
GEOLOGICAL SURVEY CIRCULAR 270

CHEMICAL QUALITY OF WATER AND SEDIMENTATION IN THE MOREAU RIVER DRAINAGE BASIN, SOUTH DAKOTA

UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary

> GEOLOGICAL SURVEY W. E. Wrather, Director

GEOLOGICAL SURVEY CIRCULAR 270

CHEMICAL QUALITY OF WATER AND SEDIMENTATION IN THE MOREAU RIVER DRAINAGE BASIN, SOUTH DAKOTA

By B. R. Colby, C. H. Hembree, and E. R. Jochens

Prepared as part of a program of the Department of the Interior for Development of the Missouri River Basin

Washington, D. C., 1953

Free on application to the Geological Survey, Washington 25, D. C.

• ~

CONTENTS

–

	Page
Abstract	1
Introduction	1
Purpose and scope of investigation	1
Previous investigations	2
Personnel and acknowledgments	2
Moreau River drainage basin	2
Location and extent	2
Topography	4
Climate	4
Soils and vegetation	4
General geology of the Moreau River drainage	
basin	4
Physical characteristics of streams	9
Moreau River	10
South Fork Moreau River	10
North Fork, Deep Creek, Rabbit Creek,	
Flint Rock Creek, and Thunder Butte	
Creek	10
Little Moreau River, Bear Creek, and	
Virgin Creek	10
Runoff	10
	10

	Page
Chemical quality of the water	10
Geochemistry of water	12
Relation of the rocks to quality of water -	12
Chemical quality records	12
Expression of results of analyses	14
Salinity study	14
Moreau River at Bixby	17
Moreau River near Faith	17
Moreau River near Eagle Butte	17
Moreau River at Promise	17
Suitability of water for irrigation	17
Fluvial sediment	24
Definition of terms	24
Measurement of suspended-sediment	
discharge	24
Suspended-sediment records	25
Size composition of suspended sediment -	26
Specific weight of fluvial sediment	26
Summary	34
Literature cited	35
Tables of base data	37

ILLUSTRATIONS

Page

			- ~B~
Figure	1.	Map showing location of sampling stations for chemical-quality and suspended-sediment	
		investigations in the Moreau River drainage basin, South Dakota	3
	2.	Map of the landforms of the Moreau River drainage basin of South Dakota and surrounding areas -	5
	3.	Badlands near Fox Ridge	6
		Moreau River near Dupree	6
	5.	Map showing average temperature and average annual precipitation in and near the Moreau River drainage basin	7
	6.	Geologic map of the Moreau River drainage basin	8
		Discharge per square mile by water years at gaging stations in the Moreau River drainage basin -	11
		Salt deposits resulting from capillary action and evaporation, Moreau River drainage basin:	
		A, Unnamed tributary on Pierre shale uplands; B, Moreau River at Promise	13
	9.	Principal mineral constituents during periods of high and low flows at sampling stations, Moreau	
		River drainage basin, 1945-51	15
	10.	Principal mineral constituents in surface waters, salinity survey, April 12 to 16, Moreau River	
		drainage basin	16
	11.	Classification of surface water for irrigation, Moreau River drainage basin	19
		Comparison to discharge of carbonate and bicarbonate in excess of calcium and magnesium,	
		hydrogen ion concentration, and percent sodium, Moreau River at Bixby, water year 1949	21
	13.	Comparison to discharge of carbonate and bicarbonate in excess of calcium and magnesium,	
		hydrogen ion concentration, and percent sodium, Moreau River at Bixby, water year 1950	22
	14.	Comparison to discharge of carbonate and bicarbonate in excess of calcium and magnesium,	
		hydrogen ion concentration, and percent sodium, Moreau River at Bixby, water year 1951	23
	15.	Relation of suspended-sediment discharge to water discharge, Moreau River at Bixby, March 24,	
		1949, to September 30, 1951	27
	16.	Relation of suspended-sediment discharge to water discharge, Moreau River near Faith,	
		August 15, 1946, to September 30, 1949	28
		Average particle-size distributions of suspended-sediment samples, Moreau River at Bixby	29
		Average particle-size distributions of suspended-sediment samples, Moreau River near Faith	30
	19.	Median particle size versus suspended-sediment discharge, Moreau River	32
	20	Relation of specific weight of sediments deposited in reservoirs to median particle size	33

Relation of specific weight of sediments deposited in reservoirs to median particle size -υ. 33

TABLES

			Page
Table	1.	Discharges for periods of sampling compared with calculated 21-year averages for stations on the Moreau River	18
	2.	Summary of records of suspended-sediment discharge of the Moreau River	25
		Specific weight based on median particle size for the Moreau River at Bixby	31
	4.	Specific weight based on median particle size for the Moreau River near Faith	34
		Volume of suspended-sediment discharge, Moreau River	
		Mineral constituents and related physical measurements, salinity survey, April 12 to 16, 1949	38
		Mineral constituents and related physical measurements, Moreau River at Bixby, March 1949 to September 1951	39
	8.	Mineral constituents and related physical measurements, Moreau River near Faith, April 1941 to September 1949	43
	9.	Mineral constituents and related physical measurements, Moreau River near Eagle Butte, April 1941 to September 1951	47
	10.	Mineral constituents and related physical measurements, Moreau River at Promise, October 1941 to September 1951	48
	11.	Monthly and annual summary of water and sediment discharges, Moreau River at Bixby	50
	12.	Monthly and annual summary of water and sediment discharges, Moreau River near Faith	51
	13.	Particle-size analyses of suspended sediment. Moreau River at Bixby	52
		Particle-size analyses of suspended sediment, Moreau River near Faith	53

CHEMICAL QUALITY OF WATER AND SEDIMENTATION IN THE MOREAU RIVER DRAINAGE BASIN, SOUTH DAKOTA

By B. R. Colby, C. H. Hembree, and E. R. Jochens

1

ABSTRACT

This report gives the results of an investigation by the U. S. Geological Survey of the sediments and dissolved minerals that are transported by the Moreau River.

