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Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at NIST promotes the U.S. economy and public welfare by 
providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops 
tests, test methods, reference data, proof of concept implementations, and technical analyses to advance 
the development and productive use of information technology (IT). ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for the 
cost-effective security and privacy of other than national security-related information in federal 
information systems. This document reports on ITL’s research, guidance, and outreach efforts in IT and 
its collaborative activities with industry, government, and academic organizations. 

Abstract 

Big Data is a term used to describe the large amount of data in the networked, digitized, sensor-laden, 
information-driven world. While opportunities exist with Big Data, the data can overwhelm traditional 
technical approaches, and the growth of data is outpacing scientific and technological advances in data 
analytics. To advance progress in Big Data, the NIST Big Data Public Working Group (NBD-PWG) is 
working to develop consensus on important fundamental concepts related to Big Data. The results are 
reported in the NIST Big Data Interoperability Framework series of volumes. This volume, Volume 6, 
summarizes the work performed by the NBD-PWG to characterize Big Data from an architecture 
perspective, presents the NIST Big Data Reference Architecture (NBDRA) conceptual model, and 
discusses the components and fabrics of the NBDRA.  

Keywords 

Application Provider; Big Data; Big Data characteristics; Data Consumer; Data Provider; Framework 
Provider; Management Fabric; reference architecture; Security and Privacy Fabric; System Orchestrator; 
use cases. 
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Executive Summary 

The NIST Big Data Public Working group (NBD-PWG) Reference Architecture Subgroup prepared this 
NIST Big Data Interoperability Framework: Volume 6, Reference Architecture to provide a vendor-
neutral, technology- and infrastructure-agnostic conceptual model and examine related issues. The 
conceptual model, referred to as the NIST Big Data Reference Architecture (NBDRA), was crafted by 
examining publicly available Big Data architectures representing various approaches and products. Inputs 
from the other NBD-PWG subgroups were also incorporated into the creation of the NBDRA. It is 
applicable to a variety of business environments, including tightly integrated enterprise systems, as well 
as loosely coupled vertical industries that rely on cooperation among independent stakeholders. The 
NBDRA captures the two known Big Data economic value chains: information, where value is created by 
data collection, integration, analysis, and applying the results to data-driven services, and the information 
technology (IT), where value is created by providing networking, infrastructure, platforms, and tools in 
support of vertical data-based applications.  

The NIST Big Data Interoperability Framework consists of seven volumes, each of which addresses a 
specific key topic, resulting from the work of the NBD-PWG. The seven volumes are: 

 Volume 1, Definitions 
 Volume 2, Taxonomies 
 Volume 3, Use Cases and General Requirements 
 Volume 4, Security and Privacy 
 Volume 5, Architectures White Paper Survey 
 Volume 6, Reference Architecture 
 Volume 7, Standards Roadmap 

The NIST Big Data Interoperability Framework will be released in three versions, which correspond to 
the three development stages of the NBD-PWG work. The three stages aim to achieve the following with 
respect to the NIST Big Data Reference Architecture (NBDRA). 

Stage 1: Identify the high-level Big Data reference architecture key components, which are 
technology-, infrastructure-, and vendor-agnostic. 

Stage 2: Define general interfaces between the NBDRA components. 
Stage 3: Validate the NBDRA by building Big Data general applications through the general 

interfaces. 

Potential areas of future work for the Subgroup during stage 2 are highlighted in Section 1.5 of this 
volume. The current effort documented in this volume reflects concepts developed within the rapidly 
evolving field of Big Data. 

vii 
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1 INTRODUCTION
 

1.1 BACKGROUND 

There is broad agreement among commercial, academic, and government leaders about the remarkable 
potential of Big Data to spark innovation, fuel commerce, and drive progress. Big Data is the common 
term used to describe the deluge of data in today’s networked, digitized, sensor-laden, and information-
driven world. The availability of vast data resources carries the potential to answer questions previously 
out of reach, including the following: 

 How can a potential pandemic reliably be detected early enough to intervene? 
 Can new materials with advanced properties be predicted before these materials have ever been 

synthesized? 
 How can the current advantage of the attacker over the defender in guarding against cyber-

security threats be reversed? 

There is also broad agreement on the ability of Big Data to overwhelm traditional approaches. The growth 
rates for data volumes, speeds, and complexity are outpacing scientific and technological advances in data 
analytics, management, transport, and data user spheres.  

Despite widespread agreement on the inherent opportunities and current limitations of Big Data, a lack of 
consensus on some important fundamental questions continues to confuse potential users and stymie 
progress. These questions include the following: 

 What attributes define Big Data solutions?  
 How is Big Data different from traditional data environments and related applications? 
 What are the essential characteristics of Big Data environments? 
 How do these environments integrate with currently deployed architectures? 
 What are the central scientific, technological, and standardization challenges that need to be 

addressed to accelerate the deployment of robust Big Data solutions? 

Within this context, on March 29, 2012, the White House announced the Big Data Research and 
Development Initiative.1 The initiative’s goals include helping to accelerate the pace of discovery in 
science and engineering, strengthening national security, and transforming teaching and learning by 
improving the ability to extract knowledge and insights from large and complex collections of digital 
data. 

Six federal departments and their agencies announced more than $200 million in commitments spread 
across more than 80 projects, which aim to significantly improve the tools and techniques needed to 
access, organize, and draw conclusions from huge volumes of digital data. The initiative also challenged 
industry, research universities, and nonprofits to join with the federal government to make the most of the 
opportunities created by Big Data.  

Motivated by the White House initiative and public suggestions, the National Institute of Standards and 
Technology (NIST) has accepted the challenge to stimulate collaboration among industry professionals to 
further the secure and effective adoption of Big Data. As one result of NIST’s Cloud and Big Data Forum 
held on January 15–17, 2013, there was strong encouragement for NIST to create a public working group 
for the development of a Big Data Interoperability Framework. Forum participants noted that this 
roadmap should define and prioritize Big Data requirements, including interoperability, portability, 
reusability, extensibility, data usage, analytics, and technology infrastructure. In doing so, the roadmap 
would accelerate the adoption of the most secure and effective Big Data techniques and technology. 

1 
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On June 19, 2013, the NIST Big Data Public Working Group (NBD-PWG) was launched with extensive 
participation by industry, academia, and government from across the nation. The scope of the NBD-PWG 
involves forming a community of interests from all sectors—including industry, academia, and 
government—with the goal of developing consensus on definitions, taxonomies, secure reference 
architectures, security and privacy, andfrom thesea standards roadmap. Such a consensus would 
create a vendor-neutral, technology- and infrastructure-independent framework that would enable Big 
Data stakeholders to identify and use the best analytics tools for their processing and visualization 
requirements on the most suitable computing platform and cluster, while also allowing value-added from 
Big Data service providers. 

The NIST Big Data Interoperability Framework consists of seven volumes, each of which addresses a 
specific key topic, resulting from the work of the NBD-PWG. The seven volumes are: 

 Volume 1, Definitions 
 Volume 2, Taxonomies 
 Volume 3, Use Cases and General Requirements 
 Volume 4, Security and Privacy 
 Volume 5, Architectures White Paper Survey 
 Volume 6, Reference Architecture 
 Volume 7, Standards Roadmap 

The NIST Big Data Interoperability Framework will be released in three versions, which correspond to 
the three stages of the NBD-PWG work. The three stages aim to achieve the following with respect to the 
NIST Big Data Reference Architecture (NBDRA.) 

Stage 1: Identify the high-level Big Data reference architecture key components, which are 
technology-, infrastructure-, and vendor-agnostic; 

Stage 2: Define general interfaces between the NBDRA components; and 
Stage 3: Validate the NBDRA by building Big Data general applications through the general 

interfaces. 

Potential areas of future work for the Subgroup during stage 2 are highlighted in Section 1.5 of this 
volume. The current effort documented in this volume reflects concepts developed within the rapidly 
evolving field of Big Data. 

1.2 SCOPE AND OBJECTIVES OF THE REFERENCE ARCHITECTURES SUBGROUP 

Reference architectures provide “an authoritative source of information about a specific subject area that 
guides and constrains the instantiations of multiple architectures and solutions.” 2 Reference architectures 
generally serve as a foundation for solution architectures and may also be used for comparison and 
alignment of instantiations of architectures and solutions. 

The goal of the NBD-PWG Reference Architecture Subgroup is to develop an open reference architecture 
for Big Data that achieves the following objectives: 

 Provides a common language for the various stakeholders; 
 Encourages adherence to common standards, specifications, and patterns; 
 Provides consistent methods for implementation of technology to solve similar problem sets; 
 Illustrates and improves understanding of the various Big Data components, processes, and 

systems, in the context of a vendor- and technology-agnostic Big Data conceptual model; 
 Provides a technical reference for U.S. government departments, agencies, and other consumers 

to understand, discuss, categorize, and compare Big Data solutions; and  
 Facilitates analysis of candidate standards for interoperability, portability, reusability, and 

extendibility. 

2 
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The NBDRA is a high-level conceptual model crafted to serve as a tool to facilitate open discussion of the 
requirements, design structures, and operations inherent in Big Data. The NBDRA is intended to facilitate 
the understanding of the operational intricacies in Big Data. It does not represent the system architecture 
of a specific Big Data system, but rather is a tool for describing, discussing, and developing system-
specific architectures using a common framework of reference. The model is not tied to any specific 
vendor products, services, or reference implementation, nor does it define prescriptive solutions that 
inhibit innovation. 

The NBDRA does not address the following: 

	 Detailed specifications for any organization’s operational systems; 
	 Detailed specifications of information exchanges or services; and 
	 Recommendations or standards for integration of infrastructure products. 

1.3 REPORT PRODUCTION 

A wide spectrum of Big Data architectures have been explored and developed as part of various industry, 
academic, and government initiatives. The development of the NBDRA and material contained in this 
volume involved the following steps: 

1.	 Announce that the NBD-PWG Reference Architecture Subgroup is open to the public to attract 
and solicit a wide array of subject matter experts and stakeholders in government, industry, and 
academia; 

2.	 Gather publicly available Big Data architectures and materials representing various stakeholders, 
different data types, and diverse use cases;b 

3.	 Examine and analyze the Big Data material to better understand existing concepts, usage, goals, 
objectives, characteristics, and key elements of Big Data, and then document the findings using 
NIST’s Big Data taxonomies model (presented in NIST Big Data Interoperability Framework: 
Volume 2, Taxonomies); and 

4.	 Develop a technology-independent, open reference architecture based on the analysis of Big Data 
material and inputs received from other NBD-PWG subgroups. 

1.4 REPORT STRUCTURE 

The organization of this document roughly corresponds to the process used by the NBD-PWG to develop 
the NBDRA. Following the introductory material presented in Section 1, the remainder of this document 
is organized as follows: 

	 Section 2 contains high-level, system requirements in support of Big Data relevant to the design 
of the NBDRA and discusses the development of these requirements.  

	 Section 3 presents the generic, technology-independent NBDRA conceptual model. 
	 Section 4 discusses the five main functional components of the NBDRA. 
	 Section 5 describes the system and life cycle management considerations related to the NBDRA 

management fabric. 
	 Section 6 briefly introduces security and privacy topics related to the security and privacy fabric 

of the NBDRA. 
	 Appendix A summarizes deployment considerations. 
	 Appendix B lists the terms and definitions in this document. 
	 Appendix C provides examples of Big Data logical data architecture options. 

b Many of the architecture use cases were originally collected by the NBD-PWG Use Case and Requirements 
Subgroup and can be accessed at http://bigdatawg.nist.gov/usecases.php. 
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 Appendix D defines the acronyms used in this document. 
 Appendix E lists general resources that provide additional information on topics covered in this 

document and specific references in this document. 

1.5 FUTURE WORK ON THIS VOLUME 

This document (Version 1) presents the overall NBDRA components and fabrics with high-level 
description and functionalities. 

Version 2 activities will focus on the definition of general interfaces between the NBDRA components by 
performing the following: 

 Select use cases from the 62 (51 general and 11 security and privacy) submitted use cases or 
other, to be identified, meaningful use cases; 

 Work with domain experts to identify workflow and interactions among the NBDRA 
components and fabrics; 

 Explore and model these interactions within a small-scale, manageable, and well-defined 
confined environment; and  

 Aggregate the common data workflow and interactions between NBDRA components and 
fabrics and package them into general interfaces. 

Version 3 activities will focus on validation of the NBDRA through the use of the defined NBDRA 
general interfaces to build general Big Data applications. The validation strategy will include the 
following: 

 Implement the same set of use cases used in Version 2 by using the defined general interfaces; 
 Identify and implement a few new use cases outside the Version 2 scenarios; and 
 Enhance general NBDRA interfaces through lessons learned from the implementations in 

Version 3 activities. 

The general interfaces developed during Version 2 activities will offer a starting point for further 
refinement by any interested parties and is not intended to be a definitive solution to address all 
implementation needs. 

4 
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2 HIGH-LEVEL REFERENCE ARCHITECTURE REQUIREMENTS 

The development of a Big Data reference architecture requires a thorough understanding of current 
techniques, issues, and concerns. To this end, the NBD-PWG collected use cases to gain an understanding 
of current applications of Big Data, conducted a survey of reference architectures to understand 
commonalities within Big Data architectures in use, developed a taxonomy to understand and organize 
the information collected, and reviewed existing technologies and trends relevant to Big Data. The results 
of these NBD-PWG activities were used in the development of the NBDRA and are briefly described in 
this section. 

2.1 USE CASES AND REQUIREMENTS 

To develop the use cases, publically available information was collected for various Big Data 
architectures in nine broad areas, or application domains. Participants in the NBD-PWG Use Case and 
Requirements Subgroup and other interested parties provided the use case details via a template, which 
helped to standardize the responses and facilitate subsequent analysis and comparison of the use cases. 
However, submissions still varied in levels of detail, quantitative data, or qualitative information. The 
NIST Big Data Interoperability Framework: Volume 3, Use Cases and General Requirements document 
presents the original use cases, an analysis of the compiled information, and the requirements extracted 
from the use cases.  

The extracted requirements represent challenges faced in seven characterization categories (Table 1) 
developed by the Subgroup. Requirements specific to the use cases were aggregated into high-level 
generalized requirements, which are vendor- and technology-neutral. 

The use case characterization categories were used as input in the development of the NBDRA and map 
directly to NBDRA components and fabrics as shown in Table 1. 

Table 1: Mapping Use Case Characterization Categories to  

Reference Architecture Components and Fabrics 


USE CASE CHARACTERIZATION 

CATEGORIES 

REFERENCE ARCHITECTURE COMPONENTS 

AND FABRICS 

Data sources → Data Provider 

Data transformation → Big Data Application Provider 

Capabilities → Big Data Framework Provider 

Data consumer → Data Consumer 

Security and privacy → Security and Privacy Fabric 

Life cycle management  → System Orchestrator; Management Fabric 

Other requirements → To all components and fabrics 

The high-level generalized requirements are presented below. The development of these generalized 
requirements is presented in the NIST Big Data Interoperability Framework: Volume 3, Use Cases and 
Requirements document. 

