U. S. DEPARTMENT OF COMMERCE HENRY A. WALLACE, Secretary NATIONAL BUREAU OF STANDARDS E. U. CONDON, Director

NATIONAL BUREAU OF STANDARDS MISCELLANEOUS PUBLICATION M182

DEVELOPMENT OF STANDARDS FOR FLEXIBLE CASELINING MATERIALS

By BOURDON W. SCRIBNER, FREDERICK T. CARSON, and CHARLES G. WEBER

Issued September 23, 1946

. 3

UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1946

For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 10c

.

PREFACE

Paper and paper products played a vital part in World War II One of the most important uses of such products was the safe guarding against deterioration by moisture of supplies for ou^{III} armed forces scattered around the world. This is the chief func tion of papers used to line shipping cases. To serve satisfactorily they must be excellent moisture barriers, and, of course, remain intact under the stresses to which packaged materials are sub jected. Because of the many adverse conditions under which ou troops fought in this war, these requirements were particularly severe. For this reason, this investigation was undertaken to as sist in providing caseliners that would withstand the most ab normal conditions of transportation and storage.

E. U. CONDON, Director.

T

CONTENTS

		· ·	Page
?ref	ace		. ii
I.	Introdu	action	2
II.	Materia	als tested	2
	1.	Caselining materials	2
	2.	Base papers	4
p [I .	Method	s of testing	4
	1.	Standard methods	- 4
ı İ	2.	Special methods and apparatus	- 5
ī		(a) Stiffness	- 5
		(b) Scuffing	- 5
		(c) Creasing	7
		(d) Water-vapor permeability	. 10
		(e) Bleeding	11
<u>.</u>	Test da	ata	_ 12
*		tion of test data for caselining materials with ormance of caseliners made from them	. 17
1	Recomm	nended standards	_ 22

•

· ·

DEVELOPMENT OF STANDARDS FOR FLEXIBLE CASELINING MATERIALS

By Bourdon W. Scribner, Frederick T. Carson, and Charles G. Weber

ABSTRACT

An investigation was made for the development of improved specifications for materials used to line shipping cases so that the liners would give better service in overseas shipments of supplies, particularly those for our armed forces.

The sheetings were given various kinds of tests considered to have a bearing on their serviceability, such as strength, stretch, flexibility, resistance to puncture, scuffing, and permeation by water vapor and water. As a part of the work, an improved cabinet for making water-vapor permeability tests under accurately controlled atmospheric conditions simulating those of the tropics was developed. This was so designed that the test specimens are weighed inside the cabinet, thus obviating errors inherent in removing them for weighing.

Packages containing liners, made of the same materials as the sheetings tested, were subjected to simulated service conditions at a commercial testing laboratory. The packages were put through cycles of being tumbled in a drum, dropped on a concrete floor, and bounced on a vibrator, with wetting, under both tropical and arctic conditions. They were then examined for permeation of moisture and for the condition of the liners.

Correlation of the test data of the sheetings with their performance in the simulated service trials indicated that for the most satisfactory service, the caseliners should be composed of sheets of kraft paper cemented together with asphalt, and that the important properties are areal weight of paper and of asphalt, wet tensile strength, stretch, resistance to tearing and puncture, and permeation by water vapor and water. Recommended requirements for these properties are included.

I. INTRODUCTION

At the request of the Container Coordinating Committee, War Production Board, and with the assistance of funds from the Board's Office of Production Research and Development, the National Bureau of Standards participated in an investigation of flexible caselining materials. The investigation was made for the development of improved specifications for such materials so that they would perform more satisfactorily in shipments of supplies, particularly those for our armed forces.

The project comprised mainly (1) subjection of packed shipping cases containing the materials as caseliners to simulated service conditions at the Package Research Laboratory, Rockaway, N. J., (2) testing by the National Bureau of Standards of the materials from which the liners were made, (3) correlation of the results obtained at the two laboratories to determine the properties that the materials should have to function satisfactorily as caseliners, and (4) the formulation of recommended standards for the significant properties for use in purchase specifications. The tests at the Package Research Laboratory were made as

follows: Standard wooden and fiber shipping boxes of different sizes were lined with the caselining materials made into liners of one-piece construction for "satchel" closure. The large boxes were filled with cartonized hollow steel cylinders and wooden blocks and the small boxes with wrapped hollow steel cylinders alone. The closure of the liner was folded over and sealed with a moisture-resistant adhesive. The boxes were then put through cycles of being tumbled in a revolving drum, dropped on a concrete floor, and bounced on a vibrator, with intermittent spraying with water, under both tropical and arctic temperatures. The boxes were opened on completion of the cycles and the contents examined for number of wet pieces, after which the liners were removed and examined for holes, scuffs, or other damage. Detailed descriptions of these tests and accounts of the results obtained have been published. ¹, ², ³, ⁴

The following is a report of the tests made at the National Bureau of Standards and of the correlation of them with the results of the simulated service tests. Recommended standards are included.

II. MATERIALS TESTED

1. CASELINING MATERIALS

The caselining materials tested consisted of 31 samples. There were 24 asphalt-laminated kraft papers, made variously with plain paper, paper infused with asphalt, paper containing waxy materials, paper treated with melamine resin to improve its strength and resistance to scuffing when wet, and paper treated for mold resistance. Some of the papers were reinforced with strands of fibers or cords imbedded in the laminating asphalt.

¹H. A. Wolsdorf and E. G. Mullen, Modern Packaging 18, No. 9, 131 (May 1945). ²H. A. Wolsdorf, Paper Trade J. 121, No. 4, 46 (July 26, 1945). ³E. R. Stivers, Paper Trade J. 121, No. 4, 47 (July 26, 1945). ⁴H. A. Wolsdorf and E. G. Mullen, Modern Packaging 19, No. 4, 154 (Dec. 1945).

The remaining materials were made of other kinds of sheetings. Detailed descriptions of these follow. The letters at the left are the sample designations. The weights are on a basis of 3,000 square feet of material.

Asphalt-Laminated Kraft Papers Duplex Uncreped

- M—One 40-pound plain sheet, one 60-pound sheet infused with wax resin compound.
- D—One 60-pound plain sheet, one 60-pound sheet infused with asphalt.
- J—One 50-pound plain sheet, one 50-pound sheet infused with asphalt.
- S—One 50-pound plain sheet, one 50-pound sheet infused with asphalt; embossed after lamination.
- F-Reinforced, plain 30-pound sheets.
- G—Reinforced, plain 30-pound sheets.

Duplex Creped

V—40-pound machine-creped sheets.

IH—40-pound machine-creped sheets.

- G-One 30-pound plain sheet, one 60-pound sheet infused with wax resin compound; creped after lamination.
- K—One plain 60-pound machine-creped sheet, one 60-pound machine-creped sheet infused with asphalt.
- T—One 60-pound machine-creped sheet, one 60-pound machinecreped sheet infused with asphalt.
- B—Two 50-pound machine-creped sheets, one sheet treated for wet strength; wax applied to treated side.
- C—Reinforced, one 45-pound machine-creped sheet, one 75pound machine-creped sheet.
- U-Reinforced, 35-pound machine-creped, wet-strength sheets. E-Reinforced, 45-pound machine-creped wet-strength sheets.

Triplex Creped

- E-One 30-pound machine-creped sheet on one side; other sheets plain, 30 pounds.
- A—One 40-pound machine-creped outer sheet treated for mold resistance, two 30-pound plain sheets.
- C—One 60-pound machine-creped outer sheet infused with asphalt; two 30-pound plain sheets.
- B—All sheets 40 pounds, outer sheets creped and infused with asphalt before lamination, center sheet uncreped.
- A—All sheets 30 pounds, creped diagonally while being combined.
- H—All sheets 40 pounds, machine-creped and serrated.
- 0-40 pound machine-creped sheets, outer sheets treated for wet strength.
- D-40 pound machine-creped sheets, outer sheets treated for wet strength, one outer sheet wax treated.
- V—All sheets 40 pounds, creped and infused with asphalt before lamination.

Miscellaneous Materials

- P—Duplex; uncreped, two 32-pound cellulose-wadding sheets infused with asphalt.
- Q—Duplex; uncreped, two 32-pound cellulose-wadding sheets infused with asphalt; one side coated with asphalt.
- R—Triplex; uncreped, three 32-pound cellulose-wadding sheets infused with asphalt.
- X—Lead foil laminated to one 30-pound plain kraft sheet. Foil side coated with polyvinyl butyral, scrim cloth laminated to kraft side.
- Z—Cloth, one side coated with vinyl resin.
- FF—Duplex; one 40-pound machine-creped kraft sheet, one 22pound cellophane sheet.
 - II—Triplex; two 40-pound machine-creped kraft outer sheets, one 22-pound cellophane inner sheet.