The Moreau River drainage basin is a narrow basin in northwestern South Dakota that covers about 5, 360 square miles of rolling, grassy plains, which are broken by buttes and by some small areas of badlands. It is underlain by shales, sandstones, siltstones, and limestones that are primarily of Cretaceous age. Precipitation averages about 16 inches per year. Average annual runoff is about 0.7 inch but varies widely from year to year.

The chemical quality of the water in the Moreau River is directly related to the geology of the area. Water affected by the Hell Creek formation and Fox Hills sandstone is predominantly a sodium bicarbonate type, whereas water affected by the Pierre shale is a sodium sulfate type. In general, water from streams that drain areas underlain by the Pierre shale is more mineralized than water that drains from areas underlain by the Fox Hills sandstone. Water that drains from areas underlain by the Hell Creek formation is least mineralized.

The short-term chemical-quality records obtained during a wet climatic cycle are not representative of a long term. The average specific conductance and average percent sodium, each weighted with the water discharge and adjusted to include estimates during unsampled periods of low flow, were computed for the 3-year period at Bixby, S. Dak. The averages show that if all the water for the entire period were impounded without loss, the specific conductance would be 632 micromhos and the percent sodium would be 57. This water rates as good to permissible for irrigation. However, the estimated rating for a 21-year period is permissible to doubtful. In addition, water impounded during a dry climatic cycle would be conducive to the formation of black alkali if this water were applied to the soil. Therefore, the impounded water should be used only on land where adequate drainage facilities are provided and where infiltration rates are sufficient to provide low rates of evaporation and high rates of flushing.

Suspended sediment transported by the Moreau River is mostly fine material, principally clay sizes. Median particle sizes not weighted with water discharge averaged about 0.0016 millimeter for the stations at Bixby and near Faith. From April 28, 1949, to September 30, 1951, the Moreau River at Bixby discharged about 175,000 acrefeet of water and about 1,080,000 tons of suspended sediment. Approximately 90 percent of the water and the suspended sediment was discharged during the water year that ended September 30, 1950. During this water year the streamflow averaged about $2\frac{1}{2}$ to 3 times the normal flow. If deposited in a reservoir, the 1,080,000 tons of sediment would occupy a computed space of about 980 acre-feet soon after deposition.

From August 15, 1946, to September 30, 1949, the Moreau River near Faith discharged about 380,000 acre-feet of water and nearly 2,000,000 tons of suspended sediment. If deposited in a reservoir, the sediment would occupy a computed space of about 1,820 acre-feet soon after deposition.

INTRODUCTION

Purpose and Scope of Investigation

The investigation by the Geological Survey of chemical quality of surface waters and of sedimentation in the Moreau River drainage basin is part of the program of the Department of the Interior for the development of the Missouri River basin. The overall plan includes regulation and control of flood waters, irrigation of additional land, and production of hydroelectric power. One requirement for the planning of successful and economical projects for this overall plan is a knowledge both of the chemical quality of the surface waters and of the quantity and particle sizes of the sediment that is transported by the streams.

Successful irrigation depends not only on the type of soils, drainage, and climate but also on the chemical quality of the water to be used. Data on the chemical quality of surface water in the Moreau River basin were collected and interpreted to show the variation in the quality of the water and the changes that may be expected in the chemical quality when the water is impounded in a reservoir. In this investigation the quality and quantity of dissolved constituents in the main stream were correlated insofar as possible with geologic, climatic, hydrologic, and cultural characteristics of the drainage basin.

The samples analyzed for dissolved constituents were collected at four gaging stations that are operated by the Geological Survey. Samples were collected daily at stations at Bixby, March 1949 to September 1951, and near Faith, April 1947 to September 1949, and infrequently at stations near Faith, November 1945 to March 1947, and Eagle Butte and Promise, November 1945 to September 1951. The analyses of these samples and, in addition, the analyses of samples that were collected from major tributaries for a special salinity study are the basis for the chemical-quality discussions of this report. Dissolved solids, specific conductance, pH, silica, iron, calcium, magnesium, sodium, potassium, bicarbonate, sulfate, chloride, fluoride, nitrate, boron, percent sodium, total hardness, and noncarbonate hardness usually were determined. For some samples sodium and potassium were calculated and reported as sodium; boron was not always determined.

The investigation of sedimentation in the Moreau River basin was undertaken to determine (1) the quantity of sediment in transport in the Moreau River, (2) the initial specific weight of the suspended sediment after deposition in a reservoir, and (3) the probable sources of the sediments. The Geological Survey operated daily sediment stations on the Moreau River near Faith from August 1946 to September 1949 and at Bixby from April 1949 to September 1951. Samples of suspended sediment were collected at these stations to be analyzed for particle size as well as for concentration of suspended sediment.

Geologic studies were made during the investigation to provide a background of information that is essential to the understanding and interpretation of the base data, both on chemical quality and on sediment. Pertinent published reports were reviewed, and a reconnaissance of the basin was made to study the rocks of the area and their relationship to the dissolved minerals and to the sediment that is transported by the streams. The sediment and dissolved solids carried by the streams in solution, in suspension, or as bed load were originally derived from the rocks that underlie the basin.

Previous Investigations

From April 1941 to May 1945, employees of the Bureau of Reclamation collected and analyzed qualityof-water samples from stations on the Moreau River. They also collected and analyzed two samples from Rabbit Creek, a tributary above the gaging station near Faith.

Measurements of suspended-sediment discharge were made by the Corps of Engineers, U. S. Army, on the Moreau River at Promise on 4 days. April 13 to 16, 1931. Surface samples were obtained at Promise during the period February 8 to July 31, 1931 (Congressional documents, 1934, p. 37). 1/ Suspendedsediment records were also obtained by the Corps of Engineers from June 1947 to September 1951.

Many reports on the geology of the Moreau River basin have been published, but most of them were concerned principally with coal resources and structural geology. So far as is known, no one has used geology

1 See p. 35 for literature cited.

to assist in solving the quality-of-water and sedimentation problems of the area.

Personnel and Acknowledgments

This investigation was made by the Geological Survey in cooperation with other agencies of the Department of the Interior. It was conducted by the Water Resources Division of the Geological Survey, C. G. Paulsen, chief hydraulic engineer, and S. K. Love, chief of the Quality of Water Branch, Washington, D. C., and was under the general supervision of P. C. Benedict, regional engineer, Lincoln, Nebr.

