NATIONAL BUREAU OF STANDARDS REPORT NBS PROJECT
 2102-20-1110
 August 19, 1952
 1888

THE CONVERGENCE OF NUMERICAL ITERATION

by

$$
\text { H.A.Antosiewicz }{ }^{*} \text { and J.M.Hammersley }{ }^{* *}
$$

```
    *Montana State College and
    American University, Washington, D.C.
    *University of Oxford and
    American University, Washington,D.C.
```


U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

Approved for public release by the Director of the National Institute of Standards and Technology (NIST)

THE CONVERGENCE OF NUMERICAL INTERATIONJ/ by H.A.Antostewicze/gna J.M. Homneraley?

Itoration arises frequently in the numerical solution of
 often curesory. We hope this note will put students on thenro guerd.

Wo shall deal with solving
(1)

$$
x=P(x)
$$

by meane of the 1teration

$$
\begin{equation*}
x_{n} p f\left(x_{n=1}\right) \tag{2}
\end{equation*}
$$

starting with a trial palue x_{0}. For almplicity we ghal guppose throughout that $f(x)$ Is a roas punction of a real Tertabis \% that (1) possesses a unsque solution, and that thas solution It $x=0$. From the point of view of theory, there is ro real. 2008 Of generality involved in this last assumption; for it ix as \& 0 were the solution of $x=f(x)_{0}$ then $x=0$ wotld be the sowityon
 suppose throughout that the inttial valuo x_{0} is not geroo

We shall conflne ous attention to aquations in a single unknown s: the difticulties in the caso of seweral unknoms are

TWorl persomed under contract wth the National Bureau of stardaras.
Montana State College: and the American Univergity, Waishingtono 3Nnifercity of Oxford: and the Amertcan University, Washingiong

$$
-20
$$

Under certein condstions upon the function $\mathcal{I}(x)$ the
 We now invite the reader, who canes to test hse aprisedetlors of such contitions, to answar the rollowne ouestions (whth the ase of a textrools if he go desires).

Quegtion 1: Is st mitretent coz convereance that, for rome
 neighbornood or the 1000 z $x=0$ and that wo mall belong to Thit notgroomood (In this question and subecquenty, $P^{\prime \prime}(x)$ donotes the derstative of $f(x)$.)

 netghabrinood?

Questen so Consider two punctions $a_{1}(x)$ end $f_{2}(x)$ which both
 sma11) nelghoorhood of the rcot $2=0$ and suppose thet z_{1} and is ane respectively the malespoosible values of is for mixh

 WIIT the convergence for $x_{2}(x)$ be more rapla then that for $f_{2}(x)$?

Ouestion 4: Is it necescaxy for convergence thet all conoithoms stated in Question 1 bhall hold (a) 12 we restrict oursialtes to the class of functions $f(x)$ whtch gre averywhere differentyable ors (b) il te maise no such restrictions

Question 5: Can a condition bearing on the derivative $x^{\prime}(0)$ ax on a Lipschitz condition golely at the root $x=0$ gurficiont Pos convergence:

Question 6: Are there any functions $f(x)$, gatisiying w (0) 0 anc being discontrinuous both to the lest and to the xotgh or

 The answar to Question 2 is "Yes." This 18 a corollaxy to our answer to Question 5 (see below)。 The answer wo Question 2 is "No" as shom by the example
(3)

$$
f(x)= \begin{cases}2 x & |x| \leq 1 \\ 0 & |x|>1\end{cases}
$$

for mhich the process (2) converges.
The andrer to Question 3 is "No." The example

$$
\begin{align*}
& \left(\left(\frac{3}{1}\right)^{2} k x \quad|x| \leq(202 x) / 10\right. \\
& \text { (4) } f(x)=\left\{\left.\left(\frac{3}{4}\right)^{2}(x x+2 x-2)^{2}(3 k x+2 k-2) /(1-k)^{2} \quad(1-15) / 4 x \right\rvert\, x / 42(2-15) / 15\right. \\
& |x| \geq 2(26 \pi) / 4 \tag{0}
\end{align*}
$$

satisflen the conditions of Question 2 : and yet juat one bepp of the iteration mill yield the degired root $x=0$ \%

$$
\text { If } 1 /\left(\left.1+\left.\frac{1}{2}\right|_{x_{0}} \right\rvert\,\right)
$$

wherees an infinite number of stops is needed is

$$
x<2 /\left(1+\frac{1}{2}\left|x_{0}\right|\right)
$$

The convergence is slowest in the case $5=2 /\left(\left.2+\frac{9}{20} \right\rvert\, x_{0} 1\right)$. The
 convergence as gtated in tertbooks. In pructice, however, it thil be a Lgeful (though not wholly rellable) guide for the rapatty of convergence.

The onswer to Question $4(a)$ is NNO Whe process (2) converges (very rapiajy) for the punction
(5)

$$
f(x)= \begin{cases}|x|^{3 / 2} e^{-x^{2}} \sin \left(\frac{2}{x}\right) & x \geqslant 0 \\ 0 & x=0\end{cases}
$$

Whaterer the instial value 5_{0} i although $x^{8}(8)$ is unbornded in Qvery neightorhood of the root $x=0$. A forthorts tho anewor to Question $4(0)$ is "No. In In one of the standard textboone the conctions of Question 1 are stelsely stated as bothn Hecessaxy and unftcient for convergence.
 convorgence that, solely at the root $x=0$, $\mathcal{F}(x)$ sholl zatis. 8 a Lipschsty condition (os order unity) with an implese conswant I $20 s \mathrm{~s}$ than unsw: that is to say
(6)

$$
\lim _{x \rightarrow 0}\left|\frac{f(x)}{x}\right| \leqslant x<20
$$

For. 28 (6) holdes there exjsts \& number of >0 such that

$$
\left|x_{n}\right| x\left|f\left(x_{n-1}\right)\right| \leq\left.\mathbb{K}\right|_{n \in I} \mid \theta \quad \text { i }<\mathbb{K}<1
$$

whenover $\left|x_{n-1}\right| \leq d^{\prime}$. Therefore, is x_{0} belonge to the neighborbood $|x| \leqslant o_{0}\left|n_{n}\right| \leq K^{n}\left|x_{0}\right| \Rightarrow 0$ es $n \rightarrow \infty$ 。The reader $m i l$ see that f(a) can satisiy (6) evon though it may not be dirierontamie:
 condition
(7) | 1 (0)| $\leqslant 2$

Condition (7) 16 a weaker condition then the condition of Question 1. The readar will also notice that the foregoing proos of convergence is very much shorter than the corresponding proors of Weaing persions found in come textbooks. Finoliy, a condition suctresent for convorgerce need hold only at a single pointis as We have juet shom; but an anelogrous condition घufsicient for difmigence vould, it seems, have to hold for all pointrig see for anstance errmpie (3) abore.

The answer to Quertion 6 is "Yes. A simple czample 18

$$
f(x)= \begin{cases}0 & i x \times 18 \text { rational } \\ 2 & i s \times i s i r r a t i o n a t .\end{cases}
$$

Here at most tuo steps yield the root $\%$ m O_{8} although the function Is averymere itscontinuous. A more olaborate example ghow

