
Lithologic Variations in Slope 
Development Theory

GEOLOGICAL SURVEY 
CIRCULAR 485



Lithologic Variations in Slope 
Development Theory

By Adrian E. Scheidegger

GEOLOGICAL SURVEY CIRCULAR 485

Washington 7964



United States Department of the Interior
STEW ART L. UDALL, SECRETARY

Geological Survey
THOMAS B. NOLAN, DIRECTOR

Free on application to fhe U.S. Geological Survey, Washington, D. C. 20242



CONTENTS

Page Page
Abstract ____________________________ 1 Slope with 
Introduction. ________________________ 1 Soft layer _______________ 5
The basic slope program _____________ 2 Soft bottom _____________ 5
Slope with  Pore water pressure.---- 7

Caprock _________________ 2 References _____-____---_----_---_- 8
Resistant layer ___________ 5

ILLUSTRATIONS

Page 
Figure 1. Graph showing basic slope development _____________________________________ 2

2 6. Graph showing slope with 
2. Caprock________________________________________ 4
3. Resistant layer__________________________________ 6
4. Soft layer ______ ________________________________ 6
5. Soft bottom _______________.____-_-_-____--__--__ 7
6. Pore water pressure.____________________________ 7

TABLES

Page 
Table 1. Basic slope program _______________________________________________________ 3

2-6. Slope with 
2. Caprock.______________________________________________________ 4
3. Resistant layer_________________________________________________ 5
4. Soft layer ______________________________________________________ 6
5. Soft bottom ____________________________________________________ 7
6. Pore water pressure.___________________________________________ 8

III



Lithologic Variations in Slope Development Theory

By Adrian E. Scheidegger

ABSTRACT

This paper presents a comprehensive review and amplifi­ 
cation of the writer's earlier slope development theory. In 
particular, the influence of lithology on evolving slope pro­ 
files is investigated and calculations are made for various 
conditions, such as presence of caprock, soft bottom, and 
hard and soft intermediate layers.

INTRODUCTION

The understanding of the basic principles 
involved in the development of slopes is cru­ 
cial for the understanding of the evolution of 
a landscape.

There are basically two methods by which 
the development of a slope can be studied. 
The first is the inductive method, in which 
measurements in the field are made in the 
hope to discover regularities which can later 
be formulated as "laws." In very complex 
phenomena, this approach may be hopelessly 
confusing. The second method, the deductive 
one, considers only one variable at a time, 
and makes a reasonable assumption regard­ 
ing the physical principles involved in its 
change. The consequences of the assump­ 
tions are then deduced and, finally, the deduc­ 
tions are tested by determining whether the 
predicted features are found anywhere in 
nature. As Wolman (1963) stated: "The em­ 
phasis on principles...directs attention to in­ 
terrelationships and hopefully lessens the 
tendency to observe, measure, and record 
everything simply because it is there."

With a view to providing a theoretical basis 
for work in the field, the writer (Scheidegger, 
1961) proposed a simple mathematical model 
of slope erosion. The aim of the present 
paper is to elaborate on the earlier proce­ 
dure by investigating the effect of lithologic 
variations along the slope profile upon the 
appearance of the latter, as calculated from 
the writer's theory.

The basic mathematical slope development 
model described earlier (Scheidegger, 1961) 
does not attempt to describe in detail the 
"microscopic" aspects of erosion; rather, it 
attempts to describe the overall effect of 
many contributing causes. It is assumed (a) 
that the speed, with which denudation proceeds 
is proportional to the declivity of the slope 
and (b) that the action of the denudation is 
normal to the tangent of the slope profile. 
These are very simple as sumptions, but it is 
believed that they may describe some actual 
phenomena correctly; they lead to a nonlin­ 
ear partial differential equation.

In the present context, the term "slope" 
should be regarded in a very general sense. 
It may refer to a mountainside, to the un­ 
graded part of a headwater stream, or to the 
profile of a promontory. Under conditions 
where the aforementioned assumptions are 
satisfied, the slopes will develop as calcu­ 
lated here. Hopefully, such conditions will be 
found in nature.

Before proceeding with the investigation of 
the influence of lithology in slope develop­ 
ment theory, the deduction of the original 
partial differential equation will be recapitu­ 
lated. In fact, the assumptions denoted by 
(a) and (b) above immediately lead to

(1)

where y is the vertical height above some 
base line, T is time, and x is the horizontal 
abscissa of the slope point under considera­ 
tion (arbitrary units of x andy ). If a lithol- 
ogical resistance factor a is introduced, the 
differential equation becomes
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This equation is solved easily on an elec­ 
tronic computer by the same method as that 
applied to the basic differential equation.