Water samples for chemical analyses and for suspended - sediment determinations were collected by employees of the Bureau of Reclamation for the station at Bixby from March 1949 to September 1951.

Chemical analyses of surface-water samples were made by personnel of the office at Lincoln, Nebr., under the supervision of H. A. Swenson.

Records of suspended-sediment discharge of the Moreau River were obtained by personnel of the office at Dickinson, N. Dak., under the supervision of E. J. Tripp.

Unpublished streamflow records were furnished by R. E. Marsh and H. M. Erskine, district engineers, Geological Survey, Bismarck, N. Dak.

An unpublished report in the open files of the Geological Survey by H. A. Swenson entitled "A progress report on the chemical character of surface waters in the Moreau River basin, South Dakota," covered the chemical-quality data that had been collected before October 1, 1947. It was used as a basis for much of the discussion of chemical quality of water in this report.

MOREAU RIVER DRAINAGE BASIN

Location and Extent

The Moreau River drainage basin is in northwestern South Dakota and covers an area of 5,360 square miles. (See fig. 1.) The drainage basin is bounded by low divides that separate it from the drainage basins of the Grand River to the north, the Cheyenne River to the south, and the Little Missouri River to the west.

The Moreau River is formed by the junction of the South Fork and the North Fork. The two forks head near the South Dakota-Montana State line and flow eastward to a junction in the southwest corner of T. 14 N., R. 11 E. From this confluence the Moreau River flows eastward to join the Missouri River in T. 16 N., R. 31 E., about 18 miles south of Mobridge. The Moreau River drainage basin is about 180 miles long.

The principal tributaries of the Moreau River are the North and South Forks, Deep Creek, Flint Rock

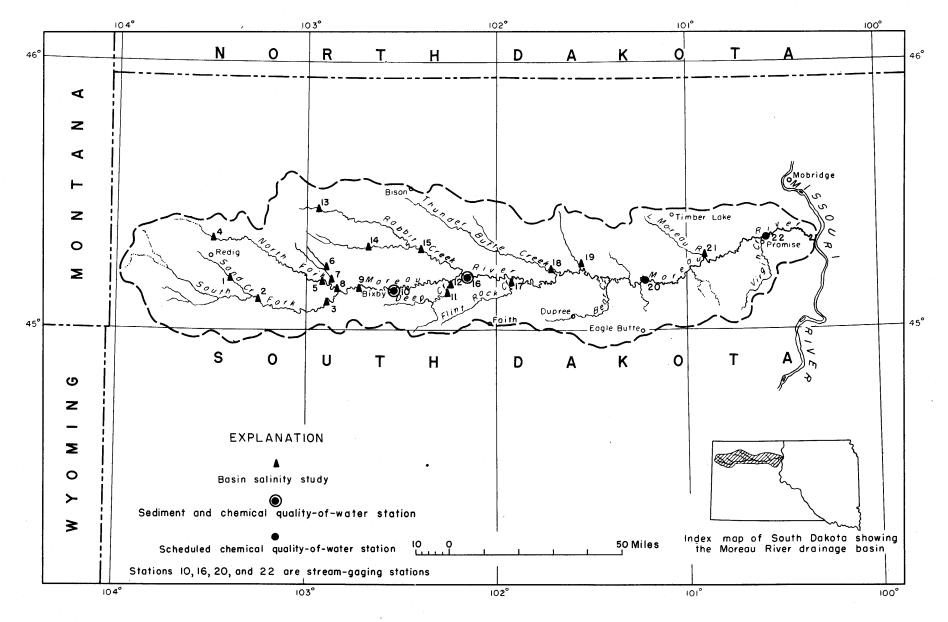


Figure 1.--Map showing location of sampling static as for chemical-quality and suspended-sediment investigations in the Moreau River drainage basin, South Dakota.

Creek, Rabbit Creek, Thunder Butte Creek, Bear Creek, and the Little Moreau River.

Topography

The Moreau River drainage basin is a part of the Missouri Plateau division of the Great Plains province. The general topography of the area is shown by figure 2. The basin is an area of rolling plains partly dissected by streams and broken in places by buttes and badlands. (See fig. 3.) Most of the badlands and associated buttes are in the western half of the basin. The stream valleys in this part of the basin are well below the general level of the land, but they do not have the canyonlike proportions of stream valleys in the eastern part.

In general, the valleys are narrow and have a series of terraces that rise stairlike from the present flood plain up to and blend into the uplands. The stream channels, except where they impinge against high terraces, have low but steep banks. Like the valleys in which they flow, the streams have a meandering pattern. (See fig. 4.) Parts of the lowlands along the streams are used for growing hay, but most of the land of the stream valleys and the rolling uplands is used for grazing. Some small grains are grown in the eastern part of the basin.

Buttes, which rise sharply from the plains, are scattered throughout the basin but are most numerous in the western part. They are so numerous in one county that it is called Butte County. The buttes were formed by weathering and erosion of sedimentary strata that have different degrees of resistance to erosion. The relatively soft rock beneath a more resistant cap rock erodes rapidly and produces the flat-topped hills with clifflike sides. Debris from the undermined cap rock forms a border of rubble at the base of the buttes or lies temporarily on the side slopes.

Badlands are not extensively developed and occupy only a small part of the basin. Gumbo-producing shales, the most abundant rocks in the area, erode into rounded hills rather than into badlands. The badlands are associated principally with the buttes, but minor areas of badlands are found along the deeper stream valleys and at the heads of the tributaries. These tributaries head along the divides that separate the Moreau River drainage basin from basins to the north and to the south.

Climate

The Moreau River basin, owing to a small range in altitude (about 1,500 to 3,500 feet) and to the east-west orientation of the basin, has a fairly uniform climate. Average annual precipitation and temperature increase slightly from west to east. (See fig. 5.) The annual precipitation for the entire area averages about 16 inches and the temperature about 44.8° F.

