U.S. DEPARTMENT OF COMMERCE BUREAU OF STANDARDS

REPORT OF THE NATIONAL SCREW THREAD COMMISSION

(REVISED 1933)

MISCELLANEOUS PUBLICATION NO. 141

ERRATA

NATIONAL BUREAU OF STANDARDS MISCELLANEOUS PUBLICATION NO. 141 1933 REPORT OF THE NATIONAL SCREW THREAD COMMISSION

Page 68, last line (above footnote) change "thread" to "threaded".

Page 75, Table 32, in column headed "3/4", change ".6993" to ".6903"

Page 87, running head, change "ECIAL" to "SPECIAL".

Page 97, Table 44, add to title, "and American National fire-hose coupling threads".

Add "(max.)" to heading "Inside diameter of nipple, C".

Add the following to the table:

2 1/2	[7 1/2	1	15/16	11/16	1/4 2	17/32 5 1/4
3][6	1 1,8	1 1/16	113/16	F/16 3	1/32 5
3 1/2 Fire nose	6]. 1/8	1 1/16	13/16	5/1.6 3	17/32 5
4 1/2	(14	1.1/4	1 3/16	15/16	17/16/14	17/32 3 3/4

Page 98, Table 45, footnote 2, last line, change "nipplee" to "nipple".

Page 144, first line, change "15" to "150".

Page 151, line 35, change "know" to "known".

Page 162, line 2, change "0.010" to "0.020". line 3, change "0.005" to "0.010".

lines 5-8, change to read as follows:

"5. CLEARANCE AT MAJOR DIAMETER. - A clearance shall be provided at the major diameter by making the major diameter of the nut or threaded hole 0.020 inch larger than basic for 10 or less threads per inch, and 0.010 inch larger than basic for more than 10 threads per inch."

Fig. 53, change "ALLOWANCE ON MAJOR DIAMETER = 0.01 INCH" to "ALLOWANCE ON MAJOR DIAMETER".

Page 166, column 8, change ".2816" to ".2716". column 9, change ".2774" to ".2674". column 12, change ".2847" to ".2848".

NATIONAL BUREAU OF STANDARDS

10.000 · Company

U.S. DEPARTMENT OF COMMERCE

DANIEL C. ROPER, Secretary

BUREAU OF STANDARDS LYMAN J. BRIGGS, Director

REPORT OF THE NATIONAL SCREW THREAD COMMISSION

(FOURTH EDITION, REVISED 1933)
AS APPROVED APRIL 10, 1933

Miscellaneous Publication No. 141

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON: 1933

PREFACE

Progress in commercial screw thread practice, which is based very extensively on the standards established by the National Screw Thread Commission, has been such as to require several revisions and some additions to the standards promulgated in the Commission's 1928 report. This report, the fourth to be published, embodies necessary changes. The experience of the Commission demonstrates that technical standards, to be useful, cannot be static, but must be revised

and adapted to meet changing requirements.

Major revisions of the previously published standards consist in: The addition of the 1%-, 3¼-, 3½-, 3¾-, and 4-inch sizes to the coarse-thread series; the addition of the 1%-inch size to the fine-thread series; the elimination of all sizes above 1½ inches from the fine-thread series; the elimination of the small machine screw sizes from class 4, close fit; the addition of four sizes and pitches to the hose-coupling threads; the revision of tolerances for pipe thread gages; and the revision of the specifications for Acme threads, including a new recommended series of diameters and pitches. The volume of the report has been reduced by the elimination of standards for body dimensions of bolts, nuts, and screws, and standards for the design of gage blanks, except by reference to the latest revisions of other published standards for these products.

New material added to the body of the report includes specifications for an 8-pitch and a 16-pitch thread series for special applications, which, together with the previously published 12-pitch series, are presented as a separate section. These series, demanded by industry, constitute in effect an amplification of the fine-thread series, and are a substitute for the sizes above 1½ inches in that series which have been deleted. A new table of tolerances for gages used in the inspec-

tion of class 4, close fit product is also included.

In the appendixes the recommended practice for threading tools has been deleted. The Commission's purpose to stimulate much-needed activity in the standardization of taps, die-head chasers, and other threading tools has been fulfilled. Published standards for such tools, which have received general recognition, are referred to in the

report.

The assistance and cooperation of many individuals, manufacturers, and users of screw-thread products, tools, and gages, and of the American Society of Mechanical Engineers, the Society of Automotive Engineers, the American Standards Association, and several of the sectional committees organized under its procedure, the Federal Specifications Board, the United States Army, the United States Navy, the Bureau of Standards, the National Board of Fire Underwriters, the American Petroleum Institute, the International Acetylene Association, the Gas Products Association, and the American Gage Design Committee, are gratefully acknowledged by the Commission.

CONTENTS

			0311121110
Preface			
Approval	by t	he Com	mission and transmittal to the Secretaries of War, ce- ttaries of War, Navy, and Commerce-
Navy,	and (Commer	ce
Approval	by_t	he Secre	etaries of War, Navy, and Commerce
Section	I.	Introdu	ucuon
		1.	Historical
		2.	Need for definite specifications
		3.	Authorization of Commission by Congress
		4.	Organization of the Commission
			(a) Preliminary meeting
			(b) Members
			(c) Officers
			(d) Personnel on European trip
			(e) Present organization
			(f) General procedure
		5.	Arrangement of report
Section	II.	Termin	ologv
		1.	Definitions
			(a) Terms relating to screw threads
			(b) Terms relating to classification and toler-
			ances
		2.	Illustrations showing terminology
		3.	Symbols
Section	III.	Screw	threads for bolts, machine screws, nuts, tapped
		holes	, etc
			American National form of thread
			(a) Specifications
			(b) Illustration
		2.	Thread series
			(a) American National coarse-thread series
			(b) American National fine-thread series
		3.	Classification and tolerances
			(a) General specifications
			(b) Classification of fits
		4.	Tables of limiting dimensions
			Gages
			(a) Fundamentals
			(b) Specifications for gages
Section	IV.	Uniform	n pitch screw thread series for high-pressure fasten-
		ings.	railroad applications, machinery components, etc.
			Form of thread
		$\overline{2}$.	Thread series 1
			Thread series 1 (a) American National 8-pitch thread series
			(b) American National 12-pitch thread series
			(c) American National 16-pitch thread series
		3.	Classification, tolerances, and limiting dimensions
		4.	Gages
Section	V.	Screw	threads of special diameters, pitches, and lengths
		of en	gagement
		1	Form of thread
		2	Thread series
		3	Classification and tolerances
		υ.	
			(a) General specifications (b) Classification of fits
		1	
		4.	Tables of dimensions
			(a) Arrangement of tables (b) Rules for use of tables
			(b) Rules for use of tables
		5	(c) Examples
		Ð.	Gages

¹ Partially new material not included in report revised June 22, 1928.

Section	νī.	American National hose-coupling and fire-hose coupling
		threads1. Form of thread
		2. Thread series
		(a) American National hose-coupling threads
		threads
		3. Allowances and tolerances
		4. Tables of limiting dimensions
		5. Gages (a) Gages for American National fire-hose coupling threads
Section	ı VII.	American National pipe threads
		1. Form of thread
		(a) Specifications
		(b) Illustration
		3. Thread series
		(a) American National taper pipe threads(b) American National straight pipe threads
		(c) American National locknut threads
		4. Tables of pipe dimensions
		5. Gages(a) Fundamentals
		(b) Specifications for gages
a	*****	(c) Gaging practices
Section	VIII.	American National screw, bolt, and nut proportions 1
Section	IX A	Miscellaneous special threadsScrew threads for oil-well drilling equipment
Section	IX B.	American National standard hose connections for welding
2000101		and cutting torches
		1. Standard dimensions
		2. Optional features
Section	IXC	3. GagesAmerican National rolled threads for screw shells of elec-
Bechor.	1120.	tric sockets and lamp bases
		1. Form of thread
		2. Thread series
		3. Gages
		(a) Gaging of lamp base screw shells(b) Gaging of socket screw shells
		(c) Tolerances on gages
Appene	dix 1. I	Derivation of tolerances
		1. Pitch diameter tolerances
		(a) Tolerances for fastening screws
		(b) Tolerances for screw threads of special diameters, pitches, and lengths of engagement.
		2. Relation of lead and angle errors to pitch diameter
		tolerances
		(a) Diameter equivalent of lead error
A	1: 0 T	(b) Diameter equivalent of angle error
Appen	aix 2. V	Vire methods of measurement of pitch diameter
		Size of wires Specification for wires
		3. Methods of measuring and using wires
		4. Measurement of pitch diameter of American National
		straight threads5. Measurement of pitch diameter of American National
		5. Measurement of pitch diameter of American National
		taper threads6. Measurement of pitch diameter of thread ring gages_
		7. Wire methods of measurement of thread thickness of
		Acme threaded plug gages

¹ Partially new material not included in report revised June 22, 1928.

Appendix 3	3. Control of accuracy of thread elements in the production of
	threaded product
	1. Introduction
	2. Fundamental factors
	(a) Control of tooth outlines
	(b) Control of lead errors
	3. Cutting of screw threads
	(a) Single-point tool
	(b) Thread chaser
	(c) Tap or die
	(d) Milling cutter
	(e) Threading hob
	4. Rolling of screw threads
	(a) Threading roll
	(b) Thread-rolling dies
	5. Finishing of screw threads
	(a) Grinding
	(b) Lapping
	6. Gaging practices and types of gages
	(a) Thread micrometers
	(b) Thread snap gages
	(c) Thread ring gages
	(d) Thread comparators
	(e) Indicating gages
	(f) Thread plug gages
	(g) Plain gages
	(h) Gear-tooth caliper for thread thickness
A 11-	(i) Testing of gages
Appendix	4. Class 5, wrench fit for threaded stude (tentative specifica-
	tions)
	1. Form of thread
	2. Thread series
	3. Classification and tolerances
	(a) General specifications
	(b) Classification
	4. Tables of dimensions
Annandi-	5. Gages and gaging 5. Common practice as to thread series and class of fit for screws,
appendix	bolts and puts
Annondir	bolts, and nuts
Appendix (
	tions)
	1. General and historical
	2. Terminology3. American National Acme form of thread
	(a) Specifications
	(a) Specifications
	(b) Illustration
	4. Thread series 1
	5. Classification and tolerances
	(a) General specifications
	(b) Limiting dimensions and tolerances
	6. Gages
	(a) Fundamentals
Index	(b) Gage tolerances
шиех	

² Partially new material not included in report revised June 22, 1928.

APPROVAL BY THE COMMISSION AND TRANSMITTAL TO THE SECRETARIES OF WAR, NAVY, AND COMMERCE

Hon. George H. Dern

Secretary of War

Hon. Claude A. Swanson

Secretary of the Navy

Hon. Daniel C. Roper

Secretary of Commerce

APRIL 10, 1933.

To the honorables the Secretary of War, the Secretary of the Navy, the Secretary of Commerce:

The National Screw Thread Commission, having revised its Progress Report, approved June 22, 1928, herewith submits its report revised to 1933, for your acceptance and approval, in accordance with Public Act No. 201, approved July 18, 1918 (c. 156, sec. 2, 40 Stat. 913); as amended by Public Act No. 324, approved March 3, 1919 (c. 96, 40 Stat. 1291); Public Resolution No. 34 (H.J.Res. 299, 66th Cong.), approved March 23, 1920; Public Resolution No. 43 (H.J.Res. 227, 67th Cong.), approved March 21, 1922; and Public Act No.

LYMAN J. BRIGGS,

125, approved April 16, 1926 (c. 148, sec. 1, 44 Stat. 297).

Chairman.

J. O. Johnson, Colonel, U.S.A., E. C. Peck, Lieut. Colonel, U.S.A., Appointed by the Secretary of War.

C. S. GILLETTE, Commander, U.S.N., J. H. Buchanan, Lieut. Commander, U.S.N., Appointed by the Secretary of the Navy. F. O. Wells,

Appointed by the Secretary of Commerce from nominations by the American Society of Mechanical Engineers.

GEO. S. CASE, EARLE BUCKINGHAM,

Appointed by the Secretary of Commerce from nominations by the Society of Automotive Engineers.

APPROVAL BY THE SECRETARIES OF WAR, NAVY, AND COMMERCE

The attached report prepared by the National Screw Thread Commission, in accordance with the law establishing the Commission, Public Act No. 201 (H.R. 10852, 65th Cong.), amended by Public Act No. 324 (H.R. 15495, 65th Cong.), Public Resolution No. 34 (H.J.Res. 299, 66th Cong.), Public Resolution No. 43 (H.J.Res. 227, 67th Cong.), and Public Act No. 125 (H.R. 264, 69th Cong.), is hereby accepted and approved.

(Signed June 1, 1933) George H. Dern,
Secretary of War.
(Signed June 5, 1933) Claude A. Swanson,
Secretary of the Navy.
(Signed June 3, 1933) Daniel C. Roper,
Secretary of Commerce.

1933 REPORT OF THE NATIONAL SCREW THREAD COMMISSION

AS APPROVED APRIL 10, 1933

SECTION I. INTRODUCTION

1. HISTORICAL

The initial accomplishment in the standardization of screw threads in the United States was the report under date of December 15, 1864, of the special committee appointed by the Franklin Institute on April 21, 1861, for the investigation of a proper system of screw threads, bolt heads, and nuts to be recommended by the institute for adoption and general use by American engineers.

In its report this committee recommended a thread system designed by William Sellers. This thread system specified a single series of pitches for certain diameters from one-fourth inch to 6 inches, inclusive. The threads had an included angle of 60° and a flat at the crest and root equal to one eighth of the pitch. This system came into general use and was known as the Franklin Institute thread, the Sellers thread, and commonly as the United States thread.

The accomplishments realized in the adoption of the Franklin Institute, or United States Standard thread, in 1864 were brought about largely by the great need of standard threads by American railroads for the development of their lines and equipment. In May 1868, this thread was adopted by the United States Navy. In recent years numerous organizations have carried forward the standardization of screw threads. The American Society of Mechanical Engineers, the Society of Automotive Engineers, the Bureau of Standards, and prominent manufacturers of specialized threaded products have been the chief influences in standardization of screw

threads in this country.

While the United States standard thread system fulfilled a great need in the period of the development of our great railway systems, it did not fully meet the requirements of modern manufacture because of the need for additional standard sizes and pitches developed in other industries, and especially because of the need for definitely specified limiting sizes of threaded parts. To fulfill the first of these needs a thread system having finer pitches than the United States standard system was recommended by the Society of Automotive Engineers, and a machine-screw thread series which provided smaller sizes of screws than the United States standard threads was recommended by the American Society of Mechanical Engineers. The progress of machine design and manufacture has established an extensive use of these fine thread series.

2. NEED FOR DEFINITE SPECIFICATIONS

The difficulties encountered in obtaining enormous quantities of war material needed by the United States Government during the World War pointed out to Government establishments as well as manufacturers the need for definite and complete specifications for material required. Such specifications should be so written that the qualities desired in the product are stated in definite terms of known measurable standards, and correctly defined by the largest tolerance limits compatible with the satisfactory use or performance of the articles or material for the purpose intended. A prerequisite of the quantity production of machine parts is standardization of form and dimensions of parts, which involves also the specification of limiting dimensions of the manufactured product in order that interchangeability may be established. The economic advantages of producing interchangeable machined parts, particularly when made in different manufacturing plants located at a distance from each other, which will assemble without difficulty and in a dependable manner, are generally recognized.

The standardization of screw threads, involving as it does the specification of sizes which are necessary to industry, the elimination of unnecessary sizes, and the securing of interchangeability, is especially important because of their use in enormous quantities in all varieties of mechanisms. Such standardization is important to the user of a machine, as well as to the manufacturer, as the user should be able to buy locally a screw or nut for replacement in case of breakage or wear.

A screw-thread fit cannot be accurately made with the same facility as the fit of a plain hole and shaft. In the fit of a plain hole and shaft only three elements are taken into account in securing a given class of fit, namely, roundness, diameter, and length; whereas in a screw-thread fit it is necessary to consider roundness, length, major diameter, pitch diameter, minor diameter, angle of thread, and pitch or lead. A variation in any one of these elements of a screw thread will prevent a good fit, so that it is much more difficult to make a good screw-thread fit than it is to make a plain bearing fit.

3. AUTHORIZATION OF COMMISSION BY CONGRESS

Through the efforts of several of the engineering societies, the Bureau of Standards, and prominent manufacturers of screw-thread products, a petition was presented to Congress requesting the appointment of a Commission to investigate and promulgate standards of screw threads to be adopted by manufacturing plants under the control of the Army and Navy and for adoption and use by the public. As a result of this action the National Screw Thread Commission was authorized for a period of six months by act of Congress, approved July 18, 1918 (Public Act No. 201, H.R. 10852, 65th Cong.). Prior to the expiration of the original term of six months for which the Commission was appointed, it became apparent that it would be impossible to complete in a satisfactory manner the work outlined by the Commission. Extensions of time were therefore asked by the Commission and granted by Congress in accordance with the following acts: Public Act No. 324 (H.R. 15495, 65th Cong.); Public Resolution No. 34 (H.J.Res. 299, 66th Cong.); and Public Joint Resolution No. 43 (H.J.Res. 227, 67th Cong.) The limit on the term of the Commission was then removed by the following act of Congress (Public Act No. 125, H.R. 264, 69th Cong.):

AN ACT To amend an act to provide for the appointment of a commission to standardize screw

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That an act entitled "An act to provide for the appointment of a commission to standardize screw threads," approved July 18, 1918, as amended by an act approved March 3, 1919, and extended by public resolutions approved March 23, 1920, and March 21, 1922, be, and the same is hereby, amended so that it will read:

That a Commission is hereby created, to be known as the Commission for the Standardization of Screw Threads, hereinafter referred to as the Commission, which shall be composed of nine commissioners, one of whom shall be the Director of the Bureau of Standards, who shall be chairman of the Commission; two representatives of the Army, to be appointed by the Secretary of War; two representatives of the Navy, to be appointed by the Secretary of the Navy, and four to be appointed by the Secretary of Commerce, two of whom shall be chosen from nominations made by the American Society of Mechanical Engineers and two from nominations made by the Secretary of Automotive Engineers

two from nominations made by the American Society of Mechanican Engineers and two from nominations made by the Society of Automotive Engineers.

SEC. 2. That it shall be the duty of said Commission to ascertain and establish standards for screw threads, which shall be submitted to the Secretary of War, the Secretary of the Navy, and the Secretary of Commerce for their acceptance and approval. Such standards, when thus accepted and approved, shall be adopted and used in the several manufacturing plants under the control of the War and Navy Departments, and so far as practicable, in all specifications for War and Navy Departments, and, so far as practicable, in all specifications for screw threads in proposals for manufactured articles, parts, or materials to be

used under the direction of these departments.

SEC. 3. That the Secretary of Commerce shall promulgate such standards for

use by the public and cause the same to be published as a public document.

Sec. 4. That the Commission shall serve without compensation, but nothing herein shall be held to affect the pay of the commissioners appointed from the Army and Navy or of the Director of the Bureau of Standards.

Sec. 5. That the Commission may adopt rules and regulations in regard to

its procedure and the conduct of its business.

Approved April 16, 1926.

4. ORGANIZATION OF THE COMMISSION

(a) Preliminary Meeting.—As soon as nominees were selected by the various organizations to be represented in the Commission a preliminary meeting was called at Washington, D.C., on September 12, 1918, by Dr. S. W. Stratton, Director of the Bureau of Standards and chairman of the Commission. At this meeting the organization of the Commission was planned in order that work could be started as soon as formal appointments of the various members of the Commission were made. The various commissioners were formally appointed under date of September 21, 1918.

(b) Members.—In accordance with the act, the following members

have been appointed:

Appointed by the Secretary of Commerce: Chairman Date appointed Dr. S. W. Stratton, Director of Bureau of Standards, Washington, D.C.
Dr. G. K. Burgess, Director of Bureau of Stand-September 21, 1918. ards, Washington, D.C., succeeding Dr. S. W. Stratton_ April 23, 1923. Dr. Lyman J. Briggs, Acting Director of Bureau of Standards, Washington, D.C., succeeding Dr. G. K. Burgess July 2, 1932. On nomination by the American Society of Mechanical Engineers: James Hartness_____ September 21, 1918. F. O. Wells September 21, 1918. Ralph E. Flanders, succeeding James Hartness__ December 15, 1920.

Luther D. Burlingame, succeeding Ralph E.

Flanders December 10, 1924.

Appointed by the Secretary of Commerce—Continued. On nomination by the Society of Automotive Engi-	
	Date appointed
neers: H. T. Herr	September 21, 1918.
E. H. Ehrman Earle Buckingham, succeeding H. T. Herr	September 21, 1918.
Earle Buckingham, succeeding H. T. Herr	April 8, 1921.
George S. Case, succeeding E. H. Ehrman	October 3, 1922.
Appointed by the Secretary of War: E. C. Peck, lieutenant colonel, Ordnance, U.S. Army	September 21, 1918.
O. B. Zimmerman, major of Engineers, U.S. Army	September 21, 1918.
John O. Johnson, major of Ordnance, succeeding Maj.	
O. B. Zimmerman	May 23, 1919.
Appointed by the Secretary of the Navy: E. J. Marquart, commander, U.S. Navy Bureau of	
Ordnance Ordnander Ordnander	September 21, 1918.
OrdnanceS. M. Robinson, commander, U.S. Navy, Bureau of	opionisti II, Itali
Steam Engineering N. H. Wright, commander, U.S. Navy, Bureau of	September 21, 1918.
N. H. Wright, commander, U.S. Navy, Bureau of	
Steam Engineering, succeeding Commander S. M. Robinson	July 14, 1919.
L. N. McNair, commander, U.S. Navy, Bureau of	oury 11, 1010.
Ordnance, succeeding Commander E. J. Marquart	October 7, 1919.
Joseph S. Evans, commander, U.S. Navy, Bureau of Steam Engineering, succeeding Commander N. H.	
Steam Engineering, succeeding Commander N. H.	May 10, 1920.
Wright S. M. Robinson, commander, U.S. Navy, Bureau of	May 10, 1920.
Steam Engineering, succeeding Commander J. S.	
Evans	November 8,1921.
J. N. Ferguson, commander, U.S. Navy, Bureau of	T 0 1099
Ordnance, succeeding Commander L. N. McNair_C. A. Jones, lieutenant commander, U.S. Navy, Bu-	January 9, 1922.
reau of Engineering, succeeding Commander S. M.	
Robinson	March 21, 1922.
M. A. Libbey, commander, U.S. Navy, Bureau of	T 1 10 1000
Engineering, succeeding Commander C. A. Jones John B. Rhodes, commander, U.S. Navy, Bureau of	July 19, 1922.
Ordnance, succeeding Commander J. N. Ferguson.	February 20, 1924.
T. C. Kinkaid, commander, U.S. Navy, Bureau of	20014415 20, 10221
Ordnance, succeeding Commander John B. Rhodes_	July 3, 1926.
Harry B. Hird, commander, U.S. Navy, Bureau of	Ti-1 10 1007
Engineering, succeeding Commander M. A. Libbey- D. P. Moon, lieutenant commander, U.S. Navy,	February 18, 1921.
Bureau of Ordnance, succeeding Commander T. C.	
Kinkaid	October 29, 1927.
Roger W. Paine, lieutenant commander, U.S. Navy, Bu-	1 00 1000
reau of Engineering, succeeding Comdr. Harry B. Hird- Herman A. Spanagel, lieutenant commander, U.S. Navy,	August 20, 1928.
Bureau of Ordnance, succeeding Lt. Comdr. D. P.	
Moon	June 22, 1929.
John H. Buchanan, lieutenant commander, U.S. Navy,	
Bureau of Ordnance, succeeding Lt. Comdr. Herman	Tumo 99 1029
A. Spanagel C. S. Gillette, commander, U.S. Navy, Bureau of Engi-	June 22, 1952.
neering, succeeding Lt. Comdr. Roger W. Paine	July 7, 1932.
(c) Officers.—The following officers were elec-	
mission at the first meeting:	of the com
Lieut, Col. E. C. Peck, vice chairman for meetings hel	d in Washington.

Lieut. Col. E. C. Peck, vice chairman for meetings held in Washington. James Hartness, vice chairman for meetings held outside of Washington. H. L. Van Keuren, executive secretary. H. W. Bearce, general secretary. Robert Lacy, first lieutenant of Engineers, U.S. Army, assistant secretary. A. W. Coombs, stenographic reporter.

(d) Personnel on European Trip.—In July 1919, the Commission conferred with British and French engineers and manufacturers of screw-thread products, for the purpose of discussing the tentative

report prepared by the Commission with reference to its suitability to serve as a basis for international standardization of screw threads. The Commission was represented by the following persons:

E. C. Peck (chairman), representative U.S. Army, lieutenant colonel, Ordnance, U.S. Army.

F. O. Wells (vice chairman), representative A.S.M.E.
L. D. Burlingame, representative A.S.M.E., alternate for James Hartness.
E. Buckingham, representative S.A.E., alternate for H. T. Herr.

H. L. Horning, representative S.A.E., alternate for E. H. Ehrman. J. Q. Johnson, representative U.S. Army, major, Ordnance, U.S. Army. L. B. McBride, representative U.S. Navy, commander, U.S. Navy.

H. C. Dickinson, representative Department of Commerce, U.S. Government, advisory member. H. W. Bearce, representative Bureau of Standards, U.S.A. (general secretary).

Robert Lacy, representative U.S. Army, first lieutenant Engineers, U.S. Army (technical secretary).

(e) Present Organization.—At the time of publication of this 1933 revised report the Commission comprises the following:

Dr. Lyman J. Briggs, chairman. Lieut. Col. E. C. Peck, vice chairman. F. O. Wells.

Col. John O. Johnson.

Prof. Earle Buckingham. George S. Case. Lt. Comdr. John H. Buchanan. Comdr. C. S. Gillette.

H. W. Bearce, secretary. Staff (Bureau of Standards):

D. R. Miller, technical investigator.

I. H. Fullmer, editor.

E. G. Hubbell, stenographic reporter.

(f) GENERAL PROCEDURE.—In its work of establishing standards for screw threads, the Commission has made particular efforts to secure actual facts concerning the need of standardization and the economic conditions to be provided for in the production and use of screw threads.

Steps were taken to secure from various screw-thread authorities and representative manufacturers and users, testimony as to the nature of the standards to be adopted for the use of the Government and for American manufacturers. To secure this information public hearings were conducted in various industrial centers throughout the country; and Government officials, authorities on screw threads, manufacturers, and users of screw-thread products, as well as manufacturers of taps, dies, gages, and other tools required for producing screw-thread products, were invited to attend these hearings and present their views on various phases of the subject. In addition, announcements of the meetings, extending invitations to all interested to be present, were published in the technical magazines. Topic sheets were distributed in advance of the hearings in order that witnesses could prepare their views on the subjects of the meeting in a definite, concise, and authentic form.

A large amount of evidence was collected in this way and the opportunity was available for the various members of the Commission to bring out by cross-examination information which could have been secured in no other way. This evidence was tabulated for the con-

sideration of the Commission in formulating its report.

A large number of experiments and tests were made by the Bureau of Standards to verify the results obtained at the various hearings and also in connection with the development of tolerances and of other technical subjects considered by the Commission. In addition to the experiments conducted by the Bureau of Standards, the members of the Commission individually conducted experiments and

research work at their own expense. In view of the fact that international standardization of screw threads is very desirable, the Commission visited Europe in July 1919, to confer with British and French engineering standards organizations, and while no definite agreements were reached in regard to international standardization of screw threads, it was apparent in both France and England that the engineers and manufacturers in these countries were anxious to cooperate with the United States in this work. Such an international standard should be established by

in manufactured products. The advances made by the Commission up to date will facilitate manufacture in case of war, make the best use of labor in our industries in time of peace, increase the safety of travel by rail, steam-ship, automobile, and airplane, and, in general, will increase the dependability of all mechanisms. The general adoption of a national thread system establishes a definite procedure to be followed explicitly for producing interchangeable threaded products.

giving consideration to the predominating sizes and standards used

The Commission, in formulating this report, has acted largely in a judicial capacity, basing its decisions upon evidence received from authorities on screw-thread subjects and upon the conclusions drawn by other organizations having to do with standardization of screw threads. In addition, the various subjects dealt with have been considered with a knowledge of present manufacturing conditions and with anticipation of further development in the production of screw-Above all, it is the intention of the Commission to thread products. facilitate and promote progress in manufacture.

5. ARRANGEMENT OF REPORT

There are included in the body of the report specifications for threaded products and gages, embodying sufficient information to permit the writing of definite and complete specifications for the purchase of screw-thread products. In the appendixes there is arranged supplementary information of both a general and a technical nature, including such specifications as are not intended to be mandatory.

The specifications in the report have been arranged, as far as possible, by products. For example, one section deals with threads for bolts and nuts, etc., another with hose-coupling threads, another with pipe threads, etc. As far as practicable, each section is arranged in the following order:

- Form of thread.
 Thread series.
- 3. Classification and tolerances.
- 4. Tables of dimensions.
- 5. Gages.

SECTION II. TERMINOLOGY

In this report there are utilized, as far as possible, nontechnical words and terms which best convey alike to the producer and user of screw threads the information presented.

1. DEFINITIONS

The following definitions are given of the more important terms used in the report. Definitions of terms which are obviously elementary in character are intentionally omitted.

(a) Terms Relating to Screw Threads.—1. Screw thread.—A ridge of uniform section in the form of a helix on the surface of a

cylinder or cone.

2. External and internal threads.²—An external thread is a thread on the outside of a member. Example: A threaded plug.

An internal thread is a thread on the inside of a member. Ex-

ample: A threaded hole.

3. Major diameter (formerly known as "outside diameter").—The largest diameter of the thread of the screw or nut. The term "major diameter" replaces the term "outside diameter" as applied to the thread of a screw and also the term "full diameter" as applied to the thread of a nut.

4. Minor diameter (formerly known as "core diameter").—The smallest diameter of the thread of the screw or nut. The term "minor diameter" replaces the term "core diameter" as applied to the thread of a screw and also the term "inside diameter" as applied

to the thread of a nut.

- 5. Pitch diameter.—On a straight screw thread, the diameter of an imaginary cylinder, the surface of which would pass through the threads at such points as to make equal the width of the threads and the width of the spaces cut by the surface of the cylinder. On a taper screw thread, the diameter, at a given distance from a reference plane perpendicular to the axis of an imaginary cone, the surface of which would pass through the threads at such points as to make equal the width of the threads and the width of the spaces cut by the surface of the cone.
- 6. Pitch.—The distance from a point on a screw thread to a corresponding point on the next thread measured parallel to the axis.

The pitch in inches = $\frac{1}{\text{Number of threads per inch}}$

7. Lead.—The distance a screw thread advances axially in one turn. On a single-thread screw the lead and pitch are identical; on a double-thread screw the lead is twice the pitch; on a triple-thread screw the lead is three times the pitch, etc.

8. Angle of thread.—The angle included between the sides of the

thread measured in an axial plane.

9. Helix angle.—The angle made by the helix of the thread at the pitch diameter with a plane perpendicular to the axis.

10. Crest.—The top surface joining the two sides of a thread.

11. Root.—The bottom surface joining the sides of two adjacent threads.

² These terms are here defined because of possible confusion arising from the fact that an "internal member" has an "external thread," and vice versa. For the sake of brevity an external thread is hereinafter referred to as a "screw," and an internal thread as a "nut."

- 12. Side.—The surface of the thread which connects the crest with the root.
 - 13. Axis of a screw.—The longitudinal central line through the screw.
 14. Base of thread.—The bottom section of the thread; the greatest
- 14. Base of thread.—The bottom section of the thread; the greatest section between the two adjacent roots.

15. Depth of thread.—The distance between the crest and the base of thread measured normal to the axis.

16. Number of threads.—Number of threads in 1 inch of length.

17. Length of engagement.—The length of contact between two mating parts, measured axially.

18. Depth of engagement.—The depth of thread contact of two

mating parts, measured radially.

19. Pitch line.—An element of the imaginary cylinder or cone specified in definition 5.

20. Thickness of thread.—The distance between the adjacent sides

of the thread measured along or parallel to the pitch line.

(b) Terms Relating to Classification and Tolerances.—
1. Allowance.—An intentional difference in the dimensions of mating parts. It is the minimum clearance or the maximum interference which is intended between mating parts. It represents the condition of the tightest permissible fit, or the largest internal member mated with the smallest external member. Examples:

One-half inch, class 1, loose fit, American National coarse thread series: Minimum pitch diameter of nut	0. 4500
Maximum pitch diameter of screw	
Allowance (positive) One-half inch, class 4, close fit, American National coarse thread series:	. 0022
Minimum pitch diameter of nut	. 4500
Maximum pitch diameter of screw	. 4504
Allowance (negative)	. 0004
2. Tolerance.—The amount of variation permitted in the si	ze of a
part. Example:	
One-half-inch screw, class 1, loose fit, American National coarse thread	

One-half-inch screw, class 1, loose fit, American National coarse thread series:

Maximum pitch diameter

. 0074

3. Basic size.—The theoretical or nominal standard size from which all variations are made.

4. Crest clearance.—Defined on a screw form as the space between the crest of a thread and the root of its mating thread.

5. Finish.—The character of the surface on a screw thread or other

product

6. Fit.—The relation between two mating parts with reference to the conditions of assembly; for example: Wrench fit; close fit; medium fit; free fit; loose fit. The quality of fit is dependent upon both the relative size and finish of the mating parts.

7. Neutral zone.—A positive allowance. (See "Allowance".)

8. Limits.—The extreme permissible dimensions of a part. Example:

2. ILLUSTRATIONS SHOWING TERMINOLOGY

Figures 1 and 2 illustrate the use of the terms and symbols used in the report as herein defined.

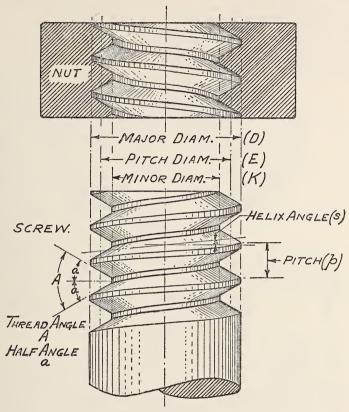


FIGURE 1.—Screw-thread notation:

3. SYMBOLS

For use in formulas for expressing relations of screw threads, and for use on drawings and for similar purposes, the following symbols should be used:

Major diameter	D
Corresponding radius	
Pitch diameter	\mathcal{E}
Corresponding radiuse	:
Minor diameter	
Corresponding radius k	
Angle of thread.	
One half angle of thread	
Number of turns per inch	
Number of threads per inch	ı
Lead	$L = \frac{1}{N}$

Pitch or thread interval	$p = \frac{1}{n}$
Helix angle	8
Tangent of helix angle	$S = \frac{L}{3.14159 \times E}$
wigth of pasic nat at top, crest, or root	ľ
Depth of sharp V thread	$\overset{J}{H}$
Depth of sharp V thread Depth of American National form of thread	h
Length of engagementIncluded angle of taper	$\overset{Q}{Y}$
One half included angle of taper	\overline{y}

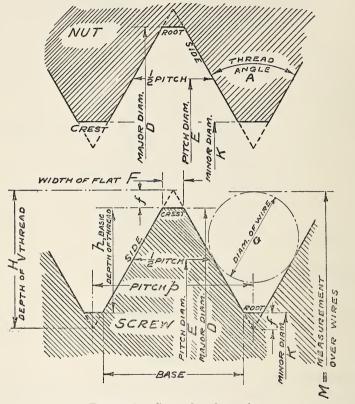


FIGURE 2.—Screw-thread notation.

Additional symbols for American National Pipe Threads are given in section VII.

Symbols are for use on correspondence, drawings, shop and store-room cards, specifications for parts, taps, dies, gages, etc., and on

tools and gages.

The method of designating a screw thread by means of symbols is by the use of the initial letters of the thread series, preceded by the diameter in inches (or the screw number) and number of threads per inch, all in Arabic characters, and followed by the classification of fit in Arabic numerals. If the thread is left hand, the symbol "LH" shall follow the class of fit. No symbol is used to distinguish right-

hand threads. For screw threads of American National form but of special diameters, pitches, and lengths of engagement, the symbol "NS" is used. Examples:

American National coarse thread series:	
To specify a threaded part 1 inch diameter, 8 threads	Mark
per inch, class 1 fit	1''8NC1
To specify a threaded part 1 inch diameter, 8 threads per inch, class 1 fit	
class 2 fit, left hand	1''8NC2LH
American National fine thread series:	
Threaded part 1 inch diameter, 14 threads per inch, class 4 fit	1''14NF4
American National 8-, 12-, or 16-pitch thread series:	,
Threaded part 1 inch diameter, 12 threads per inch, class 3 fit. Threaded part 1½ inches diameter, 8 threads per inch,	
class 3 fit	1''12N3
Threaded part 1½ inches diameter, 8 threads per inch,	
class 2 fit, left hand	1½''—8N—2LH
American National form, special pitch:	, -
Threaded part 1 inch diameter, 18 threads per inch, class 2 fit	
class 2 fit	1''18NS2
Threaded part 11/4 inches diameter, 20 threads per	
inch, class 3 fit, left hand	1¼''—20NS—3LH
American National pipe threads:	
American National taper pipe thread. Threaded	
part 1 inch diameter, 11½ threads per inch	1''—11½NPT
American National straight pipe thread	1''—11½NPS
American National fire-hose coupling threads and	
American National hose-coupling threads:	
Threaded part 3 inches diameter, 6 threads per inch.	
Threaded part 1 inch diameter, 11½ threads per inch.	1''—11½NH
/Dl	

The number of threads per inch shall be indicated in all cases, irrespective of whether it is the standard number of threads for that particular size of threaded part, or special.

SYMBOLS FOR WIRE MEASUREMENTS

Measurement over wires	M
Diameter of wire	G
Corresponding radius	g

SECTION III. SCREW THREADS FOR BOLTS, MACHINE SCREWS, NUTS, TAPPED HOLES, ETC.

1. AMERICAN NATIONAL FORM OF THREAD

The form of thread profile specified herein, known previously as the "United States standard or Sellers' profile", is adopted by the Commission and shall hereafter be known as the "American National form of thread."

The American National form of thread shall be used for all screwthread work except when otherwise specified for special purposes.

(a) SPECIFICATIONS

1. Angle of Thread.—The basic angle of thread (A) between the sides of the thread measured in an axial plane is 60°. The line bisecting this 60° angle is perpendicular to the axis of the screw thread.

2. FLAT AT CREST AND ROOT.—The flat at the root and crest of

the basic thread form is $\% \times p$, or $0.125 \times p$.

3. Depth of Thread.—The depth of the basic thread form is

$$h = 0.649519 \times p$$
, or $h = \frac{0.649519}{n}$

where

p = pitch in inches

n =number of threads per inch

h =basic depth of thread

4. CLEARANCE AT MINOR DIAMETER.—A clearance shall be provided at the minor diameter of the nut by removing from the crest of the basic thread form an amount such as to provide a depth of thread not less than 62 to 75 percent (depending on the size), and not more than 83½ percent of the basic thread depth. (See fig. 17, p. 31.)

5. CLEARANCE AT MAJOR DIAMETER.—A clearance shall be provided at the major diameter of the nut by removing from above the basic thread form an amount such that the width of flat shall be less

than $\frac{1}{8} \times p$, but not less than $\frac{1}{24} \times p$.

(b) ILLUSTRATION

There are indicated in figure 3 the relations as specified herein for the American National form of thread for the minimum nut and maximum screw, free or medium fits. These relations are further shown in figures 7 and 9.

2. THREAD SERIES

It is the aim of the Commission, in establishing thread systems for general use, to eliminate all unnecessary sizes and, in addition, to utilize as far as possible present predominating sizes. While from certain standpoints it would have been desirable to make simplifications in the thread systems and to establish more thoroughly consistent standards, it is believed that any radical change at the present time would be out of place and interfere with manufacturing conditions,

and would involve great economic loss.

The testimony given at the various hearings held by the Commission is very consistent in favoring the maintenance of the present coarse-thread and fine-thread series, the coarse-thread series being the "United States standard" threads, supplemented in the sizes below one fourth inch by sizes taken from the standard established by the American Society of Mechanical Engineers (A.S.M.E.). The fine-thread series is composed of standards that have been found necessary, and consists of sizes taken from the standards of the Society of Automotive Engineers (S.A.E.) and the fine-thread series of the American Society of Mechanical Engineers (A.S.M.E.).

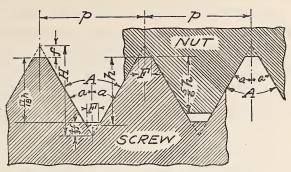


Figure 3.—American National form of thread.

Note.-No allowance is shown. This condition exists in class 2, free fit, and class 3, medium fit, where both the minimum nut and the maximum screw are basic.

```
n = \text{number of threads per inch} \\ H = 0.866025 \ p \ \text{depth of } 60^{\circ} \ \text{sharp V thread} \\ h = 0.649519 \ p \ \text{depth of American National form of thread} \\ 5h = 0.541266 \ p \ \text{maximum depth of engagement} \\ 17/8h = 0.613435 \ p \\ F = 0.125000 \ p \ \text{width of flat at crest and root of American National form} \\ f = 0.108253 \ p \\ = 1/8H \\ = 1/6h \\ \end{bmatrix} \\ \text{depth of truncation}
```

(a) AMERICAN NATIONAL COARSE-THREAD SERIES

In table 1 are specified the nominal sizes and basic dimensions of the "American National coarse-thread series."

The American National coarse-thread series is recommended for general use in engineering work, in machine construction where conditions are favorable to the use of bolts, screws, and other threaded components where quick and easy assembly of the parts is desired, and for all work where conditions do not require the use of fine-pitch threads.

Table 1.—American National coarse-thread series

Identi	fication	Bas	sic diame	eters				Thread o	lata		
Sizes	Threads per inch, n	Major diam- eter, D	Pitch diam- eter, E	Minor diameter,	Metric equiva- lent of major diam- eter	Pitch,	Depth of thread,	Basic width of flat, p/8	Minimum width of flat at major diameter of nut, p/24	Helix angle at basic pitch diameter,	Basic area of section at root of thread, $\frac{\pi K^2}{4}$
1	2	3	4	5	6	7	8	9	10	11	12
1 2 3 4 5	64 56 48 40 40	Inches 0. 073 . 086 . 099 . 112 . 125	Inches 0. 0629 . 0744 . 0855 . 0958 . 1088	Inches 0. 0527 . 0628 . 0719 . 0795 . 0925	mm 1. 854 2. 184 2. 515 2. 845 3. 175	Inch 0. 01562 . 01786 . 02083 . 02500 . 02500	Inch 0.01015 .01160 .01353 .01624 .01624	Inch 0. 00195 . 00223 . 00260 . 00312 . 00312	Inch 0. 00065 . 00074 . 00087 . 00104	Deg. Min. 4 31 4 22 4 26 4 45 4 11	Square inches 0. 0022 . 0031 . 0041 . 0050 . 0067
6 8 10 12	32 32 24 24	. 138 . 164 . 190 . 216	. 1177 . 1437 . 1629 . 1889	. 0974 . 1234 . 1359 . 1619	3. 505 4. 166 4. 826 5. 486	. 03125 . 03125 . 04167 . 04167	. 02030 . 02030 . 02706 . 02706	. 00391 . 00391 . 00521 . 00521	. 00130 . 00130 . 00174 . 00174	4 50 3 58 4 39 4 1	. 0075 . 0120 . 0145 . 0206
14 5/16 3/8 7/16 1/2	20 18 16 14 13	. 2500 . 3125 . 3750 . 4375 . 5000	. 2175 . 2764 . 3344 . 3911 . 4500	. 1850 . 2403 . 2938 . 3447 . 4001	6. 350 7. 938 9. 525 11. 113 12. 700	. 05000 . 05556 . 06250 . 07143 . 07692	. 03248 . 03608 . 04059 . 04639 . 04996	. 00625 . 00694 . 00781 . 00893 . 00962	. 00208 . 00231 . 00260 . 00298 . 00321	4 11 3 40 3 24 3 20 3 7	. 0269 . 0454 . 0678 . 0933 . 1257
9/16 5/8 3/4 7/8 1	12 11 10 9 8	. 5625 . 6250 . 7500 . 8750 1. 0000	. 5084 . 5660 . 6850 . 8028 . 9188	. 4542 . 5069 . 6201 . 7307 . 8376	14. 288 15. 875 19. 050 22. 225 25. 400	. 08333 . 09091 . 10000 . 11111 . 12500	. 05413 . 05905 . 06495 . 07217 . 08119	. 01042 . 01136 . 01250 . 01389 . 01562	. 00347 . 00379 . 00417 . 00463 . 00521	2 59 2 56 2 40 2 31 2 29	. 1620 . 2018 . 3020 . 4193 . 5510
1½8 1¼ 1¾6 1½ 1¾4	7 7 6 6 5	1. 1250 1. 2500 1. 3750 1. 5000 1. 7500	1. 0322 1. 1572 1. 2667 1. 3917 1. 6201	. 9394 1. 0644 1. 1585 1. 2835 1. 4902	28. 575 31. 750 34. 925 38. 100 44. 450	. 14286 . 14286 . 16667 . 16667 . 20000	. 09279 . 09279 . 10825 . 10825 . 12990	. 01786 . 01786 . 02083 . 02083 . 02500	. 00595 . 00595 . 00694 . 00694 . 00833	2 31 2 15 2 24 2 11 2 15	. 6931 . 8898 1. 0541 1. 2938 1. 7441
2 2½ 2½ 2¾ 3	41/2 41/2 4 4 4	2. 0000 2. 2500 2. 5000 2. 7500 3. 0000	1. 8557 2. 1057 2. 3376 2. 5876 2. 8376	1. 7113 1. 9613 2. 1752 2. 4252 2. 6752	50. 800 57. 150 63. 500 69. 850 76. 200	. 22222 . 22222 . 25000 . 25000 . 25000	. 14434 . 14434 . 16238 . 16238 . 16238	. 02778 . 02778 . 03125 . 03125 . 03125	. 00926 . 00926 . 01042 . 01042 . 01042	2 11 1 55 1 57 1 46 1 36	2. 3001 3. 0212 3. 7161 4. 6194 5. 6209
3¼ 3½ 3¾	4 4 4 4	3. 2500 3. 5000 3. 7500 4. 0000	3. 0876 3. 3376 3. 5876 3. 8376	2. 9252 3. 1752 3. 4252 3. 6752	82. 550 88. 900 95. 250 101. 600	. 25000 . 25000 . 25000 . 25000	. 16238 . 16238 . 16238 . 16238	. 03125 . 03125 . 03125 . 03125	.01042 .01042 .01042 .01042	1 29 1 22 1 16 1 11	6. 7205 7. 9183 9. 2143 10. 6084

(b) AMERICAN NATIONAL FINE-THREAD SERIES

In table 2 are specified the nominal sizes and basic dimensions of

the "American National fine-thread series".

The American National fine-thread series is recommended for general use in automotive and aircraft work, for use where the design requires both strength and reduction in weight, and where special conditions require a fine thread.

Table 2.—American National fine-thread series

Identi	fication	Bas	ic diame	ters	Thread data						
Sizes	Threads per inch,	Major diam- eter, D	Pitch diam- eter, E	Minor diam- eter, K	Metric equiv- alent of major diam- eter	Pitch,	Depth of thread,	Basic width of flat, p/8	Minimum width of flat at major diameter of nut, p/24	Helix angle at basic pitch diameter, 8	Basic area of section at root of thread, $\frac{\pi K^2}{4}$
1	2	3	4	5	6	7	8	9	10	11	12
0	80 72 64 56 48 44 40 36 32 22 28 24 24 20 20	Inches 0.060 0.073 0.86 0.099 1112 1.125 1.38 1.64 1.190 2.216 2.500 3.1125 3.750 4.375 5.5000	Inches 0.0519 0.640 0.759 0.874 0.985 1102 1218 1460 1697 1928 2268 2854 3479 4050 4675	Inches 0.0438 0.0550 0.0657 0.0758 0.0849 0.0955 1.1279 1.1494 1.1696 2.2036 2.2584 3.209 3.725 4.350	mm 1. 524 1. 854 2. 184 2. 515 2. 845 3. 175 3. 505 4. 166 4. 826 5. 486 6. 350 7. 938 9. 525 511, 113 12, 700	Inch 0.01250 .01389 .01562 .01786 .02083 .02273 .02500 .02778 .03125 .03571 .04167 .04167 .05000 .05000	Inch 0.00812 .00902 .01015 .01160 .01353 .01476 .01624 .01804 .02030 .02320 .02320 .02766 .02706 .03248 .03248	Inch 0.00156 .00174 .00195 .00223 .00260 .00284 .00312 .00347 .00391 .00446 .00521 .00521 .00625 .00625	Inch 0.00052 .00058 .00068 .00067 .00095 .00104 .00116 .00130 .00149 .00174 .00174 .00174 .00208	Deg. Mind 4 23 3 57 3 45 3 43 3 51 3 44 3 28 3 21 2 2 52 2 40 2 11 2 15 1 57	Square . inches 0.0015 .0024 .0034 .0045 .0057 .0072 .0087 .0128 .0175 .0226 .0326 .0524 .0809 .1090 .1486
9/16 5/8 3/4 7/8	18 18 16 14 14	. 5625 . 6250 . 7500 . 8750 1. 0000	. 5264 . 5889 . 7094 . 8286 . 9536	. 4903 . 5528 . 6688 . 7822 . 9072	14. 288 15. 875 19. 050 22. 225 25. 400	.05556 .05556 .06250 .07143 .07143	. 03608 . 03608 . 04059 . 04639 . 04639	.00694 .00694 .00781 .00893 .00893	.00231 .00231 .00260 .00298 .00298	1 55 1 43 1 36 1 34 1 22	. 1888 . 2400 . 3513 . 4805 . 6464
1½ 1¼ 1½ 1½	12 12 12 12	1. 1250 1. 2500 1. 3750 1. 5000	1. 0709 1. 1959 1. 3209 1. 4459	1. 0167 1. 1417 1. 2667 1. 3917	28. 575 31. 750 34. 925 38. 100	. 08333 . 08333 . 08333 . 08333	.05413 .05413 .05413 .05413	.01042 .01042 .01042 .01042	.00347 .00347 .00347 .00347	1 25 1 16 1 9 1 3	. 8118 1. 0238 1. 2602 1. 5212

3. CLASSIFICATION AND TOLERANCES

There are established herein for general use four distinct classes of screw-thread fits as specified in the following brief outline. These four classes of fits, together with the accompanying specifications, are for the purpose of insuring the interchangeable manufacture of screw-thread parts throughout the country.

It is not the intention of the Commission arbitrarily to place a general class or grade of work in a specific class of fit. Each manufacturer and user of screw threads is free to select the class of fit best adapted to his particular needs. The tolerances and dimensions for four classes of fit are given in tables 3 to 14, inclusive, and summarized in tables 15 and 16.

Class 1, loose fit	Includes screw-thread work of rough com- mercial quality, where the threads must
	assemble readily, and a certain amount of shake or play is not objectionable.
	Includes the great bulk of screw-thread
Class 2, free fit	work of ordinary quality, of finished
,	and semifinished bolts and nuts, machine screws, etc.
Class 3, medium fit	Includes the better grade of interchangeable screw-thread work.
	Includes screw-thread work requiring a fine
Class 4, close fit	snug fit, much closer than the medium fit.
•	In this class of fit selective assembly of
	parts may be necessary.

An examination of the dimensional specifications for the various classes of fit shows that a screw made to one class of fit may be used with a nut or tapped hole made to some other class of fit. resulting quality of fit may represent an intermediate class or may approximate one of the classes of fit adopted as standard. The use of different classes of fit on the screw and threaded hole may be justified when equipment available is such that one member can be economically produced to a higher accuracy than the other. For instance, common commercial machine screws are made to class 2, free fit, while machine-screw nuts are commonly supplied in class 1, loose fit; or, ground-thread taps may make it practicable to produce class 3 nuts for use with class 1 or class 2 screws.

(a) GENERAL SPECIFICATIONS

The following general specifications apply to all classes of fit specified for the American National coarse-thread series and the American National fine-thread series.

1. Uniform Minimum Nut.—The pitch diameter of the minimum

threaded hole or nut corresponds to the basic size.

2. Uniform Minor Diameter of Nut.—The minor diameter of the threaded hole or nut, of any given size and pitch, is the same for fits of classes 1 to 4, inclusive.

3. Length of Engagement.—A length of engagement equal to the basic major diameter is the basis of the tolerances specified herein

for screw-thread products.

4. Tolerances. 3—(a) The tolerances specified represent the extreme variations permitted on the product.

Recommendations and explanations regarding the application of tolerances are given in appendix 1.

(b) The tolerance on the nut is plus, and is applied from the basic size to above basic size.

(c) The tolerance on the screw is minus, and is applied from the maximum screw size to below the maximum screw size.

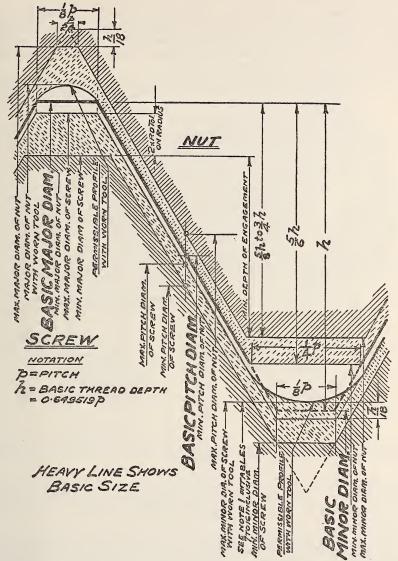


Figure 4.—Illustration of tolerances, allowance (neutral space), and crest clearances for class 1, loose fit.

(d) The pitch diameter tolerances for a screw and nut of a given class of fit are the same.

(e) Pitch diameter tolerances include lead and angle variations.

(See footnote 1, tables 3, 4, 5, and 6.)

(f) The tolerances on the major diameters of class 1, loose fit, or class 2, free fit screws are twice the tolerance values allowed on the

pitch diameters of the same respective classes and pitches with the following exception: On class 2, free fit, American National coarse-thread series, externally threaded parts of unfinished, hot-rolled material, the same tolerances on major diameter are applied as on class 1, loose fit screws.

The tolerances on the major diameters of class 3, medium fit, and class 4, close fit screws, American National coarse-thread series, are the same as those on class 2, free fit finished screws of the same thread series; and for the American National fine-thread series are the same

as those on class 2, free fit of that series.

(g) The minimum minor diameter of a screw of a given pitch is such as to result in a basic flat $(\frac{1}{8} \times p)$ at the root when the pitch

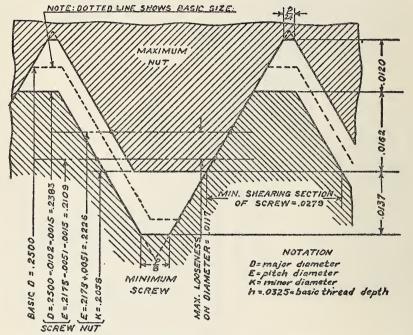


FIGURE 5.—Illustration of loosest condition for class 1, loose fit, one-fourth inch, 20 threads.

diameter of the screw is at its minimum value. When the maximum screw is basic, the minimum minor diameter of the screw will be below the basic minor diameter by the amount of the specified pitch diameter tolerance.

(h) The maximum minor diameter of a screw of a given pitch may be such as results from the use of a worn or rounded threading tool, when the pitch diameter is at its maximum value. In no case, however, should the form of a thread, as results from tool wear, be such as to cause the screw to be rejected on the maximum minor diameter by a "go" ring gage, the minor diameter of which is equal to the minimum minor diameter of the nut.

(i) The maximum major diameter of the nut of a given pitch is such as to result in a flat equal to one third of the basic flat $(\frac{1}{24} \times p)$

when the pitch diameter of the nut is at its maximum value. When the minimum nut is basic, its maximum major diameter will be above the basic major diameter by the amount of the specified pitch diameter

tolerance plus two ninths of the basic thread depth.

(j) The nominal minimum major diameter of a nut is the basic major diameter. In no case, however, should the minimum major diameter of the nut, as results from a worn tap or cutting tool, be such as to cause the nut to be rejected on the minimum major diameter by a "go" plug gage made to the standard form at the crest.

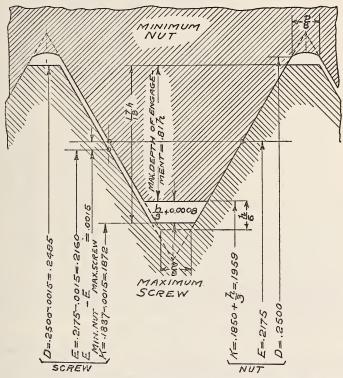


Figure 6.—Illustration of tightest condition for class 1, loose fit, one-fourth inch, 20 threads.

NOTATION

D=major diameter E=pitch diameter K=minor diameter h=0.0325=basic thread depth

(k) Tolerances are based on the pitch of the thread and a length

of engagement equal to the basic major diameter, but may be used for lengths of engagement up to 1½ diameters. (For longer lengths of engagement see section V, p. 76.)

(b) CLASSIFICATION OF FITS

1. Class 1, Loose Fit.—(a) Definition.—The loose-fit class is intended to cover the manufacture of threaded parts where quick and easy assembly is necessary and a considerable amount of shake or play is not objectionable.

Table 3.—Class 1, loose fit, allowances and tolerances for screws and nuts

Threads per inch	Allowances	Pitch- diameter tolerances 1	Lead errors consuming one half of pitch- diameter tolerances ²	Errors in half-angle consuming one half of pitch- diameter tolerances
1	2	3	4	5
80	Inch 0.0007 .0007 .0007 .0008 .0009 .0009 .0010 .0011 .0011 .0012 .0013 .0016 .0016	Inch 0.0024 .0025 .0026 .0028 .0031 .0032 .0034 .0036 .0038 .0043 .0046 .0051 .0057 .0063	Inch 0.0007 .0007 .0008 .0008 .0009 .0009 .0009 .0010 .0011 .0012 .0013 .0015 .0016 .0018	Deg. Min. 3 40 3 26 3 10 0 2 50 2 41 2 26 2 28 2 19 2 18 2 6 1 57 1 58 1 555
14	. 0018 . 0021 . 0022 . 0024 . 0026 . 0028 . 0031 . 0034 . 0039	. 0003 . 0070 . 0074 . 0079 . 0085 . 0092 . 0100 . 0111 . 0124	. 0018 . 0020 . 0021 . 0023 . 0025 . 0027 . 0029 . 0032 . 0036	1 52 1 50 1 49 1 47 1 45 1 43 1 42 1 39
6	. 0044 . 0052 . 0057 . 0064	. 0145 . 0169 . 0184 . 0204	. 0042 . 0049 . 0053 . 0059	1 40 1 37 1 35 1 33

¹ The tolerances specified for pitch diameter include all errors of pitch diameter, lead, and angle. The full tolerance cannot, therefore, be used on pitch diameter unless the lead and angle of the thread are perfect. Columns 4 and 5 give, for information, the errors in lead (per length of thread engaged) and in angle, each of which can be compensated for by half the tolerance on the pitch diameter given in column 3. If lead and angle errors both exist to the amount tabulated, the pitch diameter of a bott, for example, must be reduced by the full tolerance or it will not enter the "'go" gage.
² Between any 2 threads not farther apart than the length of engagement.

This class has an allowance on the screw to permit ready assembly

even when the threads are slightly bruised or dirty.

(b) Minimum nut basic.—The pitch diameter of the minimum nut of a given diameter and pitch corresponds to the basic pitch diameter, as specified in the tables of thread series given herein, which is computed from the basic major diameter of the thread. The pitch diameter of the minimum nut is the theoretical pitch diameter for that size.

(c) Maximum screw below basic.4—The dimensions of the maximum screw of a given pitch and diameter are below the basic dimensions as specified in the tables of thread series given herein, which are computed from the basic major diameter of the threads, by the amount of the allowance given in table 3.

(d) Allowance and tolerance values.—Allowances and tolerances are

specified in table 3.

2. Class 2, Free Fit.—(a) Definition.—The free-fit class is intended to apply to interchangeable manufacture where the threaded members

⁴ The maximum minor diameter of the screw is above the basic minor diameter as shown in fig. 4.

are to assemble nearly or entirely with the fingers, where a moderate amount of shake or play between the assembled threaded members is not objectionable, and where no allowance is required. This class includes the great bulk of fastening screws.

Figure 7.—Illustration of tolerances and crest clearances for class 2, free fit:

(b) Minimum nut basic.—The pitch diameter of the minimum nut of a given diameter and pitch corresponds to the basic pitch diameter, as specified in tables of thread series given herein, which is computed from the basic major diameter of the thread.

Table 4.—Class 2, free fit, tolerances for screws and nuts (no allowances)

Threads per inch	Allowances	Pitch- diameter tolerances ¹	Lead errors consuming one half of pitch- diameter tolerances ²	Errors in half-angle consuming one half of pitch- diameter tolerances
1	2	3	4	5
80	Inch 0.0000 .0000 .0000 .0000 .0000	Inch 0.0017 .0018 .0019 .0020 .0022	Inch 0.0005 .0005 .0005 .0006	Deg. Min. 2 36 2 28 2 19 2 8 2 1
44	. 0000	. 0023	. 0007	$\begin{array}{ccc} 1 & 56 \\ 1 & 50 \\ 1 & 43 \\ 1 & 39 \\ 1 & 39 \end{array}$
40	. 0000	. 0024	. 0007	
36	. 0000	. 0025	. 0007	
32	. 0000	. 0027	. 0008	
28	. 0000	. 0031	. 0009	
24	. 0000	. 0033	. 0010	1 31
	. 0000	. 0036	. 0010	1 22
	. 0000	. 0041	. 0012	1 25
	. 0000	. 0045	. 0013	1 22
14	. 0000	. 0049	. 0014	1 19
	. 0000	. 0052	. 0015	1 17
	. 0000	. 0056	. 0016	1 17
	. 0000	. 0059	. 0017	1 14
10	. 0000	. 0064	. 0018	1 13
	. 0000	. 0070	. 0020	1 12
	. 0000	. 0076	. 0022	1 10
	. 0000	. 0085	. 0025	1 8
6	. 0000 . 0000 . 0000 . 0000	.0101 .0116 .0127 .0140	. 0029 . 0033 . 0037 . 0040	$ \begin{array}{cccc} 1 & 9 \\ 1 & 6 \\ 1 & 5 \\ 1 & 4 \end{array} $

¹ The tolerances specified for pitch diameter include all errors of pitch diameter, lead, and angle. The full tolerance cannot, therefore, be used on pitch diameter unless the lead and angle of the thread are perfect. Columns 4 and 5 give, for information, the errors in lead (per length of thread engaged) and in angle, each of which can be compensated for by half the tolerance on the pitch diameter given in column 3. If lead and angle errors both exist to the amount tabulated, the pitch diameter of a bolt, for example, must be reduced by the full tolerance or it will not enter a basic nut or gage.

not enter a basic nut or gage.