The mathematical solution representing 
the denudation of an originally straight slope 
bank for a variety of conditions will be given 
here. A point of reference also will be pro­ 
vided by reproducing the basic solution (a= 1) 
of the slope problem.

THE BASIC SLOPE PROGRAM

In order to provide a point of reference 
for the calculations reported here, the well- 
known case for the evolution of a straight 
slope bank consisting of homogeneous mate­ 
rial will be presented first. For conformity 
with the results to be reported later, the 
solution of the differential equation has been 
recalculated for a slope bank with the fol­ 
lowing initial configuration:

y = 4* for 0<x<0.25 
y = 1 for 0.25^x^1.0

(3)

The steps in x were in units of 0.01. The 
time steps were originally chosen as 0.01, 
but these were modified by the computer 
program to satisfy the criterion of the char­ 
acteristics. The present computer program 
has been described in detail previously by 
the writer (Scheidegger, 1962).

The results of the calculations, which will 
represent a reference solution, presenting 
the slope profile for the same time values as 
will be used later for the further calcula­ 
tions, are shown in table 1 and figure 1. The 
units for x (horizontal coordinate), y (verti­ 
cal coordinate), and T (total time elapsed) 
are arbitrary, and may be so chosen as to 
suit a particular problem.

SLOPE WITH CAPROCK

The first modification of the basic slope 
development problem to be presented is that 
of a horizontal layer of caprock. This can 
easily be accomplished by setting in equa­ 
tion 2

a = 1.0 

a= 0.1

for 
for

Thus, the caprock is 10 times more resistant 
to being eroded than the body of the slope.

It is again assumed that initially, the slope 
represents the appearance of a straight slope 
bank as given by equation 3. As time pro­ 
ceeds, a characteristic profile develops, as 
is shown numerically in table 2 and graphi­ 
cally in figure 2.

The calculated profile is a very good rep­ 
resentation of slope profiles that are found in

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 1.  Graph showing basic slope development.



SLOPE WITH CAPROCK 

Table 1. Basic slope program

X

0.00
.02
.04
.06
.08
.10
.12
.14
.16
.18
.20
.22
.24
.26
.28
.30
.32
.34
.36
.38
.40
.42
.44
.46
.48
.50
.52
.54
.56
.58
.60
.62
.64
.66
.68
.70
.72
.74
.76
.78
.80
.82
.84

T = 0.0 T=0.015

0 0
.08 .010
.16 .035
.24 .071
.32 .12
.40 .18
.48 .24
.56 .32
.64 .39
.72 .47
.80 .55
.88 .63
.96 .71

1.00 .79
.87
.95

1.00
1.00

T= 0.030

0
.003
.014
.032
.058
.090
.13
.17
.22
.28
.34
.40
.48
.55
.63
.71
.79
.87
.94

1.00
1.00
1.00

T= 0.045 :

0
0
.0058
.017
.033
.054
.080
.11
.15
.18
.23
.27
.33
.38
.44
.50
.57
.64
.71
.78
.86
.94

1.00
1.00
1.00

r = 0.60

0
0
.0023
.0085
.019
.034
.053
.076
.10
.13
.16
.20
.24
.28
.33
.38
.43
.48
.54
.60
.66
.73
.80
.87
.94

1.00
1.00
1.00

T=0.075

0
0
0
.0041
.011
.022
.036
.053
.074
.097
.12
.15
.18
.21
.25
.29
.34
.38
.43
.48
.53
.58
.64
.70
.76
.82
.89
.96

1.00
1.00
1.00

T = 0.90

0
0
0
.0018
.0060
.013
.024
.038
.054
.073
.094
.12
.14
.17
.20
.24
.27
.31
.35
.39
.43
.48
.53
.58
.63
.68
.74
.80
.86
.92
.98

1.00
1.00
1.00

T=0.120

0
0
0
0
.0014
.0044
.0098
.018
.028
.041
.056
.073
.092
.12
.14
.16
.19
.21
.24
.27
.31
.34
.38
.42
.46
.50
.54
.58
.63
.68
.73
.78
.83
.88
.94
.99

1.00
1.00
1.00

T = 0.150

0
0
0
0
0
.0011
.0033
.0074
.014
.022
.032
.045
.059
.074
.092
.11
.13
.15
.18
.20
.23
.25
.28
.31
.35
.38
.41
.45
.49
.52
.56
.60
.65
.69
.73
.78
.83
.88
.93
.98

1.00
1.00
1.00

nature. If the profile were assumed to be 
symmetrical with regard to some vertical

axis, the form that 
that of a mesa.

would evolve would be
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O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
X

Figure 2. Graph showing slope with caprock. 