2. BASE PAPERS

It was thought that tests of base papers used in the manufacture of the kraft caselining papers might, through correlation of the results with the results of the tests of the caselining papers, yield information that would be of value to manufacturers in their choice of base papers.

Tests were made on 35 base papers used in the manufacture of 17 of the caselining papers. The base papers were 15 plain and 9 creped laminating papers, 6 plain and 2 creped asphalt infusing papers, and 3 asphalt-infused papers. The basis weights were representative of the range generally used for laminated caselining papers.

The following tests were applied to these papers, as far as the various kinds of tests are applicable to the different types of papers: Weight per unit area and the thickness (the ratio of which yields density), folding endurance, tearing resistance, bursting strength, tensile breaking strength, air resistance, smoothness, time of oil permeation, amount of oil absorbed, acidity, and kind and condition of fibers. Although the test values for the different base papers varied widely, there was no significant relation between the properties of the base papers and the properties of the caselining papers. For this reason the test data for the base papers are not reported herein.

III. METHODS OF TESTING

1. STANDARD M'ETHODS

The following tests were made according to the methods of the Technical Association of the Pulp and Paper Industry (TAPPI).⁵ The Association's designations of the methods are in cluded: Basis weight, T 410 m; tearing resistance, T 414 m; burst ing strength, T 403 m; tensile breaking strength, dry T 404 m tensile breaking strength, wet, T 456 m; stretch, T 457 m; water resistance, T 433 m; water-vapor permeability at 73° F and 50 percent relative humidity, T 448 m; water-vapor permeability at 100° F and 90-percent relative humidity, T 464 m; resistance to

⁵Copies may be obtained from the Association at 122 East 42d Street, New York 17, N. Y

puncture, T 803 m; and acidity, pH, hot extraction, T 435 m. The wet tensile strength was determined on samples after they had been immersed in water for 24 hours. Tearing tests could not be made on reinforced papers because of the interference of the reinforcing material. As the apparatus for the puncture test is of comparatively recent development, it might be well to explain briefly that it measures the energy required to force a tetrahedral puncture head (simulating the corner of a box) completely through the test specimen. The rupturing force is provided by the release of a heavy pendulum from a horizontal position. As the pedulum swings down, the puncture head, carried at the end of a curved arm attached to the pendulum and concentric with its bearing, is driven through the specimen. The energy thus absorbed in puncturing the specimen is indicated by a pointer on a dial.⁶

2. SPECIAL METHODS AND APPARATUS

The following are descriptions of the testing methods and apparatus for which no standards were available.

(a) STIFFNESS

The stiffness test was used as a means of determining the probable performance of the caselining materials in the folding operations incident to forming them into liners and to closing the liners. Excessive stiffness is undesirable. The method consists in finding the load required to force the material between two rollers. An apparatus devised for the purpose by M. L. Downs was modified to permit its use in a standard type of paper tensile strength testing instrument.

The device, illustrated in figure 1, consists of two stirrups. A single stirrup, the cross bar of which is a $\frac{1}{2}$ -inch metal tube, is fastened in the upper clamp of the tensile tester. An inverted double stirrup, which is fastened in the lower clamp of the tensile tester, has two $\frac{7}{8}$ -inch rollers, separated by a distance of $\frac{3}{4}$ inch. The tensile tester, with pendulum weights removed, is calibrated over the desired range by hanging small weights to the upper - clamp (with the single stirrup clamped in place).

To make a test, the lower clamp of the tensile tester is run up until the tubular cross bar of the upper stirrup passes between the rollers of the lower stirrup and comes below them. A specimen, 4 inches square, is then slipped under the rollers of the double stirrup and over the tubular cross bar of the single stirrup. The lower clamp is then run down, as in making a tensile test, the specimen being bent and pulled between the rollers of the double stirrup. The force required to do this, which is determined from the scale reading and the calibration of the tensile tester, is used as a measure of the relative stiffness of the material tested.

(b) SCUFFING

The scuff test was used as a measure of the probable resistance of the materials to wear when rubbed against the walls and con-

⁶ R. L. Beach, Paper Trade J. 108, No. 5, 30 (Feb. 2, 1939). ⁷ The apparatus for creasing test specimens, for making the stiffness tests and the wet-rub tests, and the cabinet for water-vapor permeability at high temperature and humidity, were developed by F. T. Carson and V. Worthington of the Bureau staff.

tents of containers. The test was made with the Taber Abraser^{*} and with the Wet-Rub Tester[®] developed at the Bureau.

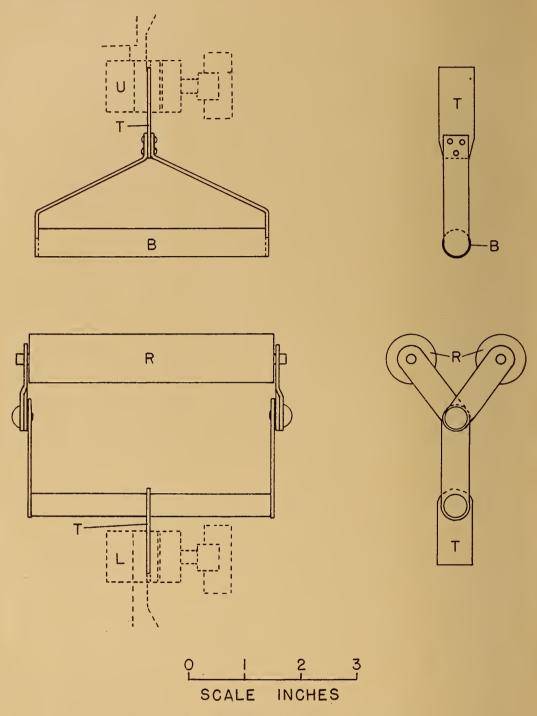


FIGURE 1.—Device for testing stiffness of caselining materials.

A stirrup having a single cross bar, B, is fastened by a tab, T, in the upper clamp U, of a tensile tester. An inverted stirrup, carrying two rollers, R, is fastened in the lower clamp, L.

The Taber Abraser, shown in figure 2, is in common use for testing many sheet materials other than paper for resistance to abrasion. The apparatus consists of a horizontal motor-driven turntable upon which the test specimen is attached, and two weighted parallel arms, each carrying a special abrasive-filled rubber wheel that rotates on the specimen under a given load. A load of 1,000 grams was used for these tests. The two wheels revolve in opposite directions and exert a combined abrasive, com-

⁸ Paper Trade J. 119, No. 3, 24 (July 20, 1944). ⁹ F. T. Carson and V. Worthington, Paper Trade J. 84, No. 2, 45 (Jan. 13, 1927).

FIGURE 2.—Apparatus used for determining resistance to scuffing of caselining materials when dry.

pressive, and twisting action over a circular path. The turntable was rotated until the surface of the material was just completely removed, with continuous brushing of the debris from the specimen. The amount of material removed was determined by the difference in the weight of the paper before and after abrasion, and was calculated to revolutions per centigram of material removed. Only a dry-abrasion test was made; satisfactory results could not be obtained on wet materials of this kind because of their various water-resistant components. Even the dry-abrasion test could not be applied satisfactorily to the cellulose wadding materials because of the large amount of asphalt present.

The wet-rub tester shown in figure 3, has a metal plate on which the test specimen, C, is clamped and rubbed by a chromeplated rounded end of a cylinder, F, projecting from a horizontally reciprocating member that is weighted. For testing the caselining materials, a load of 5 pounds was used. The number of double rubs required to wear a hole through a specimen wetted with an excess of water is recorded. The abrading surface of this apparatus is not suitable for making dry tests.

