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Abstract – The National Institute of Standards and Technology (NIST) Speaker Recognition 
Evaluations (SRE) are an ongoing series of projects conducted by NIST. In the NIST SRE, 
speaker detection performance is measured using a detection cost function, which is defined as a 
weighted sum of probabilities of type I error and type II error. The sampling variability results in 
measurement uncertainties of the detection cost function. Hence, while evaluating and 
comparing the performances of speaker recognition systems, the measurement uncertainties must 
be taken into account. In this article, the uncertainties of detection cost functions in terms of 
standard errors (SE) and confidence intervals are computed using the nonparametric two-sample 
bootstrap methods based on our extensive bootstrap variability studies on large datasets 
conducted before. The data independence is assumed because the bootstrap results of SEs 
matched very well with the analytical results of SEs using the Mann-Whitney statistic for 
independent and identically distributed samples if the metric of area under a receiver operating 
characteristic curve is employed. Examples are provided. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Index Terms -- speaker recognition evaluation, biometrics, bootstrap, uncertainty, standard 
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1 Introduction 
 
The National Institute of Standards and Technology (NIST) Speaker Recognition Evaluations 
(SRE) are an ongoing series of projects conducted by NIST [1]. These evaluations have been 
making important contributions to the direction of research efforts, and the calibration of 
technical capabilities of the research community working on the general problem of text 
independent speaker recognition. 
 
The 2008 NIST SRE consisted of 13 tests. Each test consisted of a sequence of trials, where each 
trial consisted of a target speaker, defined by the training data provided, and a test segment. For 
each trial, the system to be evaluated needed to decide whether speech of the target speaker 
occurred in the test segment, and generate a similarity score, where a higher similarity score 
indicated greater confidence that the speech of target speaker occurred in the test segment. 
 
Among the 13 tests given in the 2008 NIST SRE, there was a single core test formed by short2 of 
training conditions and short3 of test segment conditions, for which all participants were required 
to submit results. The details of the evaluation plan can be found in Ref. [1]. Therefore, this core 
test was of interest, and in this article all speaker recognition data described were taken from this 
core test. 
 
In the 2008 NIST SRE, speaker detection performance is measured using a detection cost 
function. It is defined as a weighted sum of probabilities of type I error (miss) and type II error 
(false alarm) [1]. 
 
As is well-known, the sampling variability results in uncertainties of any measures [2]. That is to 
say, if sets of samples are collected under the same circumstances, the measures in evaluation 
may fluctuate. This happens in SRE as well. Hence, while evaluating and comparing the 
performances of speaker recognition systems, the measurement uncertainties must be taken into 
account. Now, the key issue is how to calculate the uncertainties of detection cost functions in 
terms of standard errors (SE) and confidence intervals (CI). 
 
It is hard to compute analytically the covariance term (i.e., the cross term) of correlated 
probabilities of type I error and type II error, the linear combination of which forms the detection 
cost function in SRE. As a result, it is difficult to calculate the variance of such a detection cost 
function analytically. 
 
In the evaluation and comparison of matching algorithms in biometrics in general and in 
fingerprint technology in particular, the receiver operating characteristic (ROC) analysis is an 
important statistical technique. In the operational ROC analysis, the uncertainties of measures, 
such as the true accept rate and the false accept rate in different circumstances, as well as the 
equal error rate, etc., can be computed using the nonparametric two-sample bootstrap methods 
based on extensive bootstrap variability studies with large datasets [3-8]. 
 
The two samples are referred to as a set of target (i.e., genuine) scores and a set of non-target 
(i.e., impostor) scores, and they constitute two distributions [7, 8]. An ROC curve is 
characterized by the relative relationship between these two distributions [9]. These two 
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distribution functions are indeed interrelated by the algorithm that generates them. In other 
words, the performance of a matching algorithm is affected not only by target matching but also 
by non-target matching. All statistics of interest in ROC analysis in general as well as in SRE in 
particular are influenced under the combined impact of these two samples. 
 