Table 2. Slope with caprock

X

0.00
.02
.04
.06
.08
.10
.12
.14
.16
.18
.20
.22
.24
.26
.28
.30
.32
.34
.36
.38
.40
.42
.44
.46
.48
.50

T = 0 
(0 steps)

0
.080
.16
.24
.32
.40
.48
.56
.64
.72
.80
.88
.96

1.00
1.00

T= 0.015 
(96 steps)

0
.011
.035
.072
.12
.18
.24
.32
.39
.47
.55
.63
.71
.93

1.00
1.00
1.00

T= 0.030 
(192 steps)

0
.0031
.014
.033
.060
.092
.13
.18
.23
.28
.34
.41
.48
.55
.63
.72
.99

1.00
1.00
1.00

T = 0.045 
(288 steps)

0
0

.0062

.017

.034

.056

.082

.11

.15

.19

.23

.28

.33

.39

.44

.51

.57

.64

.73
1.00
1.00
1.00

T = 0.060 
(384 steps)

0
0

.0025

.0089

.020

.035

.055

.077

.10

.13

.17

.20

.24

.29

.33

.38

.43

.49

.55

.61

.67

.80
1.00
1.00
1.00

T= 0.075 
(480 steps)

0
0
0

.0043

.011

.022

.037

.055

.075

.099

.13

.15

.19

.22

.26

.30

.34

.38

.43

.48

.53

.59

.65

.71

.96
1.00



SLOPE WITH SOFT BOTTOM

SLOPE WITH RESISTANT LAYER

The influence of a horizontal resistant 
layer on the shape of a developing slope pro­ 
file will now be calculated.

The following values for a in equation 2 
will be assumed:

a= 0.1 for 0.4<y <0.5
a = l .0 for all other values of y

Naturally, the operation begins with a straight 
slope bank as given in equation 3. The re­ 
sults of the calculation are shown numeri­ 
cally in table 3 and graphically in figure 3.

SLOPE WITH SOFT LAYER

The reverse condition to that considered 
in the previous paragraph is that of a slope

with a horizontal soft layer. It is assumed 
that

a = 1.0 for 0.4 ^y <0.5 
a « 0.1 otherwise

and equation 2 is recalculated for these 
values of a. The results are shown numeri­ 
cally in table 4 and graphically in figure 4.

SLOPE WITH SOFT BOTTOM

The condition of a slope with a soft bottom 
is now considered, and it is assumed that

a= 0.1 for 
a= 1.0 for

This condition is, in a way, the reverse of 
that representing a slope with caprock. The

Table 3. Slope with resistant layer

X

0.00
.02
.04
.06
.08
.10
.12
.14
.16
.18
.20
.22
.24
.26
.28
.30
.32
.34
.36
.38
.40
.42
.44
.46
.48
.50
.52
.54
.56

T = 0 
(0 steps)

0
.080
.16
.24
.32
.40
.48
.56
.64
.72
.80
.88
.96

1.00
1.00
1.00

T = 0.015 
(96 steps)

0
.011
.035
.073
.12
.18
.25
.48
.52
.56
.60
.66
.73
.80
.87
.95

1.00
1.00
1.00

T= 0.030 
(192 steps)

0
.0031
.014
.033
.060
.092
.13
.18
.23
.45
.52
.57
.61
.66
.71
.76
.82
.89
.96

1.00
1.00
1.00

T= 0.045 
(288 steps)

0
0

.0062

.017

.034

.056

.082

.11

.15

.19

.23

.43

.52

.57

.62

.67

.71

.76

.81

.87

.93

.98
1.00
1.00
1.00

T = 0.060 
(384 steps)

0
0

.0025

.0089

.020

.035

.055

.077

.10

.13

.17

.20

.25

.45

.52

.57

.62

.67

.72

.76

.81

.86

.92

.97
1.00
1.00
1.00

T = 0.075 
(480 steps)

0
0
0

.0044

.012

.022

.037

.055

.075

.099

.13

.15

.19

.22

.27

.49

.53

.57

.62

.67

.72

.77

.81

.86

.91

.96
1.00
1.00
1.00
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Resistant layer
'XXXXXXXXXXXX " ~

O.I 0.2 0.3 0.4O.I 0.2 0.3 0.4 0.5

Figure 3. Graph showing slope with resistant layer. Figure 4.  Graph showing slope with soft layer.