2 Between any two threads not farther apart than the length of engagement.

(c) Maximum screw basic.⁵—The major diameter and pitch diameter of the maximum screw of a given pitch and diameter correspond to the basic dimensions, as specified in tables of thread series given herein, which are computed from the basic major diameter of the thread.

(d) Allowance and tolerance values.—Allowances and tolerances are

specified in table 4.

3. Class 3, Medium Fit.—(a) Definition.—The medium-fit class is intended to apply to the manufacture of the higher grade of threaded parts which are to assemble nearly or entirely with the fingers and must have the minimum amount of shake or play between the threaded members. It is the same in every particular as class 2, free fit, except that the tolerances are smaller.

⁵ The maximum minor diameter of the screw is above the basic minor diameter, as shown in fig. 7.

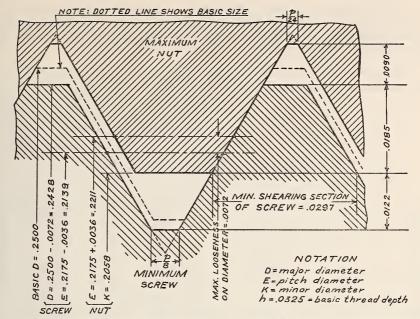


Figure 8.—Illustration of loosest condition for class 2, free fit, one-fourth inch, 20 threads.

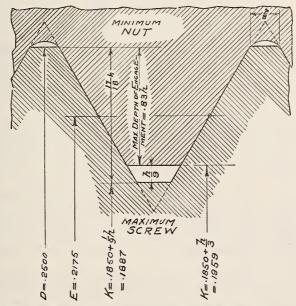


Figure 9.—Illustration of tightest condition for class 2, free fit, one-fourth inch, 20 threads.

NOTATION

D=major diameter E=pitch diameter K=minor diameter h=0.0325=basic thread depth

(b) Minimum nut basic.—The pitch diameter of the minimum nut of a given diameter and pitch corresponds to the basic pitch diameter, as specified in tables of thread series given herein, which is computed from the basic major diameter of the thread.

Table 5.—Class 3, medium fit, tolerances for screws and nuts (no allowances)

Threads per inch	Allowances	Pitch- diameter tolerances ¹	Lead errors consuming one half of pitch- diameter tolerances ²	Errors in half-angle consuming one half of pitch- diameter tolerances
1	2	3	4	5
80	Inch 0.0000 .0000 .0000 .0000 .0000	Inch 0.0013 .0013 .0014 .0015 .0016	Inch 0.0004 .0004 .0004 .0004 .0005	Deg. Min. 1 59 1 47 1 43 1 36 1 28
44	. 0000 . 0000 . 0000 . 0000 . 0000	. 0016 . 0017 . 0018 . 0019 . 0022	. 0005 . 0005 . 0005 . 0005 . 0006	1 21 1 18 1 14 1 10 1 11
24	. 0000 . 0000 . 0000 . 0000	. 0024 . 0026 . 0030 . 0032	. 0007 . 0008 . 0009 . 0009	$\begin{array}{ccc} 1 & 6 \\ 1 & 0 \\ 1 & 2 \\ 0 & 59 \end{array}$
14 13 12 11	. 0000 . 0000 . 0000 . 0000	. 0036 . 0037 . 0040 . 0042	. 0010 . 0011 . 0012 . 0012	0 58 0 55 0 55 0 53
10	. 0000 . 0000 . 0000 . 0000	. 0045 . 0049 . 0054 . 0059	. 0013 . 0014 . 0016 . 0017	$\begin{array}{ccc} 0 & 52 \\ 0 & 51 \\ 0 & 50 \\ 0 & 47 \end{array}$
65	. 0000 . 0000 . 0000 . 0000	. 0071 . 0082 . 0089 . 0097	. 0020 . 0024 . 0026 . 0028	$egin{array}{ccc} 0 & 49 \\ 0 & 47 \\ 0 & 46 \\ 0 & 44 \\ \end{array}$

¹ The tolerances specified for pitch diameter include all errors of pitch diameter, lead, and angle. The full tolerance cannot, therefore, be used on pitch diameter unless the lead and angle of the thread are perfect. Columns 4 and 5 give, for information, the errors in lead (per length of thread engaged) and in angle, each of which can be compensated for by half the tolerance on the pitch diameter given in column 3. If lead and angle errors both exist to the amount tabulated, the pitch diameter of a bolt, for example, must be reduced by the full tolerance or it will not enter a basic nut or gage.

² Between any 2 threads not farther apart than the length of engagement.

(c) Maximum screw basic.6—The major diameter and pitch diameter of the maximum screw of a given pitch and diameter correspond to the basic dimensions, as specified in tables of thread series given herein, which are computed from the basic major diameter of the thread.

(d) Allowance and tolerance values.—Allowances and tolerances are

specified in table 5.

4. Class 4, Close Fit.—(a) Definition.—The close-fit class is intended for threaded work of the finest commercial quality where very little shake or play is desirable, and where a screw driver or wrench may be necessary for assembly. In the manufacture of

⁶ The maximum minor diameter of the screw is above the basic minor diameter, as shown in fig. 10.

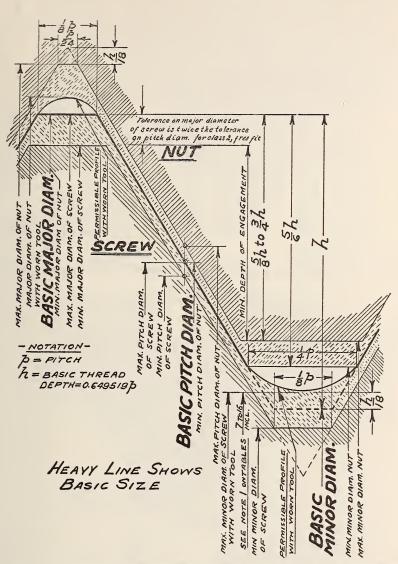


FIGURE 10.—Illustration of tolerances and crest clearances for class 3, medium fit.

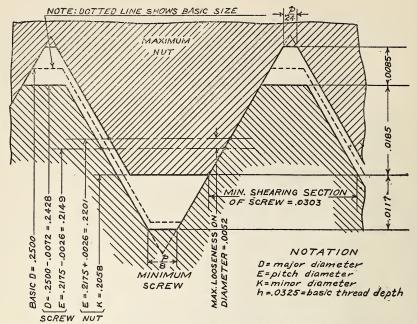


Figure 11.—Illustration of loosest condition for class 3, medium fit, one-fourth inch, 20 threads.

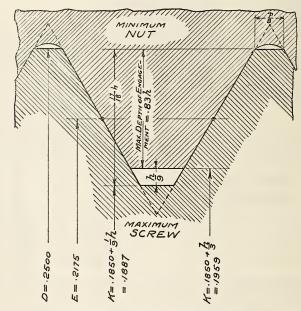


Figure 12.—Illustration of tightest condition for class 3, medium fit, one-fourth inch, 20 threads.

NOTATION

D=major diameter E=pitch diameter

K=minor diameter

h=0.0325= basic thread depth

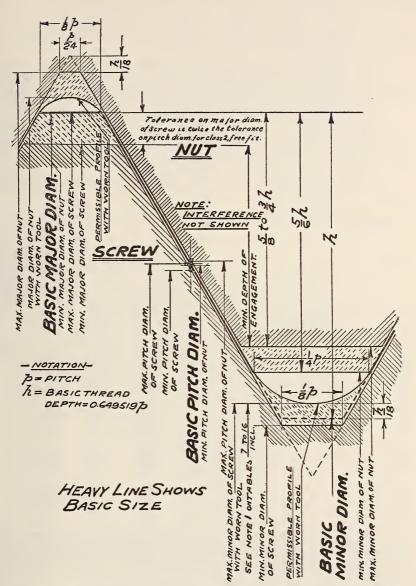


Figure 13.—Illustration of tolerances, allowance (interference), and cress clearances for class 4, close fit.

screw-thread products belonging in this class it will be necessary to use precision tools, gages made to special tolerances for this class (see table 21, p. 58), and other refinements. This quality of work should, therefore, be used only in cases where requirements of the mechanism being produced are exacting, or where special conditions require screws having a precision fit. In order to secure the fit desired it may be necessary in some cases to select the parts when the product is being assembled.

(b) Minimum nut basic.—The pitch diameter of the minimum nut of a given diameter and pitch corresponds to the basic pitch diameter, as specified in tables of thread series given herein, which is computed

from the basic major diameter of the thread.

(c) Maximum screw above basic.—The pitch diameter of the maximum screw of a given diameter and pitch is above the basic dimensions as specified in tables of thread series given herein, which are computed from the basic major diameter of the thread, by the amount of the allowance (interference) specified in table 6.

(d) Allowance and tolerance values.—Allowances and tolerances are

specified in table 6.

Table 6.—Class 4, close fit, allowances and tolerances for screws and nuts

Threads per inch	Interfer- ences or negative allowances	Pitch- diameter tolerances ¹	Lead errors consuming one half of pitch- diameter tolerances ²	Errors in half angle consuming one half of pitch- diameter tolerances
1	2	3	4	5
28	Inch 0.0002 0003 0003 .0003 .0004 .0004 .0005 .0005 .0006 .0006 .0006 .0007 .0008	Inch 0.0011 .0012 .0013 .0015 .0016 .0018 .0019 .0020 .0021 .0023 .0024 .0027 .0030	Inch 0.0003 .0003 .0004 .0004 .0005 .0005 .0005 .0006 .0006 .0007 .0007	Deg. Min. 0 35 0 33 0 30 0 31 0 29 0 29 0 28 0 28 0 26 0 26 0 25 0 24
6 5 4½ 4.	.0009 .0010 .0011 .0013	. 0036 . 0041 . 0044 . 0048	.0010 .0012 .0013 .0014	0 25 0 23 0 23 0 22

¹ The tolerances specified for pitch diameter include all errors of pitch diameter, lead, and angle. The full tolerance cannot, therefore, be used on pitch diameter unless the lead and angle of the thread are perfect. Columns 4 and 5 give, for information, the errors in lead (per length of thread engaged) and in angle, each of which can be compensated for by half the tolerance on the pitch diameter given in column 3. If lead and angle errors both exist to the amount tabulated, the pitch diameter of a bolt, for example, must be reduced by the full tolerance or it will not enter the "go" gage. of enter the "go" gage.

Between any 2 threads not farther apart than the length of engagement.

⁷ Including positive control of taps and dies by means of a lead screw. See p. 145.

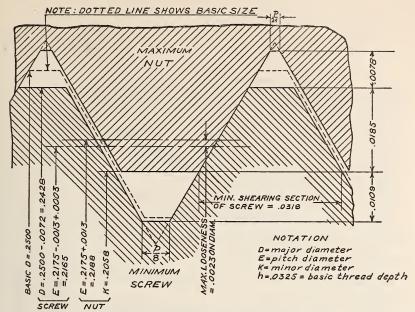


Figure 14.—Illustration of loosest condition for class 4, close fit, one-fourth inch, 20 threads.

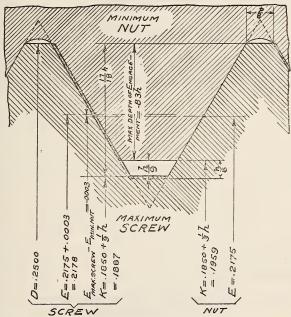


Figure 15.—Illustration of tightest condition for class 4, close fit, one-fourth inch, 20 threads.

NOTATION D= major diameter E= pitch diameter K= minor diameter h=0.0325= basic thread depth

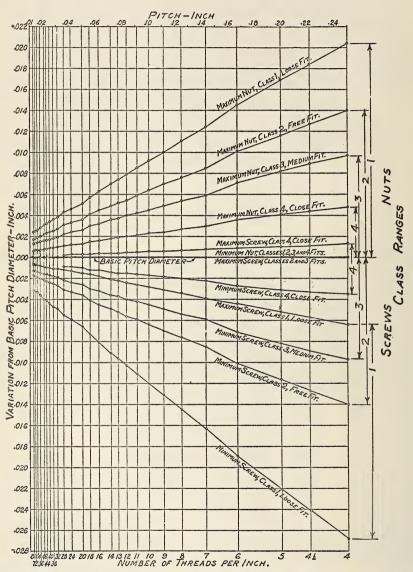


Figure 16.—Relation of maximum and minimum pitch diameters of classes 1, 2, 3, and 4 fits to basic pitch diameters.

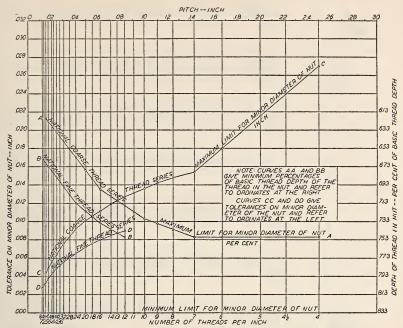


Figure 17.—Limits for minor diameter of nut, American National coarse and fine thread series.

4. TABLES OF LIMITING DIMENSIONS

The limiting dimensions of American National coarse and American National fine threads, to be made to the tolerances and allowances determining the various classes of fit, as herein established, are here tabulated.

Table 7.—Class 1, loose fit, American National coarse-thread series

	Basic major diamete		13	Inches 0.0730 0.0730 0.0986 0.0990 1120	. 1380 . 1640 . 1900 . 2160	.3125 .3750 .4375 .5000	. 6250 . 7500 . 8750 1. 0000 1. 1250	1, 2500 1, 3750 1, 5000 1, 7500 2, 0000
	Major	diameter, minimum 2	12	Inches 0.0730 .0860 .0990 .1120	. 1380 . 1640 . 1900 . 2160	.3125 .3750 .4375 .5000	. 6250 . 7500 . 8750 1. 0000 1. 1250	1. 2500 1. 3750 1. 5000 1. 7500 2. 0000
		Max.	11	Inches 0.0655 .0772 .0886 .0992	. 1215 . 1475 . 1675 . 1935	. 2821 . 3407 . 3981 . 4574	. 5745 . 6942 . 8128 . 9299 1. 0446	1, 1696 1, 2812 1, 4062 1, 6370 1, 8741
Nut sizes	Pitch diameter	Min.	10	Inches 0.0629 .0744 .0855 .0958	. 1177 . 1437 . 1629 . 1889	. 2764 . 3344 . 3911 . 4500 . 5084	. 5660 . 6850 . 8028 . 9188 1. 0322	1, 1572 1, 2667 1, 3917 1, 6201 1, 8557
	ameter	Max.	6	Inches 0.0604 0.0715 0.0715 0.0913	. 1118 . 1378 . 1541 . 1801	. 2630 . 3184 . 3721 . 4290 . 4850	. 5397 . 6553 . 7689 . 8795 . 9858	1, 1108 1, 2126 1, 3376 1, 5551 1, 7835
	Minor diameter	Min.	œ	Inches 0.0561 .0667 .0764 .0849	. 1042 . 1302 . 1449 . 1709	. 2524 . 3073 . 3602 . 4167 . 4723	. 5266 . 6417 . 7547 . 8647 . 9704	1,0954 1,1946 1,3196 1,5335 1,7594
	Minor	maximum 1	7	Inches 0.0531 .0633 .0725 .0803	. 0986 . 1246 . 1376 . 1636	. 2427 . 2965 . 3478 . 4034	. 5109 . 6245 . 7356 . 8432 . 9458	1, 0708 1, 1661 1, 2911 1, 4994 1, 7217
	ameter	Min.	9	Inches 0.0596 .0708 .0815 .0914	. 1128 . 1388 . 1570 . 1830	. 2691 . 3263 . 3820 . 4404 . 4981	. 5549 . 6730 . 7897 . 9043 1. 0159	1, 1409 1, 2478 1, 3728 1, 5980 1, 8316
Screw sizes	Pitch diameter	Max.	10	Inches 0.0622 .0736 .0846 .0948	. 1166 . 1426 . 1616 . 1876	. 2748 . 3326 . 3890 . 4478	. 5634 . 6822 . 7997 . 9154 1. 0283	1, 1533 1, 2623 1, 3873 1, 6149 1, 8500
	ameter	Min.	4	Inches 0.0671 .0796 .0919 .1042	. 1293 . 1553 . 1795 . 2055	. 2995 . 3606 . 4214 . 4830 . 5443	. 6054 . 7288 . 8519 . 9744 1. 0963	1, 2213 1, 3416 1, 4666 1, 7110 1, 9575
	Major diameter	Max.	က	Inches 0. 0723 . 0852 . 0981 . 1110 . 1240	. 1369 . 1629 . 1887 . 2147	. 3109 . 3732 . 4354 . 4978 . 5601	. 6224 . 7472 . 8719 . 9966 1. 1211	1, 2461 1, 3706 1, 4956 1, 7448 1, 9943
	Threads per inch		2	64 40 40 40	222448	12 14 12 13 14 15 15 15 16	110 10 8 7	6 6 5 4 1/2
	Sizes		1	5.4.5	8 8 8 10 12 12	\$10 \$28 \$716 \$15 \$15	28 28 1 13	174 178 178 27 27 27

	DIMENS
2, 2500	3. 2500
2, 5000	3. 5000
2, 7500	3. 7500
3, 0000	4. 0000
2. 2500	3. 2500
2. 5000	3. 5000
2. 7500	3. 7500
3. 0000	4. 0000
2, 1241	3. 1080
2, 3580	3. 3580
2, 6080	3. 6080
2, 8580	3. 8580
2. 1057	3. 0876
2. 3376	3. 3376
2. 5876	3. 5876
2. 5876	3. 8376
2. 0335	3. 2564
2. 2564	3. 2564
2. 5064	3. 5064
2. 7564	3. 7564
2. 0094	2. 9794
2. 2294	3. 2294
2. 4794	3. 4794
2. 7294	3. 7294
1. 9717	2. 9369
2. 1869	3. 1869
2. 4369	3. 4369
2. 6869	3. 6869
2.0816	3,0608
2.3108	3,3108
2.5608	3,5608
2.8108	3,8108
2. 1000	3.0812
2. 3312	3.3312
2. 5812	3.5812
2. 8312	3.8312
2, 2075	3, 2028
2, 4528	3, 4528
2, 7028	3, 7028
2, 9528	3, 9528
2, 2443	3. 2436
2, 4936	3. 4936
2, 7436	3. 7436
2, 9936	3. 9936
4444	4444

1 2 See footnotes on p. 41.

Table 8.—Class 2, free fit, American National coarse-thread series

		Basic major diameter		13	Inches 0,0730 0,0860 0,0990 1120	. 1380 . 1640 . 1900 . 2160	.3125 .3750 .4375 .5000	. 6250 . 7500 . 8750 1. 0000 1. 1250
		Major diameter, minimum ²		12	Inches 0. 0730 . 0860 . 0990 . 1120	. 1380 . 1640 . 1900 . 2160	. 3125 . 3750 . 4375 . 5000 . 5625	. 6250 . 7500 . 8750 1. 0000 1. 1250
			Max.	11	Inches 0.0648 .0764 .0877 .0982	. 1204 . 1464 . 1662 . 1922 . 2211	. 2805 . 3389 . 3960 . 4552 . 5140	. 5719 . 6914 . 8098 . 9264 1. 0407
Nut sizes		Pitch diameter	Min.	10	Inches 0.0629 0744 0855 0958 0958	. 1177 . 1437 . 1629 . 1889	. 2764 . 3344 . 3911 . 4500 . 5084	. 5660 . 6850 . 8028 . 9188 1. 0322
		iameter	Max.	6	Inches 0.0604 0.0715 0.0820 0.0913 1.043	. 1118 . 1378 . 1541 . 1801	. 2630 . 3184 . 3721 . 4290 . 4850	. 5397 . 6553 . 7689 . 8795 . 9858
		Minor diameter	Min.	œ	Inches 0.0561 .0667 .0764 .0849	. 1042 . 1302 . 1449 . 1709	. 2524 . 3073 . 3602 . 4167 . 4723	. 5266 . 6417 . 7547 . 8647 . 9704
		Minor diameter, maximum		7	Inches 0.0538 .0641 .0734 .0813	. 0997 . 1257 . 1389 . 1649	. 2443 . 2983 . 3499 . 4056	. 5135 . 6273 . 7387 . 8466 . 9497
			Min.	9	Inches 0.0610 .0724 .0833 .0934	. 1150 . 1410 . 1596 . 1856	. 2723 . 3299 . 3862 . 4448	. 5601 . 6786 . 7958 . 9112 1. 0237
sizes		Pitch diameter	Max.	10	Inches 0.0629 .0744 .0855 .0958	. 1177 . 1437 . 1629 . 1889	. 2764 . 3344 . 3911 . 4500 . 5084	. 5660 . 6850 . 8028 . 9188 1. 0322
Screw sizes	Jr.	Threaded parts of unfinished, hot-rolled material	Min.	4a	Inches 0.0678 0.0804 0.0928 0.1052 0.1182	. 1564 . 1564 . 1808 . 2068	. 3624 . 4235 . 4852 . 5467	. 6080 . 7316 . 8550 . 9778 1. 1002
	Major diameter	Semifin- ished and finished bolts and screws	Min.	4	Inches 0.0692 .0820 .0946 .1072	. 1326 . 1586 . 1834 . 2094	. 3043 . 3660 . 4277 . 4896 . 5513	. 6132 . 7372 . 8610 . 9848 1. 1080
	M	Maximum		က	Inches 0.0730 0.0860 0.0990 0.1120 1.1250	. 1380 . 1640 . 1900 . 2160	. 3125 . 3750 . 4375 . 5000	. 6250 . 7500 . 8750 1. 0000 1. 1250
		Threads per inch		67	49 25 44 44 04 44 44 44 44 44 44 44 44 44 44 44 44 4	222228	18 14 13 12 13	110000000000000000000000000000000000000
		Sizes		1	12640	6-8-8-10-112-12-144-144-144-144-144-144-144-144-	788 788 776 776	7.7%

1, 2500 1, 3750 1, 5000 1, 7500 2, 0000	2. 2500 2. 5000 3. 0000	3, 2500 3, 5000 3, 7500 4, 0000
1, 2500 1, 3750 1, 5000 1, 7509 2, 0000	2. 2500 2. 5000 3. 7500 3. 0000	3. 2500 3. 5000 4. 0000
1. 1657 1. 2768 1. 4018 1. 6317 1. 8684	2. 1184 2. 3516 2. 6016 2. 8516	3, 1016 3, 3516 3, 6016 3, 8516
1, 1572 1, 2667 1, 2917 1, 6201 1, 8557	2, 1057 2, 3376 2, 5876 2, 8376	3. 0876 3. 3376 3. 5876 3. 8376
1. 1108 1, 2126 1. 3376 1. 5551 1. 7835	2. 0335 2. 2564 2. 5064 2. 7564	3, 0064 3, 2564 3, 5064 3, 7564
1, 0954 1, 1946 1, 3196 1, 5335 1, 7594	2, 0094 2, 2294 2, 4794 2, 7294	2. 9794 3. 2294 3. 4794 3. 7294
1. 0747 1. 1705 1. 2955 1. 5046 1. 7274	1. 9774 2. 1933 2. 4433 2. 6933	2. 9433 3. 1933 3. 4433 3. 6933
1. 1487 1. 2566 1. 3816 1. 6085 1. 8430	2, 0930 2, 3236 2, 5736 2, 8236	3, 0736 3, 3236 3, 5736 3, 8236
1. 1572 1. 2667 1. 3917 1. 6201 1. 8557	2, 1057 2, 3376 2, 5876 2, 8376	3. 0876 3. 3376 3. 5876 3. 8376
1. 2252 1. 3460 1. 4710 1. 7162 1. 9632	2. 2132 2. 4592 2. 7092 2. 9592	3, 2092 3, 4592 3, 7092 3, 9592
1. 2330 1. 3548 1. 4798 1. 7268 1. 9746	2, 2246 2, 4720 2, 7220 2, 9720	3, 2220 3, 4720 3, 7220 3, 9720
1. 2500 1. 3750 1. 5000 1. 7500 2. 0000	2, 2500 2, 5000 3, 0000	3. 2500 3. 5000 4. 0000
1 6 6 5 4 1½	4444	य य य य

12 See footnotes on p. 41.

Table 9.—Class 3, medium fit, American National coarse-thread series

				Screw sizes					Nut sizes			Bosin
Sizes	Threads per inch	Major diameter	ameter	Pitch diameter	ameter	Minor	Minor diameter	iameter	Pitch diameter	ameter	Major	major diameter
	,	Max.	Min.	Max.	Min.	maximum 1	Min.	Max.	Min.	Max.	minimum 2	1
pend	2	က	4	10	9	7	∞	6	10	111	12	13
	\$28444 8884488 884481 1110087 70004 4444 4444	Inches 0.0730 (1920))))))))))))))))))))))))))))))))))))	7nches 0,0692 0,0692 0,0696 1,072 1,1205 1,1386 1,1386 1,1386 1,2094 2,2094 2,2094 2,2094 2,2094 1,372 1,3	Inches 0.0629 0.0629 0.0635 0.0635 0.0638 0.0856 0.0858 0.1177 0.1437 0.1629 0.1889 0.2344 0.3344 0.	700 Per	Tinches 0.0538 0.0538 0.0538 0.0538 0.0937 0.0997 1.1389 1.1649 1.1887 2.2443 2.2443 2.2443 2.2443 2.2443 2.2443 2.2443 2.24433 2.24433 2.24433 2.24433 2.24433 2.24433 2.24433 2.24433 3.24433 3.24433 3.24433	7000681 0.0551 0.0551 0.0551 0.0573 0.0734 0.073	Puches 0.0004 0.0013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.0004	Imphes 0.0825 0.0825 0.0855 0.0958 1.0958 1.1437 1.1437 1.1629 1.1889 1.2764 1.3314 1.6322 1.1672 1.0322 1.1672 1.0322 1.1672 1.0322 1.1673 1.0322 1.1673 1.0322 1.1673 2.3376 2.3376 2.3376 2.3376 2.3376 2.3376 3.	700468 0.00543 0.00543 0.0075 0.0077 0.1106 0.1106 0.1204 0.2204	Thackes O 0 0 0 0 0 0 0 0 0	## April 1999 1,000

12 See footnotes on p. 41.

Table 10.—Class 4, close fit, American National coarse-thread series

	Basic major diameter		13	Inches 0. 2500 . 3125 . 3750 . 4375	. 5000 . 5625 . 6250 . 7500	. 8750 1. 0000 1. 1250 1. 2500	1. 3750 1. 5000 1. 7500 2. 0000	2, 2500 2, 5000 2, 7500 3, 0000	3, 2500 3, 5000 3, 7500 4, 0000
	Major	minimum 1	12	Inches 0. 2500 . 3125 . 3750 . 4375	. 5000 . 5625 . 6250 . 7500	. 8750 1. 0000 1. 1250 1. 2500	1. 3750 1. 5000 1. 7500 2. 0000	2. 2500 2. 5000 2. 7500 3. 0000	3, 2500 3, 5000 3, 7500 4, 0000
	ameter	Max.	11	Inches 0. 2188 2779 3360	. 4519 . 5104 . 5681 . 6873	. 8052 . 9215 1. 0352 1. 1602	1, 2703 1, 3953 1, 6242 1, 8601	2, 1101 2, 3424 2, 5924 2, 8424 2, 8424	3.0924 3.3424 3.5924 3.8424
Nut sizes	Pitch diameter	Min.	10	Inches 0. 2175 2764 . 3344 . 3911	. 4500 . 5084 . 5660 . 6850	. 8028 . 9188 1. 0322 1. 1572	1, 2667 1, 3917 1, 6201 1, 8557	2. 1057 2. 3376 2. 5876 2. 8376	3. 0876 3. 3376 3. 5876 3. 8376
	ameter	Max.	6	Inches 0. 2060 . 2630 . 3184 . 3721	. 4290 . 4850 . 5397 . 6553	. 7689 . 8795 . 9858 1. 1108	1. 2126 1. 3376 1. 5551 1. 7835	2. 0335 2. 2564 2. 5064 2. 7564	3. 2564 3. 2564 3. 5064 3. 7564
	Minor diameter	Min.	80	Inches 0. 1959 2524 3073	. 4167 . 4723 . 5266 . 6417	. 7547 . 8647 . 9704 1. 0954	1. 1946 1. 3196 1. 5335 1. 7594	2. 2294 2. 2294 2. 4794 2. 7294	2. 9794 3. 2294 3. 4794 3. 7294
	Minor	maximum 1	7	Inches 0. 1887 2443 2983	. 4056 . 4603 . 5135 . 6273	. 7387 . 8466 . 9497 1. 0747	1. 1705 1. 2955 1. 5046 1. 7274	1. 9774 2. 1933 2. 4433 2. 6933	2. 9433 3. 1933 3. 4433 3. 6933
	ameter	Min.	9	Inches 0. 2165 2752 3332 3897	. 4485 . 5069 . 5644 . 6833	. 8010 . 9168 1. 0300 1. 1550	1. 2640 1. 3890 1. 6170 1. 8524	2. 1024 2. 3341 2. 5841 2. 8341	3, 0841 3, 3341 3, 5841 3, 8341
Screw sizes	Pitch diameter	Max.	10	Inches 0. 2178 . 2767 . 3348 . 3915	. 4504 . 5089 . 5665 . 6856	. 8034 . 9195 1. 0330 1. 1580	1. 2676 1. 3926 1. 6211 1. 8568	2. 1068 2. 3389 2. 5889 2. 8389	3. 0889 3. 3389 3. 5889 3. 8389
	ameter	Min.	4	Inches 0. 2428 3043 3660 4277	. 4896 . 5513 . 6132 . 7372	. 8610 . 9848 1. 1080 1. 2330	1. 3548 1. 4798 1. 7268 1. 9746	2, 2246 2, 4720 2, 7220 2, 9720	3. 2220 3. 4720 3. 7220 3. 9720
	Major diameter	Max.	ေ	Inches 0. 2500 . 3125 . 3750 . 4375	. 5000 . 5625 . 6250 . 7500	. 8750 1. 0000 1. 1250 1. 2500	1.3750 1.5000 1.7500 2.0000	2. 2500 2. 5000 2. 7500 3. 0000	3. 2500 3. 5000 3. 7500 4. 0000
	Threads per inch		63	20 18 16 14	112	6877	6 6 4 1/2	414444	ਚ ਚਾ ਚਾ ਚਾ
	Sizes		1						
				7%74	75 97.6 34 34	78- 11/8- 11/4-	138 115 134 24 2	234	314

12 See footnotes on p. 41.

Table 11.—Class 1, loose fit, American National fine-thread series

	Basic major diameter		13	Inches 0.0600 0.0730 0.0860 0.0900 1120	. 1250 . 1380 . 1640 . 1900	. 2500 . 3125 . 3750 . 4375	. 5625 . 6250 . 7500 . 8750 1. 0000	1, 1250 1, 2500 1, 3750 1, 5000
	Major	minimum 1	12	Inches 0.0600 0730 0860 0990	. 1250 . 1380 . 1640 . 1900	. 2500 . 3125 . 3750 . 4375	. 5625 . 6250 . 7500 . 8750 1. 0000	1. 1250 1. 2500 1. 3750 1. 5000
		Max.	11	Inches 0.0543 .0665 .0785 .0902	. 1134 . 1252 . 1496 . 1735	. 2311 . 2900 . 3525 . 4101	. 5321 . 5946 . 7157 . 8356	1. 0788 1. 2038 1. 3288 1. 4538
Nut sizes	Pitch diameter	Min.	10	Inches 0.0519 .0640 .0759 .0874	.1102 .1218 .1460 .1697	. 2268 . 2854 . 3479 . 4050	. 5264 . 5889 . 7094 . 8286 . 9536	1. 0709 1. 1959 1. 3209 1. 4459
	ameter	Max.	6	Inches 0. 0492 0. 0610 0724 0834	. 1049 . 1158 . 1391 . 1618	. 2739 . 2739 . 3364 . 3906 . 4531	. 5100 . 5725 . 6903 . 8062 . 9312	1. 0438 1. 1688 1. 2938 1. 4188
	Minor diameter	Min.	8	Inches 0. 0466 0. 0580 0. 0691 0. 0797	. 1004 . 1109 . 1339 . 1562 . 1773	. 2113 . 2674 . 3299 . 3834 . 4459	. 5024 . 5649 . 6823 . 7977 . 9227	1. 0348 1. 1598 1. 2848 1. 4098
	Minor	maximum 1	7	Inches 0. 0440 . 0553 . 0661 . 0763	. 0962 . 1063 . 1288 . 1506 . 1710	. 2050 . 2601 . 3226 . 3747	. 4927 . 5552 . 6715 . 7853	1. 0204 1. 1454 1. 2704 1. 3954
	ameter	Min.	9	Inches 0. 0488 0. 0608 0. 0726 0. 0838 0. 0945	. 1061 . 1174 . 1413 . 1648	. 2213 . 2796 . 3420 . 3984 . 4609	. 5191 . 5816 . 7013 . 8195 . 9445	1. 0606 1. 1856 1. 3106 1. 4356
Screw sizes	Pitch diameter	Max.	10	Inches 0. 0512 . 0633 . 0752 . 0866	. 1093 . 1208 . 1449 . 1686	. 2256 . 2841 . 3466 . 4035	. 5248 . 5873 . 7076 . 8265	1, 0685 1, 1936 1, 3185 1, 4436
	ameter	Min.	4	Inches 0.0545 0.0573 0.0801 0.0926	. 1177 . 1302 . 1557 . 1813	. 2402 . 3020 . 3645 . 4258 . 4883	. 5496 . 6120 . 7356 . 8589 . 9839	1, 1068 1, 2318 1, 3568 1, 4818
	Major diameter	Max.	ಣ	Inches 0.0593 .0723 .0853 .0982 .1111	. 1241 . 1370 . 1629 . 1889	. 2488 . 3112 . 3737 . 4360	. 5609 . 6234 . 7482 . 8729	1, 1226 1, 2476 1, 3726 1, 4976
	Threads per inch		61	80 72 64 56 48	448888	88888	81 10 10 10 10 10 10 10 10 10 10 10 10 10	2222
	Sizes			0 1 3 4 4	6 6 6 6 7 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12	XXXXX	12222	136 137 138 138

12 See footnotes on p. 41.

Table 12.—Class 2, free fit, American National fine-thread series

	Basic major diameter		13	Inches 0.0600 0.0730 0.030 0.0900 1120	. 1250 . 1380 . 1640 . 2160	. 2500 . 3125 . 3750 . 4375	. 5625 . 6250 . 7500 . 8750 1. 0000	1, 1250 1, 2500 1, 3750 1, 5000
	Major	minimum	12	Inches 0.0600 0730 0860 0990	. 1250 . 1380 . 1900 . 2160	. 2500 . 3125 . 3750 . 4375	. 5625 . 6250 . 7500 . 8750 1. 0000	1. 1250 1. 2500 1. 3750 1. 5000
	ameter	Max.	11	Inches 0.0536 .0658 .0778 .0894	. 1125 . 1242 . 1485 . 1724	. 2299 . 2887 . 3512 . 4086	. 5305 . 5930 . 7139 . 8335 . 9585	1. 0765 1. 2015 1. 3265 1. 4515
Nut sizes	Pitch diameter	Min.	10	Inches 0.0519 0640 0759 0874	. 1102 . 1218 . 1460 . 1697 . 1928	. 2268 . 2854 . 3479 . 4050	. 5264 . 5889 . 7094 . 8286 . 9536	1. 0709 1. 1959 1. 3209 1. 4459
	iameter	Max.	6	Inches 0.0492 0.010 0724 0834 0834	. 1049 . 1158 . 1391 . 1618	. 2173 . 2739 . 3364 . 3906	. 5725 . 5725 . 6903 . 8062 . 9312	1. 0438 1. 1688 1. 2938 1. 4188
	Minor diameter	Min.	œ	Inches 0. 0465 0. 0580 0. 0691 0797	. 1004 . 1109 . 1339 . 1562	. 2113 . 2674 . 3299 . 3834 . 4459	. 5649 . 5649 . 6823 . 7977	1. 0348 1. 1598 1. 2848 1. 4098
	Minor	maximum 1	7	Inches 0.0447 .0560 .0668 .0771	. 0971 . 1073 . 1299 . 1517	. 2062 . 2614 . 3239 . 3762	. 4943 . 5568 . 6733 . 7874	1. 0228 1. 1478 1. 2728 1. 3978
		Min.	9	Inches 0. 0502 . 0622 . 0740 . 0854	. 1079 . 1194 . 1435 . 1670	. 2237 . 2821 . 3446 . 4014	. 5223 . 5848 . 7049 . 8237	1. 0653 1. 1903 1. 3153 1. 4403
Screw sizes	Pitch diameter	Max.	10	Inches 0.0519 .0640 .0759 .0874	. 1102 . 1218 . 1460 . 1697	. 2268 . 2854 . 3479 . 4050	. 5264 . 5889 . 7094 . 8286 . 9536	1, 0709 1, 1959 1, 3209 1, 4459
	ameter	Min.	4	Inches 0.0566 .0694 .0822 .0950	. 1204 . 1332 . 1590 . 1846	. 2438 . 3059 . 3684 . 4303 . 4928	. 5543 . 6168 . 7410 . 8652 . 9902	1, 1138 1, 2388 1, 3638 1, 4888
	Major diameter	Max.	က	Inches 0.0600 .0730 .0860 .0990	. 1250 . 1380 . 1640 . 1900	. 2500 . 3125 . 3750 . 4375	. 5625 . 6250 . 7500 . 8750 1. 0000	1. 1250 1. 2500 1. 3750 1. 5000
	Threads per inch		2	84 84 84 84	44 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	84488	18 16 14 14	2222
	Sizes		1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5. 6. 8. 10	27.8°6 8 28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9% 9% 2% 1	22.22

1 2 See footnotes on p. 41.

Table 13.—Class 3, medium fit, American National fine-thread series

*	Basic major diameter		13	Inches 0. 0600 0. 0730 0. 0860 0. 0990 0. 1120	. 1250 . 1380 . 1640 . 1900	. 2500 . 3125 . 3750 . 4375	. 5625 . 6250 . 7500 . 8750 1. 0000	1, 1250 1, 2500 1, 3750 1, 5000
	Major diameter.	minimum'	12	Inches 0.0600 .0730 .0860 .0990	. 1250 . 1380 . 1640 . 1900	. 2500 . 3125 . 3750 . 4375	. 5625 . 6250 . 7500 . 8750 1. 0000	1, 1250 1, 2500 1, 3750 1, 5000
		Max.	111	Inches 0. 0532 . 0653 . 0773 . 0889	. 1118 . 1235 . 1478 . 1716 . 1950	. 2290 . 2878 . 3503 . 4076 . 4701	. 5294 . 5919 . 7126 . 8322 . 9572	1. 0749 1. 1999 1. 3249 1. 4499
Nut sizes	Pitch diameter	Min.	10	Inches 0.0519 .0640 .0759 .0874	. 1102 . 1218 . 1460 . 1697	. 2268 . 2854 . 3479 . 4050	. 5264 . 5889 . 7094 . 8286 . 9536	1, 0709 1, 1959 1, 3209 1, 4459
	lameter	Max.	6	Inches 0.0492 .0610 .0724 .0834	. 1049 . 1158 . 1391 . 1618	. 2173 . 2739 . 3364 . 3906	. 5725 . 6903 . 8062 . 9312	1, 0438 1, 1688 1, 2938 1, 4188
	Minor diameter	Min.	80	Inches 0.0465 0.0580 0.0691 0.0797	. 1004 . 1109 . 1339 . 1562	. 2113 . 2674 . 3299 . 3834 . 4459	. 5024 . 5649 . 6823 . 7977	1, 0348 1, 1598 1, 2848 1, 4098
	Minor	maximum 1	7	Inches 0.0447 0.0560 0.0668 0.0771	. 0971 . 1073 . 1299 . 1517	. 2062 . 2614 . 3239 . 3762	. 4943 . 5568 . 6733 . 7874 . 9124	1. 0228 1. 1478 1. 2728 1. 3978
		Min.	9	Inches 0.0506 .0627 .0745 .0859	. 1086 . 1201 . 1442 . 1678	. 2246 . 2830 . 3455 . 4024 . 4649	. 5234 . 5859 . 7062 . 8250	1, 0669 1, 1919 1, 3169 1, 4419
Screw sizes	Pitch diameter	Max.	rc	Inches 0. 0519 . 0640 . 0759 . 0874	. 1102 . 1218 . 1460 . 1697 . 1928	. 2268 . 2854 . 3479 . 4050	. 5264 . 5889 . 7094 . 8286	1. 0709 1. 1959 1. 3209 1. 4459
	ameter	Min.	4	Inches 0. 0566 . 0694 . 0822 . 0950 . 1076	, 1204 , 1332 , 1590 , 1846 , 2098	2438 3059 3684 4303 4928	. 5543 . 6168 . 7410 . 8652 . 9902	1. 1138 1. 2388 1. 3638 1. 4888
	Major diameter	Max.	es	Inches 0.0600 0730 0860 0990	. 1250 . 1380 . 1640 . 1900	. 2500 . 3125 . 3750 . 4375	. 5625 . 6250 . 7500 . 8750 1. 0000	1. 1250 1. 2500 1. 3750 1. 5000
	Threads per inch		2	86 45 48 48	49888 288	84488	18 16 16 14 14 14	12221
	Sizes		1	1 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5. 6. 8. 10.	7.8 7.8 7.8 7.0 7.0 7.0	956 556 547 178	178 178 178 178

12 See footnotes on p. 41.

Table 14.—Class 4, close fit, American National fine-thread series

Threads Major diameter Pitch diameter Minor		Basic major diameter		13	Inches 0. 2500 . 3125 . 3750 . 4375	. 5000 . 5625 . 6250 . 7500	1.0000 1.1250 1.2500 1.3750 1.5000
Threads		Major	minimum 2	12	Inches 0. 2500 . 3125 . 3750 . 4375	. 5000 . 5625 . 6250 . 7500	1, 0000 1, 1250 1, 2500 1, 3750 1, 5000
Threads		lameter	Max.	п		. 4688 . 5279 . 5904 . 7110	. 9554 1. 0729 1. 1979 1. 3229 1. 4479
Threads	Nut sizes	Pitch di	Min.	10		. 4675 . 5264 . 5889 . 7094 . 8286	. 9536 1. 0709 1. 1959 1. 3209 1. 4459
Threads		iameter	Max.	6	,	. 4531 . 5100 . 5725 . 6903 . 8062	. 9312 1. 0438 1. 1688 1. 2938 1. 4188
Threads Major diameter Pitch diameter d		Minor d	Min.	oo oo	Inches 0. 2113 . 2674 . 3299 . 3834	. 4459 . 5024 . 5649 . 6823	. 9227 1. 0348 1. 1598 1. 2848 1. 4098
Threads Major diameter Fitch dian Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. May. 28 0.2500 0.2438 0.2270 0.243 0.2270 0.243 0.2270 0.243 0.2270 0.243 0.2270 0.243 0.2570 0.243 0.2270 0.243 0.2270 0.243 0.2270 0.243 0.2270 0.243 0.2270 0.243 0.2270 0.243 0.240 0.2270 0.243 0.240 0.2270 0.243 0.240 0.243 0.240 0.243 0.240 0.243 0.240 0.243 0.240 0.2		Minor	maximum 1	7	· ·	. 4387 . 4943 . 5568 . 6733	. 9124 1. 0228 1. 1478 1. 2728 1. 3978
Threads Major diameter Max. Min. Max. Min. Max. Min. Max. Min. Max. M		ameter	Min.	9		. 4665 . 5252 . 5877 . 7082	. 9522 1. 0694 1. 1944 1. 3194 1. 4444
Threads Major diar 2 3 Max. 28 0.2500 29 3.350 29 3.3750 20 2500 20 5000 18 6.550 18 6.550 19 1.250 11 250 12 1.250 12 1.250 12 1.250 12 1.250 12 1.250	Screw sizes	Pitch di	Max.	ro		. 4678 . 5267 . 5892 . 7098	. 9540 1. 0714 1. 1964 1. 3214 1. 4464
Threads per inch 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		iameter	Min.	4		. 4928 . 5543 . 6168 . 7410	. 9902 1. 1138 1. 2388 1. 3638 1. 4888
Threa per in		Major d	Max.	63	Inches 0. 2500 . 3125 . 3750 . 4375	. 5000 . 5625 . 6250 . 7500	1. 0000 1. 1250 1. 2500 1. 3750 1. 5000
Sizes 1		Threads per inch		67	8448	20 18 18 16 14	41 12 12 13 13
72% 72% 127%		Sizes		1	42.5% 20.0%	%%%%%	115 1156 1366 176

minor diameters given we meanwher of the series are figured to the intersection of the worn tool are with a center line through crest and root. The minimum depth, h (or 0.6495), from the minimum pitch diameter of the acrew.

2 Dimensions for the minimum major diameter of the series.

2 Dimensions for the minimum major diameter of the major diameter of the series. The major diameter produced by a worn tool must not fall below the basic outline. The maximum major diameter of the nut shall be that corresponding to a flat at the major diameter produced by a worn tool must not fall below by adding 198×10^{-10} (the maximum major diameter of the nut.)

Table 15.—Limiting dimensions and tolerances, classes 1, 2, 3, and 4 fits, American National coarse-thread series

						Ma	chine ser	ew num	Machine screw number or nominal size	minal siz	9					
	1	2	8	4	5	9	∞	10	12	74	5/16		7/16	22	97.6	%
								Threads per inch	per inch							
	64	56	48	40	40	32	32	24	24	20	18	16	41	13	12	п
Bolts and Screws [Max Class 1, major diameter	Inch 0.0723 .0671 .0052	Inch 0. 0852 . 0796 . 0056	$Inch 0.0981 \ .0919 \ .0062$	Inch 0, 1110 1042 . 0068	Inch 0, 1240 1172 0,0068	Inch 0, 1369 1293 0, 0076	Inch 0. 1629 1553 0.0076	Inch 0. 1887 1795 . 0092	Inch 0. 2147 2055 . 0092	$Inch 0.2485 \ .2383 \ .0102$	Inch 0.3109 .2995 .0114	Inch 0.3732 3606 .0126	$Inch 0.4354 \\ .4214 \\ .0140$	Inch 0.4978 .4830 .0148	Inch 0. 5601 . 5443 . 0158	Inch 0. 6224 . 6054 . 0170
Classes 2, 3, and 4, major diameter Min Tol	. 0692	.0860	. 0946	.1120	. 1202	. 1326	. 1640 . 1586 . 0054	. 1934	. 2094	. 2500 . 2428 . 0072	.3125 .3043 .0082	.3750	. 4375 . 4277 . 0098	. 5000	. 5625 . 5513 . 0112	. 6250 . 6132 . 0118
Class 2, major diameter (threaded [Max.parts of unfinished, hot-rolled Min.material)[Tol	- 0730 - 0678 - 0052	.0860	. 0990	. 1120	. 1250	.1304	. 1640 . 1564 . 0076	.1808	. 2068	. 2398	. 3125 . 3011 . 0114	.3750 .3624 .0126	. 4375 . 4235 . 0140	. 5000 . 4852 . 0148	. 5625 . 5467 . 0158	. 6250 . 6080 . 0170
Class 1, minor diameter	. 0531	. 0633	. 0725	.0803	. 0933	9860.	. 1246	. 1376	.1636	. 1872	. 2427	. 2965	.3478	. 4034	. 4579	. 5109
Classes 2, 3, and 4, minor diameter. Max.1	. 0538	. 0641	. 0734	. 0813	. 0943	7660.	. 1257	. 1389	. 1649	. 1887	. 2443	. 2983	.3499	. 4056	. 4603	. 5135
Class 1, loose fit, pitch diameter $\left\{ \begin{array}{ll} Max\\ Min \end{array} \right.$. 0622	.0736	.0815	.0948	.1044	. 1128	. 1426	. 1616	. 1830	. 2160 . 2109 . 0051	. 2748 . 2691 . 0057	. 3263	.3820	. 4478 . 4404 . 0074	. 5060 . 4981 . 0079	. 5634 . 5549 . 0085
Class 2, free fit, pitch diameter $\left\{ \begin{array}{ll} Max\\ Min\\ Tol \end{array} \right.$. 0629	. 0744 . 0724 . 0020	.0855	. 0934	.1088	. 1150	. 1437 . 1410 . 0027	. 1596	. 1856	. 2175 . 2139 . 0036	. 2764 . 2723 . 0041	. 3344	. 3911 . 3862 . 0049	. 4500 . 4448 . 0052	. 5084 . 5028 . 0056	. 5660 . 5601 . 0059
Class 3, medium fit, pitch diameter - Min		. 0744 . 0729 . 0015	.0855	.0958	.1088	. 1158	. 1418	. 1629	. 1865	. 2175 . 2149 . 0026	. 2764 . 2734 . 0030	. 3344	. 3911 . 3875 . 0036	. 4500 . 4463 . 0037	. 5084	. 5660 . 5618 . 0042
Class 4, close fit, pitch diameter\Min\Tol										. 2178 . 2165 . 0013	. 2767 . 2752 . 0015	.3348	. 3915 . 3897 . 0018	. 4504 . 4485 . 0019	. 5089	. 5665 . 5644 . 0021

	. 6250	. 5266 . 5266 . 0131	. 5660	. 5745	. 5719	. 5702	. 5681
_	. 5625	. 4850 . 4723 . 0127	. 5084	. 5163	. 5140	. 5124	. 5104
	. 5000	.4167	. 4500	. 0074	. 0052	. 4537	. 4519
	. 4375	.3602 .0119	. 3911	.3981	. 3960	. 3947	. 3929
	.3750	.3073 .0111	. 3344	. 3407	. 3389	.3376	.3360
	.3125	. 2630 . 2524 . 0106	. 2764	. 2821	. 2805	. 2794	. 0015
_	. 2500	. 2060	.2175	. 2226	. 2211	. 2201	. 2188
	. 2160	.1801	. 1889	. 1935	. 1922	. 1913	
	. 1900	. 1541 . 1449 . 0092	. 1629	.1675	. 1662	. 1653	
	.1640	. 1378 . 1302 . 0076	. 1437	. 1475	.1464	. 1456	
	. 1380	.1118	7111.	1215	. 1204	. 1196	
	.1250	. 1043	.1088	. 1122	. 1112	. 1105	
	.1120	. 0913 . 0849 . 0064	.0958	. 0992	. 0982	.0075	
	0660.	. 0820	. 0855	.0031	. 0022	. 0016	
	0980	.0667	.0744	.0028	. 0020	.0015	
	.0730	.0561	.0629	.0055	.0019	.0043	
NUTS AND TAPPED HOLES	Classes 1, 2, 3, and 4, major diameter_Min.²-	Classes 1, 2, 3, and 4, minor diameter. Min [Tol	Classes 1, 2, 3, and 4, pitch diameter. Min.	Class 1, loose fit, pitch diameter{Max.³	Class 2, free fit, pitch diameter{Max.3-	Class 3, medium fit, pitch diameter { Max.³ Tol	Class 4, close fit, pitch diameter { Max. ³

1 See footnote 1 on p. 49.

2 See footnote 2 on p. 49.

8 See footnote 3 on p. 49.

Table 15.—Limiting dimensions and tolerances, classes 1, 2, 3, and 4 fits, American National coarse-thread series—Continued

									Sizes								
	3/4	3/8	1	11/8	11/4	13/8	1,5	134	24	21/4	21/2	23,4	200	31/4	31/2	334	4
								Three	Threads per inch	ıch							
	10	6	∞	7	2	9	9	то	41/2	41/2	4	4	4	4	4	4	4
Bolts and Screws [Max Class I, major diameter{Min Tol	Inch 0. 7472 . 7288 . 0184	$Inch \\ 0.8719 \\ .8519 \\ .0200$	Inch 0.9966 .9744 .0222	Inches 1. 1211 1. 0963 . 0248	Inches 1. 2461 1. 2213 . 0248	Inches 1. 3706 1. 3416 . 0290	Inches 1. 4956 1. 4666 . 0290	Inches 1. 7448 1. 7110 1. 0338	Inches 1. 9943 1. 9575 . 0368	Inches 2, 2443 2, 2075 0368	Inches 2, 4936 2, 4528 . 0408	Inches 2. 7436 2. 7028 . 0408	Inches 2. 9936 2. 9528 . 0408	Inches 3. 2436 3. 2028 . 0408	Inches 3, 4936 3, 4528 . 0408	Inches 3. 7436 3. 7028 . 0408	Inches 3. 9936 3. 9528 . 0408
Classes 2, 3, and 4, major Max-diametor	. 7372 . 7372 . 0128	. 8750 . 8610 . 0140	1.0000 .9848 .0152	1. 1250 1. 1080 . 0170	1. 2500 1. 2330 . 0170	1. 3750 1. 3548 . 0202	1. 5000 1. 4798 . 0202	1. 7500 1. 7268 . 0232	2. 0000 1. 9746 . 0254	2. 2500 2. 2246 . 0254	2. 5000 2. 4720 . 0280	2. 7500 2. 7220 . 0280	3. 0000 2. 9720 . 0280	3. 2500 3. 2220 . 0280	3. 5000 3. 4720 . 0280	3. 7500 3. 7220 . 0280	4. 0000 3. 9720 . 0280
Class 2, major diameter [Max(threaded parts of unfin-Minished, hot-rolled material) [Tel	. 7500 . 7316 . 0184	. 8750 . 8550 . 0200	1. 0000 . 9778 . 0222	1. 2500 1. 1002 . 0248	1. 2500 1. 2252 . 0248	1. 3750 1. 3460 . 0290	1. 5000 1. 4710 . 0290	1. 7500 1. 7162 . 0338	2. 0000 1. 9632 . 0368	2. 2500 2. 2132 . 0368	2. 5000 2. 4592 . 0408	2. 7500 2. 7092 . 0408	3. 0000 2. 9592 . 0408	3. 2500 3. 2092 . 0408	3. 5000 3. 4592 . 0408	3. 7500 3. 7092 . 0408	4.0000 3.9592 .0408
Class 1, minor diameterMax.1	. 6245	. 7356	. 8432	. 9458							2. 1869	2. 4369	2. 6869	2, 9369	3, 1869	3, 4369	3. 6869
Class 1, loose fit, pitch di- $\int_{\rm Min}^{\rm Max}$ ameter $-\int_{\rm T01-}^{\rm T01-}$. 6822 . 6730 . 0092	. 7997 . 7897 . 0100	. 9154 . 9043 . 0111	1. 0283 1. 0159 . 0124	1. 1533 1. 1409 1. 0124	1. 2623 1. 2478 1. 2478	1. 2955 1. 3873 1. 3728 . 0145	1. 5046 1. 5149 1. 5980 . 0169	1. 8500 1. 8500 1. 8316 . 0184	2. 1000 2. 0816 . 0184	2, 1933 2, 3312 2, 3108 . 0204	2. 4433 2. 5812 2. 5608 . 0204	2. 6933 2. 8312 2. 8108 . 0204	2. 9433 3. 0812 3. 0608 . 0204	3. 1933 3. 3312 3. 3108 . 0204	3. 4433 3. 5812 3. 5608 . 0204	3. 6933 3. 8312 3. 8108 . 0204
Class 2, free fit, pitch diam- $\begin{cases} Max-\\ Min-\end{cases}$.6850 .6786 .0064	. 8028 . 7958 . 0070	. 9188 . 9112 . 0076	1. 0322 1. 0237 . 0085	1. 1572 1. 1487 . 0085	1. 2667 1. 2566 . 0101	1. 3917 1. 3816 . 0101	1. 6201 1. 6085 . 0116	1. 8557 1. 8430 . 0127	2. 1057 2. 0930 . 0127	2. 3376 2. 3236 . 0140	2. 5876 2. 5736 . 0140	2. 8376 2. 8236 . 0140	3. 0876 3. 0736 . 0140	3. 3376 3. 3236 . 0140	3. 5876 3. 5736 . 0140	3.8376 3.8236 0.0140
Class 3, medium fit, pitch Max-diameter	. 6850 . 6805 . 0045	. 8028 . 7979 . 0049	. 9188 . 9134 . 0054	1. 0322 1. 0263 . 0059	1. 1572 1. 1513 . 0059	1. 2667 1. 2596 . 0071	1. 3917 1. 3846 . 0071	1. 6201 1. 6119 . 0082	1.8557 1.8468 .0089	2. 1057 2. 0968 . 0089	2. 3376 2. 3279 . 0097	2. 5876 2. 5779 . 0097	2. 8376 2. 8279 . 0097	3. 0876 3. 0779 . 0097	3. 3376 3. 3279 . 0097	3. 5876 3. 5779 . 0097	3.8376 3.8279 .0097
Class 4, close fit, pitch di-{Max-ameter	. 6856 . 6833 . 0023	. 8034 . 8010 . 0024	. 9195 . 9168 . 0027	1. 0330 1. 0300 . 0030	1. 1580 1. 1550 . 0030	1. 2676 1. 2640 . 0036	1. 3926 1. 3890 . 0036	1. 6211 1. 6170 . 0041	1. 8568 1. 8524 . 0044	2. 1068 2. 1024 . 0044	2. 3389 2. 3341 . 0048	2. 5889 2. 5841 . 0048	2. 8389 2. 8341 . 0048	3. 0889 3. 0841 . 0048	3. 3389 3. 3341 . 0048	3. 5889 3. 5841 . 0048	3.8389 3.8341 .0048

3. 5000 3. 7500 4. 0000 3. 2564 3. 5064 3. 7564 3. 2294 3. 4794 3. 7294 . 0270 . 0270 . 0270 3. 3580 3. 6680 3. 8576 0. 204 0. 0204 0. 0204 . 0204 0. 0204 0. 0204 . 0204 0. 0204 0. 0204 3. 355 3. 6016 3. 85516 . 0140 0. 0140 0. 0140 . 0097 0. 0097 3. 3424 3. 5624 3. 8424 . 0048 0. 0048	The second secon
200 204 204 270 270 270 270 270 140 140 173 297 204 204 204 204	
3. 2500 3. 0064 2. 27794 . 0270 3. 1080 . 0201 . 0140 . 0140 . 0097 3. 0973 . 0097	n p. 49.
3.0000 2.7564 2.7294 .0270 2.8376 .0204 .0216 2.8473 2.8424 2.8424 2.8424 2.8424 2.8424	tnote 3 o
2. 7500 2. 5064 . 0270 . 0270 . 0204 . 0140 . 0140 . 0097 . 2. 5924 . 0097	3 See footnote 3 on p.
2, 2564 2, 2254 2, 2294 2, 0270 2, 3376 2, 3580 0, 0204 2, 3417 2, 3424 2, 3424 2, 3424 2, 3424 2, 3424 3, 0004	
2. 2500 2. 0335 2. 0034 . 0241 2. 1241 . 0134 . 0127 2. 1166 . 0089 2. 1101 . 0044	
2. 0000 1. 7835 1. 7834 . 0241 1. 8557 1. 8741 . 0184 . 0127 1. 8646 . 0089 1. 8601	
1, 7500 1, 5551 1, 535 2, 0216 1, 6201 1, 6370 0, 0169 1, 6317 0, 0182 1, 6242 1, 6242 1, 6242 1, 6242 1, 6242 1, 6242 1, 6242 1, 6201 1, 6201	n p. 49.
1. 5000 1. 3376 1. 3186 1. 3917 1. 4062 1. 4018 1. 3988 1. 3988 1. 3953 1. 3953	Bee footnote 2 on p.
1. 3750 1. 5000 1. 2126 1. 3376 1. 1946 1. 3136 1. 1946 1. 3117 1. 2817 1. 4062 1. 278 1. 4062 1. 278 1. 4018 1. 278 1. 3013 1. 278 1. 3083 1. 2703 1. 3053 1.	2 See foot
1, 2500 1, 1108 1, 0954 1, 0954 1, 1672 1, 1696 1, 1637 1, 1631 1, 1631 1, 1605 1, 1605 1, 1605 1, 1605 1, 1605	
. 9858 . 9704 . 0154 . 01246 . 0124 . 0025 . 0025 . 0059 . 0059	
. 8795 . 8747 . 0148 . 9188 . 9299 . 0111 . 9264 . 0076	
. 8750 . 7647 . 0142 . 8028 . 8128 . 0100 . 8098 . 0070 . 8077 . 8077 . 8077 . 8052 . 8052	a p. 49.
. 6553 6417 . 0136 . 6850 . 6942 . 0092 . 00045 . 0045 . 0045	ootnote 1 on p. 49.
Nurs and Tapped Holes Classes 1, 2, 3, and 4, major diameter———————————————————————————————————	1 See foot

1 See footnote 1 on p. 49.

2 See footnote 2 on p. 49.

TABLE 16.—Limiting dimensions and tolerances, classes 1, 2, 3, and 4 fits, American National fine-thread series

							Toohino	и жоло	mhoror	Moshins sowar minhas as nominal cies	oigo				
	!					1	тасшие	octow ma	in per or	nomina	2120				
		0	1	3	3	4	20	9	80	10	12	14	516	60/	3,8
								Thread	Threads per inch	ч					
		80	72	64	56	48	44	40	36	32	28	28	24	24	
BOLTS AND SCREWS Class 1, major diameter.	Min	Inch 0.0593 0.0545 0.0048	Inch 0. 0723 . 0673 . 0050	Inch 0. 0853 . 0801 . 0052	Inch 0. 0982 . 0926 . 0056	$Inch \\ 0.1111 \\ .1049 \\ .0062$	$Inch 0.1241 \\ 0.1241 \\ 0.177 \\ 0064$	Inch 0.1370 .1302 .0068	Inch 0.1629 .1557 .0072	Inch 0, 1889 1, 1813 1, 0076	Inch 0. 2148 . 2062 . 0086	Inch 0. 2488 . 2402 . 0086	Inch 0.3112 .3020 .0092	Inch 0.3737 .3645 .0092	# 37 45 92
Classes 2, 3, and 4, major diameter $\left\{ \right\}$	Min	. 0566	.0730	.0860	. 0990	.1120	. 1250	. 1332	. 1640 . 1590 . 0050	.1846	. 2098 . 2098 . 0062	. 2438 . 0062	. 3059 . 0066	. 3750 . 3684 . 0066	36.450
Class 1, minor diameter	Max.1	. 0440	. 0553	. 0661	. 0763	. 0855	. 0962	. 1063	.1288	.1506	.1710	. 2050	. 2601	3226	39.
Class 1, pitch diameter $\left\{ egin{array}{cccccccccccccccccccccccccccccccccccc$	Min	. 0512 . 0488 . 0024	. 0633	. 0752	. 0838	.0976	.1093	. 1208 . 1174 . 0034	.1413	. 1686 . 1648 . 0038	. 1916	. 2256	. 2841 . 2795 . 0046	.3466 .3420 .0046	888
Class 2, pitch diameter $\left\{ \right\}$	Min	. 0519 . 0502 . 0017	.0640	. 0759	. 0874 . 0854 . 0020	. 0985	.1102	.1218	.1460 $.1435$ $.0025$. 1697 . 1670 . 0027	. 1928 . 1897 . 0031	. 2268 . 2237 . 0031	. 2854 . 2821 . 0033	. 3479 . 3446 . 0033	33 46
Class 3, pitch diameter	Min	. 0519 . 0506 . 0013	.0640	. 0759 . 0745 . 0014	. 0874 . 0859 . 0015	.0985	. 1102 . 1086 . 0016	.1218	. 1460 . 1442 . 0018	. 1697 . 1678 . 0019	. 1928 . 1906 . 0022	. 2268	. 2854 . 2830 . 0024	.3479 .3455 .0024	25.55
Class 4, pitch diameter	Min.											. 2270	. 2857 . 2845 . 0012	.3482 .3470 .0012	1202

3 See footnote 3 on p. 49.

² See footnote 2 on p. 49.