The climate of the basin is semiarid and is characterized by low precipitation. Summers are hot, and winters are cold. The temperature ranges from about -35° to 115° F. Annual snowfall of the basin averages about 36 inches, which is equivalent to approximately 3.6 inches of precipitation or a little more than onefifth of the average annual precipitation. Runoff from the basin is low, about 0.7 inch per year.

Soils and Vegetation

The soils in the Moreau River drainage basin belong to one broad soil group, the Chestnut group. All the soils are similar except in texture, because the climate and geology are generally uniform throughout the basin.

Most of the basin is underlain by rocks of Cretaceous age--the Pierre shale, Fox Hills sandstone, and Hell Creek formation. (See fig. 6.)

Soils derived from the Pierre shale in the western part of the basin are known locally as black gumbo and have been classed as Pierre clay in an unpublished report of the Bureau of Land Management. The soils developed on the Pierre shale in the eastern part of the basin have been classed as the Boyd series. The surface of these soils is dark brown to dark olive brown. Both the Boyd series and the Pierre clay are shallow, immature residual soils. The unaltered or partly weathered shale is usually within 3 feet of the surface of level land and is much closer under sloping surfaces. The shallowness and immaturity of soils on the Pierre shale are due more to the imperviousness of the parent rock rather than to erosion or any other cause. Soils overlying the Pierre shale absorb water slowly and are readily eroded on the steeper slopes.

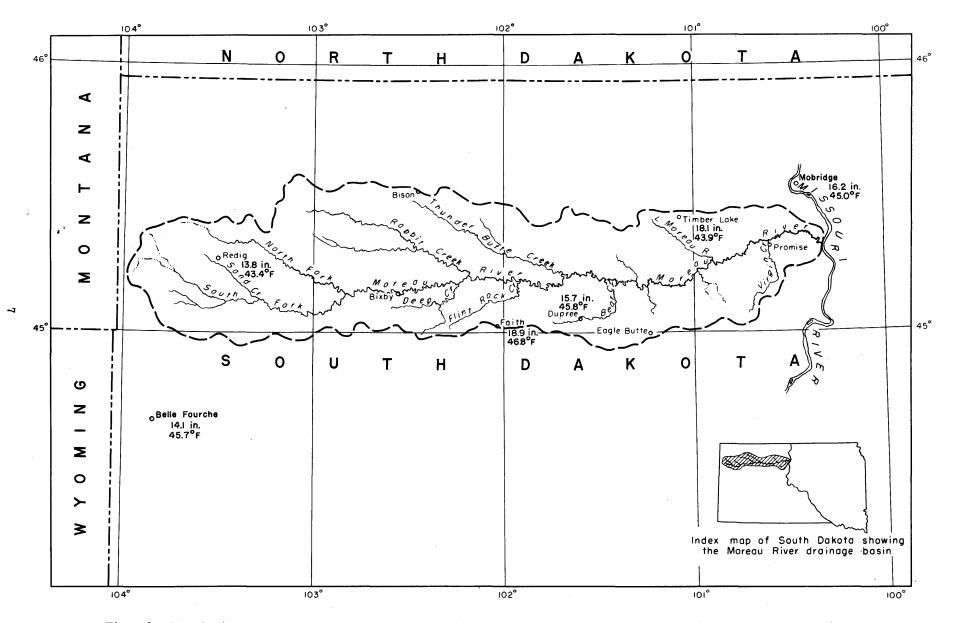
Soils developed from the Fox Hills sandstone and Hell Creek formation belong to the Morton series and cover about half the basin. These soils have a 4- or 5-inch surface layer of dark-brown friable loam or silt loam. Because they absorb and hold water, they sustain a dense stand of vegetation on the more level surfaces.

Grassland is typical of the entire drainage basin. Cottonwoods and some boxelder, ash, buffaloberry, chokeberry, and other small trees grow along the streams. Juniper and pine are confined mainly to the buttes. The most common grasses are gramagrass, wheatgrass, buffalograss, bluegrass, niggerwool, green needlegrass, and needle - and - thread grass. Sagebrush grows only in a few small areas.

GENERAL GEOLOGY OF THE MOREAU RIVER DRAINAGE BASIN

The Moreau River drainage basin is underlain by sedimentary rocks, such as shales, sandstones, siltstones, and limestones. (See fig. 6.) Only rocks of Cretaceous and Tertiary age are exposed at the surface; rocks that represent nearly all periods of the Paleozoic and Mesozoic eras are below the surface.

The area now drained by the Moreau River and its tributaries was once the scene of alternate encroachment and retreat of great inland or epicontinental seas. Erosion was active during periods of emergence but gave way to deposition as the seas advanced. Logs of deep wells and measurements of outcrops in and on the flanks of the Black Hills indicate that several thousand feet of sedimentary material was deposited over


Figure 2. -- Map of the landforms of the Moreau River drainage basin of South Dakota and surrounding areas.

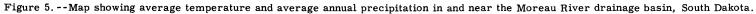


Figure 3.--Badlands near Fox Ridge, S. Dak. Note the small area of badlands and, in the background, the rolling plains and buttes.

Figure 4. --Moreau River near Dupree, S. Dak. In the background the meandering channel is indicated by scattered trees.