Furthermore, it is known from previous studies that these two distributions 1) usually do not 
have well defined parametric forms; 2) may be considerably different even for the same 
algorithm; and 3) may vary substantially from algorithm to algorithm, which differentiates 
algorithms in terms of matching accuracy [10]. The same variations of distributions were 
observed in the speaker recognition data. This suggests that the nonparametric statistical analysis 
is appropriate for evaluating speaker recognition data, namely, the empirical distribution is 
assumed for each of the observed scores. 
 
Therefore, in this article, the uncertainties of detection cost functions, in terms of SEs and CIs, 
are also computed using the nonparametric two-sample bootstrap methods. The bootstrap method 
assumes that an independent and identically distributed (i.i.d.) random sample of size n is drawn 
from a population with its own probability distribution. With the i.i.d. assumption, the units of 
nonparametric two-sample bootstrap are scores in the sample. In case of data dependency, the 
bootstrap units are the subsets of the sample, into which the sample is regrouped based on data 
dependencies caused by multiple biometric acquisitions [6, 7, 11, 12]. This way can preserve the 
dependencies among the data. However, everything else in the bootstrap method remains intact. 
It is most likely that how to regroup the sample into subsets could have impact on the bootstrap 
results. 
 
An ROC curve can be measured by the area under the ROC curve (AURC) [10, 13-16]. If the 
trapezoidal rule is employed, the AURC is equivalent to the Mann-Whitney statistic formed by 
target and non-target scores. The SE of the Mann-Whitney statistic can be computed analytically 
and utilized as the SE of AURC. Alternatively, the SE of AURC can be calculated using the 
nonparametric two-sample bootstrap. Using this metric, the bootstrap results of SEs matched 
very well with the analytical results of SEs using the Mann-Whitney statistic for i.i.d. samples. 
 
This indicates that while computing the uncertainties of the detection cost function in SRE, the 
i.i.d. assumption could be made for speaker recognition data. In the 2008 NIST SRE, generally 
speaking, the total number of target scores was about 20 000 and the total number of non-target 
scores was about 80 000 [17]. The large size of speaker datasets might have reduced the effect of 
the dependencies among the data. 
 
All similarity scores of the speaker recognition systems are real numbers. While analyzing the 
data, all real numbers were converted into integers. Different systems employ different numbers 
of digits in the integer part. Hence, in order to obtain results as accurate as possible, five decimal 
places (i.e., multiplying 105) or up to seven decimal places (i.e., multiplying 107) were preserved. 
Notice that if the largest integer score is too large, the computation can take too much time. This 
is because it has to go from the highest score down to the threshold provided by a system every 
time while computing thousands of bootstrap replications of the detection cost function. The 
probability distribution functions of similarity scores are all discrete [10]. The characteristic of 
the speaker data is that only a few of similarity scores take the same value [7, 8]. 
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The methods are presented in Section 2, including the formulations of discrete distribution 
functions of target and non-target scores, the formulas for computing the probabilities of type I 
error and type II error, the detection cost function in SRE, and the algorithm of the 
nonparametric two-sample bootstrap for calculating SEs. In Section 3 are provided the results 
regarding measurement uncertainties, in terms of SEs and 95% CIs, of the detection cost function 
involving 12 different speaker recognition systems1 with the i.i.d. assumption for speaker 
recognition data while performing bootstrap. Conclusions and discussion can be found in Section 
4. In the Appendix, in order to support the i.i.d. assumption, the SE of AURC is computed 
analytically using the Mann-Whitney statistic as well as numerically using the bootstrap method, 
and the comparison between these two results is carried out. 
 
2 Methods 
 
2.1 Discrete distribution functions of target and non-target scores 
 
After converting to integer scores as mentioned in Section 1, without loss of generality, for a 
speaker recognition system, the similarity scores are expressed inclusively using the integer 
score set {s} = {smin, smin+1, …, smax}, running consecutively from the lowest score smin to the 
highest score smax. Hence, the target score set is denoted as 

T = { mi  | mi  {s} and i = 1, …, MT} , (1) 
where MT   is the total number of target scores. And the non-target score set is expressed as 

N = { ni  | ni  {s} and i = 1, …, MN} , (2) 
where MN is the total number of non-target scores. 
 