¹ See footnote 1 on p. 49.

	. 4375	. 3906 . 3834 . 0072	. 4050	. 4101	. 4086	. 4076	. 4063
_	.3750	. 3364	. 3479	. 3525	. 3512	. 3503	.3491
	. 3125	. 2739 . 2674 . 0065	. 2854	. 2900	. 2887	. 2878	. 2866
	. 2500	.2173	. 2268	. 2311	. 2299	. 2290	. 2279
	. 2160	. 1833	. 1928	. 1971	. 1959	. 1950	
	. 1900	.1618	. 1697	. 1735	. 1724	. 1716	
	. 1640	. 1391	.1460	. 1496	.1485	. 1478	
	. 1380	. 1158	. 1218	. 1252	. 1242	. 1235	
	.1250	. 1049	. 1102	. 1134	. 1125	. 1118	
	.1120	.0937	.0985	. 1016	. 1007	. 1001	
	0660.	.0834	. 0874	. 0902	. 0894	.00889	
	0980	. 0691	. 0759	. 0785	. 0019	. 0014	
	. 0730	.0610	. 0640	. 0665	. 0658	. 0053	
	0090	. 0465	.0519	. 0543	. 0536	. 0532	
NUTS AND TAPPED HOLES	Classes 1, 2, 3, and 4, major diameterMin.²	Classes 1, 2, 3, and 4, minor diameter	Classes 1, 2, 3, and 4, pitch diameter	Class 1, pitch diameterTMax.3	Class 2, pitch diameter $\{Max.^3$.	Class 3, pitch diameter{Tol}	Class 4, pitch diameter[Max.³]

Table 16.—Limiting dimensions and tolerances, classes 1, 2, 3, and 4 fits, American National fine-thread series—Continued

						Sizes	SS				
	22		9/16	- 8%	*	%	1	11%	11/4	13%	11/2
					T	Threads per inch	er inch				
	8		18	18	16	14	14	12	12	12	12
BOLTS AND SCREWS Class 1, major diameter	Max 0.4985 Min4883 Tol0102		Inch 1 0.5609 0. 5495 .	Inch 0. 6234 0. 6120 0. 0114	Inch 7.7482 7.7356 .0126	Inch 9.8729 8589 0140	Inch 0.9979 .9839 .0140	Inches 1. 1226 1. 1068 . 0158	Inches 1. 2476 1. 2318 . 0158	Inches 1. 3726 1. 3568 . 0158	Inches 1. 4976 1. 4818 . 0158
Classes 2, 3, and 4, major diameter	Max 50 Min 49 Tol	5000 4928 0072	5625 5543 0082	6250 6168 0082	7500	. 8750 . 8652 . 0098	1.0000 .9902 .0098	1. 1250 1. 1138 . 0112	1. 2500 1. 2388 . 0112	1.3750 1.3638 .0112	1.5000 1.4888 .0112
Class 1, minor diameter. Classes 2, 3, and 4, minor diameter.	Max. ¹ 43	4372	4927 .	5552	6715	. 7853	. 9103	1. 0204	1.1454	1. 2704 1. 2728	1, 3954 1, 3978
Class 1, pitch diameter	Max 46 Min 46 Tol 00	4660	. 5248 5191 . 0057	5873 5816 0057	7076 7013 0063	.8265 .8195 .0070	. 9445 . 0070	1. 0685 1. 0606 . 0079	1, 1935 1, 1856 0,0079	1. 3185 1. 3106 . 0079	1, 4435 1, 4356 . 0079
Class 2, pitch diameter	Max .46 Min .46 Tol 00	4675 4639 0036	5264 5223 0041	5889 5848 0041	7094 7049 0045	.8286 .8237 .0049	. 9536 . 9487 . 0049	1. 0709 1. 0653 . 0056	1, 1959 1, 1903 1, 0056	1.3209 1.3153 .0056	1, 4459 1, 4403 0056
Class 3, pitch diameter	[Max 46] [Min 46] [Tol 00]	4675 4649 .0026	5264 5234 0030	5889 5859 0030	7094 7062 0032	.8286 .8250 .0036	. 9536 . 9500 . 0036	1. 0709 1. 0669 . 0040	1. 1959 1. 1919 . 0040	1.3209 1.3169 .0040	1.4459 1.4419 .0040
Class 4, pitch diameter	Max .46 Min .46 Tol	4678 4665 0013	5267 5252 0015	5892 5877 0015	7098 7082 0016	.8290 .8272 .0018	. 9540 . 9522 . 0018	1. 0714 1. 0694 . 0020	1.1964 1.1944 .0020	1.3214 1.3194 .0020	1, 4464 1, 4444 0020

		1011			11111		
	1,5000	1.4188 1.4098 .0090	1.4459	1.4538	1,4515	1.4499	1.4479
	1.3750	1. 2938 1. 2848 . 0090	1.3209	1.3288	1.3265	1.3249	1.3229
	1. 2500	1. 1688 1. 1598 . 0090	1. 1959	1. 2038	1. 2015	1. 1999	1, 1979
. –	1. 1250	1. 0438 1. 0348 . 0090	1.0709	1.0788	1.0765	1.0749	1.0729
	1.0000	. 9312 . 9227 . 0085	. 9536	9096	. 9585	. 9572	.9554
	.8750	. 8062 . 7977 . 0085	. 8286	. 8356	. 8335	. 8322	. 8304
	. 7500	. 6903 . 6823 . 0080	. 7094	. 7157	. 7139	. 7126	. 0016
	. 6250	. 5725 . 5649 . 0076	. 5889	. 5946	. 5930	. 5919	. 5904
	. 5625	. 5100 . 5024 . 0076	. 5264	. 5321	. 5305	. 5294	. 5279
	. 5000	. 4531 . 4459 . 0072	. 4675	. 4726		. 4701	. 4688
NUTS AND TAPPED HOLES	Classes 1, 2, 3, and 4, major diameterMin. ² .	Classes 1, 2, 3, and 4, minor diameter	Classes 1, 2, 3, and 4, pitch diameter	Class 1, pitch diameter $\left\{ M(ax) = 1 \right\}$	Class 2, pitch diameter{Tol	Class 3, pitch diameter $\{Max^3-\{Tol_{}\}\}$	Class 4, pitch diameter $$

I Dimensions given for the maximum minor diameter of the screw are figured to the intersection of the worn tool are with a center line through crest and root. The minimum minor diameter of the screw shall be that corresponding to a flat at the minimum screw equal to $\frac{1}{2}$ $\frac{1}{2}$

5. GAGES

The art of measuring screw threads has developed very rapidly during the past two decades. This development still continues, so that it would be inadvisable to attempt to specify any definite method as standard for this purpose. The objects are to establish the fundamentals of this subject, and to point out practices now successfully used.

(a) FUNDAMENTALS

1. Object of Gaging.—The final results sought by gaging are to secure interchangeability; that is, the assembly of mating parts without selection or fitting of one part to another, and to insure that the product conforms to the specified dimensions within the limits of variation establishing the closest and loosest conditions of fit permissible in any given case, as provided for in the foregoing specifications. This requires the use of gages representing the limit of maximum metal, known as "go" gages, which control the minimum looseness or maximum tightness in the fit of mating parts, and which accordingly control interchangeability; and the use of gages representing the limit of minimum metal, known as "not go" gages, which limit the amount of looseness between mating parts, and thus control in large measure the proper functioning of the parts.

Gaging should be as much employed to prevent unsatisfactory parts from being produced as to sort out the correct from the incor-

rect parts.

2. Purpose of "Go" and "Not Go" Gages.—The "go" gages control the extent of the tolerance in the direction of the limit of maximum metal, and represent the maximum limit of the internal member and the minimum limit of the external member. To pass inspection, parts must be acceptable to proper "go" gages, and such mating parts will always assemble. Successful interchangeable manufacturing has been carried on for many years with the use of "go" gages only.

"Not go" gages control the extent of the tolerance in the direction of the limit of minimum metal, and represent the minimum limit of the internal member and the maximum limit of the external member. To be acceptable, parts must not enter or be entered by proper "not go" gages. It is general practice to permit "not go" thread gages to enter or be entered by the product not more than 1½ turns.

There is a broad, general principle in regard to limit gages which should be kept in mind; a "go" gage should check simultaneously as many elements as possible, a "not go" gage, to be effective, can check but one element. By effective inspection is meant assurance that specified requirements in regard to size are not exceeded. A "not go" thread gage made to check only the pitch diameter is usually sufficient for practical purposes. In order that the "not go" gage may check pitch diameter only, it is necessary that the crest of the thread be removed so that the major diameter of the plug gage shall never be greater than that specified for the "go" plug gage and the minor diameter of the ring gage shall never be less than that specified for the "go" ring gage. A correspondingly greater relief should be provided at the root of the thread of the "not go" gage than of the "go" gage. (See "thread form of thread plug and ring gages", p. 53.)

3. Gage Classification.—The limiting dimensions of the threaded parts to be produced should be represented in: (a) Gages used in checking the product as it is machined, known as "working gages"; (b) gages for use in the acceptance of the product, known as "inspection gages"; and (c) gages used to determine the accuracy of the two preceding classes of gages, known as "master gages".

4. Gages Used to Measure the Product.—The gages used to

4. Gages Used to Measure the Product.—The gages used to check the product may be divided into two general types: "Mechanical" and "optical". Both types, however, are controlled by the master gages. Most of the product accepted by one type of gaging with a correct gage will be accepted by the other. It should be pointed out, however, that those parts which are near either rejection

point may be accepted by one system and rejected by the other.

(a) Mechanical gages.—Mechanical gages ordinarily comprise the inspection and working gages as above defined, and these two classes are generally of the same design. The dimensions of inspection gages are such that they represent very nearly the extreme limits of the part. It is recommended that, when successive inspections are required, the working gages, either by design or selection, be of such dimensions that they are inside the limits of the gages used in succeeding inspections.

Standard designs for certain types of mechanical gages are available in the report of the American Gage Design Committee, U.S. Department of Commerce Commercial Standard No. CS8-33, "Gage

Blanks."8

(b) Optical gages.—When gages of the optical type are employed, the elements of wear and "feel" are not involved, hence no difference in size between inspection and working gages is necessary, but is desirable.

5. Gages for Reference.—(a) Master gage.—The master gage is a thread-plug gage which represents the physical dimensions of the nominal or basic size of the part. It clearly establishes the minimum size of the threaded hole and the maximum size of the screw at the point at which interference between mating parts begins. A master gage shall be accompanied by a record of its measurement. In case of question, the deviations of this gage from the basic size shall be

ascertained by the Bureau of Standards at Washington, D.C.

(b) Setting gage (check gage).—A setting gage is a thread-plug gage to which adjustable thread-ring gages, thread-snap gages, and other thread comparators are adjusted for size. In adjusting thread-ring gages to size, the setting plug gage should control the pitch diameter, and it will do so if proper clearance is provided at the major diameter of the ring gage, and if the minor diameter is within the specified limits. The ring gage should be given further inspection as to these points. The minor diameter may be inspected by means of "go" and "not go" plain plug gages, and the major diameter by optical examination of a sulphur-graphite, plaster-of-paris, or other suitable cast of the thread.

6. Direction of Tolerances on Gages.—The sizes for limit gages shall never be outside of the limits specified for the product. All variations in the gages, whatever their cause or purpose, shall bring these gages within these extreme limits. Thus, a gage which represents a minimum limit may be larger, but never smaller, than the minimum

⁸ For sale by the Superintendent of Documents, Government Printing Office, Washington, D.C.

size specified for the part, while the gage which represents a maximum limit may be smaller, but never larger, than the maximum size speci-

fied for the part.

7. Temperature at Which Gages Shall be Standard.—The nominal dimensions of gages and product shall be correct at a temperature of 68° F. (20° C.).—As gages and products are ordinarily checked at room temperature, whatever it may happen to be, it is desirable that the thermal coefficient of expansion of gages be the same as that of the product on which they are used. Inasmuch as the majority of threaded products consist of iron and steel, and as screw-thread gages are ordinarily made of hardened steel, because of its high wear-resisting qualities, this condition is ordinarily fulfilled without giving it special attention.

8. Measuring Pressure for Three-Wire Measurements.9—In measuring the pitch diameter of hardened screw-thread gages by means of wires, and in measuring the wires themselves, the same contact pressure should be used. A contact pressure of 14 to 16 ounces is recommended for pitches finer than 20 threads per inch and of 2½ to 2½ pounds for 20 threads per inch and coarser. It is also recommended as standard practice that wires be measured between a flat contact and a cylindrical contact 0.750 inch in diameter.

(b) SPECIFICATIONS FOR GAGES

The following specifications are for the purpose of establishing definite limits for thread gages rather than for the purpose of specifying the gages required for the various inspection operations:

1. Classification of Gages, and Gage Tolerances.—Screwthread gages for classes 1, 2, and 3 are classified according to accuracy into classes X, Y, and Z, the class X being the most accurate. Gages for class 4, close-fit product, are made to smaller tolerances and are designated as class W. The tolerance limits on classes Y and Z "go" gages are placed inside of the extreme product limits to provide allowance for wear of the gages. The tolerances on all "not go" gages, however, are applied from the extreme product limit as the starting point, as no allowance for wear is necessary. The selection of gages from among these classes for use in the inspection of threaded product depends entirely upon the specifications for the product. For example, in the production of parts to class 3, medium fit specifications, class X gages may be required for all purposes. On the other hand, for parts made to class 1, loose-fit specifications, class Z gages may be sufficiently accurate for all purposes.

(a) Master gages.—No fixed tolerances are specified for master gages. These should be made to the basic size as accurately as possible and be within the tolerances specified for class X gages. The variations from basic size shall be plus. Each master gage shall be marked with an identification number or symbol, and be accompanied by a record of its measurement on major diameter, pitch diameter, lead, and angle. In case of question, the deviations of such gages from the exact standard shall be ascertained by the

Bureau of Standards at Washington, D.C.

(b) Class X gages.—Class X gages should be suitable for inspection and setting gages for classes 1, 2, and 3. The tolerances on these

⁹ Methods of measuring pitch diameter of screw-thread gages are described in appendix 2, p. 129.

gages are given in table 18. In all cases the tolerances shall be such that the gage does not fall outside of the component tolerances. For example, if a thread-plug gage is used as the "go" gage for checking a tapped hole, it can be larger, but not smaller than the minimum size specified. On the other hand, if a thread-plug gage is used as the "go" setting plug for thread-ring gages or for optical or other comparators, it can be smaller, but never larger than the maximum size of the screw.

Class X tolerances, as given in table 18, are specified for all "not

go" gages for classes 1, 2, and 3.

(c) Class Y gages.—Class Y gages should be suitable for inspection gages for classes 1, 2, and 3 fits. They may also be desired as working gages for classes 2 and 3 fits. The tolerances on these gages are given in table 19.

(d) Class Z gages.—Class Z gages should be suitable for working gages for class 1, loose fit. The tolerances on these gages are given

in table 20.

(e) Class W gages.—For the inspection of class 4, close-fit product, gages made within especially close limits are necessary. The tolerances for such gages, designated as class W, are given in table 21.

(f) Wear on gages.—"Go" gages may be permitted to wear to the extreme product limits. It is desirable, however, that working and inspection gages be so selected that the dimensions of the working gages are inside of the limiting dimensions represented by the inspection gages, in order that all parts passed by the working gage will be accepted by the inspection gage.

As to wear on "not go" gages, it is purely a question of economy as to when the "not go" gage should be discarded. Continued use reduces the available working tolerance on the product, and the resulting loss must be balanced against the cost of a new gage.

(g) Tolerances on lead.—The tolerances on lead given in tables 18 to 21, inclusive, are specified as an allowable variation between any two threads not farther apart than the length of engagement of the assembled threaded product. When this length of engagement is equal to the diameter, the permissible progressive lead errors per inch may be determined by dividing these lead tolerances by the

corresponding diameters.

(h) Tolerances on angle of thread.—The tolerances on angle of thread, as specified in tables 18 to 21, inclusive, for the various pitches, are tolerances on one half of the included angle. This insures that the bisector of the included angle will be perpendicular to the axis of the thread within proper limits. The equivalent deviation from the true thread form caused by such irregularities as convex or concave sides of thread, rounded crests, or slight projections on the thread form, should not exceed the tolerances permitted on angle of thread.

2. THREAD FORM OF THREAD PLUG AND RING GAGES.—The major diameter of the "go" thread plug gage is the same as the basic major diameter, with a plus gage tolerance. The minor diameter of the "go" thread ring gage is the same as the minimum minor diameter

of the nut or tapped hole with a minus gage tolerance.

The crest of the thread of the "not go" plug gage is truncated below the basic major diameter an amount equal to one sixth of the basic thread depth with a plus gage tolerance. On a basic thread

form the corresponding width of flat would be one fourth of the pitch. On a "not go" plug gage the flat is wider than one fourth of the pitch by an amount depending upon the product pitch diameter tolerance.

The crest of the thread of the "not go" ring gage is truncated above the basic minor diameter an amount equal to one third of the basic thread depth with a minus gage tolerance. On a basic thread form the corresponding width of flat would be three eighths of the pitch. On a "not go" ring gage the flat is wider than three eighths of the pitch by an amount depending upon the product pitch diameter tolerance. However, adjustable gages, such as thread snap gages,

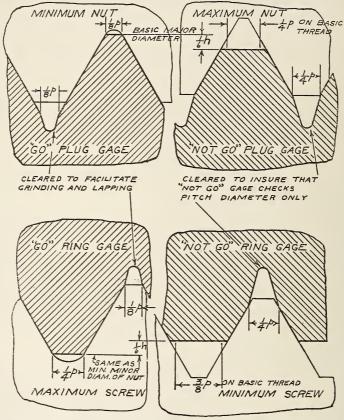


FIGURE 18.—Thread form of "go" and "not go" thread plug and ring gages.

which may be set to the "not go" limit of any class of fit should have

a width of flat equal to three eighths of the pitch.

A relief is provided at the root of the "go" thread plug or ring gage, the width of which is not greater than one eighth of the pitch. Also a relief is provided at the root of the "not go" thread plug or ring gage, the width of which is approximately one fourth of the pitch.

Thus contact of the "not go" thread gage on the sides of the threads, rather than at the corners of the crest and root, is assured. Also the effect of angle error on the fit of the "not go" gage with the product is minimized.

The above requirements are illustrated in figure 18.

3. Tolerances for Plain Gages.—For plain plug gages, plain ring gages, and plain snap gages required for measuring diameters of screw-thread work, the gage tolerances specified in table 18 should be used. Attention is directed to the fact that the tolerances on thread diameters vary in accordance with the number of threads per inch. In manufacturing a plain plug, ring, or snap gage, in the absence of information as to the number of threads per inch of the screw to be made, or for gage dimensions other than thread diameters, the tolerances for plain gages given in table 22 may be used. This table contains recommended tolerances for plain gages, designated as classes X, Y, and Z, which have been tentatively adopted by the Sectional Committee on the Standardization of Plain Limit Gages for General Engineering Work. These tolerances are applicable to all classes of product.

4. Recommended uses for the foregoing classes of gages. Tables 23, 24, 25, and 26 give limiting dimensions of gages of the several classifications for the American National coarse and American National

fine thread series.

Table 17.—Recommended uses for classes W, X, Y, and Z "go" thread gages

Class of fit	Setting gage	Inspection gage	Working gage
1	2	3	4
Class 1, loose fit	Class X, table 18do	Class Y, table 19 Class X, table 18 Class W, table 21	Class Z, table 20. Class Y, table 19. Do. Class W, table 21.

Note .- "Not go" thread gages for classes 1, 2, and 3 are class X, and for class 4 are class W.

Table 18.—Tolerances for class X "go" thread gages, and "not go" thread gages for classes 1, 2, and 3, and all plain gages

Threads per inch	Tolerance diam		Tolerance in lead ²	Tolerance on half angle of	Tolerance of minor dis	
	From-	То-	m lead -	thread	From—	То-
1	2	3	4	5	6	7
	Inch	Inch	Inch ±	Deg. Min.	Inch	Inch
80	0,0000	0.0002	0.0002	0 30	0.0000	0.0003
72	.0000	. 0002	.0002	0 30	.0000	. 0003
56	.0000	. 0002	.0002	0 30	.0000	. 0004
48	. 0000	.0002	.0002	0 30	.0000	.0004
10				0 00		
44	. 0000	. 0002	.0002	0 20	.0000	.0004
40	. 0000	. 0002	.0002	0 20	. 0000	.0004
36	. 0000	.0002	.0002	0 20 0 15	. 0000	. 0004
28	.0000	.0003	.0003	0 15	.0000	.0004
24	. 0000	. 0003	. 0003	0 15	.0000	. 0005
20	.0000	.0003	. 0003	0 15	.0000	.0005
18	. 0000	.0003	. 0003	0 10 0 10	.0000	. 0005
10	. 0000	. 0003	. 0003	0 10	. 0000	.0000
14	.0000	.0003	.0003	0 10	.0000	. 0006
13	. 0000	. 0003	. 0003	0 10	.0000	. 0006
12	. 0000	. 0003	.0003	0 10	.0000	. 0006
11	. 0000	. 0003	. 0003	0 10	.0000	. 0006
10	. 0000	. 0003	. 0003	0 10	.0000	.0006
9	.0000	. 0003	.0003	0 10	.0000	.0007
8	. 0000	.0004	.0004	0 5	.0000	. 0007
7	. 0000	. 0004	. 0004	0 5	.0000	.0007
6	.0000	.0004	. 0004	0 5	.0000	. 0008
5	.0000	.0004	.0004	0 5	.0000	.0008
41/2	.0000	.0004	.0004	0 5	.0000	.0008
4	.0000	.0004	.0004	0 5	.0000	.0009

¹ On "go" plugs the tolerance is plus, and on "go" rings the tolerance is minus. On "not go" plugs the tolerance is minus, and on "not go" rings the tolerance is plus.

² Allowable variation in lead between any two threads not farther apart than the standard length of engagement, which is equal to the basic major diameter.

It is suggested that, in case of question between the manufacturer and purchaser of threaded products in regard to their size, if the manufacturer produces limit gages which do not measure outside of the specified limits for the threaded components and which pass the parts in question, they be accepted as meeting the specifications for size. In case the dimensions of the gages are questioned, their sizes shall be determined by a disinterested third party, preferably the Bureau of Standards at Washington, D.C., which maintains a department for this service.

4. Marking of Gages.—Each gage shall be plainly and permanently marked, for identification, with the diameter, pitch, thread series, and class of fit. See section II, division 3, "Symbols.

For example: A 1-inch, 8-pitch gage of the American National coarse-thread series, class 2, free fit, shall be marked 1"—8NC—2. A 1-inch, 14-pitch gage of the American National fine-thread series,

class 3, medium fit, shall be marked 1"—14NF—3.

Table 19.—Tolerances for class Y "go" thread gages

					gageo	
Threads per inch	Tolerance diam	e on pitch eter 1	Tolerance in lead ²	Tolerance on half angle of	Tolerance of minor di	
	From-	То	in lead 2	thread	From-	То-
1	2	3	4	5	6	7
	. Inch	Inch	Inch ±	Deg. Min.	Inch	Inch
80	0.0001 .0001 .0001 .0001	0.0003 .0003 .0004 .0004 .0004	0.0002 .0002 .0002 .0002 .0002	0 45 0 45 0 45 0 45 0 45	0.0000 .0000 .0000 .0000	0.0003 .0003 .0004 .0004 .0004
44	.0001 .0001 .0001 .0001	. 0004 . 0004 . 0004 . 0004 . 0005	. 0002 . 0002 . 0002 . 0003 . 0003	0 30 0 30 0 30 0 20 0 20	. 0000 . 0000 . 0000 . 0000	.0004 .0004 .0004 .0004 .0005
24	. 0002 . 0002 . 0002 . 0002	. 0005 . 0005 . 0005 . 0006	. 0003 . 0003 . 0003 . 0003	0 20 0 20 0 15 0 15	. 0000 . 0000 . 0000 . 0000	.0005 .0005 .0005 .0006
14	.0002 .0002 .0002 .0002	. 0006 . 0006 . 0006 . 0006	. 0003 . 0003 . 0003	0 15 0 15 0 10 0 10	. 0000 . 0000 . 0000	. 0006 . 0006 . 0006 . 0006
1098	. 0002 . 0002 . 0002 . 0002	. 0006 . 0007 . 0007 . 0007	. 0003 . 0003 . 0004 . 0004	0 10 0 10 0 5 0 5	.0000 .0000 .0000	. 0006 . 0007 . 0007 . 0007
6	. 0003 . 0003 . 0003 . 0003	. 0008 . 0008 . 0008 . 0009	. 0004 . 0004 . 0004 . 0004	0 5 0 5 0 5 0 5	. 0000 . 0000 . 0000 . 0000	.0008 .0008 .0008 .0009

¹ On "go" plugs the tolerance is plus and on "go" rings the tolerance is minus.
2 Allowable variation in lead between any two threads not farther apart than the standard length of engagement, which is equal to the basic major diameter.

TABLE 20 - Tolorances for class Z "as" thread gages

TABLE 20	.—Tolera	nces for cl	lass Z "go	'' thread g	gages	
Threads per inch	Tolerance diam		Tolerance	Tolerance on half	Tolerance of minor dis	
	From-	То—	in lead ²	angle of thread	From-	То
1	2	3	4	5	6	7
	Inch	Inch	Inch ±	Deg. Min.	Inch	Inch
80	0.0002 .0002 .0002 .0002	0.0006 .0006 .0006 .0007	0.0002 .0002 .0002 .0002 .0002	0 45 0 45 0 45 0 45 0 45	0.0000 .0000 .0000 .0000	0.0003 .0003 .0004 .0004
44	. 0002 . 0002 . 0003 . 0003	. 0007 . 0007 . 0008 . 0008 . 0008	. 0002 . 0002 . 0002 . 0003 . 0003	0 30 0 30 0 30 0 20 0 20	. 0000 . 0000 . 0000 . 0000	. 0004 . 0004 . 0004 . 0004 . 0005
24	. 0003 . 0003 . 0004 . 0004	. 0009 . 0009 . 0010 . 0010	. 0003 . 0003 . 0004 . 0004	0 20 0 20 0 15 0 15	. 0000 . 0000 . 0000 . 0000	. 0005 . 0005 . 0005 . 0006
14	. 0004 . 0004 . 0004 . 0004	.0010 .0011 .0011 .0011	. 0004 . 0004 . 0004 . 0004	0 15 0 15 0 10 0 10	.0000 .0000 .0000 .0000	.0006 .0006 .0006
1098	. 0005 . 0005 . 0006 . 0006	. 0012 . 0012 . 0013 . 0013	.0004 .0004 .0005 .0005	0 10 0 10 0 5 0 5	. 0000 . 0000 . 0000 . 0000	. 0006 . 0007 . 0007 . 0007
65	. 0006 . 0007 . 0007 . 0007	.0014 .0015 .0015 .0016	. 0005 . 0005 . 0005 . 0005	0 5 0 5 0 5 0 5	.0000 .0000 .0000	. 0008 . 0008 . 0008 . 0009

¹ On "go" plugs the tolerance is plus, and on "go" rings the tolerance is minus.
2 Allowable variation in lead between any two threads not farther apart than the standard length of engagement, which is equal to the basic major diameter.

182129—33—5

Table 21.—Tolerances for class W "go" and "not go" thread gages for class 4, close fit

Threads per inch	Tolerance dian	on pitch neter ¹	Tolerance	Tolerance on half angle of	Total cu- mulative	Tolerance of minor d	on major or iameters
	From-	То—	III lead -	thread	tolerance ³	From—	То—
1	2	3	4	5	6	7	8
	Inch	Inch	Inch	Deg. Min.	Inch	Inch	Inch
28	0.0000 .0000 .0000 .0000 .0000	0.0001 .0001 .0001 .0001 .0001	± 0.00015 .00015 .00015 .00015 .00015 .0002 .0002	± 0 8 8 0 8 0 8 0 8 0 6 0 6 6 0 6 6	0. 00048 . 00051 . 00053 . 00055 . 00058	0.0000 .0000 .0000 .0000 .0000	0.0005 .0005 .0005 .0005 .0006
10	.0000	.00015	.0002	0 6	.00071	.0000	.0006
9	. 0000 . 0000 . 0000	. 0002 . 0002 . 00025	. 00025 . 00025 . 0003	0 5 0 5 0 4	.00088 .00091 .00102	. 0000 . 0000 . 0000	. 0007 . 0007 . 0007
6	. 0000 . 0000 . 0000 . 0000	. 00025 . 00025 . 0003 . 0003	. 0003 . 0003 . 0003 . 0003	$\begin{array}{cccc} 0 & 4 \\ 0 & 4 \\ 0 & 4 \\ 0 & 4 \end{array}$. 00106 . 00112 . 00121 . 00126	. 0000 . 0000 . 0000 . 0000	. 0008 . 0008 . 0008 . 0009

¹ On "go" plugs the tolerance is plus, and on "go" rings the tolerance is minus. On "not go" plugs the tolerance is minus, and on "not go" rings the tolerance is plus.
² Allowable variation in lead between any two threads not farther apart than the standard length of engagement, which is equal to the basic major diameter.
³ The tolerance for one element, namely pitch diameter, lead, or angle, as given above, may be exceeded provided that the errors in the other 2 elements are sufficiently small so that the total cumulative tolerance shown in column 6 is not exceeded.

Table 22.—Tolerances for plain gages 1

	Clas	S X 2	Clas	ss Y	Cla	ss Z
Size of gage in inches	From-	То-	From-	То—	From-	То—
1	2	3	4	5	6	7
0 to 1, inclusive 1 to 3, inclusive	Inch 0.0000 .0000	Inch 0.0001 .0002	Inch 0.0001 .0001	Inch 0.0002 .0003	Inch 0.0002 .0003	Inch 0,0003 .0005

 ¹ On "go" plugs the tolerance is plus, and on "go" rings the tolerance is minus. On "not go" plugs the tolerance is minus, and on "not go" rings the tolerance is plus.
 2 All "not go" gages are made to class X tolerances.

Table 23.—Limiting dimensions of setting plug and thread ring gages for screws of classes 1, 2, 3, and 4 fits, American National coarse-thread series

							Machi	ne scr	ew nu	Machine screw number or nominal size	nomi	nal size						
	1	2	8	4	2	9	00	10	12	74	5/16	3%	7/16	1/2	976	8%	3%	8/2
								T	hreads	Threads per inch	ch							
	64	99	48	40	40	32	32	24	24	20	18	16	14	13	12	11	10	6
$\label{eq:constraint} \text{Major diameter of set-} \left(\text{Class } 1 \right. \text{Min.}$ ting plug. $\left(\text{Classes } 2\text{-} 3\text{, 3} \text{ and } \right. \text{Min.} \right.$	Inch 0. 0723 0. 0730 0730 0726	Inch 0.0852 0.0848 0.0860 0.0856	Inch 0.09810 .0977 .0990	Inch 1, 1110.0. 11106 11120 11116	Inch Inch 3, 1240 0, 1369 1, 1236 1, 1365 1, 1250 1, 1380 1, 1246 1, 1376		Inch 10. 1629 0. 1625 1. 1640 1. 1636 1.	Inch 0.1887 0.1882 1900 1900	Inch 0.2147 0.2142 0.2160 0.2155	Inch Inch 0.2485 0.3109 2480 .3104 2500 .3125 2495 .3120	Inch 3109 0. 3125 3125	Inch 0.3732 0. 3726 .3750	Inch 0.4354 0.4348 .4375 .4375	Inch 1,4978 0,4972 5000 1,4994	Inch 1,5601 5595 5625 5619	Inch 0. 6224 0. 6218 0. 6250 0. 6244	Inch 7.7472 7.7466 7.7500 7.7494	Inch Inch 7472 0.8719 7466 .8712 7500 .8750 7494 .8743
	. 0622 . 0620 . 0621 . 0618	0736 0734 0735 0735	.0846 .0845 .0845	0948 0946 0947 0944		1163	1426 1423 1425		1876 1873 1874 1874	2157 2157 2158 2158	2748 2745 2746 2748	3326 3324 3324 3320	3887 3888 3888 3884	4478 4475 4476 4472	. 5060 . 5057 . 5058 . 5054	. 5634 . 5631 . 5632 . 5628	. 6822 . 6819 . 6820 . 6816	. 7997 . 7994 . 7995 . 7990
Pitch diameter of set- ting plug or ring gage. Class, 2, free fit, Min., class X. and class 3, Max., class X. medium fit, Min., class Y. medium fit, Min., class Y.	. 0629 . 0629 . 0629 . 0628	0739 0744 0742 0743 0740	. 0855 . 0853 . 0853 . 0854 . 0854	0946 0941 0958 0957 0957	1070 1088 1086 1087	1178	1423 1437 1436 1436	1629 1629 1627 1627 1627	1867 1889 1886 1886 1887	2172	2744 2738 2764 2761 2762	3344 3344 3341 3342 3338	3908 3908 3909 3909	4498 4498 4498	5049 5084 5081 5082 5078	. 5660 . 5660 . 5657 . 5658	. 6847 . 6847 . 6847 . 6848	. 8028 . 8028 . 8025 . 8026 . 8026
Class 4, close fit Max., class W										2178	2767 2766	3348 3347	3915 39135	. 45025	. 5089	. 5665	. 6856	. 8034 . 8032
Minor diameter of ring(Classes 1, 2, 3,/Max. 1gage. Minor (Minor Governs)	. 0561	. 0663	. 0764	0849 .	. 0979	. 1042	. 1298	. 1449	. 1709	1959	2524	3073	. 3596	4167	.4723	. 5266	.6417	. 7547
Major diameter of set Class 1	. 0671 . 0675 . 0692 . 0696	0796 0800 0820 0824	. 0919 . 0923 . 0946 . 0950	1042 1046 1072 1076	. 1172 . 1176 . 1202 . 1206	1293 1297 1326 1330	. 1553 . 1557 . 1586 . 1590	1795 1800 1834 1839	2055 2060 2094 2099	2383 2428 2428 2433	2995 3000 3043	3606 3612 3660 3666	. 4214 . 4220 . 4277 . 4283	4830 4836 4896 4902	. 5443 . 5449 . 5513 . 5519	. 6054 . 6060 . 6132 . 6138	. 7288 . 7294 . 7372	.8526 .8526 .8610
Class 1, loose fit { Min Pitch diameter of set- Class 2, free fit. } Min ting plug or ring gage. Class 3, medium Min Class 4, close fit { Min Min Class 4, close fit } Min Class 4, close fit { Min Min Class 4, close fit } Min Min Class 4, close fit { Min Min Min Min Class 4, close fit } Min Min Min Class 4, close fit { Min	. 0596 . 0598 . 0610 . 0612 . 0615	0708 0710 0724 0726 0729	0815 0837 0835 0835 0839	0914 0916 0934 0936 0941	1044 1046 1064 1066 1071 1073	1128 1131 1150 1158 1158	1388 1391 1410 1413 1421	1570 1573 1596 1599 1605 1608	1830 1833 1856 1859 1865	2109 2112 2112 2139 2142 2142 2152 2152 2165	2691 2694 2723 2726 2734 2737 2752 2752	3263 3266 3299 3302 3312 3315 3333	3823 3823 3862 3865 3875 3875 3897 3897	4407 4448 4448 4443 4463 4466 4486 4486	4984 5028 5031 5044 5047 5069 50705	. 5549 . 5552 . 5601 . 5604 . 5618 . 5621 . 56455	6733 6733 6786 6789 6805 6805 6833 6833	7897 7900 7958 7961 7979 7982 8010
Minor diameter of ring/Classes 1, 2, 3,/Min. 2gage.	0591	.0701	. 0806	. 0899	1039	. 1105	. 1365	.1534	1794	2062	2639	3203	3750	. 4328	. 4903	. 5463	. 6634	. 7781
1.2 Coo footnotes on r. 62																		

1 2 See footnotes on p. 63,

Table 23.—Limiting dimensions of setting plug and thread ring gages for screeps of classes 1, 2, 3, and 4 fits, American National coarse-thread series—Continued

Threads per Inch								Sizes	Se							
The color of the		1	11/8	11/4	13/8	11/2	134	2	21/4	21/2	234	es	_	31/2	334	4
Class 1, loose fit							T	hreads	per inc	Ч						
Classes 2, 3, and 4 - Min. class Y 1000 125		∞ o	1 2	2	9	9	20	41/2	41/2	4	4	4	4	4	4	4
Class 1, loose fit	GAGES FOR SCREWS Class 1. [Max] Classes 2, 3, and 4. [Min]	Inch I. 99661 99591 99931.				Inches . 4956 . 4948 . 5000 . 4992		Inches 1. 9943 2. 0000 2. 9992 2.	nches I 2443 2 2435 2 2500 2 2492 2	nches I 4936 4927 5000 4991	nches II 7436 2. 7427 2. 7500 3. 7491 2.	10000 3.00000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.00000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.00000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.00000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000	nches In 24363. 24273. 25003. 24913.	10000 3. 100000 3. 10	7436 3 7427 3 7500 4 7491 3	nches 9936 9927 0000 9991
Class 2, free fit, and Min., class X	(Max., Min., Min., Max., Max., Max., Max., Min., Max., Min.,	. 9154 . 9150 . 9152 . 9147 . 9148		1533 1529 1531 1526 1527		3873 3869 3870 3865	1.6149 1.6146 1.6146 1.6141	1.8496 1.8497 1.8497 1.8493	. 0996 . 0997 . 0993 . 0993	330822 330822 330922 330922 330922	58022 580922 580922 580522	883088315 830088308830883	080233.080933.080933.0809	3309 3309 3309 3309 3305 3305 3305	58123 58083 58093 58033 58053	8312 8308 8309 8303 8305
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Class 2, free fit, and class 3, medium fit.	9184		1572 1 1572 1 1568 1 1565 1 1565 1		. 3917 . 3913 . 3914 . 3909	1. 6134 1. 6201 1. 6197 1. 6193 1. 6193	2485 1.8557 1.8553 1.8554 1.8549 1.8568	10542 10542 10542 1049	337622 337622 337222 3367322 3367322	57962 587222 587322 5867322 5867322 586732	88376 8378 8372 83673 83673 83673 83673 83673 83673 83673 83673	07963 08763 08723 08673 08673 08673 08673	23372 23372 23673	57963 58723 58723 58733 58673	8373 8373 8373 8373 8367 8367
Class 1. Class 2, 3, and 4. Min. 9043 1. 2213 1. 3416 1. 4666 1. 7110 1. 9675 2. 2075 2. 4528 2. 7028 2. 9528 3. 2028 3. 4578 3. 9848 1. 1009 1. 2329 1. 3448 1. 4708 1. 5268 1. 9476 2. 22462 4. 4720 2. 7028 2. 9628 3. 2028 3. 4578 3. 4720	(Class 4, close fit				10	39235	1. 6208	1. 8565	10652	3386 2294 2294 2294 2294 2294	4794 2.	83863 72942 72852	9794 3.	3386 2294 2294		. 8386 . 7294
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G										<u>i </u>	i				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Class 1	. 9744 1. . 9751 1. . 9848 1. . 9855 1.	0963 0970 1080 1087	. 2213 . 2220 . 2330 . 2337			1. 7110 1. 7118 1. 7268 1. 7276	1. 9575 1. 9583 1. 9476 1. 9754	2075 2083 2246 2254 2254	4528 4537 4720 24729 2	7028 7037 7220 7229 7229 7229	9528 3. 9537 3. 9720 3. 9729 3.	2028 3. 2037 3. 2220 3. 2229 3.	4528 3. 4537 3. 4720 3. 4729 3.	7028 7037 7220 7229 7229	3, 9528 3, 9537 3, 9720 3, 9729
Classes 1, 2, 3, and 4. {Min. 2	Olass 3, free fit Olass 3, medium fit Class 4, close fit	. 90431. . 90471. . 91121. . 91161. . 91341. . 91381.		1409 1413 1487 1491 1513 1517 1550 1550	10	. 3728 3732 3816 3820 3846 3850 3890	1. 5984 1. 5984 1. 6085 1. 6119 1. 6123 1. 6170 1. 6170	1. 8316 1. 8430 1. 8430 1. 8434 1. 8468 1. 8468 1. 8472 1. 8524 1. 8524	. 0816 . 0820 . 0930 . 0934 . 0968 . 0972 . 1024	3108 32112 3236 3240 3279 3341 3341 3344	5608 5736 5740 5783 5779 5783 5783 5841 5841 5844 5844 5844	8108 82112 8236 8240 8279 8279 8283 8341 8341 8341	0608 3. 0612 3. 0736 3. 0740 3. 0779 3. 0783 3. 0841 3.	3108 3. 3112 3. 3236 3. 3240 3. 3283 3. 3283 3. 3341 3.	5608 56123 57363 5779 5779 57833 58413	3.8108 3.82108 3.8240 3.8240 3.8279 3.8283 3.8283 3.8341
	Classes 1, 2, 3, and 4	.8910	0006	1256	2307	. 3549	1. 5760 1. 5768	1. 8068 1. 8076	. 0568 2	28262	5326 2.	35	0326 3.	2826 3. 2835 3.	5326 5335	7826

12 See footnotes on p. 63.

Table 24.—Limiting dimensions of setting plug and thread ring gages for screws of classes 1, 2, 3, and 4 fits, American National fine-thread series

				M	Machine screw number or nominal size	rew nun	pher or n	s leuimo	iza			
				1								1
	0	1	2	ဗ	4	5	9	80	10	12	14	5/10
						Threads	Threads per inch					
	80	72	64	26	48	44	40	36	32	83	28	24
"Go" Gages for Screws [Class 1	Inch 0. 0593 0590 0600	Inch 0. 0723 . 0720 . 0730 . 0727	Inch 0. 0853 . 0849 . 0860 . 0856	Inch 0.0982 .0978 .0990 .0986	Inch 0.1111 .1107 .1120 .1116	Inch 0. 1241 . 1237 . 1250 . 1246	Inch 0. 1370 . 1366 . 1380 . 1376	Inch 0. 1629 . 1625 . 1640 . 1636	Inch 0. 1889 . 1985 . 1900 . 1896	Inch 0. 2148 2143 2160 2155	Inch 0. 2488 2483 2500 2495	Inch 0.3112 .3107 .3125 .3120
(Max., class X. Min., class X. (Class 1, loose fit		.0633 .0631 .0630	. 0752 . 0750 . 0751 . 0748	. 0864 . 0864 . 0865 . 0862	. 0976 . 0974 . 0975	. 1093 . 1091 . 1089	. 1208 . 1206 . 1207	. 1449 . 1447 . 1448	.1686 .1683 .1685	. 1916 . 1913 . 1914	. 2256 . 2254 . 2254	. 2841 . 2838 . 2839 . 2836
Pitch diameter of setting plug or ring Class 2, free fit, Max., class Z gage. and class 3, me. Max., class X dium fit. Min., class Y dium fit. Min., class Y		. 0631 . 0640 . 0638 . 0639 . 0637	. 0750 . 0746 . 0759 . 0757 . 0758	. 0864 . 0859 . 0874 . 0872 . 0873	. 0974 . 0969 . 0985 . 0984 . 0981	. 1091 . 1086 . 1102 . 1100 . 1101	. 1206 . 1218 . 1218 . 1216 . 1217	. 1446 . 1441 . 1460 . 1458 . 1456	. 1683 . 1678 . 1697 . 1694 . 1693	. 1913 . 1928 . 1928 . 1925 . 1933	. 2253 . 2248 . 2268 . 2265 . 2265 . 2263	2832 2854 2851 2851 2851 2852 2853
(Min., (Max.) (Min.		. 0580	. 0691	. 0797	. 0894	. 1004	. 1109	. 1335	.1562	.1773	. 2269	. 2856 . 2674 . 2669
Class 1		. 0673 . 0676 . 0694 . 0697	. 0801 . 0805 . 0822 . 0826	. 0926 . 0930 . 0950 . 0954	. 1049 . 1053 . 1076 . 1080	$\begin{array}{c} .1177 \\ .1181 \\ .1204 \\ .1208 \end{array}$. 1302 . 1306 . 1332 . 1336	.1557 .1561 .1590	. 1813 . 1817 . 1846 . 1850	. 2062 . 2067 . 2098 . 2103	. 2402 . 2407 . 2438 . 2443	. 3020 . 3025 . 3059
Class 1, loose fit.—{Min		.0608 .0610 .0622 .0624 .0627	. 0726 . 0728 . 0742 . 0742 . 0745	.0838 .0840 .0854 .0856 .0859	. 0945 . 0947 . 0963 . 0965 . 0969	. 1061 . 1063 . 1079 . 1081 . 1086	. 1174 . 1176 . 1194 . 1196 . 1201 . 1203	. 1413 . 1435 . 1437 . 1442 . 1444	. 1648 . 1651 . 1670 . 1673 . 1678 . 1681	. 1873 . 1876 . 1900 . 1906 . 1909	. 2213 . 2216 . 2237 . 2240 . 2249 . 2259	. 2795 . 2798 . 2821 . 2824 . 2833 . 2833 . 2845 . 2846
Minor diameter of ring gage	0489	. 0607	. 0721	. 0831 . 0835	. 0936	. 1049	. 1159	. 1395	. 1625	. 1846	.2186	. 2759
12 See footnotes, p. 63.												

Table 24.—Limiting dimensions of setting plug and thread ring gages for screws of classes 1, 2, 3, and 4 fits, American National fine-thread series—Continued

							Sizes					
	3%	7/16	1/2	9/16	2%	34	%	-	11/8	11/4	13/8	11/2
						Threads	Threads per inch					
	24	20	20	18	18	16	14	14	12	12	12	12
"Go" GAGES FOR SCREWS	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inches	Inches	Inches	Inches
Class 1	0.3737 .3732 .3750 .3750	0.4360 .4355 .4375 .4370	0. 4985 . 4980 . 5000 . 4995	0.5609 .5604 .5625 .5620	0.6234 .6229 .6250 .6245	0.7482 .7476 .7500 .7494	0.8729 .8723 .8750 .8750	0.9979 .9973 1.0000	1. 1226 1. 1220 1. 1250 1. 1244	1, 2476 1, 2470 1, 2500 1, 2494	1.3726 1.3720 1.3750 1.3744	1. 4976 1. 4970 1. 5000 1. 4994
class class class	.3463 .3463 .3464 .3461	. 4035 . 4032 . 4033 . 4030	. 4657 . 4657 . 4658 . 4655	. 5248 . 5245 . 5246 . 5243	. 5873 . 5870 . 5871 . 5868	. 7076 . 7073 . 7074 . 7070	. 8265 . 8262 . 8263 . 8259	. 9515 . 9512 . 9513 . 9509	1. 0685 1. 0682 1. 0683 1. 0679		1. 3185 1. 3182 1. 3183 1. 3179	
Pitch diameter of setting plug or ring Class 2, free fit, Max, class X gage. and class 3, me Min, class X dium fit. Min, class Y (Class 4, close fit., Max, class Y (Class 4, close fit., Max, class Y	3463 3457 3457 3477 3482 3482	. 4032 . 4026 . 4047 . 4048 . 4045 . 4053	. 4651 . 4675 . 4672 . 4673 . 4673 . 4673	. 5264 . 5264 . 5261 . 5262 . 5267 . 5267	5863 5889 5889 5886 5887 5884 5892	. 7066 . 7094 . 7091 . 7092 . 7088 . 7098	. 8255 . 8255 . 8286 . 8284 . 8284 . 8280 . 8290	.9511 .9505 .9536 .9534 .9530 .9540	1. 0654 1. 0674 1. 0709 1. 0706 1. 0707 1. 0714 1. 07125	1. 1954 1. 1954 1. 1956 1. 1957 1. 1953 1. 1964 1. 1964	1.3151 1.3209 1.3206 1.3207 1.3207 1.3203 1.3214 1.32125	1. 4424 1. 4424 1. 4459 1. 4457 1. 4457 1. 4464 1. 44625
Minor diameter of ring gage	3299	.3834	. 4459	5024	. 5649	. 6823	7977	. 9227	1.0348	1, 1598	1.2848	1.4098

		DI	IVI ELIV
	1, 4818 1, 4824 1, 4888 1, 4894	1, 4356 1, 4359 1, 4403 1, 4419 1, 4414 1, 4444 1, 4445	1. 4272
	1. 3568 1. 3574 1. 3638 1. 3644	1.3106 1.3153 1.3153 1.3156 1.3172 1.3194 1.31955	1, 3022 1, 3028
	1, 2318 1, 2324 1, 2388 1, 2394	1, 1856 1, 1859 1, 1903 1, 1906 1, 1919 1, 1922 1, 1944 1, 1944	1. 1772 1. 1778
_	1. 1068 1. 1074 1. 1138 1. 1144	1. 0606 1. 0609 1. 0653 1. 0656 1. 0669 1. 0672 1. 0694 1. 0695	1. 0522 1. 0528
_	. 9839 . 9845 . 9902 . 9908	. 9445 . 9448 . 9487 . 9490 . 9500 . 9503 . 9522	. 9375
_	. 8589 . 8595 . 8652 . 8658	.8195 .8198 .8237 .8240 .8250 .8253 .8273	.8125
	. 7356 . 7362 . 7410	. 7013 . 7016 . 7049 . 7062 . 7065 . 7082	. 6953
	.6120 .6125 .6168 .6173	. 5816 . 5819 . 5848 . 5851 . 5859 . 5862 . 5877 . 5877	. 5764
_	. 5495 . 5500 . 5543 . 5548	. 5191 . 5194 . 5223 . 5226 . 5234 . 5237 . 5252	.5139
_	. 4883 . 4888 . 4928 . 4933	.4609 .4612 .4639 .4642 .4649 .4652 .4665	. 4562
	. 4258 . 4263 . 4308	. 3984 . 3987 . 4017 . 4024 . 4024 . 4040 . 4040	. 3937
	.3645 .3650 .3684 .3689	3423 3423 3446 3449 3449 3455 3455 3470	. 3384
"Not Go" Gages for Screws	Major diameter of setting plug Class 2.3, and 4 $\{Min$	Class 1, loose fit (Min	Minor diameter of ring gage $\left\{ \text{Classes 1, 2, 3, } \left\{ \text{Min.}^2 \right\} \right\}$

The maximum minor diameter of the "go" thread ring gage is the same as the minimum minor diameter of the tapped hole.

In order that the "not go" gage may check pitch diameter only, it is necessary that the minor diameter of the "not go" ring gage shall never be less than that specified for the "go" ring gage. Furthermore, it is desirable that the crest of the "not go" gage be truncated a considerable amount, as shown in fig. 18, in order to minimize the effect of angle error or the fit of the "not go" gage with the product. A truncation from the basic dimension corresponding to a width of flat equal to $\frac{3}{8}$ x p is recommended. The limiting dimensions given in this table for the minor diameter of the "not go" ring gage represent these conditions.

Table 25.—Limiting dimensions of thread plug gages for nuts of classes 1, 2, 3, and 4 fits, American National coarse-thread series

Go." Gages for Norts ## Go." Gages for Norts ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 6 8 10 12 14 5/6 3/6 5/6 ## 56 7730 0.8950 0.8950 0.1520 0.1530 0.1500 0.2050 0.2050 0.2050 0.2050 ## 56 7730 0.8950 0.8950 0.1520 0.1530 0.1500 0.2050 0.2050 0.2050 0.2050 0.2050 ## 56 7730 0.8950 0.0950 0.1520 0.1530 0.1500 0.205
--

						Siz	Sizes						
	1 1	11/8 11/4	13%	11/2	134	2	21/4	21/2	234	3 314	4 31/2	334	4
					r.	hreads	Threads per inch						
	∞	2 2	9	9	70	41/2	41/2	4	4	4	4	4	4,
"Go" GAGES FOR NUTS Major diameter of plug gage, classes 1, 2, 3, and 4	Inches Inches 1. 0000 1. 1250 1. 0007 1. 1257	Tuches Tuches Inches In	s Inches 0 1.3750 7 1.3758	Inches 1, 5000 1, 5008	Inches 1. 7500 1. 7508	Inches 2. 0000 2. 0008	Inches Inch	ches Inc 50002.7 5009 2.7	thes Inc. 500 3. C	hes Inch 000 3. 25 009 3. 25	100 3. 50 00 3. 50	es Inch 00 3. 75 09 3. 75	es Inch 00 4. 00 09 4. 00
Class 4	91881, 0322 91891, 033451, 1 91881, 0322 1, 1 91921, 0326 1, 1 91961, 0324 1, 1 91961, 0328 1, 1 91941, 0328 1, 1 92011, 0338 1, 1	322 1.1572 3245 1.1574 322 1.1575 326 1.1576 324 1.1576 329 1.1576 328 1.1578	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. 3917 1. 39195 1. 3917 1. 3920 1. 3925 1. 3923 1. 3923	1. 6201 1. 6201 1. 6205 1. 6209 1. 6209 1. 6208	1. 8557 1. 8560 1. 8561 1. 8560 1. 8560 1. 8565 1. 8564 1. 8565	2 1057 2 1060 2 1057 2 1060 2 1061 2 1060 2 1065 2 1065 2 1065 2 1065 2 1065 2 2 1065 2 2 1065 2 2 1065 2 2 1065 2 2 1065 2 2 1065 2 2 2 1065 2 2 2 1065 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33762.5 33792.5 33792.5 33792.5 33852.5 33852.5 33922.5	88888888888888888888888888888888888888	376 3.08 379 3.08 376 3.08 380 3.08 379 3.08 385 3.08	776 3.33 80 3.33 855 3.33 923 3.33	776 779 58 80 3 58	28888888888888888888888888888888888888
"Nor Go" Gages for Nuts													
Major diameter of plug gage, classes 1, 2, 3, and 4	. 9736 1. 0948 . 9729 1. 0941	948 1. 2198 941 1. 2191	3 1, 3397 1 1, 3389	1. 4647 1. 4639	1, 7075	1, 9527 1, 9519	$\begin{array}{c} 1.\ 95272.\ 20272.\ 4468\ 2.\ 6968 2.\ 6968 3.\ 1968 3.\ 4968 3.\ 4969 3.\ 49$	4468 2. 6 4459 2. 6	968 2. 9	468 3, 19 459 3, 19	68 3. 44 59 3. 44	68 3. 69 59 3. 69	58 3. 9468 59 3. 9459
Class 1, loose fit	. 9299 1. 0446 . 92951. 0442 . 92641. 0407 . 92601. 0403 . 92421. 0381 . 92181. 0357 . 92131. 03495	. 9299 1. 0446 1. 1690 1. 9299 1. 0442 1. 1692 1. 92461. 0407 1. 1657 1. 92601. 0408 1. 1653 1. 92421. 0818 1. 1657 1. 1677 1.	1. 2812 2. 1. 2808 3. 1. 2768 3. 1. 2764 1. 1. 2738 7. 1. 2734 2. 1. 2703 351, 27005	1, 4062 1, 4058 1, 4018 1, 4014 1, 3988 1, 3953 1, 39505	1, 6370 1, 6366 1, 6317 1, 6313 1, 6283 1, 6242 1, 62395	1, 8741 1, 8634 1, 8684 1, 8646 1, 8642 1, 8601 1, 8598	1. 8741 2, 1241 2, 3580 2, 6660 2, 8580 3, 1080 3, 3580 3, 6680 13, 81877 2, 1237 2, 3575 2, 6076 3, 81887 2, 1237 2, 3575 2, 6076 3, 818884 2, 11840 2, 3316 2, 6076 2, 818884 2, 11840 2, 3316 2, 6076 2, 818884 2, 11840 2, 3312 2, 6072 8, 81888 2, 3312 3, 6072 8, 6073 8	35802.0 35162.0 35122.0 34732.5 34242.5 34212.5	080 0762 0016 0016 0012 89 909 909 909 909 909 909 909 909 909	580 3. 10 556 3. 10 516 3. 10 512 3. 10 473 3. 09 424 3. 09 421 3. 09	80.3.35 7763.35 1163.35 1123.35 733.34 603.34 213.34	80 3. 60 16 3. 60 11 23. 60 12 3. 60 12 3. 59 13 59 13 59	20 3.8580 16.3.8576 116.3.8516 112.3.8512 73.3.8473 89.3.8424 24.3.8424 24.3.8424

1 See footnote on p. 67.

Table 26.—Limiting dimensions of thread plug gages for nuts of classes 1, 2, 3, and 4 fits, American National fine-thread series

				M	Machine screw number or nominal size	жем пип	lber or n	ominal si	92			
	0	1	2	က	4	5	9	∞0	10	12	**	5/16
						Threads per inch	per inch					
	80	72	64	26	48	44	40	36	32	28	28	24
"Go" Gages for Nuts Major diameter, classes 1, 2, 3, and 4	Inch 0.0600 0.0603	Inch 0 0.0730 3 .0733	Inch 0.0860 .0864	Inch 0.0990 .0994	Inch 0.1120 .1124	Inch 0. 1250 . 1254	Inch 0.1380	Inch 0. 1640 . 1644	Inch 0.1900 .1904	Inch 0. 2160 . 2165	Inch 0.2500	Inch 0. 3125 . 3130
Class 4 Min., 6 Classes 1, 2, and 3- Min., 6 Class 1 (Class 1	class W.	0642 00640 00642 00641 00642 00642 00642	. 0759 . 0761 . 0760 . 0763 . 0763 . 0761	. 0876 . 0876 . 0877 . 0878 . 0876	. 0985 . 0987 . 0986 . 0989 . 0987		. 1218 . 1220 . 1219 . 1222 . 1220	1460 1462 1461 1461 1464 1463	1697 1700 1698 1701 1701 1700	1928 1931 1930 1933 1931	. 2268 . 2269 . 2271 . 2273 . 2273 . 2273	2854 2855 2855 2855 2855 2855 2855 2855
"Nor Go" Gages for Nurs $[Max] Major \ diameter \ of \ plug \ gage, \ classes \ 1, 2, 3, \ and \ 4[Min.i.]$. 0703 3 . 0700	. 0830	. 0955	. 1079	.1205	.1330	.1584	. 1836	. 2083	. 2428	. 3040
Class 1, loose fit{Min Class 2, free fit{Min Class 3, free fit{Min Class 3, medium fit.{Min (Class 4, close fit{Min	0541 0541 0536 0536 0532 0532 0532	3	.0785 .0783 .0778 .0776 .0773	. 0902 . 0900 . 0894 . 0892 . 0889	. 1016 . 1014 . 1007 . 1005 . 1001 . 0999	. 1134 . 1125 . 1125 . 1118 . 1116	. 1252 . 1250 . 1242 . 1235 . 1233	1496 1494 1485 1483 1478 1476	1735 1732 1724 1721 1721 1716	. 1971 . 1968 . 1959 . 1956 . 1947	2311 2299 2299 2296 2287 2279 2279	2887 2887 2884 2884 2878 2875 2866

							Sizes	Se					
		%	7/16	22	976	8%	34	2%	-	11/8	11/4	13%	11/2
						Th	Threads per inch	r inch					
		24	20	20	18	18	16	14	14	12	12	12	12
"Go" GAGES F. Major diameter, classes 1, 2, 3, and 4	Gages for Nuts d 4	Inch 0. 3750 . 3755	Inch 0.4375 .4380	Inch 0. 5000 . 5005	Inch 0. 5625 . 5630	Inch 0. 6250 . 6255	Inch 0.7500 .7506	Inch 0.8750 .8756	Inches 1. 0000 1. 0006	Inches 1. 1250 1. 1256	<i>Inches</i> 1, 2500 1, 2506	Inches 1. 3750 1. 3756	Inches 1. 5000 1. 5006
Pitch diameter of plug gage	Class 4	3479 3480 3480 3482 3481 3481 3482 3482	. 4050 . 4051 . 4050 . 4053 . 4053 . 4053 . 4053	. 4675 . 4675 . 4675 . 4677 . 4680 . 4684	. 5264 . 5265 . 5264 . 5267 . 5266 . 5269 . 5268	5889 5889 5889 5889 5899 5899 5899 5899	7094 7095 7094 7097 7096 7100 7104	.8286 .82875 .8286 .8289 .8288 .8292 .8290	.9536 .95375 .9536 .9539 .9538 .9540	1. 0709 1. 07105 1. 0709 1. 0712 1. 0711 1. 0713 1. 0720	1. 1959 1. 19605 1. 19605 1. 1962 1. 1961 1. 1965 1. 1963 1. 1970	1, 3209 1, 32105 1, 32105 1, 3209 1, 3212 1, 3215 1, 3213 1, 3220	1. 4459 1. 44605 1. 4462 1. 4461 1. 4465 1. 4463 1. 4463
"Nor Go" GAGE	do" Gages for Nuts												
Major diameter of plug gage, classes 1, 2, 3, and 4	3, and 4\max.1	. 3665	. 4272	. 4897	. 5505	.6135	. 7371	.8595	. 9851	1. 1076 1. 1070	1. 2326 1. 2320	1.3576 1.3570	1. 4826 1. 4820
Pitch diameter of plug gage	Class 1, loose fit Max Max Min Max Max	. 3525 . 3522 . 3512 . 3509 . 3509 . 3491	4098 4098 4086 4083 4076 4073 4063 4063	. 4726 . 4723 . 4711 . 4708 . 4698 . 4688 . 4688	. 5321 . 5318 . 5305 . 5302 . 5294 . 5279 . 5279	5946 5943 5930 5927 5919 5916 5904	7157 7154 7139 7136 7126 7123 7110	. 8356 . 8353 . 8335 . 8332 . 8322 . 8319 . 8304	9606 9603 9585 9582 9572 9569 9564 9554	1. 0788 1. 0785 1. 0765 1. 0762 1. 0749 1. 0746 1. 0729	1. 2038 1. 2035 1. 2015 1. 2012 1. 1999 1. 1996 1. 1979 1. 1977	1,3288 1,3285 1,3265 1,3262 1,3249 1,3229 1,3229	1. 4538 1. 4535 1. 4515 1. 4512 1. 4499 1. 4496 1. 4479
		1					,					:	

In order that the "not go" gage may cheek pitch diameter only, it is necessary that the creet of the thread be removed so that the major diameter of the "not go" plug gage shall never be greater than that specified for the "go" plug gage. Furthermore, it is desirable that the creet of the "not go" gage be truncated a considerable amount, as shown in fig. 18, in order to minimize the effect of angle error on the fit of the "not go" gage with the product. A truncation from basic diamensions corresponding to a width of flat equal to 14 xp is recommended. The limiting dimensions given in this table for the major diameter of the "not go" plug gage represent these conditions.