(c) CREASING

The water-resistance and the water-vapor permeability tests were made on both uncreased and creased specimens. Tests on creased specimens are important because of the creasing of case-

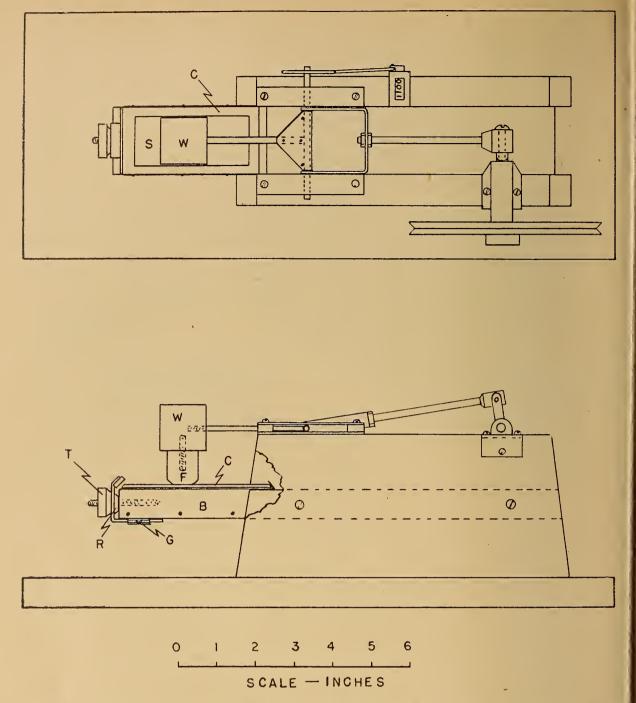


FIGURE 3.—Apparatus used for determining resistance to scuffing of caselining materials when wet.

lining materials in forming and closing the caseliners and because of the load on the creases after the container is filled. The materials were creased at low temperature because the caselining operations are often done with very cold material, and asphalt has a greater tendency to crack on creasing as the temperature is lowered.

The test specimens before they were creased were exposed for at least 2 hours to air having a temperature of approximately 40° F and a relative humidity of approximately 60 percent. The conditions were chosen by the Task Group as being convenient to use and suitable for the purpose. The test specimens were then transferred to an insulated container, from which they were taken one at a time for creasing. They were creased in a cabinet maintained at $40^{\circ} \pm 2^{\circ}$ F and having arm holes fitted with sleeves to permit manipulation of the creasing apparatus. The specimens were 4 inches square, and they were creased on two diagonals, under a pressure of 2.36 pounds per inch of crease.

The creasing apparatus is illustrated in figure 4. A lower plate, P, hinged at A, is lifted by a handle, H, until it contacts and lifts the upper plate, R. Attached to the upper plate is a weight, W, of such size that it and the upper plate together apply the required load per inch of crease. The upper plate is held in position by a guide until it is lifted. A stop, S, limits the movement. A square

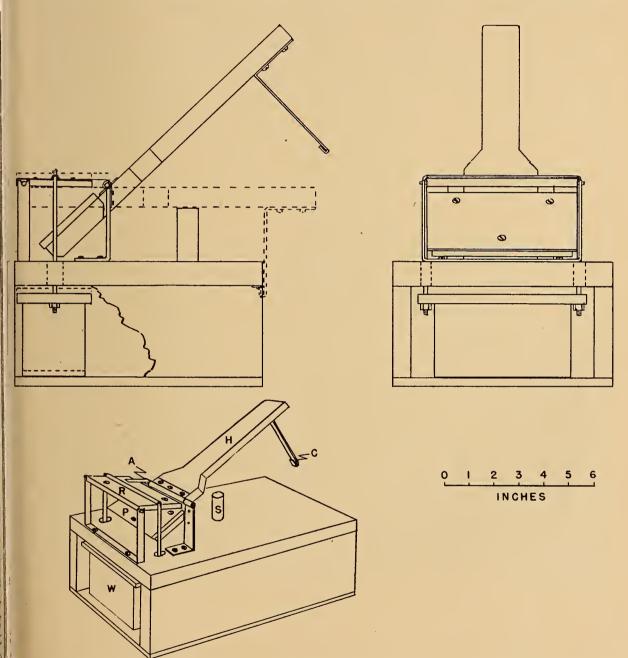


FIGURE 4.—Apparatus for creasing caselining materials for tests for water and watervapor permeability.

of the paper to be creased is first wrapped along its diagonal around a $\frac{3}{4}$ -inch round rod (wood preferably) with diagonally opposite tips held together, then the rounded section along the diagonal is centered between the plates, and creased by depressing the handle, H. It is held in position shown by dotted lines by the catch, C, for the required time.

(d) WATER-VAPOR PERMEABILITY

For making the water-vapor permeability tests, cells $3\frac{3}{4}$ inches in diameter and about $\frac{3}{8}$ inch deep were used. A flanged rim, forming a shallow groove, provides a means of embedding the perimeter of the specimen in the wax used to seal the specimen to the dish, leaving a free area of 50 square centimeters through which water vapor passes from the exterior to the desiccant within. Each dish holds about 15 grams of 8-mesh anhydrous calcium chloride. The dishes were formed from disks of annealed sheet aluminum 0.020 inch thick by pressing them between steel dies.

The cells were first exposed and weighed at intervals in an air-conditioned room maintained at 50 ± 2 percent relative humidity and $73^{\circ} \pm 3.5^{\circ}$ F until they reached a steady rate of gain. They were then transferred to a cabinet especially designed to maintain the air within it at 90 ± 1 percent relative humidity and $100^{\circ} \pm 0.5^{\circ}$ F and to obviate the necessity of removing the cells for weighing them. The latter feature gives improved accuracy in the determinations and reduces considerably the time required for weighing.

The cabinet, illustrated in figure 5, consists of a metal box, 14 by 14 by 14 inches, within an insulated box, a 1-inch air space separating the two. Air is circulated in this interspace by a centrifugal fan in the bottom of the cabinet. A heater of about 80-watts capacity and a thermoregulator in the interspace keep the envelope of circulating air at the required temperature. The inner box is heated only by transfer of heat from the air in the interspace. In the bottom of the inner box are pans containing a saturated solution of monoammonium phosphate or of potassium nitrate. A small fan blowing air on the pans circulates the air in this enclosure and keeps it at a uniform humidity characteristic of the relative vapor pressure of the solution. A port is shown through which access is had to the pans, and another in the side gives access to the test cells. Each port is sealed by an insulated, rectangular plug held against a rubber gasket.

The test cells are hung by means of hooks to a notched disk in the top of the inner box. A rod, hanging from the left arm of the balance, passes through a hole in the floor of the balance and through an aperture in the top of the cabinet, and ends in a hook designed to engage the hooks supporting the test cells. The rod is divided between the balance and the top of the cabinet, the two parts being joined by a tab sliding in a sleeve. When the crank at the left side of the balance is rotated a mechanism lifts the weighing hook (together with the test cell just below it), locks the two parts of the weighing rod together, and leaves the test cell freely suspended from the balance arm ready to be weighed. The disk supporting the test cells is fastened by means of a shaft to a numbered disk on top of the cabinet, projecting from underneath the balance. The number on the numbered disk opposite the pointer is the number of the disk in the weighing position. Any number is selected by turning the disk. An interlocking device holds the disk so that it can not be turned while a test cell is

FIGURE 5.—Cabinet for testing for permeability to water and water vapor under tropical conditions.

being weighed. The cabinet has a capacity of 60 cells of the size used.¹⁰

It was found that 48-hour intervals of weighing over a period of about 2 weeks were satisfactory in arriving at a steady rate of transfer of moisture through the specimens.

(e) BLEEDING

The possibility of exudation at high temperature of asphaltic, waxy, or oily substances, used to impart water resistance and

¹⁰ F. T. Carson and V. Worthington, Paper Ind. 27, 1799 (March, 1946).

other properties to caselining materials, is of importance with respect to damage from this source that might occur to the contents of shipping cases. Asphalt stains of course do the most serious damage. Trouble from this source could be avoided by using asphalt having a very high melting point, but such asphalt would be more likely to crack when cold than an asphalt with a lower melting point. For this reason, in choosing a temperature at which to test for bleeding, it is necessary to use as low a temperature as is consistent with the highest temperature to which shipments may normally be exposed in the tropics. It appears that this would occur in the holds of ships where maximum temperatures around 145° F have been recorded. Accordingly, 150° F was chosen as the testing temperature. The test specimens were sandwiched between sheets of white paper, heated at this temperature for 5 hours under a pressure of 72 pounds per square foot, then the sheets of white paper were examined for kind and degree of staining.

IV. TEST DATA

The test data for the physical properties of the materials, with the exception of moisture resistance, and for acidity are given in tables 1 and 3. The weight of asphalt is based on information received from the manufacturers as satisfactory test data could not be obtained. The test for acidity was made because it was thought that the heat of the laminating process might cause deterioration of the materials if the acidity were too high. However, with only a few exceptions the pH of the materials was 5.0 or more, which indicates acidity that would not be harmful.

The test data for the resistance of the materials to water and water vapor are given in tables 2 and 4.

Table 5 shows the results of the bleeding tests.