Table 4. Slope with soft layer

T -0.03 T = 0.06 T= 0.09 T = 0.12 T = 0.15

0.00
.02
.04
.06
.08
.10
.12
.14
.16
.18
.20
.22
.24
.26
.28
.30
.32
.34
.36
.38

0
.080
.16
.24
.32
.40
.48
.56
.64
.72
.80
.88
.96

1.00
1.00

0
.044
.11
.19
.27
.35
.40
.41
.44
.65
.75
.83
.91
.98

1.00
1.00

0
.028
.080
.15
.22
.30
.37
.40
.40
.42
.52
.72
.85
.94

1.00
1.00

0
.020
.060
.11
.18
.55
.33
.39
.40
.40
.41
.43
.61
.81
.95

1.00
1.00

0
.015
.046
.092
.15
.21
.29
.36
.40
.40
.40
.41
.42
.50
.70
.89

1.00
1.00

0
.011
.037
.075
.12
.18
.25
.32
.38
.40
.40
.40
.41
.41
.43
.59
.79
.96

1.00
1.00
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results of the calculations are shown numer­ 
ically in table 5 and graphically in figure 5.

It is observed that the development of the 
slope is completely characterized by the de­ 
cay in the bottom layer, which results in 
virtually parallel slope recession, the speed 
of which is determined by the speed of ero- 
.sion in the bottom layer.

SLOPE WITH PORE WATER PRESSURE

A final modification was made in the cal­ 
culation procedure by setting

a= 1 - 0.9y

This represents a slope in which the re­ 
sistance to erosion varies linearly from 
bottom to top; at the bottom it is lowest, at

0 O.I 0.2 0.3 0 
X

Figure 5.  Graph showing slope with soft bottom. Figure 6. Graph showing slope with pore water pressure.

Table 5.  Slope u'ith soft bottom

X

0.00
.02
.04
.06
.08
.10
.12
.14
.16
.18
.20
.22
.24
.26
.28
.30
.32
.34

T =0

0
.080
.16
.24
.32
.40
.48
.56
.64
.72
.80
.88
.96

1.00
1.00

T =0.03

0
.0030
.015
.10
.25
.35
.43
.51
.59
.67
.75
.83
.91
.98

1.00
1.00

T = 0.06

0
0
.0025
.0092
.024
.17
.34
.46
.54
.62
.70
.78
.86
.94

1.00
1.00

T =0.09

0
0
0
.0019
.0065
.016
.47
.28
.44
.56
.65
.73
.81
.89
.97

1.00
1.00

T =0.12

0
0
0
0
.0015
.0048
.011
.025
.15
.35
.53
.67
.76
.84
.92
.99

1.00
1.00

T = 0.15

0
0
0
0
0
.0012
.0037
.0086
.017
.045
.25
.45
.63
.77
.87
.95

1.00
1.00
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Table 6. Slope with pore water pressure

X

0.00
.02
.04
.06
.08
.10
.12
.14
.16
.18
.20
.22
.24
.26
.28
.30
.32
.34
.36
.38
.40
.42
.44
.46
.48
.50
.52
.54
.56
.58

T =0

0
.080
.16
.24
.32
.40
.48
.56
.64
.72
.80
.88
.96

1.00
1.00

T=0.03

0
.0030
.014
.034
.062
.098
.14
.20
.26
.34
.44
.57
.73
.92

1.00
1.00
1.00
1.00

T=0.06

0
0
.0025
.0090
.020
.036
.057
.082
.11
.15
.19
.24
.29
.36
.43
.53
.67
.94

1.00
1.00
1.00
1.00

T=0.09

0
0
0
.0019
.0063
.014
.026
.040
.058
.080
.10
.13
.17
.20
.24
.29
.34
.41
.48
.57
.71
.95

1.00
1.00
1.00
1.00

T =0.12

0
0
0
0
.0015
.0047
.011
.019
.031
.045
.061
.081
.10
.13
.16
.19
.22
.26
.30
.35
.41
.48
.55
.66
.83

1.00
1.00
1.00
1.00
1.00

T =0.05

0
0
0
0
0
.0012
.0036
.0080
.015
.024
.035
.049
.065
.083
.10
.13
.15
.18
.21
.25
.28
.33
.37
.43
.49
.56
.65
.80
.99

1.00

the top highest. This condition could be cor­ 
related with the possibility of the slope being 
water soaked. Then, one might argue that 
the erodability of the material varies just in 
the manner indicated.

The results of the calculations are shown 
numerically in table 6 and graphically in 
figure 6. It is seen that the slope develop­ 
ment is intermediate between that of a slope 
with caprock and that of a slope with soft 
bottom, just as would be expected.
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