5 
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DATA PROVIDER REQUIREMENTS 

 DSR-1: Reliable, real-time, asynchronous, streaming, and batch processing to collect data from 
centralized, distributed, and cloud data sources, sensors, or instruments 

 DSR-2: Slow, bursty, and high throughput data transmission between data sources and 
computing clusters 

	 DSR-3: Diversified data content ranging from structured and unstructured text, documents, 
graphs, websites, geospatial, compressed, timed, spatial, multimedia, simulation, and 
instrumental (i.e., system managements and monitoring) data 

BIG DATA APPLICATION PROVIDER REQUIREMENTS 

	 TPR-1: Diversified, compute-intensive, statistical and graph analytic processing and machine-
learning techniques 

 TPR-2: Batch and real-time analytic processing  
 TPR-3: Processing large diversified data content and modeling  
 TPR-4: Processing data in motion (e.g., streaming, fetching new content, data tracking, 

traceability, data change management, and data boundaries) 

BIG DATA FRAMEWORK PROVIDER REQUIREMENTS 

 CPR-1: Legacy software and advanced software packages 
 CPR-2: Legacy and advanced computing platforms 
 CPR-3: Legacy and advanced distributed computing clusters, co-processors, input/output (I/O) 

processing 
	 CPR-4: Advanced networks (e.g., software-defined network [SDN]) and elastic data 

transmission, including fiber, cable, and wireless networks (e.g., local area network, wide area 
network, metropolitan area network, Wi-Fi)  

 CPR-5: Legacy, large, virtual, and advanced distributed data storage  
 CPR-6: Legacy and advanced programming executables, applications, tools, utilities, and 

libraries 

DATA CONSUMER REQUIREMENTS 

 DCR-1: Fast searches  from processed data with high relevancy, accuracy, and recall
 
 DCR-2: Diversified output file formats for visualization, rendering, and reporting 

 DCR-3: Visual layout for results presentation 

 DCR-4: Rich user interface for access using browser, visualization tools 

 DCR-5: High-resolution, multidimensional layer of data visualization 

 DCR-6: Streaming results to clients 


SECURITY AND PRIVACY REQUIREMENTS 

	 SPR-1: Protect and preserve security and privacy of sensitive data. 
	 SPR-2: Support sandbox, access control, and multi-tenant, multilevel, policy-driven 

authentication on protected data and ensure that these are in line with accepted governance, risk, 
and compliance (GRC) and confidentiality, integrity, and availability (CIA) best practices. 

MANAGEMENT REQUIREMENTS 

	 LMR-1: Data quality curation, including preprocessing, data clustering, classification, reduction, 
and format transformation 


 LMR-2: Dynamic updates on data, user profiles, and links 

 LMR-3: Data life cycle and long-term preservation policy, including data provenance  

 LMR-4: Data validation 
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 LMR-5: Human annotation for data validation 
 LMR-6: Prevention of data loss or corruption 
 LMR-7: Multisite (including cross-border, geographically dispersed) archives 
 LMR-8: Persistent identifier and data traceability 
 LMR-9: Standardization, aggregation, and normalization of data from disparate sources 

OTHER REQUIREMENTS 

 OR-1: Rich user interface from mobile platforms to access processed results  
 OR-2: Performance monitoring on analytic processing from mobile platforms 
 OR-3: Rich visual content search and rendering from mobile platforms 
 OR-4: Mobile device data acquisition and management 
 OR-5: Security across mobile devices and other smart devices such as sensors 

2.2 REFERENCE ARCHITECTURE SURVEY 

The NBD-PWG Reference Architecture Subgroup conducted a survey of current reference architectures 
to advance the understanding of the operational intricacies in Big Data and to serve as a tool for 
developing system-specific architectures using a common reference framework. The Subgroup surveyed 
currently published Big Data platforms by leading companies or individuals supporting the Big Data 
framework and analyzed the collected material. This effort revealed a consistency between Big Data 
architectures that served in the development of the NBDRA. Survey details, methodology, and 
conclusions are reported in NIST Big Data Interoperability Framework: Volume 5, Architectures White 
Paper Survey. 

2.3 TAXONOMY 

The NBD-PWG Definitions and Taxonomy Subgroup focused on identifying Big Data concepts, defining 
terms needed to describe the new Big Data paradigm, and defining reference architecture terms. The 
reference architecture taxonomy presented below provides a hierarchy of the components of the reference 
architecture. Additional taxonomy details are presented in the NIST Big Data Interoperability 
Framework: Volume 2, Taxonomy document. 

Figure 1 outlines potential actors for the seven roles developed by the NBD-PWG Definition and 
Taxonomy Subgroup. The blue boxes contain the name of the role at the top with potential actors listed 
directly below. 

7 




     

 

 
  

 

 

 

 

 

 

  

 

 

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE 

Figure 1: NBDRA Taxonomy 

SYSTEM ORCHESTRATOR 
The System Orchestrator provides the overarching requirements that the system must fulfill, including 
policy, governance, architecture, resources, and business requirements, as well as monitoring or auditing 
activities to ensure that the system complies with those requirements. The System Orchestrator role 
provides system requirements, high-level design, and monitoring for the data system. While the role 
predates Big Data systems, some related design activities have changed within the Big Data paradigm. 

DATA PROVIDER 
A Data Provider makes data available to itself or to others. In fulfilling its role, the Data Provider creates 
an abstraction of various types of data sources (such as raw data or data previously transformed by 
another system) and makes them available through different functional interfaces. The actor fulfilling this 
role can be part of the Big Data system, internal to the organization in another system, or external to the 
organization orchestrating the system. While the concept of a Data Provider is not new, the greater data 
collection and analytics capabilities have opened up new possibilities for providing valuable data. 

BIG DATA APPLICATION PROVIDER 
The Big Data Application Provider executes the manipulations of the data life cycle to meet requirements 
established by the System Orchestrator. This is where the general capabilities within the Big Data 
framework are combined to produce the specific data system. While the activities of an application 
provider are the same whether the solution being built concerns Big Data or not, the methods and 
techniques have changed because the data and data processing is parallelized across resources. 

BIG DATA FRAMEWORK PROVIDER 
The Big Data Framework Provider has general resources or services to be used by the Big Data 
Application Provider in the creation of the specific application. There are many new components from 
which the Big Data Application Provider can choose in using these resources and the network to build the 
specific system. This is the role that has seen the most significant changes because of Big Data. The Big 
Data Framework Provider consists of one or more instances of the three subcomponents: infrastructure 
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frameworks, data platforms, and processing frameworks. There is no requirement that all instances at a 
given level in the hierarchy be of the same technology and, in fact, most Big Data implementations are 
hybrids combining multiple technology approaches. These provide flexibility and can meet the complete 
range of requirements that are driven from the Big Data Application Provider. Due to the rapid emergence 
of new techniques, this is an area that will continue to need discussion. 

DATA CONSUMER 
The Data Consumer receives the value output of the Big Data system. In many respects, it is the recipient 
of the same type of functional interfaces that the Data Provider exposes to the Big Data Application 
Provider. After the system adds value to the original data sources, the Big Data Application Provider then 
exposes that same type of functional interfaces to the Data Consumer.  

SECURITY AND PRIVACY FABRIC 
Security and privacy issues affect all other components of the NBDRA. The Security and Privacy Fabric 
interacts with the System Orchestrator for policy, requirements, and auditing and also with both the Big 
Data Application Provider and the Big Data Framework Provider for development, deployment, and 
operation. The NIST Big Data Interoperability Framework: Volume 4, Security and Privacy document 
discusses security and privacy topics. 

MANAGEMENT FABRIC 
The Big Data characteristics of volume, velocity, variety, and variability demand a versatile system and 
software management platform for provisioning, software and package configuration and management, 
along with resource and performance monitoring and management. Big Data management involves 
system, data, security, and privacy considerations at scale, while maintaining a high level of data quality 
and secure accessibility. 
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3 NBDRA CONCEPTUAL MODEL
 

As discussed in Section 2, the NBD-PWG Reference Architecture Subgroup used a variety of inputs from 
other NBD-PWG subgroups in developing a vendor-neutral, technology- and infrastructure-agnostic 
conceptual model of Big Data architecture. This conceptual model, the NBDRA, is shown in Figure 2 and 
represents a Big Data system comprised of five logical functional components connected by 
interoperability interfaces (i.e., services). Two fabrics envelop the components, representing the 
interwoven nature of management and security and privacy with all five of the components. 

The NBDRA is intended to enable system engineers, data scientists, software developers, data architects, 
and senior decision makers to develop solutions to issues that require diverse approaches due to 
convergence of Big Data characteristics within an interoperable Big Data ecosystem. It provides a 
framework to support a variety of business environments, including tightly integrated enterprise systems 
and loosely coupled vertical industries, by enhancing understanding of how Big Data complements and 
differs from existing analytics, business intelligence, databases, and systems.  
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Figure 2: NIST Big Data Reference Architecture (NBDRA) 

Note: None of the terminology or diagrams in these documents is intended to be normative or to imply 
any business or deployment model.  The terms “provider” and “consumer” as used are descriptive of 
general roles and are meant to be informative in nature. 

The NBDRA is organized around two axes representing the two Big Data value chains: the information 
(horizontal axis) and the Information Technology (IT; vertical axis). Along the information axis, the value 
is created by data collection, integration, analysis, and applying the results following the value chain. 
Along the IT axis, the value is created by providing networking, infrastructure, platforms, application 
tools, and other IT services for hosting of and operating the Big Data in support of required data 
applications. At the intersection of both axes is the Big Data Application Provider component, indicating 
that data analytics and its implementation provide the value to Big Data stakeholders in both value chains. 
The names of the Big Data Application Provider and Big Data Framework Provider components contain 
“providers” to indicate that these components provide or implement a specific technical function within 
the system. 

The five main NBDRA components, shown in Figure 2 and discussed in detail in Section 4, represent 
different technical roles that exist in every Big Data system. These functional components are: 

 System Orchestrator 
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 Data Provider 
 Big Data Application Provider 
 Big Data Framework Provider 
 Data Consumer 

The two fabrics shown in Figure 2 encompassing the five functional components are:  

 Management  
 Security and Privacy 

These two fabrics provide services and functionality to the five functional components in the areas 
specific to Big Data and are crucial to any Big Data solution. 

The “DATA” arrows in Figure 2 show the flow of data between the system’s main components. Data 
flows between the components either physically (i.e., by value) or by providing its location and the means 
to access it (i.e., by reference). The “SW” arrows show transfer of software tools for processing of Big 
Data in situ. The “Service Use” arrows represent software programmable interfaces. While the main focus 
of the NBDRA is to represent the run-time environment, all three types of communications or transactions 
can happen in the configuration phase as well. Manual agreements (e.g., service-level agreements) and 
human interactions that may exist throughout the system are not shown in the NBDRA. 

The components represent functional roles in the Big Data ecosystem. In system development, actors and 
roles have the same relationship as in the movies, but system development actors can represent 
individuals, organizations, software, or hardware. According to the Big Data taxonomy, a single actor can 
play multiple roles, and multiple actors can play the same role. The NBDRA does not specify the business 
boundaries between the participating actors or stakeholders, so the roles can either reside within the same 
business entity or can be implemented by different business entities. Therefore, the NBDRA is applicable 
to a variety of business environments, from tightly integrated enterprise systems to loosely coupled 
vertical industries that rely on the cooperation of independent stakeholders. As a result, the notion of 
internal versus external functional components or roles does not apply to the NBDRA. However, for a 
specific use case, once the roles are associated with specific business stakeholders, the functional 
components would be considered as internal or external—subject to the use case’s point of view. 

The NBDRA does support the representation of stacking or chaining of Big Data systems. For example, a 
Data Consumer of one system could serve as a Data Provider to the next system down the stack or chain. 
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4 FUNCTIONAL COMPONENTS OF THE NBDRA 


As outlined in Section 3, the five main functional components of the NBDRA represent the different 
technical roles within a Big Data system. The functional components are listed below and discussed in 
subsequent subsections. 

 System Orchestrator: Defines and integrates the required data application activities into an 
operational vertical system; 

 Data Provider: Introduces new data or information feeds into the Big Data system; 
 Big Data Application Provider: Executes a data life cycle to meet security and privacy 

requirements as well as System Orchestrator-defined requirements; 
 Big Data Framework Provider: Establishes a computing framework in which to execute 

certain transformation applications while protecting the privacy and integrity of data; and 
 Data Consumer: Includes end users or other systems that use the results of the Big Data 

Application Provider. 

4.1 SYSTEM ORCHESTRATOR 

The System Orchestrator role includes defining and integrating the required data application activities 
into an operational vertical system. Typically, the System Orchestrator involves a collection of more 
specific roles, performed by one or more actors, which manage and orchestrate the operation of the Big 
Data system. These actors may be human components, software components, or some combination of the 
two. The function of the System Orchestrator is to configure and manage the other components of the Big 
Data architecture to implement one or more workloads that the architecture is designed to execute. The 
workloads managed by the System Orchestrator may be assigning/provisioning framework components to 
individual physical or virtual nodes at the lower level, or providing a graphical user interface that supports 
the specification of workflows linking together multiple applications and components at the higher level. 
The System Orchestrator may also, through the Management Fabric, monitor the workloads and system to 
confirm that specific quality of service requirements are met for each workload, and may actually 
elastically assign and provision additional physical or virtual resources to meet workload requirements 
resulting from changes/surges in the data or number of users/transactions. 

The NBDRA represents a broad range of Big Data systems, from tightly coupled enterprise solutions 
(integrated by standard or proprietary interfaces) to loosely coupled vertical systems maintained by a 
variety of stakeholders bounded by agreements and standard or standard-de-facto interfaces. 

In an enterprise environment, the System Orchestrator role is typically centralized and can be mapped to 
the traditional role of system governor that provides the overarching requirements and constraints, which 
the system must fulfill, including policy, architecture, resources, or business requirements. A system 
governor works with a collection of other roles (e.g., data manager, data security, and system manager) to 
implement the requirements and the system’s functionality. 

In a loosely coupled vertical system, the System Orchestrator role is typically decentralized. Each 
independent stakeholder is responsible for its own system management, security, and integration, as well 
as integration within the Big Data distributed system using the interfaces provided by other stakeholders. 

4.2 DATA PROVIDER 

The Data Provider role introduces new data or information feeds into the Big Data system for discovery, 
access, and transformation by the Big Data system. New data feeds are distinct from the data already in 
use by the system and residing in the various system repositories. Similar technologies can be used to 
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access both new data feeds and existing data. The Data Provider actors can be anything from a sensor, to 
a human inputting data manually, to another Big Data system. 

One of the important characteristics of a Big Data system is the ability to import and use data from a 
variety of data sources. Data sources can be internal or public records, tapes, images, audio, videos, 
sensor data, web logs, system and audit logs, HyperText Transfer Protocol (HTTP) cookies, and other 
sources. Humans, machines, sensors, online and offline applications, Internet technologies, and other 
actors can also produce data sources. The roles of Data Provider and Big Data Application Provider often 
belong to different organizations, unless the organization implementing the Big Data Application 
Provider owns the data sources. Consequently, data from different sources may have different security 
and privacy considerations. In fulfilling its role, the Data Provider creates an abstraction of the data 
sources. In the case of raw data sources, the Data Provider can potentially cleanse, correct, and store the 
data in an internal format that is accessible to the Big Data system that will ingest it.  

The Data Provider can also provide an abstraction of data previously transformed by another system (i.e., 
legacy system, another Big Data system). In this case, the Data Provider would represent a Data 
Consumer of the other system. For example, Data Provider 1 could generate a streaming data source from 
the operations performed by Data Provider 2 on a dataset at rest. 