These two sets of similarity scores constitute two discrete probability distribution functions, 
respectively. Let Pi (s), where s  {s} and i  {T, N}, denote the empirical probabilities of the 
target scores and the non-target scores at a score s, respectively. It may very well be that some of 
them are zeroes at some scores in the set {s}. Nonetheless, the two distribution functions can be 
expressed, respectively, as 

Pi = { Pi (s) |  s  {s} and P


max

min

s

s
i () = 1 } , i  {T, N} . (3) 

 
The cumulative discrete probability distribution functions of target scores and non-target scores 
are defined in this article to be the probabilities cumulated from the highest score smax down to 
the integer score s, and are expressed as 

Ci = { Ci (s) = P


maxs

s
i () |  s  {s} } , i  {T, N} (4) 

where Ci (s), i  {T, N}, are the cumulative probabilities of target scores and non-target scores at 
a score s, respectively. 
 

                                                 
1 Specific hardware and software products identified in this report were used in order to adequately support the 
development of technology to conduct the performance evaluations described in this document. In no case does such 
identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor 
does it imply that the products and equipment identified are necessarily the best available for the purpose. 
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Figure 1 (A): The probability distribution function of non-target scores. (B): The probability distribution 
function of target scores. Both of them were generated by the speaker recognition system DL. Each of them 
has a stand-alone peak. 

 
Here is an example regarding the distributions of similarity scores. The probability distribution 
functions of non-target scores and target scores, which were generated by the speaker recognition 
system DL in the core test as specified in Section 1, are depicted in Figure 1 (A) and (B), 
respectively. It was found from the figures that each of these two probability densities has a 
stand-alone peak near score zero. While we have not yet determined the cause of the peaks in 
score for system DL, we suspect that it may be the result of the way the system handles 
anomalous evaluation segments. It is difficult to do parametric data modeling for such 
distributions. 
 
2.2 Probabilities of type I error and type II error 
 
The probability of type I error at a threshold } s {  t , denoted by PI (t), is cumulated from the 
lowest similarity score smin in our application. The probability of type II error at a threshold t, 
denoted by PII (t), is cumulated from the highest score smax. For discrete probability distribution 
functions, while computing PI (t) and PII (t) at a threshold t, the probabilities of target scores and 
non-target scores at this threshold t must be taken into account, respectively [18]. 
 
Therefore, at a threshold value , the estimators of the probabilities of type I error and type 
II error are expressed, respectively, as 

} s {  t

(t) PÎ  = 1 – CT (t + 1) 

(t) PII
ˆ = CN (t) 

for } s {  t  , (5) 

where CT (smax + 1) = 0 is assumed [8]. Based on Eq. (5), in practice, the estimators  and 

 can be obtained by moving the score from the highest score s

(t) PÎ

(t) PII
ˆ

max down to the threshold t 
one score at a time to cumulate the probabilities of target scores and non-target scores, 
respectively. 
 
2.3 The detection cost function in speaker recognition evaluation 
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A number of metrics exist for measuring the performance of a speaker recognition system [1]. In 
this article, to demonstrate the computation of measurement uncertainties, the detection cost 
function at a threshold for the primary evaluation of speaker detection performance is employed 
as the metric of interest. Certainly, the same method can be used to compute uncertainties for 
other metrics in SRE. 
 
The detection cost function at a threshold t is defined as a weighted sum of probabilities of type I 
error and type II error at the threshold t [1] 
 

CDet (t) = CMiss × PI (t) × PTarget + CFalseAlarm × PII (t) × (1 – PTarget) . (6) 
 
Hence, it is a function of the threshold t. It was required that the thresholds be provided by 
speaker recognition systems in order to make an explicit speaker detection decision for each trial. 
The thresholds can also be determined in other ways. It is a challenging research problem to 
determine appropriate decision thresholds, which is out of the scope of this article. Therefore, the 
thresholds used in this article are those provided by the tested systems. 
 
