requirements for products, and provide all concerned interests with a basis for common
xmderstanding of the characteristics of the products. NIST administers this program as a supplement
to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NIST research and experience, cov-
ering areas of interest to the consumer. Easily imderstandable language and illustrations provide use-

ful background knowledge for shopping in today's technological marketplace.
Order the above NIST publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NISTpublications—FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Pubhcations in this series col-

lectively constitute the Federal Information Processing Standards Register. The Register serves as

the official source of information in the Federal Government regarding standards issued by NIST
pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Pubbc Law
89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed
by NIST for outside sponsors (both government and non-government). In general, initial distribu-

tion is handled by the sponsor; pubhc distribution is by the National Technical Information Service,

Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce
National Institute of Standards and Technology

(formerly National Bureau of Standards)

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

		Superintendent of Documents
	2022-04-16T05:27:39-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