Data Provider activities include the following, which are common to most systems that handle data: 

 Collecting the data; 
 Persisting the data; 
 Providing transformation functions for data scrubbing of sensitive information such as 

personally identifiable information (PII); 
 Creating the metadata describing the data source(s), usage policies/access rights, and other 

relevant attributes; 
 Enforcing access rights on data access; 
 Establishing formal or informal contracts for data access authorizations; 
 Making the data accessible through suitable programmable push or pull interfaces; 
 Providing push or pull access mechanisms; and 
 Publishing the availability of the information and the means to access it. 

The Data Provider exposes a collection of interfaces (or services) for discovering and accessing the data. 
These interfaces would typically include a registry so that applications can locate a Data Provider, 
identify the data of interest it contains, understand the types of access allowed, understand the types of 
analysis supported, locate the data source, determine data access methods, identify the data security 
requirements, identify the data privacy requirements, and other pertinent information. Therefore, the 
interface would provide the means to register the data source, query the registry, and identify a standard 
set of data contained by the registry. 

Subject to Big Data characteristics (i.e., volume, variety, velocity, and variability) and system design 
considerations, interfaces for exposing and accessing data would vary in their complexity and can include 
both push and pull software mechanisms. These mechanisms can include subscription to events, listening 
to data feeds, querying for specific data properties or content, and the ability to submit a code for 
execution to process the data in situ. Because the data can be too large to economically move across the 
network, the interface could also allow the submission of analysis requests (e.g., software code 
implementing a certain algorithm for execution), with the results returned to the requestor. Data access 
may not always be automated, but might involve a human role logging into the system and providing 
directions where new data should be transferred (e.g., establishing a subscription to an email-based data 
feed). 

The interface between the Data Provider and Big Data Application Provider typically will go through 
three phases: initiation, data transfer, and termination. The initiation phase is started by either party and 
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often includes some level of authentication/authorization. The phase may also include queries for 
metadata about the source or consumer, such as the list of available topics in a publish/subscribe 
(pub/sub) model and the transfer of any parameters (e.g., object count/size limits or target storage 
locations). Alternatively, the phase may be as simple as one side opening a socket connection to a known 
port on the other side.  

The data transfer phase may be a push from the Data Provider or a pull by the Big Data Application 
Provider. It may also be a singular transfer or involve multiple repeating transfers. In a repeating transfer 
situation, the data may be a continuous stream of transactions/records/bytes. In a push scenario, the Big 
Data Application Provider must be prepared to accept the data asynchronously but may also be required 
to acknowledge (or negatively acknowledge) the receipt of each unit of data. In a pull scenario, the Big 
Data Application Provider would specifically generate a request that defines through parameters of the 
data to be returned. The returned data could itself be a stream or multiple records/units of data, and the 
data transfer phase may consist of multiple request/send transactions.  

The termination phase could be as simple as one side simply dropping the connection or could include 
checksums, counts, hashes, or other information about the completed transfer. 

4.3 BIG DATA APPLICATION PROVIDER 

The Big Data Application Provider role executes a specific set of operations along the data life cycle to 
meet the requirements established by the System Orchestrator, as well as meeting security and privacy 
requirements. The Big Data Application Provider is the architecture component that encapsulates the 
business logic and functionality to be executed by the architecture. The Big Data Application Provider 
activities include the following: 

 Collection 
 Preparation 
 Analytics 
 Visualization 
 Access 

These activities are represented by the subcomponents of the Big Data Application Provider as shown in 
Figure 2. The execution of these activities would typically be specific to the application and, therefore, 
are not candidates for standardization. However, the metadata and the policies defined and exchanged 
between the application’s subcomponents could be standardized when the application is specific to a 
vertical industry. 

While many of these activities exist in traditional data processing systems, the data volume, velocity, 
variety, and variability present in Big Data systems radically change their implementation. Traditional 
algorithms and mechanisms of traditional data processing implementations need to be adjusted and 
optimized to create applications that are responsive and can grow to handle ever-growing data collections. 

As data propagates through the ecosystem, it is being processed and transformed in different ways in 
order to extract the value from the information. Each activity of the Big Data Application Provider can be 
implemented by independent stakeholders and deployed as stand-alone services. 

The Big Data Application Provider can be a single instance or a collection of more granular Big Data 
Application Providers, each implementing different steps in the data life cycle. Each of the activities of 
the Big Data Application Provider may be a general service invoked by the System Orchestrator, Data 
Provider, or Data Consumer, such as a web server, a file server, a collection of one or more application 
programs, or a combination. There may be multiple and differing instances of each activity, or a single 
program may perform multiple activities. Each of the activities is able to interact with the underlying Big 
Data Framework Providers as well as with the Data Providers and Data Consumers. In addition, these 
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activities may execute in parallel or in any number of sequences and will frequently communicate with 
each other through the messaging/communications element of the Big Data Framework Provider. Also, 
the functions of the Big Data Application Provider, specifically the collection and access activities, will 
interact with the Security and Privacy Fabric to perform authentication/authorization and record/maintain 
data provenance. 

Each of the functions can run on a separate Big Data Framework Provider or all can use a common Big 
Data Framework Provider. The considerations behind these different system approaches would depend on 
potentially different technological needs, business and/or deployment constraints (including privacy), and 
other policy considerations. The baseline NBDRA does not show the underlying technologies, business 
considerations, and topological constraints, thus making it applicable to any kind of system approach and 
deployment. 

For example, the infrastructure of the Big Data Application Provider would be represented as one of the 
Big Data Framework Providers. If the Big Data Application Provider uses external/outsourced 
infrastructures as well, it or they will be represented as another or multiple Big Data Framework 
Providers in the NBDRA. The multiple grey blocks behind the Big Data Framework Providers in Figure 2 
indicate that multiple Big Data Framework Providers can support a single Big Data Application Provider. 

4.3.1 COLLECTION 
In general, the collection activity of the Big Data Application Provider handles the interface with the Data 
Provider. This may be a general service, such as a file server or web server configured by the System 
Orchestrator to accept or perform specific collections of data, or it may be an application-specific service 
designed to pull data or receive pushes of data from the Data Provider. Since this activity is receiving data 
at a minimum, it must store/buffer the received data until it is persisted through the Big Data Framework 
Provider. This persistence need not be to physical media but may simply be to an in-memory queue or 
other service provided by the processing frameworks of the Big Data Framework Provider. The collection 
activity is likely where the extraction portion of the Extract, Transform, Load (ETL)/Extract, Load, 
Transform (ELT) cycle is performed. At the initial collection stage, sets of data (e.g., data records) of 
similar structure are collected (and combined), resulting in uniform security, policy, and other 
considerations. Initial metadata is created (e.g., subjects with keys are identified) to facilitate subsequent 
aggregation or look-up methods. 

4.3.2 PREPARATION 
The preparation activity is where the transformation portion of the ETL/ELT cycle is likely performed, 
although analytics activity will also likely perform advanced parts of the transformation. Tasks performed 
by this activity could include data validation (e.g., checksums/hashes, format checks), cleansing (e.g., 
eliminating bad records/fields), outlier removal, standardization, reformatting, or encapsulating. This 
activity is also where source data will frequently be persisted to archive storage in the Big Data 
Framework Provider and provenance data will be verified or attached/associated. Verification or 
attachment may include optimization of data through manipulations (e.g., deduplication) and indexing to 
optimize the analytics process. This activity may also aggregate data from different Data Providers, 
leveraging metadata keys to create an expanded and enhanced data set. 

4.3.3 ANALYTICS 
The analytics activity of the Big Data Application Provider includes the encoding of the low-level 
business logic of the Big Data system (with higher-level business process logic being encoded by the 
System Orchestrator). The activity implements the techniques to extract knowledge from the data based 
on the requirements of the vertical application. The requirements specify the data processing algorithms 
for processing the data to produce new insights that will address the technical goal. The analytics activity 
will leverage the processing frameworks to implement the associated logic. This typically involves the 
activity providing software that implements the analytic logic to the batch and/or streaming elements of 
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the processing framework for execution. The messaging/communication framework of the Big Data 
Framework Provider may be used to pass data or control functions to the application logic running in the 
processing frameworks. The analytic logic may be broken up into multiple modules to be executed by the 
processing frameworks which communicate, through the messaging/communication framework, with 
each other and other functions instantiated by the Big Data Application Provider. 

4.3.4 VISUALIZATION 
The visualization activity of the Big Data Application Provider prepares elements of the processed data 
and the output of the analytic activity for presentation to the Data Consumer. The objective of this activity 
is to format and present data in such a way as to optimally communicate meaning and knowledge. The 
visualization preparation may involve producing a text-based report or rendering the analytic results as 
some form of graphic. The resulting output may be a static visualization and may simply be stored 
through the Big Data Framework Provider for later access. However, the visualization activity frequently 
interacts with the access activity, the analytics activity, and the Big Data Framework Provider (processing 
and platform) to provide interactive visualization of the data to the Data Consumer based on parameters 
provided to the access activity by the Data Consumer. The visualization activity may be completely 
application-implemented, leverage one or more application libraries, or may use specialized visualization 
processing frameworks within the Big Data Framework Provider. 

4.3.5 ACCESS 
The access activity within the Big Data Application Provider is focused on the communication/interaction 
with the Data Consumer. Similar to the collection activity, the access activity may be a generic service 
such as a web server or application server that is configured by the System Orchestrator to handle specific 
requests from the Data Consumer. This activity would interface with the visualization and analytic 
activities to respond to requests from the Data Consumer (who may be a person) and uses the processing 
and platform frameworks to retrieve data to respond to Data Consumer requests. In addition, the access 
activity confirms that descriptive and administrative metadata and metadata schemes are captured and 
maintained for access by the Data Consumer and as data is transferred to the Data Consumer. The 
interface with the Data Consumer may be synchronous or asynchronous in nature and may use a pull or 
push paradigm for data transfer.  

4.4 BIG DATA FRAMEWORK PROVIDER 

The Big Data Framework Provider typically consists of one or more hierarchically organized instances of 
the components in the NBDRA IT value chain (Figure 2). There is no requirement that all instances at a 
given level in the hierarchy be of the same technology. In fact, most Big Data implementations are 
hybrids that combine multiple technology approaches in order to provide flexibility or meet the complete 
range of requirements, which are driven from the Big Data Application Provider. 

Many of the recent advances related to Big Data have been in the area of frameworks designed to scale to 
Big Data needs (e.g., addressing volume, variety, velocity, and variability) while maintaining linear or 
near-linear performance. These advances have generated much of the technology excitement in the Big 
Data space. Accordingly, there is a great deal more information available in the frameworks area 
compared to the other components, and the additional detail provided for the Big Data Framework 
Provider in this document reflects this imbalance. 

The Big Data Framework Provider comprises the following three subcomponents (from the bottom to the 
top): 

 Infrastructure Frameworks 
 Data Platform Frameworks 
 Processing Frameworks 
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4.4.1 INFRASTRUCTURE FRAMEWORKS 
This Big Data Framework Provider element provides all of the resources necessary to host/run the 
activities of the other components of the Big Data system. Typically, these resources consist of some 
combination of physical resources, which may host/support similar virtual resources. These resources are 
generally classified as follows: 

 Networking: These are the resources that transfer data from one infrastructure framework 
component to another. 

 Computing: These are the physical processors and memory that execute and hold the software of 
the other Big Data system components. 

 Storage: These are resources which provide persistence of the data in a Big Data system. 
 Environmental: These are the physical plant resources (e.g., power, cooling, security) that must 

be accounted for when establishing an instance of a Big Data system. 

While the Big Data Framework Provider component may be deployed directly on physical resources or 
on virtual resources, at some level all resources have a physical representation. Physical resources are 
frequently used to deploy multiple components that will be duplicated across a large number of physical 
nodes to provide what is known as horizontal scalability. Virtualization is frequently used to achieve 
elasticity and flexibility in the allocation of physical resources and is often referred to as infrastructure as 
a service (IaaS) within the cloud computing community. Virtualization is typically found in one of three 
basic forms within a Big Data Architecture. 

	 Native: In this form, a hypervisor runs natively on the bare metal and manages multiple virtual 
machines consisting of operating systems (OS) and applications. 

	 Hosted: In this form, an OS runs natively on the bare metal and a hypervisor runs on top of that to 
host a client OS and applications. This model is not often seen in Big Data architectures due to 
the increased overhead of the extra OS layer. 

	 Containerized: In this form, hypervisor functions are embedded in the OS, which runs on bare 
metal. Applications are run inside containers, which control or limit access to the OS and physical 
machine resources. This approach has gained popularity for Big Data architectures because it 
further reduces overhead since most OS functions are a single shared resource. It may not be 
considered as secure or stable since in the event that the container controls/limits fail, one 
application may take down every application sharing those physical resources. 

The following subsections describe the types of physical and virtual resources that comprise Big Data 
infrastructure. 

4.4.1.1 NETWORKING 
The connectivity of the architecture infrastructure should be addressed, as it affects the velocity 
characteristic of Big Data. While, some Big Data implementations may solely deal with data that is 
already resident in the data center and does not need to leave the confines of the local network, others 
may need to plan and account for the movement of Big Data either into or out of the data center. The 
location of Big Data systems with transfer requirements may depend on the availability of external 
network connectivity (i.e., bandwidth) and the limitations of Transmission Control Protocol (TCP) where 
there is low latency (as measured by packet Round Trip Time) with the primary senders or receivers of 
Big Data. To address the limitations of TCP, architects for Big Data systems may need to consider some 
of the advanced non-TCP based communications protocols available that are specifically designed to 
transfer large files such as video and imagery. 

Overall availability of the external links is another infrastructure aspect relating to the velocity 
characteristic of Big Data that should be considered in architecting external connectivity. A given 
connectivity link may be able to easily handle the velocity of data while operating correctly. However, 
should the quality of service on the link degrade or the link fail completely, data may be lost or simply 
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back up to the point that it can never recover. Use cases exist where the contingency planning for network 
outages involves transferring data to physical media and physically transporting it to the desired 
destination. However, even this approach is limited by the time it may require to transfer the data to 
external media for transport. 

The volume and velocity characteristics of Big Data often are driving factors in the implementation of the 
internal network infrastructure as well. For example, if the implementation requires frequent transfers of 
large multi-gigabyte files between cluster nodes, then high speed and low latency links are required to 
maintain connectivity to all nodes in the network. Provisions for dynamic quality of services (QOS) and 
service priority may be necessary in order to allow failed or disconnected nodes to re-synchronize once 
connectivity is restored. Depending on the availability requirements, redundant and fault tolerant links 
may be required. Other aspects of the network infrastructure include name resolution (e.g., Domain Name 
Server [DNS]) and encryption along with firewalls and other perimeter access control capabilities. 
Finally, the network infrastructure may also include automated deployment, provisioning capabilities, or 
agents and infrastructure wide monitoring agents that are leveraged by the management/communication 
elements to implement a specific model. 

Security of the networks is another aspect that must be addressed depending on the sensitivity of the data 
being processed.  Encryption may be needed between the network and external systems to avoid man in 
the middle interception and compromise of the data.   In cases, where the network infrastructure within 
the data center is shared encryption of the local network should also be considered.  Finally, in 
conjunction with the security and privacy fabric auditing and intrusion detection capabilities need to be 
address. 

Two concepts, SDN and Network Function Virtualization (NFV), have recently been developed in 
support of scalable networks and scalable systems using them. 