The parameters CMiss and CFalseAlarm are the relative costs of detection errors, and the parameter 
PTarget is the a priori probability of the specified target speaker. For the primary evaluation of 
speaker recognition performance for all speaker detection tests, the parameters CMiss, CFalseAlarm, 
and PTarget were set to be 10, 1, and 0.01, respectively [1]. 
 
2.4 Nonparametric two-sample bootstrap 
 
It is difficult to compute analytically the covariance term of the correlated probabilities of type I 
error PI (t) and type II error PII (t) at a threshold t in Eq. (6). It is proposed that the estimates of 
the uncertainty of the detection cost function at a threshold t in terms of SE and 95% CI be 
computed using the nonparametric two-sample bootstrap [3-8]. The algorithm is as follows. 
 
Algorithm (Nonparametric two-sample bootstrap) 
 
1: for i = 1 to B do 
2:     select MT scores randomly WR from T to form a set {new MT target scores}i 

3:     select MN scores randomly WR from N to form a set {new MN non-target scores}i 

4:     {new MT target scores}i & {new MN non-targe scores}i => statistic  iT̂
5: end for 

6:  ))2/1( Q̂),2/( Q̂ ( and ÊS  } B ..., 1,  i | T̂ { BBBi 
7: end 
 
where B is the number of two-sample bootstrap replications and WR stands for “with 
replacement”. The original target score set T with MT scores shown in Eq. (1) and the original 
non-target score set N with MN scores shown in Eq. (2) are generated by a speaker recognition 
system. As shown from Step 1 to 5, this algorithm runs B times. In the i-th iteration, MT scores 
are randomly selected WR from the original target score set T to form a new set of MT target 
scores, MN scores are randomly selected WR from the original non-target score set N to form a 
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new set of MN non-target scores, and then from these two new sets of similarity scores the i-th 

bootstrap replication of the estimated statistic of interest, i.e., , is generated. iT̂
 

In the SRE, the estimated statistic of interest  is the i-th estimator of the detection cost function 
at a given threshold. This estimator can be derived using Eq. (6). In this equation, the estimators 

of the probabilities of type I error and type II error, i.e.,  and , can be calculated from 
the two new sets of similarity scores using Eq. (5). 

iT̂

(t) PÎ (t) PII
ˆ

 

Finally, as indicated in Step 6, from the set , the estimator of the SE, i.e., the 

unbiased standard deviation , and the estimators of the /2 100% and (1 - /2) 100% 

quantiles of the bootstrap distribution, denoted by  and , respectively, at 

the significance level  can be calculated. The Definition 2 of quantile in Ref. [

} B ..., 1,  i |  T̂ { i 

)2/( Q̂B 

))2/1( Q̂),2 B 

BÊS

)2/1( Q̂B 
19] is adopted. 

That is, the sample quantile is obtained by inverting the empirical distribution function with 

averaging at discontinuities. Thus,  stands for the estimated bootstrap 

(1 - ) 100% CÎ. If 95% CÎ is of interest, then  is set to be 0.05. 

/( Q̂ ( B 

 
The remaining issue is to determine how many iterations this bootstrap algorithm needs to run in 
order to reduce the bootstrap variance and ensure the accuracy of the computation. In other 
words, what is the number of the nonparametric two-sample bootstrap replications? 
 
In our applications, such as biometrics and the evaluation of speaker recognition, etc., the sizes 
of data sets are tens or hundreds of thousands of similarity scores, which are much larger than 
those in some other applications of bootstrap methods, such as medical decision making, etc.. 
Moreover, in our applications, the statistics of interest are mostly probabilities or a weighted sum 
of probabilities, etc. rather than a simple sample mean. And our data samples of similarity scores 
have no parametric model to fit. Therefore, the bootstrap variability was re-studied, and the 
further study is underway. Based on our prior empirical bootstrap variability studies, the 
appropriate number of bootstrap replications B for our applications was determined to be 2000 
[4-7]. 
 
3 Results 
 
The estimated uncertainties of the detection cost functions in SRE, in terms of SEs and 95 % CIs, 
were all computed using the algorithm of the nonparametric two-sample bootstrap. In this article, 
while performing bootstrap, the speaker recognition data are assumed to be i.i.d.. This 
assumption is supported by the evidences shown in the Appendix. With this assumption, the 
bootstrap units are similarity scores in the data set. Hence, the nonparametric two-sample 
bootstrap algorithm in Section 2.4 can be employed without any modification. 
 