Flexible Caselining Materials

A sidit.	Aciuity, hot extraction	10100 10 10 10 10 10 10 10 10 10 10 10 1		рН	5.2 6.6 6.6 7.0 7.0 7.0 7.0		04040406 01078401	6.8	6.9 5.2 5.7		6.1		7.8 6.0 6.0	not be made because of interference											
50	lry rub	Outside ⁴		rev/cg	12 40 14 14 14		$\begin{array}{c} 19\\13\\13\\13\\13\\13\\13\\13\\13\\13\\13\\13\\13\\13\\$	20	$\begin{array}{c}21\\9\\100\end{array}$		29		4822222 8822222	ecause of											
Resistance to scuffing	Taber dry rub	Inside ⁴		rev/cg	26 11 26 11 8 11 0 10		$ \begin{array}{c} 15 \\ 24 \\ 30 \\ 14 \\ 9 \\ 30 \\ 14 \\ 9 \\ 14 \\ 9 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$	24	19 10 17		143		67 24 16 56	caseliners could not be made because											
tesistance	wet rub	CD		Double rubs	470 810 790 370 200			2,100	490 880 850		610		$\begin{array}{c} 3,000\\ 1,100\\ 320\\ 590 \end{array}$	ould not l											
H	NSB W	MD		Double	$\begin{array}{c} 540 \\ 1,000 \\ 850 \\ 380 \\ 230 \end{array}$		•	2,300	$\begin{array}{c} 530 \\ 520 \\ 920 \\ 1,200 \end{array}$		590		$\begin{array}{c} 2,700\\ 1,200\\ 360\\ 580 \end{array}$	³ Test for tearing resistance of reinforced (R) caseliners could of the reinforcing materials.											
Stiffness	CD		ĝ	570 840 630 550 320		$\begin{array}{c} 450\\730\\1,100\\850\\1,000\\860\\860\end{array}$	1,100	570 560 900		500		$^{560}_{1,200}$	ced (R) ca												
Stiff		MD		â	1,200 810 850 850		200- 260- 260- 250- 250- 200-	590	720 620 790		350		430 520 580 440	³ Test for tearing resistance of reinforced of the reinforcing materials.											
etch		CD		%	505045		~ ち ち ち ち ち ち 4	20			6	0)	25 12 7 8	stance cing ma											
Stretch		MD		%	0000000		233 15 15 15 15 15 15 15 15 15 15 15 15 15	17 TED).	00 m m	CREPED	Q	CREPED	$26 \\ 22 \\ 23 \\ 23 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$	or tearing resistance of reinf of the reinforcing materials.											
tion to	et .	CD	D	%	$^{13}_{9}$		$ \begin{array}{c} 19\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23$	45 17 SHEET CREPED	11 19 29	SHEETS CR		SHEETS C	47 49 43 40	st for tear of the											
Tensile	retaineu	MD	NCREPED	%	$\begin{array}{c} 12\\13\\24\\31\end{array}$, CREPED	22 26 26 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	56 (ONE SH	12 26 27	TWO SH		(THREE SI	51 25 39 36 36	³ Te											
		CD	UPLEX, UN	lb/in.	$\begin{array}{c} 47.2\\ 56.6\\ 50.7\\ 41.8\\ 34.2\\ \end{array}$	UPLEX	DUPLEX	DUPLEX,	30.3 37.8 31.6 52.6 39.0 39.0 46.6		36.2 37.5 43.6	EPED (REPED (T	26.0 47.8 55.7 50.3 49.7	WS, treated The numbers									
Tens	strength	MD	DUPI	lb/in.	88.8 85.8 75.6 71.4 67.0	DI			DI	D	D	DI	DU	DU	DU	D(DU	29.7 28.3 53.0 53.0 29.1 29.1 29.1 29.1		67.4 57.3 69.6	CR	4	\circ	34.2 32.0 54.5 52.2 52.2	rs; WS, t
ng ³	ance	CD		6	470 480 440 340													400 380 380 380 450 340	TRIPLEX	460 490 610	TRIPLEX	460	TRIPLEX,	830 470 920 720	s of fibe esistance
Tearing ³	resistance	MD		6	380 470 330 330		310 320 500 320 320 		350 450 470		370 T	-	600 480 790 560	s or cord or mold re											
ure	nce	CD2		Points	30^{+}		449 335 335 335 35 35 35 35 35 35 35 35 35	65	30 32 46		35		127 42 143 184 52	h strand reated fo											
Puncture		MD ²		Points	23235		$ \begin{array}{c} 822 \\ 632 $	29	30 32 44		34		$\begin{array}{c} 237 \\ 45 \\ 313 \\ 316 \\ 53 \end{array}$	b; MR, t											
	Bursting)		Points	$110 \\ 100 \\ 100 \\ 103 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 7$		57 61 88 110 110 69 69 110	116	71 88		88		95 95 98 98 117 98 124	R, reinfo											
er 3.000		Asphalt		91	$ \begin{array}{c} 75 \\ 90 \\ 90 \\ 91 \\ 95 \\$		1155 95 1155 155 115 115 115 115 155	160	140 170 175		130		430 180 275 280 150	asphalt; high we											
Weight per 3.000	sq. ft.	Total 4		91	174 212 165 193 214 175		214 243 314 320 320 320	274	228 262 307		270		567 363 418 427 300	sed with e resin for											
	Special treat-	ments			RR ^{II} 1 RR		W1 II WS1, W1 B WS2	R, WS2	MR1-II		I2		WS2, W1	¹ W-waxed; I, infused with asphalt; R, reinforced with strands or cords of fibers; with melamine resin for high wet strength; MR, treated for mold resistance.											
	desig-	nation			MOrmer		HHH HK GGG BB BB BB BB BB BB BB BB BB BB BB BB		E AA				A H DDD W	¹ W—wax wit											

ł

0	
0	
a	
5	
5	
te	
0	
3	
~	
B	
2	
0	
2	
je.	
3	
້ລັ	
5	
0	
~	
2.—Resistance of asphalt-laminated caselining papers to water and water vapo	
61	
Q.	ļ
0	
0	a de la companya de la
	ļ
50	l
2	l
11.	I
2.	l
	j
e	
2	I
3	
~~	ļ
a	
te	
3	l
2	
2	ĺ
8	
~	ł
et.	1
2	
20	i
6	
S	
0	1
4	the second framework of the second seco
0	
e	
2	
8	
1	1
.2	
5	
Se	l
Y	
	ĺ
~i	l
CA	
E	
2	I
B	l
4	
	ļ
H	i
TABLE 2.—R	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ercent relative humidity Sed Dioreased Side 2 .sed Unoreased Side 2 .sed 1.5 .8 .9 .1.7 .8 .2.2 .9 .1.7 .5 .1.6 .7 .5 .1.6 .5 .1.6 .5 .1.6 .5 .1.6 .5 .1.5 .5 .1.7 .5 .1.6 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	Uncrease 18.0 18.3 18.3 18.3 18.3	* F, 90-percent le 1 Creased 60.1 61.1 20.2 31.3 39.2	t relative humi Side Uncreased	dity
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Side 2 Side 2 .sed Uncreased	Uncrease 17.2 18.0 18.6 18.3 18.3 13.1	le 1 Creased 25.6 60.1 61.1 20.2 31.3 39.2	Side Uncreased	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	sed Uncreased Uncreased Uncreased Uncreased Uncreased Uncreased 1.5 1.5 1.5 1.5 1.6 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9		Creased 25.6 60.1 61.1 20.2 31.3 39.2	Uncreased	e 2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>منعنين من - ۲- من دامن</u>		25.6 60.1 61.1 20.2 31.3 39.2		Creased
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			25.6 60.1 61.1 20.2 31.3 39.2		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			25.6 60.1 61.1 20.2 31.3 39.2		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			20.2 31.3 39.2	19.7 10.2	39.1 18.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-		18.5 16.7 13.1 20.2	88.1 19.3 23.8 45.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			17.2	14.9	18.0 13.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			15.3 15.3	13.6	14.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			45.8	23.0	48.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~~~		29.8	23.9 12.8	23.9 12.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			13.9 14.0	12.5	17.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			13.6 7.3 7.6	8.8 6.7 0.0	14.5 7.5 6.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u></u>	.6 10.	•	•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2.	2.8	2.6	2.6
$ \begin{vmatrix} 88 \text{ to } 100^{+} & 60 \\ 69 & 23 & 92 \\ 69 & 23 & 92 \end{vmatrix} 84 \text{ to } 100^{+} & .6 \\ 18 & 2.4 \\ 2.4 & 2.9 \\ 1.6 & 2.8 \\ 1.6 & 2.8 \\ 19.7 & 18.6 \\ 14.1 \\ 14.1 \\ 14.1 \end{vmatrix} $		-10	$^{6.6}_{23.6}$	6.4 13.4	9.9
		19.	7.4 18.6	11.2	10.6
¹ W, waxed; I, infused with asphalt; R, reinforced with strands or cords of fiber; WS, treated with ² Side melamine resin for high wet strength; MR, treated for mold resistance. The numbers are the number of sheets treated.		5 5 ETS CREP ETS CRE 9 9 9 9 1 and side the paper or other m	0 $$ 1.6 $5.$ 5 11 16 $10.$ ETS CREPED) 11 16 $10.$ ETS CREPED) 0.3 0.3 0.3 11 16 $10.$ 0.3 11 0.3 03 0.7 27 11 0.9 $7.$ 7 11 0.9 $7.$ 7 11 0.9 $7.$ 7 11 0.9 $7.$ 7 11 0.9 $7.$ 9 07 28 $19.$ 16 28 $19.$ $7.$ 16 28 $10.$ $7.$ 16 28 $10.$ $7.$ 16 28 $10.$ $7.$ 16 28 $10.$ $7.$ 16 28 $10.$ $7.$ 16 28 $10.$ $7.$ 0.00 0.00	0 $$ 1.6 $5.$ 5 11 16 $10.$ ETS CREPED) 11 16 $10.$ ETS CREPED) 0.3 0.3 0.3 11 16 $10.$ 0.3 11 0.3 03 0.7 27 11 0.9 $7.$ 7 11 0.9 $7.$ 7 11 0.9 $7.$ 7 11 0.9 $7.$ 7 11 0.9 $7.$ 9 07 28 $19.$ 16 28 $19.$ $7.$ 16 28 $10.$ $7.$ 16 28 $10.$ $7.$ 16 28 $10.$ $7.$ 16 28 $10.$ $7.$ 16 28 $10.$ $7.$ 16 28 $10.$ $7.$ 0.00 0.00	0 1.6 5.5 7.6 1 5 1.1 1.6 10.7 13.5 1 FTS CREPED) 1.1 1.6 10.7 13.5 1 FTS CREPED) 2.6 2.8 0.3 0.6