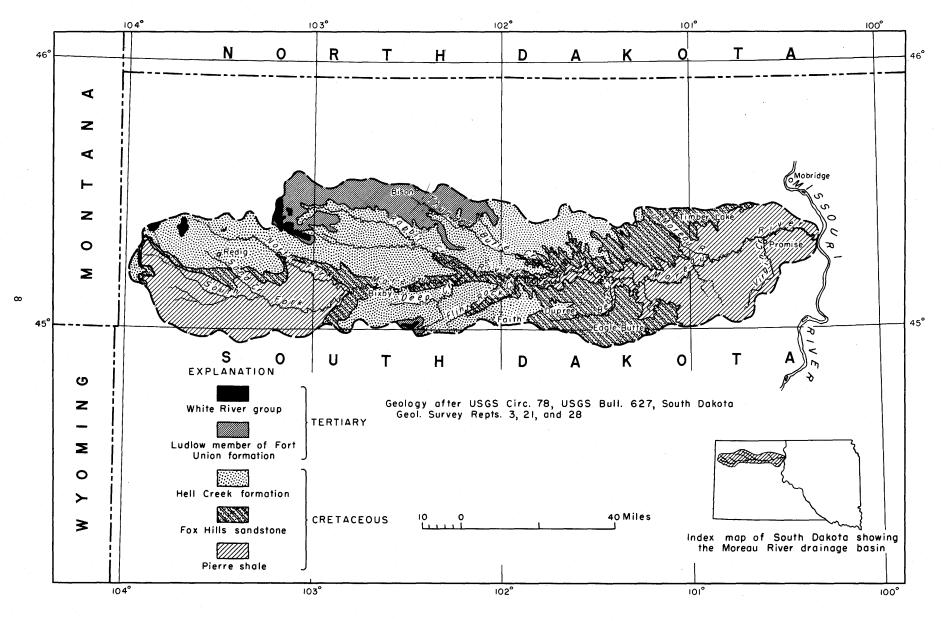


Figure 6. --Geologic map of the Moreau River drainage basin, South Dakota.

the region during the Paleozoic and Mesozoic eras (Rothrock and Robinson, 1938, p. 4-28).

The rocks of the Pierre shale are the oldest exposed in the drainage basin. The material composing them was deposited in the great inland sea that covered South Dakota, as well as most of central North America, during the Cretaceous period. The Pierre shale was formed from fine particles that were carried to the sea by the streams, carbonates that were precipitated when the fresh waters of the rivers mingled with the saline waters of the sea, and volcanic dust. The Pierre shale consists principally of very dark gray to black clays and shales. Beds of marl and impure chalk, as well as calcareous and gypsiferous concretions, are in the formation. Bentonite, an alteration product of volcanic dust, is characteristic of the Pierre shale. It occurs in thin beds and is interspersed in the shale itself.

As the Cretaceous sea slowly retreated from the land, near-shore deposits of sand and sandy clay were laid down over the clays of the Pierre shale. These near-shore deposits became the brown to yellow sandstones and sandy shales of the Fox Hills sandstone. In some exposures of the contact of the two formations, a distinct difference in the color and lithology can be seen between the top of the Pierre shale and the bottom of the Fox Hills sandstone. However, in other exposures the change is gradual from the darkgray shale of the Pierre shale to the well-cemented sandstone of the Fox Hills sandstone.

After the deposition of the near-shore deposits of the Fox Hills sandstone, the land was elevated above the sea long enough for 200 to 300 feet of continental sediments to be deposited. The continental deposits consist of alternating strata of sandstone, shale, bentonite, and thin beds of coal. Plant fragments, coal, land vertebrate remains, and the lack of continuity of the beds indicate the continental origin of these deposits, which have been grouped together under the name Hell Creek formation.

During the Paleocene epoch of the Tertiary period the seas covered part of the Moreau River basin. Marine deposits in the eastern part of the basin were laid down contemporaneously with continental deposits in the western part of the basin. The Cannonball formation consists of material that was deposited in the sea, and the Ludlow member of the Fort Union formation is composed of continental deposits. All the Cannonball formation has been removed from the basin by erosion but is still present farther north. Only a small area of the Ludlow member still remains. This member consists of sandstone, shale, coal, and clay and can be distinguished from the underlying Hell Creek formation mainly by color. The Ludlow member is characteristically yellowish, whereas the Hell Creek formation is dull brown to gray.

Small remnants of the White River group of Oligocene age remain on the tops of several buttes in the western part of the basin. Rocks younger than the Ludlow member and older than the White River group probably were originally present over much of this area, but they were eroded away before the deposition of the White River group. The Chadron formation, which is the basal formation of the White River group, consists of gravels, sandstone, clay, and silt and is a buff color. The overlying Brule clay is composed of silt, clay, volcanic ash, and minor amounts of sandstone.

Rocks of Miocene and Pliocene age probably were once present in the area but have been removed by post-Pliocene erosion.

Although the Moreau River basin was profoundly affected by Pleistocene glaciation, it was not covered by continental glaciers except in the extreme eastern part. Scattered erratic boulders along the lower reaches of the Moreau River are probably residuals left by erosion of drift.

Before Pleistocene glaciation the Missouri River did not flow through South Dakota. In pre-Pleistocene time the present Moreau, Grand, and Cheyenne Rivers were the headwaters of the Red River of the North, which then, as now, flowed into the Husdon Bay (Petsch, 1946, p. 8). During the Pleistocene epoch the Moreau River and other streams parallel to it were blocked by the Kansan or Nebraskan ice sheets or both. The combined flow of these streams was diverted to the southeast along the front of the ice sheet and eroded the present channel of the Missouri River. The diversion of the Moreau River radically changed its gradient and caused rapid downcutting, especially in the lower reaches.

Recent alluvial deposits are present along all streams in the drainage basin. Their lateral extent and depth depend on several variable factors, such as the relative erodibility of the rocks in the uplands, the area of the drainage basin, and the runoff. Recent alluvial deposits are probably the largest immediate source of sediment in the Moreau River basin. The depth and lateral extent of these deposits are partly dependent on the supply of material from the consolidated rocks. Therefore, areas of high sediment yield are directly related to areas of exposed rocks that have relatively low resistance to erosion.

PHYSICAL CHARACTERISTICS OF STREAMS

Among the factors controlling the characteristics of a drainage area are climate, topography, and the rocks that underlie the area. The interaction of these and other factors determines the characteristics of the stream. The environmental factors are interdependent. That is, if the environmental factors of two drainage areas are identical at the beginning of an erosion cycle, the soils, vegetation, and topography of the two areas will be similar at the end of a given time provided the climate does not change. If, however, the rocks of the two areas are different and the climate is the same, the vegetation and topography will gradually become dissimilar in the two areas. For example, the climate of the Moreau River basin and the climate of the lower part of the White River basin are much alike, yet badlands are characteristic of the White River basin and rolling hills are typical of the Moreau River basin. The different types of rocks that underlie the two basins account for this difference in topography.