SECTION IV.—UNIFORM PITCH SCREW-THREAD SERIES FOR HIGH-PRESSURE FASTENINGS, RAILROAD APPLICATIONS, MACHINERY COMPONENTS, ETC.

1. FORM OF THREAD

The American National form of thread profile as specified in section III shall be used.

2. THREAD SERIES

Where special threads are required, it is sometimes essential to select a certain pitch as standard for a range of sizes. Also, in general practice, where the pitch of a special thread is optional, the uniform use of a selected pitch is advantageous. For such applications 8, 12, and 16 threads per inch are widely used.

(a) AMERICAN NATIONAL 8-PITCH THREAD SERIES

In table 27 are specified the nominal sizes and basic dimensions of

the "American National 8-pitch thread series."

Bolts for high-pressure pipe flanges, cylinder-head studs, and similar fastenings against pressure require that an initial tension be set up in the fastening, by elastic deformation of the fastening and the components held together, such that the joint will not open up when the steam or other pressure is applied. To secure a proper initial tension it is not practicable that the pitch should increase with the diameter of the thread, as the torque required to assemble the fastening would be excessive. Accordingly, for such purposes the 8-pitch thread has come into general use.

(b) AMERICAN NATIONAL 12-PITCH THREAD SERIES

The nominal sizes and basic dimensions of the "American National

12-pitch thread series" are specified in table 28.

Sizes of 12-pitch threads from one-half inch to and including one and three-fourths inches are used in railroad practice, which require that worn stud holes be retapped with a tap of the next larger size, the increment being one-sixteenth inch throughout most of the range. Die-head chasers for sizes up to 3 inches are stocked by manufacturers.¹⁰

The 12-pitch threads are also widely used in machine construction, as for thin nuts on shafts and sleeves. From the standpoints of good design and simplification of practice, it is desirable to maintain shoulder diameters to one-eighth-inch steps. The 12 pitch is the coarsest in general use, which will permit a threaded collar which screws onto a threaded shoulder to slip over a shaft, the difference in diameter between shoulder and shaft being one-eighth inch.

(c) AMERICAN NATIONAL 16-PITCH THREAD SERIES

The nominal sizes and basic dimensions of the American National

16-pitch thread series are specified in table 29.

The 16-pitch series is a uniform pitch series for such applications as require a relatively fine thread. It is intended primarily for use on thread adjusting collars and bearing retaining nuts.

¹⁰ See U.S. Department of Commerce Simplified Practice Recommendation R51-29, Die Head Chasers.

3. CLASSIFICATION, TOLERANCES, AND LIMITING DIMENSIONS

The general specifications and classification of fits given in section V, herein, are applicable to the American National 8-pitch, 12-pitch, and 16-pitch thread series. The dimensions and tolerances for two classes of fit derived from tables 35 and 60 are given in tables 30, 31, and 32.

Table 27.—American National 8-pitch thread series

Phreads er inch	Major diameter, D 3 Inches 1,0000	Pitch diameter,	Minor diameter,	Metric equivalent of major diameter	Helix angle at basic pitch diameter, 8	Basic area of section at root of thread, $\frac{\pi K^2}{4}$
8	Inches	4	5	6	7	8.
800 000000 000000 000000 000000	1. 1250 1. 2500 1. 3750 1. 5000 1. 6250 1. 7500 1. 7500 2. 1000 2. 1250 2. 2500 2. 7500 3. 0000 3. 2500 4. 0000 4. 2500 4. 7500 5. 0000 5. 2500 5. 5000	Inches 0. 9188 1. 0438 1. 1638 1. 2938 1. 4188 1. 5438 1. 6688 2. 9188 2. 1688 2. 4188 2. 6688 3. 6888 4. 1688 4. 1688 4. 1688 4. 1688 5. 1688 5. 1488	Inches 0.8376 .9626 1.0876 1.2126 1.3376 1.4626 1.5876 1.7126 1.8376 2.9876 2.3376 2.5876 2.8376 3.3576 3.3576 4.3876 4.3876 4.3876 5.3876 5.3876 5.3876	mm 25. 400 28. 575 31. 750 34. 925 38. 100 41. 275 44. 450 47. 625 50. 800 53. 975 57. 150 63. 500 69. 850 95. 250 96. 250 101. 600 107. 950 114. 300 120. 650 127. 000 133. 350	Deg. Min. 2 29 2 111 1 57 1 46 1 36 1 29 1 122 1 16 1 11 1 7 1 3 0 57 0 47 0 43 0 40 0 37 0 35 0 33 0 31 0 29 0 28 0 26 0 26 0 25	Square inches 0.5510 .7277 .9290 1.1548 1.4052 1.6801 1.9796 2.3036 2.6521 3.0252 3.4228 4.2917 5.2588 6.3240 7.4874 8.7490 10.1088 11.5667 13.1228 14.7771 16.5295 18.3802 20.3290 22.3760
	888888888888888888888888888888888888888	8 1. 6250 8 1. 7500 8 1. 8750 8 2. 2000 8 2. 1250 8 2. 5000 8 2. 5000 8 2. 5000 8 3. 0000 8 3. 2500 8 3. 7500 8 4. 0000 8 4. 2500 8 4. 5000 8 4. 5000 8 5. 2500 8 5. 2500 8 5. 2500	8 1. 6250 1. 5438 8 1. 7500 1. 6688 8 1. 8750 1. 7938 8 2. 0000 1. 9188 8 2. 1250 2. 0438 8 2. 5000 2. 1688 8 2. 5000 2. 4188 8 2. 7500 2. 6688 8 3. 0000 2. 9188 8 3. 5000 3. 4188 8 3. 7500 3. 6688 8 4. 0000 3. 9188 8 4. 2500 4. 1688 8 4. 5000 4. 4188 8 5. 0000 5. 1688 8 5. 5000 5. 1688 8 5. 5000 5. 488 8 5. 7500 5. 6688	8 1. 6250 1. 5438 1. 4626 8 1. 7500 1. 6688 1. 5876 8 1. 8750 1. 7938 1. 7126 8 2. 2000 1. 9188 1. 8376 8 2. 1250 2. 0438 1. 9626 8 2. 2500 2. 1688 2. 0876 8 2. 5000 2. 4188 2. 3376 8 2. 7500 2. 6688 2. 5876 8 3. 2500 3. 1688 3. 0876 8 3. 5000 3. 4188 3. 3376 8 3. 7500 3. 6688 3. 5876 8 4. 2500 4. 1688 4. 0876 8 4. 5000 4. 4188 4. 3376 8 4. 7500 4. 6688 4. 5876 8 5. 0000 5. 1688 5. 0876 8 5. 5000 5. 4188 5. 3376 8 5. 7500 5. 6688 5. 5876	8 1. 6250 1. 5438 1. 4626 41. 275 8 1. 7500 1. 6688 1. 5876 44. 450 8 1. 8750 1. 7938 1. 7126 47. 625 8 2. 2000 1. 9188 1. 8376 50. 800 8 2. 1250 2. 0438 1. 9626 53. 975 8 2. 2500 2. 1688 2. 0876 57. 150 8 2. 5000 2. 4188 2. 3376 63. 500 8 2. 27500 2. 6688 2. 5876 69. 850 8 2. 2500 2. 6688 2. 5876 69. 850 8 3. 0000 2. 9188 2. 8376 76. 200 8 3. 5000 3. 4188 3. 3376 82. 550 8 3. 7500 3. 6888 3. 5876 95. 250 8 4. 0000 3. 9188 3. 8376 101. 600 8 4. 2500 4. 1688 4. 0876 107. 950 8 4. 5000 4. 4688 4. 5876	8 1. 6250 1. 5438 1. 4626 41. 275 1 29 8 1. 7500 1. 6688 1. 5876 44. 450 1 22 8 1. 8750 1. 7938 1. 7126 47. 625 1 16 8 2. 2000 1. 9188 1. 8376 50. 800 1 11 8 2. 1250 2. 0438 1. 9626 53. 975 1 7 8 2. 2500 2. 1688 2. 0876 57. 150 1 3 8 2. 5500 2. 4188 2. 3376 63. 500 0 57 8 2. 2500 2. 4188 2. 3876 69. 850 0 5 8 2. 5000 2. 4188 2. 8376 69. 850 0 57 8 2. 27500 2. 4188 2. 8376 69. 850 0 51 8 3. 0000 2. 9188 2. 8376 76. 200 0 47 8 3. 5000 3. 1488 3. 3876 </td

¹ Standard size of the American National coarse-thread series.

Note.—Pitch, p=0.12500 inch; depth of thread, h=0.08119 inch; basic width of flat, p/8=0.01562 inch; minimum width of flat at major diameter of nut, p/24=0.00521 inch.

Table 28.—American National 12-pitch thread series

					1		
Identification	n	В	asic diamete	rs		Thread dat	ta
Sizes	Threads per inch	$egin{array}{c} ext{Major} \ ext{diameter,} \ ext{\it D} \end{array}$	Pitch diameter, E	$egin{array}{c} ext{Minor} \ ext{diameter,} \ ext{K} \end{array}$	Metric equivalent of major diameter	Helix angle at basic pitch diameter,	Basic area of section at root of thread $\frac{\pi K^2}{4}$
1	2	3	4	5	6	7	8
32 976 1 98 1176	12 12 12 12 12	Inches 0.5000 .5625 .6250 .6875 .7500	Inches 0. 4459 . 5084 . 5709 . 6334 . 6959	Inches 0. 3917 . 4542 . 5167 . 5792 . 6417	mm 12.700 14.288 15.875 17.463 19.050	Deg. Min. 3 24 2 59 2 40 2 24 2 11	Square inches 0. 1205 . 1620 . 2097 . 2635 . 3234
13/16 7/8 15/16 1 1/16	12 12 12 12 12	. 8125 . 8750 . 9375 1. 0000 1. 0625	. 7584 . 8209 . 8834 . 9459 1. 0084	. 7042 . 7667 . 8292 . 8917 . 9542	20. 638 22. 225 23. 813 25. 400 26. 988	2 0 1 51 1 43 1 36 1 30	. 3895 . 4617 . 5400 . 6245 . 7151
1162 1346	12 12 12 12 12	1. 1250 1. 1875 1. 2500 1. 3125 1. 3750	1. 0709 1. 1334 1. 1959 1. 2584 1. 3209	1. 0167 1. 0792 1. 1417 1. 2042 1. 2667	28. 575 30. 163 31. 750 33. 338 34. 925	1 25 1 20 1 16 1 12 1 9	. 8118 . 9147 1. 0237 1. 1389 1. 2602
17/16	12 12 12 12 12	1. 4375 1. 5000 1. 6250 1. 7500 1. 8750	1. 3834 1. 4459 1. 5709 1. 6959 1. 8209	1. 3292 1. 3917 1. 5167 1. 6417 1. 7667	36. 513 38. 100 41. 275 44. 450 47. 625	1 6 1 3 0 58 0 54 0 50	1. 3876 1. 5212 1. 8067 2. 1168 2. 4514
2	12 12 12 12 12	2. 0000 2. 2500 2. 5000 2. 7500 3. 0000	1. 9459 2. 1959 2. 4459 2. 6959 2. 9459	1. 8917 2. 1417 2. 3917 2. 6417 2. 8917	50. 800 57. 150 63. 500 69. 850 76. 200	0 47 0 42 0 37 0 34 0 31	2. 8106 3. 6025 4. 4927 5. 4810 6. 5674
3½	12 12 12 12	3. 2500 3. 5000 3. 7500 4. 0000	3. 1959 3. 4459 3. 6959 3. 9459	3. 1417 3. 3917 3. 6417 3. 8917	82. 550 88. 900 95. 250 101. 600	0 29 0 26 0 25 0 23	7. 7521 9. 0349 10. 4159 11. 8951
4½	12 12 12 12 12	4. 2500 4. 5000 4. 7500 5. 0000	4. 1959 4. 4459 4. 6959 4. 9459	4. 1417 4. 3917 4. 6417 4. 8917	107. 950 114. 300 120. 650 127. 000	0 22 0 21 0 19 0 18	13. 4725 15. 1480 16. 9217 18. 7936
5½	12 12 12 12	5. 2500 5. 5000 5. 7500 6. 0000	5. 1959 5. 4459 5. 6959 5. 9459	5. 1417 5. 3917 5. 6417 5. 8917	133. 350 139. 700 146. 050 152. 400	0 18 0 17 0 16 0 15	20. 7636 22. 8319 24. 9983 27. 2628

Standard size of the American National coarse-thread series.
 Standard size of the American National fine-thread series.

Note.—Pitch, p=0.08333 inch; depth of thread, h=0.05413 inch; basic width of flat, p/8=0.01042 inch; minimum width of flat at major diameter of nut, p/24=0.00347 inch.

Table 29.—American National 16-pitch thread series

				Total Total			
Identificatio	n	В	asic diamete	rs		Thread data	,
Sizes	Threads per inch	$egin{array}{c} ext{Major} \ ext{diameter,} \ ext{\it D} \end{array}$	Pitch diameter,	$egin{array}{c} ext{Minor} \ ext{diameter,} \ ext{K} \end{array}$	Metric equivalent of major diameter	Helix angle at basic pitch diameter,	Basic area of section at root of thread, $\frac{\pi K^2}{4}$
1	2	3	4	5	6	7	8
34 1	16 16 16 16 16 16 16 16 16	Inches 0.7500 .8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750	Inches 0.7094 .8344 .9594 1.0844 1.2094 1.3344 1.4594 1.5844 1.7094 1.8344	Inches 0.6688 .7938 .9188 1.0438 1.1688 1.2938 1.4188 1.5438 1.6688 1.7938	mm 19.050 22.225 5.400 28.575 31.750 34.925 38.100 41.275 44.450 47.625	Deg. Min. 1 36 1 22 1 11 1 3 0 57 0 51 0 47 0 43 0 40 0 37	Square inches 0. 3513 4949 .6630 .8557 1. 0729 1. 3147 1. 5810 1. 8719 2. 1873 2. 5272
2	16 16 16 16 16	2. 0000 2. 1250 2. 2500 2. 5000 2. 7500	1. 9594 2. 0844 2. 2094 2. 4594 2. 7094	1. 9188 2. 0438 2. 1688 2. 4188 2. 6688	50. 800 53. 975 57. 150 63. 500 69. 850	0 35 0 33 0 31 0 28 0 25	2. 8917 3. 2807 3. 6943 4. 5950 5. 5940
3	16 16 16 16 16	3. 0000 3. 2500 3. 5000 3. 7500 4. 0000	2. 9594 3. 2094 3. 4594 3. 7094 3. 9594	2. 9188 3. 1688 3. 4188 3. 6688 3. 9188	76. 200 82. 550 88. 900 95. 250 101. 600	0 23 0 21 0 20 0 18 0 17	6. 6911 7. 8864 9. 1799 10. 5715 12. 0614

¹ Standard size of the American National fine-thread series.

Table 30.—Limiting dimensions and tolerances, classes 2 and 3 fits, American National 8-pitch thread series

		O pitto							
				Siz	e (inch	es)			
Dimensions and tolerances 1	1 2	11/8	11/4	13/8	11/2	15⁄8	13/4	17/8	2
BOLTS AND SCREWS	Inch	Inches	Inches	Inches	Inches	Inches	Inches	Inches	Inches
Classes 2 and 3, major diame- $\begin{cases} Max \\ Min \\ Tol \end{cases}$	1.0000 .9848 .0152	1.1098	1. 2348	1.3598		1.6098	1.7348		2. 0000 1. 9848 . 0152
Classes 2 and 3, minor diameterMax.3	. 8466	. 9716	1. 0966	1. 2216	1. 3466	1.4716	1. 5966	1. 7216	1.8466
Class 2, pitch diameter (for Max general use)Tol	. 9188 . 9112 . 0076	1.0359		1. 2852	1.4098	1. 5345			1. 9188 1. 9084 . 0104
Class 3, pitch diameter $\begin{bmatrix} Max & \\ Min & \\ Tol & \end{bmatrix}$. 9188 . 9134 . 0054	1.0383	1. 1688 1. 1630 . 0058	1. 2938 1. 2877 . 0061	1. 4188 1. 4125 . 0063	1. 5438 1. 5373 . 0065	1.6620	1. 7938 1. 7868 . 0070	1.9188 1.9115 .0073
NUTS AND TAPPED HOLES									
Classes 2 and 3, major diameterMin.4	1.0000	1. 1250	1. 2500	1. 3750	1. 5000	1. 6250	1.7500	1. 8750	2.0000
Classes 2 and 3, minor diame- ${Min \atop Max - \atop Tol \atop Tol \atop }$. 8647 . 8795 . 0148	. 9897 1. 0032 . 0135	1. 1147 1. 1282 . 0135	1. 2532	1. 3647 1. 3782 . 0135	1. 4897 1. 5032 . 0135		1. 7397 1. 7532 . 0135	1.8647 1.8782 .0135
Classes 2 and 3, pitch diameterMin	. 9188	1. 0438	1. 1688	1. 2938	1. 4188	1. 5438	1. 6688	1. 7938	1.9188
Class 2, pitch diameter (for Max.5 general use) Tol Tol	. 9264 . 0076	1. 0517 . 0079	1.1771 .0083	1. 3024 . 0086	1. 4278 . 0090	1.5531 .0093	1.6785 .0097	1. 8038 . 0100	1.9292 .0104
Class 3, pitch diameter{Tol	. 9242 . 0054	1. 0493 . 0055	1. 1746 . 0058	1. 2999 . 0061	1. 4251 . 0063	1. 5503 . 0065	1.6756 .0068	1.8008 .0070	1. 9261 . 0073

Footnotes at end of table.

Note.—Pitch, p=0.06250 inch; depth of thread, h=0.04059 inch; basic width of flat, p/8=0.00781 inch; minimum width of flat at major diameter of nut, p/24=0.00260 inch.

Table 30.—Limiting dimensions and tolerances, classes 2 and 3 fits, American National 8-pitch thread series—Continued

70'				Siz	ze (inch	es)			
Dimensions and tolerances ¹	21/8	21/4	21/2	2¾	3	31/4	31/2	3¾	4
Bolts and Screws Classes 2 and 3, major diame-	Inches 2. 1250 2. 1098 . 0152	2. 2500 2. 2348	2. 4848	Inches 2. 7500 2. 7348 . 0152	Inches 3. 0000 2. 9848 . 0152	3. 2348		Inches 3. 7500 3. 7348 . 0152	3.9848
Classes 2 and 3, minor diameterMax.3_	1. 9716	2. 0966	2. 3466	2. 5966	2. 8466	3. 0966	3.3466	3. 5966	3.8466
Class 2, pitch diameter (for Max general use) Min Tol	2. 0438 2. 0331 . 0107		2. 4188 2. 4071	2. 6688 2. 6564 . 0124	2. 9188 2. 9058 . 0130	3. 1688	3. 4188 3. 4055	3. 6688	
Class 3, pitch diameter $ \left\{ \begin{matrix} Max & - \\ Min & - \\ Tol & - \end{matrix} \right\}$	2. 0438 2. 0363 . 0075		2. 4188 2. 4106 . 0082	2. 6688 2. 6601 . 0087	2. 9188 2. 9096 . 0092	3. 1595	3.4095	3. 6688 3. 6594 . 0094	3. 9093
NUTS AND TAPPED HOLES									
Classes 2 and 3, major diameterMin.4	2. 1250	2, 2500	2. 5000	2. 7500	3.0000	3. 2500	3. 5000	3.7500	4.0000
Classes 2 and 3, minor diame-	1. 9897 2. 0032 . 0135	2. 1147 2. 1282 . 0135	2. 3647 2. 3782 . 0135	2. 6147 2. 6282 . 0135	2. 8647 2. 8782 . 0135	3. 1147 3. 1282 . 0135		3. 6147 3. 6282 . 0135	
Classes 2 and 3, pitch diameter	2. 0438	2, 1688	2, 4188	2, 6688	2. 9188	3. 1688	3. 4188	3, 6688	3, 9188
Class 2, pitch diameter (for Max.5-general use) Tol	2. 0545 . 0107		2. 4305 . 0117	2. 6812 . 0124	2. 9318 . 0130	3. 1820 . 0132	3. 4321	3. 6822 . 0134	
Class 3, pitch diameter $ {Max.5 - Tol Tol$	2. 0513 . 0075	2. 1765		2. 6775 . 0087	2. 9280 . 0092	3. 1781 . 0093	3. 4281	3. 6782 . 0094	3. 9283 . 0095
					Size (i	nches)			
Dimensions and tolerances		41/4	41/2	43/4	5	51/4	51/2	53/4	6
Bolts and Screws		Inches	Inches	Inches	Inches	Inches	Inches	Inches	Inches
Classes 2 and 3, major diameter	Max Min Tol	4. 2500 4. 2348	4. 5000	4. 7500	5.0000	5. 2500	5. 5000 5. 4848 . 0152	5. 7500 5. 7348 . 0152	6. 0000 5. 9848 . 0152
Classes 2 and 3, minor diameter	Max.3_	4. 0966	4. 3466	4. 5966	4.8466	5. 0966	5. 3466	5. 5966	5. 8466
Class 2, pitch diameter (for general use)	Max Min Tol	4. 1688 4. 1551 . 0137			4. 9188 4. 9048 . 0140		5. 4188 5. 4046 . 0142	5. 6688 5. 6545 . 0143	5. 9188 5. 9044 . 0144
Class 3, pitch diameter	Max Min Tol	4. 1592	4. 4188 4. 4091 . 0097		4. 9188 4. 9089 . 0099	5. 1688 5. 1589 . 0099	5. 4188 5. 4088 . 0100	5. 6688 5. 6587 . 0101	5. 9188 5. 9086 . 0102
NUTS AND TAPPED HOLES									
Classes 2 and 3, major diameter			4. 5000	4. 7500	5. 0000	5. 2500	5. 5000	5. 7500	6.0000
	Min Max Tol					5. 1147 5. 1282 . 0135	5. 3647 5. 3782 . 0135	5. 6147 5. 6282 . 0135	5. 8647 5. 8782 . 0135
Classes 2 and 3, pitch diameter	Min	4. 1688	4. 4188	4. 6688	4. 9188	5. 1688	5. 4188	5. 6688	5. 9188
Class 2, pitch diameter (for general use)	Max.5_	4. 1825 . 0137	4. 4326 . 0138	4. 6827 . 0139	4. 9328 . 0140	5. 1829 . 0141	5. 4330 . 0142	5. 6831 . 0143	5. 9332 . 0144
Class 3, pitch diameter		1						5. 6789 . 0101	5. 9290 . 0102

¹ Pitch diameter tolerances include errors of lead and angle. The class 2 tolerances are based on the 1 Pitch diameter tolerances include errors of lead and angle. The class 2 tolerances are based on the formulas in table 60 and a length of engagement equal to the basic major diameter for sizes from 1½ to 3 inches, inclusive, and a length of engagement of 3 inches for sizes over the 3-inch. The class 3 tolerances are 70 percent of the class 2 tolerances. The 1-inch size being in the American National coarse-thread series, the tolerances for this size correspond to that series.

2 Standard size screw and nut of the American National coarse-thread series.

² Standard size screw and nut of the American National coarse-thread series.

³ Dimensions given for the maximum minor diameter of the screw are figured to the intersection of the worn tool arc with a center line through crest and root. The minimum minor diameter of the screw shall be that corresponding to a flat at the minor diameter of the minimum screw equal to $\frac{1}{2} \times p$, and may be determined by subtracting 0.0812 inch from the minimum pitch diameter of the screw.

⁴ Dimensions for the minimum major diameter of the nut correspond to the basic flat $(\frac{1}{2} \times p)$, and the profile at the major diameter produced by a worn tool must not fall below the basic outline. The maximum major diameter of the nut shall be that corresponding to a flat at the major diameter of the maximum nut equal to $\frac{1}{2} \times p$, and may be determined by adding 0.0992 inch to the maximum pitch diameter of the nut.

the nut.

These dimensions are the minimum metal or "not go" size. The "go" or basic size is the one that should be placed on the component drawing with the tolerance.

Table 31.—Limiting dimensions and tolerances, classes 2 and 3 fits, American National 12-pitch thread series

					Size (ir	iches)				
Dimensions and tolerances ¹	1/2	%6 ²	5/8	11/16	3/4	13/16	7/8	15/16	1	1½6
Bolts and Screws	Incl	h Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inches
Classes 2 and 3, major diameter $\mathbb{I}_{\text{Tol}}^{\text{Max}}$	0. 500 488	00 0. 5625 38 . 5513	0.6250	0.6875 .6763	0. 7500 . 7388 . 0112	0.8125 .8013	0. 8750 . 8638 . 0112	0.937 .926	75 1. 0000 3 . 9888	1. 0625 1. 0513 2 . 0112
Classes 2 and 3, minor diameter. Max.	4397	78 . 4603	. 5228	. 5853	.6478	. 7103	. 7728	. 835	3 .8978	. 9603
Class 2, pitch diameter (for gen- $\begin{cases} Max \\ Min \\ Tol \end{cases}$. 440	59 . 5084 03 . 5028 56 . 0056	. 5653	. 6278	. 6903	.7584 .7528 .0056	. 8209 . 8153 . 0056	. 877	34 . 9459 78 . 9403 66 . 0056	1. 0084 1. 0028 . 0056
Class 3, pitch diameter $\max_{\text{Min.}} \{ Max \atop \text{Min.} \\ \text{Tol.} \}$. 44	191.5044	. 5669	. 6334 . 6294 . 0040	. 6919	. 7584 . 7544 . 0040	. 8209 . 8169 . 0040	.879	34 . 9459 94 . 9419 90 . 0040	1.0044
NUTS AND TAPPED HOLES Classes 2 and 3, major diameter. Min.	5 500	00 . 5625	. 6250				. 8750	. 937	5 1. 0000	1. 0625
Classes 2 and 3, minor diameter $-\begin{cases} Min_{Max} \\ Tol_{-} \end{cases}$. 422	4850	. 5438	. 5973 . 6063 . 0090	. 6598 . 6688 . 0090	. 7313	. 7848 . 7938 . 0090	.856	3 .9098 3 .9188 0 .0090	. 9813
Classes 2 and 3, pitch diameter Min.	448	59 . 5084	. 5709	. 6334	. 6959	.7584	. 8209	. 883	. 9459	1.0084
Class 2, pitch diameter [Max. (for general use) [Tol.	6451	56 . 5140 66 . 0056	. 5765	. 6390 . 0056	.7015	. 7640 . 0056	. 8265 . 0056	. 889	0 .9518 6 .0056	1. 0140 . 0056
Class 3, pitch diameter $\{Max, Tol\}$		9 . 5124 0 . 0040		. 6374 . 0040	. 6999 . 0040	. 7624 . 0040	. 8249 . 0040	. 887	. 9499	1. 0124 . 0040
				S	ize (inc	hes)				
Dimensions and tolerances 1	11/8 3	13/16	11/4 3	15/16	13% 8	17/1	6 1	1/2 3	15%	13/4
Bolts and Screws										
	Inches 1. 1250 1. 1138 . 0112	1. 1763	Inches 1. 2500 1. 2388 . 0112	1.312 1.301	3 1.363	50 1.43 88 1.42	75 1. 63 1.	5000	Inches 1. 6250 1. 6138 . 0112	Inches 1. 7500 1. 7388 . 0112
Classes 2 and 3, minor diameter	1. 0228	1, 0853	1. 1478	1. 210	3 1. 272	28 1. 33	53 1.	3978	1, 5228	1. 6478
Class 2, pitch diameter (for $\begin{cases} Max \\ Min \\ Tol \end{cases}$	1. 0709 1. 0653 . 0056	1. 1334 1. 1278 . 0056	1. 1959 1. 1903 . 0056	1.252	8 1.315	3 1.37	78 1.	4459 4403 0056	1. 5709 1. 5645 . 0064	1. 6959 1. 6894 . 0065
Class 3, pitch diameter $\begin{bmatrix} Max \\ Min \\ Tol \end{bmatrix}$	1.0709 1.0669 .0040	1. 1334 1. 1294 . 0040	1. 1959 1. 1919 . 0040	1, 254	4 1.316	9 1.37	94 1.		1.5709 1.5664 .0045	1. 6959 1. 6913 . 0046
NUTS AND TAPPED HOLES										
Classes 2 and 3, major diameter	1. 1250	1. 1875	1. 2500	1.312	5 1.375	50 1. 43	75 1.	5000	1. 6250	1. 7500
Classes 2 and 3, minor diame- terTol	1.0348 1.0438 .0090	1. 0973 1. 1063 . 0090	1. 1598 1. 1688 . 0090	1. 222 1. 231	3 1. 284 3 1. 293	18 1.34 18 1.35	73 1. 63 1.		1. 5348 1. 5438 . 0090	1. 6598 1. 6688 . 0090
Classes 2 and 3, pitch diame-	1.0709			1. 258					1. 5709	
Class 2, pitch diameter (for Max.6 general use) Tol.	1.0765 .0056	1.1390 .0056	1. 2015 . 0056					4515 0056	1. 5773 . 0064	1.7024 .0065
Class 3, pitch diameter{Tol	1.0749 .0040	1. 1374 . 0040	1. 1999 . 0040					4499 0040	1. 5754 . 0045	1. 7005 . 0046

Footnotes at end of table.

182129-33---6

Table 31.—Limiting dimensions and tolerances, classes 2 and 3 fits, American National 12-pitch thread series—Continued

						Siz	e (incl	nes)			
Dimensions and tolerances ¹		1	7/8	2	21/4	21/2	23/4	3	31/4	31/2	3¾
Bolts and Screws	3.5		n.	In.	In.	In.	In.	In.	In.	In.	In.
Classes 2 and 3, major diameter	Max Min Tol	1.8	638	1.9888	2.2388	2.4888	2.7388	2.9888	3.2388	3. 5000 3. 4888 . 0112	3, 7388
Classes 2 and 3, minor diameter	Max.4										
Class 2, pitch diameter (for general use)	Max Min Tol	1.8	3143	1.9392		2, 4388	2.6887	2.9385	3.1884	3. 4459 3. 4383 . 0076	3.6883
Class 3, pitch diameter	Max Min Tol	1.8	3163	1.9412	2. 1911	2.4410	2.6909	2,9408	3. 1907	3. 4459 3. 4406 . 0053	3.6908
NUTS AND TAPPED HOLES											
	Min.5										
Classes 2 and 3, minor diameter	Min Max Tol	1. 7	7938	1.9188	2. 1688	2.4188	2.6688	2.9188	3. 1688	3. 4098 3. 4188 . 0090	3.6688
Classes 2 and 3, pitch diameter	Min	1, 8	3209	1.9459	2. 1959	2, 4459	2, 6959	2. 9459	3. 1959	3. 4459	3. 6959
Class 2, pitch diameter (for general use) $\Big\{$	Max. ⁶ Tol		3275 0066							3. 4535 . 0076	
	Max.6 Tol			1. 9506 . 0047						3. 4512 . 0053	
		Size									
Dimensions and tolerances ¹										,	
		4	4	41/4	41/2	43/4	5	51/4	51/2	53/4	6
Bolts and Screws			n.	4¼ In.	4½ In.	4¾ In.	5 In.	5½ In.	5½ In.	5¾ In.	6 In.
Classes 2 and 3, major diameter	Max Min Tol	1. 0 3. 9	n. 0000 9888	In. 4. 2500 4. 2388	In. 4. 5000 4. 4888	In. 4. 7500 4. 7388	In. 5. 0000 4. 9888	In. 5. 2500	In. 5. 5000 5. 4888	In. 5. 7500	In. 6. 0000 5. 9888
Classes 2 and 3, major diameter	Min Tol	4. 0 3. 9	n. 0000 9888 0112	In. 4. 2500 4. 2388 . 0112	In. 4. 5000 4. 4888 . 0112	In. 4. 7500 4. 7388 . 0112	In. 5. 0000 4. 9888 . 0112	In. 5. 2500 5. 2388 . 0112	In. 5. 5000 5. 4888 . 0112	In. 5. 7500 5. 7388	In. 6. 0000 5. 9888
Classes 2 and 3, major diameter{Classes 2 and 3, minor diameterClass 2, pitch diameter (for general use)	Min Tol Max.4 Max	3. 9 3. 9 3. 9 3. 9	n. 0000 9888 9112 8978 9459 9380	In. 4. 2500 4. 2388 . 0112 4. 1478 4. 1959 4. 1879	In. 4. 5000 4. 4888 . 0112 4. 3978 4. 4459 4. 4378	In. 4. 7500 4. 7388 . 0112 4. 6478 4. 6959 4. 6876	In. 5. 0000 4. 9888 . 0112 4. 8978 4. 9459 4. 9375	In. 5. 2500 5. 2388 . 0112 5. 1478 5. 1959 5. 1874	In. 5. 5000 5. 4888 . 0112 5. 3978 5. 4459 5. 4373	In. 5. 7500 5. 7388 . 0112	In. 6. 0000 5. 9888 . 0112 5. 8978 5. 9458 5. 937
Classes 2 and 3, major diameter	Min Tol Max.4 Max Min Tol	3. 9 3. 9 3. 9 3. 9 3. 9	n. 0000 9888 0112 8978 9459 9380 0079 9459	In. 4. 2500 4. 2388 . 0112 4. 1478 4. 1959 4. 1879 . 0080 4. 1959 4. 1903	In. 4. 5000 4. 4888 . 0112 4. 3978 4. 4459 4. 4378 . 0081 4. 4459 4. 4402	In. 4. 7500 4. 7388 . 0112 4. 6478 4. 6959 4. 6876 . 0083 4. 6959 4. 6901	In. 5.0000 4.9888 .0112 4.8978 4.9459 4.9375 .0084 4.9459 4.9400	In. 5. 2500 5. 2388 . 0112 5. 1478 5. 1959 5. 1874 . 0085 5. 1959 5. 1900	In. 5. 5000 5. 4888 . 0112 5. 3978 5. 4459 5. 4373 . 0086 5. 4459 5. 4399	In. 5. 7500 5. 7388 . 0112 5. 6478 5. 6959 5. 6872 . 0087 5. 6959 5. 6898	In. 6. 0000 5. 9888 . 0112 5. 8978 5. 9459 5. 9459 5. 9459 5. 939
Classes 2 and 3, major diameter	Min Tol Max.4_ Max Min Tol Max Min	3. 9 3. 9 3. 9 3. 9 3. 9	n. 0000 9888 0112 8978 9459 9380 0079 9459	In. 4. 2500 4. 2388 . 0112 4. 1478 4. 1959 4. 1879 . 0080 4. 1959 4. 1903	In. 4. 5000 4. 4888 . 0112 4. 3978 4. 4459 4. 4378 . 0081 4. 4459 4. 4402	In. 4. 7500 4. 7388 . 0112 4. 6478 4. 6959 4. 6876 . 0083 4. 6959 4. 6901	In. 5.0000 4.9888 .0112 4.8978 4.9459 4.9375 .0084 4.9459 4.9400	In. 5. 2500 5. 2388 . 0112 5. 1478 5. 1959 5. 1874 . 0085 5. 1959 5. 1900	In. 5. 5000 5. 4888 . 0112 5. 3978 5. 4459 5. 4373 . 0086 5. 4459 5. 4399	In. 5. 7500 5. 7388 . 0112 5. 6478 5. 6959 5. 6872 . 0087 5. 6959	In. 6. 0000 5. 9888 . 0112 5. 8978 5. 9459 5. 9459 5. 9459 5. 939
Classes 2 and 3, major diameter{ Classes 2 and 3, minor diameter Class 2, pitch diameter (for general use) Class 3, pitch diameter	Min Tol Max.4 Min Tol Max Tol Max Min Tol	14.0 3.9 .0 3.8 3.9 .0 3.9 .0	n. 0000 9888 0112 8978 9459 9459 9459 9404 0055	In. 4. 2500 4. 2388 . 0112 4. 1478 4. 1959 4. 1879 . 0080 4. 1959 4. 1903 . 0056	In. 4. 5000 4. 4888 .0112 4. 3978 4. 4459 4. 4378 .0081 4. 4459 4. 4402 .0057	In. 4.7500 4.7388 .0112 4.6478 4.6959 4.6876 .0083 4.6959 4.6901 .0058	In. 5.0000 4.9888 .0112 4.8978 4.9459 4.9459 4.9459 4.9459	In. 5. 2500 5. 2388 . 0112 5. 1478 5. 1959 5. 1874 . 0085 5. 1959 5. 1900 . 0059	In. 5. 5000 5. 4888 . 0112 5. 3978 5. 4459 5. 4373 . 0086 5. 4459 6. 0060	In. 5. 7500 5. 7388 . 0112 5. 6478 5. 6959 5. 6872 . 0087 5. 6959 5. 6898 . 0061	In. 6. 0006 5. 9886 . 0112 5. 8978 5. 9459 5. 937 . 0088 5. 9459 5. 939
Classes 2 and 3, major diameter	Min Tol Max.4 Max. Min Tol Max Min Min Min Min	1. 4. 0 3. 9 3. 9 3. 9 3. 9 3. 9 4. 0 3. 9 3. 9 3. 9 3. 9	7n. 00000 9888 0112 8978 9459 9380 0079 9459 9404 0055 0000 00098 9188	In. 4. 2500 4. 2388 .0112 4. 1478 4. 1959 4. 1879 .0080 4. 1959 4. 1903 .0056 4. 2500 4. 1598 4. 1688	In. 4. 5000 4. 4888 . 0112 4. 3978 4. 4459 4. 4378 . 0081 4. 4459 4. 4402 . 0057 4. 5000 4. 4098 4. 4188	In. 4. 7500 4. 7388 4. 6959 4. 6876 6. 0083 4. 6959 4. 6901 6. 0058 4. 7500 4. 6598 4. 6688	In. 5. 0000 4. 9888 . 0112 4. 8978 4. 9459 4. 9459 4. 9400 . 0059 5. 0000 4. 9098 4. 9188	In. 5. 2500 5. 2388 .0112 5. 1478 5. 1959 5. 1874 .0085 5. 1959 5. 1900 .0059	In. 5. 5000 5. 4888 .0112 5. 3978 5. 4459 5. 4373 .0086 5. 4459 .0060 5. 5000 5. 4098 5. 4188	In. 5.7500 5.7388 .0112 5.6478 5.6959 5.6872 .0087 5.6959 5.6898 .0061	In. 6. 0000 5. 9888 . 0112 5. 8978 5. 9459 5. 9397 . 0062 6. 0000 5. 9098 5. 9188
Classes 2 and 3, major diameter	Min Max.4_ Max.4_ Min Tol Max.Min Tol Min Min Tol Min Min Tol Min Min Min	3. 9 3. 9 3. 9 3. 9 3. 9 3. 9 3. 9 3. 9	n	In. 4. 2500 4. 2388 . 0112 4. 1478 4. 1959 4. 1879 . 0080 4. 1959 4. 1903 . 0056 4. 2500 4. 1598 4. 1688 . 0090	In. 4.5000 4.4888 .0112 4.3978 4.4459 4.4459 4.4459 4.4402 .0057 4.5000 4.4098 4.4188 .0090	In. 4.7500 4.7388 .0112 4.6478 4.6959 4.6959 4.6959 4.6901 .0058 4.7500 4.6598 4.6688 .0090	In. 5.0000 4.9888 .0112 4.8978 4.9459 4.9459 4.9450 .0059 5.0000 4.9098 4.9188 .0090	In. 5. 2500 5. 2388 .0112 5. 1478 5. 1959 5. 1874 .0085 5. 1959 5. 1900 .0059 5. 2500 5. 1598 5. 1688 .0090	In. 5.5000 5.4888 .0112 5.3978 5.4459 5.4459 5.4459 6.0060 5.5000 5.4098 5.4188 .0090	In. 5.7500 5.7388 .0112 5.6478 5.6959 5.6872 .0087 5.6959 5.6898 .0061 5.7500 5.6598 5.6688 .0090	In. 6. 0000 5. 9888 . 0112 5. 8978 5. 9459 5. 937 . 0088 5. 9459 6. 0000 5. 9098 5. 9188 . 0090
Classes 2 and 3, major diameter	Min Max.4_ Max.4_ Min Tol Max.Min Tol Min Min Tol Min Min Tol Min Min Min	4. 0 3. 9 3. 9 3. 9 3. 9 3. 9 3. 9 3. 9 3. 9	70. 00000 9888 0112 8978 9459 9380 0079 9404 0055 00000 9459 9538	In. 4. 2500 4. 2388 . 0112 4. 1478 4. 1959 4. 1879 . 0080 4. 1959 4. 2500 4. 1588 . 0090 4. 1959 4. 2039	In. 4.5000 4.4888 .0112 4.3978 4.4459 4.4459 4.4402 .0057 4.5000 4.4098 4.4188 .0090 4.4459	In. 4.7500 4.7388 .0112 4.6478 4.6959 4.6959 4.6901 .0058 4.7500 4.6588 .0090 4.6959 4.7042	In. 5.0000 4.9888 .0112 4.8978 4.9459 5.0084 4.9459 4.9400 .0059 5.0000 4.9098 4.9189 4.9459 4.9543	In. 5. 2500 5. 2388 . 0112 5. 1478 5. 1959 5. 1874 . 0085 5. 1959 5. 1900 . 0059 5. 2500 5. 1598 5. 1688 . 0090 5. 1959	In. 5. 5000 5. 4888 .0112 5. 3978 5. 4459 5. 4373 .0086 5. 4459 5. 4098 5. 4188 .0090 5. 4098 5. 4189 5. 4459	In. 5. 7500 5. 7388 . 0112 5. 6478 5. 6959 5. 6872 . 0087 5. 6959 5. 6898 . 0061 5. 7500 5. 6598 5. 6688 . 0090 5. 6959	In. 6,000 5,988 .011 5,897 5,945 5,937 .008 5,949 6,000 5,909 5,918 .009 5,945 5,954

¹ Pitch diameter tolerances include errors of lead and angle. The class 2 tolerances for sizes above 1½ inches are based on the formulas in table 60 and a length of engagement of 6 threads or ½ inch. The class 3 tolerances are 70 percent of the class 2 tolerances. For lengths of engagement of 1 inch, 0.0010 inch may be added to these tolerances. As certain sizes up to 1½ inches are included in the American National coarse of fine thread series, the tolerances to and including 1½ inches correspond to those series.

2 Standard size screw and nut of the American National coarse thread series.

3 Standard size screw and nut of the American National fine thread series.

4 Dimensions given for the maximum minor diameter of the screw are figured to the intersection of the worn tool are with a center line through crest and root. The minimum minor diameter of the screw shall be that corresponding to a flat at the minor diameter of the minimum screw equal to ½×p, and may be determined by subtracting 0.0541 inch from the minimum pitch diameter of the screw.

4 Dimensions for the minimum major diameter of the nut correspond to the basic flat, (½×p), and the profile at the major diameter produced by a worn tool must not fall below the basic outline. The maximum major diameter of the nut shall be that corresponding to a flat at the major diameter of the maximum nut equal to ½4×p, and may be determined by adding 0.0662 inch to the maximum pitch diameter of the nut.

diameter of the nut.

⁶ These dimensions are the minimum metal or "not go" size. The "go" or basic size is the one that should be placed on the component drawing with the tolerance.

Table 32.—Limiting dimensions and tolerances, class 3 fit, American National 16-pitch thread series

****						Size (i	nches)				
Dimensions and tolerand	ees 1	3/4 2	7/8	1	11/8	11/4	13%	11/2	15%	13/4	17/8
BOLTS AND SCREWS Major diameter	Max Min	In. 0. 7500 . 7410	In. 0. 8750 . 8660	In. 1. 0000 . 9910	Ins. 1. 1250 1. 1160	Ins. 1. 2500 1. 2410	Ins. 1. 3750 1. 3660	Ins. 1. 5000 1. 4910	Ins. 1. 6250 1. 6160	Ins. 1. 7500 1. 7410	Ins. 1. 8750 1. 8660
Minor diameter						1. 1733					
Pitch diameter	-{Max Min Tol	. 7094 . 7062 . 0032	. 8344 . 8308 . 0036	. 9594 . 9557 . 0037	1. 0844 1. 0806 . 0038	1. 2094 1. 2056 . 0038	1. 3344 1. 3305 . 0039	1. 4594 1. 4554 . 0040	1. 5844 1. 5803 . 0041	1. 7094 1. 7053 . 0041	1. 8344 1. 8302 . 0042
NUTS AND TAPPED HO											
Major diameter				1. 0000	1. 1250	1. 2500	1. 3750	1. 5000	1.6250	1.7500	1.8750
Minor diameter	$egin{cases} \mathrm{Min} \\ \mathrm{Max} \\ \mathrm{Tol} \end{cases}$. 6823 . 6993 . 0080	.8073 .8141 .0068	. 9391	1.0641	1. 1823 1. 1891 . 0068	1.3141	1.4391	1.5641	1.6891	1.8141
Pitch diameter	${f Min \atop Max \atop Tol}$.7094 .7126 .0032	. 8344 . 8380 . 0036	. 9631	1.0882	1. 2094 1. 2132 . 0038	1.3383	1.4634	1.5885	1.7135	1.8386
						Size (i	nches)				
Dimensions and tolerand	ees 1	2	21/8	21/4	2½	23/4	3	31/4	3½	33/4	4
BOLTS AND SCREWS		T I	7t	T b	7	Tb	To all on	Tb	T	To all a	T b
Major diameter	${f Max} f Min f Tol$	2.0000 1.9910	2. 1250 2. 1160	2. 2500 2. 2410	2. 5000 2. 4910	2.7410	3.0000 2.9910	3. 2500 3. 2410	3.5000 3.4910	3.7500 3.7410	4.0000 3.9910
Minor diameter	Max.³	1. 9233	2. 0483	2. 1733	2. 4233	2. 6733	2. 9233	3. 1733	3. 4233	3. 6733	3. 9233
Pitch diameter	${egin{array}{l} { m Max} \\ { m Min} \\ { m Tol} \end{array}}$	1.9551	2.0801	2.2050	2.4549	2.7048	2.9547	3.2046	3.4545	3.7044	3.9543
NUTS AND TAPPED HO	LES										
Major diameter											
Minor diameter	$\begin{cases} \text{Min} \\ \text{Max} \\ \text{Tol} \end{cases}$	1.9391	2.0641	2.1891	2.4391	2.6891	2.9391	3. 1891	3.4391	3.6891	3. 9391

¹ Pitch diameter tolerances include errors of lead and angle, and are 70 percent of the tolerances for class 2 based on the formulas in table 60 and a length of engagement of 6 threads or ¾ inch. The ¾-inch size being in the American National fine-thread series, the tolerance for this size corresponds to that series. ¹ Standard size screw and nut of the American National fine-thread series. ³ Dimensions given for the maximum minor diameter of the screw are figured to the intersection of the worn-tool are with a center line through crest and root. The minimum minor diameter of the screw shall be that corresponding to a flat at the minor diameter of the minimum screw equal to ½×p, and may be determined by subtracting 0.0406 inch from the minimum pitch diameter of the screw. ⁴ Dimensions for the minimum major diameter of the nut correspond to the basic flat (½×p) and the profile at the major diameter produced by a worn tool must not fall below the basic outline. The maximum major diameter of the nut shall be that corresponding to a flat at the major diameter of the maximum nut equal to ½4×p, and may be determined by adding 0.0496 inch to the maximum pitch diameter of the nut.

4. GAGES

The specifications for gages given in section III are applicable to the American National 8-, 12-, and 16-pitch thread series. Tolerances on diameter, lead, and angle for classes W, X, Y, and Z gages, as specified in section III, are given in table 33.

Each gage shall be marked for identification, with the diameter, pitch, and class of fit as specified in section II, division 3, "Symbols."

Table 33.—Tolerances for thread gages, American National 8-, 12-, and 16-pitch thread series

8-PITCH

Class of gage	Tolerance diam	e on pitch eter ¹	Tolerance	Tolerance on half	Tolerance on major or minor diameters ¹					
and an grigin	From-	То—	on lead 2	angle of thread	From-	То—				
Class WClass X and "not go"Class YClass Z	Inch 0.0000 .0000 .0002 .0002	Inch 0. 0002 . 0004 . 0007 . 0013	Inch 0.00025 .0004 .0004 .0005	Deg. Min. 0 5 0 5 0 5 0 5 0 5	Inch 0.0000 .0000 .0000 .0000	Inch 0.0007 .0007 .0007 .0007				
12-PITCH										
Class W	0.0000 .0000 .0002 .0004	0.00015 .0003 .0006 .0011	0.0002 .0003 .0003 .0004	0 6 0 10 0 10 0 10	0. 0000 . 0000 . 0000 . 0000	0.0006 .0006 .0006 .0006				
16-PITCH										
Class W	0.0000 .0000 .0002 .0004	0.0001 .0003 .0006 .0010	0.00015 .0003 .0003 .0004	0 8 0 10 0 15 0 15	0.0000 .0000 .0000 .0000	0.0006 .0006 .0006 .0006				

¹ On "go" plugs the tolerance is plus, and on "go" rings the tolerance is minus. On "not go" plugs the tolerance is minus, and on "not go" rings the tolerance is plus.

² Allowable variation in lead between any 2 threads not farther apart than the standard length of engage-

ment.

SECTION V. SCREW THREADS OF SPECIAL DIAMETERS, PITCHES, AND LENGTHS OF ENGAGEMENT

The tolerances specified in section III of this report apply in general to bolts, nuts, and tapped holes of standard pitches and diameters. They are based on the pitch of the thread and a length of engagement equal to the basic major diameter, but are used for lengths of engage-

ment up to 1½ diameters.

In addition to the foregoing threaded components, there are large quantities of threaded parts produced, such as hub and radiator caps in the automotive industry, threaded collars on machine tools, etc., where the diameters are larger, the pitches finer, and the lengths of engagement shorter than for bolt and nut practice. The following specifications have been adopted for such threaded parts, and the tolerances are based on the diameter, pitch, and length of engagement of the components.

1. FORM OF THREAD

The American National form of thread profile as specified in section III shall be used.

2. THREAD SERIES

In section IV there are given the limiting dimensions for an 8-pitch, a 12-pitch, and a 16-pitch thread series. The use of these series,

wherever possible, is recommended for all applications requiring

other than American National coarse or fine threads.

Whenever sizes and pitches in the American National coarse or fine, or the 8-, 12-, or 16-pitch thread series are not suitable, it is recommended that one of the following pitches be selected: 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36, 40, 48, 56, 64 threads per inch. Basic thread data for these pitches are given in table 34.

3. CLASSIFICATION AND TOLERANCES

There are established herein for general use four classes of screwthread fits, which are named and numbered to correspond to the regular classification of fits given in section III. These four classes, together with the accompanying specifications, are intended to insure a uniform practice for screw threads not included in the American National coarse or fine thread series, nor in the 8-, 12-, or 16-pitch thread series.

Table 34.—Thread data for recommended pitches for special threads

Threads per inch, n	Pitch, h	Depth of thread, p	Basic width of flat, p/8	Minimum width of flat at major diameter of nut, p/24
1	2	3	4	5
64	Inch 0.01562 .01786 .02083 .02500 .02778 .03125 .03571 .04167 .05000 .05556 .06250 .07143 .08333	Inch 0.01015 0.1160 0.1353 0.1624 0.1804 0.2030 0.2320 0.2706 0.3248 0.3608 0.4059 0.4639 0.4639 0.6413	Inch 0.00195 .00223 .00260 .00312 .00347 .00341 .00446 .00521 .00625 .00694 .00781 .00893 .01042	Inch 0.00065 .00074 .00087 .00104 .00116 .00130 .00149 .00174 .00208 .00231 .00260 .00298 .00347
8	. 12500 . 16667 . 25000	. 08119 . 10825 . 16238	. 01562 . 02083 . 03125	. 00521 . 00694 . 01042

It is not the intention of the Commission arbitrarily to place a general class or grade of work in a specific class of fit. Each manufacturer and user of screw threads is free to select the class of fit best adapted to his particular needs.

(a) GENERAL SPECIFICATIONS

The following general specifications apply to all classes of fit specified for screw threads of special diameters, pitches, and lengths of engagement.

1. Uniform Minimum Nut.—The pitch diameter of the minimum

threaded hole or nut corresponds to the basic size.11

¹¹ Special cases will arise, however, when a class 1 thread is required on finished drawn tubing with thin walls, and in such cases the allowance should be made on the nut.

2. Tolerances. 12—(a) The tolerances specified represent the extreme variations allowed on the product.

(b) The tolerance on the nut is plus, and is applied from the basic

size to above basic size.

(c) The tolerance on the screw is minus, and is applied from the maximum screw size to below the maximum screw size.

(d) The pitch diameter tolerances for a screw and nut of a given

class of fit are the same.

(e) Pitch diameter tolerances include all errors of pitch diameter, lead, and angle. The full tolerance cannot, therefore, be used on pitch diameter unless the lead and angle of the thread are perfect.

(f) The pitch diameter tolerances are obtained by adding three values, or increments; one dependent upon the basic major diameter, another upon the length of engagement, and the third upon the pitch of the thread. These increments are based on formulas given in appendix 1. However, where tolerance values so obtained exceed those given in section III for corresponding pitches of the American National coarse or fine thread series, and for any diameters equal to or less than these standard sizes and lengths of engagement equal to or less than one diameter, the tolerances given in section III are used. (See rules for using tolerance tables on p. 81.)

(g) The tolerances on the major diameters of the screws and minor diameters of the nuts are based on the pitch of the thread, as these control the depth of engagement; they are, therefore, based on the

pitch alone.

(h) The minimum minor diameter of a screw of a given pitch is such as to result in a basic flat $(\frac{1}{2}8 \times p)$ at the root when the pitch diameter of the screw is at its minimum value. When the maximum screw is basic, the minimum minor diameter of the screw will be below the basic minor diameter by the amount of the specified pitch diameter tolerance.

(i) The maximum minor diameter of a screw of a given pitch may be such as results from the use of a worn or rounded threading tool, when the pitch diameter is at its maximum value. In no case, however, should the form of the screw, as results from tool wear, be such as to cause the screw to be rejected on the maximum minor diameter by a "go" ring gage, the minor diameter of which is equal to the

minimum minor diameter of the nut.

(j) The maximum major diameter of the nut of a given pitch is such as to result in a flat equal to one third of the basic flat $(\frac{1}{24} \times p)$ when the pitch diameter of the nut is at its maximum value. When the minimum nut is basic, its maximum major diameter will be above the basic major diameter by the amount of the specified pitch diameter tolerance plus two ninths of the basic thread depth.

(k) The nominal minimum major diameter of a nut is the basic major diameter. In no case, however, should the minimum major diameter of the nut, as results from a worn tap or cutting tool, be such as to cause the nut to be rejected on the minimum major diameter by a "go" plug gage made to the standard form at the crest.

 $^{^{12}}$ Recommendations and explanations regarding the application of tolerances are given in appendix 1, p. 127.

(l) The tolerance on minor diameter of a nut of a given pitch is one sixth of the basic thread depth regardless of the class of fit. 13

(b) CLASSIFICATION OF FITS

1. Class 1, Loose Fit.—This class is intended to cover the manufacture of threaded parts where quick and easy assembly is necessary and a considerable amount of shake or play is not objectionable.

This class is made with an allowance on the screw, so as to permit ready assembly, even when the threads are slightly bruised or dirty,

in conformity with the practice in section III. 14

Tables 35 and 36 give the limiting dimensions and tolerances for major, pitch, and minor diameters of threads of special diameters,

pitches, and lengths of engagement.

2. Class 2, Free Fit.—This class is intended to cover the manufacture of threaded parts which are to assemble nearly or entirely with the fingers, and where a slight amount of shake or play between the assembled threaded members is not objectionable. It is the same in every particular as class 1 except that it has no allowance and the tolerances are smaller.

Tables 35 and 37 give the limiting dimensions and tolerances for major, pitch, and minor diameters of threads of special diameters,

pitches, and lengths of engagement.

3. Class 3, Medium Fit.—This class is intended to cover the manufacture of the higher grade of threaded parts which are to assemble nearly or entirely with the fingers, and must have the minimum amount of shake or play between the threaded members. It is the same as class 2 in every particular except that the tolerances are smaller.

Tables 35 and 38 give the limiting dimensions and tolerances for major, pitch, and minor diameters of threads of special diameters,

pitches, and lengths of engagement.

4. Class 4, Close Fit.—This class is intended to cover the manufacture of threaded parts of the finest commercial quality, where very little shake or play is desirable, and where a screw driver or

wrench may be necessary for assembly.

In the manufacture of screw-thread products belonging to this class it may be necessary to use precision tools, gages made to special tolerances for this class (see table 21, p. 58), and other refinements. quality of work should, therefore, be used only in cases where requirements of the mechanism being produced are exacting. In order to secure the fit desired, it may be necessary in some cases to select the parts when the product is being assembled.

give the necessary depth of engagement.

On the other hand, when the length of engagement is exceptionally long the minor diameter of the nut may be greater than the maximum specified without impairing the strength of the fastening.

1 See footnote 11, p. 77.

¹³ Special threads having a length of engagement considerably less than one diameter will not develop the full strength of the screw. The minimum minor diameter of the nut of the American National form of thread is such as to provide a minimum clearance on diameter at the minor diameter equal to two ninths of the basic thread depth. If this clearance is reduced by providing a greater percentage of thread depth in the nut, the strength of such a fastening is increased. In such cases when the screw is subject to considerable tension, it is permissible to make the minor diameter of the nut less than the minimum specified in order to give the necessary depth of engagement.

The maximum pitch diameters of the screws are slightly larger than the minimum pitch diameters of the nuts determined from table 35.

Tables 35 and 39 give the limiting dimensions and tolerances for major, pitch, and minor diameters, of threads of special diameters, pitches, and lengths of engagement.

4. TABLES OF DIMENSIONS

In order to simplify the specification of dimensions of special fastening screw threads, tables 35, 36, 37, 38, and 39 are arranged herein, and are intended to cover all practical combinations of diameter, pitch, length of engagement, and class of fit. The use of these tables instead of the application of formulas to determine limiting dimensions of a special thread facilitates placing dimensions on drawings. Also, in cases of special threads of the same diameter, pitch, and class of fit, but slightly different lengths of engagement, the threads may be gaged by a single set of gages, as identical pitch diameter tolerances will be applied.

(a) Arrangement of Tables.—The arrangement of dimensions

and tolerances given in these tables has the following features:

All thread dimensions of threads of special diameters, pitches, and lengths of engagement, except pitch diameter tolerances, are derived

from table 35.

Pitch diameter tolerances are taken from tables 36, 37, 38, or 39, depending upon the class of fit required. These pitch diameter tolerances were obtained by adding increments 15 corresponding to the major diameters at the top, the threads per inch at the side of the table, and mean lengths of engagement of 1/4, 1, and 21/4 inches for pitches from 64 to 12 threads per inch, inclusive, and ½, 2, and 4½ inches for pitches from 10 to 4 threads per inch, inclusive. the increments of the pitch diameter tolerances based on length of engagement and on diameter vary by definite steps instead of continuously. However, in order that the tolerances given in these tables might be wholly consistent with those given in section III, certain values as listed are greater or less than those yielded by the above method. This modification was made by inserting in the tables, in the positions corresponding to standard sizes, pitches, and lengths of engagement of the American National coarse-and fine-thread series, the pitch diameter tolerances listed in section III. Then, wherever necessary, all values above and to the left of these inserted values were reduced so that none of them should exceed these standard values, and those below and to the right were increased so that none should be less than the standard values. This has the important advantage that in a series of sizes, frequently occurring in practice, consisting partly of standard sizes and partly of special sizes, there will be no undue irregularity in the progression of the pitch diameter tolerance, with consequent difficulties in securing gages, etc.

¹⁵ The formulas for determining such increments are listed on p. 128.

The maximum pitch diameter tolerances listed are equal to the tolerances on the major diameter of the screws of the same pitch, as given in table 35.

(b) Rules for Use of Tables.—For consistent application of these pitch diameter tolerance tables to all cases, adherence to the

following rules relative to the use of the tables is necessary:

1. Tolerances on pitch diameter corresponding to major diameters between those for which values are given in the tables shall be those

of the next larger diameter.

2. Tolerances on pitch diameter for pitches between those for which values are given in the tables shall be those of the next coarser pitch, except that for screws having 80, 72, 44, 13, 11, 9, 7, 5, or 4½ threads per inch, lengths of engagement of one and one half diameters or less, and diameters less than the standard diameters for the respective pitches as given in section III, the tolerances given in section III shall be used.