4.4.1.1.1 Software Defined Networks 
Frequently ignored, but critical to the performance of distributed systems and frameworks, and especially 
critical to Big Data implementations, is the efficient and effective management of networking resources. 
Significant advances in network resource management have been realized through what is known as 
SDN. Much like virtualization frameworks manage shared pools of CPU/memory/disk, SDNs (or virtual 
networks) manage pools of physical network resources. In contrast to the traditional approaches of 
dedicated physical network links for data, management, I/O, and control, SDNs contain multiple physical 
resources (including links and actual switching fabric) that are pooled and allocated as required to specific 
functions and sometimes to specific applications. This allocation can consist of raw bandwidth, quality of 
service priority, and even actual data routes.  

4.4.1.1.2 Network Function Virtualization 
With the advent of virtualization, virtual appliances can now reasonably support a large number of 
network functions that were traditionally performed by dedicated devices. Network functions that can be 
implemented in this manner include routing/routers, perimeter defense (e.g., firewalls), remote access 
authorization, and network traffic/load monitoring. Some key advantages of NFV include elasticity, fault 
tolerance, and resource management. For example, the ability to automatically deploy/provision 
additional firewalls in response to a surge in user or data connections and then un-deploy them when the 
surge is over can be critical in handling the volumes associated with Big Data. 

4.4.1.2 COMPUTING 
The logical distribution of cluster/computing infrastructure may vary from a tightly coupled high 
performance computing cluster to a dense grid of physical commodity machines in a rack, to a set of 
virtual machines running on a cloud service provider (CSP), or to a loosely coupled set of machines 
distributed around the globe providing access to unused computing resources. Computing infrastructure 
also frequently includes the underlying OSs and associated services used to interconnect the cluster 
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resources via the networking elements. Computing resources may also include computation accelerators 
such as Graphic Processing Units (GPUS) and Field Programmable Gate Arrays (FPGAS) which can 
provide dynamically programmed massively parallel computing capabilities to individual nodes in the 
infrastructure. 

4.4.1.3 STORAGE 
The storage infrastructure may include any resource from isolated local disks to storage area networks 
(SANs) or network-attached storage (NAS). 

Two aspects of storage infrastructure technology that directly influence their suitability for Big Data 
solutions are capacity and transfer bandwidth. Capacity refers to the ability to handle the data volume. 
Local disks/file systems are specifically limited by the size of the available media. Hardware or software 
redundant array of independent disks (RAID) solutions—in this case local to a processing node—help 
with scaling by allowing multiple pieces of media to be treated as a single device. However, this approach 
is limited by the physical dimension of the media and the number of devices the node can accept. SAN 
and NAS implementations—often known as shared disk solutions—remove that limit by consolidating 
storage into a storage specific device. By consolidating storage, the second aspect—transfer bandwidth— 
may become an issue. While both network and I/O interfaces are getting faster and many implementations 
support multiple transfer channels, I/O bandwidth can still be a limiting factor. In addition, despite the 
redundancies provided by RAID, hot spares, multiple power supplies, and multiple controllers, these 
boxes can often become I/O bottlenecks or single points of failure in an enterprise. Many Big Data 
implementations address these issues by using distributed file systems within the platform framework. 

4.4.1.4 ENVIRONMENTAL RESOURCES 
Environmental resources, such as power and heating, ventilation, and air conditioning, are critical to the 
Big Data Framework Provider. While environmental resources are critical to the operation of the Big Data 
system, they are not within the technical boundaries and are, therefore, not depicted in Figure 2, the 
NBDRA conceptual model. 

Adequately sized infrastructure to support application requirements is critical to the success of Big Data 
implementations. The infrastructure architecture operational requirements range from basic power and 
cooling to external bandwidth connectivity (as discussed above). A key evolution that has been driven by 
Big Data is the increase in server density (i.e., more CPU/memory/disk per rack unit). However, with this 
increased density, infrastructurespecifically power and coolingmay not be distributed within the data 
center to allow for sufficient power to each rack or adequate air flow to remove excess heat. In addition, 
with the high cost of managing energy consumption within data centers, technologies have been 
developed that actually power down or idle resources not in use to save energy or to reduce consumption 
during peak periods.  

Also important within this element are the physical security of the facilities and auxiliary (e.g. power sub-
stations). Specifically perimeter security to include credential verification (badge/biometrics), 
surveillance, and perimeter alarms all are necessary to maintain control of the data being processed. 

4.4.2 DATA PLATFORM FRAMEWORKS 
Data Platform Frameworks provide for the logical data organization and distribution combined with the 
associated access application programming interfaces (APIs) or methods. The frameworks may also 
include data registry and metadata services along with semantic data descriptions such as formal 
ontologies or taxonomies. The logical data organization may range from simple delimited flat files to 
fully distributed relational or columnar data stores. The storage mediums range from high latency robotic 
tape drives, to spinning magnetic media, to flash/solid state disks, or to random access memory. 
Accordingly, the access methods may range from file access APIs to query languages such as Structured 
Query Language (SQL.) Typical Big Data framework implementations would support either basic file 
system style storage or in-memory storage and one or more indexed storage approaches. Based on the 
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specific Big Data system considerations, this logical organization may or may not be distributed across a 
cluster of computing resources.  

In most aspects, the logical data organization and distribution in Big Data storage frameworks mirrors the 
common approach for most legacy systems. Figure 3 presents a brief overview of data organization 
approaches for Big Data. 

Logical Data 
Organization 

In memory File Systems 

File System 
Organization 

Centralized Distributed 

Data 
Organization 

Delimited 
Fixed 
Length Binary 

Indexed 

Relational Key Value Columnar Document Graph 

Figure 3: Data Organization Approaches 

Many Big Data logical storage organizations leverage the common file system conceptwhere chunks of 
data are organized into a hierarchical namespace of directoriesas their base and then implement various 
indexing methods within the individual files. This allows many of these approaches to be run both on 
simple local storage file systems for testing purposes or on fully distributed file systems for scale. 

4.4.2.1 IN-MEMORY 
The infrastructure illustrated in the NBDRA (Figure 2) indicates that physical resources are required to 
support analytics. However, such infrastructure will vary (i.e., will be optimized) for the Big Data 
characteristics of the problem under study. Large, but static, historical datasets with no urgent analysis 
time constraints would optimize the infrastructure for the volume characteristic of Big Data, while time-
critical analyses such as intrusion detection or social media trend analysis would optimize the 
infrastructure for the velocity characteristic of Big Data. Velocity implies the necessity for extremely fast 
analysis and the infrastructure to support itnamely, very low latency, in-memory analytics. 

In-memory storage technologies, many of which were developed to support the scientific high 
performance computing (HPC) domain, are increasingly used due to the significant reduction in memory 
prices and the increased scalability of modern servers and OSs. Yet, an in-memory element of a velocity-
oriented infrastructure will require more than simply massive random-access memory (RAM). It will also 
require optimized data structures and memory access algorithms to fully exploit RAM performance. 
Current in-memory database offerings are beginning to address this issue. Shared memory solutions 
common to HPC environments are often being applied to address inter-nodal communications and 
synchronization requirements. 

Traditional database management architectures are designed to use spinning disks as the primary storage 
mechanism, with the main memory of the computing environment relegated to providing caching of data 
and indexes. Many of these in-memory storage mechanisms have their roots in the massively parallel 
processing and super computer environments popular in the scientific community. 

These approaches should not be confused with solid state (e.g., flash) disks or tiered storage systems that 
implement memory-based storage which simply replicate the disk style interfaces and data structures but 
with faster storage medium. Actual in-memory storage systems typically eschew the overhead of file 
system semantics and optimize the data storage structure to minimize memory footprint and maximize the 
data access rates. These in-memory systems may implement general purpose relational and other not only 
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(or no) Structured Query Language (NoSQL) style organization and interfaces or be completely 
optimized to a specific problem and data structure. 

Like traditional disk-based systems for Big Data, these implementations frequently support horizontal 
distribution of data and processing across multiple independent nodesalthough shared memory 
technologies are still prevalent in specialized implementations. Unlike traditional disk-based approaches, 
in-memory solutions and the supported applications must account for the lack of persistence of the data 
across system failures. Some implementations leverage a hybrid approach involving write-through to 
more persistent storage to help alleviate the issue. 

The advantages of in-memory approaches include faster processing of intensive analysis and reporting 
workloads. In-memory systems are especially good for analysis of real time data such as that needed for 
some complex event processing (CEP) of streams. For reporting workloads, performance improvements 
can often be on the order of several hundred times fasterespecially for sparse matrix and simulation 
type analytics. 

4.4.2.2 FILE SYSTEMS 
Many Big Data processing frameworks and applications access their data directly from underlying file 
systems. In almost all cases, the file systems implement some level of the Portable Operating System 
Interface (POSIX) standards for permissions and the associated file operations. This allows other higher-
level frameworks for indexing or processing to operate with relative transparency as to whether the 
underlying file system is local or fully distributed. File-based approaches consist of two layers, the file 
system organization and the data organization within the files. 

4.4.2.2.1 File System Organization 
File systems tend to be either centralized or distributed. Centralized file systems are basically 
implementations of local file systems that are placed on a single large storage platform (e.g., SAN or 
NAS) and accessed via some network capability. In a virtual environment, multiple physical centralized 
file systems may be combined, split, or allocated to create multiple logical file systems. 

Distributed file systems (also known as cluster file systems) seek to overcome the throughput issues 
presented by the volume and velocity characteristics of big data combine I/O throughput across multiple 
devices (spindles) on each node, with redundancy and failover mirroring or replicating data at the block 
level across multiple nodes. Many of these implementations were developed in support of HPC 
computing solutions requiring high throughput and scalability. Performance, in many HPC 
implementations is often achieved through dedicated storage nodes using proprietary storage formats and 
layouts. The data replication is specifically designed to allow the use of heterogeneous commodity 
hardware across the Big Data cluster. Thus, if a single drive or an entire node should fail, no data is lost 
because it is replicated on other nodes and throughput is only minimally affected because that processing 
can be moved to the other nodes. In addition, replication allows for high levels of concurrency for reading 
data and for initial writes. Updates and transaction style changes tend to be an issue for many distributed 
file systems because latency in creating replicated blocks will create consistency issues (e.g., a block is 
changed but another node reads the old data before it is replicated.) Several file system implementations 
also support data compression and encryption at various levels. One major caveat is that, for distributed 
block based file systems, the compression/encryption must be able to be split and allow any given block 
to be decompressed/ decrypted out of sequence and without access to the other blocks. 

Distributed object stores (also known as global object stores) are a unique example of distributed file 
system organization. Unlike the approaches described above, which implement a traditional file system 
hierarchy namespace approach, distributed object stores present a flat name space with a globally unique 
identifier (GUID) for any given chunk of data. Generally, data in the store is located through a query 
against a metadata catalog that returns the associated GUIDs. The GUID generally provides the 
underlying software implementation with the storage location of the data of interest. These object stores 
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are developed and marketed for storage of very large data objects, from complete data sets to large 
individual objects (e.g., high resolution images in the tens of gigabytes [GBs] size range). The biggest 
limitation of these stores for Big Data tends to be network throughput (i.e., speed) because many require 
the object to be accessed in total. However, future trends point to the concept of being able to send the 
computation/application to the data versus needing to bring the data to the application. 

From a maturity perspective, two key areas where distributed file systems are likely to improve are (1) 
random write I/O performance and consistency, and (2) the generation of de facto standards at a similar or 
greater level as the Internet Engineering Task Force Requests for Comments document series, such as 
those currently available for the network file system (NFS) protocol. Distributed object stores, while 
currently available and operational from several commercial providers and part of the roadmap for large 
organizations such as the National Geospatial Intelligence Agency (NGA), currently are essentially 
proprietary implementations. For Distributed object stores to become prevalent within Big Data 
ecosystems, there should be: some level of interoperability available (i.e., through standardized APIs); 
standards-based approaches for data discovery; and, most importantly, standards-based approaches that 
allow the application to be transferred over the grid and run locally to the data versus transferring the data 
to the application. 

4.4.2.2.2 In File Data Organization
Very little is different in Big Data for in file data organization. File based data can be text, binary data, 
fixed length records, or some sort of delimited structure (e.g., comma separated values [CSV], Extensible 
Markup Language [XML]). For record oriented storage (either delimited or fixed length), this generally is 
not an issue for Big Data unless individual records can exceed a block size. Some distributed file system 
implementations provide compression at the volume or directory level and implement it below the logical 
block level (e.g., when a block is read from the file system, it is decompressed/decrypted before being 
returned).Because of their simplicity, familiarity, and portability, delimited files are frequently the default 
storage format in many Big Data implementations. The trade-off is I/O efficiency (i.e., speed). While 
individual blocks in a distributed file system might be accessed in parallel, each block still needs to be 
read in sequence. In the case of a delimited file, if only the last field of certain records is of interest with 
perhaps hundreds of fields, a lot of I/O and processing bandwidth is wasted. 

Binary formats tend to be application or implementation specific. While they can offer much more 
efficient access due to smaller data sizes (i.e., integers are two to four bytes in binary while they are one 
byte per digit in ASCII [American Standard Code for Information Interchange]), they offer limited 
portability between different implementations. At least one popular distributed file system provides its 
own standard binary format, which allows data to be portable between multiple applications without 
additional software. However, the bulk of the indexed data organization approaches discussed below 
leverage binary formats for efficiency. 

4.4.2.3 INDEXED STORAGE ORGANIZATION 
The very nature of Big Data (primarily the volume and velocity characteristics) practically drives 
requirements to some form of indexing structure. Big Data volume requires that specific data elements be 
located quickly without scanning across the entire dataset. Big Data velocity also requires that data can be 
located quickly either for matching (e.g., incoming data matches something in an existing data set) or to 
know where to write/update new data.  

The choice of a particular indexing method or methods depends mostly on the data and the nature of the 
application to be implemented. For example, graph data (i.e., vertices, edges, and properties) can easily be 
represented in flat text files as vertex-edge pairs, edge-vertex-vertex triples, or vertex-edge list records. 
However, processing this data efficiently would require potentially loading the entire data set into 
memory or being able to distribute the application and data set across multiple nodes so a portion of the 
graph is in memory on each node. Splitting the graph across nodes requires the nodes to communicate 
when graph sections have vertices that connect with vertices on other processing nodes. This is perfectly 
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acceptable for some graph applicationssuch as shortest pathespecially when the graph is static. Some 
graph processing frameworks operate using this exact model. However, this approach is infeasible for 
large scale graphs requiring a specialized graph storage framework, where the graph is dynamic or 
searching or matching to a portion of the graph is needed quickly. 

Indexing approaches tend to be classified by the features provided in the implementation, specifically: the 
complexity of the data structures that can be stored; how well they can process links between data; and, 
how easily they support multiple access patterns as shown in Figure 4. Since any of these features can be 
implemented in custom application code, the values portrayed represent approximate norms. For example, 
key-value stores work well for data that is only accessed through a single key, whose values can be 
expressed in a single flat structure, and where multiple records do not need to be related. While document 
stores can support very complex structures of arbitrary width and tend to be indexed for access via 
multiple document properties, they do not tend to support inter-record relationships well.  

It is noted that the specific implementations for each storage approach vary significantly enough that all 
of the values for the features represented here are really ranges. For example, relational data storage 
implementations are supporting increasingly complex data structures and ongoing work aims to add more 
flexible access patterns natively in BigTable columnar implementations. Within Big Data, the 
performance of each of these features tends to drive the scalability of that approach depending on the 
problem being solved. For example, if the problem is to locate a single piece of data for a unique key, 
then key-value stores will scale really well. However, if a problem requires general navigation of the 
relationships between multiple data records, a graph storage model will likely provide the best 
performance. 
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4.4.3 PROCESSING FRAMEWORKS 
The processing frameworks for Big Data provide the necessary infrastructure software to support 
implementation of applications that can deal with the volume, velocity, variety, and variability of data. 
Processing frameworks define how the computation and processing of the data is organized. Big Data 
applications rely on various platforms and technologies to meet the challenges of scalable data analytics 
and operation. 