Acidity	hot extrac- tion		$\mathrm{H}d$	7.5	7.3	7.5	2		5.0	6.1	³ Inside and outside indicate the positions of the sides of the material in the caseliner made from it.
fing	Taber dry rub	Out- side ³	rev/cg rev/cg			1 1 1 1 1 1 1		115	156	~	ner mad
to scuf	Taber	In- side ³	rev/cg				500	321	9	10	e caselin
Resistance to scuffing	et rub	CD	Dou- ble rubs	3,100	3,300	4,000	2,600	9,000	430	200	ul in the
Res	NBS wet rub	MD	Dou- ble rubs	3,800	3,600	4,700	2,800	13,000	550	690	materia
2000	11020	CD	6	410	340	500	200-	1 4 5 5	210	650	s of the
Stiffnoce		MD	в	200	660	1,000	200		200-	330	the side
Stratah	TIM	CD	%	13	14	15	Ω	24	10	2	ions of
Stre		MD	%	11	26	17	00 0	×	15	15	Inside and outside indicate the positions of the sides of the mat
Tensile strength retained when wet		CD	%	65	71	87	74	122	20	18	dicate t
Tenstrei	when	MD	%	92	105	116	66	107	27	25	tside in
sile	ıgth	CD	lb/in.	11.1	11.0	11.8	31.9	46.2	25.6	41.9	and out
Tensile	strength	MD	lb/in.	31.3	26.7	43.5	54.9	71.3	30.3	44.1	³ Inside
Tearing	resistance	CD	0	930	940	 	l I I I I	890	190	400	
Tear	resist	MD	B	630	760	920	066	069	190	350	17 3-
ture	ance	CD1	Points	41	1		102	336	73	32	
Puncture		MD1			l l l l t	1 1 1 1	98 271		21	32	40 40
	Bursting		Points	26	16	135	86	125	73	80	imo porio
it per	3,000 sq ft	As- phalt	<i>d1</i>	350	510	510	61	None	90	110	the of t
Weight per	3,000	Total	91	425	587	605	301	255	155	222	inld nor
Description of caseliner				Duplex. Cellulose wadding infused with asphalt.	Duplex. Cellulose wadding infused with asphalt and coated on one side with asphalt.	Triplex. Cellulose wadding infused with asphalt.	Kraft paper with lead foil laminated to one side and scrim cloth laminated to the other side.	Cloth, one side coated with vinyl resin	Duplex. Kraft paper laminated with asphalt to cellophane sheet.	Triplex. Kraft paper laminated with asphalt to both sides of a cellophane sheet.	¹ MD = Machine direction; CD = cross direction.
Sample desig- nation			P	QQ	R	X	Ζ	FF	II	1MD=	

Flexible Caselining Materials

TABLE 3.—Physical properties and acidity of miscellaneous caselining materials

16

			Water resistance hr	stance hr				Water-v.	apor permea	Water-vapor permeability, (g/m²)/24 hr	2)/24 hr		
Sample	Decemention of inscaliner	73° F,	73° F, 50-percent relative humidity	elative hum	idity	73° F,	50-percent	73° F, 50-percent relative humidity	nidity	100° F,	, 90-percent	100° F, 90-percent relative humidity	aidity
nation		Side ¹ 1	1 1	Side 2	e 2	Side 1	3 1	Sid	Side 2	Side 1	e 1	Side 2	2
		Uncreased	Creased	Uncreased	Creased	Uncreased	Creased	Uncreased	Creased	Uncreased	Creased	Uncreased	Creased
Р	Duplex. Cellulose wadding infused with asphalt	2100+	84 to 100+	100+	100+ 73 to 100+	0.5	5.8	0.5	1.9	4.3	28.0	4.8	11.4
Q	Duplex. Cellulose wadding infused with asphalt and coated on one side with asphalt.	100+	100+	100+	100+	.3	0.4	.3	0.5	2.8	2.9	2.7	3.3
R	Triplex. Cellulose wadding infused with asphalt	100+	86 to 100+	100+	100+54 to 100+	1.1	.6	ŗ.	ů.	6.4	4.6	4.0	3.9
X	Kraft paper with lead foil laminated to one side and scrim cloth laminated to the other side.	100+	100+	100+	100+	0.0	0.	0.	0*	0.0	0.0	0.0	0.0
Z	Cloth, one side coated with vinyl resin	3	ŝ	14	16	9.4	10.2	7.0	7.1	89.5	98.0	68.4	70.2
FF.	Duplex. Kraft paper laminated with asphalt to cellophane sheet.	78	38	72 to 100+	72	2.1	2.4	1.9	1.7	21.5	24.5	16.0	14.4
II	Triplex. Kraft paper laminated with asphalt to both sides of a cellophane sheet.	20	25	31	27	2.0	2.2	1.7	2.2	19.3	21.8	15.1	21.6
1Side	¹ Side 1 and side 2 indicate the side exposed to water or water vapor. the material in the caseliner made from it.	ter vapor.	Side 1 is th	Side 1 is the outer side of	of	² All test	s for water	resistance w	ere disconti	² All tests for water resistance were discontinued at the end of 100 hours.	end of 100 h	lours.	

24

TABLE 4.—Resistance of miscellaneous caselining materials to water and water vapor.

TABLE 5.—Bleeding tests of caselining materials

Sample lesignation	Nature and degree of staining of white paper in contact with both sides of test specimens at 150° F and under pressure of 72 pounds per square foot for 5 hours
А	Slight asphalt staining, spots; brown wax stains
B	Moderate asphalt staining, streaks.
C	
D	fused) slight asphalt staining, spots.
E	
F	
G	Do.
H	No asphalt staining, brown wax spots.
J	Do.
K	slight asphalt staining, spots.
M	
0	Moderate asphalt staining, streaks.
P	One side no staining; other side slight asphalt staining; test paper sticks partly to caselining material.
Q	material.
R	material.
S	Infused side, considerable asphalt staining; other side, slight asphalt staining.
Т	Infused side, considerable asphalt staining; other side, no staining.
U	No staining.
V	Do.
	Moderate asphalt staining, streaks.
AA	Very considerable asphalt staining. Test paper laminated firmly to caselining material.
BB	No asphalt staining, slight wax stains.
CC	Moderate asphalt staining, spots. Test paper sticks around edges of caselining material.
DD	to caselining paper.
EE'	No staining.
FF	Slight asphalt staining, brown wax spots.
GG	
HH	
II	

V. CORRELATION OF TEST DATA FOR CASELINING MATERIALS WITH PERFORMANCE OF CASELINERS MADE FROM THEM

Determination of the significance of test data is necessary in arriving at a quality standard for any material. In the present instance, judgment of performance was based on results of the tests of the packed shipping cases at the Package Research Laboratory.¹¹ There the different materials were given ratings based on how well they survived the simulated service tests. The rating was made by a system of scoring with respect to the occurrence of holes and tears. A score of 6 was the maximum, indicating fewest failures; a score of 0 indicated the poorest performance. Caseliners A, C, K, W, and Z were given a score of 6; liners V and CC, a score of 5; and liners H, O, T, U, DD, and EE, a score of 4. These three scores were characterized as indicating satisfactory performance. The remaining caseliners, which received scores of 2, 1, and 0, were classed as unsatisfactory.¹²

A slightly different method of rating the caseliners is shown in table 6. This rating is based on the same data used in the above classification, with the addition of columns 7 and 8 of the

¹¹See footnotes 1, 2, 3, and 4.