In Table 1 are shown the estimated detection cost functions, their estimated SÊs, and 95 % CÎs of 
12 speaker recognition systems, named as UJ, EL, etc., in the core test short2-short3 for primary 
actual decision [1]. The estimated detection cost functions were derived using Eq. (6), in which 
all parameters were set in Section 2.3 and the thresholds were all provided by speaker 
recognition systems. 
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Systems Cost Functions SÊs 95% CÎs 

UJ 0.030810 0.000436 (0.029987, 0.031657) 
EL 0.033668 0.000594 (0.032523, 0.034853) 
BK 0.036482 0.000484 (0.035502, 0.037447) 
DL 0.039645 0.000457 (0.038792, 0.040574) 
LZ 0.052373 0.000694 (0.050977, 0.053707) 
AF 0.066043 0.000436 (0.065190, 0.066864) 
FI 0.093903 0.000233 (0.093445, 0.094345) 
PB 0.103623 0.000789 (0.102058, 0.105197) 
PM 0.110816 0.001025 (0.108707, 0.112812) 
CH 0.144010 0.001150 (0.141677, 0.146164) 
CO 0.146433 0.001155 (0.144172, 0.148688) 
DG 0.328201 0.001650 (0.325022, 0.331460) 

Table 1 The estimated detection cost functions, SÊs, and 95 % CÎs of 12 speaker recognition systems in the 
core test short2-short3 for primary actual decision. 

 

Figure 2 The estimated detection cost functions, and 95 % CÎs of 11 speaker recognition systems in the core 
test short2-short3 for primary actual decision. 

 
In Table 1, the speaker recognition systems are listed in the ascending order of the cost function. 
The smaller the detection cost functions, the more accurate the speaker recognition systems. As 
shown in Table 1, generally speaking, the smaller the detection cost functions, the smaller the 
uncertainties. This is consistent with what was observed in previous studies [7-10, 17]. 
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It is worth pointing out that the estimated 95 % CÎs shown in Table 1 were calculated using the 
Definition 2 of quantile as indicated in Section 2.4. The estimated 95 % CÎs could also be 
computed by assuming that the distribution of 2 000 bootstrap replications of the detection cost 
function was normal, namely, obtained by multiplying 1.96 and the estimated SÊ. It was found 
that these two types of 95 % CÎs were matched up to the third to fourth decimal place for all 12 
systems shown in Table 1. For instance, for system UJ, the 95 % CÎ derived from the quantile 
method was (0.029987, 0.031657) as shown in Table 1, and the 95 % CÎ with normality 
assumption was (0.029955, 0.031665). 
 
In Figure 2 are depicted the estimated detection cost functions, and their estimated 95 % CÎs of 
11 speaker recognition systems in the core test short2-short3 for primary actual decision. The 
estimated detection cost function of the speaker recognition system DG is 0.328201, which is 
much larger than all others. In order to show the scales of the estimated 95 % CÎ of all other 11 
systems, the system DG is not shown in Figure 2. In Figure 2, it also shows that the estimated 95 
% CÎ of system CH overlaps the one of system CO. This can happen very often while comparing 
and evaluating the performances of speaker recognition systems. 
 
4 Conclusions and discussion 
 
Like the applications of ROC analysis in biometrics [2, 7, 8], the uncertainties of the detection 
cost function, in terms of SEs and 95 % CIs, in the 2008 NIST SRE were successfully computed 
using the nonparametric two-sample bootstrap. Such a detection cost function is defined as a 
weighted sum of probabilities of type I error and type II error. Thus, it is hard to compute its 
variance analytically. 
 
In this article, the bootstrap method was carried out with the i.i.d. assumption for the speaker 
recognition datasets. Hence, the bootstrap units are similarity scores in the samples rather than 
subsets into which the data were regrouped according to the dependencies inside the data. 
 