Processing frameworks generally focus on data manipulation, which falls along a continuum between 
batch and streaming oriented processing. However, depending on the specific data organization platform, 
and actual processing requested, any given framework may support a range of data manipulation from 
high latency to near real time (NRT) processing. Overall, many Big Data architectures will include 
multiple frameworks to support a wide range of requirements. 

Typically, processing frameworks are categorized based on whether they support batch or streaming 
processing. This categorization is generally stated from the user perspective (e.g., how fast does a user get 
a response to a request). However, Big Data processing frameworks actually have three processing 
phases: data ingestion, data analysis, and data dissemination, which closely follow the flow of data 
through the architecture. The Big Data Application Provider activities control the application of specific 
framework capabilities to these processing phases. The batch-streaming continuum, illustrated in the 
processing subcomponent in Figure 2, can be applied to the three distinct processing phases. For example, 
data may enter a Big Data system at high velocity and the end user must quickly retrieve a summary of 
the prior day’s data. In this case, the ingestion of the data into the system needs to be NRT and keep up 
with the data stream. The analysis portion could be incremental (e.g., performed as the data is ingested) or 
could be a batch process performed at a specified time, while retrieval (i.e., read visualization) of the data 
could be interactive. Specific to the use case, data transformation may take place at any point during its 
transit through the system. For example, the ingestion phase may only write the data as quickly as 
possible, or it may run some foundational analysis to track incrementally computed information such as 
minimum, maximum, average. The core processing job may only perform the analytic elements required 
by the Big Data Application Provider and compute a matrix of data or may actually generate some 
rendering like a heat map to support the visualization component. To permit rapid display, the data 
dissemination phase almost certainly does some rendering, but the extent depends on the nature of the 
data and the visualization. 

For the purposes of this discussion, most processing frameworks can be described with respect to their 
primary location within the information flow illustrated in Figure 5. 

Figure 5: Information Flow 

The green shading in Figure 5 illustrates the general sensitivity of that processing phase to latency, which 
is defined as the time from when a request or piece of data arrives at a system until its processing/delivery 
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is complete. For Big Data, the ingestion may or may not require NRT performance to keep up with the 
data flow. Some types of analytics (specifically those categorized as CEP) may or may not require NRT 
processing. The Data Consumer generally is located at the far right of Figure 5, depending upon the use 
case and application batch responses (e.g., a nightly report is emailed) may be sufficient. In other cases, 
the user may be willing to wait minutes for the results of a query to be returned, or they may need 
immediate alerting when critical information arrives at the system. In general, batch analytics tend to 
better support long term strategic decision making, where the overall view or direction is not affected by 
the latest small changes in the underlying data. Streaming analytics are better suited for tactical decision 
making, where new data needs to be acted upon immediately. A primary use case for streaming analytics 
would be electronic trading on stock exchanges where the window to act on a given piece of data can be 
measured in microseconds. Messaging and communication provides the transfer of data between 
processing elements and the buffering necessary to deal with the deltas in data rate, processing times, and 
data requests. 

Typically, Big Data discussions focus around the categories of batch and streaming frameworks for 
analytics. However, frameworks for retrieval of data that provide interactive access to Big Data are 
becoming a more prevalent. It is noted that the lines between these categories are not solid or distinct, 
with some frameworks providing aspects of each category. 

4.4.3.1 BATCH FRAMEWORKS 
Batch frameworks, whose roots stem from the mainframe processing era, are some of the most prevalent 
and mature components of a Big Data architecture because the historically long processing times for large 
data volumes. Batch frameworks ideally are not tied to a particular algorithm or even algorithm type, but 
rather provide a programming model where multiple classes of algorithms can be implemented. Also, 
when discussed in terms of Big Data, these processing models are frequently distributed across multiple 
nodes of a cluster. They are routinely differentiated by the amount of data sharing between 
processes/activities within the model. 

In 2004, a list of algorithms for simulation in the physical sciences was developed that became known as 
the “Seven Dwarfs”.3 The list was recently modified and extended to the 13 algorithms (Table 2), based 
on the following definition: “A dwarf is an algorithmic method that computes a pattern of computation 
and communication.”4 

Table 2: 13 Dwarfs—Algorithms for Simulation in the Physical Sciences 

Dense Linear Algebra* Combinational Logic 

Sparse Linear Algebra* Graph Traversal 

Spectral methods Dynamic Programming 

N-Body Methods Backtrack and Branch-and-Bound 

Structured Grids* Graphical Models 

Unstructured Grids* Finite State Machines 

Map/Reduce 
Notes: 
* Indicates one of the original seven dwarfs. The recent list modification removed three of the original seven algorithms: Fast 
Fourier Transform, Particles, and Monte Carlo. 

Many other algorithms or processing models have been defined over the years two of the best-known 
models in the Big Data space, Map/Reduce and Bulk Synchronous Parallel (BSP), are described in the 
following subsections. 

4.4.3.1.1 Map/Reduce 
Several major Internet search providers popularized the Map/Reduce model as they worked to implement 
their search capabilities. In general, Map/Reduce programs follow five basic stages: 
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1.	 Input preparation and assignment to mappers; 
2.	 Map a set of keys and values to new keys and values: Map(k1,v1) → list(k2,v2); 
3.	 Shuffle data to each reducer and each reducer sorts its input—each reducer is assigned a set of keys 

(k2); 
4.	 Run the reduce on a list(v2) associated with each key and produce an output: Reduce(k2, list(v2)) → 

list(v3); and 
5.	 Final output the lists(v3) from each reducer are combined and sorted by k2. 

 While there is a single output, nothing in the model prohibits multiple input data sets. It is extremely 
common for complex analytics to be built as workflows of multiple Map/Reduce jobs. While the 
Map/Reduce programming model is best suited to aggregation (e.g., sum, average, group-by) type 
analytics, a wide variety of analytic algorithms have been implemented within processing frameworks. 
Map/Reduce does not generally perform well with applications or algorithms that need to directly update 
the underlying data. For example, updating the values for a single key would require the entire data set be 
read, output, and then moved or copied over the original data set. Because the mappers and reducers are 
stateless in nature, applications that require iterative computation on parts of the data or repeated access to 
parts of the data set do not tend to scale or perform well under Map/Reduce. 

Due to its shared nothing approach, the usability of Map/Reduce for Big Data applications has made it 
popular enough that a number of large data storage solutions (mostly those of the NoSQL variety) provide 
implementations within their architecture. One major criticism of Map/Reduce early on was that the 
interfaces to most implementations were at too low of a level (written in Java or JavaScript.) However 
many of the more prevalent implementations now support high-level procedural and declarative language 
interfaces and even visual programming environments are beginning to appear. 

4.4.3.1.2 Bulk Synchronous Parallel  
The BSP programming model, originally developed by Leslie Valiant5, combines parallel processing with 
the ability of processing modules to send messages to other processing modules and explicit 
synchronization of the steps. A BSP algorithm is composed of what are termed “supersteps,” which 
comprise the following three distinct elements. 

	 Bulk Parallel Computation: Each processor performs the calculation/analysis on its local chunk 
of data. 

	 Message Passing: As each processor performs its calculations it may generate messages to other 
processors. These messages are frequently updates to values associated with the local data of 
other processors but may also result in the creation of additional data. 

	 Synchronization: Once a processor has completed processing its local data it pauses until all 
other processors have also completed their processing. 

This cycle can be terminated by all the processors “voting to stop”, which will generally happen when a 
processor has generated no messages to other processors (e.g., no updates). All processors voting to stop 
in turn indicates that there are no new updates to any processors’ data and the computation is complete. 
Alternatively, the cycle may be terminated after a fixed number of supersteps have been completed (e.g., 
after a certain number of iterations of a Monte Carlo simulation). 

The advantage of BSP over Map/Reduce is that processing can actually create updates to the data being 
processed. It is this distinction that has made BSP popular for graph processing and simulations where 
computations on one node/element of data directly affect values or connections with other 
nodes/elements. The disadvantage of BSP is the high cost of the synchronization barrier between 
supersteps. Should the distribution of data or processing between processors become highly unbalanced 
then some processors may become overloaded while others remain idle. While high-performance 
interconnect technologies help to reduce the cost of this synchronization through faster data exchange 
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between nodes and can allow for re-distribution of data during a super-step skewing of the processing 
requirements, the fastest possible performance of any given super step is lower bounded by the slowest 
performance of any processing unit. Essentially, if the data is skewed such that the processing of a given 
data element (say traversal of the graph from that element) is especially long-running, the next super step 
cannot begin until that nodes processing completes. 

Numerous extensions and enhancements to the basic BSP model have been developed and implemented 
over the years, many of which are designed to address the balancing and cost of synchronization 
problems. 

4.4.3.2 STREAMING FRAMEWORKS 
Streaming frameworks are built to deal with data that requires processing as fast or faster than the 
velocity at which it arrives into the Big Data system. The primary goal of streaming frameworks is to 
reduce the latency between the arrival of data into the system and the creation, storage, or presentation of 
the results. CEP is one of the problem domains frequently addressed by streaming frameworks. CEP uses 
data from one or more streams/sources to infer or identify events or patterns in NRT.  

Almost all streaming frameworks for Big Data available today implement some form of basic workflow 
processing for the streams. These workflows use messaging/communications frameworks to pass data 
objects (often referred to as events) between steps in the workflow. This frequently takes the form of a 
directed execution graph. The distinguishing characteristics of streaming frameworks are typically 
organized around the following three characteristics: event ordering and processing guarantees, state 
management, and partitioning/parallelism. These three characteristics are described below. 

4.4.3.2.1 Event Ordering and Processing Guarantees 
This characteristic refers to whether stream processing elements are guaranteed to see messages or events 
in the order they are received by the Big Data System, as well as how often a message or event may or 
may not be processed. In a non-distributed and single stream mode, this type of guarantee is relatively 
trivial. Once distributed and/or multiple streams are added to the system, the guarantee becomes more 
complicated. With distributed processing, the guarantees must be enforced for each partition of the data 
(partitioning and parallelism as further described below.) Complications arise when the process/task/job 
dealing with a partition dies. Processing guarantees are typically divided into the following three classes: 

	 At-most-once delivery: This is the simplest form of guarantee and allows for messages or events 
to be dropped if there is a failure in processing or communications or if they arrive out of order. 
This class of guarantee is applicable for data where there is no dependence of new events on the 
state of the data created by prior events. 

	 At-least-once delivery: Within this class, the frameworks will track each message or event (and 
any downstream messages or events generated) to verify that it is processed within a configured 
time frame. Messages or events that are not processed in the time allowed are re-introduced into 
the stream. This mode requires extensive state management by the framework (and sometimes 
the associated application) to track which events have been processed by which stages of the 
workflow. However, under this class, messages or events may be processed more than once and 
also may arrive out of order. This class of guarantee is appropriate for systems where every 
message or event must be processed regardless of the order (e.g., no dependence on prior 
events), and the application either is not affected by duplicate processing of events or has the 
ability to de-duplicate events itself. 
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	 Exactly-once delivery: This class of framework processing requires the same top level state 
tracking as At-least-once delivery but embeds mechanisms within the framework to detect and 
ignore duplicates. This class often guarantees ordering of event arrivals and is required for 
applications where the processing of any given event is dependent on the processing of prior 
events. It is noted that these guarantees only apply to data handling within the framework. If data 
is passed outside the framework processing topology, then by an application then the application 
must ensure the processing state is maintained by the topology or duplicate data may be 
forwarded to non-framework elements of the application. 

In the latter two classes, some form of unique key must be associated with each message or event to 
support de-duplication and event ordering. Often, this key will contain some form of timestamp plus 
the stream ID to uniquely identify each message in the stream. 

4.4.3.2.2 State Management 
A critical characteristic of stream processing frameworks is their ability to recover and not lose critical 
data in the event of a process or node failure within the framework. Frameworks typically provide this 
state management through persistence of the data to some form of storage. This persistence can be: local, 
allowing the failed process to be restarted on the same node; a remote or distributed data store, allowing 
the process to be restarted on any node; or, local storage that is replicated to other nodes. The trade-off 
between these storage methods is the latency introduced by the persistence. Both the amount of state data 
persisted and the time required to assure that the data is persisted contribute to the latency. In the case of a 
remote or distributed data store, the latency required is generally dependent on the extent to which the 
data store implements ACID (Atomicity, Consistency, Isolation, Durability) or BASE (Basically 
Available, Soft state, Eventual consistency)style consistency. With replication of local storage, the 
reliability of the state management is entirely tied to the ability of the replication to recover in the event of 
a process or node failure. Sometimes this state replication is actually implemented using the same 
messaging/communication framework that is used to communicate with and between stream processors. 
Some frameworks actually support full transaction semantics, including multi-stage commits and 
transaction rollbacks. The trade-off is the same one that exists for any transaction system is that any type 
of ACID-like guarantee will introduce latency. Too much latency at any point in the stream flow can 
create bottlenecks and, depending on the ordering or processing guarantees, can result in deadlock or loop 
statesespecially when some level of failure is present. 

4.4.3.2.3 Partitioning and Parallelism 
This streaming framework characteristic relates to the distribution of data across nodes and worker tasks 
to provide the horizontal scalability needed to address the volume and velocity of Big Data streams. This 
partitioning scheme must interact with the resource management framework to allocate resources. The 
even distribution of data across partitions is essential so that the associated work is evenly distributed. 
The even data distribution directly relates to selection of a key (e.g., user ID, host name) that can be 
evenly distributed. The simplest form might be using a number that increments by one and then is 
processed with a modulus function of the number of tasks/workers available. If data dependencies require 
all records with a common key be processed by the same worker, then assuring an even data distribution 
over the life of the stream can be difficult. Some streaming frameworks address this issue by supporting 
dynamic partitioning where the partition of overloaded workers is split and allocated to existing workers 
or newly created workers. To achieve successespecially with a data/state dependency related to the 
keyit is critical that the framework have state management, which allows the associated state data to be 
moved/transitioned to the new/different worker. 

4.4.4 MESSAGING/COMMUNICATIONS FRAMEWORKS 
Messaging and communications frameworks have their roots in the High Performance Computing (HPC) 
environments long popular in the scientific and research communities. Messaging/Communications 
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Frameworks were developed to provide APIs for the reliable queuing, transmission, and receipt of data 
between nodes in a horizontally scaled cluster. These frameworks typically implement either a point-to-
point transfer model or a store-and-forward model in their architecture. Under a point-to-point model, 
data is transferred directly from the sender to the receivers. The majority of point-to-point 
implementations do not provide for any form of message recovery should there be a program crash or 
interruption in the communications link between sender and receiver. These frameworks typically 
implement all logic within the sender and receiver program space, including any delivery guarantees or 
message retransmission capabilities. One common variation of this model is the implementation of 
multicast (i.e., one-to-many or many-to-many distribution), which allows the sender to broadcast the 
messages over a “channel”, and receivers in turn listen to those channels of interest. Typically, multicast 
messaging does not implement any form of guaranteed receipt. With the store-and-forward model, the 
sender would address the message to one or more receivers and send it to an intermediate broker, which 
would store the message and then forward it on to the receivers. Many of these implementations support 
some form of persistence for messages not yet delivered, providing for recovery in the event of process or 
system failure. Multicast messaging can also be implemented in this model and is frequently referred to as 
a pub/sub model.  