¹²See footnote 4.

table, but was arrived at by a different method of handling the data. In table 6 the liners are arranged in the eight numbered columns according to excellence of performance in the simulated service tests made at the Package Research Laboratory. The composite-rating value of each liner, shown in the last column, is the sum of the 8 position numbers of the liner in the 8 numbered columns. The first 13 liners in table 6 are the same 13 liners that were classified independently as satisfactory by the score method referred to above, but the order within both the "satisfactory" group and the "unsatisfactory" group is somewhat different. In the subsequent discussion the "satisfactory" group, which includes the same liners by either method of classification, will be called group I; the "unsatisfactory" liners will be called group II.

	A	verage 1 holes a	numb nd te:	er of ars		Veighteo number	l ave of ho	rage oles	Li	ners wit or t	th no tears	holes			tents ry			
Posi- tion No.		1		2		3		4		5		6		7		8		posite ting
	Tı	ropic	A	rctic	T	ropic	A	rctic	T	opic	A	rctic	T	opic	A	rctic		
1 2 3 4 5	O Z T W EE	0.0 .1 .1 .3 .3	C W Z V A	0.0 .1 .2 .3 .4	O T Z W EE	0.0 .1 .3 .9 1.5	C Z W A K	$ \begin{array}{c} 0.0 \\ .2 \\ .3 \\ .8 \\ 1.6 \end{array} $	O T Z W EE	% 100 93 87 80 80	C W Z A K	% 100 93 90 80 73	O R P Z W	% 100 100 93 92 87	A C K W Z	% 100 100 100 100 96	Z W O K C	25 28 48 51 60
6 7 8 9 10	R U K CC DD	$.3 \\ .8 \\ .9 \\ 1.0 \\ 1.0$	H K EE U O	.4 .4 .5 .5 .5	R DD K C H	$2.1 \\ 2.5 \\ 2.9 \\ 3.6 \\ 4.8$		$1.9 \\ 2.5 \\ 2.6 \\ 2.9 \\ 3.1$	K R U DD C	67 67 53 53 50	V CC H U EE	73 73 67 67 67	DD EE A K Q	87 87 80 73 73	BB DD HH II D	93 93 93 93 87	A DD EE H T	62 70 70 85 89
11 12 13 14 15	H Q A B C	$\begin{array}{c} 1.2 \\ 1.6 \\ 1.7 \\ 1.8 \\ 2.2 \end{array}$	CC DD GG HH T	.5 .7 .7 .8 .9—	U A CC Q B	$5.1 \\ 5.7 \\ 7 \\ 8 \\ 10 - $	EE O T CC U	$3.5 \\ 3.8 \\ 4.1 \\ 4.1 \\ 4.7$	CC H Q B A	40 33 27 27 20	0 DD HH D M	$60 \\ 60 \\ 60 \\ 47 \\ 47 \\ 47$	U CC H HH II	73 53 50 47 47	O T X CC H	87 87 87 87 80	U CC V R HH	91 91 103 117 128
16 17 18 19 20	S P V AA BB	$2.7 \\ 2.9 \\ 4.2 \\ 5.2 \\ 5.3$	B M BB D J	$.9\\1.1\\1.1\\1.3\\1.4$	P GG V HH AA	10 10 11 11 13	D BB B M J	7— 7 7+ 9 10	P V AA GG D	20 13 13 13 7	GG BB B J T	47 40 33 33 33	AA V X GG B	40 33 33 33 33 30	M V GG EE B	80 80 80 73 67	GG B P Q BB	132 135 152 154 154
	HH GG E D II	$\begin{array}{r} 6.1 \\ 7.2 \\ 12.4 \\ 13.1 \\ 13.6 \end{array}$	AA R E P Q	1.7	S BB X D E	23 24 26 28 34	AA E II R X	$13 \\ 13+ \\ 15 \\ 17 \\ 21$	ESFGJ	7 7 0 0 0	E AA Q R P	$27 \\ 20 \\ 7 \\ 7 \\ 0$	C T J FF M	30 27 20 20 13	U E J FF P	67 60 60 60 53	D AA M J II	155 165 173 182 187
26 27 28 29 30	J X FF F	$21.1 \\ 25.0 \\ 28.2 \\ 32.5 \\ 35.4$	II S FF X F	4.1 4.2 19.5 19.7	J M F II FF	34 38 49 60 127	P SQ FF F	24 27 35 53	M X BB FF HH	0 0 0 0 0	S X FF II F	0 0 0	BB S D E F	13 7 0 0 0	R S AA Q F	47 47 47 33	X S E F F F	189 193 195 221 231
31	G	341.	G		G	358	G		II .	0	G		G	0	G		G	241

TABLE 6.—Relative rating of caseliners according to simulated service tests

In table 7 the caseliners are listed in the order of performance according to the composite rating of table 6, and the corresponding physical properties, determined by tests made at the National Bureau of Standards, are tabulated. The data given are averages of the values in the machine direction and in the cross direction, or averages of values for the two sides of the liners (according to the nature of the tests), obtained from tables 1 to 4. There is

one exception; the Taber abrasion value given for each liner is the minimum value obtained on the two sides of the liner.

TABLE 7.—Average values of physical properties ¹ of caseliners, arranged in order	of
composite rating (table 6)	