Such an assumption was supported by the fact as shown in the Appendix. The sizes of target 
scores and non-target scores in speaker recognition data are tens of thousands. It seems that the 
large size of the datasets could reduce the effect of the dependencies that existed among the data. 
 
Nonetheless, our investigation is underway to apply the nonparametric two-sample bootstrap 
method without the i.i.d. assumption to computing the uncertainties of the detection cost function 
in SRE, and then compare the measurement uncertainties derived from different ways. As a 
matter of fact, from the statistical point of view, the sample should be collected as randomly as 
possible in test design. 
 
As discussed in Section 3, the estimated 95 % CÎ in SRE were computed using two approaches: 
one was derived from the quantile method and the other was computed with the assumption of 
the normal distribution of detection cost functions. These two types of 95 % CÎs were matched 
up to the third to fourth decimal place for all 12 systems. Moreover, the Shapiro-Wilk normality 
test [20] was conducted on the 2000 bootstrap replications of the detection cost functions for all 
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12 systems, and it was found that the majority of p-values were greater than 5 %. It indicates that 
the detection cost function is normally distributed. 
 
As a consequence, the hypothesis testing can be used to evaluate and compare the performances 
of speaker recognition systems [2]. Further, the 95 % CIs of two systems may very well overlap, 
as shown in examples in Section 3. Hence, the hypothesis testing is an important approach. 
 
 

Appendix – the SE of AURC 
 
As discussed in Section 1, an ROC curve can be characterized by AURC. The SE of AURC for 
the speaker data can be computed in two ways. One is analytical way using the SE of the Mann-
Whitney statistic for i.i.d. samples; the other is numerical way using nonparametric two-sample 
bootstrap method in which the bootstrap units are scores in the data set. The two results matched 
very well. It indicates that the i.i.d. assumption for these speaker data could be made while using 
the two-sample bootstrap method to calculate the uncertainties of the detection cost function. 
 
A.1 Analytical computation of SE of AURC 
 
It is assumed that the trapezoidal rule is employed while computing AURC. Then, the AURC is 
equivalent to the Mann-Whitney statistic directly formed from the discrete target and non-target 
scores. This method of computing AURC is widely used [21]. Further, the variance of the Mann-
Whitney statistic can be computed analytically. Thus, it can be utilized as the variance of AURC. 
All related formulas for analytically computing the SE of AURC can be found in the references 
[10, 13-16]. For convenience, they are also listed in this Appendix. 
 
A.1.1 Compute AURC 
 

Figure 3 A schematic drawing of four points A, B, C, and D along with their coordinates in the FAR-and-
TAR coordinate system. They form a trapezoid at a score s, and BC is a segment of an ROC curve. 
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After conversion of similarity scores to integers, the distributions of target scores and non-target 
scores are all discrete. As a result, the ROC curve is no longer a smooth curve. While cumulating 
probabilities of target scores and non-target scores from the highest similarity score, respectively, 
an ROC curve can go horizontally, vertically, inclined toward upper right, or stay where it is for 
each decrement of score, depending on whether PN(s) and/or PT(s) are nonzero or not. Thus, the 
AURC consists of a set of trapezoids, each of which is built by a rectangle and a triangle in 
general. The trapezoid can be reduced to a rectangle, a vertical line, or a point. 
 
Without loss of generality, a trapezoid is shown in Figure 3. In the FAR (false accept rate)-and-
TAR (true accept rate) coordinate system, at a score s  {s}, by including zero-frequency scores, 
a trapezoid is constructed by four points: A (CN (s + 1), 0), B (CN (s + 1), CT (s + 1)), C (CN (s), 
CT (s)), and D (CN (s), 0), in clockwise direction, assuming CN (smax + 1) = CT (smax + 1) = 0. 
This boundary condition corresponds to the origin of the FAR-and-TAR coordinate system, and 
will be applied throughout the following discussion. The lengths (CN (s)  CN (s + 1)) (i.e., PN 
(s)) and (CT (s)  CT (s + 1)) (i.e., PT (s)) form a triangle, and the lengths (CN (s)  CN (s + 1)) 