Moreau River

The Moreau River is formed by the junction of its North and South Forks in the southeast corner of T. 14 N., R. 11 E. It falls about 4 feet per mile as it flows eastward to join the Missouri River at a point about 18 miles south of Mobridge. From the junction of its forks to T. 19 E., R. 14 N., northwest of Dupree, the river flows successively over outcrop areas of the Pierre shale, Fox Hills sandstone, Hell Creek formation, and again over an outcrop area of the Fox Hills sandstone. For most of the distance it flows over the outcroparea of the Fox Hills sandstone. After leaving the outcrop area of the Fox Hills sandstone. the river flows to the Missouri River over an area underlain by the Pierre shale. East of T. 19 E., in the section underlain by Pierre shale, the Moreau River has cut a meandering valley 200 to 300 feet below the uplands.

Although the suspended-sediment load that is transported by the Moreau River is composed almost entirely of particles of clay and silt sizes, most of the bed material is sand size or larger. The velocity of the stream may be sufficient to prevent deposition of the smaller particles, but probably the dissolved mineral characteristics of the stream are also a factor. The effect of sodium in preventing flocculation, toge.'her with the capacity of the stream to transport clay- and silt-size particles, impedes the deposition of small particles on the stream bed.

South Fork Moreau River

The South Fork Moreau River rises near the South Dakota-Montana State line in T. 14 N., R. 1 E. and flows eastward to join the North Fork at a point about 6 miles northeast of Inland. The drainage basin of the South Fork is underlain by the Pierre shale except for a few areas that are underlain by the Fox Hills sandstone and the Hell Creek formation and are drained by tributaries. One of these tributaries, Sand Creek, whose upper reaches are underlain by the Hell Creek formation, has a very descriptive name. Above the junction with Sand Creek the South Fork flows between high banks of alluvium and on a bed of fine material. Below the junction with Sand Creek its bed is composed of sand and coarser material.

North Fork, Deep Creek, Rabbit Creek, Flint Rock Creek, and Thunder Butte Creek

The gumbo clays and sands of the Hell Creek formation underlie most of the drainage areas of the North Fork and Deep, Rabbit, Flint Rock, and Thunder Butte Creeks. In the upper reaches, all these streams are actively eroding their channels; but in the lower reaches, where the channel slopes are lower, they meander and have much the same characteristics as the Moreau River.

Little Moreau River, Bear Creek, and Virgin Creek

Pierre shale and the Fox Hills sandstone underlie the drainage areas of the Little Moreau River and Bear Creek. The drainage basin of Virgin Creek, which discharges into the Moreau River at Promise, is underlain by Pierre shale. All three streams have cut deep valleys; and, except for Bear Creek, they have steep gradients near their headwaters.

RUNOFF

Most tributaries of the Moreau River are intermittent. They flow after heavy rainfall and during the spring when the winter snow is melting. The Moreau River itself has no flow during parts of many years.

Records of the flow of the Moreau River have been obtained at four gaging stations (fig. 1). No continuous streamflow records have been obtained on the tributaries.

Periods of streamflow records of the Moreau River before October 1, 1951

No. on map (fig. 1)	Gaging station	Drainage area (square miles)	Period of record
10	At Bixby	1,570	May 1, 1948, to Sept. 30, 1951
16	Near Faith	2,660	Mar. 8, 1943, to Sept. 30, 1951
20	Near Eagle Butte	4,320	Mar. 6, 1943, to Sept. 30, 1951
22	At Promise	5,223	Aug. 28, 1928, to Sept. 30, 1951

Flow of the Moreau River varies widely from year to year. (See fig. 7.) At Promise the water discharge for the 21-year period that ended September 30, 1951, averaged 273 cfs. The minimum annual average discharge during the period was 20 cfs during water year 1934, and the maximum annual average discharge was 812 cfs during water year 1950.

Diversions and storage for irrigation have no appreciable effect on the flow of the Moreau River. Small amounts of water are collected in stock ponds during periods of surface runoff.

Runoff from the Moreau River drainage basin averaged about 0.7 inch during the period of streamflow records at Promise. Some runoff comes from the snowmelt, but most comes from rains during late spring and early summer. Ground - water inflow to the Moreau River is low during most years, and the river has no flow for many days in some years. As the climate, topography, and soils are nearly uniform throughout the drainage basin, runoff is probably about the same from all parts of the basin. Figure 7 shows that the discharge per square mile by water years differs only a little from one gaging station to another.

CHEMICAL QUALITY OF THE WATER

Proposed reservoir construction for irrigation should be preceded by study and consideration of the chemical quality of the water. If the water from the

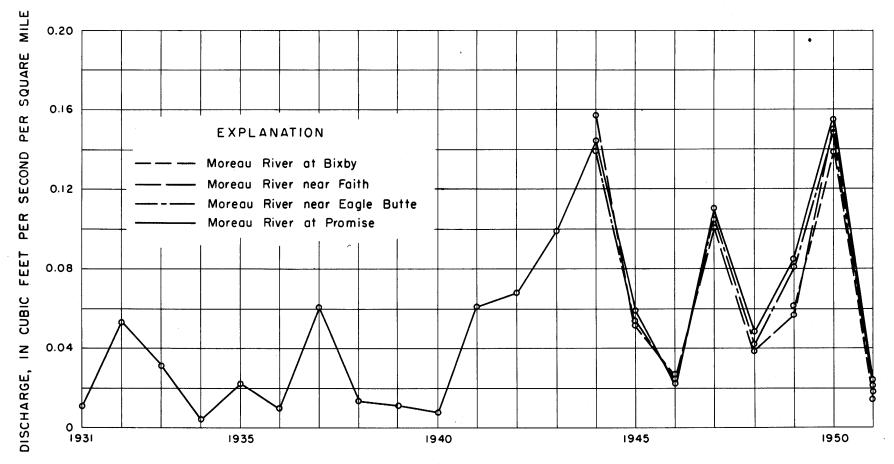


Figure 7. --Discharge per square mile by water years at gaging stations in the Moreau River drainage basin.