					1	<u>````</u>					
Sample Desig-	Bursting	Puncture resist-	Tearing resist-	Tensile	Wet- tensile	Stretch	Stiffness	Resista scuf	ince to fing	Water resist- ance	Water-vapor permeability at 100° F, 90 percent
nation	strength	ance	ance	strength	strength			NBS wet	Taber dry (min)	creased at 40° F	relative humidity creased
					GF	ROUP I					
	Points	Beach units	g	lb/in.	lb/in.	%	g	Hundred oscilla- tions	rev/cg	hr	(g/m²)/24 hr
Z W	125 124	$\begin{array}{c} 304 \\ 53 \end{array}$	$\begin{array}{c} 790 \\ 640 \end{array}$	$\begin{array}{c} 59 \\ 51 \end{array}$	$\begin{array}{c} 66\\ 19 \end{array}$	$\begin{array}{c} 16 \\ 10 \end{array}$	200— 820	$\begin{array}{c}110\\6\end{array}$	$\begin{array}{c} 115\\ 48\end{array}$	$\begin{array}{c} 10\\21\end{array}$	84 19 16
0 K C	117 110 110	$\begin{array}{c} 228 \\ 53 \\ 70 \end{array}$	1,010 565	$55\\49\\42$	$\begin{array}{c} 26\\ 12\\ 15\end{array}$	$23 \\ 10 \\ 10$	980 870 710	$\begin{array}{c} 6\\11\\8\end{array}$	$\begin{array}{c} 22\\ 24\\ 13 \end{array}$	$\begin{array}{c} 60 \\ 50 \\ 26 \end{array}$	$\begin{array}{c}16\\10\\13\end{array}$
A	80 98	$\begin{array}{c} 182 \\ 250 \end{array}$	$715\\845$	$30 \\ 51$	$15 \\ 21$	$\frac{26}{16}$	$\begin{array}{c} 495 \\ 790 \end{array}$	$\frac{29}{3}$	$\begin{array}{c} 42\\ 16\end{array}$	100+80+	3 9 17
DD EE H T	116 95 110	$\begin{array}{c} 62\\ 44\\ 40\end{array}$	475 435	50 40 47	$\begin{array}{c} 24\\10\\15\end{array}$	11 15 11	845 705 550	$22 \cdot 12 \cdot 4$	24 22 8	$31 \\ 85+ \\ 46$	17 8 47
U CC V	104 88 57	$54\\45\\65$	540 355	42 57 30	$\begin{array}{c} 24\\ 16\\ 6\end{array}$	$5\\6\\15$	725 845 325—	$\begin{array}{c} 20\\10\\2\end{array}$	$30 \\ 17 \\ 15$	$29 \\ 80 + \\ 15$	$\begin{array}{c}16\\7\\18\end{array}$
					GR	OUP II					
R HH	$\begin{array}{c} 135\\61\end{array}$	61	-`350	28 33	30 8	$\begin{array}{c} 16\\ 10 \end{array}$	750 465	44 11	6	85+ 41	4 14
GG B P	88 88 97	29 35 41	355 415 780	36 39 21	$11 \\ 13 \\ 15$	$\begin{array}{c} 10\\ 6\\ 7\\ 12\end{array}$	340 425 555	$\begin{array}{c} 11\\ 4\\ 6\\ 35\end{array}$	5 67		$11 \\ 15 \\ 14 \\ 20$
Q BB	$\begin{array}{c} 91 \\ 69 \end{array}$	51	850 330	19 34	18 9	20 12	500 440	$35 \\ 6$	9	100+23	$3 \\ 27$
D AA M	$\begin{array}{c}112\\77\\110\end{array}$. 36 32 28	$475 \\ 470 \\ 425$	71 47 68	$\begin{array}{c}10\\11\\8\end{array}$	4 4 4	$1,020 \\ 590 \\ 750$	9 9 5	10 9 10	$13 \\ 100+ \\ 80+$	$\begin{array}{c} 39\\7\\32 \end{array}$
J II	100 80	26 32	410 375	63 43	6 9	4 11	770 490	8 7	11 7	90+26	75 22
X S E	$\begin{array}{r} 86\\108\\71\end{array}$	$\begin{array}{c}100\\23\\30\end{array}$	$\begin{array}{c} 335\\ 405 \end{array}$	$\begin{array}{c} 43\\56\\52\end{array}$	$\begin{array}{c} 30 \\ 10 \\ 6 \end{array}$	$\begin{array}{c} 4\\ 5\\ 5\end{array}$	200 - 630 - 645	27 8 5	 8 19	$100+\\39\\100+$	$\begin{array}{c} 0\\ 20\\ 14 \end{array}$
FF	73	22	190	28	7	13	200	5	6	55	15
F G	103 72	46 30		57 51	13 15	3 4	700 440	$\frac{4}{2}$	11 14	17 11	$\begin{array}{c} 28 \\ 43 \end{array}$
¹ All tes	sts made a	at 73° F, a	and 50-pe	ercent rela	tive humi	dity, exce	ept water-	vapor per	meability	. Values	except Taber

¹All tests made at 73° F, and 50-percent relative humidity, except water-vapor permeability. Values, except Taber are averages of both directions, or of both sides.

As the performance rating, by either method, is based largely on the development of holes and tears during the simulated service tests, the correlation of the simulated service tests with the physical properties of the liner material must logically be a correlation with the results of those tests of physical properties that apply stresses intended to produce some form of failure by rupture or wear. That there is some such correlation is indicated by the fact that it is possible to choose a combination of tests and limits of test values that will separate completely group I from group II. For example, a puncture resistance (Beach) of not less than 40 units; a tensile strength of not less than 30 pounds per inch; a stretch of not less than 5 percent; and a tearing resistance of not less than 355 grams will do this. All liners in group I will be retained under this combination of physical-property requirements. All but seven liners in group II will be eliminated by the first requirement; three of these seven will be eliminated by the second requirement; two of the remaining four, by the third requirement; and the remaining two, by the fourth requirement.

Of course, such a procedure is an elastic and arbitrary one, in that some other combination could be found that would divide the liners at a different level. It is apparent, however, that a reasonable specification of physical properties might be drawn up that would retain unequivocally most of the satisfactory liners, while eliminating equally unequivocally most of the unsatisfactory liners. The few liners that are a little difficult to place definitely in one group or the other, by their physical properties, are naturally those near the division line of table 7, between groups I and II. For example, liner R performed very well in the simulated service tests, while under tropical conditions, but performed poorly under arctic conditions. To make such a distinction by physical properties alone would require that certain tests to failure be made on the liner materials at a low temperature, under which condition the asphalt becomes brittle, but no such tests were made at the National Bureau of Standards. It is observed, however, that all the liners of this construction (P, Q, and R) are weak in tension under normal conditions, which provides a means of eliminating them by a tensile requirement. Then there are some liners above and below the division line that did not differ much in performance in the simulated service tests, when ranked ac-cording to table 6. Liners V, HH, and GG are similar in structure, and are comparable to one another in most physical properties. The propriety of regarding one of these as satisfactory and the other two as unsatisfactory may reasonably be questioned.

The physical properties tabulated in table 7 are useful in varying degrees in separating the two groups. All liners of group I (first 13 in table 7) have a puncture resistance (Beach) of 40 units or more; only five (tests of R and Q not having been made) in group II exceed this value. Of the liners in group I on which tests of tearing resistance could be made, all but one tested 435 grams or more; only four of those in group II exceeded this figure. Although tearing resistance is useful as far as it goes, satisfactory tests can not be made on many liners containing cloth, strands, or long fibrous material. For this reason, it is not very desirable to use tearing resistance in a specification if it can be avoided.

A bursting strength (Mullen) of 80 points or more was found for all liners in group I, with one exception; but two-thirds of the liners in group II also have bursting strength values above this figure. Bursting strength, therefore, is not very useful in separating the two groups. Likewise, the range of tensile-strength values is so much alike in the two groups that this property might be dismissed as of little value, except for one consideration. As previously stated, the liners P, Q, and R, made of cellulose wadding infused with asphalt, were classed as unsatisfactory because of their very poor performance under arctic conditions. The only physical test made at normal temperature that will eliminate these liners is tensile strength, and this fact appears to be the only logical reason for including the tensile test in the effort to separate group I and group II by their physical properties alone. The tensile strength of the liners when wet is, on the other hand, more useful. All but three of the satisfactory group have a wet tensile strength of 15 pounds per inch or more; only three of the unsatisfactory group exceed this figure. Stretch is also useful. Only two of the liners in group I have a stretch of less than 10 percent; about two-thirds of the liners in group II have a stretch of less than 10 percent.

Stiffness apparently has no bearing on the separation of the two groups. This might be expected, because a test of stiffness does not involve rupture or wear.

It was expected that the "wet-rub" test would be related to the separation of the two groups, inasmuch as the scuffing of the wet liners, and the wearing of holes through them, are the very essence of some of the simulated service tests. It is apparent, however, from the data in table 7 that the corresponding test on the liner materials has little relation to the separation of the two groups. The Taber abrasion test on the dry surface does, on the contrary, appear to help in the classification, provided that the minimum value for the two sides is used. All but two of the satisfactory liners have a minimum Taber value of 15 or more revolutions per centigram of material worn away; only two of the unsatisfactory liners have a minimum Taber value exceeding this figure.

Resistance to the transfer of moisture through the liners, although it probably had no direct bearing on the simulated service tests, is of primary importance in its own right, since the chief function of a caseliner is to serve as a moisture barrier. A liner may withstand all necessary rough treatment without injury, and still be inherently unable to protect the contents of a shipping case against damage by moisture. The values for water resistance and for water-vapor permeability are given in table 7. Very few liners in either group (but some in both) have a water-resistance value less than 20 hours. The water-vapor permeability is the only test listed for which the degree of excellence is inversely related to the numerical value given. In group I, all but two liners have a water-vapor permeability of 19 grams per square meter per 24 hours or less at 100° F and 90-percent relative humidity; in group II the liners were equally divided on each side of this figure.

The following combination of physical tests and limiting values seems to provide a reasonable basis for selecting satisfactory caseliners.

Puncture resistance (Beach), average of both directions, not less than 40 units.

Tensile strength, average of both directions, not less than 30 pounds per inch width.

Wet tensile strength, average of both directions, not less than 10 pounds per inch width.

Stretch, average of both directions, not less than 8 percent.

Water resistance, on creases made at 40° F, average of both sides, not less than 20 hours.

Water-vapor permeability at 100° F and 90-percent relative humidity, on creases made at 40° F, not more than 20 grams per square meter per 24 hours.

If it is desired to add some additional safeguard, it may be useful to add an abrasion value by the Taber instrument of not less than 10 or 12 revolutions per centigram on either side.