(i.e., PN (s)) and CT (s + 1) (i.e.,  


max

1

s

s

P  ()) create a rectangle. As a consequence, the estimated 

AURC can be calculated as, 

T

 

Â = 


min

max

s

ss

 trapezoid (s) 

    = 


min

max

s

ss

 triangle (s) + 


min

max

s

ss

 rectangle (s) 

    = 


min

max

s

ss

 PN (s) × [ 
2

1
 × PT (s) + 



max

1

s

s

 PT () ] 

 
(7) 

 
Note that the summation runs consecutively in the descending order from smax to smin, including 

zero-frequency scores, and  = 0 is assumed according to the above boundary condition. 

This notation will be applied throughout the following discussion. 




max

1max

s

s

 
A.1.2 Relate AURC to the Mann-Whitney statistic 
 
In order to relate AURC to the Mann-Whitney statistic, the order relations among similarity 
scores are established as follows. All the MN scores in the non-target score set N in Eq. (2) are 
compared with all the MT scores in the target score set T in Eq. (1). It counts 1, ½, or zero 
depending whether a non-target score sN is less than, equal to, or greater than a target score sT. 
This rule can be expressed as 

                             1    if sN < sT 
R (sT, sN) =          ½    if sN = sT 
                             0    if sN > sT 

 
(8) 

 
After converting probabilities of target and non-target scores in Eq. (7) back to frequencies and 
by including zero-frequency scores, the first term in Eq. (7) shows the total number of score pairs 
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in which the non-target score is equal to the target score, weighted by ½ and divided by MTMN. 
And the second term in Eq. (7) represents the total number of score pairs in which the non-target 
score is less than the target score, weighted by 1 and divided by MTMN. This term is the so 
called “the number of inversions” in a sequence formed by non-target and target scores [22]. 
 
Finally, the estimated AURC can be re-written as 

Â = 
NTMM

1
 ×  



T

T

M

1s



N

N

M

1s

R (s , s ) T N (9) 

Except for the coefficient, this is exactly the Mann-Whitney statistic formed by the target and 
non-target scores. As a consequence, the variance of AURC can be obtained by computing the 
variance of the Mann-Whitney statistic. 
 
A.1.3 Compute SE of AURC 
 
The variance of the Mann-Whitney statistic can be computed analytically and it is utilized as the 
variance of AURC. To do so, two more cumulative probability distribution functions are 
required. One is 

QT = { QT (s) =  P


max

1

s

s
T () |  s  {s} } . (10) 

The other one is 

QN = { QN (s) =  P




1

min

s

s
N () |  s  {s} } (11) 

where another boundary condition  = 0 is assumed. Note that the cumulation of 

probabilities is taken place from s






1min

min

s

s

max down to s + 1 with respect to target scores in Eq. (10), and 
from smin up to s – 1 on non-target scores in Eq. (11). 
 
The probability BTTN, that two randomly chosen target matches will obtain higher similarity 
scores than one randomly chosen non-target match, can be written as 

BTTN =  P


max

min

s

ss

N (s) × [QT
2 (s) + QT (s) × PT (s) + 

3

1
 × PT

2 (s) ] (12) 

And the probability BNN T, that one randomly chosen target match will get higher similarity score 
than two randomly chosen non-target matches, can be expressed as 

BNNT =  P


max

min

s

ss

T(s) × [QN
2 (s) + QN (s) × PN (s) + 

3

1
 × PN

2 (s) ] (13) 

Finally, the analytical estimator of SE of AURC can be computed as 

(A) ÊS A  = square root { 
NTMM

1
 × [ Â (1 – Â) + (MT – 1) (BTTN - Â2) 

                                                                        + (MN – 1) (BNNT - Â2) ] } 

(14) 

 
A.2 Bootstrap computation of SE of AURC 
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The estimated SÊ of AURC can also be calculated using the nonparametric two-sample bootstrap 
method. When the data set is assumed to be i.i.d., the bootstrap units are scores in the data set 
rather than subsets of the sample into which the sample data are regrouped according to data 
dependencies. 
 