Moreau River is to be impounded, salt concentrations during periods of low and normal flows and the effect of dilution by flood flows should be evaluated. A study of the relationship between the geology and the dissolved minerals in the water may help toward a better understanding of the changes in the quality of the water from one place to another. Therefore, places for collection of samples on the Moreau River were so selected as to obtain analytical data on composition and concentration of the water in the upper, middle, and lower parts of the river. In addition, information on the chemical quality of the major tributaries and on the effect of tributary inflow on the Moreau River was obtained by a special salinity survey. The locations of sampling sites are shown in figure 1.

Geochemistry of Water

The mineral matter dissolved in natural waters is derived from the rocks and soils. Differences in the mineral composition of waters are due to many factors, some of which are (1) the availability of soluble minerals in the rocks and soils, which is decreased by leaching and is increased by exposure of fresh surfaces to erosion; (2) the rate of leaching of minerals, which depends on the solubility of the minerals, the length of time the water is in contact with these minerals, and the temperature of the water; and (3) the character of the rocks.

Soluble minerals are abundant in the rocks and soils of the Moreau River basin, but they are more available in the upper reaches, where slumping has exposed more fresh surfaces.

The length of time during which the water is in contact with the rocks and soils has a direct bearing on the salinity of many streams and rivers. However, in the Moreau River basin most of the water leaves the basin in a relatively short period of time, usually 2 to 4 months. Nevertheless, the surface waters of the Moreau River basin are not especially low in mineralization during relatively high flows. The soluble salts deposited on the surface of the valley sides by capillary action and evaporation during the dry months of the year are immediately available for solution by rain or storm waters. (See fig. 8.) Thus, the concentration of minerals in the Moreau River water may be appreciable even during relatively high water discharges.

The chemical character of a water is directly related to the lithology or composition of the rocks with which the water comes into contact. For the most part, the Moreau River basin is underlain by the nonmarine Hell Creek formation, the marine Fox Hills sandstone, and the marine Pierre shale, all of which affect the water quality.

Relation of the Rocks to Quality of Water

Water draining from the Hell Creek formation usually has a high percent sodium. The sodium is in solution primarily as sodium bicarbonate. The Hell Creek formation contains minerals that are necessary to produce a sodium bicarbonate or sulfate water. Several reactions are involved. For example: 1. A calcium bicarbonate water forms from the reaction of the carbon dioxide-charged meteoric waters with the calcareous sands, which are common in the Hell Creek formation.

$$H_2O + CO_2 + CaCO_3 \longrightarrow Ca^{++} + 2HCO_3^{--}$$

2. Calcium or magnesium is replaced with sodium from beidellite in the bentonitic clay in the formation.

$$Ca^{++} + 2HCO_3^- + beidellite \cdot 2Na$$

 $\longrightarrow 2Na^+ + 2HCO_3^- + beidellite \cdot Ca$

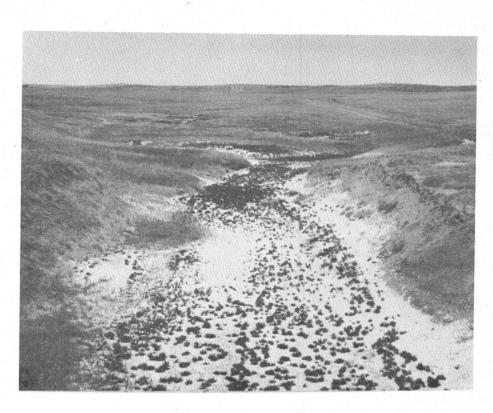
3. Gypsum in the formation changes the sodium bicarbonate water to a sodium sulfate water. Sodium sulfate usually is characteristic of certain formations of Cretaceous age in the west. (Lindgren, 1932.)

$$2Na^{+} + 2HCO_{3}^{-} + Ca^{++} + SO_{4}^{-}$$

$$\implies 2Na^{+} + SO_{4}^{-} + CaCO_{3} + CO_{2} + H_{2}O$$

The oxidation of the pyrites and marcasites in the Hell Creek formation may also account for part of the sulfate.

$$\operatorname{FeS}_2 + 70^{=} + \operatorname{H}_2 O \longrightarrow \operatorname{Fe}^{++} + 2\operatorname{H}^{+} + 2\operatorname{SO}_4^{=}$$


 $2Na^{+} + 2HCO_{3}^{-} + 2H^{+} + SO_{4}^{-}$ $\longrightarrow 2Na^{+} + SO_{4}^{-} + 2H_{2}O + 2CO_{2}$

Water that drains from the Fox Hills sandstone is very similar in type to water that drains from the Hell Creek formation. The gray glauconitic marine quartz sandstone, sometimes interbedded with greenish-gray marine shales, produces a water ordinarily high in sodium and bicarbonate. The sodium bicarbonate in water is formed by the same processes as in the Hell Creek formation; however, the water that drains from the marine Fox Hills sandstone should be more saline.

Water influenced by the Pierre shale is somewhat different in type than waters influenced by the Hell Creek formation and Fox Hills sandstone. Calcium sulfate in the form of gypsum, calcium carbonate as calcite or aragonite, sodium salts in the form of bentonite, and iron sulfide in the form of pyrite or marcasite are in the exposures. As a result of solution and other chemical reactions with these minerals, the water that drains from the Pierre shale is characteristically a sodium sulfate type. The water contains large quantities of dissolved constituents because soluble minerals are abundant and because constant slumping of exposed shale brings unweathered minerals to the surface. The percent sodium is somewhat lower in water that drains from the Pierre shale than in water that drains from the Hell Creek formation and Fox Hills sandstone. This is probably due to the presence of the alkaline earth minerals, rather than the absence of alkali metal minerals.

Chemical Quality Records

The general relationship between the quality of the water in the tributaries and the quality of the water in the main stem of the Moreau River can be seen from the special salinity study. More detailed records of the four stations on the main stem are listed separately.

A. Unnamed tributary on Pierre shale uplands

B. Moreau River at Promise

Figure 8.--Salt deposits resulting from capillary action and evaporation, Moreau River drainage basin.

The mineral concentrations during periods of high and low flows in the Moreau River for the years 1945-51 are shown in figure 9. These concentrations do not represent weighted averages. They show the diluting action of snowmelt and heavy rains and the high concentrations of the water during low flows. The graphs for each station are for periods of sampling at that station; therefore, graphs for one station should not be compared with graphs for another station.