4.4.5 RESOURCE MANAGEMENT FRAMEWORK 
As Big Data systems have evolved and become more complex, and as businesses work to leverage limited 
computation and storage resources to address a broader range of applications and business challenges, the 
requirement to effectively manage those resources has grown significantly. While tools for resource 
management and “elastic computing” have expanded and matured in response to the needs of cloud 
providers and virtualization technologies, Big Data introduces unique requirements for these tools. 
However, Big Data frameworks tend to fall more into a distributed computing paradigm, which presents 
additional challenges. 

The Big Data characteristics of volume and velocity drive the requirements with respect to Big Data 
resource management. Elastic computing (i.e., spawning another instance of some service) is the most 
common approach to address expansion in volume or velocity of data entering the system. CPU and 
memory are the two resources that tend to be most essential to managing Big Data situations. While 
shortages or over-allocation of either will have significant impacts on system performance, improper or 
inefficient memory management is frequently catastrophic. Big Data differs and becomes more complex 
in the allocation of computing resources to different storage or processing frameworks that are optimized 
for specific applications and data structures. As such, resource management frameworks will often use 
data locality as one of the input variables in determining where new processing framework elements (e.g., 
master nodes, processing nodes, job slots) are instantiated. Importantly, because the data is big (i.e., large 
volume), it generally is not feasible to move data to the processing frameworks. In addition, while nearly 
all Big Data processing frameworks can be run in virtualized environments, most are designed to run on 
bare metal commodity hardware to provide efficient I/O for the volume of the data.  

Two distinct approaches to resource management in Big Data frameworks are evolving. The first is intra-
framework resource management, where the framework itself manages allocation of resources between its 
various components. This allocation is typically driven by the framework’s workload and often seeks to 
“turn off” unneeded resources to either minimize overall demands of the framework on the system or to 
minimize the operating cost of the system by reducing energy use. With this approach, applications can 
seek to schedule and request resources thatmuch like main frame OSs of the pastare managed 
through scheduling queues and job classes. 

The second approach is inter-framework resource management, which is designed to address the needs of 
many Big Data systems to support multiple storage and processing frameworks that can address and be 
optimized for a wide range of applications. With this approach, the resource management framework 
actually runs as a service that supports and manages resource requests from frameworks, monitoring 
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framework resource usage, and in some cases manages application queues. In many ways, this approach 
is like the resource management layers common in cloud/virtualization environments, and there are 
efforts underway to create hybrid resource management frameworks that handle both physical and virtual 
resources. 

Taking these concepts further and combining them is resulting in the emerging technologies built around 
what is being termed software-defined data centers (SDDCs). This expansion on elastic and cloud 
computing goes beyond the management of fixed pools of physical resources as virtual resources to 
include the automated deployment and provisioning of features and capabilities onto physical resources. 
For example, automated deployment tools that interface with virtualization or other framework APIs can 
be used to automatically stand up entire clusters or to add additional physical resources to physical or 
virtual clusters. 

4.5 DATA CONSUMER 

Similar to the Data Provider, the role of Data Consumer within the NBDRA can be an actual end user or 
another system. In many ways, this role is the mirror image of the Data Provider, with the entire Big Data 
framework appearing like a Data Provider to the Data Consumer. The activities associated with the Data 
Consumer role include the following: 

 Search and Retrieve 
 Download 
 Analyze Locally 
 Reporting 
 Visualization 
 Data to Use for Their Own Processes 

The Data Consumer uses the interfaces or services provided by the Big Data Application Provider to get 
access to the information of interest. These interfaces can include data reporting, data retrieval, and data 
rendering. 

This role will generally interact with the Big Data Application Provider through its access function to 
execute the analytics and visualizations implemented by the Big Data Application Provider. This 
interaction may be demand-based, where the Data Consumer initiates the command/transaction and the 
Big Data Application Provider replies with the answer. The interaction could include interactive 
visualizations, creating reports, or drilling down through data using business intelligence functions 
provided by the Big Data Application Provider. Alternately, the interaction may be stream- or push-based, 
where the Data Consumer simply subscribes or listens for one or more automated outputs from the 
application. In almost all cases, the Security and Privacy fabric around the Big Data architecture would 
support the authentication and authorization between the Data Consumer and the architecture, with either 
side able to perform the role of authenticator/authorizer and the other side providing the credentials. Like 
the interface between the Big Data architecture and the Data Provider, the interface between the Data 
Consumer and Big Data Application Provider would also pass through the three distinct phases of 
initiation, data transfer, and termination. 
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5 MANAGEMENT FABRIC OF THE NBDRA 


The Big Data characteristics of volume, velocity, variety, and variability demand a versatile management 
platform for storing, processing, and managing complex data. Management of Big Data systems should 
handle both system- and data-related aspects of the Big Data environment. The Management Fabric of the 
NBDRA encompasses two general groups of activities: system management and Big Data life cycle 
management (BDLM). System management includes activities such as provisioning, configuration, 
package management, software management, backup management, capability management, resources 
management, and performance management. BDLM involves activities surrounding the data life cycle of 
collection, preparation/curation, analytics, visualization, and access.  

As discussed above, the NBDRA represents a broad range of Big Data systems—from tightly coupled 
enterprise solutions integrated by standard or proprietary interfaces to loosely coupled vertical systems 
maintained by a variety of stakeholders or authorities bound by agreements, standard interfaces, or de 
facto standard interfaces. Therefore, different considerations and technical solutions would be applicable 
for different cases. 

5.1 SYSTEM MANAGEMENT 

The characteristics of Big Data pose system management challenges on traditional management 
platforms. To efficiently capture, store, process, analyze, and distribute complex and large datasets 
arriving or leaving with high velocity, a resilient system management is needed.  

As in traditional systems, system management for Big Data architecture involves provisioning, 
configuration, package management, software management, backup management, capability 
management, resources management, and performance management of the Big Data infrastructure, 
including compute nodes, storage nodes, and network devices. Due to the distributed and complex nature 
of the Big Data infrastructure, system management for Big Data is challenging, especially with respect to 
the capability for controlling, scheduling, and managing the processing frameworks to perform the 
scalable, robust, and secure analytics processing required by the Big Data Application Provider. The Big 
Data infrastructure may contain SAN or NAS storage devices, cloud storage spaces, NoSQL databases, 
Map/Reduce clusters, data analytics functions, search and indexing engines, and messaging platforms. 
The supporting enterprise computing infrastructure can range from traditional data centers, cloud services, 
and dispersed computing nodes of a grid. To manage the distributed and complex nature of the Big Data 
infrastructure, system management relies on the following: 

 Standard protocols such as Simple Network Management Protocol (SNMP), which are used to 
transmit status about resources and fault information to the management fabric components; and 

 Deployable agents or management connectors which allow the management fabric to both 
monitor and also control elements of the framework. 

These two items aid in monitoring the health of various types of computing resources and coping with 
performance and failures incidents while maintaining the quality of service levels required by the Big 
Data Application Provider. Management connectors are necessary for scenarios where the CSPs expose 
management capabilities via APIs. It is conceivable that the infrastructure elements contain autonomic, 
self-tuning, and self-healing capabilities, thereby reducing the centralized model of system management. 
In large infrastructures with many thousands of computing and storage nodes, the provisioning of tools 
and applications should be as automated as possible. Software installation, application configuration, and 
regular patch maintenance should be pushed out and replicated across the nodes in an automated fashion, 
which could be done based on the topology knowledge of the infrastructure. With the advent of 
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virtualization, the utilization of virtual images may speed up the recovery process and provide efficient 
patching that can minimize downtime for scheduled maintenance. 

In an enterprise environment, the management platform would typically provide enterprise-wide 
monitoring and administration of the Big Data distributed components. This includes network 
management, fault management, configuration management, system accounting, performance 
management, and security management. 

In a loosely coupled vertical system, each independent stakeholder is responsible for its own system 
management, security, and integration. Each stakeholder is responsible for integration within the Big Data 
distributed system using the interfaces provided by other stakeholders. 

5.2 BIG DATA LIFE CYCLE MANAGEMENT 

BDLM faces more challenges compared to traditional data life cycle management (DLM), which may 
require less data transfer, processing, and storage. However, BDLM still inherits the DLM phases in 
terms of data acquisition, distribution, use, migration, maintenance, and dispositionbut at a much 
bigger processing scale. Big Data Application Providers may require much more computational 
processing for collection, preparation/curation, analytics, visualization, and access to be able to use the 
analytic results. In other words, the BDLM activity includes verification that the data are handled 
correctly by other NBDRA components in each process within the data life cycle—from the moment they 
are ingested into the system by the Data Provider, until the data are processed or removed from the 
system.  

The importance of BDLM to Big Data is demonstrated through the following considerations: 

	 Data volume can be extremely large that may overwhelm the storage capacity, or make storing 
incoming data prohibitively expensive. 

	 Data velocity, the rate at which data can be captured and ingested into the system, can 
overwhelm available storage space at a given time. Even with the elastic storage service 
provided by cloud computing for handling dynamic storage needs, uncontrolled data 
management may also be unnecessarily costly for certain application requirements.  

	 Different Big Data applications will likely have different requirements for the lifetime of a piece 
of data. The differing requirements have implications on how often data must be refreshed so 
that processing results are valid and useful. In data refreshment, old data are dispositioned and 
not fed into analytics or discovery programs. At the same time, new data is ingested and taken 
into account by the computations. For example, real-time applications will need very short data 
lifetime but a market study of consumers' interest in a product line may need to mine data 
collected over a longer period of time. 

Because the task of BDLM can be distributed among different organizations and/or individuals within the 
Big Data computing environment, coordination of data processing between NBDRA components has 
greater difficulty in complying with policies, regulations, and security requirements. Within this context, 
BDLM may need to include the following sub-activities: 

	 Policy Management: Captures the requirements for the data life cycle that allows old data to be 
dispositioned and new data to be considered by Big Data applications. Maintains the migration 
and disposition strategies that specify the mechanism for data transformation and dispositioning, 
including transcoding data, transferring old data to lower-tier storage for archival purpose, 
removing data, or marking data as in situ. 

	 Metadata Management: Enables BDLM, since metadata are used to store information that 
governs the management of the data within the system. Essential metadata information includes 
persistent identification of the data, fixity/quality, and access rights. The challenge is to find the 
minimum set of elements to execute the required BDLM strategy in an efficient manner. 
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	 Accessibility Management Change of data accessibility over time: For example, census data 
can be made available to the public after 72 years.6 BDLM is responsible for triggering the 
accessibility update of the data or sets of data according to policy and legal requirements. 
Normally, data accessibility information is stored in the metadata. 

	 Data Recovery: BDLM can include the recovery of data that were lost due to disaster or 
system/storage fault. Traditionally, data recovery can be achieved using regular backup and 
restore mechanisms. However, given the large volume of Big Data, traditional backup may not 
be feasible. Instead, replication may have to be designed within the Big Data ecosystem. 
Depending on the tolerance of data losseach application has its own tolerance 
levelreplication strategies have to be designed. The replication strategy includes the 
replication window time, the selected data to be replicated, and the requirements for geographic 
disparity. Additionally, in order to cope with the large volume of Big Data, data backup and 
recovery should consider the use of modern technologies within the Big Data Framework 
Provider. 

	 Preservation Management: The system maintains data integrity so that the veracity and 
velocity of the analytics process are fulfilled. Due to the extremely large volume of Big Data, 
preservation management is responsible for disposition-aged data contained in the system. 
Depending on the retention policy, these aged data can be deleted or migrated to archival 
storage. In the case where data must be retained for years, decades, and even centuries, a 
preservation strategy will be needed so the data can be accessed by the provider components if 
required. This will invoke long-term digital preservation that can be performed by Big Data 
Application Providers using the resources of the Big Data Framework Provider. 

In the context of Big Data, BDLM contends with the Big Data characteristics of volume, velocity, variety, 
and variability. As such, BDLM and its sub-activities interact with other components of the NBDRA as 
shown in the following examples: 

	 System Orchestrator: BDLM enables data scientists to initiate any combination of processing 
including accessibility management, data backup/recovery, and preservation management. The 
process may involve other components of the NBDRA, such as Big Data Application Provider 
and Big Data Framework Provider. For example, data scientists may want to interact with the 
Big Data Application Provider for data collection and curation, invoke the Big Data Framework 
Provider to perform certain analysis, and grant access to certain users to access the analytic 
results from the Data Consumer. 

	 Data Provider: BDLM manages ingestion of data and metadata from the data source(s) into the 
Big Data system, which may include logging the entry event in the metadata by the Data 
Provider. 

 Big Data Application Provider: BDLM executes data masking and format transformations for 
data preparation or curation purpose. 

 Big Data Framework Provider: BDLM executes basic bit-level preservation and data backup 
and recovery according to the recovery strategy. 

 Data Consumer: BDLM ensures that relevant data and analytic results are available with proper 
access control for consumers and software agents to consume within the BDLM policy strategy. 

 Security and Privacy Fabric: Keeps the BDLM up to date according to new security policy 
and regulations.  

The Security and Privacy Fabric also uses information coming from BDLM with respect to data 
accessibility. The Security and Privacy Fabric control access to the functions and data usage produced by 
the Big Data system. This data access control can be informed by the can use metadata, which is managed 
and updated by BDLM. 
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6 SECURITY AND PRIVACY FABRIC OF THE NBDRA 


Security and privacy considerations form a fundamental aspect of the NBDRA. This is geometrically 
depicted in Figure 2 by the Security and Privacy Fabric surrounding the five main components, indicating 
that all components are affected by security and privacy considerations. Thus, the role of security and 
privacy is correctly depicted in relation to the components but does not expand into finer details, which 
may be more accurate but are best relegated to a more detailed security and privacy reference 
architecture. The Data Provider and Data Consumer are included in the Security and Privacy Fabric since, 
at the least, they may often nominally agree on security protocols and mechanisms. The Security and 
Privacy Fabric is an approximate representation that alludes to the intricate interconnected nature and 
ubiquity of security and privacy throughout the NBDRA. Additional details about the Security and 
Privacy Fabric are included in the NIST Interoperability Framework: Volume 4, Security and Privacy 
document. 
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7 CONCLUSION
 

The NBD-PWG Reference Architecture Subgroup prepared this NIST Big Data Interoperability 
Framework: Volume 6, Reference Architecture to provide a vendor-neutral, technology- and 
infrastructure-agnostic conceptual model and examine related issues. The conceptual model, referred to as 
the NBDRA, was a collaborative effort within the Subgroup and with the other NBD-PWG subgroups. 
The goal of the NBD-PWG Reference Architecture Subgroup is to develop an open reference architecture 
for Big Data that achieves the following objectives: 

 Provides a common language for the various stakeholders; 

 Encourages adherence to common standards, specifications, and patterns; 

 Provides consistent methods for implementation of technology to solve similar problem sets; 

 Illustrates and improves understanding of the various Big Data components, processes, and 


systems, in the context of a vendor- and technology- agnostic Big Data conceptual model; 
 Provides a technical reference for U.S. government departments, agencies, and other consumers 

to understand, discuss, categorize, and compare Big Data solutions; and  
 Facilitates analysis of candidate standards for interoperability, portability, reusability, and 

extendibility. 