3. Tolerances on pitch diameter for pitches coarser than 4 threads

per inch shall be the same as those for 4 threads per inch.

4. Tolerances on pitch diameter when the length of engagement is exactly ½, or 1½, inches for 12 threads per inch and finer, or 1, or 3, inches for pitches coarser than 12 threads per inch, shall correspond to the interval of which these are the upper limits.

5. Tolerances on pitch diameter for lengths of engagement greater than those for which values are given shall be the maximum values

listed for the pitch concerned.

(c) Examples.—The following examples illustrate the use of these tables:

Example: 3\%-inch, 16-thread, class 1, with allowance on screw, one-half inch length of engagement:

From table 36:

Pitch diameter tolerance____=0.0095

Also from table 35, for the screw:

Maximum major diameter = 3. 2500 - 0. 0018 = 3. 2482 Minimum major diameter = 3. 2482 - . 0126 = 3. 2356 Maximum minor diameter = 3. 2500 - . 0785 = 3. 1715 Maximum pitch diameter = 3. 2500 - . 0424 = 3. 2076 Minimum pitch diameter = 3. 2076 - . 0095 = 3. 1981

And for the nut:

Example: 3-inch, 24-thread, class 2, free fit, five-eighths inch length of engagement:

From table 37:

Pitch diameter tolerance____=0.0066

In this instance the pitch diameter tolerance is printed in italics. In accordance with the footnote under table 35 it is desirable to avoid the use of tolerances set in italics as the combination of class of fit, length of engagement, pitch, and diameter is disproportionate. If it is decided to use a closer fit, class 3-medium fit or class 4-close

fit may be chosen. Assuming the choice of class 3-medium fit, the following dimensions are obtained:

From table 38: Pitch diameter tolerance....=0. 0065 From table 35 for the screw: Minimum pitch diameter = 2. 9729 - . 0065 = 2. 9664 And for the nut: Minimum major diameter _______ = 3. 0000 Minimum minor diameter = 3. 0000 - . 0451 = 2. 9549 Maximum minor diameter = 2. 9549 + . 0045 = 2. 9594 Minimum pitch diameter = 3. 0000 - . 0271 = 2. 9729 Maximum pitch diameter = 2. 9729 + . 0065 = 2. 9794

If, instead, it is decided to reduce the length of engagement to one-half inch, the following dimensions are obtained:

From table 37: Pitch diameter tolerance_____= 0.0060 From table 35 for the screw: And for the nut: Maximum minor diameter = 2. 9549 + 0. 0045 = 2. 9594 Minimum pitch diameter = 3. 0000 - 0. 0271 = 2. 9729 Maximum pitch diameter = 2. 9729 + 0. 0060 = 2. 9789

5. GAGES

The classification of gages and gage tolerances, as well as the thread form of plug and ring thread gages presented in section III, division 5, "Gages" apply also to gages for special threads. In ordering gages for a special thread, the length of engagement of the component thread (as distinct from the length of the gage), and the diameter, pitch, and class of fit, should be stated.

With regard to the marking of gages, each gage shall be plainly marked, for identification, with the diameter, pitch, thread seriesthat is, "NS" to indicate a special thread of American National form—and class of fit. See section II, division 3, "Symbols." For example, a 1-inch, 16-pitch gage of American National form of thread, class 3, medium fit, shall be marked: 1"-18NS-3.

8, and 4 fits *©*5 Table 35.—Values for obtaining thread dimensions of special screw threads, classes 1,

NUT SIZES To obtain minimum dimensions for minor, pitch, and major diameters, subtract the values major diameters, subtract the basic major diameter. Apply tolerances plus. See tables 36, 37, 38, and 39 for pitch diameter tolerances.	Major	diameter,* minimum		Inch 0.0000 0.0000 0.0000 0.0000 0.0000	00000	00000	0000
NUT SIZES num dimension: iameters, subtract in columns fron plus. 38, and 39 for pit	Pitch	diameter, minimum	Classes 1, 2, 3, and 4	Inch 0.0101 .0116 .0135 .0135	. 0203 . 0232 . 0271 . 0325	. 0361 . 0406 . 0464 . 0541	. 0650 . 0812 . 1083 . 1624
NUT SIZES To obtain minimum dimensions for minor, itch, and major diameters, subtract the values in the "minimum" columns from the basic diameters. Phyly tolerances plus. See tables 36, 37, 38, and 39 for pitch diameter plerances.	Minor diameter	Tolerance	Classes 1,	Inch 0.0017 0.0019 0.0023 0.0027 0.0027	. 0034 . 0039 . 0045 . 0054	. 0000 . 0068 . 0077 . 0090	. 0109 . 0135 . 0180 . 0270
	Minor d	Minimum		Inch 0.0169 .0193 .0226 .0271 .0301	. 0338 . 0387 . 0451 . 0541	. 0601 . 0677 . 0773 . 0902	. 1083 . 1353 . 1804 . 2706
the "maxi-	Minor diameter.1	mnm	Classes 2, 3, 4	Inch 0.0192 .0219 .0256 .0307	. 0383 . 0438 . 0511 . 0613	.0682 .0767 .0876 .1022	. 1227 . 1534 . 2045
e values in	Minor di	maximum	Class 1	Inch 0.0199 .0227 .0265 .0317	. 0394 . 0450 . 0524 . 0628	. 0698 . 0785 . 0897 . 1046	. 1255 . 1568 . 2089 . 3131
, subtract th	To obtain maximum dimensions for major, pitch, and minor diameters, subtract the values in the "maximum columns from the basic major diameter. Apply tolerances minus. See tables 36, 37, 38, and 39 for pitch diameter tolerances. Major diameter Major diameter Minor diameter, Minor diameter,		Class 4	Inch 0.0100 .0114 .0133 .0160 .0160	. 0201 . 0230 . 0268 . 0322	. 0358 . 0402 . 0460 . 0536	. 0644 . 0805 . 1074 . 1611
or diameters			Classes 2, 3	Inch 0. 0101 . 0116 . 0135 . 0162 . 0162	. 0203 . 0232 . 0271 . 0325	. 0361 . 0406 . 0464 . 0541	. 0650 . 0812 . 1083 . 1624
screw sizes cch, and min	1 1 1 1 1 1	ricen	Class 1	Inch 0.0108 .0124 .0144 .0172	. 0214 . 0244 . 0284 . 0340	. 0377 . 0424 . 0485 . 0565	. 0678 . 0846 . 1127 . 1688
SCREW SIZ screw SIZ from the basic major diameter. snees minus. 3, 37, 38, and 39 for pitch diameter tolerances.		ance	Classes 2, 3, 4	Inch 0.0038 .0040 .0044 .0048	. 0054 . 0062 . 0066 . 0072	. 0082 . 0090 . 0098 . 0112	. 0128 . 0152 . 0202 . 0280
To obtain maximum dimensions for major, is mun" columns from the basic major diameter. Apply tolerances minus. See tables 36, 37, 38, and 39 for pitch diameten	ameter	Tolerance	Class 1	Inch 0.0052 .0056 .0062 .0063	. 0076 . 0086 . 0092 . 0102	. 0114 . 0126 . 0140 . 0158	. 0184 . 0222 . 0290 . 0408
To obtain maximum dir um, columns from the b Apply tolerances minus. See tables 36, 37, 38, and	Major diameter	unu	Classes 2, 3, 4	$Inch \ 0.0000 \ .00000 \ .00000 \ .00000 \ .00000 \ .00000 \ .00000 \ .00000 \ .0000$	0000	0000	0000 .
To obtain mum" colu. Apply tol See tables		Maximum	Class 1	$Inch \ 0.0007 \ 0.0008 \ 0.0009 \ 0.0010 \ 0.0011$. 0011 . 0012 . 0013 . 0015	. 0016 . 0018 . 0021 . 0024	. 0028
. Threads per inch			64 56 48 40 36	32- 28- 24- 20-	18	10 8 6 4	

1 Dimensions given for the maximum minor diameter of the screw are figured to the intersection of the worn tool are with a center line through crest and root. The minimum minor diameter of the screw shall be that corresponding to a flat at the minor diameter of the minimum screw equal to ⅓x,p, and may be determined by subtracting the basic thread

depth, h (or 0.6495p) from the minimum pitch diameter of the screw.

2 Dimensions for the minimum major diameter of the nut correspond to the basic flat ($48 \times p$), and the profile at the major diameter of the nut shall be that corresponding to a flat at the major diameter of the nut shall be that corresponding to a flat at the major diameter of the nut shall be that corresponding to a flat at the major diameter of the nut shall be that corresponding to a flat at the major diameter of the nut.

Table 36.—Pitch diameter tolerances for special screw threads, class 1, loose fit

	24 inches	In.								
	20 inches	In.								
	18 inches	In.								
	16 inches	In.								
	14 inches	In.								
	$1\frac{1}{2}$ 2 3 4 6 8 10 12 14 16 18 20 24 inches i	In.								
ng	10 inches	In.								
Pitch diameter tolerances for diameters up to and including—	8 inches	In.								
to and	6 inches	In.								0.0099
ters up	4 inches	In.						0.0083	.0086	.0102
r diame	3 inches	Im.				0.0072	.0075	.0077	.0080	.0102
ances fo	2 inches	In.		0.0062	.0065	.0067	9200.	.0071	.0074	.0078
er toler	1½ inches	In. 0.0052	.0056	.0058	.0061	.0063	.0065	.0067	.0070	.0074 .0079 .0102
diamet.	1 inch	Im. 0.0050	.0052	. 0054	. 0057	.0058	.0000	.0063	.0066	00700.
Pitch	34 inch	$I_{0.0047}$.0049	.0051	.0054	.0056	.0057	. 0057	. 0057	.0057 .0057 .0102
	½ inch	Im. 0.0044	.0046	. 0048	.0051	.0051	.0051	. 0051	.0051	2,0051 .0057 .0102
	3/8 inch	Im. 0.0042	.0044	. 0046	. 0046	.0046	. 0046	. 0046	2, 0046 . 0057	.0057
	14 inch	I_{n} .	.0038	. 0038	.0038	.0038	.0038	² . 0043	.0046	1,0051 .0057 .0100
	3/16 inch	In. 0. 0034	.0034	.0034	.0034	.0036	.0038	. 0043	.0046	.0051 .0057 .0098
	1/8 inch	In. 0.0026	.0028	.0031	1,0034	. 0036	. 0038			
	146 inch	Im. 0. 0026	.0028	.0031	.0034					
ths of	To and in-	Im.	767	7676	72.72	7676	76.74	7674	767	1212
Lengths of engagement	From-	Im.	{	\{\}	{}	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1/2	}	{	11,22
	Threads per inch	64		48	40	36	32	28	24	20

	111111	111	222	0.08	288	888
			.0171 .0182 .0184	.0200	. 0190 . 0220 . 0270	. 0208
		0.0152 .0158 .0158	.0163 .0184 .0184	.0170	. 0261 . 0261	. 0229
		0.0148 0158 .0158	$ \begin{array}{c} .0158 \\ .0184 \\ .0184 \\ .0184 \end{array} $.0166	$\begin{array}{c} .0176 \\ .0206 \\ .0256 \end{array}$.0195 .0225 .0275
	0.0138 .0140 .0140	.0143 .0158 .0158	$\begin{array}{c} .0158 \\ .0183 \\ .0184 \end{array}$.0161 .0191 .0222	. 0172 . 0202 . 0252	. 0190 . 0220 . 0270
	0.0133	.0138 .0153 .0168	.0153 .0178 .0184	.0156 .0186 .0222	.0166 .0196 .0246	. 0215 . 0265
	0.0124 .0126 .0126 .0128 .0140	.0132 .0147 .0168	.0147 .0172 .0184	.0150	.0161 .0191 .0241	. 0209
0.0114	0126 0126 0126 0122 0137	.0126 .0141 .0158	.0141 .0166 .0184	.0144	.0155 .0185 .0235	. 0204
01109 0114	. 0112 . 0126 . 0126 . 0115 . 0130	.0119 .0134 .0158	.0134 .0160 .0184	.0137 .0167 .0217	.0148 .0178 .0228	. 0204
0101 0.0114 0.0114	.0104 .0126 .0128 .0123 .0123	.0112 .0127 .0152	.0127 .0152 .0184	.0130 .0160 .0210	.0141	. 0204
.0107	. 0095 . 0110 . 0126 . 0099 . 0114	.0103 .0118 .0143	. 0118 . 0143 . 0184	.0121 .0151 .0201	. 0132 . 0162 . 0212	.0204
.0087 .0102 .0114	. 0090 . 0105 . 0126 . 0093 . 0108	.0097 .0112 .0137	.0112 .0138 .0184	.0115 .0145 .0195	.0126 .0156 .0206	. 0204
.0080	.0083 .0123 .0123 .0102	.0091 .0106 .0131	.0106 .0132 .0181	. 0111	.0120	. 0138 . 0168 . 0218
.0077	. 0079 . 0079 . 0079 . 0079 . 0079	2.0079 2.0079 .0127	.0102 .0128 .0178	.0111 .0135 .0185	.0116 1,0145 .0196	.0134 .0164 .0215
.0070	. 0070 . 00115 . 0070 2. 0070	.0079 .0079 .0123	.0098 .0123 .0173	1.0111 .0131 .0181	.0112 .0142 .0192	.0130 .0160 .0210
. 0057 . 0057 . 0109	. 0063 2. 0063 . 0112 . 0070 . 0070	.0079 .0079 .0120	1,0092 .0120 .0171	.0098 .0128 .0178	.0109	
.0057	.0063 .0109 .0070 .0070	.0077 .0079 .0117	.0087 .0117 .0167	.0095 .0125 .0175		
.0057 .0057 .0104	1, 0063 . 0063 . 0107 . 0070 . 0111	.0075 .0079 .0115				
.0057 .0057 .0102	.0063					
3,112	Taring and	3,112	- 69	9	0 3 1	- 69
1,12		12/2	3	31	3.1	3
37	16	12	10	00	-9	4

Norm.—It is preferable to avoid the use of tolerances set in italies by choosing a closer fit, shorter length of engagement, coarser pitch, or smaller diameter. 2 Standard size of the American National fine-thread series. 1 Standard size of the American National coarse-thread series.

Table 37.—Pitch diameter tolerances for special screw threads, class 2, free fit

	24 inches	In.											
	20 inches	In.											
	18 inches	In.											
	16 inches	In.											
	14 inches	In.											
	12 inches	In.											0.0098
1	10 12 inches	In.										0.0000	. 0095
neludin	8 inches	In.									0.0082	0600.	8600
to and i	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	In.								0.0072	.0078	.0000 0000 0000	. 0096
ers up	4 inches	Im.						0.0062	00065	0067	. 0069	.0000	. 0072
diamet	3 inches	Im.					0.0054	.0058	9900	.0062	.0063	. 0065	.0066
nces for	2 inches	In.			. 0048	.0050	. 0051	. 0052	. 0054	.0056	.0057	.0058	.0000
Pitch diameter tolerances for diameters up to and including-	1½ inches	Im.	0.0040	.0044	. 0045	. 0046	. 0054	. 0048	. 0050	.0052	. 0053	.0054	. 0056
diamete	1 inch	Im. 0. 0038	.0038	. 0039	.0041	. 0042	. 0043	. 0044	.0045	.0047	. 0049	.0049	2.0049 .0092
Pitch	34 inch	Im. 0. 0035	.0036	.0037	.0038	.0039	.0040	.0041	.0041	.0041	.0041	.0045	.0049
	½ inch	Im. 0.0032	.0033	.0034	.0035	.0036	.0036	.0036	.0036	.0036	.0041	.0045	.0048
	3,8 inch	Im. 0.0030	.0031	.0032	. 0033	.0033	. 0033	.0033	.0033	.0036	.0041	.0045	. 0045
	174 inch	In. 0.0027	.0027	.0027	.0027	.0027	.0027	.0031	.0033	.0036	.0039	.0040	
	3/6 inch	In. 0.0024	.0024	.0024	. 0024	.0025	.0027	. 0031	.0033	.0036			
	178 inch	Im. 0. 0019	.0020	.0022	.0024	.0025	.0027						
	176 inch	1. In. 12. 0019	.0020	.0022	.0024								
ns of ment	To and in- clud- ing—	Im. 3/2	1272	75.75	7272	7474	7474	7272	7272	7272	Zala Zala	3,77	Zulu.
Lengths of engagement	From-	In.	72	1/2	1/2	1/2	1/2	77	7/2	1/2	17.72	11,22	727
	Threads per inch	64	56	48	40	36	32	28	24	20	18	16	14

		1201		111013111
	1 1 1	0.0143 .0152 .0152	. 0149 . 0179 . 0202	. 0158 . 0188 . 0238
	0.0128 .0128 .0128	.0135 .0152 .0152	.0140 .0170 .0202	.0149
	0.0126 .0128 .0128	.0130 .0152 .0152	.0136 .0166 .0202	. 0145 . 0175 . 0225
0.0112 .0112 .0112	.0122	.0125 .0152 .0152	. 0131 . 0161 . 0202	.0140
0.0109 .0112 .0112	.0116 .0128 .0128	.0120 .0150 .0152	.0126 .0156 .0202	. 0135 . 0165 . 0215
.0103 .0112 .0112	.0112 .0128 .0128	.0115 .0145 .0162	.0120	. 0129
.0097 .0112 .0112	.0112 .0128 .0128	.0112 .0139 .0152	.0114 .0144 .0194	. 0123 . 0153 . 0203
0000 . 0105 . 0112	.0105 .0128 .0128	.0105 .0132 .0152	. 0107 . 0137 . 0187	.0117 .0147 .0197
. 0083 . 0098 . 0112	.0098 .0121 .0128	.0098 .0124 .0152	.0100 .0130 .0180	. 0109 . 0140 . 0189
.0074	.0089 .0112 .0128	.0089 .0115	. 0091 . 0121 . 0171	. 0100 . 0140 . 0180
. 0068	.0083 .0108 .0128	0083 0110 0152	.0085 .0115 .0165	. 0095 1 .0140 . 0175
.0062	.0077 .0100 .0128	0077 0104 0152	0079 0109 0159	. 0088 . 0118 . 0168
2.0056 2.0056 .0098	. 0073 . 0098 . 0128	. 0076 . 0100 . 0150	.0075 1.0101 .0155	.0084 .0114 .0164
.0054	.0069	1.0076 .0095 .0145	.0071 .0101 .0151	.0080
.0051	1.0064 .0091 .0128	. 0064 . 0093 . 0143	.0068 .0098 .0148	
.0048	.0056	.0060		
.0046				
377	189	9	- 6 9 -	3 1
11/2/2	3	3	3	3
12	10	8	9	4

Note.—It is preferable to avoid the use of tolerances set in italics by choosing a closer fit, shorter length of engagement, coarser pitch, or smaller diameter. ² Standard size of the American National fine-thread series. 1 Standard size of the American National coarse-thread series.

Table 38.—Pitch diameter tolerances for special screw threads, class 3, medium fit

	24 inches	In.										
	20 inches	In.										
	18 inches	In.										
	16 inches	In.										
	14 inches	In.										
	12 inches	<i>In.</i>										0.0087
ng—	10 inches	In.									0.0080	.0081
Pitch diameter tolerances for diameters up to and including-	8 inches	In.								0.0072 .0072 .0072	.0073	.0074
to and	6 inches	Im.						0.0062	.0064	.0065	.0066	.0066
eters up	4 inches	Im.				0.0050	.0054	.0054	.0055	.0056	.0057 .0072 .0082	.0058
or diam	3 inches	Im.		0.0044	.0048	.0048	.0048	.0049	.0050	.0051 .0066 .0072	.0051	.0052
ances fo	2 inches	$\begin{array}{c} Im. \\ 0.0038 \\ 0.0038 \end{array}$.0040	.0041	.0041	.0042	.0042	.0043	.0044	.0045	.0045	.0046
ter toler	1½ inches	Im. 0.0036 0.0038	.0036	.0037	.0037	.0038	.0038	.0039	.0040	.0040 .0040 .0071	.0040	.0040
diame	1 inch	0.0031 0.0031	.0032	.0032	.0033	.0033	.0034	.0034	.0035	.0036	.0036	.0036
Pitcl	34 inch	0.0028 0.0030	.0029	.0029	.0030	.0030	.0030	.0030	.0030	.0030	.0030	2.0032 2.0032 .0071
	1/2 inch	$\frac{In.}{0.0025}$ 0.0025	.0026	.0026	.0026	.0026	.0026	.0026	.0026	2.0026 .0030 .0070	.0030	.0032
	38 inch	In. 0.0023 0.0030	.0024	.0024	.0024	.0224	.0024	.0024	2.0024	.0026	.0030	1, 0032 . 0032 . 0070
	14 inch	$\begin{array}{c} In. \\ 0.0019 \\ 0.0030 \end{array}$.0019	.0019	.0019	.0019	.0019	2,0022	.0024	1. 0026 . 0030 . 0066	.0027	.0028
	376 inch	$\begin{array}{c} In. \\ 0.0017 \\ 0.0030 \end{array}$.0017	.0017	.0017	.0018	.0030	.0022	.0024	.0025		
	178 inch	$\begin{array}{c} In. \\ 0.0014 \\ 0.0030 \end{array}$.0015	.0016	1,0017	.0018	. 0019					
	716 inch	70. In. 172. 1930 1142 . 0030	.0015	.0030	.0017	1000	100	1000	10000	1000))
Lengths of engagement	To and in-	In. 17.	11/2	11/2	11/2	122	12/2/2	12/2/2	172	1/2/2	17474 7474 7474	3,7,7
Leng	From-	$\begin{bmatrix} Im. \\ \vdots \\ \vdots \\ \end{bmatrix}$	1	[]		<u></u>		1	<u></u>	11,22	122	
	Threads per inch	64	56	48	40	36	32	28	24	20	18.	16

		SPEC	IAL I	плел	וע עו
		0. 0124 . 0128 . 0128	. 0126 . 0152 . 0152	. 0128	. 0133 . 0163 . 0213
	0.0109	.0115 .0128 .0128	.0117	.0120	.0124
	0.0104	.0112	.0113 .0143 .0162	.0115	. 0120
.0098	.0099	.0112	.0112 .0138 .01 <i>62</i>	.0112	.0115 .0145 .0195
. 0093 (0.0098)	.0109	.0109	.0109	.0109	.0110
8600	.0089	.0104	.0104	.0104	. 0104 . 0134 . 0184
. 0082	.0083	.0098 .0119 .0128	.0098	.0098	.0098 .0128 .0178
.0075	.0076 .0091 .0112	.0091 .0112 .0128	.0091 .0114 .0152	.0091 .0117 .0167	.0092 .0122 .0172
.0067	.0068	.0083	.0083 .0108 .0152	.0083 .0109 .0159	.0084 .0114 .0164
.0058	.0059	.0074 .0099 .0128	.0074	.0100	.0105 .0105
. 0053	.0054	.0069	.0069	.0069	. 0070 1. 0097 . 0150
.0047	.0063	.0063 .0084 .0128	.0063 .0086 .0136	.0063	.0063
.0040	2.0040 .0040	.0059	. 0059 . 0071 . 0132	. 0059 1. 0071 . 0135	.0059
. 0036 . 0036 . 0071	.0040	. 0054 . 0071 . 0126	1,0054 .0071 .0128	.0054 .0071 .0130	.0055 .0085 .0135
.0036	.0040	1, 0045 . 0071 . 0123	.0045	.0048 .0071 .0122	
.0036	.0036	.0040	.0042		
.0032	.0032				
1000	1				
77.00	4,7,8	- 89	0 0 7	- 60	-89
12/2/	12/2		3.1	3.1	3.1
14	12	01	80	9	4

182129-33--7

² Standard size of the American National fine-thread series. Nore. -It is preferable to avoid the use of tolerances set in italies by choosing a closer fit, shorter length of engagement, coarser pitch, or smaller diameter. ¹ Standard size of the American National coarse-thread series.

Table 39.—Pitch diameter tolerances for special screw threads, class 4, close fit

1		24 inches	7.0. 00. 00. 00. 00. 00. 00. 00. 00. 00.
		20 inches	0. 0.058 0.058 0.058 0.052 0.052 0.0053 0.0053 0.0053 0.0053 0.0054 0.0055 0.0055 0.0056 0.00
		18 inches	70.0050 0.0057 0.0057 0.0057 0.0057 0.0058 0.0058 0.0058 0.0058 0.0058 0.0059 0.005
		16 inches	70.005 0.0047 0.0055 0.0055 0.0055 0.0058 0.0058 0.0058 0.0059
		14 inches	70.0045 0.0045 0.0045 0.0052 0.0052 0.0053 0.0054 0.0054 0.0054 0.0054 0.0055 0
	nding—	12 inches	77. 0.0042 0.004
	nd inch	10 inches	77. 0.0039 0.0039 0.0049 0.0040 0.0041 0
	up to a	8 inches	70.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0037 0.0037 0.0038 0
	ameters	6 inches	70.0032 0.0032 0.0032 0.0032 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0034 0.0041 0.0041 0.0042 0.0052 0.0052 0.0052 0.0052 0.0053 0
	s for dia	4 inches	70,0027 00035 00035 00038 00028 00038 00038 00038 00039 00039 00039 00039 00030
	olerance	3 inches	70.0024 0.0025 0.0032 0.0035 0.0035 0.0035 0.0036 0
	Pitch diameter tolerances for diameters up to and including-	2 inches	70.0021 0.0021 0.0022 0.0022 0.0022 0.0022 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032
		1½ inches	77. 0.0019. 0.0020. 0.
		1 inch	7.00018 0.0017 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0028 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0038 0
		% inch	7.0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0018 0.0028
į		½ inch	7.0 0.0013 0.0013 0.0013 0.0013 1.0013 1.0013 0.0015 0.0015 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018
		3/8 inch	7.0.0012 0.0012 0.0013 1.0013 1.0014 0.0015 0.0015 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
		74 inch	7.0011 .0011 .0012 .0012 .0013 .0013 .0013 .0013 .0013 .0013 .0014
of on-	ent	To and includ- ing—	£ 2100 1100 1100 1100 1100 1100 1100 110
I anoths of an	gagement	From-	F 22 22 22 22 22 22 22 22 22 100 100 100
I		Threads per inch	
			28-24-28-112-112-112-112-112-113-113-113-113-113

² Standard size of the American National coarse-thread series. Norg.—It is preferable to avoid the use of tolerances set in italics by choosing a shorter length of engagement, coarser pitch, or smaller diameter. 1 Standard size of the American National fine-thread series.

SECTION VI. AMERICAN NATIONAL HOSE-COUPLING AND FIRE-HOSE COUPLING THREADS

Several years ago specifications for American National standard fire-hose coupling threads were approved by the National Board of Fire Underwriters, National Fire Protection Association, American Society of Mechanical Engineers, American Society of Municipal Improvements, New England Water Works Association, American Water Works Association, the Bureau of Standards, and other interested organizations. These specifications were published in 1911 as the Specifications of the National Board of Fire Underwriters, recommended by the National Fire Protection Association and approved by the various other organizations. They were also published in 1914 as Circular No. 50 of the Bureau of Standards. This circular

was revised and republished in 1917.
When the National Screw Thread Commission took up its work on the standardization of screw threads, the specifications for fire-hose coupling threads above referred to were accepted as the basis of its work on fire-hose coupling threads. It was found, however, that the specifications as originally drawn were inadequate in that they specified nominal dimensions only, with no maximum and minimum limits. The limiting dimensions herein specified have met with general approval, including adoption as "American" standards by the American Standards Association. State-wide adoption of the American National fire-hose coupling threads is completed or under effective headway in 36 States, and their use has been made compulsory by State legislative acts in California, Massachusetts, Oregon, and Texas.

With regard to the American National hose-coupling threads, the purpose of this specification is to provide a standard which will be recognized and adopted at once by a majority of manufacturers and consumers and toward which the minority may be brought, thus eliminating many threads now in use and the confusion and misunder-

standings that now prevail.

As in other lines of work, current practice in use and manufacture must be recognized as well as the specific advantages of certain thread proportions for specific uses. This prevents the adoption of

a single specification for each one of the nominal sizes.

These standards apply to the threaded parts of hose couplings, valves, nozzles, and all other fittings used in direct connection with hose intended for fire protection or for domestic, industrial, and general service in nominal sizes of ½, ½, ¾, 1, 1½, 1½, and 2 inches. In ordering threading tools ¹⁶ for producing American National hose-

coupling and fire-hose coupling threads, it should be pointed out that new taps should be near the maximum permissible size of the coupling, and new dies near the minimum permissible size of the nipple, in order that reasonable wear may be provided. As the threading tools wear by use, the couplings will become smaller and the nipples larger

¹⁶ In the interest of the universal adoption of the American National fire-hose threads throughout the United States, attention is directed to the fact that sets of tools for rethreading existing hydrants and hose couplings are commercially available. Such sets comprise roughing and finishing taps, roughing and finishing dies, expanders for expanding undersize externally threaded fittings preparatory to rethreading, gages, and various accessories. The tools are applicable where existing threaded fittings do not differ so widely from the American National standards as to leave insufficient stock for the new thread. By the use of such tools a considerable number of municipalities have at small expense converted their existing equipment, and thus availed themselves of the important advantages which standardization affords.

until the limiting dimensions are reached. These must not be exceeded. When the product reaches, or comes dangerously close to the limiting size, the threading tools should be readjusted or replaced.

1. FORM OF THREAD

1. Angle of Thread.—The basic angle of thread (A) between the sides of the thread measured in an axial plane is 60°. The line bisecting this 60° angle is perpendicular to the axis of the screw thread.

2. FLAT AT CREST AND ROOT.—The flat at the root and crest of

the basic thread form is $\% \times p$, or $0.125 \times p$.

3. Depth of Thread.—The depth of the basic thread form is

$$h = 0.649519 \times p$$
, or $h = \frac{0.649519}{n}$

where

p = pitch in inchesn =number of threads per inch h = basic depth of thread

2. THREAD SERIES

(a) American National Hose-Coupling Threads.—There are specified in table 40 a thread series and basic dimensions for hosecoupling threads which apply to the threaded parts of hose couplings, valves, nozzles, and all other fittings used in direct connection with hose intended for fire protection or for domestic, industrial, and general service in nominal sizes of ½, ¾, ¾, 1, 1¼, 1½, and 2 inches.

Table 40.—American National hose-coupling threads BASIC MINIMUM COUPLING DIMENSIONS

Nominal size of hose (in inches)	Service	t	Num- ber of hreads er inch		Depth of thread	Major diam- eter	Pitch diam- eter	Minor diam- eter	Al- low- ance
1	2		3	4	5	6	7	8	9
12, 58, 34	Garden hoseChemical engine and booster hoseFire-protection hose		11½ 8 9 14 14 11½ 11½ 11½ 11½	. 12500 . 11111 . 07143 . 07143 . 08696 . 08696	. 07217 . 04639 . 04639 . 05648 . 05648 . 05648	1. 0725 1. 3870 2. 0020 . 8323 1. 0428 1. 3051 1. 6499 1. 8888	1. 0160 1. 3058 1. 9298 . 7859 . 9964 1. 2486	1. 8577 . 7395 . 9500 1. 1921 1. 5369 1. 7758	
	BASIC MAXIMUM N	II	PPLE	DIME	NSION	īs			
12, 58, 34 34, 1 11/2 12 12 14 11 11/4 11/2 2	Garden hoseChemical-engine and booster hoseFire-protection hoseSteam, air, water, and all other hose connections.	-	11½ 8 9 14 14 11½ 11½ 11½	. 12500 . 11111 . 07143 . 07143 . 08696 . 08696	. 04639 . 04639 . 05648 . 05648	1. 3750 1. 9900 . 8248 1. 0353 1. 2951 1. 6399 1. 8788	1. 2938 1. 9178 . 7784 . 9889 1. 2386 1. 5834 1. 8223	. 7320 . 9425 1. 1821 1. 5269 1. 7658	.0120 .0120 .0075 .0075 .0100 .0100

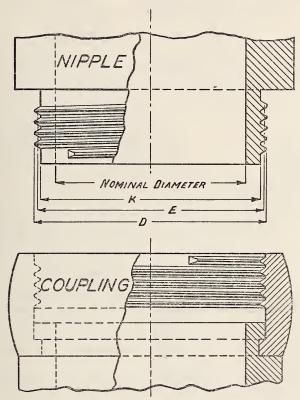


Figure 19.—American National hose-coupling and American National fire-hose coupling threads.

See tables 42, 43, 44, and 45 for dimensions and tolerances.

(b) AMERICAN NATIONAL FIRE-HOSE COUPLING THREADS.—There are specified in table 41 a thread series and basic dimensions for fire-hose couplings from 2½ to 4½ inches in diameter which will be known as the "American National fire-hose threads." These basic sizes and dimensions correspond in all details to those recommended by the National Fire Protection Association and by the Bureau of Standards.

The American National fire-hose coupling thread is recommended for use on all couplings and hydrant connections for fire-protection systems, and for all other purposes where hose couplings and connections are required in sizes between 2½ and 4½ inches in diameter.

 ${\tt Table \ 41.} {\color{red} -} {\color{blue} American \ National \ fire-hose \ coupling \ threads}$

BASIC MINIMUM COUPLING DIMENSIONS

Nominal size of hose (in inches)	Number of threads per inch	Pitch	Depth of thread	Major diame- ter	Pitch diame- ter	Minor diame- ter	Allow- ance
1	2	3	4	5	6	7	8
2½	7½ 6 6 4	Inch 0. 13333 . 16667 . 16667 . 25000	Inch 0. 08660 . 10825 . 10825 . 16238	Inches 3. 0836 3. 6389 4. 2639 5. 7859	Inches 2, 9970 3, 5306 4, 1556 5, 6235	Inches 2, 9104 3, 4223 4, 0473 5, 4611	Inch

BASIC MAXIMUM NIPPLE DIMENSIONS

3. ALLOWANCES AND TOLERANCES

(a) Specified allowances and tolerances, given in table 42, apply to American National hose coupling and American National fire-hose coupling threads. The tolerances represent extreme variations permitted on the product. There are shown, in figure 20, the relations between nipple and coupling dimensions and thread form as specified herein.

(b) The tolerance on the coupling is plus, and is applied from the minimum coupling dimension to above the minimum coupling

dimension.

(c) The tolerance on the nipple is minus, and is applied from the maximum nipple dimension to below the maximum nipple dimension.

(d) The pitch diameter tolerances provided for a mating nipple and coupling are the same.

(e) Pitch diameter tolerances include lead and angle variations. (See footnote 1, table 42.)

ce iodinote i, table 42.)

(f) The tolerance on the major diameter is twice the tolerance

on the pitch diameter.

(g) The tolerance on the minor diameter of the nipple is equal to the tolerance on pitch diameter plus two ninths of the basic thread depth. The minimum minor diameter of a nipple is such as to result in a flat equal to one third of the basic flat $(\frac{1}{24} \times p)$ at the root when the pitch diameter of the nipple is at its minimum value. The maxi-

mum minor diameter is basic, but may be such as results from the

use of a worn or rounded threading tool.

(h) The tolerance on major diameter of the coupling is equal to the tolerance on pitch diameter plus two ninths of the basic thread depth. The minimum major diameter of the coupling is such as to result in a basic flat $(\frac{1}{2} \times p)$ when the pitch diameter of the coupling

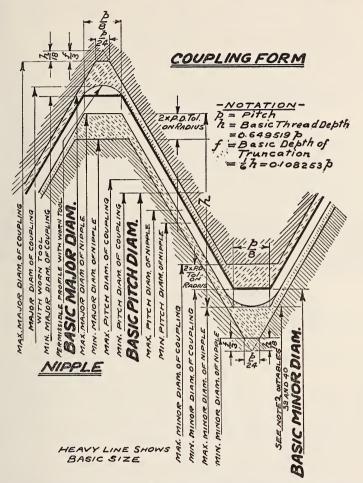


FIGURE 20.—American National hose-coupling and American National fire-hose coupling threads.

is at its minimum value. The maximum major diameter of the coupling is that corresponding to a flat equal to one third the basic

flat $(\frac{1}{24} \times p)$.

(i) The tolerance on the minor diameter of the coupling is twice the tolerance on pitch diameter of the coupling. The minimum minor diameter of a coupling is such as to result in a basic flat $(\frac{1}{2} \times p)$ at the crest when the pitch diameter of the coupling is at its minimum value.

Table 42.—Tolerances and allowances for American National hose coupling and American National fire-hose coupling threads

Nominal size of hose (in inches)	Service	Threads per inch	Allow- ances	Toler- ances on pitch di- ameter ¹	Lead errors consum- ing one half of pitch-di- ameter toler- ances ²	Errors in half angle consum- ing one half of pitch-di- ameter toler- ances	
1	2	3	4	5	6	7	
14, 56, 34 34, 1	Garden hose	11½ 8 9	Inch 0. 0100 . 0120	Inch 0. 0085 . 0111	Inch 0. 0025 . 0032	Deq. Min. 1 52 1 42 1 54	
14	Steam, air, water, and all other hose connections.	$ \left\{ \begin{array}{c} 14 \\ 14 \\ $.0100	.0070 .0070 .0085 .0085 .0085	. 0020 . 0020 . 0025 . 0025 . 0025 . 0025	1 52 1 52 1 52 1 52 1 52 1 52 1 52	
2½	Fire hose	$ \left\{ \begin{array}{c} 7\frac{1}{2} \\ 6 \\ 6 \\ 4 \end{array} \right. $. 0150 . 0150 . 0200 . 0250	. 0160 . 0180 . 0180 . 0250	. 0046 . 0052 . 0052 . 0072	2 17 2 4 2 4 1 55	

¹ The tolerances specified for pitch diameter include all errors of pitch diameter, lead, and angle. The full tolerance cannot, therefore, be used on pitch diameter unless the lead and angle of the thread are perfect. Columns 6 and 7 give, for information, the errors in lead (per length of thread engaged) and in angle, each of which can be compensated for by half the tolerance on the pitch diameter given in column 5. If lead and angle errors both exist to the amount tabulated, the pitch diameter of a nipple, for example, must be reduced by the full tolerance or it will not enter the "go" gage.

² Between any two threads not farther apart than the length of engagement.

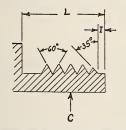
4. TABLES OF LIMITING DIMENSIONS

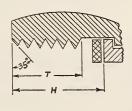
Table 43.—Limiting dimensions and tolerances, American National hose coupling threads

COUPLING THREAD

Nomi-		inch		read	Major diameter			Pitch diameter			Minor diameter		
nal size of hose (in inches)	Service	Threads per	Pitch	Depth of thread	Maximum	Tolerance	Minimum	Maximum	Tolerance	Minimum	Maximum	Tolerance	Minimum
1	2	3	4	5	6	7	8	9	10	11	12	13	14
14, 5%, 34 34, 1 142 142 141 141 142 2	Garden hoseChemical en_gine and booster hose. Fire protection hose. Steam, air, water and all other hose connections.	111½ 8 9 (14 11½ 11½ 11½ 11½ (11½		. 08119 . 07217 . 04639 . 04639 . 05648 . 05648			In. 1 1, 0725 1 1, 3870 1 2, 0020 1, 8323 1 1, 0428 1 1, 3051 1 1, 6499 1 1, 8888 1 2, 3628	1. 3169 1. 9409 . 7929 1. 0034 1. 2571 1. 6019 1. 8408	.0111 .0111 .0070 .0070 .0085 .0085	1. 3058 1. 9298 . 7859 . 9964 1. 2486 1. 5934 1. 8323	1. 2468	. 0222 . 0140 . 0140 . 0170 . 0170 . 0170	1. 2246

¹ Dimensions for the minimum major diameter of the coupling correspond to the basic flat $(1/6 \times p)$, and the profile at the major diameter produced by a worn tool must not fall below the basic outline. The maximum major diameter of the coupling shall be that corresponding to a flat at the major diameter of the maximum coupling equal to $\frac{1}{2} 4 \times p$, and may be determined by adding $\frac{1}{2} 6 \times h$ (or 0.7939p) to the maximum pitch diameter of the coupling.


Table 43.—Limiting dimensions and tolerances, American National hose coupling threads—Continued


NIPPLE THREAD

Nomi-		inch	P Major d			or dian	meter Pitch		diameter		Mino	Minor diameter	
nal size of hose (in inches)	Service	Threads per	Pitch	Depth of thread	Maximum	Talerance	Minimum	Maximum	Tolerance	Minimum	Maximum	Tolerance	Minimum
1	2	3	4	5	6	7	8	9	10	11	12	13	14
14 54 34	Clandon hasa	111/	Inch	Inch	In.	In.	In.	In.	In.	In.	In.	In.	In.
1/2, 5/8, 3/4 3/4, 1	Chemical en-	8	. 12500								² 0. 9495 ² 1. 2126		
1½	booster hose. Fire protection hose.	9	. 11111	. 07217	1. 9900	. 0222	1. 9678	1.9178	.0111	1. 9067	² 1. 8457		
½ ¾	Steam, air, wa-	14 14	.07143		1.0353	.0140	1.0213	.9889	.0070	.7714	2.9425		
11/2		11½ 11½	. 08696	. 05648	1.6399	.0170	1.6229		.0085	1.5749	² 1. 1821 ² 1. 5269		
2	connections.	111/2	. 08696								² 1. 7658 ² 2. 2398		

² Dimensions given for the maximum minor diameter of the nipple are figured to the intersection of the worn tool are with a center line through crest and root. The minimum minor diameter of the nipple shall be that corresponding to a flat at the minor diameter of the minimum nipple equal to $\frac{1}{24} \times p$, and may be determined by subtracting $\frac{1}{24} \times p$ (or 0.7939p) from the minimum pitch diameter of the nipple.

Table 44.—Lengths of threads for American National hose-coupling threads

Nominal size of hose (in inches)	Service	Threads per inch,	Length of nipple,	Depth of cou- pling, H	Thread length for coupling,	Length of pilot,	Inside diameter of nipple,	Approximate number of threads in length
1½, 5%, 34- 34, 1	Garden hose	11½ 8 9 14 14 11½ 11½ 11½ 11½	5/8 1/2 9/16 9/16 5/8	, -	15/32 5/16	Inch 5/82 5/82 5/82 1/8 5/82 5/82 5/82 5/82	1 ¹⁷ / ₃₂	3 ³ / ₄ 4 ¹ / ₄ 4 ¹ / ₄ 5 ¹ / ₄ 4 ¹ / ₄ 5 ¹ / ₂

Table 45.—Limiting dimensions and tolerances, American National fire-hose coupling threads

COUPLING THREAD

Nominal	Threads per inch		Depth	Major diameter			Pitch diameter			Minor diameter		
size of hose (in inches)		Pitch	of thread	Maxi- mum	Toler- ance	Mini- mum	Maxi- mum	Toler- ance	Mini- mum	Maxi- mum	Toler- ance	Mini- mum
1	2	3	4	5	6	7	8	9	10	11	12	13
2½	$7\frac{1}{2}$ 6 6 4	Inch 0. 13333 . 16667 . 16667 . 25000	. 10825+ . 10825+	Inches		Inches 13. 0836 13. 6389 14. 2639 15. 7859	3. 5486 4. 1736		2. 9970 3. 5306 4. 1556	4.0833		3. 4223 4. 0473

NIPPLE THREAD

¹ Dimensions for the minimum major diameter of the coupling correspond to the basic flat $(1/8 \times p)$, and the profile at the major diameter produced by a worn tool must not fall below the basic outline. The maximum major diameter of the coupling shall be that corresponding to a flat at the major diameter of the maximum coupling equal to $\frac{1}{2}4 \times p$, and may be determined by adding $\frac{1}{2}6 \times h$ (or 0.7939p) to the maximum pitch diameter of the coupling.
² Dimensions given for the maximum minor diameter of the nipple are figured to the intersection of the worn tool arc with a center line through crest and root. The minimum minor diameter of the nippl shall be that corresponding to a flat at the minor diameter of the minimum nipple equal to $\frac{1}{2}4 \times p$, and may be determined by subtracting $\frac{1}{2}6 \times h$ (or 0.7939p) from the minimum pitch diameter of the nipplee

5. GAGES

(a) Gages for American National Fire-Hose Coupling Threads.—It is recommended that American National fire-hose coupling threads be inspected in the field by means of gages made within the tolerances given in table 46. Limiting dimensions for these gages are given in tables 47 and 48.

It is further recommended that American National fire-hose coupling threads be given final inspection by the manufacturer by means of gages made within the limiting dimensions given in tables 47 and 48, by whatever amount may be desired, in order to avoid, as far as possible, disagreements which might otherwise arise as the result of slight differences in the sizes of gages.

Table 46.—Tolerances on gages for American National fire-hose coupling threads

Allowable variation in lead between any two threads not farther apart than length of engagement	Allowable variation in one half angle of thread	Tolerance on diam- eter of minimum thread gage	Tolerance on diam- eter of maximum thread gage
1	2	3	4
<i>Inch</i> ±0.0005	Deg. Min. ±0 10	Inch -0.000 +.001	Inch +0.000 001

Table 47.—Limiting dimensions of field inspection thread plug gages for couplings (internal threads) ¹

	Threads per inch	44	Go" or mi	nimum gag	ge	"Not go" or maximum gage				
Nominal size of hose		Major diameter		Pitch d	iameter	Major diameter		Pitch diameter		
		Maxi- mum	Mini- mum	Maxi- mum	Mini- mum	Maxi- mum	Mini- mum	Maxi- mum	Mini- mum	
1	2	3	4	5	6	7	8	9	10	
2.500 3.000 3.500 4.500	7½ 6 6 4	Inches 3. 0846 3. 6399 4. 2649 5. 7869	Inches 3. 0836 3. 6389 4. 2639 5. 7859	Inches 2. 9980 3. 5316 4. 1566 5. 6245	Inches 2. 9970 3. 5306 4. 1556 5. 6235	Inches 3. 0836 3. 6389 4. 2639 5. 7859	Inches 3. 0826 3. 6379 4. 2629 5. 7849	Inches 3. 0130 3. 5486 4. 1736 5. 6485	Inches 3. 0120 3. 5476 4. 1726 5. 6475	

 $^{^1}$ The minor diameters of plug gages and the major diameters of ring gages are undercut beyond the nominal diameters to give a clearance for grinding or lapping. The allowable variation in lead between any two threads not farther apart than the length of engagement is ± 0.0005 inch. The allowable variation in one half angle of thread is ± 10 minutes.

Table 48.—Limiting dimensions of field inspection thread ring gages for coupling nipples (external threads) ¹

	Threads per inch	44,	Go" or ma	ximum gag	ge	"Not go" or minimum gage				
Nominal size of hose		Pitch diameter		Minor d	liameter	Pitch diameter		Minor diameter		
		Maxi- mum	Mini- mum	Maxi- mum	Mini- mum	Maxi- mum	Mini- mum	Maxi- mum	Mini- mum	
1	2	3	4	5	6	7	8	9	10	
2.500 3.000 3.500 4.500	7½ 6 6 4	Inches 2, 9820 3, 5156 4, 1356 5, 5985	Inches 2. 9810 3. 5146 4. 1346 5. 5975	Inches 2. 9104 3. 4223 4. 0473 5. 4611	Inches 2, 9094 3, 4213 4, 0463 5, 4601	Inches 2. 9670 3. 4986 4. 1186 5. 5745	Inches 2, 9660 3, 4976 4, 1176 5, 5735	Inches 2, 9114 3, 4233 4, 0483 5, 4621	Inches 2. 9104 3. 4223 4. 0473 5. 4611	

 $^{^1}$ The minor diameters of plug gages and the major diameters of ring gages are undercut beyond the nominal diameters to give clearance for grinding or lapping. The allowable variation in lead between any two threads not farther apart than the length of engagement is ± 0.0005 inch. The allowable variation in one half angle of thread is ± 10 minutes.

SECTION VII. AMERICAN NATIONAL PIPE THREADS

The material on the subject of pipe threads presented herewith is essentially the same as that in the report prepared by a special committee of the Committee of Manufacturers on Standardization of Fittings and Valves, acting in cooperation with pipe and gage manufacturers and the A.S.M.E. Committee on International Standards for Pipe Threads. It was published in October 1919, under the title "Manual on American Standard Pipe Threads." It has been endorsed by the American Society of Mechanical Engineers and the American Gas Association, and is adopted by the commission with only such changes as are necessary to bring it into conformity with the remainder of the report. The material on gages for pipe threads has, however, been extensively revised.

The American National pipe-thread standard for taper threaded pipe joints was formulated prior to the year 1882 by Robert Briggs, of Philadelphia, Pa. This standard, with certain modifications and additions, is now in general use throughout the United States and Canada.

1. FORM OF THREAD

(a) Specifications.—1. Angle of thread.—The angle between the sides of the thread is 60° when measured in an axial plane, and the line bisecting this angle is perpendicular to the axis of the pipe for either taper or straight threads.

2. Depth of thread. 17—The crest and root of the thread form are truncated an amount equal to 0.0330p; the depth of thread is, there-

fore, equal to 0.8p.

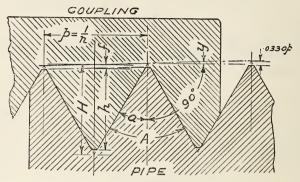


Figure 21.—American National taper pipe thread form and notation.

 $A=60^\circ$ angle of thread $a=30^\circ$ one half angle of thread $y=1^\circ$ 47' approx. taper angle=one sixteenth inch per inch on diameter H=0.866025p depth of 60° sharp V thread 13 h=0.80000p h=0.92361H depth of thread on work

 $\{=0.923/61H\}$ $\{=0.033012p\}$ $\{=0.038120H\}$ depth of truncation $=0.041266h\}$ pe =1/n pitch (measured parallel to axis) n=number of threads per inch

3. Taper of thread.—The taper of the thread is 1 in 16, or three fourths inch per foot, measured on the diameter.

(b) Illustration.—There are shown in figure 21 the relations as specified herein for form of thread, and general notation. Special notation is given in figures 22, 23, and 25.

¹⁷ While Mr. Briggs originally advocated a slightly rounded crest and root, cutting tools are actually slightly flattened at the crest and root.

¹⁸ For a symmetrical straight screw thread, $H=\frac{p}{2}$ cot a. For a symmetrical taper screw thread $H=\frac{p}{2}$ (cot a—tan* y tan a), so that the exact value for an American National taper pipe thread is H=0.866743p as against H=0.866025p, the value given above. For an 8-pitch thread, which is the coarsest standard taper pipe thread pitch, the corresponding values of H are 0.108218 inch and 0.108253 inch, respectively, the difference being 0.000035 inch. This difference being too small to be significant, the value of H=0.866025p continues in use for threads of three fourths inch, or less, taper per foot.

2. SYMBOLS

The list of symbols given in section II, 3, together with additional symbols given below, should be used in formulas for expressing relations of pipe threads, on drawings, etc.

Pitch diameter of thread at end of pipe	E_{G}
Pitch diameter of thread at gaging notch	E_{1}
Pitch diameter of thread at L_2 from end of pipe	
Maximum pitch diameter, external locknut thread	
Minimum pitch diameter, internal locknut thread	E_{i}
Distance from gaging notch to end of pipe=normal engagement by hand	$L_{\mathbb{Z}}$
Length of effective thread	L_2
Outside diameter of pipe=major diameter of pipe thread at L_2 from end of	~
pipe	D
Internal diameter of pipe	d

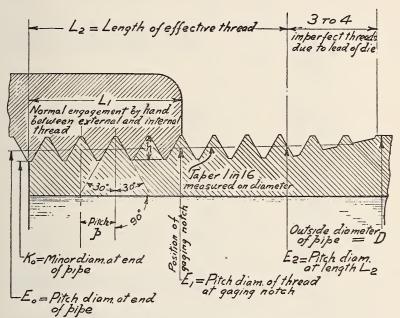


FIGURE 22.—American National taper pipe thread notation.

NOTATION

 $E_0 = D - (0.05D + 1.1)p$ $E_1 = E_0 + 0.0625L_1$ $L_2 = p (0.8D + 6.8)$ h = 0.8p

3. THREAD SERIES

(a) AMERICAN NATIONAL TAPER PIPE THREADS.—Taper external and internal pipe threads are recommended for threaded pipe joints and pipe fittings for any service. The sizes and basic dimensions of the "American National taper pipe threads" are specified in table 49.

1. Outside diameter of pipe.—The outside diameters of pipe are

given in column 5 of table 49.

2. Diameters of taper threads.—The pitch diameters of the taper threads are determined by formulas based on the outside diameter

Table 49.—Dimensions of American National taper pipe threads

[For notation, see fig. 22]

	Basic minor diameter at small end of pipe, 1 Ko		13	Inches 0. 33388 . 43294 . 56757 . 70129	1, 14407 1, 48757 1, 72652 2, 19946 2, 61953	3, 24063 3, 73750 4, 23438 4, 73125 5, 29073	6, 34609 7, 33984 8, 33359 9, 32734 10, 44531
	r at end of	Minimum	12	Inches 0. 37129 . 48468 . 62181 . 77173	1, 23048 1, 57523 1, 81418 2, 28812 2, 75044	3. 37678 3. 87709 4. 37541 4. 87422 5. 43757	6. 49425 7. 49062 8. 48831 9. 48625 10. 60922
ters	At length L_1 on pipe, or at end of coupling, $E_1 = E_0 + \frac{L_1}{16}$	Basic	п	Inches 0.37476 .48989 .62701 .77843 .98887	1. 23863 1. 58338 1. 82234 2. 29627 2. 76216	3. 38850 3. 88881 4. 38712 4. 88594 5. 44929	6. 50597 7. 50234 8. 50003 9. 49797 10. 62094
Pitch diame	Pitch diameters $ \text{At length } L_1 \text{ or } \\ \text{E_1=} $	Maximum	10	Inches 0. 37823 . 49510 . 63222 . 78513 . 99556	1, 24678 1, 59153 1, 83049 2, 30442 2, 77388	3, 40022 3, 90053 4, 39884 4, 89766 5, 46101	6. 51769 7. 51406 8. 51175 9. 50969 10. 63266
	At end of pipe, or at length L_1 from end of coupling, $E_0 = D - \frac{0.05D + 1.1}{n}$	Basic	6	Inches 0.36351 0.47739 0.61201 75843 0.96768	1. 21363 1. 56713 1. 79609 2. 26902 2. 71953	3. 34062 3. 83750 4. 33438 4. 83125 5. 39073	6. 44609 7. 43984 8. 43359 9. 42734 10. 54531
	Increase in diameter per thread, 0.0625		∞	$Inch \\ 0.00231 \\ 0.00347 \\ 0.00347 \\ 0.00446 \\ 0.00446$. 00543 . 00543 . 00543 . 00543	. 00781 . 00781 . 00781 . 00781	. 00781 . 00781 . 00781 . 00781
	Length of effec- tive thread, L ₂		7	Inches 0. 26385 . 40178 . 40778 . 53371	. 68278 . 70678 . 72348 . 75652 1. 13750	1. 20000 1. 25000 1. 30000 1. 35000 1. 40630	1. 51250 1. 61250 1. 71250 1. 81250 1. 92500
	$\begin{array}{c} \text{Length} \\ \text{of normal} \\ \text{engage-} \\ \text{ment by} \\ \text{hand,} \\ L_1 \end{array}$		9	Inches 0. 180 200 240 320 339	. 400 . 420 . 420 . 436 . 682	. 766 . 821 . 844 . 875 . 937	. 958 1. 000 1. 063 1. 130 1. 210
	Outside diameter of pipe, D		29	Inches 0.405 .540 .675 .840 1.050	1. 315 1. 660 1. 900 2. 375 2. 875	3. 500 4. 000 5. 000 5. 563	6. 625 7. 625 8. 625 9. 625 10. 750
	Depth of thread, h		4	Inch 0. 02963 . 04444 . 04444 . 05714	. 06957 . 06957 . 06957 . 06957 . 10000	.10000	10000
	Pitch,		က	Inch 0. 03704 . 05556 . 05556 . 07143	. 08696 . 08696 . 08696 . 08696 . 12500	. 12500 . 12500 . 12500 . 12500	. 12500 . 12500 . 12500 . 12500
	Number of threads per inch,		2	27 18 18 14 14	8	∞ ∞ ∞ ∞ ∞	∞ ∞ ∞ ∞
	Nominal size of pipe in inches		1				7

11. 43906 12. 43281 13. 67500 14. 66875 15. 66250	16, 65625 17, 65000 19, 63750 21, 62500 23, 61250	25, 60000 27, 58750 29, 57500
11. 60766 12. 60609 13. 86091 14. 86247 15. 86403	16. 86328 17. 86328 19. 85859 21. 85391 23. 84922	25. 84453 27. 83984 29. 83516
11. 61938 12. 61781 13. 87262 14. 87419 15. 87575	16. 87500 17. 87500 19. 87031 21. 86562 23. 86094	25. 85625 27. 85156 29. 84688
11. 63109 12. 62953 13. 88434 14. 88591 15. 88747	16. 88672 17. 88672 19. 88203 21. 87734 23. 87266	25. 86797 27. 86328 29. 85859
11. 53906 12. 53281 13. 77500 14. 76875 15. 76250	16. 75625 17. 75000 19. 73750 21. 72500 23. 71250	25. 70000 27. 68750 29. 67500
0.00781 .00781 .00781 .00781	.00781 .00781 .00781 .00781	. 00781
2, 02500 2, 12500 2, 25000 2, 35000 2, 45000	2. 55000 2. 65000 2. 85000 3. 05000 3. 25000	3. 45000 3. 65000 3. 85000
1, 285 1, 360 1, 562 1, 687 1, 812	1, 900 2, 000 2, 125 2, 250 2, 375	2. 500 2. 625 2. 750
11, 750 12, 750 14, 000 15, 000 16, 000	17. 000 18. 000 20. 000 22. 000 24. 000	26. 000 28. 000 30. 000
0.10000 .10000 .10000 .10000	. 10000 . 10000 . 10000 . 10000	.10000
0.12500 .12500 .12500 .12500 .12500	. 12500 . 12500 . 12500 . 12500 . 12500	. 12500
∞ ∞ ∞ ∞ ∞	∞∞∞∞∞	∞∞∞
11. 14 O.D. 15 O.D. 16 O.D.	17 0.D 28 0.D 22 0.D 24 0.D	28 O.D. 28 O.D. 30 O.D.

¹ Given as information for use in selecting tap drills.

of pipe and the pitch of thread. These are as follows 19 (see Symbols above):

$$E_0 = D - (0.05D + 1.1)p$$

$$E_1 = E_0 + 0.0625L_1$$

3. Length of thread.—The length of the taper external thread is determined by a formula based on the outside diameter of pipe and the pitch of the thread. This is as follows ¹⁹ (see Symbols above):

$$L_2 = (0.8D + 6.8)p$$

4. Length of engagement.—The normal length of engagement between taper external and internal threads, when screwed together by hand, is shown in column 6 of table 49. This length is controlled by means of gages.

5. Tolerances.—The tolerance on diameter is the equivalent of the variation in diameter due to taper over one and one half turns either way from the basic dimensions.²⁰

(b) AMERICAN NATIONAL STRAIGHT PIPE THREADS.—The specified sizes and basic dimensions on the "American National straight

pipe threads" are given in table 50.

1. Diameters of straight threads.—The basic pitch diameter of the straight thread is equal to the diameter at the gaging notch of American National taper pipe thread, and is determined by the following formula based on the outside diameter of pipe and the pitch of thread (see Symbols above):

$$E_1 = D - (0.05D + 1.1)p + 0.0625L_1$$

2. Tolerances.—The tolerance on pitch diameter of a straight pipe thread is the equivalent of the variation in diameter over one and one half turns either way from the gaging notch of the American National taper pipe thread.²¹ (See columns 4 and 6 of table 50.)

¹⁹ These formulas are not expressed in the same terms as the formulas originally established by Mr. Briggs, because they are used to determine directly the pitch diameter and the length of effective thread, which includes two threads slightly imperfect at the crest; whereas the Briggs formulas determined the major diameter and the length of perfect thread, the two threads imperfect on the crest not being included in the formula. However, both forms give identical results.

²⁰ See figs. 29 and 30.

[&]quot;The coupling thread may be gaged with a taper threaded plug gage. On account of the gage tolerance of one half turn on working taper pipe thread gages, the working tolerance is equivalent to one turn either way from the gaging notch. In gaging, care must be taken to gage at the first thread scratch and not at the end of the coupling when the thread is chamfered.

3. Application to internal threads.—Straight threaded internal wrought iron or wrought steel couplings of the weight known as "standard" may be used with taper threaded pipe for ordinary

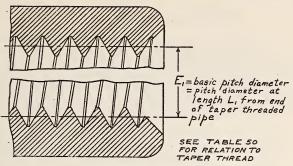


Figure 23.—American National straight pipe thread notation (internal).

Note.—This thread is gaged with the taper threaded plug gage and should gage flush at the bottom of the chamfer (first thread scratch) with the gaging notch, allowing a maximum variation of one and one-half turns plus or minus from the notch.

pressures, as they are sufficiently ductile to adjust themselves to the taper external thread when properly screwed together.

For high pressures, only taper external and internal threads should

be used.

4. Application to external threads.—Straight external threads are recognized only for special applications, such as long screws and tank nipples.

Table 50.—Dimensions of American National straight pipe threads (for couplings)
[For notation see fig. 23]

Nominal sizes (in inches)	Threads per inch	Major diameter ¹	Pit	Pitch diameter, E_1						
	F 02 1202	basic	Maximum	Basic	Minimum	Basic				
1	2	3	4	5	6	7				
\\frac{1}{6} \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	27 18 18 14 14 11½ 11½ 11½ 11½ 11½ 8 8 8 8	Inches 0. 40439 53433 67145 83557 1. 04600 1. 30819 1. 65294 1. 89190 2. 36583 2. 86216 2. 48850 3. 98881 4. 48713 4. 98594 5. 54929 6. 60597	Inches 0.37823 49510 63222 78513 99556 1.24678 1.59153 1.83049 2.30442 2.77388 3.40022 3.90053 4.39884 4.89766 5.46101 6.51769	Inches 0.37476 48989 62701 77843 98887 1.23863 1.58338 1.82234 2.29627 2.76216 3.38850 3.88881 4.38712 4.88594 5.44929 6.50597	Inches 0. 37129 4.8468 6.2181 .77173 .98217 1. 23048 1. 57523 1. 81418 2. 28812 2. 75044 3. 37678 3. 87709 4. 37541 4. 87422 5. 43757 6. 49425	Inches 0. 34513 44544 58257 72129 93172 1. 16907 1. 51382 1. 75277 2. 22671 2. 66216 3. 28850 3. 78881 4. 28713 4. 78594 5. 34929 6. 40597				

¹ The American National pipe thread form is maintained; therefore, the major and minor diameters vary with the pitch diameter and are determined by the threading tools.