Based wholly on tests of physical properties, such a combination as that given above eliminates with little uncertainty the caseliners in group II, while retaining all but five in group I. Of these five, three (Z, T, and V) fail because they are not good enough as moisture barriers; the other two (U and CC), because of low stretch.

VI. RECOMMENDED STANDARDS

In a meeting attended by the Task Group and representatives of the War Department, the Navy Department, and the National Bureau of Standards, it was agreed that:

1. It is possible to correlate National Bureau of Standards physical tests on caseliner materials with performance results on caseliners made from them tested at Package Research Laboratory.

2. Based on such correlation, and without taking into account load, box construction, box size, and handling, a satisfactory caseliner material can be defined as follows:

The caselining material should be asphalt-laminated kraft paper having the following properties:

Total asphalt per 500 sheets, 24 by 36 inches, not less than 150 pounds.

Total kraft paper per 500 sheets, 24 by 36 inches, not less than 90 pounds.

Stretch, average of both directions, not less than 10 percent.

Tearing resistance, average of both directions, not less than 400 grams.

Tensile strength, average of both directions, not less than 40 pounds per inch width.

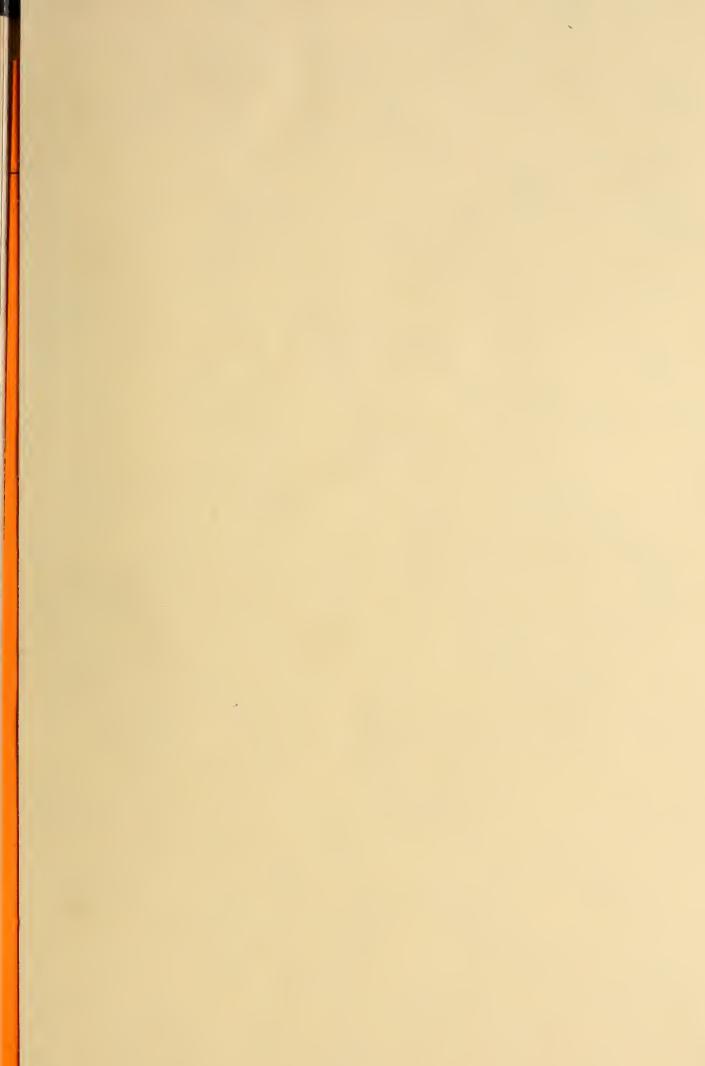
NOTE.—Variations below the minimum tensile-strength requirement are permissible, provided they are compensated by an increase over the tearingstrength requirement in the ratio of 10 units of tearing strength to 1 unit of tensile strength.

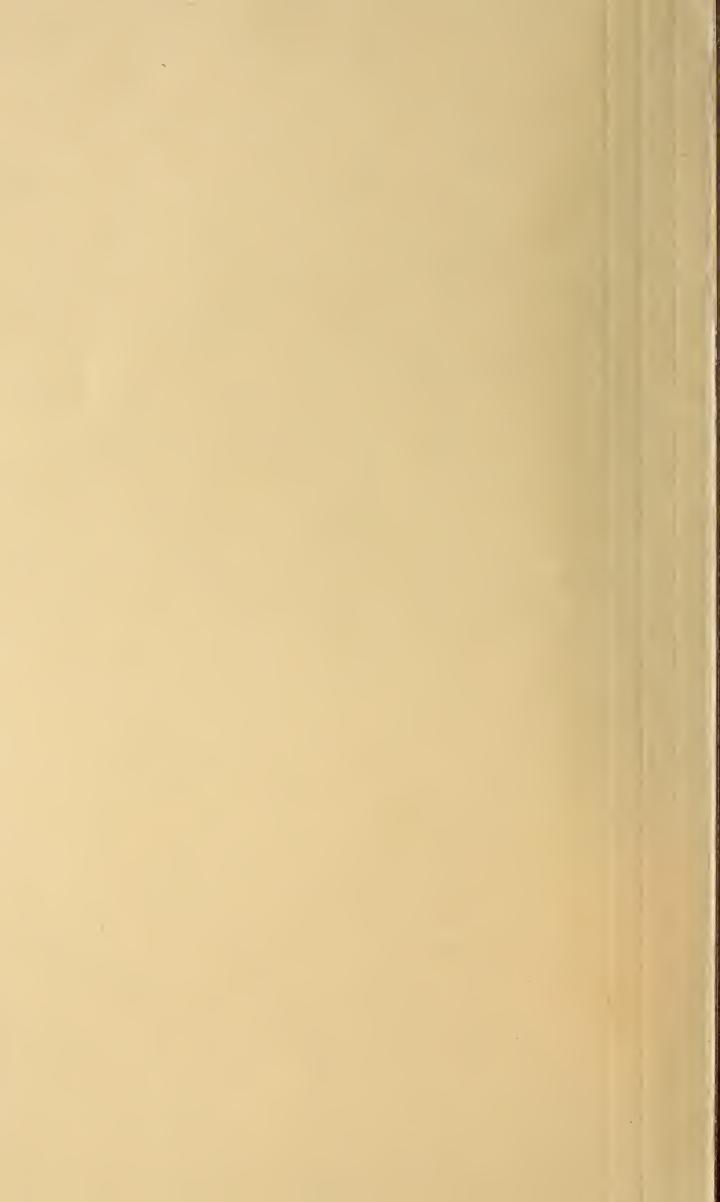
Puncture resistance (Beach), average of both directions, not less than 40 units.

Water resistance, on creases made at 40° F, average of both sides, not less than 16 hours.

Water-vapor permeability at 100°F and 90-percent relative humidity, on creases made at 40° F, average of both sides, not more than 20 grams per square meter per 24 hours. In the foregoing specification, the tensile-strength requirement is coupled with the tearing-resistance requirement in a manner that seems rather awkward and strained, in order not to eliminate obviously good liners that have a tensile strength of less than 40 pounds per inch. It has already been pointed out that tensile strength, with one possible exception, seems to have very little relation to the classification of liners by the simulated service tests. As the specification confines acceptable caseliners to those composed of kraft paper, laminated with asphalt, it becomes unnecessary to include a tensile-strength requirement solely to eliminate those miscellaneous liners (P, Q, and R) found unsatisfactory under arctic conditions. It is recommended, therefore, that the tensile-strength requirement, and perhaps also the requirement for tearing resistance, be omitted, and that a wettensile-strength requirement of not less than 10 pounds per inch, be substituted for them.

The project was carried out with the assistance of a Task Group, representative of manufacturers of caselining materials and the Forest Products Laboratory, which acted in an advisory capacity. The Task Group was appointed by Henry A. Wolsdorf, chairman of the Container Coordinating Committee. His invaluable assistance and that of the following members of the Task Group throughout the investigation at the Bureau is gratefully acknowledged:


- E. G. Mullen, chairman, W. Ralston & Co., Inc.
- C. E. Hrubesky, Forest Products Laboratory.
- F. F. Newkirk, American Reinforced Paper Co.
- H. J. Driscoll, Union Bag & Paper Corporation.
- W. S. Seaman, Angier Sales Corporation.


M. L. Downs, Thilmany Pulp & Paper Co.

WASHINGTON, December 21, 1945.

☆ U. S. GOVERNMENT PRINTING OFFICE: 1946-697586

.