This document presents the results of the first stage of NBDRA development. The NIST Big Data 
Interoperability Framework will be released in three versions, which correspond to the three stages of the 
NBD-PWG work. The three stages aim to achieve the following: 

Stage 1:Identify the common reference architecture components of Big Data implementations and 
formulate the technology-independent NBDRA; 

Stage 2:Define general interfaces between the NBDRA components; and 
Stage 3:Validate the NBDRA by building Big Data general applications through the general interfaces. 

This document (Version 1) presents the overall NBDRA components and fabrics with high-level 
description and functionalities. 

Version 2 activities will focus on the definition of general interfaces between the NBDRA components by 
achieving the following: 

 Select use cases from the 62 (51 general and 11 security and privacy) submitted use cases or 
other, to be identified, meaningful use cases. 

 Work with domain experts to identify workflow and interactions from the System Orchestrator 
to the rest of the NBDRA components. 

 Implement small scale, manageable, and well-defined confined environment and model 
interaction between NBDRA components and fabrics.  

 Aggregate the common data workflow and interaction between NBDRA components/fabrics and 
package them into general interfaces. 

Version 3 activities will focus on validation of the NBDRA through the use of the defined NBDRA 
interfaces to build general Big Data applications. The validation strategy will include the following: 

 Implement the same set of use cases used in Version 2 by using the defined general interfaces. 

 Identify and implement a few new use cases outside the Version 2 scenarios.
 
 Enhance general NBDRA interfaces through lessons learned from the implementations in 


Version 3 activities. 
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The general interfaces developed during Version 3 activities will offer a starting point for further 
refinement by any interested parties and is not intended to be a definitive solution to address all 
implementation needs. 
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Appendix A: Deployment Considerations 

The NIST Big Data Reference Architecture is applicable to a variety of business environments and 
technologies. As a result, possible deployment models are not part of the core concepts discussed in the 
main body of this document. However, the loosely coupled and distributed natures of Big Data 
Framework Provider functional components allows it to be deployed using multiple infrastructure 
elements as described in Section 4.4.1. The two most common deployment configurations are directly on 
physical resources or on top of an IaaS cloud computing framework. The choices between these two 
configurations are driven by needs of efficiency/performance and elasticity. Physical infrastructures are 
typically used to obtain predictable performance and efficient utilization of CPU and I/O bandwidth since 
it eliminates the overhead and additional abstraction layers typical in the virtualized environments for 
most IaaS implementations. IaaS cloud based deployments on are typically used when elasticity is needed 
to support changes in workload requirements. The ability to rapidly instantiate additional processing 
nodes or framework components allows the deployment to adapt to either increased or decreased 
workloads. By allowing the deployment footprint to grow or shrink based on workload demands this 
deployment model can provide cost savings when public or shared cloud services are used and more 
efficient use and energy consumption when a private cloud deployment is used. Recently, a hybrid 
deployment model known as Cloud Bursting has become popular. In this model a physical deployment is 
augmented by either public or private IaaS cloud services. When additional processing is needed to 
support the workload additional the additional framework component instances are established on the 
IaaS infrastructure and then deleted when no longer require. 

Figure A-1: Big Data Framework Deployment Options 
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Cloud Services 

Virtual Resources 

In addition to providing IaaS support, cloud providers are now offering Big Data Frameworks under a 
platform as a service (PaaS) model. Under this model, the system implementer is freed from the need to 
establish and manage the complex configuration and deployment typical of many Big Data Framework 
components. The implementer simply needs to specify the size of the cluster required, and the cloud 
provider manages the provisioning, configuration, and deployment of all the framework components. 
There are even some nascent offerings for specialized software as a service (SaaS) Big Data applications 
appearing in the market that implement the Big Data Application Provider functionality within the cloud 
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environment. Figure A-1 illustrates how the components of the NBDRA might align onto the NIST Cloud 
Reference architecture.7 The following sections describe some of the high-level interactions required 
between the Big Data Architecture elements and the CSP elements.   

CLOUD SERVICE PROVIDERS 

Recent data analytics solutions use algorithms that can utilize and benefit from the frameworks of the 
cloud computing systems. Cloud computing has essential characteristics such as rapid elasticity and 
scalability, multi-tenancy, on-demand self-service and resource pooling, which together can significantly 
lower the barriers to the realization of Big Data implementations.  

The CSP implements and delivers cloud services. Processing of a service invocation is done by means of 
an instance of the service implementation, which may involve the composition and invocation of other 
services as determined by the design and configuration of the service implementation. 

Cloud Service Component 

The cloud service component contains the implementation of the cloud services provided by a CSP. It 
contains and controls the software components that implement the services (but not the underlying 
hypervisors, host OSs, device drivers, etc.). 

Cloud services can be described in terms of service categories.  

Cloud services are also grouped into categories, where each service category is characterized by qualities 
that are common between the services within the category. The NIST Cloud Computing Reference Model 
defines the following cloud service categories: 

 Infrastructure as a services (IaaS) 
 Platform as a service (PaaS) 
 Software as a service (SaaS)  

Resource Abstraction and Control Component 

The Resource Abstraction and Control component is used by CSPs to provide access to the physical 
computing resources through software abstraction. Resource abstraction needs to assure efficient, secure, 
and reliable usage of the underlying physical resources. The control feature of the component enables the 
management of the resource abstraction features. 

The Resource Abstraction and Control component enables a CSP to offer qualities such as rapid elasticity, 
resource pooling, on-demand self-service and scale-out. The Resource Abstraction and Control 
component can include software elements such as hypervisors, virtual machines, virtual data storage, and 
time-sharing. 

The Resource Abstraction and Control component enables control functionality. For example, there may 
be a centralized algorithm to control, correlate, and connect various processing, storage, and networking 
units in the physical resources so that together they deliver an environment where IaaS, PaaS or SaaS 
cloud service categories can be offered. The controller might decide which CPUs/racks contain which 
virtual machines executing which parts of a given cloud workload, and how such processing units are 
connected to each other, and when to dynamically and transparently reassign parts of the workload to new 
units as conditions change. 

Security and Privacy and Management Functions 

In almost all cases, the Cloud Provider will provide elements of the Security, Privacy, and Management 
functions. Typically the provider will support high-level security/privacy functions that control access to 
the Big Data Applications and Frameworks while the frameworks themselves must control access to their 
underlying data and application services. Many times the Big Data specific functions for security and 
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privacy will depend on and must interface with functions provided by the CSP. Similarly, management 
functions are often split between the Big Data implementation and the Cloud Provider implementations. 
Here the cloud provider would handle the deployment and provisioning of Big Data architecture elements 
within its IaaS infrastructure. The cloud provider may provide high-level monitoring functions to allow 
the Big Data implementation to track performance and resource usage of its components. In, many cases 
the Resource Management element of the Big Data Framework will need to interface to the CSP’s 
management framework to request additional resources. 

PHYSICAL RESOURCE DEPLOYMENTS 

As stated above, deployment on physical resources is frequently used when performance characteristics 
are paramount. The nature of the underlying physical resource implementations to support Big Data 
requirements has evolved significantly over the years. Specialized, high-performance super computers 
with custom approaches for sharing resources (e.g., memory, CPU, storage) between nodes has given way 
to shared nothing computing clusters built from commodity servers. The custom super computing 
architectures almost always required custom development and components to take advantage of the 
shared resources. The commodity server approach both reduced the hardware investment and allowed the 
Big Data frameworks to provide higher-level abstractions for the sharing and management of resources in 
the cluster. The Recent trends now involve density, power, cooling optimized server form factors that 
seek to maximize the available computing resources while minimizing size, power and/or cooling 
requirements. This approach retains the abstraction and portability advantages of the shared nothing 
approaches while providing improved efficiency. 
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Appendix B: Terms and Definitions 

NBDRA COMPONENTS 

	 Big Data Engineering: Advanced techniques that harness independent resources for building 
scalable data systems when the characteristics of the datasets require new architectures for 
efficient storage, manipulation, and analysis. 

	 Data Provider: Organization or entity that introduces information feeds into the Big Data 
system for discovery, access, and transformation by the Big Data system. 

	 Big Data Application Provider: Organization or entity that executes a generic vertical system 
data life cycle, including: (a) data collection from various sources, (b) multiple data 
transformations being implemented using both traditional and new technologies, (c) diverse data 
usage, and (d) data archiving. 

	 Big Data Framework Provider: Organization or entity that provides a computing fabric (such 
as system hardware, network, storage, virtualization, and computing platform) to execute certain 
Big Data applications, while maintaining security and privacy requirements. 

 Data Consumer: End users or other systems that use the results of data applications. 
 System Orchestrator: Organization or entity that defines and integrates the required data 

transformations components into an operational vertical system. 

OPERATIONAL CHARACTERISTICS 

 Interoperability: The capability to communicate, to execute programs, or to transfer data among 
various functional units under specified conditions. 

 Portability: The ability to transfer data from one system to another without being required to 
recreate or reenter data descriptions or to modify significantly the application being transported. 

 Privacy: The assured, proper, and consistent collection, processing, communication, use and 
disposition of data associated with personal information and PII throughout its life cycle.  

 Security: Protecting data, information, and systems from unauthorized access, use, disclosure, 
disruption, modification, or destruction in order to provide: 

o	 Integrity: guarding against improper data modification or destruction, and includes ensuring 
data nonrepudiation and authenticity; 

o	 Confidentiality: preserving authorized restrictions on access and disclosure, including means 
for protecting personal privacy and proprietary data; and 

o	 Availability: ensuring timely and reliable access to and use of data. 

	 Elasticity: The ability to dynamically scale up and down as a real-time response to the workload 
demand. Elasticity will depend on the Big Data system, but adding or removing "software 
threads" and "virtual or physical servers" are two widely used scaling techniques. Many types of 
workload demands drive elastic responses, including web-based users, software agents, and 
periodic batch jobs. 

	 Persistence: The placement/storage of data in a medium design to allow its future access. 

PROVISIONING MODELS 

	 IaaS: The capability provided to the consumer to provision processing, storage, networks, and 
other fundamental computing resources where the consumer is able to deploy and run arbitrary 
software, which can include OS and applications. The consumer does not manage or control the 
underlying cloud infrastructure but has control over OSs, storage, deployed applications, and 
possibly limited control of select networking components (e.g., host firewalls).8 
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	 PaaS: The capability provided to the consumer to deploy onto the cloud infrastructure consumer-
created or acquired applications created using programming languages and tools supported by 
the provider. The consumer does not manage or control the underlying cloud infrastructure 
including network, servers, OS, or storage, but has control over the deployed applications and 
possibly application hosting environment configurations. (Source: NIST CC Definition) 

	 SaaS: The capability provided to the consumer to use applications running on a cloud 
infrastructure. The consumer does not manage or control the underlying cloud infrastructure 
including network, servers, OSs, storage, or even individual application capabilities, with the 
possible exception of limited user-specific application configuration settings. (Source: NIST CC 
Definition) 
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Appendix C: Examples of Big Data Organization 
Approaches 

This appendix provides an overview of several common Big Data Organization Approaches as follows:  

 Relational storage models 
 Key-value storage models 
 Columnar storage models 
 Document Storage 
 Graph Stores 

The reader should keep in mind that new and innovative approaches are emerging regularly, and that 
some of these approaches are hybrid models that combine features of several indexing techniques (e.g., 
relational and columnar, or relational and graph). 

RELATIONAL STORAGE MODELS 

This model is perhaps the most familiar to folks as the basic concept has existed since the 1950s and the 
SQL is a mature standard for manipulating (search, insert, update, delete) relational data. In the relational 
model, data is stored as rows with each field representing a column organized into Table based on the 
logical data organization. The problem with relational storage models and Big Data is the join between 
one or more tables. While the size of 2 or more tables of data individually might be small the join (or 
relational matches) between those tables will generate exponentially more records. The appeal of this 
model for organizations just adopting Big Data is its familiarity. The pitfalls are some of the limitations 
and more importantly, the tendency to adopt standard relational database management system (RDBMS) 
practices (high normalization, detailed and specific indexes) and performance expectations. 

Big data implementations of relational storage models are relatively mature and have been adopted by a 
number of organizations. They are also maturing very rapidly with new implementations focusing on 
improved response time. Many Big Data implementations take a brute force approach to scaling relational 
queries. Essentially, queries are broken into stages but more importantly processing of the input tables is 
distributed across multiple nodes (often as a Map/Reduce job). The actual storage of the data can be flat 
files (delimited or fixed length) where each record/line in the file represents a row in a table. Increasingly 
however these implementations are adopting binary storage formats optimized for distributed file 
systems. These formats will often use block level indexes and column oriented organization of the data to 
allow individual fields to be accessed in records without needing to read the entire record. Despite this, 
most Big Data Relational storage models are still “batch oriented” systems designed for very complex 
queries which generate very large intermediate cross-product matrices from joins so even the simplest 
query can required 10s of seconds to complete. There is significant work going on and emerging 
implementations that are seeking to provide a more interactive response and interface. 

Early implementations only provided limited data types and little or no support for indexes. However, 
most current implementations have support for complex data structures and basic indexes. However, 
while the query planners/optimizers for most modern RDBMS systems are very mature and implement 
cost-based optimization through statistics on the data the query planners/optimizers in many Big Data 
implementations remain fairly simple and rule-based in nature. While for batch oriented systems this 
generally acceptable (since the scale of processing the Big Data in general can be orders of magnitude 
more an impact) any attempt to provide interactive response will need very advanced optimizations so 
that (at least for queries) only the most likely data to be returned is actually searched. This of course leads 
to the single most serious drawback with many of these implementations. Since distributed processing 
and storage are essential for achieving scalability, these implementations are directly limited by the CAP 
(Consistency, Availability, and Partition Tolerance) theorem. Many in fact provide what is generally 
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referred to as a t-eventual consistency which means that barring any updates to a piece of data, all nodes 
in the distributed system will eventually return the most recent value. This level of consistency is 
typically fine for Data Warehousing applications where data is infrequently updated and updates are 
generally done in bulk. However, transaction-oriented databases typically require some level of ACID 
compliance to ensure that all transactions are handled reliably and conflicts are resolved in a consistent 
manner. There are a number of both industry and open source initiatives looking to bring this type of 
capability to Big Data relational storage frameworks. One approach is to essentially layer a traditional 
RDBMS on top of an existing distributed file system implementation. While vendors claim that this 
approach means that the overall technology is mature, a great deal of research and implementation 
experience is needed before the complete performance characteristics of these implementations are 
known. 

Key-Value Storage Models 

Key-value stores are one of the oldest and mature data indexing models. In fact, the principles of key 
value stores underpin all the other storage and indexing models. From a Big Data perspective, these stores 
effectively represent random access memory models. While the data stored in the values can be arbitrarily 
complex in structure all the handling of that complexity must be provided by the application with the 
storage implementation often providing back just a pointer to a block of data. Key-value stores also tend 
to work best for 1-1 relationships (e.g., each key relates to a single value) but can also be effective for 
keys mapping to lists of homogeneous values. When keys map multiple values of heterogeneous 
types/structures or when values from one key need to be joined against values for a different or the same 
key, then custom application logic is required. It is the requirement for this custom logic that often 
prevents Key-value stores from scaling effectively for certain problems. However, depending on the 
problem, certain processing architectures can make effective use of distributed key-value stores. Key-
value stores generally deal well with updates when the mapping is one to one and the size/length of the 
value data does not change. The ability of key-value stores to handle inserts is generally dependent on the 
underlying implementation. Key-value stores also generally require significant effort (either manual or 
computational) to deal with changes to the underlying data structure of the values.  