^{5.} Application to long screw joints.—Long screw joints are used to a limited extent. This joint is not considered satisfactory when subjected to high temperature or pressure. In this application the coupling has a straight thread and must make a joint with an American National taper pipe thread. (See fig. 23.) It is necessary that

the coupling be screwed on the straight external thread for the full length of the coupling and then back until it engages the taper external The straight thread on the pipe enters the coupling freely

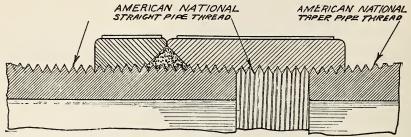


Figure 24.—Illustration of "long screw" joint between straight threaded coupling and taper threaded pipe.

by hand, the joint being made by a packing material between the

locknut and the coupling. (See fig. 24.)

On account of the long engagement of thread, imperfections in pitch affect the fit when the coupling is screwed on the pipe its full length. Refinements of manufacture and gaging to insure a properly interchangeable product are more costly than the commercial

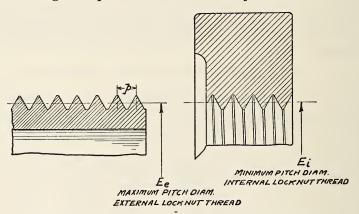


FIGURE 25.—American National locknut thread notation.

NOTATION

 $E_1=$ pitch diameter at gaging notch of American National taper plug gage $E_e=E_1+(4p\times0.0625)$ $E_i=E_1+(5p\times0.0625)$

Note.—See table 51 for relation to taper pipe thread.

use warrants; therefore, the use of this type of joint is not recommended. For this reason, specifications for tolerances and gaging

are not included herein.

(c) American National Locknut Threads.—Occasional requirements make it advisable to have a straight thread of the largest diameter it is possible to cut on a pipe. This practice has been standardized and is known as "maximum external and minimum internal locknut threads." For dimensions, see table 51. The "tank nipple" shown in figure 26 is an example of this thread. In this application an American National standard taper pipe thread is cut on the end of the pipe after having first cut the "external locknut thread."

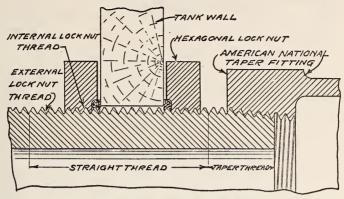


Figure 26.—Illustration of "tank nipple" thread.

Table 51.—Dimensions of American National locknut threads
[For notation, see fig. 25]

Nominal sizes (in inches)	Threads per inch	E. (maxi-mum) 1	E_i (mini-mum) 1	Depth of thread
1	2	3	4	5
16	27 18 18 14 14 11 11 11 11 11 8 8 8 8 8 8	Inches 0.38402 50378 64090 79629 1.00672 1.26037 1.60512 1.84408 2.31801 2.79341 3.41975 3.92006 4.41838 4.91719 5.48054 6.53722 7.53359 8.53128	Inches 0.38633 .50725 .64437 .80075 1.01119 1.26580 1.61055 1.84951 2.32345 2.80122 3.42756 3.92787 4.42619 4.92500 5.48836 6.54503 7.54141 8.53909 9.53703	Inch 0. 02963 04444 04444 05714 05714 05716 06957 06957 10000 10000 10000 10000 10000 10000 10000 10000
10	8 8 8	10. 65219 11. 65063 12. 64906	10. 66000 11. 65844 12. 65688	. 10000 . 10000 . 10000

¹ A tolerance equivalent to one and one half turns of the American National taper pipe thread is recommended, the tolerance being minus on E_i and plus on E_i .

4. TABLES OF PIPE DIMENSIONS

Tables 52, 53, 54, and 55, which follow, are not a part of the thread standard, but are reprinted as part of the Manual on American Standard Pipe Threads.

Table 52.—Dimensions of standard wrought pipe

				Transve	rse areas	Length of pipe per	Nominal weight
Nominal sizes (in inches)			Nominal thickness	Internal	Metal	square foot of external surface	per foot threaded and coupled
1	2	3	4	5	6	7	8
18	Inches 0. 269 . 364 . 493 . 622 . 824	Inches 0. 405 . 540 . 675 . 840 1. 050	Inch 0.068 .088 .091 .109 .113	Square inches 0.057 .104 .191 .304 .533	Square inches 0.072 .125 .167 .250 .333	Feet 9. 431 7. 073 5. 658 4. 547 3. 637	Pounds 0. 245 . 425 . 568 . 852 1. 134
1 1¼ 1¼ 1½ 2 2 2 2 2 1½	1. 049 1. 380 1. 610 2. 067 2. 469	1. 315 1. 660 1. 900 2. 375 2. 875	. 133 . 140 . 145 . 154 . 203	. 864 1. 495 2. 036 3. 355 4. 788	. 494 . 669 . 799 1. 075 1. 704	2. 904 2. 301 2. 010 1. 608 1. 328	1. 684 2. 281 2. 731 3. 678 5. 819
3	3. 068 3. 548 4. 026 4. 506 5. 047	3. 500 4. 000 4. 500 5. 000 5. 563	. 216 . 226 . 237 . 247 . 258	7. 393 9. 886 12. 730 15. 947 20. 006	2. 228 2. 680 3. 174 3. 688 4. 300	1. 091 . 954 . 848 . 763 . 686	7. 616 9. 202 10. 889 12. 642 14. 810
6	6. 065 7. 023 8. 071 7. 981 8. 941	6. 625 7. 625 8. 625 8. 625 9. 625	. 280 . 301 . 277 . 322 . 342	28. 891 38. 738 51. 161 50. 027 62. 786	5. 581 6. 926 7. 265 8. 399 9. 974	. 576 . 500 . 442 . 442 . 396	19. 185 23. 769 25. 000 28. 809 34. 188
10 ¹	10. 192 10. 136 10. 020 11. 000 12. 090 12. 000	10. 750 10. 750 10. 750 11. 750 12. 750 12. 750	. 279 . 307 . 365 . 375 . 330 . 375	81. 585 80. 691 78. 855 95. 033 114. 800 113. 097	9. 178 10. 072 11. 908 13. 401 12. 876 14. 579	. 355 . 355 . 355 . 325 . 299 . 299	32. 000 35. 000 41. 132 46. 247 45. 000 50. 706

 $^{^{\}rm 1}$ Not included in simplified list of sizes as given in Department of Commerce Simplified Practice Recommendation R57-32.

Table 53.—Dimensions of extra strong wrought pipe

				Transve	rse areas	Length of pipe per	Nominal weight
Nominal sizes (in inches)	Inside diameter diamete		Nominal thickness	Internal	Metal	square foot of external surface	per foot, plain ends
1	2	3	4	5	6	7	8
1/6	Inches 0. 215 . 302 . 423	Inches 0. 405 . 540 . 675	Inch 0. 095 . 119 . 126	Square inches 0.036 .072 .141	Square inches 0. 093 . 157 . 217	Feet 9. 431 7. 073 5. 658	Pounds 0.314 .535
78	. 546	.840 1.050	. 147	. 234	.320 .433	4. 547 3. 637	. 738 1. 087 1. 473
1 11/4 11/4 11/4 11/4 11/4 11/4 11/4 11	1.500 1.939	1. 315 1. 660 1. 900 2. 375 2. 875	. 179 . 191 . 200 . 218 . 276	. 719 1. 283 1. 767 2. 953 4. 238	. 639 . 881 1. 068 1. 477 2. 254	2. 904 2. 301 2. 010 1. 608 1. 328	2. 171 2. 996 3. 631 5. 022 7. 661
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3. 364 3. 826	3. 500 4. 000 4. 500 5. 000	. 300 . 318 . 337 . 355	6. 605 8. 888 11. 497 14. 455	3. 016 3. 678 4. 407 5. 180	1. 091 . 954 . 848 . 763	10. 252 12. 505 14. 983 17. 611
56718	5. 761 6. 625 7. 625	5. 563 6. 625 7. 625 8. 625	. 375 . 432 . 500 . 500	18. 194 26. 067 34. 472 45. 663	6. 112 8. 405 11. 192 12. 763	. 686 . 576 . 500 . 442	20. 787 28. 573 38. 048 43. 388
9 1		9. 625 10. 750 11. 750 12. 750	. 500 . 500 . 500 . 500	58. 426 74. 662 90. 763 108. 434	14. 334 16. 101 17. 671 19. 242	. 396 . 355 . 325 . 299	48. 728 54. 735 60. 075 65. 415

 $^{^1}$ Not included in simplified list of sizes as given in Department of Commerce Simplified Practice Recommendation R57-32.

Table 54.—Dimensions of double extra strong wrought pipe

				Transve	rse areas	Length of pipe	Nominal weight	
Nominal sizes (in inches)			Nominal thickness	Internal	Metal	per square foot of external surface	per foot, plain ends	
1	2	3	4	5	6	7	8	
1/2 3/4 1 1 1/4 1/2 2/2 2/4 3 1 3 1/2 4 4 4/2 1 5 6 7 1	1. 771 2. 300 2. 728 3. 152	Inches 0.840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.000 5.563 6.625 7.625	Inch 0. 294 308 358 358 382 400 436 552 600 636 674 710 750 864 875	Square inches 0.050 .148 .282 .630 .950 .1774 .2.464 4.155 5.845 7.803 .10.066 12.966 18.835 27.109	Square inches 0. 504 . 718 1. 076 1. 534 1. 885 5. 466 6. 721 8. 101 9. 569 11. 340 15. 637 18. 555	Feet 4. 547 3. 637 2. 904 2. 301 2. 010 1. 608 1. 328 1. 091 . 954 848 . 763 . 686 . 576 . 500	Pounds 1,714 2,440 3,659 5,214 6,408 9,029 13,695 18,583 22,850 27,541 32,530 38,552 53,160 63,079	
8	6.875	8. 625	.875	37. 122	21. 304	. 442	72, 424	

¹ Not included in simplified list of sizes as given in Department of Commerce Simplified Practice Recommendation R57-32.

Table 55.—Diameters of large O.D. pipe

Nominal sizes (in	Out-	Inside diameter									
inches) diar	side diam- eter	¼ inch thick	% inch thick	¾ inch thick	7/16 inch thick	½ inch thick	%6 inch thick	% inch thick	34 inch thick	1 inch thick	
1	2	3	4	5	6	7	8	9	10	11	
14	Inches 14 15 16 17 18 20 22 24 26 28 30	Inches 13½ 14½ 15½ 16½ 17½	143/8 153/8 163/8	141/4	14½ 15½ 16½ 17½ 19½ 21½	15	Inches 127/8 137/8 147/6 157/8 167/8 187/6 207/6 227/6 247/6 287/8	13 ³ / ₄ 14 ³ / ₄ 15 ³ / ₄ 16 ³ / ₄ 18 ³ / ₄ 20 ³ / ₄ 22 ³ / ₄ 24 ³ / ₄	13½ 14½ 15½ 16½ 16½ 20½ 22½ 24½	15 16 18	

5. GAGES

(a) FUNDAMENTALS

The same fundamentals apply as those outlined in section III covering gages for fastening screws, with the single exception that, with taper threaded gages, separate "go" and "not go" gages are not necessary.

(b) SPECIFICATIONS FOR GAGES

The following specifications are for the purpose of establishing definite limits for thread gages rather than for the purpose of specifying the design of gages required for the various inspection operations. Basic dimensions of taper pipe thread gages are given in table 57

All such gages should be made to the basic dimensions within the tolerances for each element given in table 56 and footnotes thereto. It is possible for taper thread plug and ring gages, which come within the tolerances specified for each element, to vary from being flush with each other at the gaging end, or at the gaging notch, when screwed together tightly by hand. The maximum variation which might occur and be permissible, expressed in terms of longitudinal distance or stand-off, is given in column 9 of table 56.

In order properly to maintain interchangeability of pipe threads, gages should consist of "master," "checking," "inspection," and

"working" gages.

1. Classification of Gages—(a) Master gage.—The master gage is a taper threaded plug gage. (See fig. 27.) It is the gage to which all other gages are ultimately referred, either by transfer of measure-

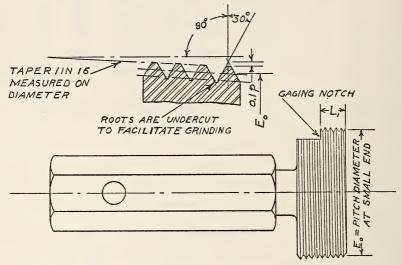


Figure 27.—Master gage or check gage for checking inspection gages.

ments or direct comparison by engagement. It is intended primarily for the use of gage and thread tool manufacturers. It should be made to the basic size as accurately as possible and be within the tolerances

given in table 56.

Each master gage shall be marked with an identification number or symbol, and be accompanied by a report showing the error on each of the elements of thread and a statement of the accumulative error derived from the errors in the various elements. In case of question, the deviations of this gage from the basic size shall be ascertained by the Bureau of Standards at Washington, D.C.

the Bureau of Standards at Washington, D.C.

(b) Checking plug gage.—The checking plug gage is similar in all respects to the master gage, and is used to inspect inspection and

working taper threaded ring gages.

(c) Inspection gages.—Inspection gages consist of one taper threaded

plug gage and one taper threaded ring gage.

Inspection gages are for the use of the purchaser of pipe thread products. When used, the extreme tolerances on the work should be applied. This tolerance is one and one-half turns either way

from the gaging notch in the case of internal threads inspected with the inspection plug gage, and when inspecting external threads the tolerance is one and one-half turns either way from the small end of the inspection ring. Inspection gages should be checked frequently

and in use their errors should be taken into account.

(d) Working gages.—The working gages consist of one taper threaded plug and one taper threaded ring gage. These gages are similar in all respects to the inspection plug and ring gages. The working gages are used by the manufacturer to inspect his product. In using the working gages, the tolerance to be applied is one turn either way from the gaging notch in the case of internal threads inspected with the plug gage, and in the case of external threads the tolerance is one turn either way from the small end of the working ring gage.

2. THREAD FORM OF TAPER PIPE THREAD PLUG AND RING GAGES.—The roots of the threads of all taper pipe thread gages are

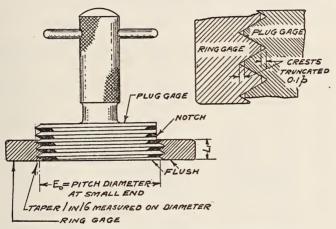


Figure 28.—Inspection or working gages for checking product.

cut to sharp V or may be undercut to facilitate making the thread. The crests are truncated an amount equal to 0.1p, but otherwise the gages are made to the dimensions given in table 49.22

(c) GAGING PRACTICES

A common practice in the gaging of taper pipe threads is illustrated in figures 27, 28, 29, and 30. However, other practices, some of which may be equally satisfactory, are widely used.

The basic gaging length is equal to the dimension L_1 . In figures 27 and 28 this dimension is shown as the thickness of the ring gage, and as the distance from the small end to the gaging notch of the plug gage.

1. Gaging Internal Threads.—The inspection and working plug gages, figure 29, should screw tight by hand into the fitting or coupling until the notch is flush with the face. When the thread is chamfered, the notch should be flush with the bottom of the chamfer, (first thread scratch). The fitting or coupling is within the working or net tolerance if the working gage notch is within one turn of the

 $^{^{22}}$ The object of truncating the crests on gages (truncation 0.1p) is to insure that, when gaging commercial threads cut with a slightly dull tool, the gage bears on the sides of the thread instead of on the roots.

coupling or fitting face when screwed in tight by hand. In the same way the coupling or fitting is within the inspection or extreme tolerance if the inspection gage notch is within one and one-half turns of the coupling or fitting face when screwed on tight by hand.

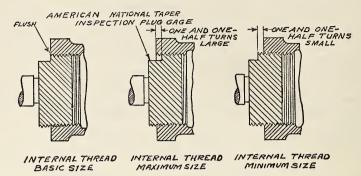


Figure 29.—Gaging of internal American National taper pipe threads.

This method of gaging is used either for taper internal threads or for straight internally threaded couplings which screw together with taper external threads.

2. Gaging Taper External Threads.—The ring gage, figure 30, should screw tight by hand on the pipe or external thread until the

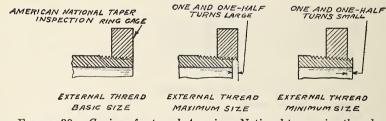


Figure 30.—Gaging of external American National taper pipe threads.

small end of the gage is flush with the end of the thread. The pipe or external thread is within the working or net tolerance if the working ring gage screws on until the end of pipe or external thread is within one turn of the small end of the gage. The pipe or external thread is within the inspection or extreme tolerance if the inspection ring screws on until the end of pipe is within one and one-half turns of the small end of the gage.

Table 56.—Tolerances for American National taper pipe thread plug and ring

Nominal sizes (in inches)	Number of threads per inch	Toler- ance on pitch diam- eter 12 (includ- ing taper)	Toler- ance on lead ³	Toler- ance on half angle of thread	Toler- ance on major diameter of plug gage	Toler- ance on minor diameter of ring gage	Maxi- mum longitu- dinal variation from basic for plug or ring gage	Maximum stand-off between plug and ring gages at gaging end when screwed together tightly by hand
1	2	3	4	5	6	7	8	9
36 34 38 32 34 11- 114 114 114 122 22 212 33 34 44 412 5	27 18 18 14 11 11 11 11 11 11 11 11 11 11 11 11	Inch 0,002 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0004 .0004 .0004 .0004 .0004	Inch ± 0.0002 .0002 .0002 .0002 .0003 .0003 .0003 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0004 .0005	Deg. Min.	Inch + 0.0005 .0005 .0010 .0010 .0010 .0010 .0015 .001	Inch	Inch 0.0115 0.144 0.144 0.146 0.146 0.181 0.181 0.181 0.181 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219	Inch 0. 0230 0.288 0.298 0.292 0.292 0.362 0.362 0.362 0.438 0.438 0.438 0.438 0.438 0.438 0.438
10	8 8 8	. 0005 . 0005 . 0006	. 0005 . 0005 . 0006	0 5 0 5 0 5	. 0020 . 0020 . 0020 . 0025	. 0020 . 0020 . 0020 . 0025	. 0264 . 0264 . 0264 . 0307	. 0528 . 0528 . 0528 . 0614
16 O.D	8 8 8	. 0006 . 0006 . 0006 . 0006	. 0006 . 0006 . 0006	0 5 0 5 0 5 0 5	. 0025 . 0025 . 0025 . 0025	. 0025 . 0025 . 0025 . 0025	. 0307 . 0307 . 0307 . 0307	. 0614 . 0614 . 0614

¹ The taper of the pitch diameter cone shall be such that the pitch diameter will be within the tolerance given at all points. For example, if the gage is to maximum size at the small end, the taper shall not be greater than 0.750 inch taper per foot. If a gage is to minimum size at the small end, the taper shall not be less than 0.750 inch taper per foot.

² Pitch diameter tolerance is to be applied plus on plug gages (other than checking plug gages); minus on checking plug gages and given gages.

checking plug gages and ring gages.

3 Allowable variation in lead between any 2 threads.

NOTE.—The tolerance for the height from the gaging end to notch of all plug gages shall be plus 0.000 inch, minus 0.001 inch for sizes ½ inch to 2 inches, inclusive, and plus 0.000 inch, minus 0.002 inch for sizes

²½ to 24 inches, inclusive.

The tolerance for the over-all thread length of plug gages shall be plus ½2 inch, minus 0.000 inch for sizes ¼ inch to 2 inches, inclusive, and plus ¼6 inch, minus 0.000 inch for sizes ½½ to 24 inches, inclusive.

The thickness of the ring gage shall be held within a tolerance of plus 0.001 inch, minus 0.000 inch for sizes ¼6 inch to 2 inches, inclusive, and plus 0.002 inch, minus 0.000 inch for sizes 2½ to 24 inches, inclusive

Table 57.—Basic dimensions of threaded plug and ring gages for American National taper pipe threads

	Thickness of full ring, L_2	15	Inches 0. 26385 . 40178 . 40778 . 53371 . 54571	. 68278 . 70678 . 72348 . 75652 1. 13750	1. 25000 1. 25000 1. 35000 1. 35000 1. 40630	1. 51250 1. 61250 1. 71250 1. 81250 1. 92500	2, 02500 2, 12500 2, 25000 2, 35000 2, 45000
	Thick- ness of thin ring, L_1	14	Inches 0. 180 . 200 . 320 . 339	. 400 . 420 . 436 . 682	. 766 . 821 . 844 . 875	. 958 1. 000 1. 063 1. 130 1. 210	1, 285 1, 360 1, 562 1, 687 1, 812
Increase	diameter per thread, $\frac{0.0625}{n}$	13	$Inch \\ 0.00231 \\ 0.00347 \\ 0.00347 \\ 0.00446 \\ 0.00446$. 00543 . 00543 . 00543 . 00543	. 00781 . 00781 . 00781 . 00781	. 00781 . 00781 . 00781 . 00781	. 00781 . 00781 . 00781 . 00781
Minor diameters of ring gages ¹	At large end, full ring, E_2 —0.666025	12	Inches 0.35533 .46550 .60050 .74421 .95421	1. 19839 1. 54339 1. 78339 2. 25839 2. 70737	3. 33237 3. 83237 4. 33237 4. 83237 5. 39537	6. 45737 7. 45737 8. 45737 9. 45737 10. 58237	11. 58237 12. 58237 13. 83237 14. 83237 15. 83237
meters of r	$\begin{bmatrix} A \operatorname{tgaging} \\ \operatorname{notch}, \\ E_1 - \\ 0.666025 \\ n \end{bmatrix}$	11	Inches 0.35009 .45289 .59001 .73086 .94129	1. 18072 1. 52547 1. 76442 2. 23836 2. 67890	3. 30525 3. 80556 4. 30387 4. 80268 5. 36604	6, 42272 7, 41909 8, 41678 9, 41472 10, 53768	11. 53612 12. 53456 13. 78937 14. 79093 15. 79250
Minor dia	At small end, E_0 0.666025	10	Inches 0.33884 .44039 .57501 .71086 .92011	1, 15571 1, 49921 1, 73817 2, 21111 2, 63628	3. 25737 3. 75425 4. 25112 4. 74800 5. 30748	6.36284 7.35659 8.35034 9.34409 10.46206	11. 45581 12. 44956 13. 69175 14. 68550 15. 67925
plug and	$\begin{array}{c} \text{At large} \\ \text{end, full} \\ \text{ring,} \\ E_2 \end{array}$	6	Inches 0.38000 .50250 .63750 .79179 1.00179	1. 25630 1. 60130 1. 84130 2. 31630 2. 79062	3.41562 3.91562 4.41562 4.91562 5.47862	6. 54062 7. 54062 8. 54062 9. 54062 10. 66562	11. 66562 12. 66562 13. 91562 14. 91562 15. 91562
Pitch diameters of plug and ring gages	$\left. \begin{array}{c} \text{Atgaging} \\ \text{notch,} \\ E_1 \end{array} \right.$	æ	Inches 0.37476 .48989 .62701 .77843	1. 23863 1. 58338 1. 82234 2. 29627 2. 76216	3.38850 3.88881 4.38712 4.88594 5.44929	6. 50597 7. 50234 8. 50003 9. 49797 10. 62094	11. 61938 12. 61781 13. 87262 14. 87419 15. 87575
Pitch die	$\begin{array}{c} {\rm At\ small} \\ {\rm end}, E_0 \end{array}$	7	Inches 0.36351 .47739 .61201 .75843	1, 21363 1, 55713 1, 79609 2, 26902 2, 71953	3.34062 3.83750 4.33438 4.83125 5.39073	6. 44609 7. 43984 8. 43359 9. 42734 10. 54531	11. 53906 12. 53281 13. 77500 14. 76875 15. 76250
lug gages 1	At large end, full ring, E_2+	9	Inches 0. 40467 . 53950 . 67450 . 83936 1. 04936	1. 31422 1. 65922 1. 89922 2. 37422 2. 87388	3.49888 3.99888 4.49888 4.99888 5.56188	6. 62388 7. 62388 8. 62388 9. 62388 10. 74888	11. 74888 12. 74888 13. 99888 14. 99888 15. 99888
Major diameters of plug gages ¹	At gag- ing notch, E_1+ 0.666025	rů.	Inches 0. 39943 . 52689 . 66402 . 82600 1. 03644	1. 29655 1. 64130 1. 88025 2. 35419 2. 84541	3. 47175 3. 97207 4. 47038 4. 96919 5. 53255	6. 58922 7. 58560 8. 58328 9. 58122 10. 70419	11. 70263 12. 70107 13. 95588 14. 95744 15. 95900
Major dia	At small end, E_0+ 0.666025 n	4	Inches 0.38818 .51439 .64902 .80600 1.01525	1, 27155 1, 61505 1, 85400 2, 32694 2, 80278	3. 42388 3. 92075 4. 41763 4. 91450 5. 47398	6. 52935 7. 52310 8. 51685 9. 51060 10. 62857	11. 62232 12. 61607 13. 85825 14. 85200 15. 84575
	Pitch,	က	Inch 0. 03704 . 05556 . 05556 . 07143	. 08696 . 08696 . 08696 . 08696 . 12500	. 12500 . 12500 . 12500 . 12500	. 12500 . 12500 . 12500 . 12500	. 12500 . 12500 . 12500 . 12500
	Number of threads per inch, n	7	27 18 18 14 14	111/2 111/2 111/2 8	∞∞∞∞∞	∞ ∞ ∞ ∞ ∞	∞∞∞∞∞
	Nominal size of pipe (in inches)	1	27.8 27.8 27.8 27.8	11/4 11/4 2 2/5 2/5	3.3.5.4.4.4.4.5.5.5.5.5.5.5.5.5.5.5.5.5.	6. 7 7 8 9 10	11 12 14 O.D 15 O.D 16 O.D

2. 55000	3. 25000
2. 65000	3. 45000
2. 85000	3. 65000
3. 05000	3. 85000
1, 900	2. 375
2, 000	2. 500
2, 125	2. 625
2, 250	2. 750
0.00781 .00781 .00781	. 00781 . 00781 . 00781 . 00781
16. 83237	23. 83237
17. 83237	25. 83237
19. 83237	27. 83237
21. 83237	29. 83237
16. 79175	23. 77768
17. 79175	25. 77300
19. 78706	27. 76831
21. 78237	29. 76362
16. 67300	23. 62925
17. 66675	25. 61675
19. 65425	27. 60425
21. 64175	29. 59175
16. 91562	23. 91562
17. 91562	25. 91562
19. 91562	27. 91562
21. 91562	29. 91562
16. 87500	23. 86094
17. 87500	25. 85625
19. 87031	27. 85156
21. 86562	29. 84688
16. 75625	23. 71250
17. 75000	25. 70000
19. 73750	27. 68750
21. 72500	29. 67500
16. 99888	23. 99888
17. 99888	25. 99888
19. 99888	27. 99888
21. 99888	29. 99888
16. 95825	23, 94419
17. 95825	25, 93950
19. 95357	27, 93482
21. 94888	29, 93013
16. 83950	23. 79575
17. 83325	25. 78325
19. 82075	27. 77075
21. 80825	29. 75825
0.12500	. 12500
.12500	. 12500
.12500	. 12500
.12500	. 12500
∞ ∞ ∞ ∞	∞ ∞ ∞ ∞
17 O.D.	24 0.D
18 O.D.	26 0.D
20 O.D.	28 0.D
22 O.D.	30 0.D

¹ These dimensions are based on a crest truncation of 0.1p for pipe thread gages, which insures bearing of the gage on the sides of the thread, when cut with a slightly dull tool, instead of at the roots of the thread.

SECTION VIII. AMERICAN NATIONAL SCREW, BOLT, AND NUT PROPORTIONS 23

A project to which the Commission gave early attention was the standardization of bolt and nut proportions. A subcommittee of the Commission and subcommittee no. 2 of the Sectional Committee on the Standardization of Bolt, Nut, and Rivet Proportions organized under the procedure of the American Standards Association, worked in close cooperation in developing standards for wrench-head bolts and nuts which are referred to below.

The Commission endorses the standards for proportions of the fol-

lowing threaded products as listed in the references below:

Bolt heads:	Reference
Heavy	2
Regular	1, 2
Cap screw heads, hexagon	2
Cap screws, slotted head	3, 4
Carriage bolts:	,
Countersunk	5
Fin-neck	5
Ribbed	
Square-neck	
Castellated nuts	1, 2
Heavy nuts	
Jam nuts	
Jam nuts, heavy	
Light nuts	1, 2
Regular nuts	
Machine bolts	
Machine bolts, button-head	1, 5
Machine screws, slotted-head	3, 4
Machine screw nuts	, 2
Plow bolts	
Set screws	$\frac{1}{2}$, $\frac{3}{3}$
Step bolts	
Stove bolts	
Stove bolt nuts	
Tap rivets	-
Track bolts	
Track bolt nuts	·- 7
Wood screws	4, 6
Wood Strows	1, 0

1. Federal Specification for Bolts, Nuts, Studs, and Tap Rivets (and material for same), No. FF-B-571, October 13, 1931. Promulgated by the Federal Specifications Board. Sold by the Superintendent of Documents, Washington, D.C. Price 10 cents.

American Standard Wrench-head Bolts and Nuts and Wrench Openings.
Report No. B18.2-1932, issued and sold by the American Standards Association, 29 West Thirty-ninth Street, New York, N.Y. Price, 50 cents.
 Federal Specification for Screws, Machine, and Set; and Bolts, Stove, No. FF-S-91, April 22, 1933. Available at the Bureau of Standards in mimeographed form.

4. American Standard Slotted Head Proportions-Machine Screws, Cap Screws, and Wood Screws. Report No. B18c-1930, issued and sold by the American Standards Association, 29 West Thirty-ninth Street, New York, N.Y. Price, 45 cents.

5. American Standard Round Unslotted Head Bolts-Carriage, Step, and Machine Bolts. Report No. B18e-1928, issued and sold by the American Standards Association, 29 West Thirty-ninth Street, New York, N.Y.

Price, 40 cents.

6. Federal Specifications for Screws, Wood, No. FF-S-111, April 28, 1931.

Promulgated by the Federal Specifications Board. Sold by the Superintendent of Documents, Washington, D.C. Price, 5 cents.

²³ See also appendix 5, p. 161.

7. American standard track bolts and nuts. Report No. B18d-1930, issued and sold by the American Standards Association, 29 West Thirty-ninth Street.

New York, N.Y. Price, 40 cents. low Bolts. United States Department of Commerce Simplified Practice Recommendation R23, February 19, 1924. Issued by the Bureau of Standards and sold by the Superintendent of Documents, Washington, D.C. Price, 5 cents. Also published as Report No. B18f-1928, American Standard for Plow Bolts. Issued and sold by the American Standards Association, 29 West Thirty-ninth Street, New York, N.Y. Price, 35 cents.

SECTION IX. MISCELLANEOUS SPECIAL THREADS

Section IX A. Screw Threads for Oil-Well Drilling Equipment

The Commission, through its subcommittee on oil-well casing threads and the staff of the Bureau of Standards, has at various times extended assistance to the American Petroleum Institute in those parts of its program of standardization of oil-field equipment which deal with specifications for screw threads and methods of gaging screw threads.

The first problem in this field brought to the attention of the Commission was the great need for standardization of oil-well casing threads. Definite work toward such standardization was initiated by the Mid-Continent Oil and Gas Association in 1921, but this was complicated by a proposal to simplify casing sizes and weights, and provide new standard sizes of nesting casing required for the deeper well drilling which is now necessary. Certain manufacturers had also endeavored to come to an agreement on thread standards. Through the cooperative efforts of the American Petroleum Institute, the Standardization Committee of the Mid-Continent Oil and Gas Association, and the Commission, certain agreements as to diameters, pitches, and tapers were effected. The complete standard for casing threads, together with standards for drill pipe and tubing, are now published as A.P.I. Standard No. 5-A, "Pipe Specifications", issued by the division of standardization, American Petroleum Institute, 1508 Kirby Building, Dallas, Tex.

The Commission endorses the screw thread and screw-thread gage specifications included in the following American Petroleum Institute standards:

No. 3. A.P.I. dimensional standards for cable drilling tools. No. 5-A. A.P.I. pipe specifications. No. 5-L. A.P.I. line pipe specifications. No. 7-B. A.P.I. specifications for rotary drilling taper joints.

No. 11-A. A.P.I. specifications for oil-well pumps (barrels, plungers, valves, etc.).

No. 11-B. A.P.I. sucker rod specifications.

Section IX B. American National Standard Hose Connections for Welding and Cutting Torches

The specifications given herein, covering hose connections for welding and cutting torches, were approved and adopted by the Commission June 28, 1926. These specifications were formulated and adopted in 1925, in essentially the same form, by the International Acetylene Association and the Gas Products Association, and have been adopted by various manufacturers.

Dimensions essential to the interchangeability of parts have been standardized. Other dimensions and details of design are optional, so that manufacturers may use their own judgment and follow their usual practice as much as possible. Two sizes of connections are

specified, as illustrated in figures 31 and 32.

1. STANDARD DIMENSIONS

1. Screw threads corresponding to the American National fine-thread series, and class 3, medium fit, are specified in figures 31 and 32, for which dimensions are given in table 13. Right-handsthreads are specified for oxygen and left-hand threads for fuel gas.

2. Angle and outside diameter of internal seat.

- 3. Radius and distance of radius center of external seat from shank shoulder.
 - 4. Diameter of shank shoulder.

5. Diamter of hole in nut.

6. Small and large diameters of shank.

7. Diameter of hole through shank.

2. OPTIONAL FEATURES

1. Material.—Strength equal to or greater than that of freeturning high brass.

2. Diameter of hole through nipple.

3. Form of end of shank, except seating section as covered in C, figures 31 and 32.

4. Length of shank.

5. Type and number of serrations on shank.

6. A second shoulder equal to the large diameter of the largest shank to extend through the hole in the nut for appearance, to be used or omitted for smaller diameter shanks.

7. Length and location of hexagon section on nut.

3. GAGES

Dimensions and designs of gages for maintaining the hose connection standards for welding and cutting torches are recommended as follows:

Note.—In connection with screw-thread gages see also section III, division 5. Gage no.

1. "Go" and "not go" gage for depth of threaded recess and shank bore:

A size hose connection, as shown in figure 33.

B size hose connection, as shown in figure 38.

2. "Go" adjustable thread-ring gage for right-hand nipple thread:

A size, 3/6-24NF-3:

Minor diameter, maximum, 0.3299; minimum, 0.3294 inch.

Pitch diameter, maximum, 0.3477; minimum, 0.3474 inch.

B size, %16-18NF-3:

Minor diameter, maximum, 0.5024; minimum, 0.5019 inch. Pitch diameter, maximum, 0.5262; minimum, 0.5259 inch.

3. "Go" adjustable thread-ring gage for left-hand nipple thread:

A size, %-24NF-3LH:

Minor diameter, maximum, 0.3299; minimum, 0.3294 inch. Pitch diameter, maximum, 0.3477; minimum, 0.3474 inch. B size, %-18NF-3LH:

Minor diameter, maximum, 0.5024; minimum, 0.5019 inch. Pitch diameter, maximum 0.5262; minimum, 0.5259 inch.

4. "Not go" adjustable thread-ring gage for right-hand nipple thread: A size, %-24NF-3:

Minor diameter, maximum, 0.3304; minimum, 0.3299 inch. Pitch diameter, maximum, 0.3458; minimum, 0.3455 inch.

B size, %16-18NF-3:

Minor diameter, maximum, 0.5029; minimum, 0.5024 inch. Pitch diameter, maximum, 0.5237; minimum, 0.5234 inch.

FIGURE 31.—"A" size of standard hose connections for welding and cutting torches.

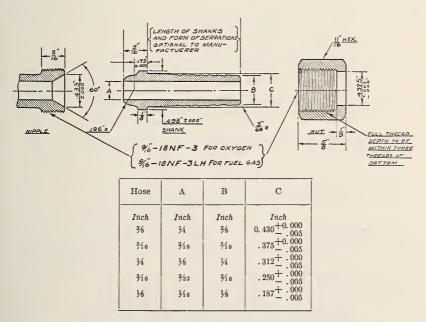


FIGURE 32.—"B" size of standard hose connections for welding and cutting torches.

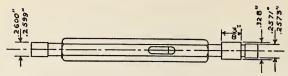


Figure 33.—"Go" and "not go" gage for depth of threaded recess, and shank bore,
A size.

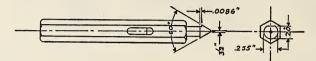


FIGURE 34.—Taper gage for nipple seat, A size.

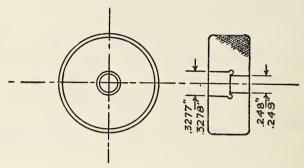


Figure 35.—"Go" ring gage for diameter of shank shoulder and concentricity of serrated portion, A size.

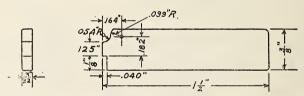


FIGURE 36.—Master template for nose of shank, A size.

FIGURE 37.—Template gage for nose of shank, A size.

FIGURE 38.—"Go" and "not go" gage for depth of threaded recess, and shank bore,

B size.

Gage no.

5. "Not go" adjustable thread-ring gage for left-hand nipple thread-A size, 3/8-24NF-3LH:

Minor diameter, maximum, 0.3304; minimum, 0.3299 inch. Pitch diameter, maximum, 0.3458; minimum, 0.3455 inch. B size, %6-18NF-3LH:

Minor diameter, maximum, 0.5029; minimum, 0.5024 inch.
Pitch diameter, maximum, 0.5237; minimum, 0.5234 inch.
6. "Go" and "not go" double-end threaded setting-plug gage for nos. 2

and 4:

A size, %-24NF-3: "Go" end:

Major diameter, maximum, 0.3750; minimum, 0.3740 inch. Pitch diameter, maximum, 0.3477; minimum, 0.3474 inch. "Not go" end:

Major diameter, maximum, 0.3689; minimum, 0.3684 inch. Pitch diameter, maximum, 0.3458; minimum, 0.3455 inch.

B size, %₆-18NF-3: "Go" end:

Major diameter, maximum, 0.5625; minimum, 0.5620 inch. Pitch diameter, maximum, 0.5262; minimum, 0.5259 inch. "Not go" end:

Major diameter, maximum, 0.5548; minimum, 0.5543 inch. 7. "Go" and "not go" double-end threaded setting-plug gage for nos. 3 and 5:
A size, 3/6-24NF-3LH:
"Go" end:

Major diameter, maximum, 0.3750; minimum, 0.3745 inch. Pitch diameter, maximum, 0.3477; minimum, 0.3474 inch. "Not go" end:

Major diameter, maximum, 0.3689; minimum, 0.3684 inch. Pitch diameter, maximum, 0.3458; minimum, 0.3455 inch.

B size, %-18NF-3LH:
"Go" end:
Major diameter, maximum, 0.5625; minimum, 0.5620 inch.
Pitch diameter, maximum, 0.5262; minimum, 0.5259 inch.

"Not go" end:

Major diameter, maximum, 0.5548; minimum, 0.5543 inch. Pitch diameter, maximum, 0.5237; minimum, 0.5234 inch.

8. "Go" and "not go" double-end thread plug gage for right-hand nut thread:

A size, 3/6-24NF-3:

"Go" end:

Major diameter, maximum, 0.3755; minimum, 0.3750 inch. Pitch diameter, maximum, 0.3484; minimum, 0.3481 inch. Gaging notch, 0.125 inch from back.

"Not go" end:

Major diameter, maximum, 0.3665; minimum, 0.3660 inch. Pitch diameter, maximum, 0.3503; minimum, 0.3500 inch.

B size, %6-18NF-3: "Go" end:

Major diameter, maximum, 0.5630; minimum, 0.5625 inch. Pitch diameter, maximum, 0.5269; minimum, 0.5266 inch.

Gaging notch, 0.125 inch from back.

"Not go" end:

Major diameter, maximum, 0.5210; minimum, 0.5505 inch.
Pitch diameter, maximum, 0.5294; minimum, 0.5291 inch.
9. "Go" and "not go" double-end thread plug gage for left-hand nut thread:
A size, 3/8-24NF-3LH:

"Go" end:
Major diameter, maximum, 0.2755; validiameter, 0.2750 inch.

Major diameter, maximum, 0.3755; minimum, 0.3750 inch. Pitch diameter, maximum, 0.3784; minimum, 0.3481 inch. Gaging notch, 0.125 inch from back.
"Not go" end:

Major diameter, maximum, 0.3665; minimum, 0.3660 inch. Pitch diameter, maximum, 0.3503; minimum, 0.3500 inch.

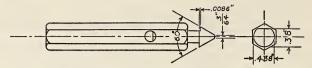


FIGURE 39.—Taper gage for nipple seat, B size.

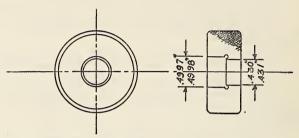


Figure 40.—"Go" ring gage for diameter of shank shoulder and concentricity of serrated portion, B size.

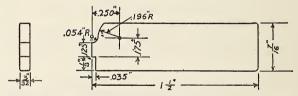


FIGURE 41.—Master template for nose of shank, B size.

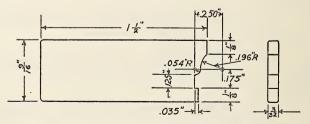


FIGURE 42.—Template gage for nose of shank, B size.

Gage no.

9. "Go" and "not go" double-end thread plug gage for left-hand nut thread— Continued.

B size, %6-18NF-3LH: "Go" end:

Major diameter, maximum, 0.5630; minimum, 0.5625 inch. Pitch diameter, maximum, 0.5269; minimum, 0.5266 inch. Gaging notch, 0.125 inch from back.

"Not go" end:

Major diameter, maximum, 0.5510; minimum, 0.5505 inch. Pitch diameter, maximum, 0.5294; minimum, 0.5291 inch.

10. Taper gage for nipple seat:

A size, as shown in figure 34. B size, as shown in figure 39.

11. "Go" ring gage for diameter of shank shoulder and concentricity of serrated portion:

A size, as shown in figure 35. B size, as shown in figure 40.

12. "Not go" snap gage for shank shoulder diameter: A size, maximum, 0.3241; minimum, 0.3240 inch. B size, maximum, 0.4961; minimum, 0.4960 inch. 13. "Go" and "not go" snap gage for diameter of %-inch shank:

B size:

"Go" end, maximum, 0.4298; minimum, 0.4297 inch.

"Not go" end, maximum, 0.4251; minimum, 0.4250 inch.

14. "Go" and "not go" snap gage for diameter of 1/6-inch shank:

B size:

"Go" end, maximum, 0.3748; minimum, 0.3747 inch.

"Not go" end, maximum, 0.3701; minimum, 0.3700 inch.

15. "Go" and "not go" snap gage for diameter of 1/4-inch shank:

B size:

"Go" end, maximum, 0.3118; minimum, 0.3117 inch.

"Not go" end, maximum, 0.3071; minimum, 0.3070 inch.

16. "Go" and "not go" snap gage for diameter of \(\frac{\chi_6}{16} - \text{inch shank} \):

A size:
"Go" end, maximum, 0.2478; minimum, 0.2477 inch. "Not go" end, maximum, 0.2431; minimum, 0.2430 inch.

B size:
"Go" end, maximum, 0.2498; minimum, 0.2497 inch.
"Not go" end, maximum, 0.2451; minimum, 0.2450 inch.
"The gare for diameter of 1/2-inch shank:

17. "Go" and "not go" snap gage for diameter of 1/8-inch shank:

A and Boizes:

"Go" end, maximum, 0.1868; minimum, 0.1867 inch.

"Not go" end, maximum, 0.1821; minimum, 0.1820 inch.

18. Master template for nose of shank: A size, as shown in figure 36. B size, as shown in figure 41.

19. Template gage for nose of shank:

A size, as shown in figure 37. B size, as shown in figure 42.

Section IX C. American National Rolled Threads for Screw Shells of Electric Sockets and Lamp Bases

The specifications given herein for American National rolled threads for screw shells of electric sockets and lamp bases, with the exception of the recently adopted intermediate size, were published in Bulletin No. 1474 of the American Society of Mechanical Engineers entitled "Rolled Threads for Screw Shells of Electric Sockets and Lamp Bases", which was a report of the A.S.M.E. Committee on Standardization of Special Threads for Fixtures and Fittings.

1. FORM OF THREAD

The thread form is composed of two circular segments tangent to each other and of equal radii, as shown in figure 43.

2. THREAD SERIES

The sizes for which standard dimensions and tolerances have been adopted are designated as follows: "Miniature, candelabra, intermediate, medium, and mogul".

The threads per inch, radii of thread form, and diameter limits for these sizes of lamp base screw shells, which are used on lamp bases, fuse plugs, attachment plugs, and similar devices, are given in table 58.

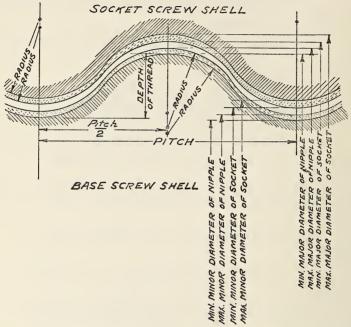


Figure 43.—Illustration of allowance and tolerances, American National rolled threads for screw shells of electric sockets and lamp bases.

The corresponding dimensions and limits for socket screw shells, which are used in electric sockets, receptacles, and similar devices, are given in table 59.

Table 58.—American National rolled threads for lamp base screw shells

	Threads		Depth of		Major diameter		Minor diameter	
Size	per inch	Pitch	thread	Radius	Maxi- mum	Mini- mum	Maxi- mum	Mini- mum
1	2	3	4	5	6	7	8	9
Miniature Candelabra Intermediate Medium Mogul.	14 10 9 7 4	Inch 0. 07143 . 10000 . 11111 . 14286 . 25000	Inch 0. 020 . 025 . 027 . 033 . 050	Inch 0. 0210 . 0312 . 0353 . 0470 . 0906	Inches 0. 375 . 465 . 651 1. 037 1. 555	Inches 0. 370 . 460 . 645 1. 031 1. 545	Inches 0. 335 . 415 . 597 . 971 1. 455	Inches 0.330 .410 .591 .965 1.445

Table 59.—American National rolled threads for socket screw shells

	Three da		Donth of	D. II	Major diameter		Minor diameter	
Size	Threads per inch	Pitch	Depth of thread	Radius	Maxi- mum	Mini- mum	Maxi- mum	Mini- mum
1	2	3	4	5	6	7	8	9
Miniature Candelabra Intermediate Medium Mogul	14 10 9 7 4	Inch 0.07143 .10000 .11111 .14286 .25000	Inch 0. 020 . 025 . 027 . 033 . 050	Inch 0. 0210 . 0312 . 0353 . 0470 . 0906	Inches 0. 3835 . 476 . 664 1. 053 1. 577	Inches 0. 3775 . 470 . 657 1. 045 1. 565	Inches 0. 3435 . 426 . 610 . 987 1. 477	Inches 0. 3375 . 420 . 603 . 979 1. 465

3. GAGES

Gages are necessary to control dimensions in manufacture and to

insure interchangeability and proper assembly.

(a) Gaging of Lamp Base Screw Shells—(1) Working gages.—For each size of lamp base screw shell there should be provided for control in manufacture, a "go" and a "not go" threaded ring gages to govern the minor diameter and thread form, and "go" and "not go" plain ring gages to govern major diameter.

(2) Inspection gages.—For purposes of inspection in the final acceptance of the product, a "go" threaded ring gage governing minor diameter and thread form, and a "not go" plain ring gage

governing major diameter are sufficient.

(b) Gaging of Socket Screw Shells—(1) Working gages.—For each size of socket screw shell there should be provided, for control in manufacture, a "go" and a "not go" thread plug gages to govern the major diameter and thread form, and "go" and "not go" plain plug gages to govern minor diameter.


(2) Inspection gages.—For the final acceptance of the product, a "go" threaded plug gage governing the major diameter and thread form, and a "not go" plain plug governing minor diameter are

sufficient.

(c) Tolerances on Gages.—Manufacturing tolerances on inspection or working gages should not exceed 10 percent of the tolerance on the product, and should be applied in such direction that the limiting dimensions of the screw shells which they are intended to

gage are never exceeded.

Radii at the crest of the thread on gages should not exceed values given in column 5, tables 58 and 59, and should not be more than 10 percent less than these radii; also, radii at the root of the thread on gages should not be less than the values given in column 5 nor more than 10 percent greater.

APPENDIX 1. DERIVATION OF TOLERANCES

1. PITCH DIAMETER TOLERANCES

(a) Tolerances for Fastening Screws.—The tolerances for fastening screws specified in section III were arrived at by combining two factors, known as the net pitch diameter tolerance and the gage tolerance. The theoretical net tolerances for all screws and nuts of a given class of fit bear a definite mathematical relationship to each other, and it was intended that these should in no way be reduced by permissible manufacturing tolerances for master gages; that is, gages within class X tolerances. Consequently the net tolerances were increased by the equivalent diametrical space required to provide for the class X tolerances on diameter, lead, and angle, to produce the extreme tolerances specified for the product. In practice, the actual net tolerances will depend upon the method of gaging and upon the accuracy of the gages used.

1. Basis of net tolerances.—The net pitch diameter tolerances for the various classes of fit are based on the following series for a pitch of ½0 inch:

	Inch
Class 1, loose fit	0.0045
Class 2, free fit	
Class 3, medium fit	
Class 4, close fit	

Pitch diameter tolerances for pitches finer than ½0 inch are to each other and to the tolerance for ½0 inch as the 0.6th power of their respective pitches. Pitch diameter tolerances for pitches coarser than ½0 inch are to each other and to the tolerance for ½0 inch as the 0.9th power of their respective pitches. The exponent 0.6 was chosen for pitches finer than ½0 inch because the result-

ing tolerances, except in two instances, do not vary more than 0.0001 inch from the pitch diameter tolerances specified in the A.S.M.E. Machine Screw Standard.

2. Gage tolerance.—The gage tolerance to be added to the net tolerance to obtain the extreme tolerance, which determines the absolute limits within which all variations of the work must be kept, is determined as follows: Add together the following:

Pitch diameter tolerance of "go" gage.
Diametrical equivalent of lead tolerance of "go" gage.
Diametrical equivalent of angle tolerance of "go" gage.
Pitch diameter tolerance of "not go" gage.

Then subtract the following from the above sum:

One half diametrical equivalent of lead tolerance of "not go" gage. Diametrical equivalent of angle tolerance of "not go" gage.

(b) Tolerances for Screw Threads of Special Diameters, Pitches, and Lengths of Engagement.—As stated in section V, the pitch diameter tolerances for special sizes of threads of American National form as given in tables 36, 37, 38, and 39 were obtained by adding three values, or increments, one dependent upon the basic major diameter, another upon the length of engagement, and the third upon the pitch, except that pitch diameter tolerances listed in section III were inserted in the tables in the positions corresponding to standard sizes, pitches, and lengths of engagement of the American National coarse and fine thread series, and values above and to the left of these inserted values were reduced where necessary so that none should exceed these standard values. Likewise values below and to the right of these inserted values were increased where necessary so that none should be less than these standard values. The formulas from which the increments are derived are given in table 60.

Table 60.—Schedule of tolerance increments for special threads

Class of fit	Diameter increment	Length of engagement increment	Pitch in- crement
1	2	3	4
Class 1, loose fit Class 2, free fit Class 3, medium fit Class 4, close fit	$0.002\sqrt{\overline{D}}$ $.002\sqrt{\overline{D}}$ $.002\sqrt{\overline{D}}$ $.001\sqrt{\overline{D}}$	0. 002 Q . 002 Q . 002 Q . 001 Q	$0.020 \sqrt{p} \ .010 \sqrt{p} \ .005 \sqrt{p} \ .0025 \sqrt{p}$

2. RELATION OF LEAD AND ANGLE ERRORS TO PITCH DIAMETER TOLERANCES

It has been stated in various sections of the report that the tolerances specified for pitch diameter include all errors of pitch diameter, lead, and angle. Also, there were tabulated the errors in lead and angle, each of which could be compensated for by one half of the specified pitch diameter tolerances. These equivalents were derived from definite mathematical relations, which are given below. A rigorous mathematical analysis upon which these formulas are based is presented in appendix 3 of Letter Circular No. 23, issued by the Bureau of

(a) DIAMETER EQUIVALENT OF LEAD ERROR.—The formula expressing the relation between lead error between any two threads within the length of engage-

ment and its diameter equivalent is as follows:

$$E' = (\pm p') \cot a$$

in which

E' = pitch diameter increment due to lead error

p'=the maximum lead error between any two of the threads engaged

a = half angle of thread

The quantity E' is always added to the measured pitch diameter in the case of an external thread, and it is always subtracted in the case of an internal thread, regardless of the sign introduced by the lead error p'.

For threads of American National form, the above formula reduces to—

$$E'=1.7321 p'$$

(b) DIAMETER EQUIVALENT OF ANGLE ERROR.—The general formula expressing the relation between error in the half angle of thread and its diameter equivalent—that is, the amount of the pitch diameter tolerance absorbed by such an error-is:

$$\cot a' = \frac{h}{E'' \sin a \cos a} \pm \cot a$$

in which

E'' = pitch diameter increment due to error in half angle

h = basic thread depth

a=basic half angle of thread

a'= error in half angle of thread a'= error in half angle of thread In solving for E'' the average value of a' for the two sides of the thread, regardless of their signs, should be taken. The sign of cot a is plus when the half angle of thread is less than basic, and minus when the half angle is greater than basic. By omitting \pm cot a from the formula an approximate mean value for a' or E'' is obtained which differs very little from either extreme value. The Commission has, therefore, adopted for general use the formula:

$$\cot a' = \frac{h}{E'' \sin a \cos a}$$

For threads of American National form this formula reduces to-

 $\cot a' = \frac{3p}{2F''}$

or

$$E^{\prime\prime}=1.5~p \tan a^{\prime}$$

For the form of thread recommended for pipe-thread gages the formula becomes—

 $\cot a' = \frac{1.53812p}{E''}$

or

$$E'' = \frac{1.53812}{n} \tan a'$$

APPENDIX 2. WIRE METHODS OF MEASUREMENT OF PITCH DIAMETER

Throughout this report emphasis has been placed on pitch diameter tolerances and limits, as upon these the fit of a screw thread largely depends. The maintenance of these tolerances and limits requires the use of limit thread gages, and these, in turn, depend upon the absolute values or measurements of master gages. The measurement of pitch diameter presents certain difficulties which may result in an uncertainty as to its true value. The adoption of a uniform practice in making such measurement is, therefore, desirable. The so-called "three-wire method" of measuring pitch diameter, as here outlined, has been found to be the most accurate and satisfactory when properly carried out, and is recommended for universal use in the direct measurement of thread-plug gages. is recommended for universal use in the direct measurement of thread-plug gages.

1. SIZE OF WIRES

In the three-wire method of measuring pitch diameter small hardened steel In the three-wire method of measuring pitch diameter small hardened steel cylinders or wires of correct size are placed in the thread groove, two on one side of the screw and one on the opposite side, as shown in figure 44. The contact face of the micrometer anvil or spindle over the two wires must be sufficiently large in diameter to touch both wires; that is, it must be greater than the pitch of the thread. It is best to select wires of such a size that they touch the sides of the thread at the mid slope, for the reason that the measurement of pitch diameter is least affected by any error in thread angle which may be present when such size is used. The size of wire which touches exactly at the mid slope of a perfect thread of a given pitch is termed the "best-size" wire for that pitch. Any size, however, may be used which will permit the wires to rest on the sides Any size, however, may be used which will permit the wires to rest on the sides of the thread and also project above the top of the thread.

of the thread and also project above the top of the thread.

The depth at which a wire of given diameter will rest in a thread groove depends primarily on the pitch and included angle of the thread; and secondarily, on the angle made by the helix, at the point of contact of the wire and the thread, with a plane perpendicular to the axis of the screw. Inasmuch as variation in the helix angle has a very small effect in determining the diameter of the wire which touches at the mid slope of the thread, and as it is desirable to use one size of wire to measure all threads of a given pitch and included angle, the best size wire is taken as that size which will touch at the mid slope of a groove cut around a cylinder perpendicular to the axis of the cylinder, and of the same angle and depth as the thread of the given pitch. This is equivalent to a thread of zero helix angle. The size of wire touching at the mid slope, or "best-size" wire, is given by the formula:

given by the formula:

$$G = \frac{p}{2} \sec a$$

in which

G = diameter of wire

p = pitch

 $a = \frac{1}{2}$ included angle of thread

This formula reduces to—

$$G=0.57735\times p$$
, for 60° threads

It is frequently desirable, as, for example, when a best-size wire is not available, to measure pitch diameter by means of wires of other than the best size. The minimum size which may be used is limited to that permitting the wire to project above the crest of the thread, and the maximum to that permitting the wire to rest on the sides of the thread just below the crest, and not ride on the creast of the thread. The diameters of the best size, maximum, and minimum wires for American National coarse, fine, hose-coupling, and pipe threads are given in tables 61 and 62.

2. SPECIFICATION FOR WIRES

A suitable specification for wires is as follows:

1. The wires should be cylinders of steel with working surfaces glass hard and accurately finished.

2. The working surface should be about 1 inch in length, and the wire may have a suitable handle which is provided at one end with an eye or other suitable

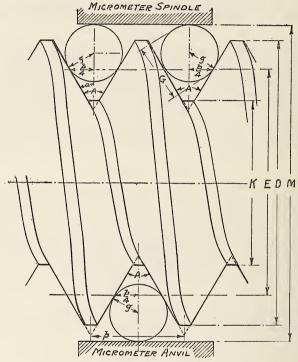


FIGURE 44.—Three-wire method of measuring pitch diameter of thread plug gages.

means of suspension. One side of the handle, which should be flattened, should be marked with the pitch for which the wire is the best size, and with the diameter of the working part of the wire as determined by measurements under standard conditions as specified below.

3. A suitable container should be provided for each set of wires, and if wires are furnished without handles, the pitch for which the wires are the best size and the diameter of the working part of the wires as determined by measure-ments under standard conditions as specified below, should be marked on the container.

4. The wire should be round within 0.00002 inch and should be straight to

0.00002 inch over any quarter-inch interval.5. One set of wires should consist of three wires which should have the same diameter within 0.00003 inch, and this common diameter should be within 0.0001 inch of that corresponding to the best size for the pitch for which the wire is to be used.

3. METHODS OF MEASURING AND USING WIRES

In order to measure the pitch diameter of a screw-thread gage to an accuracy of 0.0001 inch by means of wires, it is necessary to know the wire diameters to 0.00002 inch. The micrometer to be used for measuring wires should be one which is graduated to ten-thousandths of an inch and upon which hundred-thousandths of an inch can be estimated. Such micrometers are available in various forms of precision bench micrometers, and measuring machines. Care should be taken to make sure that the measuring faces of the micrometer are flat and parallel to within 0.00002 inch. The taper of wires can best be determined by measuring between a flat micrometer contact and a cylindrical anvil. Any pits or worn spots on the wires can be detected with the same arrangement. Variations in roundness and straightness are usually determined by rotating the wire between flat contacts one fourth inch in diameter. However, one form of variation in roundness can only be detected by rotating the wire in a V groove against a flat micrometer contact. The V groove may be the thread space in

a hardened and well-finished thread plug gage.

The contact pressure used in making measurements is also an important factor, since the wires, when in use, rest on the sides of the thread, and a given pressure exerted on the top of the thread has a magnified effect in distorting the wire and causing the measurement of the pitch diameter to be slightly less than it should be. In making measurements over the wires inserted in the thread groove, it has been common shop practice to hold the wires down into the thread by means of elastic bands. This has a tendency to prevent the wires from adjusting themselves to the proper position in the thread groove; thus a false measurement is obtained. In some cases it has also been the practice to support the screw being measured on two wires, which are in turn supported on a horizontal surface, and measuring from this surface to the top of a wire placed in a thread over the gage. If the screw is of large diameter, its weight causes a distortion of the wires and an inaccurate reading is obtained. For these reasons these practices should be avoided and subsidiary apparatus for supporting the wires and micrometer should be used.

For consistent results a standard practice as to contact pressure in making wire measurements of hardened screw thread gages is necessary. The computed value for the pitch diameter of a screw thread gage obtained from readings over wires will depend upon the accuracy of the measuring instrument used, the contact pressure, and the value of the diameter of the wires used in the computations. The use of different contact pressures will cause a difference in the readings over the wires, and such errors can only be compensated by the use of a value for the diameter of the wires depending on the contact pressure used. The effect of variation in contact pressure in measuring threads of fine pitches is indicated by the difference in readings obtained with 2 and 5 pounds pressure on a 24-pitch thread plug gage. The reading over the wires with 5 pounds pressure was 0.00013 inch less than with 2 pounds pressure.

A wire presses on the sides of a 60° thread with the pressure that is applied to the wire by the measuring instrument. This fact would indicate that the diameter of the wire should be determined by readings made on the wire over a hardened and lapped cylinder having a radius equal to the radius of curvature of the helical surface of the thread at the point of contact, using the pressure to be used in determining the pitch diameter of the gage. However, it is not practical to employ such a variety of cylinders as would be required, and it is recommended for standard practice that wires be measured between a flat contact and a 0.750-inch hardened and accurately ground and lapped steel cylinder with the pressure used in measuring the pitch diameter of the gage. Furthermore, to avoid a permanent deformation of the material of the wires and gages it is necessary to limit the contact pressure. For pitches finer than 20 threads per inch a pressure of 14 to 16 ounces is recommended. For pitches of 20 threads per inch and coarser a pressure of 2½ to 2½ pounds is recommended.

Measurements of a thread plug gage made in accordance with these instructions, with wires which conform to the above specifications, should be accurate to 0.0001 inch. If the diameters of the wires are known only to an accuracy of 0.0001 inch, an accuracy better than 0.0003 inch in the measurement of pitch

diameter cannot be expected.