With such an assumption, the algorithm of the nonparametric two-sample bootstrap shown in 
Section 2.4 can be employed. In Step 4 of the algorithm, after randomly resampling WR the two 

original score sets T and N, the i-th bootstrap replication of the estimated AÛRC, i.e.,  = 
AÛRC

iT̂

i, can be calculated from the two new sets of target scores and non-target scores using Eq. 
(7). 
 
After B iterations, these B bootstrap replications of the estimated AÛRC constitute a bootstrap 

distribution. Finally, the bootstrap estimator of SE of AURC denoted by  is obtained 
from such a bootstrap distribution, as indicated in Step 6 of the algorithm. 

(A) ÊS B

 
A.3 Comparisons between analytical results and bootstrap results 
 
While comparing the two estimators of SE of AURC, a relative error η is employed and defined 
as 

η = |  -  | /  × 100 % (A) ÊS B (A) ÊS A (A) ÊS A (15) 

where  is the analytical estimator of SE of AURC computed using Eq. (14), and 

 is the bootstrap estimator calculated in Section A.2. 

(A) ÊS A

(A) ÊS B

 

Systems AÛRC (A) ÊS A  (A) ÊS B  Relative Errors (%) 

UJ 0.986781 0.000376 0.000367 2.64 
DL 0.979069 0.000491 0.000489 0.37 
BK 0.979061 0.000542 0.000545 0.62 
EL 0.978651 0.000635 0.000642 1.12 
LZ 0.965603 0.000734 0.000747 1.83 
AF 0.904570 0.001284 0.001304 1.50 
PM 0.904184 0.001162 0.001139 1.96 
CH 0.901069 0.001133 0.001141 0.69 
DG 0.892396 0.001245 0.001212 2.66 
CO 0.857253 0.001532 0.001495 2.40 
FI 0.856774 0.001445 0.001538 6.41 
PB 0.800933 0.001860 0.001888 1.51 

Table 2 The estimated AÛRCs, analytical SÊA (A)s, bootstrap SÊB (A)s with the i.i.d. assumption, and the 
relative errors of 12 speaker recognition systems. 

 

In Table 2 are listed the estimated AÛRCs, the analytical estimators , the bootstrap 

estimators  with the i.i.d. assumption, and the relative errors η of 12 speaker recognition 

(A) ÊS A

(A) ÊS B
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systems. These 12 systems were randomly selected from those who participated in the core test 
short2-short3. 
 
The analytical result of SE of AURC derived from the target and non-target scores of any 
speaker recognition system is unique. Thus, it could be treated as a reference. However, the 
bootstrap result of SE of AURC for a system is stochastic. In other words, the result fluctuates 
for different runs. Nonetheless, the bootstrap results with the i.i.d. assumption shown in Table 2 
for different systems were obtained by a random run, respectively. If these results were very 
close to the reference results, then it supported that the i.i.d. assumption were quite reasonable 
for the speaker recognition data. 
 

Figure 4 The scatter plot of the estimated bootstrap SÊB (A)s with the i.i.d. assumption versus the estimated 
analytical SÊA (A)s along with the best-fit straight line, the slope of which is close to 1 and the intercept of 
which is close to zero. 

 
Indeed, all relative errors that quantify the difference, except for one that is 6.41 % for system FI, 
are not larger than 2.66 %. Including this outlier, the median of the relative errors is 1.67 % and 
the mean is 1.98 %. Excluding this outlier, the median is 1.51 % and the mean is 1.57 %. All 
these relative errors are quite small. In other words, the two results matched very well. This is 
also evidenced by the scatter plot of the estimated bootstrap SÊB (A)s with the i.i.d. assumption 
versus the estimated analytical SÊA (A)s along with the best-fit straight line, the slope of which 
is close to 1 and the intercept of which is close to zero, as shown in Figure 4. 
 
As a consequence, the speaker recognition system data can be assumed to be i.i.d.. As mentioned 
in Section 1, in the 2008 NIST SRE, generally speaking, the sizes of target scores and non-target 
scores were about 20 000 and 80 000, respectively. The large size of speaker datasets might have 
reduced the effect of the dependencies among the data. 
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