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Who are we and what do we do?

Regional Energy Deployment System (ReEDS) is a 
capacity expansion model (CEM) that optimizes the 
buildout of the future U.S. power system

https://www.nrel.gov/analysis/reeds/
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What have we been studying?

• U.S. Department of Energy “SunShot 2030” 
PV (3¢/kWh) and low-cost battery storage 
scenarios

(Cole et al. 2017b)

At high storage penetration levels, storage capacity valuation becomes important…
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What is capacity value (CV)?

• Fraction of the installed capacity that reliably contributes to meeting load 
during times of highest system risk
– Ideally calculated with probabilistic approach, but CEMs typically use 

approximation methods
– Implemented in planning reserve margin constraints in CEMs
– Widely applied to wind and solar, but less understood for storage (active 

area of research in CEMs, see Cole et al. 2017c)

• Storage CV=1 means device can discharge at rated capacity for full duration 
of “high risk” periods
– Longer duration storage tends to have larger CVs because they are more 

likely to provide full discharge for full duration of high risk periods
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CEM approaches to storage CV

• Static CV
– Regardless of amount of storage 

deployed
– May vary by duration (Sioshansi et al. 2014)

– May vary by technology

• Dynamic CV
– Simple dispatch simulation between 

sequential optimization periods (Hale 
et al. 2016)

– Based on pre-determined functional 
fit (current ReEDS approach for 
batteries)

(Denholm and Margolis 2018)

Sioshansi et al. (204) curve represents an analysis of two 
regions in California using multiple years of historic price 
and load data with storage dispatch based on electricity 
prices; “CPUC 4-hour rule” curve is based on resource 
adequacy rules for California’s investor-owned utilities 



NREL    |    7

Our approach: peak net load reduction 
as a proxy for storage CV

Change in California net load shape due to PV
(Denholm and Margolis 2018)

Impact of 4-hour storage dispatch on net 
load on the peak demand day in 2011 in 
California (Denholm and Margolis 2018)

The potential for storage to 
reduce peak net load depends on 
storage penetration and duration 
(left) and PV penetration (right)
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ReEDS dynamic storage CV method

• 3 key parameters for battery storage CV:
– Storage penetration (capacity-basis)
– PV penetration (energy-basis)
– Storage duration

• Multiple regression fit of peak net load 
reduction potential as a function of 
these 3 parameters
– Based on results from NREL’s REFlex

model using California data for 2007-
2015 (Denholm and Margolis 2018)
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ReEDS “Functional Form” fit

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

= �
1, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓𝑓𝑓

𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓𝑓𝑓

Where:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓𝑓𝑓 = �𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎 𝑐𝑐 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 1 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 < 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏 𝑑𝑑 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 1 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑖𝑖 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃5 + 𝑗𝑗 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃4 + 𝑘𝑘 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃3 + 𝑙𝑙 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 + 𝑚𝑚 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑛𝑛

“Drop-off” point

Shifted to normalize 
across years

Piecewise logarithmic 
drop-off point fit, then a 
polynomial fit for the 
declining storage CV curve
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36 Scenarios
(all use low cost storage = LCS)

Scenario Durations 
(hours)

Battery Storage CV 
Methods

Notes

Mid Case LCS 2, 4, 8 Static, Functional, 
Functional*Static, 
CV=1

ATB Mid Scenario 
with low cost storage

RPS 80 LCS 2, 4, 8 Static, Functional, 
Functional*Static, 
CV=1

RPS 80% target with 
low cost storage

High PV LCS 2, 4, 8 Static, Functional, 
Functional*Static, 
CV=1

Low cost PV and low 
cost storage

All scenarios are derived from the 2017 NREL Standard Scenarios (Cole et al. 2017a), which 
use input cost values from the 2017 NREL Annual Technology Baseline (ATB) (NREL 2017) 

Static:
Battery CV = 
• 0.555 for 2-hour 
• 0.76 for 4-hour 
• 0.937 for 8-hour 

(Sioshansi et al. 2014)

For all:
Pumped hydro and CAES 
CV = 1
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Storage CV method differences

RPS 80 LCS scenario
MISO-West RTO



NREL    |    12

Storage deployment
(less favorable storage conditions)

Cumulative storage deployment in ReEDS by year for each storage CV method 
for Mid Case LCS scenario with 4- and 8-hour durations

ReEDS builds more 
storage with 
methods that give 
storage a CV of 1 
for some portion 
of capacity
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Storage deployment
(more favorable storage conditions)

Cumulative storage deployment in ReEDS by storage CV method for each 
storage CV method for RPS 80 LCS scenario with 4- and 8-hour durations

ReEDS builds more 
storage capacity with 
declining storage CVs 
because storage is the 
lowest-cost capacity 
resource even as the 
CV declines; cost of 
additional storage 
capacity is outweighed 
by the energy value 
(and other values) 
provided by that 
additional capacity
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Key takeaways

• Storage deployment is very nuanced, driven by the value to cost 
tradeoff
– Assumed cost inputs and value streams, including storage CV 

method
– Relative economics of next-cheapest option (usually gas CTs)

• Larger storage deployment is seen in ReEDS (low cost storage) with:
– Storage CV methods that assign larger CVs under less favorable 

storage conditions
– Storage CV methods that assign smaller CVs under more 

favorable storage conditions
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Next steps

• Continue to improve upon this simple dynamic storage CV 
method (Functional*Static)
– Fit storage CV curves to region-specific data
– Incorporate wind
– Capture full set of storage value streams
– Mixed portfolio of storage durations
– Incorporate chronology- and forecast-error-related 

impacts
 End goal: fully endogenize
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Functional Form fit coefficients

Functional Form fit coefficients by storage duration
Nonlinear squares estimate Calculated from data

durationHr i j k l m n r a b c d minPVPen minStorPen

2 7.29E-2 2.11 3.12E-1 -2.67E+2 -2.14E+3 1.43E+3 1.15E-1 2.09E+23 8.43E+35 1.20E+2 2.00E+1 0.09 1.961E-3

3 -2.36E+1 1.98 1.43E-1 9.78E+1 2.18E+2 -2.20E+2 5.55E-2 4.88E+7 7.29E+32 2.75E+1 5.44E+1 0.07 9.215E-3

4 -3.22E+1 1.55 6.83E-2 2.72E+2 1.29E+3 -1.01E+3 2.87E-2 1.03E+4 5.49E+20 2.01E+1 5.21E+1 0.07 1.779E-2

5 -1.47E+1 4.15E-1 2.17E-2 2.09E+2 1.22E+3 -9.12E+2 1.60E-2 2.93E+2 2.42E+16 1.49E+1 4.81E+1 0.07 3.789E-2

6 1.43E+1 -4.51E-1 -3.94E-2 -3.17E+1 6.21E+2 -2.23E+2 4.37E-3 8.47E+2 1.98E+22 2.16E+1 1.64E+2 0.07 6.010E-2

7 5.76E+1 -1.44 -8.11E-2 -5.35E+2 -2.32E+3 1.89E+3 6.17E-4 3.87E+3 1.65E+11 2.50E+1 5.06E+1 0.07 9.431E-2

8 5.83E+1 -1.97 2.30E-5 -4.95E+2 -1.95E+3 1.65E+3 2.34E-3 3.43E+2 2.57E+9 9.56 3.64E+1 0.07 1.357E-1
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