Distributed key-value stores are the most frequent implementation utilized in Big Data applications. One 
problem that must always be addressed (but is not unique to key-value implementations) is the 
distribution of keys across over the space of possible key values. Specifically, keys must be chosen 
carefully to avoid skew in the distribution of the data across the cluster. When data is heavily skewed to a 
small range, it can result in computation hot spots across the cluster if the implementation is attempting to 
optimize data locality. If the data is dynamic (new keys being added) for such an implementation, then it 
is likely that at some point the data will require rebalancing across the cluster. Non-locality optimizing 
implementations employ various sorts of hashing, random, or round-robin approaches to data distribution 
and don’t tend to suffer from skew and hot spots. However, they perform especially poorly on problems 
requiring aggregation across the data set. 

Columnar Storage Models 

Much of the hype associated with Big Data came with the publication of the Big Table paper in 20069 but 
column oriented storage models like BigTable are not new to even Big Data and have been stalwarts of 
the data warehousing domain for many years. Unlike traditional relational data that store data by rows of 
related values, columnar stores organize data in groups of like values. The difference here is subtle but in 
relational databases, an entire group of columns are tied to some primary key (frequently one or more of 
the columns) to create a record. In columnar, the value of every column is a key and like column values 
point to the associated rows. The simplest instance of a columnar store is little more than a key-value 
store with the key and value roles reversed. In many ways, columnar data stores look very similar to 
indexes in relational databases. Figure 5 below shows the basic differences between row-oriented and 
column-oriented stores. 
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Figure B-1: Differences Between Row Oriented and Column Oriented Stores 

In addition, implementations of columnar stores that follow the BigTable model introduce an additional 
level of segmentation beyond the table, row, and column model of the relational model. That is called the 
column family. In those implementations, rows have a fixed set of column families but within a column 
family, each row can have a variable set of columns. This is illustrated in Figure 6 below. 

Figure B-2: Column Family Segmentation of the Columnar Stores Model 

The key distinction in the implementation of columnar store over relational stores is that data is high de-
normalized for column stores and that while for relational stores every record contains some value 
(perhaps NULL) for each column, in columnar store the column is only present if there is data for one or 
more rows. This is why many column-oriented stores are referred to as sparse storage models. Data for 
each column family is physically stored together on disk sorted by rowed, column name, and timestamp. 
The last (timestamp) is there because the BigTable model also includes the concept of versioning. Every 
RowKey, Column Family, Column triple is stored with either a system-generated or user-provided 
Timestamp. This allows users to quickly retrieve the most recent value for a column (the default), the 
specific value for a column by timestamp, or all values for a column. The last is most useful because it 
permits very rapid temporal analysis on data in a column. 

Because data for a given column is stored together, two key benefits are achieved. First, aggregation of 
the data in that column requires only the values for that column to be read. Conversely, in a relational 
system, the entire row (at least up to the column) needs to be read (which if the row is long and the 
column at the end it could be lots of data). Secondly, updates to a single column do not require the data 
for the rest of the row to be read/written. Also, because all the data in a column is uniform, data can be 
compressed much more efficiently. Often only a single copy of the value for a column is stored followed 
by the row keys where that value exists. And while deletes of an entire column is very efficient, deletes of 

C-3 




     

 

 

 
 

 

 

 
 

 
 

 
 

 

 

 
 
 

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 6, REFERENCE ARCHITECTURE 

an entire record are extremely expensive. This is why historically column-oriented stores have been 
applied to online analytical processing (OLAP) style applications while relational stores were applied to 
online transaction processing (OLTP) requirements. 

Recently, security has been a major focus of existing column implementations primarily due to the release 
by the National Security Agency (NSA) of its BigTable implementation to the open source community. A 
key advantage of the NSA implementation and other recently announced implementations is the 
availability of security controls at the individual cell level. With these implementations, a given user 
might have access to only certain cells in group based potentially on the value of those or other cells.   

There are several very mature distributed column-oriented implementations available today from both 
open source groups and commercial foundations. These have been implemented and operational across a 
wide range of businesses and government organizations. Emerging are hybrid capabilities that implement 
relational access methods (e.g., SQL) on top of BigTable/Columnar storage models. In addition, relational 
implementations are adopting columnar oriented physical storage models to provide more efficient access 
for Big Data OLAP like aggregations and analytics. 

Document Storage 

Document storage approaches have been around for some time and popularized by the need to quickly 
search large amounts of unstructured data. Modern document stores have evolved to include extensive 
search and indexing capabilities for structured data and metadata and why they are often referred to as 
semi-structured data stores. Within a document-oriented data store, each “document” encapsulates and 
encodes the metadata, fields, and any other representations of that record. While somewhat analogous to a 
row in a relational table, one-reason document stores evolved and have gained in popularity is that most 
implementations do not enforce a fixed or constant schema. While best practices hold that groups of 
documents should be logically related and contain similar data, there is no requirement that they be alike 
or that any two documents even contain the same fields. That is one reason that document stores are 
frequently popular for data sets which have sparsely populated fields since there is far less overhead 
normally than traditional RDBMS systems where null value columns in records are actually stored. 
Groups of documents within these types of stores are generally referred to as collections, and like key-
value stores, some sort of unique key references each document.  

In modern implementations, documents can be built of arbitrarily nested structures and can include 
variable length arrays and, in some cases, executable scripts/code (which has significant security and 
privacy implications). Most document-store implementations also support additional indexes on other 
fields or properties within each document with many implementing specialized index types for sparse 
data, geospatial data, and text. 

When modeling data into document-stores, the preferred approach is to de-normalize the data as much as 
possible and embed all one-to-one and most one-to-many relationships within a single document. This 
allows for updates to documents to be atomic operations which keep referential integrity between the 
documents. The most common case where references between documents should be used is when there 
are data elements that occur frequently across sets of documents and whose relationship to those 
documents is static. As an example, the publisher of a given book edition does not change, and there are 
far fewer publishers than there are books. It would not make sense to embed all the publisher information 
into each book document. Rather the book document would contain a reference to the unique key for the 
publisher. Since for that edition of the book, the reference will never change and so there is no danger of 
loss of referential integrity. Thus information about the publisher (address for example) can be updated in 
a single atomic operation the same as the book. Were this information embedded, it would need to be 
updated in every book document with that publisher. 

In the Big Data realm, document stores scale horizontally through the use of partitioning or sharding to 
distribute portions of the collection across multiple nodes. This partitioning can be round robin-based, 
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ensuring an even distribution of data or content/key based so that data locality is maintained for similar 
data. Depending on the application required, the choice of partitioning key like with any database can 
have significant impacts on performance especially where aggregation functions are concerned. 

There are no standard query languages for document store implementations with most using a language 
derived from their internal document representation (e.g., JSON, XML).  

Graph Stores 

While social networking sites like Facebook and LinkedIn have certainly driven the visibility of and 
evolution of graph stores (and processing as discussed below), graph stores have been a critical part of 
many problem domains from military intelligence and counter terrorism to route planning/navigation and 
the semantic web for years. Graph stores represent data as a series of nodes, edges, and properties on 
those. Analytics against graph stores include very basic shortest path and page ranking to entity 
disambiguation and graph matching. 

Graph databases typically store two types of objects nodes and relationships as show in Figure 7 below. 
Nodes represents objects in the problem domain that are being analyzed be they people, places, 
organizations, accounts, or other objects. Relationships describe those objects in the domain relate to each 
other. Relationships can be non-directional/bidirectional but are typically expressed as unidirectional in 
order to provide more richness and expressiveness to the relationships. Hence, between two people nodes 
where they are father and son, there would be two relationships. One “is father of” going from the father 
node to the son node, and the other from the son to the father of “is son of”. In addition, nodes and 
relationships can have properties or attributes. This is typically descriptive data about the element. For 
people it might be name, birthdate, or other descriptive quality. For locations it might be an address or 
geospatial coordinate. For a relationship like a phone call, it could be the date, time of the call, and the 
duration of the call. Within graphs, relationships are not always equal or have the same strength. Thus 
relationship often has one or more weight, cost, or confidence attributes. A strong relationship between 
people might have a high weight because they have known each other for years and communicate every 
day. A relationship where two people just met would have a low weight. The distance between nodes (be 
it a physical distance or a difficulty) is often expressed as a cost attribute on a relation in order to allow 
computation of true shortest paths across a graph. In military intelligence applications, relationships 
between nodes in a terrorist or command and control network might only be suspected or have not been 
completely verified, so those relationships would have confidence attributes. Also, properties on nodes 
may also have confidence factors associated with them although in those cases the property can be 
decomposed into its own node and tied with a relationship. Graph storage approaches can actually be 
viewed as a specialized implementation of a document storage scheme with two types of documents 
(nodes and relationships). In addition, one of the most critical elements in analyzing graph data is locating 
the node or edge in the graph where the analysis is to begin. To accomplish this, most graph databases 
implement indexes on the node or edge properties. Unlike relational and other data storage approaches, 
most graph databases tend to use artificial/pseudo keys or guides to uniquely identify nodes and edges. 
This allows attributes/properties to be easily changed due to both actual changes in the data (someone 
changed their name) or as more information is found out (e.g., a better location for some item or event) 
without needing to change the pointers two/from relationships. 
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Figure B-3: Object Nodes and Relationships of Graph Databases 

The problem with graphs in the Big Data realm is that they grow to be too big to fit into memory on a 
single node and by their typically chaotic nature (few real-world graphs follow well-defined patterns) 
makes their partitioning for a distributed implementation problematic. While distance between or 
closeness of nodes would seem like a straightforward partitioning approach, there are multiple issues 
which must be addressed. First would be balancing of data. Graphs often tend to have large clusters of 
data very dense in a given area, thus leading to essentially imbalances and hot spots in processing. 
Second, no matter how the graph is distributed, there are connections (edges) that will cross the 
boundaries. That typically requires that nodes know about or how to access the data on other nodes and 
requires inter-node data transfer or communication. This makes the choice of processing architectures for 
graph data especially critical. Architectures that do not have inter-node communication/messaging tend 
not to work well for most graph problems. Typically, distributed architectures for processing graphs 
assign chunks of the graph to nodes, then the nodes use messaging approaches to communicate changes in 
the graph or the value of certain calculations along a path. 

Even small graphs quickly elevate into the realm of Big Data when one is looking for patterns or 
distances across more than one or two degrees of separation between nodes. Depending on the density of 
the graph, this can quickly cause a combinatorial explosion in the number of conditions/patterns that need 
to be tested. 

A specialized implementation of a graph store known as the Resource Description Framework (RDF) is 
part of a family of specifications from the World Wide Web Consortium (W3C) that is often directly 
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associated with Semantic Web and associated concepts. RDF triples as they are known consist of a 
Subject (Mr. X), a predicate (lives at), and an object (Mockingbird Lane). Thus a collection of RDF 
triples represents and directed labeled graph. The contents of RDF stores are frequently described using 
formal ontology languages like OWL or the RDF Schema (RDFS) language, which establish the semantic 
meanings and models of the underlying data. To support better horizontal integration of heterogeneous 
data sets, extensions to the RDF concept such as the Data Description Framework (DDF) have been 
proposed which add additional types to better support semantic interoperability and analysis.10 11 

Graph data stores currently lack any form of standardized APIs or query languages. However, the W3C 
has developed the SPARQL query language for RDF, which is currently in a recommendation status, and 
there are several frameworks such as Sesame which are gaining popularity for working with RDF and 
other graph-oriented data stores. 
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Appendix D: Acronyms 

ACID Atomicity, Consistency, Isolation, Durability 
API application programming interface 
ASCII American Standard Code for Information Interchange 
BASE Basically Available, Soft state, Eventual consistency 
BDLM Big Data life cycle management  
BSP Bulk Synchronous Parallel  
CAP Consistency, Availability, and Partition Tolerance 
CEP complex event processing  
CIA confidentiality, integrity, and availability 
CRUD create/read/update/delete 
CSP Cloud Service Provider 
CSV comma separated values  
DDF Data Description Framework  
DLM data life cycle management 
DNS Domain Name Server 
ELT extract, load, transform 
ETL extract, transform, load  
GB gigabyte 
GRC governance, risk management, and compliance 
GUID globally unique identifier  
HPC High Performance Computing 
HTTP HyperText Transfer Protocol 
I/O input/output 
IaaS infrastructure as a service 
IT information technology 
ITL Information Technology Laboratory 
NARA National Archives and Records Administration  
NAS network-attached storage  
NASA National Aeronautics and Space Administration  
NBD-PWG NIST Big Data Public Working Group 
NBDRA NIST Big Data Reference Architecture 
NFS network file system 
NFV network function virtualization 
NGA National Geospatial Intelligence Agency 
NIST National Institute of Standards and Technology 
NoSQL not only (or no) Structured Query Language 
NRT near real time 
NSA National Security Agency 
NSF National Science Foundation 
OLAP online analytical processing 
OLTP online transaction processing 
OS operating systems 
PaaS platform as a service 
PII personally identifiable information 
POSIX Portable Operating System Interface  
RAID redundant array of independent disks 
RAM random-access memory 
RDBMS relational database management system 
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RDF Resource Description Framework 
RDFS RDF Schema 
SaaS software as a service 
SAN storage area network  
SDDC software-defined data center  
SDN software-defined network 
SNMP Simple Network Management Protocol 
SQL Structured Query Language 
TCP Transmission Control Protocol 
W3C World Wide Web Consortium 
XML Extensible Markup Language  
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Appendix E: Resources and References 

GENERAL RESOURCES 

The following resources provide additional information related to Big Data architecture. 

Big Data Public Working Group, “NIST Big Data Program,” National Institute for Standards and 
Technology, June 26, 2013, http://bigdatawg.nist.gov . 

Doug Laney, “3D Data Management: Controlling Data Volume, Velocity, and Variety,” Gartner, February 
6, 2001, http://blogs.gartner.com/doug‐laney/files/2012/01/ad949‐3D‐Data‐Management‐Controlling‐
Data‐Volume‐Velocity‐and‐Variety.pdf. 

Eberhardt Rechtin, “The Art of Systems Architecting,” CRC Press, January 6, 2009. 

International Organization of Standardization (ISO), “ISO/IEC/IEEE 42010 Systems and software 
engineering — Architecture description,” ISO, November 24, 2011, 
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50508. 

Mark Beyer and Doug Laney, “The Importance of 'Big Data': A Definition,” Gartner, June 21, 2012, 
http://www.gartner.com/DisplayDocument?id=2057415&ref=clientFriendlyUrl. 

Martin Hilbert and Priscilla Lopez, “The World’s Technological Capacity to Store, Communicate, and 
Compute Information,” Science, April 1, 2011. 

National Institute of Standards and Technology [NIST], “Big Data Workshop,” NIST, June 13, 2012, 
http://www.nist.gov/itl/ssd/is/big‐data.cfm. 

National Science Foundation, “Big Data R&D Initiative,” National Institute for Standards and Technology, 
June 2012, http://www.nist.gov/itl/ssd/is/upload/NIST‐BD‐Platforms‐05‐Big‐Data‐Wactlar‐slides.pdf. 

Office of the Assistant Secretary of Defense, “Reference Architecture Description,” U.S. Department of 
Defense, June 2010, 
http://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun10.pdf. 

Office of the White House Press Secretary, “Obama Administration Unveils “Big Data” Initiative,” White 
House Press Release, March 29, 2012, 
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf. 

White House, “Big Data Across the Federal Government,” Executive Office of the President, March 29, 
012, http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_fact_sheet_final_1.pdf. 
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