4. MEASUREMENT OF PITCH DIAMETER OF AMERICAN NATIONAL STRAIGHT THREADS

The general formula for determining the pitch diameter of any thread whose sides are symmetrical with respect to a line drawn through the vertex and perpendicular to the axis of the thread, in which the very slight effect of helix angle is not taken into account, is:1

$$E = M + \frac{\cot a}{2n} - G \ (1 + \csc a)$$

in which

E=pitch diameter

M=measurement over wires

a =one half included angle of thread

n = number of threads per inch

G = diameter of wires

This formula differs from those formerly given in engineering handbooks in that the latter, as generally given, yield a result which should check with the major diameter of the screw measured, while the pitch diameter itself is not mentioned. For a 60° thread of correct angle and thread form this formula simplifies to—

$$E = M + \frac{0.86603}{n} - 3G$$

For a given set of best-size wires

$$E = M - X$$

when

$$X = G (1 + \operatorname{cosec} a) - \frac{\cot a}{2n}$$

The quantity X is a constant for a given thread angle, and, when the wires are used for measuring threads of the pitch and angle for which they are the best size, the pitch diameter is obtained by the simple operation of subtracting this constant or factor from the measurement taken over the wires. In fact, when best-size wires are used, this factor is changed very little by a moderate variation or error in the angle of the thread. Consequently, the factors for the various sets of wires in use may be tabulated, thus saving a considerable amount of time in the inspection of gages. However, when wires of other than the best size are used, this factor changes quite appreciably with a variation in the angle of the thread.

It has been shown that, with the exception of coarse pitch screws, variation in angle from the basic value causes no appreciable change in the quantity X for the

best-size wires. On the other hand, when a wire near the maximum or minimum allowable size is used, a considerable change occurs, and the values of the cotangent and cosecant of the actual measured half angle are to be used. It is apparent, therefore, that there is a great advantage in using wires very closely approximating the best size. For convenience in carrying out computations, the values of

 $\frac{\cot a}{2n}$ for standard pitches are given in table 61.

$$E=M+\frac{\cot a}{2\pi a}-G(1+\csc a+\frac{S^2}{2}\cos a\cot a)$$

in which S=tangent of the helix angle. The value of S, the tangent of the helix angle, is given by the formula

$$S = \frac{L}{3.1416E} = \frac{1}{3.1416 \ NE}$$

in which

L=lead N=number of turns per inch E=nominal pitch diameter

In commercial practice the term $\left(\frac{G S^2}{2} \cos a \cot a\right)$ is neglected, as its value is small, being in all cases less

than 0.00015 inch for standard fastening screws when the best-size wire is used, and the above formula takes the simplified form given above. The practice is permissible provided that it is uniformly followed, and in order to maintain uniformity of practice, and thus avoid confusion, the Bureau of Standards uses the latter

formula except when the value of the term $\left(\frac{GS^2}{2}\cos a \cot a\right)$ exceeds 0.00015 inch, as in the case of Acme and multiple threads, or other threads having exceptionally large helix angles.

¹ The general formula, in which the helix angle is taken into account, is:

5. MEASUREMENT OF PITCH DIAMETER OF AMERICAN NATIONAL TAPER THREADS

The pitch diameter of a taper thread plug gage is measured in much the same manner as that of a straight thread gage, except that a definite position at which the measurement is to be made must be located. A point at a known distance L from the end of the gage is located by means of a combination of precision gage blocks and the cone point furnished as an accessory with these blocks, as

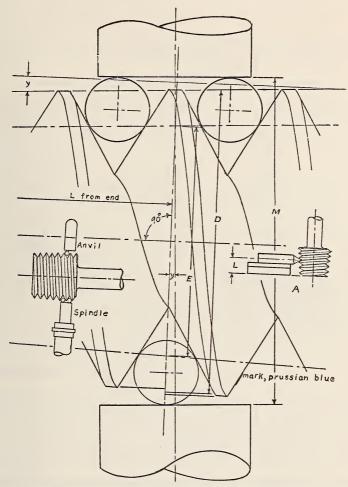


Figure 45.—Measurement of pitch diameter of taper thread gages by the 3-wire method.

shown in figure 45 at A. The gage is set vertically on a surface plate, the cone point is placed with its axis horizontal at the desired height, and the plug is turned until the point fits accurately into the thread. The position of this point is marked by placing a bit of prussian blue or wax immediately above it. Measurement is made over the wires in the usual manner, but care must be taken that the contact surfaces of the micrometer make contact with all three wires, since the micrometer is not perpendicular to the axis of the screw when there is proper contact. (See fig. 45.) On account of this inclination, the measurement over the wires must be multiplied by the secant of the half angle of the taper of the thread. The formula for the pitch diameter of any taper thread plug gage, the

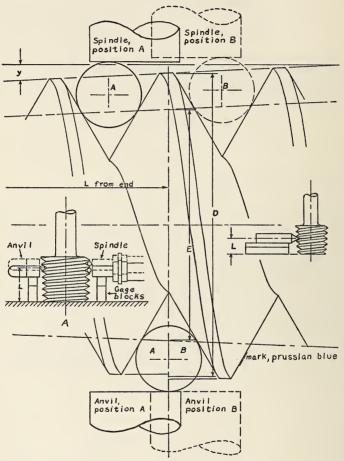


Figure 46.—Measurement of pitch diameter of taper thread gages by the 2-wire method.

threads of which are symmetrical with respect to a line perpendicular to the axis, then has the form:²

$$E=M \sec y + \frac{\cot a}{2n} - G \ (1 + \csc a)$$

in which

E=pitch diameter

M=measurement over wires y=half angle of taper of thread

n=number of threads per inch=1/p

a=half angle of thread

G = diameter of wires

Thus the pitch diameter of an American National standard pipe-thread gage having correct angle (60°) and taper (¾ inch per foot) is then given by the formula:

E=1.00049 M+0.86603 p-3G

The pitch diameter at any other point along the thread, as at the gaging notch, is obtained by multiplying the distance parallel to the axis of the thread, between this point and the point at which the measurement was taken, by the taper per inch, then adding the product to or subtracting it from the measured pitch diameter according to the direction in which the second point is located

with respect to the first.

In recent years measuring machines have replaced micrometer calipers generally for the measurement of taper thread plug gages, and the following method, illustrated in figure 46, is applied: This method has a theoretical advantage over the first method in that it is independent of the taper of the thread, and, therefore, requires less computation; or if the taper is not measured, but assumed to be correct, it is more accurate. The axis of the gage and the line of measurement are constrained perpendicular to each other. This is easily done on a measuring machine if the gage is supported on centers mounted on a slide whose ways are perpendicular to the line of measurement. If a micrometer caliper is used, its spindle is constrained perpendicular to the axis of the screw. One method is to place the gage on a surface plate with its axis vertical, and support the micrometer in a horizontal position with its anvil and spindle resting on two equal combinations of gage blocks as shown in figure 46 at A. A single wire is inserted in the thread at the point located as in the previous method, and one other wire is placed in the upper thread on the opposite side. A measurement is taken over the two wires; the second wire is then moved to the thread immediately below and a second reading is taken. The mean of these two readings is substituted in any of the above formulas in the place of M sec y, or 1.00049 M.

6. MEASUREMENT OF PITCH DIAMETER OF THREAD RING GAGES

The application of direct methods of measurement to determine the pitch diameter of thread ring gages presents serious difficulties, particularly in securing proper contact pressure when a high degree of precision is required. The usual practice is to fit the ring gage to a master setting plug. When the thread ring gage is of correct lead, angle, and thread form, within close limits, this method is quite satisfactory and represents standard American practice. It is the only method available for small sizes of threads. For the larger sizes, various more or less satisfactory methods have been devised, but none of these have found wide application.

$$\mathbb{E} = (M-G) \sec y + \frac{\cot a - \tan^2 y \, \tan \, a}{2n} - \mathbf{G} \, \left(\operatorname{cosec} \, a + \frac{S^2}{2} \, \cos \, a \, \cot \, a \right)$$

² See footnotes 18 and 1, pp. 100, 132. In the above formula for the value of E, the term $\frac{\cot a}{2n}$ is an approximation for the value of H. The exact value of H is used when the value of the term $\frac{\tan^2 y \tan a}{2n}$ exceeds

^{0.00004} inch, which ordinarily occurs only on special taper threads of coarse pitch or steep taper. Also the multiplication of the measurement over the wires by the secant of the half angle of the taper of the thread is not an exact correction for the inclination of the measurement. The complete formula is—

This formula gives a value of E which is 0.000081 inch smaller than that given by the simplified formula for the 2½-inch-8 American National taper pipe thread, the worst case in this thread series.

Table 61.—Wire sizes and constants, American National coarse, fine, hose-coupling, and pipe threads

	Wire sizes 1				Pitch	Depth of
	Wife Sizes -		Threads per inch	Pitch	$\frac{\text{Fitth}}{2}$	V thread
Best 0.577350p	Maximum 1.010363p	Minimum 0.505182p	n	$p = \frac{1}{n}$	$\frac{p}{2} = \frac{1}{2n}$	$\frac{\cot 30^{\circ}}{2n}$
1	2	3	4	5	6	7
Inch 0. 00722 00802 00902 01031 01203 01312 01443 01604 01804 02062 02138 02406 02887 03208 03608	Inch 0. 01263 01403 01579 01804 02105 02296 02526 02807 03157 03608 03742 04210 05052 05613	Inch 0.00631 .00702 .00789 .00902 .01052 .01148 .01263 .01403 .01579 .01804 .01871 .02105 .02526 .02507 .03157	80 72 64 56 48 44 40 36 32 28 27 24 20 18	Inch 0. 01250 . 01389 . 01562 . 01786 . 02083 . 02273 . 02500 . 02778 . 03125 . 03571 . 03704 . 04167 . 05000 . 05556 . 06250	Inch 0. 00625 . 00694 . 00781 . 00893 . 01042 . 01136 . 01250 . 01389 . 01562 . 01786 . 01852 . 02083 . 02500 . 02778 . 03125	0. 01083 .01203 .01353 .01546 .01804 .01968 .02165 .02406 .02706 .03093 .03208 .03608 .04330 .04811 .05413
. 04124 . 04441 . 04811 . 05020 . 05249 . 05773 . 06415 . 07217 . 07698 . 08248 . 09623 . 11547 . 12830 . 14434	. 07217 . 07772 . 08420 . 08786 . 09185 . 10104 . 11226 . 12630 . 13472 . 14434 . 16839 . 20207 . 22453 . 25259	. 03608 . 03886 . 04210 . 04393 . 04593 . 05052 . 05613 . 06315 . 06736 . 07217 . 08420 . 10104 . 11226 . 12630	14 13 12 11½ 11 10 9 8 7½ 7 6 5 4½ 4	. 07143 . 07692 . 08333 . 08696 . 09091 . 10000 . 11111 . 12500 . 13333 . 14286 . 16667 . 20000 . 22222 . 25000	. 03571 . 03846 . 04167 . 04348 . 04545 . 05000 . 05556 . 06250 . 06667 . 07143 . 08333 . 10000 . 11111 . 12500	. 06186 . 06662 . 07217 . 07531 . 07873 . 08660 . 09623 . 10825 . 11547 . 12372 . 14434 . 17321 . 19245 . 21651

 $^{^1}$ These wire sizes are based on zero helix angle. Also maximum and minimum sizes are based on a width of flat at the crest equal to $/4\times p$. The width of flat of American National pipe thread gages is slightly less than this, so that the minimum size listed is slightly too small for such gages. In any case the use of wires of either extreme size is to be avoided.

Table 62.—Relation of best wire diameters and pitches 1—wires for American National coarse, fine, hose-coupling, and pipe threads

	4	
	41/2	×⊗×
	10	⊗××
	9	⊗×××
	7	×⊗ ×××
	71%	×⊗× ×××
	oc	×⊗×× ××
	6	×⊗××× ×
	10	
	=	××⊗ ×××××
	111%	xxex xxxxx
	12	x⊗xx xxxxx
	13	×⊗××× ××××
Threads per inch	14	⊗×××× ××
ds be	16	x⊗ xxxx x
Threa	18	×⊗x xxxxx
1 1	20	⊗×× ××××
	24	
	27	× ⊗××××
	28	⊗ xxxx
	32	
	36	×⊗×× ××
	40	
	44	
	48	⊗ ××××
	26	⊗x xxx
	20	×⊗×× ××
	72	X⊗XXX X
	8	⊗××××
Best wire sizes (in inches)	32	0.00722 0.008822 0.008822 0.01031 0.01312 0.01443 0.02082 0.02083 0.03287 0.06520 0.06520 0.06521 0.06

1 The crosses (X) indicate those wire diameters which can be used for each pitch. An encircled cross (⊗) indicates the "best wire" diameter for that pitch which heads the column.

7. WIRE METHODS OF MEASUREMENT OF THREAD THICKNESS OF ACME THREADED PLUG GAGES

For threads having a thread angle less than 45° the quality of fit can be more accurately controlled by checking the element of thread thickness, in relation to the basic major diameter (that is, the thread thickness at the nominal pitch diameter), than by checking pitch diameter. For this purpose the 3-wire method may be applied in the same manner as for measuring pitch diameter, but the method of computation is slightly different. On account of the small thread angle, the cotangent of which is large, it is always necessary to take the helix angle into account in measuring thread thickness by the 3-wire method. The general formula to be applied in determining thread thickness is as follows: general formula to be applied in determining thread thickness is as follows:

$$t\!=\!p\!-\!\tan a\;[D\!-\!2B\!-\!M\!+\!G(1\!+\!\csc a\!+\!\frac{S^2}{2}\cos a\;\cot a)]$$

in which

D = basic major diameter of screw

M = measurement over wires

G = diameter of wires

a = half angle of thread

S =tangent of helix angle at pitch line

p = pitch

B=depth at which thread thickness is measured

t=thread thickness at depth B

On Acme screw threads

$$B = p/4$$

and the thread angle being 29°, the above formula reduces to—

$$t=1.12931p+0.25862(M-D)-G(1.29152+0.48407S^2)$$

The same formula applies to taps for Acme threads, although the major diameter is larger than basic, since the formula is based on the basic major diameter. The diameters of the best size, maximum, and minimum wires for standard pitches of Acme threads are listed in table 63. Also, for convenience in carrying out computations, the values of 1.12931p and of $1.29152 + 0.484078^2$ for various diameters and pitches of single, double, triple, and quadruple threads are given in tables 64, 65, 66, and 67.

Table 63.—Wire sizes and constants, American National Acme threads (29°)

	Pitch	Wire sizes 1				
Threads per inch	$p = \frac{1}{n}$	Best 0.516450p	Maximum, 0.650013 <i>p</i>	Minimum, 0.487263p		
1	2	3	4	5		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Inch 1.00000 .75000 .66667 .50000 .40000 .33333 .25000 .20000 .16667 .12500 .10000 .08333 .07143 .06250	Inch 0. 51645 38734 34430 25822 20658 17215 12911 10329 08608 .06456 .05164 .04304 .03689 .03228	Inch 0. 65001 48751 43334 32501 26001 21667 16250 13000 10834 08125 06500 05417 04643 04063	Inch 0, 48726 36454 32484 24363 19491 16242 12182 09745 08121 06091 04873 04061 03480 03045		

¹ Based on zero helix angle.

Table 64.—Values of 1.12931p and 1.29152+0.484078 $^{\rm 2}$ for various diameters and pitches, Acme threads

SINGLE THREADS

	Threads per inch, n=1/p											
	12	10	8	6	5	4	3	21/2	2	11/2	11/3	1
Basic major diameter						1.12	931p		1			<u> </u>
(inches)	0. 09411	0. 11293	0. 14116	0. 18822	0. 22586	0. 28233	0. 37644	0. 45172	0. 56465	0. 75287	0. 84698	1. 12931
					1.2	291518+	0.484074	S^2				
1,4							1					
5/16												
3/8	1. 29458	1. 29478										
7/16	369 314	1. 29478	1. 29552									
%16	277	339	458									
58	252	300	394									
11/16	233	272 252	348	1 00450								
34 13/16	220 209	252 236	288	1. 29458 408								
	201	224	268		1. 29478							
7/8 15/16	194	214	252	339	432							
	189	206 194	239 220	314 277	394	1. 29458						
1½ 1¼	181 175	186	206	252	300	1. 29458 394						
13/8	171	180	196	233	272	348						
11/2	168	175	189	220	252	314	1. 29458					
15/8	165 163	172 169	183 179	209 201	236 224	288 268	408	1. 29478				
1 ³ / ₄	162	167	175	194	214	252	339	431				
2	161	165	172	189	206	239	314	394				
21/8	160	163	170	184	200	228	294	364				
21/4	159 158	162 161	168 166	181 178	194 190	220 212	277 264	339 318	1, 29458 423			
21/2	157	160	165	175	186	206	252	300	394			
25/8	157	159	163	173	183	201	242	285	369			
23/4	156	159	162	171	180	196	233	272	348			
27/8	156 156	158 157	161 161	169 168	177 175	192 189	226 220	261 252	330	1. 29458		
31/8	155	157	160	167	173	186	214	244	300	431		
31/4	155	157	159	165	172	183	209	236	288	408		
33/8	155	156	159	164 163	170 169	181	205 201	230 224	277 268	387	1. 29434	
3½	155 154	156 156	158 158	163		179 177	197	219	259	353		
334	154	155	157	162	167	175	194	214	252	339	394	
37/8	154	155	157	161	166	174	191	210	245	326		
4	154 154	155 155	157 156	161 160	165 164	172 171	189 187	206 203	239 233	314 303	362	
41/4	154	155	156	160	163	170	184	200	228	294	336	
43/8	154	154	156	159	163	169	183	197	224	285	324	
41/2	154	154	156	159	162	168	181	194	220	277	314	1. 29458
45/8	153 153	154 154	155 155	158 158	161 161	167 166	179 178	192 190	216 212	270 264	305 296	
47/8	153	154	155	158	160	165	176	188	209	257	288	408
5	153	154	155	157	160	165	175	186	206	252	281	394
514	153	154	155	157	159	163	173	183	201	242	268	369
5½ 5¾	153 153	153 153	154 154	156 156	159 158	162 161	171 169	180 177	196 192	233 226	257 247	348 330
6	153	153	154	156	157	161	168	175	189	220	239	314
61/4	153	153	154	155	157	160	167	173	186	214	232	300
61/2	153 153	153 153	154 154	155 155	157 156	159 159	165 164	172 170	183 181	209 205	225 220	288 277
7	152	153	153	155	156	158	163	169	179	201	215	268
71/4	152	153	153	154	156	158	163	168	179 177	197	210	259
7½	152	153	153	154	4.54	157	162	167	175	194	206	
7¾ 8	152 152	153 153	153 153	154 154	155 155	157 157	161 161	166 165	174 172	191 189	203 199	245 239
81/4	152	153	153	154	155	156	160	164	171	187	196	233
81/2	152	152	153	154	155	156	160	163	170	184	194	228
83/4	152	152	153	154	154	156	159	163	169	183	191	224
914	152 152	152 152	153 153	154 153	154 154	156 155	159 158	162 161	168 167	181 179	189 187	220 216
91/2	152	152	153	153	154	155	158	161	166	179 178	185	212
93/4	152	152	153	153	154	155	158	160	165	176	183	209
	1 20159	1 20159	1 20152	1 20152	1. 29154	1 20155	1 20157	1. 29160	1 20165	1 20175	1 20189	1 20206

Table 65.—Values of 1.12931p and 1.29152+0.48407S2 for various diameters and pitches, Acme threads

DOUBLE THREADS

					Thre	ads per	inch, n	=1/p				
Dogioi	12	10	8	6	5	4	3	21/2	2	1½	11/3	1
Basic major diameter						1.12	931p					
(inches)	0. 09411	0. 11293	. 14116	0. 18822	0. 22586	0. 28233	0. 37644	0. 45172	0. 56465	0. 75287	0.84698	1. 1293
					1.2	291518+	0.484074	S^2				
<u> </u>	1, 32291	1. 34056	1. 37871									
16	1. 31009	1. 31999	1. 34056	1 35558								
8 Í 6 6	1.30021	1. 31009 1. 30458 1. 30121	1. 31332	1.33496	1.36041	1. 37871						
í 6 _	654	1. 29899	1. 30378	1. 31525	1. 32820	1. 35558						
ś ½16	552 478	745 635	1. 29937	1.30645	1. 31999 1. 31425	1.33027	1.37188					
1 3/16	423 381	552 489	800 697	1.30378	1. 31009	1. 32291	1. 35558	1. 37519				
6	348	440	616	1, 30021	1, 30458	1, 31332	1, 33496	1, 36041				
516 	322 300		552 501	1. 29899 800	1. 30271 1. 30121	1. 31009 1. 30753	1. 32820 1. 32291	1, 34923 1, 34056	1. 37871			
1/8	268 245	322	423 369	654 552	1. 29899	1. 30378	1. 31525	1. 32820 1. 31999	1. 35558			
74 3/8	228	264	330	478		1, 29937	1. 30645	1, 31425	1, 33027	1, 37188		
1/2 5/8	216 206		300 277	423 381	552 489	800	1.30378	1.31009	1.32291	1. 35558 1. 34378	1.37871	
78 78	198 192		259 245	348 322	440 401	616	1.30021	1.30458	1. 31332	1. 33496 1. 32821	1.34989	
/8	187	203	234	300		501				1. 32321		
1/8 1/4	183 180	197	$\frac{224}{216}$	283 268	343	458	720 654	1. 29999	1.30547	1. 31868 1. 31525	1.32755	1.365
36	177	188	209	256	303	394	599	815	1.30238	1. 31244	1.31911	1.347
	174 172	184 181	203 198	245 236		369 348	552 513			1. 31009		
34	170 169	179 176	194 191	228 222	264	330	478 449	635 590	1. 29937	1. 30812 1. 30645 1. 30502	1. 31108	1. 330
	167	174	187	216	245	300	423	552	800	1. 30378	(1.30753	1.322
½ ¼	166 165	173 171	184 182	211 206	238 231	288 277	401 381	519 489		1. 30271 1. 30177		
38	164 163	170 168	180 178	202 198		268 259	364 348	463	654	1.30094	1.30378	1.315
½ 58	162	167	176	195	215	252	334	419	582	1. 30021 21. 29957	1.30197	11. 311
34 76	162 161	166 165	174 173	192 190	211 207	245 239	322 310	401 384	552 525		1. 30121 1. 30053	
	160	164	172	187	203	234	300	. 369	501	800	1. 29992 937	1. 307
1/8 1/4	160 159	163	170 169	185 183	200 197	228 224	291 283	356 343	478 458	720	887	1.305
3/8 1/2	159 159	162 162	168 167	181 180	195 192	220 216	275 268	332 322	440 423	1		1. 304
58	158	161	167	178	190	212	261	312	408	625	763	1. 303 1. 303
34 78	158 158	161 160	166 165	177 176	188 186	209 206	256 250	303 295	394 381	575	697	1.302 1.301
	157	160	164 163	174 172	184 181	203 198	245 236	288	369		668	1. 301
14 12 22	157 156		162	170	179	194	228	275 264	348 330		572	1. 300 1. 299
34	156 156	158 157	161 160	169 167	176 174	191 187	222 216	$\frac{254}{245}$	314 300	423	534 501	80
/ 4	155	157	160	166		184	211	238	288		472	74
1,2 3,4	155 155		159 159	165 164	171 170	182 180	206 202	231 225	277 268	381 364	446 423	6
14 14 14	155 154	156 156	158 158	163 162	168 167	178 176	198 195	$\frac{220}{215}$	259 252	348 334	403 385	6: 58
	154	155	157	162	166	174	192	211	245	322	369	5
3/4	154 154		157 157	161 160	165 164	173 172	190 187	207 203	239 234	310 300	355 342	55 50
14 14 14	154 154	155 155	156 156	160 159	164 163	170 169	185 183	200 197	228 224	291 283	330 319	4:
34	154	154	156	159	162	168	181	195	220	275	309	4
1/4	153 153	154 154	156 155	159 158	162 161	167 167	180 178	192 190	$\frac{216}{212}$	268 261	300 292	4:
72 34	153 153	154 154	155 155	158 158	161 160	166 165	177 176	188 186	209 206	256 250	284 277	38
94 0	1. 29153	1. 29154	1. 29155	1.29157	1. 29160	1, 29164	1. 29174	1. 29184		1. 29245	1. 29271	

Table 66.—Values of 1.12931p and 1.29152 \pm 0.48407S 2 for various diameters and pitches, Acme threads

TRIPLE THREADS

TRIPLE THREADS												
					Thre	ads per	inch, n	=1/p				
	12	10	8	6	5	4	3	21/2	2	11/2	11/3	1
Basic major diameter (inches)						1.12	931 p		<u>' </u>			
	0.09411	0. 11293	0. 14116	0. 18822	0. 22586	0. 28233	0. 37644	0. 45172	0. 56465	0. 75287	0.84698	1. 12931
					1.2	91518+	0.484074	$1S^2$				
14	1. 36215	1. 40187	1. 48771									
5/16	1. 33331 1. 31911	1. 35558 1. 33331	1. 40187 1. 36215	1. 43565								
3/6 7/16 1/2	1.31108	1.32092 1.31332	1.34057 1.32755	1. 43565 1. 38927 1. 36215	1. 44653 1. 40187	1 48771		- -				
94.	1 20020	1 20022	1 21011	1 2//02	1 27/06	1 42566						
5/8	1. 30053	1.30487	1.31332	1. 33331	1.35558	1.40187	1 47933					
716	763	1. 30053	1. 30611	1. 31911	1. 333331	1. 36215	1. 43566	1 45050				
	668 593			1. 31458 1. 31108								
7/8 15/16	534	712	1. 30053	1. 30832	1.31669	1. 33331	1. 37406	1. 42137				
1	486 413	641 534	1. 29937 763	1. 30832 1. 30611 1. 30282 1. 30053	1. 31332 1. 30832	1. 32755 1. 31911	1. 36215 1. 34492	1. 40187 1. 37406	1. 48771 1. 43566			
	362											
13/8	324 296	403 362	552 486	1. 29887 763	1. 30238 1. 30053	1.30918 1.30611	1.32511 1.31911	1. 34267 1. 33331	1. 37871 1. 36215	1, 47233 1, 43565	1. 48771	
11/2 15/8 13/4	296 274 257	330 305	434 394	668 593	1.29911	1.30378	1.31458	1.32630	1.34989	1. 40911	1. 45043 1. 42285	_
178	243	284	362	534	712	1. 30053	1. 30832	1. 31669	1. 33331	1. 37406	1. 42288	
2	232	268	336	486		1. 29937	1. 30611	1. 31332	1. 32755	1.36215	1.38555	1. 48771
2½ 2¼	222 215	254 243	314 296	446 413	582 534	763	1.30282	1.30832	1.31911	1.34492	1.36214	1. 45868 1. 43566
2 ³ / ₈	208 203	233 225	281 268	385 362	493 458	697 641	1. 30158 1. 30053	1. 30645 1. 30487	1. 31596 1. 31332	1. 33858	1. 35359	1. 41708 1. 40187
95.6	198	218	257	342	429	593	1. 29963	1. 30353	1.31108	1. 32887	1.34056	1.38927
23/4	194 190	212 207	247 239	324 309	403 381	552 517	887 820	1. 30238	1.30918	1. 32511	1.33554	1.37871
2¾ 2½ 3 3	187	203	232	296	362	486	763	1. 30053	1. 30611	1. 31911	1. 32755	1. 36977 1. 36215
3/8	184 182	199 195	225 220	284 274	345 330	458 434	668					1. 35558
3¼ 3%	179	192	215	265	316	413	628	852	1. 30282	1. 31272	1. 31911	1. 34989 1. 34493
3½	177 176	189 186	210 206	257 250	305 294	394 377	593 562	754	1. 30197	1. 31108	1. 31694 1. 31502	1. 34056 1. 33672 1. 33331
3¾	174	184	203	243	284	362	534)				1
37/8	173 171	182 180	199 196	237 232	276 268	348 336	508 486	675 641	937	1.30611	1. 31041	1. 33027 1. 32755
4. 41/8. 41/4.	170 169	178 177	194 191	227 222	261 254	324 314	465 446	610 582	887	1. 30516	1. 30917	1. 32511 1. 32291
43/8	168	175	189	218	248	305	429	557	800	1. 30353	1. 30704	1. 32091
4½	167	174 173	187	215 211	243 238	296 288	413 399	534	763	1. 30282	1. 30611	1.31911 1.31746
4 ⁵ / ₈	166 166	172	185 183	2081	233	281	385	513 493	697	1.30158	1.30449	1.31595
47/8	165 164	171 170	182 180	205 203	229 225	274 268	373 362	475 458	668 641	1. 30103 1. 30053	1. 30378 1. 30313	1. 31458 1. 31332
51/4	163	168	177	198	218	257	342	429				1. 31108
5½ 5¾	162 161	167 165	175 173	194 190	212 207	247 239	324 309	403 381	552	887	1.30097	1. 30918 1. 30753
0	160	164	173 171	187	203	232	296	362	486	763	1.29937	11.30611
614	160 159	163 162	170 168	184 182	199 195	225 220	284 274	345 330				1. 30487 1. 30378
6½6¾	159	162	167	179	192	215	265	316	413	628	763	1.30282
71/4	158 158	161 160	166 165	177 176	189 186	210 206	257 250	305 294	377	562	677	1. 30197 1. 30121
7¼ 7½	157	160	164	174	184	202	243	284	362	534	641	1. 30053
7¾ 8	157 157	159 159	163 163	173 171	182 180	199 196	237 232	276 268	336	486	579	1. 29991
8'	156 156	158	162 162	170	178 177	194 191	227 222	261	324	465	552	887
8%	156	158 158	161	169 168	175	189	218	254 248	314 305			
99½4	156	157	160	167	174	187	215	243	296	413		
9½	155 155	157 157	160 160	166 166	173 172	185 183	211 208	238 233	281	385	450	697
9¾ 10	155 1. 29155	156 1, 29156	159 1, 29159	165 1. 29164	171 1, 29170	182 1, 29180	205 1, 29202	229	274	373	434	668
											1	

Table 67.—Values of 1.12931 p and 1.29152 \pm 0.48407S 2 for various diameters and pitches, Acme threads

QUADRUPLE THREADS

	Threads per inch, $n=1/p$											
	12	10	8	6	5	4	3	21/2	2	11/2	11/3	1
Basic major diameter			<u>. </u>			1.12	931 p	<u> </u>	!			
(inches)	0. 09411	0. 11293	0. 14116	0. 18822	0. 22586	0. 28233	0. 37644	0. 45172	0. 56465	0. 75287	0. 84698	1. 12931
		·			1.2	291518+	0.484074	S^2				
1/4	1. 41708	1. 48771	1. 64030									
516 36 716 12	1. 36582 1. 34057	1, 40540 1, 36581	1. 48771 1. 41708	1. 54776								
½	1, 32630 1, 31746	1. 34378 1. 33027	1. 37871 1. 35558	1. 46530 1. 41708	1. 56710 1. 48771	1. 64030						
916 56	1, 31161	1. 32139	1.34056	1.38646	1, 43827	1. 54776 1. 48771						
3/4	1. 30458 1. 30238	1. 31083 1. 30753	1. 32291	1.35124 1.34056	1. 38246 1. 36581	1. 44653 1. 41708	1. 61295	1 69691				
	1 29937	1. 30502 1. 30305	1 31009	1 32630	1.34378	1. 37871	1, 46531	1, 56710				
78	831 745	1, 30148 1, 30021 1, 29831 697	1. 30753	1. 32139	1. 33627	1, 36581	1. 43827	1. 48771	1. 64030			
11/4		697	1. 30238	1. 31161	1. 32139	1. 33027	1. 36581	1. 40540	1. 48771			
13/8 11/2 15/8	458 408	525	1, 29864 745	1. 30458 1. 30238	1. 31083 1. 30753	1. 32291 1. 31746	1. 35124	1.38246	1. 44653	1. 61295 1. 54776	1. 64030	
1 ³ / ₄	369 339 314	468 423 387	582 525	1. 29937	1. 30305	1.31009	1.32630	1. 34378	1,37871	1.46530	1. 57403 1. 52499 1. 48771	
2	294	358	478	745	1,30021	1, 30547	1.31746	1.33027	1. 35558	1, 41708	1. 45868	1. 64030
2½	277 263 252	334 314 297	440 408 381	675 616 567	831 758	1. 30378 1. 30238 1. 30121	1. 31425 1. 31161 1. 30940	1, 32139	1, 34056	1. 38646	1, 41708	1. 58870 1. 54776 1. 51473 1. 48771
23/8 21/2 25/8	242	283	358	525	697	1. 30021	1. 30753	1.31525	1. 33027	1. 36581	1. 38927	1. 48771
2 ³ / ₄	233 226 220	270 259 250	339 322 307	489 458 431	599 559	864 800	1, 30458 1, 30341	1. 31083	1. 32291	1. 35124	1.36977	1. 46530 1. 44653 1. 43064 1. 41708
31/8	214 209	242 235	294 283	408 387	525 495	745 697	1. 30238 1. 30148	1. 30753 1. 30619	1. 31746 1. 31525	1. 34056 1. 33627	1. 35558 1. 34989	1. 41708 1. 40540
31/4	205 201	228 223	272 263	369 353	468 444							1. 39529 1. 38647
3½	197 194	218 213	256 248	339 326	423 404	582 552	937 881	1. 30305 1. 30222	1, 31009 1, 30874	1. 32630 1. 32371	1. 33672 1. 33331	1. 37871 1. 37188
37/8	191 189	209 205	242 236	314 303	387 372	525 501	831	1. 30148	1.30753	1.32139	1.33027 1.32755	1.36581
4	187 184	202 199	231 226	294 285	358 346	478 458	745 708	1. 30021 1. 29967	1. 30547 1. 30458	1. 31746 1. 31578	1. 32511 1. 32291	1. 35558
4%	183 181	196 194	222 218	277 270	334 324	440 423	675 644	917 872	1. 30378 1. 30305	1. 31426 1. 31287	1. 32091 1. 31911	1. 34732 1. 34377
4½	179 178	191 189	214 211	264 257	314 305	408 394	616 591	831 793	1. 30238 1. 30177	1.31161 1.31045	1.31746 1.31595	1. 34056 1. 33764 1. 33495
434 476 5	176 175	187 186	208 205	252 247	297 289	381 369	567 545	726	1.30069	1. 30843	1.31331	1. 33251
514	174 172	184 181	202 197	242 233	283 270	358 339	525 489	644	1.29937	1. 30595	1. 31215 1. 31009	1.32630
51/4	170 169	178 176	193 190	226 220	259 250	322 307	458 431	599 559	800	1.30340	1. 30832 1. 30680	1.31999
61/4	167 166	174 172	187 184	214 209	242 235	294 283	408 387	525 495	697	1.30148	1.30431	
6½	165 164	171 169	181 179	205 201	228 223	272 263	369 353	468 444	616	1. 29999	1. 30238	1. 31332
734 732	163 162 162	168 167 166	177 175 174	197 194 191	218 213 209	256 248 242	339 326 314	423 404 387	582 552 525	937 881 831	1, 30157 1, 30086 1, 30021	1. 31009 1. 30874 1. 30753
73/4	161	165	173	189	205	236	303	372	501	786	1, 29963	1. 30644
8 81/4 81/2	160 160 159	164 163 163	171 170 169	187 184 183	202 199 196	231 226 222	294 285 277	358 346 334	478 458 440	708	863	1. 30547 1. 30458 1. 30378
834	159	162 162	168 167	181	194 191	218 214	270 264	324 314	423 408	644	781	1. 30305
9 9 ¹ / ₄ 9 ¹ / ₂ 9 ³ / ₄	159 158 158	162 161 161	167 166 166	179 178 176	191 189 187	214 211 208	254 257 252	305 297	394 381	591 567	712	1. 30238 1. 30177 1. 30121
934	158 1. 29157	160	165	175	186	205	247	289	369	545	654 1, 29629	1. 30121 1. 30069 1. 30021
								1			1	

APPENDIX 3. CONTROL OF ACCURACY OF THREAD ELE-MENTS IN THE PRODUCTION OF THREADED PRODUCT

1. INTRODUCTION

In order to maintain the dimensions of threaded product within the limiting sizes specified, it is essential that the tools used and the processes applied be suitable for the particular requirements. An analysis of the various factors controlling the accuracy of the individual thread elements is here presented. In this analysis, the fundamental factors controlling the accuracy of the elements of a screw thread are stated, and are followed by a brief discussion of the relationship of these factors to each of the prevailing commercial methods of producing screw threads. It is recognized, however, that certain varying factors are involved, such as lubrication, method of holding the work or tool, sharpness of cutting edges, etc., so that it is not always possible to predetermine the exact sizes of the tools required to accomplish the desired results.

Screw threads are usually produced either by cutting or rolling. Five general methods of cutting, two of rolling, and two of finishing screw threads are in

common use.

Screws or external threads are commonly produced by lathe tools, solid or

adjustable dies, adjustable or opening die heads with removable chasers, thread milling cutters, threading hobs, and roller dies.

Of these, the dies, die-head chasers, and hobs are all multiple toothed, cutting in several thread spaces simultaneously, and finishing the operation at one pass. Lathe tools are ordinarily single-pointed and operate in a single thread, which is finished by repeated passes; but multiple-pointed chasers for use as lathe tools are sometimes made.

All rolled threads and many cut threads are produced with dies, chasers, or hobs made with master tools, such as hobs, taps, or milling cutters. These master tools are frequently made with forming cutters or other tools, but the primary tool is always made with a single-point tool. Angle and pitch errors tend to accumulate in a series of master tools and must be carefully considered in the design and use of this single-point tool.

Internal threads or tapped holes are commonly produced by means of taps and sometimes by lathe tools. Much progress has been made in the standardi-

zation of the dimensions and tolerances for cut and ground thread taps.3

2. FUNDAMENTAL FACTORS

The accuracy of the individual elements of a thread is controlled mainly as follows:

Angle by the angle between, and contour of the cutting edges of the tool used for cutting, or of the sides of the grooves of the die used for rolling.

Lead by the rate of the longitudinal motion of the tool with respect to the rate of revolution of the part to be threaded.

Major diameter of external thread by the outside diameter of the stock, or by

the forming tool. Minor diameter of internal thread by the diameter of the hole in the work before threading. In the case of a drilled hole, this depends on the diameter and accuracy of grinding of the tap drill used.

Pitch diameter by the radial setting of the forming surface of the tool.

Thread form by the form and position of the tool, and the conditions under

which it is used.

(a) Control of Tooth Outlines.—Inspection of the angle and profile of the thread-forming tool is essential to control the accuracy of the thread produced. All threading tools, whether for use in a lathe, die head, thread miller, or roller, and whether single or multiple pointed, must produce the proper tooth profile on an axial section of the work. The final test of accuracy in any threading tool is its ability to produce a thread of the proper axial section as defined in the body of this report.

Most cutting tools for standard threads have their cutting edges in the axial plane of the work, so that the shape of those edges tends to reproduce itself on the screw thread. In forming and inspecting the cutting edges of these tools, their forms may be directly compared with standard outlines. This can be done by means of accurately formed templets, carefully applied under the microscope. A more satisfactory and practical way is to draw the desired outline on a chart

³ See Report No. B5e-1930, "Taps: Cut and Ground Threads" of the American Standards Association.

to a magnification of 50 or 15 times, and then project on this chart the image of the cutting tool under inspection magnified to the corresponding degree. By this means the tool shape may be quickly compared with the standard shape to a degree of accuracy much greater than that required for commercial work. Care must be taken to use a lens system free from distortion. Optical projection machines and comparators are available for this work in commercial designs. (See "Thread comparators," p. 151.)

In table 68 are given useful data for drawing the charts for any standard pitch.

Table 68.—Dimensions for determining shape of cutter, chaser, hob, or tap teeth American National coarse, fine, and hose coupling threads

Threads per inch,	Pitch,	}2×p	⅓×p	½4×p	Depth of thread,	⅓×h	⅓×h	R=36×h	}6×h	⅓s×ħ	One half pitch diameter tolerance for class 2 fit, ½×T	h+1/2 imes T
1	2	3	4	5	6	7	8	9	10	11	12	13
72. 64 64 65 66 64 88 64 64 64 65 66 65 66 65 66 65 66 65 66 65 66 65 65	.01389 .01562 .01786 .02083 .02273 .02500 .02778 .03571 .04167 .05506 .06250 .07143 .07692 .08333 .08696 .09091 .10000 .11111 .12500 .13333 .14286 .16667	.00893 .01042 .01136 .01250 .01389 .01562 .01786 .02083 .02500 .02778 .03125 .03571 .03846 .04167 .04348 .04545 .05000 .05556 .06667 .07143 .08333	.00174 .00195 .00223 .00260 .00284 .00347 .00341 .00446 .00521 .00625 .00694 .00781 .00893 .00962 .01042 .01087 .01136 .01250 .01389 .01562 .01667 .01786 .01250	.00058 .00065 .00074 .00087 .00095 .00104 .00116 .00130 .00149 .00208 .00291 .00260 .00298 .00317 .00362 .00379 .00417 .00463 .00521 .00595 .00694	Inch 0.00812 0.00812 0.01015 0.01160 0.01353 0.01476 0.01804 0.02320 0.02706 0.3248 0.3608 0.4059 0.4639 0.4639 0.5448 0.55413 0.5648 0.5905 0.6495 0.7217 0.8119 0.8660 0.9279 1.0825	.00451 .00507 .00580 .00677 .00788 .00812 .00902 .01015 .01160 .01353 .01624 .01804 .02320 .02320 .02498 .02706 .02824 .02952 .03248 .04059 .04330 .04639 .05413	.00301 .003087 .00387 .00451 .00492 .00541 .00601 .00677 .00773 .01983 .01203 .01353 .01546 .01665 .01804 .01883 .01968 .02165 .02165 .02165 .02406 .02887 .03993 .03993	. 00258 . 00301 . 00328 . 00361 . 00401 . 00515 . 00601 . 00722 . 00802 . 00902 . 01031 . 01110 . 01203 . 01243 . 01443 . 01604 . 01804 . 01804 . 01804 . 01925 . 02662 . 02662 . 02406	.00150 .00169 .00193 .00226 .00246 .00271 .00301 .00387 .00451 .00541 .00607 .00773 .00833 .00902 .00941 .00984 .01083 .01203 .01203 .01203 .01353 .01443 .01546 .01804	.00050 .00056 .00064 .00075 .00082 .00090 .00100 .00113 .00129 .00200 .00226 .00258 .00278 .00314 .00314 .00361 .00401 .00401 .00451 .00461	.00090	.01463 .01591 .01744 .01929 .02165
5 4½ 4	. 20000 . 22222 . 25000	. 11111	. 02778	. 00833 . 00926 . 01042	.12990 .14434 .16238	.07217	.04811	. 02887 . 03208 . 03608	. 02165 . 02406 . 02706	.00802	.00580 .00635 .00700	.13570 .15069 .16938

¹ Based on hose-coupling thread tolerances.

(b) CONTROL OF LEAD ERRORS.—The sources of lead errors require special consideration and for this purpose the methods of producing screw threads may be considered under two headings, namely, those in which relative longitudinal motion of the tool and product is controlled by means of a lead screw and those in which the tool is self-leading.

(1) Tool controlled by lead screw.—In cutting a thread on a lathe or other machine embodying a lead screw, using a single point cutting tool or single milling cutter, progressive lead errors are caused by (1) a progressive lead error in the lead screw; (2) lack of parallelism of the motion of the cutting tool, the axis of the lead screw, and the axis of the part to be threaded; and (3) incorrect ratio of the rate of revolution of the spindle to that of the lead screw, due to an incorrect or approximate combination of gears.

Local lead errors are caused by (1) local lead errors in the lead screw; (2) lost motion in the action of the lead screw or connecting mechanism; (3) varying frictional resistance in the mechanism; (4) when a live center is used, irregular play of its spindle in the bearings; and (5) variations in the amount of metal

removed by the cutting tool.

Periodic lead errors are caused by (1) periodic lead errors in the lead screw; (2) eccentricity of motion of the lead screw; (3) thrust bearings of spindle or lead screw running out of true; (4) variations in the spacing of gear teeth, or eccentric gears or mountings; (5) when a live center is used, eccentricity of motion of its spindle; and (6) periodic variations in the amount of metal removed, due to lack of uniformity of the material in diameter, straightness, or physical properties.

When a multiple-toothed threading tool is controlled by a lead screw, variations from correct spacing of the teeth of the tool are superimposed on the lead errors resulting from any of the above causes in that portion of the thread not passed over by every tooth of the tool. In the portion of the thread completely passed over by the tool, the effect of the difference in lead between the tool and

lead screw is to produce a thin thread.

The simplest method of inspecting a machine tool to determine whether it will cut a screw thread within satisfactory limits is to cut carefully a sample screw on the machine and measure the lead errors of the screw. The obvious remedy for errors from such sources is the careful inspection of the various elements of the machine, and correction of the errors thus located, either by improving the design or by carefully refinishing or remaking the parts to a greater

degree of accuracy.

(2) Self-leading threading tool.—When a thread is cut by means of a tap or die, which, as ordinarily used, are self-leading and not controlled by a lead screw, lead errors may occur as the result of (1) incorrect lead of the tap or die; (2) too much or too little relief at the throat of the die or on the chamfer at the end of the tap; (3) the setting of an adjustable die or tap chaser to cut a thread considerably larger or smaller than that for which the tool was intended—that is, to cut a helix angle considerably different from the helix angle of the chaser; (4) excessive resistance to longitudinal motion; (5) improper alinement of the axis of the tap or die with that of the work, etc.; and (6) excessive angle relief.

The control of accuracy of the lead of the tap or of the chasers in the die is the

most difficult of these sources of error, and indeed presents serious difficulties. There is, first, the difficulty of cutting a tap or chaser which is free from lead errors resulting from any of the causes outlined above; and second, the distortion which the steel composing the tap or die undergoes in hardening.

When especially accurate work is required, as in producing threaded product to class 4, close-fit specifications, it is very desirable, and sometimes necessary, that the feed of the tap or die be controlled by means of a lead screw.

In the inspection of such thread-forming tools practically the same means and methods can be applied as in the measurement of screw-thread gages. checking the lead, indicating gages or some of the usual lead-measuring devices for screw-thread gages may be used. To measure the lead of a die chaser, the chaser must be held in a fixture in such a position that the direction of measurement corresponds to the direction of longitudinal motion of the chaser threads when cutting a thread.

3. CUTTING OF SCREW THREADS

(a) Single-Point Tool.—A screw thread may be produced by traversing a single-point threading tool—shaped to correspond to the shape of the thread space in an axial plane, and so placed as to cut an angle, equal to the angle of the top surface of the tool, in correct relation to the axis of the thread—along the revolving part to be threaded at such a rate as to produce a thread of the This is the common method of cutting screws in an engine lathe, a lead screw driven by gearing being the usual means for imparting to the tool the longitudinal motion at the desired rate. This method is used commercially only when special conditions make it necessary, as when the thread to be cut is not standard, or when it is not practicable to apply other methods.

Various forms of single-point cutting tools for cutting threads of American National form are illustrated in figure 47 at A, B, C, and D. The circular tool shown at C has the advantage that it can be reground indefinitely without destroying its correct form. The diagram at D shows the method for calculating the angle X of the cutting tool, having a clearance angle V, in a plane perpendicular to the edge MN; and the formula for determining the clearance angle V, of a tool for cutting a thread of helix angle s, is also given. Such tools usually consist of hardened tool steel, ground to the correct form after hardening; special

alloys such as "stellite" are also used for this purpose.

(b) THREAD CHASER.—A screw thread may be produced by successively traversing a multiple-point thread tool, known as a chaser, along the part to be threaded, each tooth following in the thread in the same manner as a single-point thread tool. Two forms of chasers are shown in figure 47 at E and F, the one at F being especially suitable for cutting fine threads. Chasers are well adapted to roughing out threads, as they cut rapidly, and may be used for finishing threads accurately if the teeth are ground after hardening.

(c) Tap or Die.—A screw thread may be produced by using a tap for internal threads or a die for external threads. These tools occur in considerable variety in their commercial forms, but consist essentially of a number of multiple-point cutters or chasers, usually four, arranged circumferentially. They may be either solid or adjustable, and collapsible or self-opening, respectively, for withdrawing quickly from the work after threading. By their use a thread is generally finished by one pressage of the tool although a second or finishing cut is somefinished by one passage of the tool, although a second or finishing cut is some-

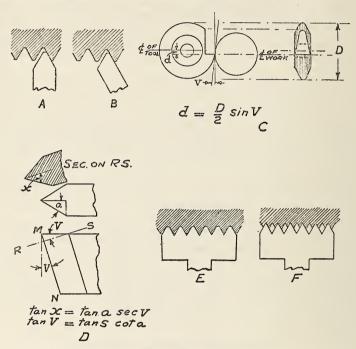


FIGURE 47.—Single point and multiple point thread cutting tools.

times made to secure greater accuracy. Dies 4 are applied, in general, to threading screws, bolts, and studs; and taps to nuts or other internal threads within the usual range of sizes. They are also applied to the threading of pipe and pipe fittings. The rapidity with which threading operations may be performed by the use of taps and dies, within the limits of accuracy suitable for a large percentage of commercial work, makes them most efficient and widely used threading tools. It is only in cutting large sizes or coarse pitches, or where a high degree of accuracy is desired, that their use may be less economical than other means of cutting threads.

Aside from lead errors, which have been previously considered, the accuracy of the thread produced depends on the form of the cutting teeth, character of the cutting edges, clearance or relief for cutting edges, construction of the tool, and

the conditions under which it is used.

(d) MILLING CUTTER.—A screw thread may be produced by feeding in to the depth of the thread and then traversing a rapidly revolving single milling cutter

⁴ Simplified lists of sizes and varieties, for threads of American National form, of die-head chasers for self-opening and adjustable die heads, as adopted at general conferences of representative manufacturers, distributors, and users, are promulgated in United States Department of Commerce Simplified Practice Recommendation R51-29.

along the slower revolving part to be threaded at such a rate as to produce a thread of the desired lead; the profile of the cutting edges of the cutter conforming approximately to the shape of the thread groove in an axial plane, and the axis of the cutter being set at an angle to the axis of the thread, in a plane parallel to the axis of the thread, equal to the mean helix angle of the thread cut. The single-cutter method of thread milling is especially applicable to the cutting of large threads of coarse pitch, multiple threads, and the heavier classes of work. When the amount of metal to be removed is large, as compared with the size of the screw, this method is especially suitable because the torsional strain is much smaller than that produced by a die, and consequently the accuracy of the screw

produced is greater.5 (e) Threading Hob.—A screw thread may be produced by feeding in to the depth of the thread, and then traversing a rapidly revolving multiple milling cutter or thread hob, somewhat longer than the length of the thread to be cut which consists of annular rows of teeth, whose centers lie in planes perpendicular to the axis of the cutter (in effect a series of single cutters formed into one solid piece), and the axis of which is parallel to the axis of the thread—along the slowly revolving part to be threaded slightly more than either one or two complete revolutions of the work, at a rate per revolution of the work equal to the pitch of the thread. The multiple-cutter method of thread milling is used largely for cutting comparatively short threads, usually of fine or medium pitches, when smoothness or a considerable degree of accuracy is desired, or when the thread must maintain a fixed relation with a point or surface on the work.

The error introduced in the form of thread produced by cutter teeth having the

same form as that of the intended form of thread, as the result of the axes of cutter and thread being parallel, is usually not serious except when the helix

angle is large.

4. ROLLING OF SCREW THREADS

The second general process for forming screw threads—namely, that of rolling is a cold-forging process. It may be defined as an impression or displacement method whereby the threads are formed by means of a die or roll having threads or ridges, which are forced into the material to be threaded, and, by displacing it, produce a thread of the required form and pitch. In this process no material is removed, but the metal is displaced from the thread space and forced up on each side above the original surface of the piece to be threaded. Thus, the major diameter of a V-shaped 60° thread so produced is found in practice to be greater than the original diameter of the blank by an amount varying from 65 percent of the single depth of thread for small screws to 85 percent for large screws. approximate formula, based on geometrical considerations only, for the diameter of a blank to be threaded to American National form is as follows:

 $D_1 = \sqrt{D^2 - 1.3Dp + 0.63p^2}$

in which

 $D_1 = diameter of blank$

D = major diameter of thread

p = pitch of thread

In case the thread required must be accurate within close limits, the exact value of D_1 necessary in any given case must be determined experimentally, as its value is affected by the physical properties of the material.

The thread-rolling process is the most rapid and economical method of forming screw threads in quantity production, when the part to be threaded is of such form as to permit its use. It is used only for external threads and is not regarded as being feasible for internal threads, since the area of contact of the roll in an internal thread is relatively much larger than on an external thread, and in order to displace the metal a very heavy pressure is required. It is difficult to support

Machinist, vol. 30, Oct. 31, 1907, p. 630.

⁵ For refinements in connection with the determination of the profile of cutting edge of a thread milling cutter, see The Milling of Screw Threads and Other Problems in the Theory of Screw Threads, by H. H. Jeffcott. Proceedings of the Institution of Mechanical Engineers, 1922-I, pp. 515-528, and discussion pp. 529-562; or Engineering (London), vol. 113, Apr. 7, 1922, pp. 441-442, and discussion pp. 412-414.

⁶ For formulas which may be applied in such cases to determine and plot the exact contour of the cutting edges to produce, as nearly as possible, the thread form required, see Side-Cutting of Thread Milling Hobs, by Earle Buckingham. Transactions of the American Society of Mechanical Engineers, vol. 42, 1920, pp. 569-593; also the reference cited in footnote 5, for thread milling cutter profile.

⁷ This formula is derived in Size of Stock for Bolts Having Rolled Threads, by F. Webster. American Machinist. vol. 30. Oct. 31, 1907. p. 630.

the work with the necessary rigidity to withstand the heavy pressure, and to provide a bearing for the roll which will withstand the stress.

Screw threads may be rolled by either of two methods, as follows:

(a) Threading Roll.—By forcing a cylindrical disk or roll, having a threaded periphery and being free to rotate on the pin or bolt on which it is mounted, against the piece to be threaded while the latter is revolving. The cylindrical roll is used when the work is in an automatic screw machine or turret lathe, and it is impossible to cut the thread required by means of a thread-cutting die, or when an additional operation would be necessary before cutting the thread. The thread on the roll corresponds in pitch, and approximately in form, to the thread to be rolled. The roll may be presented to the work in either a tangential direction as shown at A, figure 48, or radially as shown at B; a satisfactory thread is formed in either case.

(b) Thread-Rolling Dies.—By rolling the blank between dies, which may be either flat or cylindrical in form, when performed by machines designed exclusively for this work. When flat dies are used, as shown in figure 48 at C, one die, M, remains stationary and the other die, N, which is parallel or nearly parallel to M, has a reciprocating movement. The faces of the dies have parallel milled or planed grooves of approximately the same form as that of the required thread

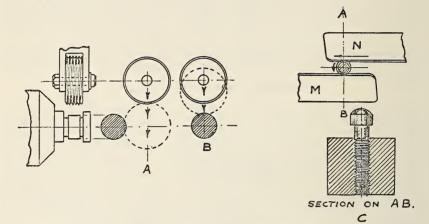


Figure 48.—Methods of rolling screw threads.

which are set at an angle to the line of motion of the blank equal to the helix angle of the thread to be produced. The angles of the grooves and ridges in a plane perpendicular to the direction of the grooves are given by the formula—

Tan $a_1 = \tan a \cos s$

in which

 a_1 =half angle of ridge of die

a = half angle of thread to be rolled

s = helix angle of thread

The spacing of the ridges is determined by the formula—

 $p_1 = p \cos s$

in which

 p_1 =spacing of ridges of die p=pitch of thread to be rolled

s = helix angle of thread

The blank is inserted at one end of the stationary die, and rolls between the die faces until it is ejected at the other, the thread being formed in one passage of the blank. When cylindrical dies are used, one of the dies, which is a complete cylinder, revolves continuously in one direction and the other is a stationary

cylindrical segment. This method is used extensively for threading almost all forms of small and medium sizes of screws and bolts, when required in sufficiently large quantities to warrant the use of a thread-rolling machine.8

5. FINISHING OF SCREW THREADS

On account of the difficulty of producing an accurately finished thread by means of a cutting tool, in ordinary gage-making practice the thread is ground, lapped, or ground and lapped, in order to finish all elements of the thread to correct dimensions. The process of grinding is applied to hardened screws only, and is intended to correct any errors present as the result of distortion in the hardening process, as well as those resulting from the cutting operation. Lapping is usually applied to hardened screw threads, and may be either substituted for grinding, or performed after grinding to remove the marks left by the grinding wheel and to

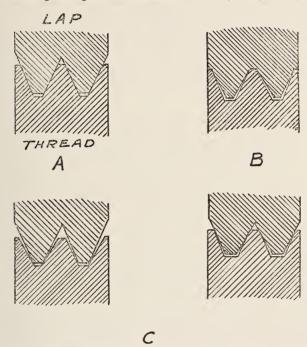


Figure 49.—Thread form of laps for lapping screw threads.

produce a smooth and highly finished surface. These processes are used largely

in the production of screw-thread gages.

in the production of screw-thread gages.

(a) Grinding.—The grinding of a thread is similar to the process of milling a thread by the single-cutter method. The profile of the periphery of the grinding wheel is "dressed" by means of a diamond to conform to the shape of the thread groove in an axial plane, with the axis of the wheel set at an angle to the axis of the thread, in a plane parallel to the axis of the thread, equal to the helix angle. In order to produce a thread having straight sides and correct angle, the periphery of the wheel should be dressed to the required angle after the wheel has been set to the helix angle, in the plane containing the axis of the thread and the center of the wheel. The same considerations as to the exact profile of the priphery of the grinding wheel, to produce a thread of exactly correct form. the periphery of the grinding wheel, to produce a thread of exactly correct form, apply as for the tooth profile of a single milling cutter set at the helix angle of the thread. The principal differences between the thread milling and grinding processes are that a large diameter of grinding wheel is desirable, and several light

⁸ The principles involved in determining the spacing and angle of ridges of flat dies, and position of the dies, are considered in Principles of Thread Rolling and the Setting of Dies, by J. F. Springer, American Machinist, vol. 33, Apr. 21, 1910, pp. 739-741.

cuts are taken, whereas, a small diameter of milling cutter is desirable and a

single cut is taken.

(b) Lapping.—The lapping of a screw thread may be defined as a process of abrasion by successively traversing the thread, as it revolves, with a so-called lap, which consists of an engaging screw thread of softer material, usually finegrained cast iron, brass, or cold-rolled steel, in which very fine abrasive material is embedded in the thread surface. For removing considerable material, the laps are charged with coarser abrasive, and for imparting fine finish, a finer abrasive; in either case the abrasive used is very fine, and the lap is thoroughly lubricated. A number of laps may be necessary to finish either an internal or external thread to the required form and dimensions, as illustrated in figure 49.

6. GAGING PRACTICES AND TYPES OF GAGES

The production of accurate parts is primarily a matter of constant vigilance d of training of workmen. The smaller the tolerances which are to be mainand of training of workmen. tained, the more complete the inspection or gaging system must be. In order to secure satisfactory results, the manufacturing tools provided must be sufficiently accurate, and the manufacturing methods must be sufficiently reliable, to produce the required results. After tools and methods of proved reliability are provided, it is necessary to watch the wear on the tools or changes in their set-up to insure that the required conditions are maintained. This is accomplished by periodical tests of the tools, by periodical gaging of the product, and sometimes

by both.

The most difficult element of a screw thread to gage is the lead. Lead-testing devices for checking tools and gages are available, but, in general, their operation devices for checking tools and gages are available, but, in general, their operation devices for checking tools and gages are available, but, in general, their operation devices for checking tools are available, but, in general, their operations are available, and the second are a is too slow for use as production inspection equipment. In addition, the lead is the most important element of a screw thread as regards the nature of the contact between the surfaces of the mating parts. Furthermore, the result of an error in lead is almost double that of an equal error in diameter as regards interchangeability. For exacting threaded work, if the method of inspection of the product does not effectively detect lead errors, the tools used must be carefully inspected for lead. In order to reduce the possibilities of disagreement to a minimum, the manufacturer should strive to produce parts well within the specified limits rather than close to the limiting sizes.

(a) THREAD MICROMETERS.—Thread micrometers are sometimes used to measure the pitch diameter of taps and screws. Thread micrometers should be calibrated periodically against a master gage, to avoid errors due to wear on the anvils of the instrument. As thread micrometers give no indication of lead and angle errors, the results of tests made with thread micrometers alone cannot be taken as conclusive, and a "go" gage should always be used as a supplementary Thread micrometers are very effective means of checking against the change

in set-up due to wear on tools, etc.

(b) THREAD SNAP GAGES.—Thread snap gages are generally adjustable and have contact points consisting of cone-pointed anvils, wedge-shaped prisms with rounded edges, serrated or grooved plates, or grooved or threaded cylinders adjustably mounted and suitably spaced in a U-shaped frame. These gages are used to some extent in gaging external threads and have the advantages that work may be inspected with great rapidity by the single motion of passing it between the anvils of the gage and given a visual examination for clearance as well as a tactile inspection. The positions of the anvils are set to a setting gage, and the anvils are then clamped in position and sealed. Thread snap gages are to be preferred as "not go" gages.

The cone-pointed snap gage usually has a single point on each side of the frame, and is an effective "not go" gage. It does not, however, fully meet the requirements for a "go" gage, as it does not check the lead, and, therefore, must be supplemented with some type of indicating gage to check the lead when used for checking pitch diameter, angle, and thread form. Also, as it checks only a single diameter at a time, the "go" snap gage must be tried at a series of points to determine whether the maximum diameter of an external thread is within the tolerance. When provided with three contact points, two on one side spaced an integral number of threads apart and one on the other, such a gage checks the lead for progressive, but not always for local or periodic lead errors, and, thus, it more nearly fulfills the requirements for a "go" thread gage. This type or other types of short engagement are suitable for product of classes 4 and 5, provided that an independent inspection of the lead is made.

Thread snap gages having multiple toothed contact points, that is, toothed blades, serrated or grooved plates, or grooved or threaded cylinders, are made in a variety of forms, either as separate or combined "go" and "not go" gages. The fit of a screw in such a gage is affected by variations in pitch diameter, lead, and angle of the screw, and the gage accordingly may be used as a "go" gage for the less accurate classes of work, such as classes 1 and 2, and, if well designed

and accurately made, also for classes 3, 4, and 5.

(c) Thread Ring Gages.—Thread ring gages are extensively used to inspect the threads on screws. These are usually adjustable to suitable setting gages. When the product is to be within specified limits, "go" and "not go" gages are required. The use of such gages gives some information as to lead and

angle errors as well as pitch diameter errors.

(d) THREAD COMPARATORS.—A development in the art of measuring threaded parts is the optical thread comparator, which embodies the principle of gaging in an optical projection system. In addition to giving a rapid indication of whether the elements of the screw thread lie within the limiting dimensions specified, such instruments furnish more detailed information as to the errors in screw threads than is usually obtained by means of mechanical gages, particularly as to irregularities in thread form, lead, and diameter. These instruments

can be adapted to measure taps and other threading tools.

The available forms of projection comparators differ somewhat in design and principle, but each consists primarily of a source of parallel light, such as an electric arc or concentrated filament lamp with condensing lens system, a projection lens system, a screen upon which the magnified shadow image of the work is projected, and a device for holding the work in position in front of the projection lenses. The screen consists of a tolerance chart on which two outlines of the correct thread form at the magnification used are spaced one above the other a distance equal to the tolerance multiplied by the magnification. chart and gage holder are adjusted to position by projecting the shadow image of a setting gage and adjusting to bring the outline of the shadow image and certain lines of the chart into coincidence, after which the system may be used as a gaging device.

The above types of optical thread comparators are applicable to external Two types of optical thread comparators for internal threads have

been developed by the Bureau of Standards, one know as an "optical coincidence thread gage", and the other as a "stereoscopic thread gage." (e) Indicating Gages.—An indicating thread gage has movable contact points, which are set to a setting gage, and is intended to give an exact indication of the variations of the dimensions of a screw thread within the specified limits, rather than to show merely that the thread is within, or outside of, the specified limits, as is the case with limit gages. In such gages the movable contact points actuate a multiplying lever system, or other means for magnifying their motion, and the amount of the motion is registered on a graduated dial or scale. Indicating gages are made according to a variety of designs, some to indicate progressive lead error only, some to indicate pitch diameter only, some to indicate both separately but on the same gage, others to indicate the major and minor diameters as well, and still others to indicate the apparent size. They have been applied almost exclusively to external threads. Those which indicate the apparent size may be considered as most nearly fulfilling the requirements of a gaging system. However, those indicating lead errors are very useful in controlling lead errors in threading tools and screw-thread products. Also certain types can be used to indicate the variation in roundness on pitch or major diameters.

(f) Thread Plug Gages.—At the present time the most practical means of gaging threaded holes or nuts is by the use of thread plug gages. When the product is to be within specified limits, "go" and "not go" gages are required. The use of such gages gives some information as to lead and angle errors as well as pitch diameter errors. A correct "go" plug gage will reject any parts

which fall below the minimum dimensions specified.

One practice of inspecting tapped holes is first to inspect the tap, and then to test the tapped holes periodically with "go" and "not go" gages. The tap can be watched for wear by testing the tapped holes with a "go" thread gage. One widely used practice consists of using a "go" thread plug gage, and a "not "" go" plain plug gage for the minor diameter.

One practice of inspecting taps is to measure the several elements, such as pitch dia meter, angle, and lead. Another practice consists of tapping a hole with

Described in B.S. Jour. Research, vol. 6, pp. 229-237, February 1931,

each tap before it is issued from the tool crib and testing these tapped holes with "go" and "not go" thread plug gages.

Sometimes the tap is tested after it is returned to the tool crib. If it is correct, it is replaced in its proper compartment. If it has worn below the limits, it is

discarded and work produced by it is checked and corrected when necessary.

(g) Plain Gages.—"Go" and "not go" plain cylindrical plug gages are used for inspecting the minor diameter of the tapped hole. Plain ring or snap gages are used for inspecting the major diameter of the screw. When used, it is recommended that the "go" inspection gage be a ring gage and the "not go" inspection gage be a snap gage. The working gages may be combined as a "go" and "not go" snap gage.

(h) Gear-Tooth Califer for Thread Thickness.—A device which is par-

(h) Gear-Tooth Califer for Thread Thickness.—A device which is particularly useful in the measurement of thread thickness of Acme screw threads, or of tools for producing them, is the gear-tooth caliper. With this device the depth at which the measurement is made is controlled by means of a scale and vernier or a micrometer and the thickness is determined by means of another.

(2) Testing of Gages should be tested periodically for wear and to insure that the gages are properly distributed. When successive inspections in the same plant are involved, it is good practice to inspect all gages of the same nominal size against each other periodically, and to distribute these gages so that the earlier inspections are made with those which are the greatest amount inside of the component limits, while the later inspections are made with those gages closest in size to the component limits.

The original testing of a thread gage should include measurements of diameters, lead, and angle. If these elements test satisfactorily, the later inspection

need be only measurements of pitch diameter.10

APPENDIX 4. CLASS 5, WRENCH FIT FOR THREADED STUDS (TENTATIVE SPECIFICATIONS)

The tentative specifications embodied herein for class 5, wrench fit for threaded studs, are based partly upon experimental data obtained in an investigation conducted by the Bureau of Standards and partly upon data obtained from manufacturers relative to existing practice. The specifications are complete only for studs set in hard materials (cast iron, steel, bronze, etc.), and are not complete for studs set in aluminum for which larger interference of metal is permissible. They are presented for the information of those who may have use for them but are in no way mandatory.

1. FORM OF THREAD

The American National form of thread profile, as specified in section III, shall be used. The thread form of the tapped hole is modified, however, by truncating the crest of the thread a greater amount than that specified for threads of strictly American National form. This truncation is such that the minimum depth of thread engagement is one half of the basic thread depth. The maximum depth of engagement is governed by the tolerances specified for the major diameter of the stud and the minor diameter of the tapped hole.

2. THREAD SERIES

The range of sizes from ½ inch to 1½ inches, inclusive, of the American National coarse-thread series and the American National fine-thread series of sizes and pitches as given in section III, are recommended for general use for class 5, wrench fit for threaded studs.

3. CLASSIFICATION AND TOLERANCES

The accompanying specifications are intended for use in the production and assembly of threaded studs and tapped holes on an interchangeable basis.

(a) GENERAL SPECIFICATIONS

The following general specifications apply for all materials to class 5, wrench fit for threaded studs, American National coarse-thread series and American National fine-thread series.

¹⁰ Methods of measuring pitch diameter of screw-thread gages are described in appendix 2, p. 129.

1. Definition.—The wrench fit class is intended to cover the manufacture of threaded studs and holes which are to be assembled permanently by the application of power.

2. MINIMUM TAPPED HOLE.—The pitch diameter of the minimum threaded

hole corresponds to the basic size, the tolerances being applied above the basic

size.

3. Maximum and Minimum Stud Above Basic.—The pitch diameter of both the maximum and minimum studs of a given size and pitch are above the basic dimensions, which are computed from the basic major diameter of the thread.

The maximum major diameter of the stud is basic.

4. Length of Engagement.—A length of engagement equal to one and one half times the basic major diameter for study set in hard materials, and two times the basic major diameter for studs set in soft materials, is the basis of the tolerances and allowances specified herein. The length of engagement of two diameters is especially desirable for studs set in soft materials when subject to alternating stresses or to vibration.

5. MINIMUM INTERFERENCES.—The minimum interferences specified are such that a wrench-tight fit will result in all cases. If the thread surfaces are smooth and thread form is maintained, these interferences will permit disassembly and reassembly of the same stud and hole as many as four times and still produce

a satisfactory wrench-tight fit.

6. Maximum Interferences.—The maximum interferences specified are such that all conditions necessary for a good wrench fit are fulfilled. If threads are well lubricated with a suitable lute no galling or seizing of the threads will result. Also, mild-steel studs, even of the smaller sizes, will not break if the rate of as-

sembly is not excessive.

When a mixture of white lead and oil is used as a lute it is important that it be of a thick fluid consistency in order to prevent galling or seizing, particularly when fine threads in hard materials are concerned, and that it be applied liberally. If a lute consisting of 40 percent zinc dust, which has passed through a 200-mesh sieve, and 60 percent petrolatum is used, the tendency for the threads to gall or seize with maximum interference is materially reduced.

7. Tolerances.—(a) The tolerances specified represent the extreme variations

permitted on the product.

(b) The tolerance on the tapped hole is plus, and is applied from the basic size to above basic size.

(c) The tolerance on the screw is minus, and is applied from the maximum screw size to below the maximum screw size.

(d) The pitch diameter tolerances for the tapped hole are the same as for the class 4, close-fit nut, except on the 4-inch size, as noted in table 69. These tolerances necessitate the use of ground-thread taps.

(e) The pitch diameter tolerances for the stud are as given in tables 69 and 70. They are the maximum variations permissible for each individual size of stud, as

determined by the maximum and minimum interferences.

(f) Pitch diameter tolerances include angle variations but do not include lead variations.

(g) The tolerances on the major diameters of class 5, wrench-fit study are the same as for class 2, free-fit finished screws.

(h) The minimum minor diameter of a stud of a given pitch is such as to result in a basic flat $(\frac{1}{8} \times p)$ at the root. It is equal to the measured pitch diameter of

the stud minus the basic thread depth.

(i) The maximum minor diameter of a screw of a given pitch may be such as results from the use of a worn or rounded threading tool, when the pitch diameter is at its maximum value. In no case, however, should the form of the thread, as results from tool wear, be such as to cause the screw to be rejected on the maximum minor diameter by a "go" ring gage, the minor diameter of which is equal to the minimum minor diameter of the class 2 nut.

(j) The maximum major diameter of the tapped hole of a given pitch is such as to result in a flat equal to one third of the basic flat $(\frac{1}{24} \times p)$. When the minimum hole is basic, its maximum major diameter will be above the basic major diameter by the amount of the specified pitch diameter tolerance plus

two ninths of the basic thread depth.

(k) The minimum major diameter of a tapped hole is the basic major diameter. In no case, however, should the minimum major diameter of the hole, as results from a worn tap or cutting tool, be such as to cause it to be rejected on the minimum major diameter by a "go" plug gage made to the standard form at the crest. (1) The tolerance on the minor diameter of a tapped hole of a given pitch is

one sixth of the basic thread depth.

8. ILLUSTRATION.—The relations of the maximum and minimum major, pitch, and minor diameters of stud and tapped hole specified herein are shown in figures 50, 51, and 52.

(b) CLASSIFICATION

1. Allowance and Tolerance Values.—Allowances and tolerances are specified in tables 69 and 70, inclusive, for coarse-threaded and fine-threaded

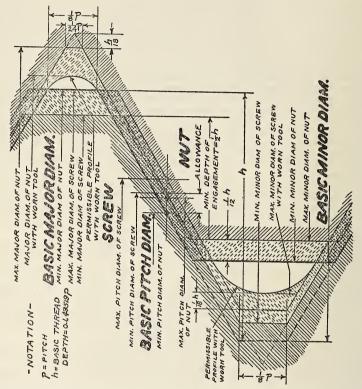


Figure 50.—Illustration of tolerances, allowance, and crest clearances for class 5, wrench fit for threaded studs.

studs set in hard materials—namely, cast iron, steel, and bronze. These are based upon data obtained in an experimental investigation and fulfill the conditions outlined in the above specifications.

4. TABLES OF DIMENSIONS

Tables 71 and 72 give recommended thread dimensions of studs and tapped holes which meet the above specifications for coarse-threaded and fine-threaded studs set in hard materials. Also the limiting values of the torques at full engagement (lever-arm times force) which may be expected in the assembly of studs and tapped holes made to these dimensions are given.

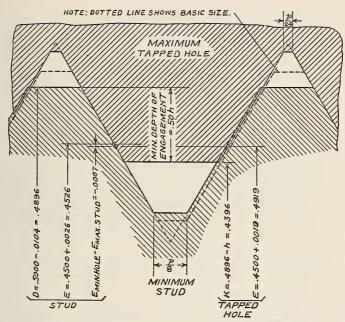


Figure 51.—Illustration of loosest condition for class 5, wrench fit for threaded studs, one-half inch, 13 threads, set in hard materials.

NOTATION

 $\begin{array}{l} D = \text{major diameter.} \\ E = \text{pitch diameter.} \\ K = \text{minor diameter.} \\ h = 0.0500 = \text{basic thread depth.} \end{array}$

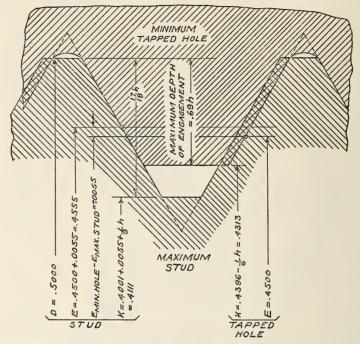


Figure 52.—Illustration of tightest condition for class 5, wrench fit for threaded studs, one-half inch, 13 threads, set in hard materials.

NOTATION

D=major diameter. E=pitch diameter. K=minor diameter. h=0.0500=basic thread depth.

Table 69.—Class 5, wrench fit for threaded studs, allowances and tolerances for studs and tapped holes, coarse threaded studs in hard materials

Sizes	Threads per inch	Interfer pitch d		Pitch d tolera		Errors in half angle consuming one half of pitch di- ameter tolerances				
		Mini- mum	Maxi- mum	Stud	Tapped hole ²	Stud	Tapped hole			
1	2	3	4	5	6	7	8			
14. 516. 38. 716.	20 18 16 14 13	Inch 0.0003 .0005 .0005 .0006 .0007	Inch 0.0018 .0040 .0045 .0050 .0055	Inch 0.0007 .0020 .0024 .0026 .0029	Inch 0.0008 .0015 .0016 .0018 .0019	Deg. Min. 0 16 0 41 0 44 0 42 0 44	Deg. Min. 0 25 0 31 0 29 0 29 0 28			
9/16	12 11 10 9	. 0008 . 0008 . 0009 . 0010	. 0060 . 0060 . 0065 . 0065	.0032 .0031 .0033 .0031	.0020 .0021 .0023 .0024	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 28 0 26 0 26 0 25			
1. 11/6. 11/4. 13/6.	8 7 7 6 6	.0011 .0011 .0012 .0012 .0013	. 0065 . 0065 . 0065 . 0065 . 0070	. 0027 . 0024 . 0023 . 0017 . 0021	.0027 .0030 .0030 .0036 .0036	0 25 0 19 0 18 0 12 0 14	0 25 0 24 0 24 0 25 0 25			

¹ Inasmuch as a moderate difference in lead between stud and tapped hole (about 0.005 inch per inch) has been shown to improve the quality of a stud fit having minimum pitch diameter interference, no lead tolerance is specified. Therefore, the tolerances specified for pitch diameter include all errors of pitch diameter and angle but not of lead. (See "5. Gages and gaging" herein.) Excessive lead errors, however, should be avoided, as they increase the tendency of the stud to loosen when subjected to load. Columns 7 and 8 give, for information, the errors in angle which can be compensated for by half the tolerances on pitch diameter given in columns 5 and 6.
² The tolerances on the tapped hole given in column 6 are the same as those specified for class 4, close-fit screws and nuts, with the exception of the ¼-inch size.

Table 70.—Class 5, wrench fit for threaded studs, allowances and tolerances for studs and tapped holes, fine-threaded studs in hard materials

Sizes	Threads per inch	Interfer pitch d		Pitch d tolera	iameter nces ¹	Errors in half angle consuming one half of pitch di- ameter tolerances		
		Mini- mum			Stud Tapped hole 2		Tapped hole	
1	2	3	4	5	5 6		8	
74 516 36 36 716 716 716 716 916 98 34 78 114 114 114 1134 1135	28 24 24 20 20 20 18 18 16 14 12 12 12	Inch 0.0005 .0005 .0006 .0006 .0006 .0007 .0007 .0008 .0008 .0008 .0008 .0009 .0001 .0011 .0012	Inch 0.0034 0.0037 0044 0050 0050 0055 0069 0061 0069 0067 0060 0055 0050	Inch 0.0018 .0020 .0026 .0025 .0030 .0028 .0035 .0035 .0042 .0038 .0029 .0024 .0018	Inch 0.0011 .0012 .0012 .0013 .0013 .0015 .0016 .0018 .0018 .0020 .0020 .0020	Deg. Min 0 58 0 55 1 11 0 57 1 9 0 58 1 6 1 4 0 56 1 7 0 52 0 40 0 33 0 25	Deg. Min. 0 35 33 0 33 0 33 0 30 0 31 0 31 0 29 0 29 0 29 0 28 0 28 0 28 0 28	

¹Inasmuch as a moderate difference in lead between stud and tapped hole (about 0.005 inch per inch) has been shown to improve the quality of a stud fit having minimum pitch diameter interference, no lead tolerance is specified. Therefore, the tolerances specified for pitch diameter include all errors of pitch diameter and angle but not of lead. (See "5. Gages and gaging" herein.) Excessive lead errors, however, should be avoided, as they increase the tendency of the stud to loosen when subjected to load. Columns 7 and 8 give, for information, the errors in angle which can be compensated for by half the tolerances on pitch diameter given in columns 5 and 6.
¹The tolerances on the tapped hole given in column 6 are the same as those specified for class 4, close-fit screws and nuts.

screws and nuts.

Table 71.—Class 5, wrench fit, American National coarse-thread series, steel studs set in hard materials (cast iron, semisteel, bronze, etc.)

ate torone	ngagement	Mini- mum	16	Inlbs. 35 80 120 120 180 265	360 450 730 1,080	1, 500 1, 875 2, 535 2, 970 3, 900
Approxim	at full engagement of 1½D	Maxi- mum	15	Inlbs. 105 265 420 610 850	1, 170 1, 450 2, 300 3, 200	4,250 5,300 6,950 8,150 10,400
	recommended cap drill size	Diam- eter	14	Inches 0. 2090 . 2660 . 3230 . 3770 . 4375	. 4921 . 5469 . 6719 . 7812	. 8906 1. 0000 1. 1250 1. 2344 1. 3594
ć	recomme drill	Nominal size	13	No. 4 H P V V 7/8	12.5 mm 3564 4364 2552	5764 1 178 11564 12364
	Major diameter	Mini- mum ²	12	Inches 0.2500 .3125 .3750 .4375 .5000	. 5625 . 6250 . 7500 . 8750	1,0000 1,1250 1,2500 1,3750 1,5000
izes	iameter	Maxi- mum	11	Inches 0.2183 .2779 .3360 .3929 .4519	. 5104 . 5681 . 6873 . 8052	. 9215 1. 0352 1. 1602 1. 2703 1. 3953
Tapped-hole sizes	Pitch diameter	Mini- mum	10	Inches 0. 2175 2764 3344 3911 4500	. 5084 . 5660 . 6850 . 8028	. 9188 1. 0322 1. 1572 1. 2667 1. 3917
Taj	iameter	Maxi- mum	6	Inches 0. 2103 . 2682 . 3254 . 3813 . 4396	. 4972 . 5542 . 6722 . 7888	. 9036 1. 0152 1. 1402 1. 2466 1. 3716
	Minor diameter	Mini- mum	80	Inches 0. 2049 2622 3186 3736 4313	. 4882 . 5444 . 6614 . 7768	. 8901 . 9998 1. 1248 1. 2286 1. 3536
	Minor	Maxi- mum ¹	7	Inches 0.1904 .2483 .3028 .3549	. 4663 . 5195 . 6338 . 7452	. 8531 . 9562 1. 0812 1. 1770 1. 3025
	iameter	Mini- mum	9	Inches 0. 2186 2784 3365 3935 4526	. 5112 . 5689 . 6882 . 8062	. 9226 1. 0363 1. 1614 1. 2715 1. 3966
Stud sizes	Pitch diameter	Maxi- mum	70	Inches 0. 2193 . 2804 . 3389 . 3961	. 5144 . 5720 . 6915 . 8093	. 9253 1. 0387 1. 1637 1. 2732 1. 3987
	iameter	Mini- mum	4	Inches 0, 2428 3043 3660 4277 4896	. 5513 . 6132 . 7372 . 8610	. 9848 1. 1080 1. 2330 1. 3548 1. 4798
	Major diameter	Maxi- mum	ဇ	Inches 0.2500 .3125 .3750 .4375	. 5625 . 6250 . 7500 . 8750	1, 0000 1, 1250 1, 2500 1, 3750 1, 5000
	Threads per inch		23	20 18 114 134	112 10 9	86778
Sizes			1	2 9 2 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.86	11/4 11/4 11/2 11/2

The minimum 1 Dimensions given for the maximum minor diameter of the screw are figured to the intersection of the worn tool are with a center line through crest and root. The minimum minor diameter of the screw shall be that corresponding to a flat at the minor diameter of the screw equal to $58 \times p$, and may be determined by subtracting the basic thread depth, (or 0.6495p) from the minimum pitch diameter of the screw.

¹ Dimensions for the minimum major diameter of the tapped hole correspond to the basic flat (½×p), and the profile at the major diameter produced by a worn tool must not fall below the basic outline. The maximum major diameter of the tapped hole shall be that corresponding to a flat at the major diameter of the tapped hole shall be that corresponding to a flat at the major diameter of the analysis of the maximum pitch diameter of the nut.
[§] Selective assembly in the case of the ½-inch size may be required on account of the small tolerances necessary on pitch diameter. To avoid breaking a mild steel stud, the maximum interference on pitch diameter of 0.0018 inch must not be exceeded.

Table 72.—Class 5, wrench fit, American National fine-thread series, steel studs set in hard materials (cast iron, semisteel, bronze, etc.)

To torono	gagement	Mini- mum	16	Inlbs. 45 70 125 170 260	330 460 685 945	1, 410 1, 750 2, 530 3, 225 4, 215
Annrovim	at full engagement of 1½D	Maxi- mum	15	Inlbs. 140 230 410 540 810	1,040 1,430 2,200 3,070	4, 590 5, 620 6, 960 8, 440 10, 070
	Recommended tap drill size	Diam- eter	14	Inches 0. 2188 2770 3390 3970 4576	. 5156 . 5781 . 6970 . 8125	. 9375 1. 0552 1. 1811 1. 3052 1. 4302
	Recomme drill	Nominal size	13	782 J X	3364 3764 1376	15/16 30.0 mm
	Major diameter	Mini- mum 2	12	Inches 0. 2500 . 3125 . 3750 . 4375	. 5625 . 6250 . 7500 . 8750	1, 0000 1, 1250 1, 2500 1, 3750 1, 5000
izes	Pitch diameter	Maxi- mum	11	Inches 0. 2279 . 2866 . 3491 . 4063	. 5279 . 5904 . 7110 . 8304	. 9554 1. 0729 1. 1979 1. 3229 1. 4479
Tapped-hole sizes	Pitch d	Mini- mum	10	Inches 0. 2268 2854 3479 4050 4675	. 5254 . 5889 . 7094 . 8286	. 9536 1. 0709 1. 1959 1. 3209 1. 4459
Tag	iameter	Maxi- mum	6	Inches 0, 2206 . 2788 . 3413 . 3978	. 5182 . 5807 . 7004 . 8188	. 9438 1. 0597 1. 1847 1. 3097 1. 4347
	Minor diameter	Mini- mum	80	Inches 0, 2167 2743 3368 3924 4549	. 5122 . 5747 . 6936 . 8111	. 9361 1. 0507 1. 1757 1. 3007 1. 4257
	Minor	Maxi- mum ¹	7	Inches 0, 2096 . 2650 . 3282 . 3805	. 4993 . 5623 . 6792 . 7935	. 9193 1. 0295 1. 1538 1. 2782 1. 4028
	ameter	Mini- mum	9	Inches 0. 2284 . 2871 . 3497 . 4069	. 5286 . 5912 . 7118	. 9563 1. 0738 1. 1990 1. 3240 1. 4491
Stud sizes	Pitch diameter	Maxi- mum	10	Inches 0. 2302 . 2891 . 3523 . 4094	. 5314 . 5944 . 7153 . 8347	. 9605 1. 0776 1. 2019 1. 3264 1. 4509
	iameter	Mini- mum	4	Inches 0. 2438 . 3059 . 3684 . 4303 . 4928	. 5543 . 6168 . 7410 . 8652	. 9902 1. 1138 1. 2388 1. 3638 1. 4888
	Major diameter	Maxi- mum	က	Inches 0. 2500 . 3125 . 3750 . 4375	. 5625 . 6250 . 7500 . 8750	1. 0000 1. 1250 1. 2500 1. 3750 1. 5000
	Threads per inch		63	22 54 4 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3	18 18 16 14	4 C C C C C C C C C C C C C C C C C C C
	Sizes		-	7282X	910 58 34 78	1.78 1.74 1.75 1.75 1.75

1 Dimensions given for the maximum minor diameter of the screw are figured to the intersection of the worn tool are with a center line through crest and root. The minimum minor diameter of the serew stew step state of the screw equal to \$8 \times p\$, and may be determined by subtracting the basic thread depth, \$\epsilon\$, (or 0.6359) from the minimum pirch chambeer of the screw.

² Diménsions for the minimum major diameter of the tapped hole correspond to the basic flat $(\frac{1}{8} \times p)$, and the profile at the major diameter produced by a worn tool must not fall below the basic outline. The maximum major diameter of the tapped hole shall be that corresponding to a flat at the major diameter of the equal to $\frac{1}{2}$ and may be determined by adding $\frac{1}{2}$ (or 0.7939p) to the maximum pitch diameter of the nut.

5. GAGES AND GAGING

The fundamentals of this subject, as it relates to screw threads, are laid down in section III. The relatively close limits on pitch diameter specified for class 5, wrench fit for threaded studs, necessitate careful and accurate gaging of both the stud and tapped hole, particularly since the actual measurements

obtained depend somewhat upon the methods of gaging used.

Considering first the case of minimum interference: The minimum stud and maximum hole are selected by means of "not go" gages. With the usual or recommended forms of "not go" gages, the presence of lead errors does not affect the gaging. It has been shown by the experimental data obtained that this is a desirable condition, as the presence of a slight difference in lead between stud and hely is an adventage equality with minimum pitch disparanteen the students. and hole is an advantage, especially with minimum pitch diameter interference. It is important, however, as with the other classes of fit, that the "not go" gage should check the pitch diameter only, for upon this the minimum tightness of a stud fit depends, assuming that the correct thread form and smoothness of thread surface are maintained.

In the case of maximum interference the maximum stud and minimum hole are selected by means of "go" gages, and these may or may not be the usual types of threaded plugs and rings. Plug and ring gages control pitch diameter, lead, thread angle, maximum minor diameter of stud, and minimum major diameter of hole. The minimum minor diameter of the hole being considerably above basic, it is not controlled by the "go" threaded plug gage, and as it has been shown that a certain minimum clearance at minor diameter must be maintained, it is very important that the hole should be gaged further by means of a "go" plain plug gage. Gaging the tapped hole by means of a "not go" plain

plug gage is also desirable, but not strictly necessary.

Gaging of the major diameter of the stud thread is not essential; this element may be controlled by the size of stock. Some means of controlling the minimum minor diameter of the stud is, however, very desirable, particularly on studs of the smaller sizes, because the shearing strength of the stud depends upon this element. For this purpose the projection comparator is very useful, but inspection of the cutting tool to assure a width of flat at the root of the thread not less than $\frac{1}{8} \times p$ is sufficient.

The use of thread micrometers or "go" thread snap gages of short engagement for checking the pitch diameter of the stud is good practice provided that the thread form is ascertained by optical inspection. Gaging for lead errors is not essential provided that the lead of the threading tools is maintained within the

usual limits of good commercial practice.

If the tap (ground thread tap) is a close fit in the hole after tapping—that is, if the tap cannot be screwed easily (without the use of a wrench) through the hole after tapping—it may be assumed that the pitch diameter of the hole is very nearly the same as that of the tap.

APPENDIX 5. COMMON PRACTICE AS TO THREAD SERIES AND CLASS OF FIT FOR SCREWS, BOLTS, AND NUTS

The usual commercial practice as to application of thread series and class of fit to screws, bolts, and nuts is indicated in table 73.

Table 73.—Common practice as to thread series and class of fit for screws, bolts, and nuts

Product	Thread series	Class of fit
1	2	3
Rough machine bolts. Semifinished machine bolts: General applications. Automotive vehicles. Finished machine bolts: General applications. Automotive vehicles. Aircraft.	Fine Coarse Fine	Class 1, loose fit. Class 2, free fit. Class 3, medium fit. Do. Do. Do. Do.
Machine screws Machine-screw nuts: Numbered sizes Fractional sizes Cap screws. Stove bolts.	do	Class 2, free fit. Class 1, loose fit. Class 2, free fit. Do. Class 1, loose fit.
Carriage bolts. Step bolts. Button-head machine bolts. Set screws. Threaded studs: Nut end Stud end. Tap bolts. Tap rivets.	do	Class 2, free fit. Do. Do. Class 3, medium fit. Class 2, free fit. Class 3, medium fit. Class 5, wrench fit. Class 2, free fit. Class 3, medium fit.

APPENDIX 6. AMERICAN NATIONAL ACME SCREW THREADS (TENTATIVE SPECIFICATIONS)

1. GENERAL AND HISTORICAL

When formulated, prior to 1895, Acme screw threads were intended to replace square threads and a variety of threads of other forms used chiefly for the purpose of producing traversing motions on machines, tools, etc. Acme screw threads are now extensively used for a variety of purposes. For ordinary use, where lateral looseness is not objectionable, clearances between the screw and nut are provided at the major and minor diameters and on the sides of the thread. These allow free movement of the screw in the nut without appreciable longitudinal looseness or end play. This quality of fit is provided for herein.

2. TERMINOLOGY

The terms and symbols relating to screw threads, which are used herein and not otherwise defined, are defined in section II.

3. AMERICAN NATIONAL ACME FORM OF THREAD

(a) SPECIFICATIONS

1. Angle of Thread.—The angle between the sides of the thread measured in an axial plane shall be 29°. The line bisecting this 29° angle shall be perpendicular to the axis of the screw thread.

2. Depth of Thread.—The basic depth of the thread shall be equal to one

half of the pitch.

3. THICKNESS OF THREAD.—The basic thickness of the thread at a diameter smaller by one half the pitch than the basic major diameter shall be equal to one half of the pitch.¹¹

¹¹ The diameter at which the thickness of thread is measured corresponds to the basic pitch diameter of 60° screw threads used for bolts, nuts, etc. On threads whose included angle is equal to 45° or more, the thickness of the thread is controlled and measured by the pitch diameter. On threads whose included angle is less than 45°, the thickness of the thread should be controlled directly. See p. 138.

4. CLEARANCE AT MINOR DIAMETER.—A clearance shall be provided at the minor diameter by making the minor diameter of the screw 0.010 inch smaller than basic for 10 or less threads per inch and 0.005 inch smaller than basic for

more than 10 threads per inch.

5. CLEARANCE AT MAJOR DIAMETER.—A clearance shall be provided at the major diameter for all classes by making the major diameter of the nut or threaded hole at least 0.020 inch larger than basic.

6. FILLETS AT MINOR DIAMETER.—Fillets at the juncture of sides and root of the thread of the screw will develop on account of the rounding of the corners of the threading tool and the side cutting action of milling cutters when these threads are milled. It will be necessary, therefore, on tapped holes for all classes of fits, to provide a fillet or bevel at the minor diameter of the tap to remove the corner of the crest of the thread of the tapped hole. This fillet, or bevel, should be at least 0.010 inch for pitches of 3 threads per inch and finer, and at least 0.020 inch for pitches coarser than 3 threads per inch.

(b) ILLUSTRATION

The basic form of this thread is shown in figure 53.

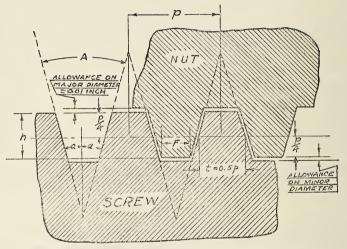


Figure 53.—American National Acme form of thread.

NOTATION

A=29° 00′ a=14° 30′ p=pitch

n=number of threads per inch

N=number of turns per inch h=0.5p, basic depth of thread t=thickness of thread

F=0.37069p=basic width of flat

4. THREAD SERIES

For general purposes there has been selected a series of diameters and pitches of Acme threads, listed in table 74, which are designated as standard. When it is not feasible to use one of these sizes, it is recommended that, as far as practicable, some one of the pitches shown in table 75 be used; also, that the diameter be within the range specified for each pitch. If a greater lead is required on a given diameter than that corresponding to the recommended maximum pitch, it is advisable to use a multiple thread of finer pitch rather than a single thread of coarser pitch.

Table 74.—American National Acme general purpose thread series

Identif	ication	Bas	ic diame	ters	Thread data						
Sizes	Threads per inch	Major diam- eter, D	Pitch diam- eter, E	Minor diam- eter, K	Pitch,	Thread thickness at pitch line	Basic depth of thread, $h=0.5 p$	Depth of thread with clearance	Basic width of flat, $F=0.37069p$	Heli angl at ba pitc diame	le sic h
1	2	3	4	5	6	7	8	9	10	11	
14	16 14 12 12 12 10 8 8 8 8 5 5 5 5 4 4 4 4 4 2 2 2 2 2 2	Inches 0. 2500 3.125 3.3750 4.375 5.000 6.250 7.500 8.750 1. 0000 1. 1250 1. 3750 1. 5000 2. 5000 2. 5000 3. 0000 4. 0000 5. 0000	Inches 0. 2187 2.768 3.333 3.958 4.500 5.625 6.875 8.125 9.000 1. 0250 1. 1500 1. 2750 1. 3750 1. 8750 2. 2500 2. 7500 3. 7500 4. 7500	Inches 0. 1875 2411 2816 3541 4000 6250 7500 8000 9250 1. 0500 1. 1750 1. 2500 1. 7500 2. 0000 2. 20000 2. 5000 3. 5000 4. 5000	Inch 0. 06250 0.07143 0.08333 0.08333 1.0000 1.2500 1.12500 1.2500 2.20000 2.20000 2.20000 2.20000 2.25000 2.55000 2.50000 5.50000 5.50000	Inch 0.03125 0.03571 0.4167 0.4167 0.5000 0.6250 0.6250 0.6250 1.0000 1.0000 1.0000 1.2500 1.2500 2.25000 2.25000 2.25000	Inch 0. 03125 0.03157 0.04167 0.41167 0.41167 0.41167 0.4100 0.6250 0.6250 0.6250 1.0000 1.0000 1.0000 1.2500 1.2500 1.2500 2.5000 2.5000 2.5000 2.5000	Inch 0.3625 0.4071 0.4667 0.46	Inch 0.0232 2625 0309 0309 0309 0371 0463 0463 0741 0741 0741 0741 07927 0927 1853 1853 1853	Deg. N. 5 4 4 4 3 2 4 3 3 2 2 4 4 3 2 2 1	7 12 42 33 50 3 19 48 3 3 31 10 52 19 48 26 3 19 26 55

Table 75.—Recommended pitches, corresponding range of major diameters, and basic thread data, American National Acme threads

Number of threads per inch, n	Least 2 Taches 4, 5000	ded range of ameters ¹ Greatest 3 Inches 13,5000	Pitch, p	of thread, h=0.5p 5 Inch	Basic width of flat, F=0.37069p 6 Inch
1	2 Inches 4, 5000	3 Inches	Inch	5 Inch	6
1	nches 4. 5000	Inches	Inch	Inch	
1	4.5000				Inch
11½ 2- 2½ 3- 4- 5- 6- 8- 10- 12- 14	3. 5000 3. 0000 2. 2500 1. 7500 1. 5000 1. 1250 . 8750 . 7500 . 5625 . 4375 . 3750 . 3125	10. 5000 9. 0000 6. 7500 5. 2500 4. 5000 3. 3750 2. 6250 2. 2500 1. 6875 1. 3125 1. 1250 9375	1.00000 7.5000 66667 50000 40000 33333 25000 20000 16667 12500 10000 08333 07143	0. 5000 3750 3333 . 2500 . 2000 . 1667 . 1250 . 1000 . 0833 . 0625 . 0500 . 0417 . 0357	0. 3707 2780 2471 1853 1483 1236 0927 0741 0618 0463 0371 0309 0265

¹ These recommended least diameters correspond to a maximum helix angle (at the minor diameter) of approximately 5°. The recommended greatest diameters are 3 times the least.

5. CLASSIFICATION AND TOLERANCES

There is established herein for general use a single class of fit of American National Acme screw threads.

(a) GENERAL SPECIFICATIONS

The following general specifications apply to all standard Acme screw threads: 1. Basic Diameters.—The maximum major and pitch diameters of the screw, and the minimum minor diameter of the nut are basic.

2. Tolerances.—(a) The tolerances specified represent the extreme varia-

tions allowed on the product.

(b) The tolerances on diameters of the nuts or threaded holes are plus, and are

applied from the minimum nut sizes to above the minimum nut sizes.

(c) The tolerances on diameters of the screws are minus, and are applied from the maximum screw sizes to below the maximum screw sizes.

(d) The tolerances on the thicknesses of threads are minus, and are applied from the maximum thread thickness to below the maximum thread thickness.

(e) The thread thickness tolerances for a screw and nut of the same diameter

and pitch are equal.

 The thread thickness tolerances include lead and angle errors.
 The tolerances on the major diameters of the screws and minor diameters of the nuts are based upon the pitch of the thread.

(h) The minimum major diameter of the nut is at least 0.020 inch larger than

the basic major diameter.

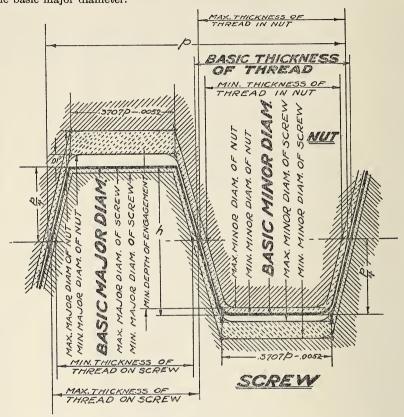


FIGURE 54.—Illustration of allowances, tolerances, and crest clearances, Acme threads.

NOTATION

p = pitch. h = basic thread depth.Heavy line shows basic size.

(i) The maximum major diameter of the nut of a given pitch is such as to result in a flat equal to 0.3707p - 0.0052 inch when the pitch diameter of the nut

is at its maximum value.

(j) The maximum minor diameter of a screw of a given pitch is such as to result in a flat at the root equal to 0.3707p-0.0052 inch when the pitch diameter of the screw is at its maximum value.12

(b) LIMITING DIMENSIONS AND TOLERANCES

Limiting dimensions for standard Acme threads are given in table 76. application of these limits is illustrated in figures 54, 55, and 56.

¹² When the width of flat of the cutting tool is at this maximum value the entire thread thickness or pitch diameter tolerance cannot be used without falling below the minimum limit on minor diameter of the screw.

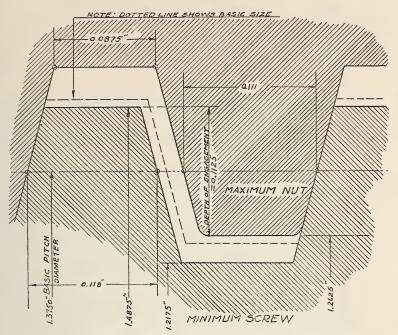


Figure 55.—Illustration of loosest condition for 1½-inch 4 Acme threads.

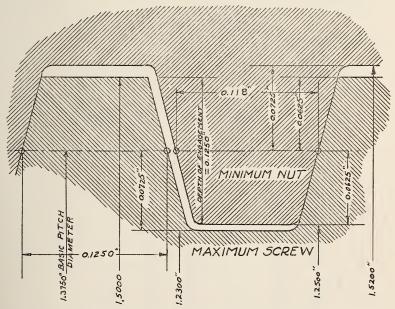


Figure 56.—Illustration of tightest condition for 1½-inch 4 Acme threads.

Table 76.—American National Acme general purpose thread series, limiting dimensions and tolerances

		Major	dlameter, mini- mum	15	Inches 0. 2600 3225 3826 3850 4475	. 6450 . 7700 . 8950 1. 0200 1. 1450	1. 2700 1. 3950 1. 5200 1. 7700 2. 0200	2. 5200 3. 0200 4. 0200 5. 0200
		Tolerance	thickness of threads	14	$Inch \ 0.002 \ 0.002 \ 0.003 \ 0.003 \ 0.003$.004 .004 .005 .005	. 006 . 006 . 007 . 007	
Nut sizes		Pitch diameter	Maxi- mum	13	Inches 0.2347 .2928 .3573 .4198	. 5945 . 7195 . 8445 . 9400 1. 0650	1. 1980 1. 3230 1. 4310 1. 6810 1. 9390	2. 3380 2. 8380 3. 8380 4. 8380
Nut		Pitch d	Mini- mum	12	Inches 0. 2267 . 2847 . 3453 . 4078	. 5785 . 7035 . 8285 . 9200 1. 0450	1. 1740 1. 2990 1. 4030 1. 6530 1. 9070	2. 2940 2. 7940 3. 7940 4. 7940
		iameter	Maxi- mum	11	Inches 0.1906 2447 2858 3583 4050	. 5063 . 6313 . 7563 . 8100 . 9350	1. 0600 1. 1850 1. 2625 1. 5125 1. 7625	2. 0200 2. 5200 3. 5200 4. 5200
		Minor diameter	Mini- mum (basic)	10	Inches 0.1875 .2411 .2816 .3541	. 5000 . 6250 . 7500 . 8000 . 9250	1. 0500 1. 1750 1. 2500 1. 5000 1. 7500	2. 5000 2. 5000 4. 5000 4. 5000
		iameter	Mini- mum	6	Inches 0. 1744 2.2275 2774 3399 3750	. 4737 . 5987 . 7237 . 7700 . 8950	1. 0200 1. 1450 1. 2175 1. 4675 1. 7175	1.9600 2.4600 3.4600 4.4600
		Minor diameter	Maxi- mum	∞	Inches 0.1775 .2311 .2816 .3441	. 4800 . 6050 . 7300 . 7800 . 9050	1. 0300 1. 1550 1. 2300 1. 4800 1. 7300	1. 9800 2. 4800 3. 4800 4. 4800
82	,	Tolerance	on thickness of threads	7	Inch 0.002 .002 .003 .003		.000 .000 .000 .000 .000	
Serew sizes		ameter	Mini- mum	9	Inches 0.2107 . 2688 . 3213 . 3838 . 4380	. 5465 . 6715 . 7965 . 8800 1. 0950	1. 1260 1. 2510 1. 3470 1. 5980 1. 8430	2. 2060 2. 7060 4. 7060
	Screw s Pitch diameter	Pitch di	Maxi- mum (basic)	10	Inches 0. 2187 . 2768 . 3333 . 3958 . 4500	. 5625 . 6875 . 8125 . 9000 1. 0250	1, 1500 1, 2750 1, 3750 1, 6250 1, 8750	2. 2500 2. 7500 3. 7500 4. 7500
		iameter	Mini- mum	4	Inches 0. 2469 . 3089 . 3708 . 4333 . 4950	. 6187 . 7437 . 8687 . 9900 1. 1150	1. 2400 1. 3650 1. 4875 1. 7375 1. 9875	2. 4800 2. 9800 4. 9800
	Major diameter		Maxi- mum (basic)	es	Inches 0.2500 .3125 .3750 .4375	. 6250 . 7500 . 8750 1. 0000 1. 1250	1. 2500 1. 3750 1. 5000 1. 7500 2. 0000	2. 5000 3. 0000 5. 0000
	Threads per inch		61	91 12 12 10 10	∞ ∞ ∞ <i>∞</i> 10 10	70 70 44 44	0000	
	Sizes		1	27.8 27.8 27.8 27.8 27.8	958 34 778 1186	134- 136- 134- 2- 2-	215- 3 3 4 4 4 6 5	

6. GAGES

The inspection of threaded product by means of gages and measuring tools is necessary to maintain the product within the limits specified and to prevent the use of threading tools after they have worn beyond proper limits. With the application of suitable methods of gaging and with reasonably good workmanship, uniform and known thread sizes will result.

(a) FUNDAMENTALS

Both "go" and "not go" gages, representing the extreme product limits, are necessary for the proper inspection of American National Acme screw threads. This and other fundamentals of the subject of gaging screw threads, which are stated for fastening screws in division 5 of section III, are also applicable to Acme threads.

(b) GAGE TOLERANCES

Table 77 is given herein for the purpose of establishing definite limits for gages used in the inspection of Acme threads, rather than for the purpose of specifying the gages required for the various inspection operations. The dimensions of gages should be in accordance with the principles (a) that the "go" gage should check simultaneously as many elements as possible and a "not go" gage can effectively check but one element; and (b), that permissible variations in the gages be within the extreme product limits.

I. Tolerances on Lead.—The tolerances on lead given in table 77 are specified as an allowable variation between any two threads not farther apart than 12

inches.

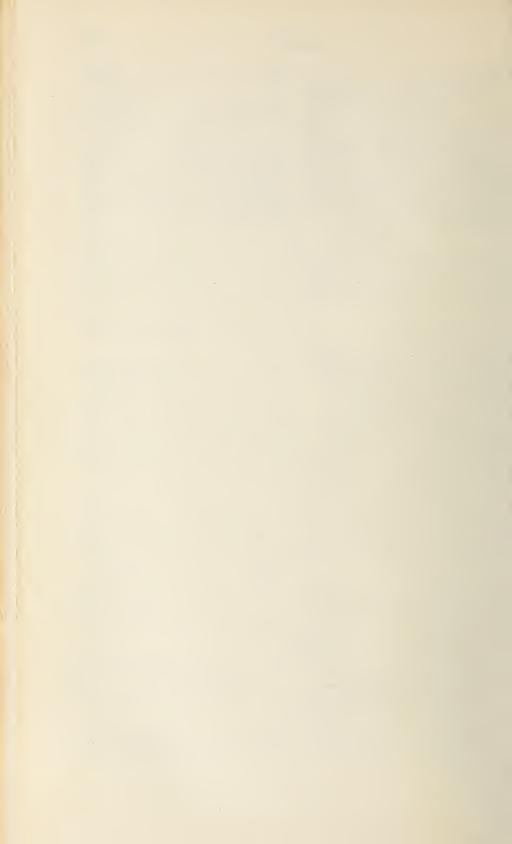
2. Tolerances on Angle of Thread.—The tolerances on angle of thread, as specified in table 77 for the various pitches, are tolerances on one half of the included angle. This insures that the bisector of the included angle will be perpendicular to the axis of the thread within proper limits. The equivalent deviation from the true thread form caused by such irregularities as convex or concave sides of thread, or slight projections on the thread form, should not exceed the tolerances permitted on angle of thread.

3. FILLETS AT MINOR DIAMETER.—"Go" threaded plug gages for nuts have fillets at the minor diameter, the radii of which are not less than 0.010 inch for pitches of three threads per inch and finer, and not less than 0.020 inch for

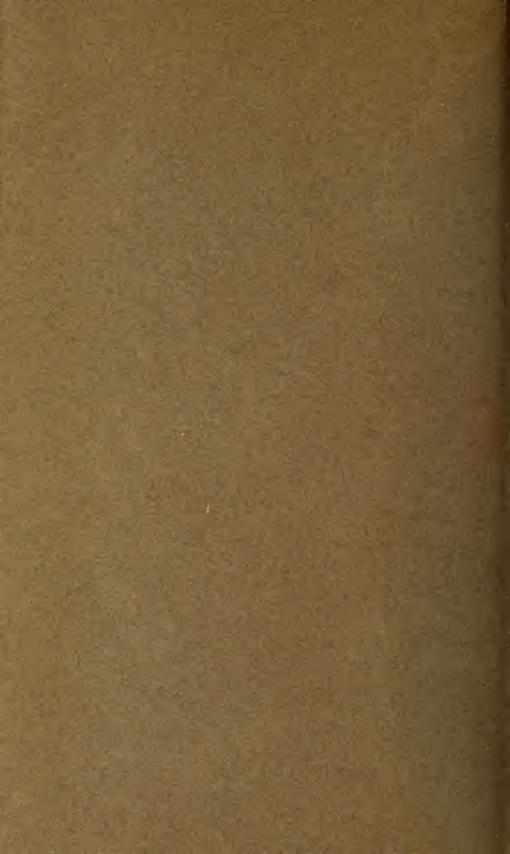
pitches coarser than three threads per inch.

Table 77.—Tolerances for "go" and "not go" thread gages, American National Acme threads

		Tolerance in lead	Tolerance on half angle of	Tolerance on major diameter		Tolerance on minor diameter		
	From-	То—		thread	From-	То-	From-	то—
1	2	3	4	5	6	7	8	9
1	In h 0.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	Inch 0.0008 .0007 .0006 .0005 .0005 .0004 .0004 .0003 .0003 .0002 .0002	Inch ± 0.0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005	$\begin{array}{c c} Deg.\ Min.\\ \pm\\ 0\\ 5\\ 0\\ 5\\ 0\\ 5\\ 0\\ 5\\ 0\\ 5\\ 0\\ 5\\ 0\\ 5\\ 0\\ 5\\ 0\\ 10\\ 0\\ 10\\ 0\\ 10\\ 0\\ 10\\ \end{array}$	Inch 0.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	Inch 0.0010 0010 0010 0010 0010 0010 0010 0	Inch 0.0000 0000 0000 0000 0000 0000 0000	Inch 0. 0010 0010 0010 0010 0010 0010 0010 0


INDEX

A Page	Page
Accuracy, control of 143-152	
4 cmc concert three do 161_167	Diameter, major
historical161	niteh 7
Allowance (definition)	Dimensions (tables of thread) 14-15 31-40 60-75
Active Seriew Interests 161 Allowance (definition) 8 (numerical values) 20, 28, 96, 157 American Gage Design Standards 51 American Mattendards 51	Die head chassers
American National:	144, 157-159, 163, 166.
t t t t t brand agrica 169	Directions of tolerances on—
coarse-thread series 14, 32–37, 42–45	gages53, 56-58, 76
6-pitch thread series 15, 38-41, 46-49	hose couplings 94 pipe threads 104 screw and nut 17,78
fire-hose coupling threads94,98	screw and nut
Acme general purpose thread series. 103 coarse-thread series. 14, 32-37, 42-45 8-pitch thread series. 68, 69, 71-72 fine-thread series. 15, 38-41, 46-49 fire-hose coupling threads. 94, 98 form of thread. 11, 68, 76, 152 have coupling threads 92, 96	E
hose-coupling threads92, 96	Electric socket threads 123-125
hose-coupling threads. 92, 96 locknut threads. 106-107 16-pitch thread series. 68, 71, 75 standard hose connections 117-123 straight pipe threads. 104-106 taper pipe threads. 101-103	Engagement, depth of 8, 16, 19, 72–76, 104 length of 28, 144–145 Errors, control of lead 28, 144–145 Error, diameter equivalents of lead and angle 20,
standard hose connections 117-123	length of
straight pipe threads104-106	Error, diameter equivalents of lead and angle 20.
threads for electric sockets and bases 123-125	22, 24, 28, 96, 128, 157
threads for electric sockets and bases 123–125 12-pitch thread series 68, 70, 73–74	European trip
Angle errors, diameter equivalent of 20, 22, 24, 28, 96, 128, 157	External thread (definition)
22, 24, 28, 96, 128, 157	F
Angle of helix (see Helix angle) 7 Angle of thread (definition) 7	Fillets in Acme threads
Arrangement of report6	Fit, close, class 4 24–29, 37, 41, 79
Authorization by Congress 2 Axis of screw (definition) 8	(definition)8
Axis of sciew (definition)	Iree, class 2 20-22, 34, 39, 71-74, 79
B	medium, class 3 22–26, 36, 40, 71–74, 79
Base of thread (definition) 8	wrench, class 5 152-160
Basic size (definition) 8	Fillets in Acme threads. 162 Finish (definition). 28 Fit, close, class 4. 24-29, 37, 41, 79 (definition). 8 free, class 2. 20-22, 34, 39, 71-74, 79 loose, class 1. 19-20, 32, 38, 79 medium, class 3. 22-26, 36, 40, 71-74, 79 wrench, class 5. 152-160 Fits, common practice. 161 Form of Acme threads. 161 American National coarse and fine threads. 11
Bolt and nut proportions116 Bolts and nuts, screw threads for11-67	American National coarse and fine
carriage 116	
carriage 116 machine 116 plow 116 round unslotted head 116	fire-hose coupling threads 92 hose-coupling threads 92
plow116	pipe threads100
round unslotted head	pipe threads 100 threads of special diameters and pitches 68, 76 Free fit, class 2 20-22, 34, 39, 71-74, 79
stove 116	Pree fit class 2 20–22 34 39 71–74 79
tap	G
track 116 wrench head 116	Gage classification 51, 110
## ***********************************	design standards
C-bla dellina ta disinta	design standards 51 practice recommended 55, 111
Cable drilling tool joints117	thickness 152 Gages, American standard 51
Carriage bolts 116	American National Acme screw threads 167
Chaser, thread 146	American National coarse and fine
Class 1 loose fit 10-20 32 38 70	American National fire-hose coupling
Class 2, free fit 20–22, 34, 39, 71–74, 79	threads 50-67 American National fire-hose coupling threads 98-99 American National pipe threads 109-115
Class 3, medium fit 22-26, 36, 40, 71-74, 79	American National pipe threads 109-115
Class 4, close III	checking plug 51, 110 class W 53, 58, 76
Classification of fits16, 69, 77, 152	class X 52, 56, 76
Clearance, crest8	l class V 52 57 76
at major diameter 12, 162	class Z. 53, 57, 76 classification as to accuracy. 53, 57, 76 classification of tolerances on 59-67, 99, 114, 118-123 direction of tolerances on 53, 56-58, 76
Close fit, class 4 24-29, 37, 41, 79	dimensions of 59-67, 99, 114, 118-123
Comparators, thread151	direction of tolerances on 53, 56-58, 76
Cable drilling tool joints 117 Cap screws 116 Carriage bolts 116 Chaser, thread 143, 146 Chasers, died head 143, 146 Class 1, loose fit 19-20, 32, 38, 79 Class 2, free fit 20-22, 34, 39, 71-74, 79 Class 3, medium fit 22-26, 36, 40, 71-74, 79 Class 4, close fit 24-29, 37, 41, 79 Class 5, wrench fit for threaded studs 152-160 Classification of fits 16, 69, 77, 152 Clearance, crest 8 at major diameter 12, 162 at minor diameter 12, 152, 162 Close fit, class 4 24-29, 37, 41, 79 Comparators, thread 151 Core diameter (see Minor diameter) 7 Crest (definition) 7	electric socket 125 "go" and "not go" 50, 150-152 hose connection 98, 118-123
Crest clearance (definition)	hose connection 98, 118-123
Cutter, thread milling 143, 146	indicating 151
Crest clearance (definition) 8 Cutter, thread milling 143,146 Cutting of screw threads 145-147 Cutting torch hose connections 117-123	Inspection 52, 98, 110, 125
outling toron hore connections	indicating 5, 16-12s inspection 52, 98, 110, 125 lamp base 125 marking of 10, 56, 82
D	master52
Definitions	master 52 measurement of 56, 129-142, 152 mechanical 51
thread (definition)	optical 51, 151
182129—33——12	160


rage	P
Gages, plain 54, 152 setting 52 specifications for 52, 109	Page Pipe dimensions, tables of 107-109 specifications 107-109, 117 thread gages 109-115 manual 99, 109 threads, straight 104 taper 101 Pitch (definition) 7 diameter (definition) 7 measurement of 129-137 uniform, of minimum nut 16, 77, 153 Plow bolts 116-117 Practice for fits and thread series 161 Pressure, measuring 52, 131 Procedure of commission 5 Proportions, screw, bolt, and nut 116 Public hearings 5
setting 59	Pipe dimensions, tables of 107–109
appointantions for	specifications 107 100 117
specifications for 52, 109	5PCCITICATIONS 107-109, 117
testing of 152	thread gages 109-115
thread plug 53, 151	manual 99, 109
thread ring 53 151	threads, straight104
thread snan	taper 101
throads of special dispersion and with here	Pitch (definition)
threads of special diameters and pitches 82	diameter (definition)
tolerances on 55-58, 76, 113, 125, 167	diameter (definition)
wear on 53	measurement of 129-137
working 59 111	uniform, of minimum nut 16, 77, 153
wrongh fit	Plow holts
WICHCH III	Drootice for fits and thread arrive
Gaging 50-52	Fractice for his and thread series 161
98, 111–112, 118–123, 125, 150–152, 160, 167	Pressure, measuring 52, 131
fundamentals of 50 109 167	Procedure of commission5
object of	Proportions, screw, holt, and nut. 116
00,000 01 30	Public bearings
practices 111, 150-152, 160	1 done nearings
specifications for 52, 109 testing of 52, 109 testing of 53, 151 thread plug 53, 151 thread ring 53, 151 thread sanp 150 threads of special diameters and pitches. 82 tolerances on 55–58, 76, 113, 125, 167 wear on 55–58, 76, 113, 125, 167 wernch fit 160 Gaging 98, 111–112, 118–123, 125, 150–152, 160, 167 fundamentals of 50, 109, 167 object of 50, 109, 167 oractices 111, 150–152, 160 Grinding threads 149	
	R
Hearings, public5	Damant amazana d
Helix angle (definition) 7	Report, arrangement of 6
Historical 1 01 00 116 117 161	Rethreading tools 91
Hab three ding	Riverts, tap116
1100, threading	Roll, threading 148
Hobs, tooth outlines of 143, 147	Pollor dieg
Hose-connection gages 98, 118–123	Roller dies 148
Hose connections for torches 117-123	Rolling of screw threads
Hogo threads	Root (definition) 7
1105e tiffeaus 91-99	Rotary drilling taper joints 117
Hearings, public	Rethreading tools
1	
Interchangeability 2 Internal thread (definition) 7 International standardization 6	
Interchangeability 2 Internal thread (definition) 7	S
Internal timeau (definition)	
International standardization 6	Screw7
	axis 8
L	lengths 116
Tomp has there do	proportions 116-117
Lamp-base threads	proportions ====================================
Lapping of screw threads	thread (dennition)
Lamp-base threads 123-125 Lapping of screw threads 150 Lead (definition) 7 errors, control of 144 diameter equivalent of 20, 22, 24, 28, 96, 128, 157 Lead screw 144	Screw_ 7 axis 8 lengths 116 116 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117
errors, control of 144	cutting of 145-147
diameter equivalent of 20 22 24 28 96 128 157	finishing of 149
Clameter equivalent of 20, 22, 24, 28, 96, 128, 157 Lead screw	for oil-drilling aguinment 117
Dead Sciew144	has a selina oquipmono 117
Length of engagement (definition)	nose-coupling91-99
pipe thread 104	miscellaneous special 76-90, 117-125
Lengths, bolt and screw 116	regular (see American National).
toloranoes on	rolling of 147
Timita (d.C. iti	gnocial 76-00
Limits (dennition)	Special
Line pipe	tools for cutting
Locknut threads 106	Screws, cap116
Long screw joints 105	hexagon head 116
Loose fit close 1 10_20 22 38 70	machine 116
10-20, 52, 55, 10	sot 116
2.5	mood 116
M	W004
Machine bolts 116	Set screws110
Machine bolts 116 Machine-screw nuts 116	Side of thread (definition)
Midding-Sciew nucs	Standard temperature 52
proportions	Stove bolt nuts 116
Major diameter (definition) 7	proportions 116
Manual on pipe threads 99, 109	Otroight wine threeds 104
Marking of gages 10, 56, 82	Straight pipe threads
tools 10	Sucker rod specifications 117
Moogramment of witch diameter 100 127	Symbols 9-11, 101
Machine-screw nuts 116 proportions 116 Major diameter (definition) 7 Manual on pipe threads 99, 109 Marking of gages 10, 56, 82 tools 10 Measurement of pitch diameter 129-137 thread gages 56, 129-142, 152 thread thickness 138-142 wire methods of 129-142 Measuring pressure 52, 131 Medium fit, class 3 22-26, 36, 40, 71-74, 79 Members of commission 3 Micrometers, thread 150 Minor diameter (definition) 7 uniform, of nut 16, 163	machine 116 set 116 wood 116 Set screws 116 Side of thread (definition) 8 Standard temperature 52 Stove bolt nuts 116 proportions 116 Straight pipe threads 104 Sucker rod specifications 117 Symbols 9-11, 101
56, 129-142, 152	
thread thickness 138-142	T
wire methods of 129-142	
Measuring pressure 59 131	Tap bolts 116
Modium 6t close 2 99 96 26 40 71 74 70	rivets 116
Menth int, class 5 22-20, 50, 40, 71-74, 79	Topor offeet on thread depth 100
Members of commission 3	threads magazinement of 199 195
Micrometers, thread 150	threads, measurement of 155-155
Minor diameter (definition) 7	Taps 143, 146
uniform, of put 16, 163	marking of 10
——————————————————————————————————————	Temperature, standard 52
N	Tap bolts
14	(Dhread (see Covery threads)
Net tolerances, basis of 127	I mead (see belew unicads).
Neutral zone (definition)	angle
Nomenclature (see Terminology)	depth8 series (see American National).
Materian O 10 07 100 101 107 100 100	series (see American National).
Notation 9-12, 95, 100-101, 105-106, 162	common practice 161
Number of threads (definition) 8	Threads internal and external
Net tolerances, basis of	(Toloropes (definition)
proportions 116	I TOTELSTUCE (GEHILLIOH)
Proportion	17 80 04 100
	pitch diameter 17, 78, 94, 104, 128
	common practice
0	
Oil wall easing threads	
Oil wall easing threads	
Oil wall easing threads	
Oil-well casing threads 117	pitch diameter 17, 78, 94, 104, 128 Tolerances: A cme thread 163–164 derivation of 127–129 direction on gages 53, 56–58, 76 gage 55–58, 76, 113, 125, 167 hose couplings 94–96

INDEX

Polerances—Continued Page	Dean
offi affects Continued	
numerical values:	Torques, wrench fit, for studs
class 1, loose fit 20, 8	
class 2, free fit	, ,
class 3, medium fit 24, 71-75, 8	Ŭ
class 4, close fit28, 9	
class 5, wrench fit 15	
on length of screws, etc	
nine threads 10	w
pipe threads	. ••
69-75, 77-90, 94-96, 101-107, 152-154, 163-16	Welding torch hose connections 117-123
screw and nut	Wire methods of measurement 129-142
wood screws	Wires, measurement of 131
wrench openings 11	sizes of 129
Fool, single point 14	specifications for130
Cools:	Wood screws 116
form of 14	Working-barrels 117
marking of 1	
rethreading for fire-hose threads 9	
tooth outlines 14	Wrench openings 116