Expression of Results of Analyses

The expressions of results are in accordance with those listed in the U. S. Geological Survey Water-Supply Paper 1102 (1952, p. 5-6) as follows:

The dissolved mineral constituents are reported in parts per million. A part per million is a unit weight of a constituent in a million unit weights of water. . . An equivalent per million is a unit chemical combining weight of a constituent in a million unit weights of water and is calculated by dividing the concentration in parts per million by the chemical combining weight of the constituents. For convenience in making this conversion the reciprocals of chemical combining weights of the most commonly reported constituents are given in the following table:

Constituent [Basic radicals]	Factor
Iron (Fe ⁺⁺)	0.0358
Iron (Fe ⁺⁺) Iron (Fe ⁺⁺⁺)	.0537
Calcium (Ca ⁺⁺)	.0499
Magnesium (Mg ⁺⁺)	.0822
Sodium (Na ⁺)	.0435
Potassium (K ⁺)	.0256

/Acid radicals/

Carbonate (CO3)	.0333
,	
Bicarbonate (HCO ₃ ⁻)	.0164
Sulfate (SO ₄)	. 0208
Chloride (Cl ⁻)	.0282
Fluoride (F ⁻)	.0526
Nitrate (NO ₃ ⁻)	.0161

Results given in parts per million can be converted to grains per United States gallon by dividing by 17.12. A calculated quantity of sodium and potassium is given in some analyses and is the quantity of sodium needed in addition to the calcium and magnesium to balance against the acid radicals.

The total hardness, as calcium carbonate $(CaCO_3)$, is calculated from the equivalents of calcium and magnesium . . The hardness caused by calcium and magnesium (and other ions if significant) equivalent to the carbonate and bicarbonate is called carbonate hardness; the hardness in excess of this quantity is called non-carbonate hardness.

In the analyses of most waters used for irrigation, the quantity of dissolved solids is given in tons per acre-foot as well as in parts per million. Percent sodium has been computed for those analyses where sodium and potassium are reported separately by dividing the equivalents per million of sodium by the sum of the equivalents per million of calcium, magnesium, sodium, and potassium and multiplying the quotient by 100. In analyses where sodium and potassium were calculated and reported as a combined value, the value reported for percent sodium will include the equivalent quantity of potassium. In most waters of moderate to high concentration, the proportion of potassium is much smaller than that of sodium. . . Hydrogen-ion concentration (pH) is given as the negative logarithm of the number of moles of ionized hydrogen per liter of water.

A weighted-average analysis represents approximately the composition of water that would be found in a reservoir containing all of the water passing a given station during the year for period after thorough mixing in the reservoir. The weighted-average analysis is computed by multiplying the discharge for the sampling period by the quantities of the individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges.

Specific conductance, expressed as micromhos, is an electrical measurement of the ionized salts in solution.

Salinity Study

Spot samples were taken from the major tributaries and main stem of the Moreau River April 12 to 16, 1949, after the major part of the water from the spring thaw had run off. The following discussion is therefore not applicable for periods of flood or other high runoff. However, a correlation between geology and water quality during normal or low flow, when the percentage of ground water in the stream is greater, is more reliable than at times when storm or melt waters dilute the streamflow. The locations of sampling sites for this special salinity survey are shown in figure 1, and the analyses of 21 surface-water samples are given in table 6. The principal mineral constituents are expressed graphically in figure 10.

The concentrations of dissolved minerals are highest in samples from the South Fork, which drains an area that is underlain by the Pierre shale. The dissolved mineral matter in these samples is predominantly sodium sulfate and contains appreciable amounts of calcium and magnesium and a small amount of bicarbonate. Samples from all other tributaries represent waters that drain from areas underlain mostly by the Fox Hills sandstone and the Hell Creek formation. Sodium bicarbonate characterizes these waters.

Waters from Deep, Rabbit, Antelope, and Sand Creeks and the North Fork Moreau River drain from areas underlain principally by the Hell Creek formation and have a higher percent sodium than other surface waters of the basin. However, the water from Sand Creek at Mason has been influenced by the Fox Hills sandstone and Pierre shale, as shown by high mineral content and high percentage of sulfate. Flint Rock, Thunder Butte, and Worthless Creeks drain areas underlain principally by the Hell Creek forma-

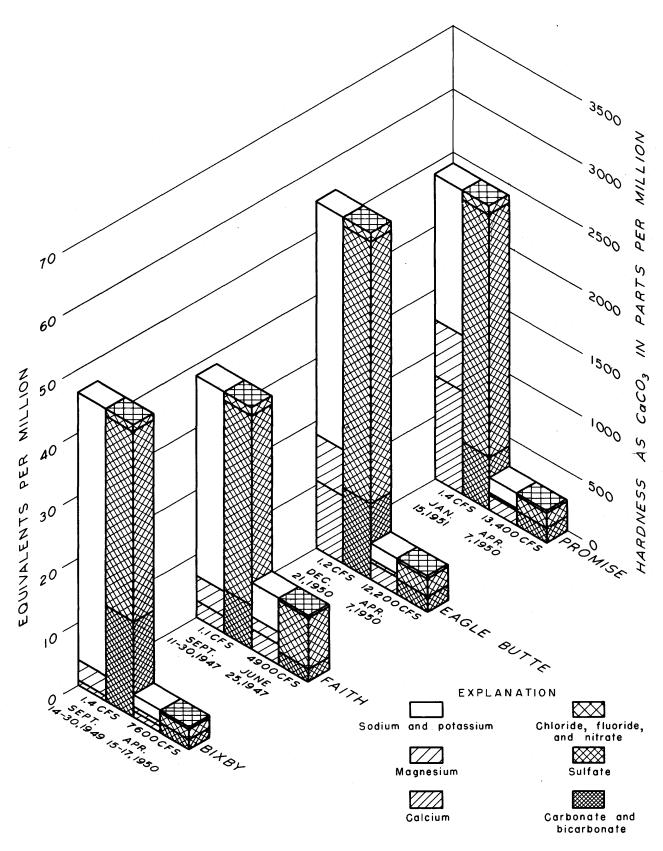
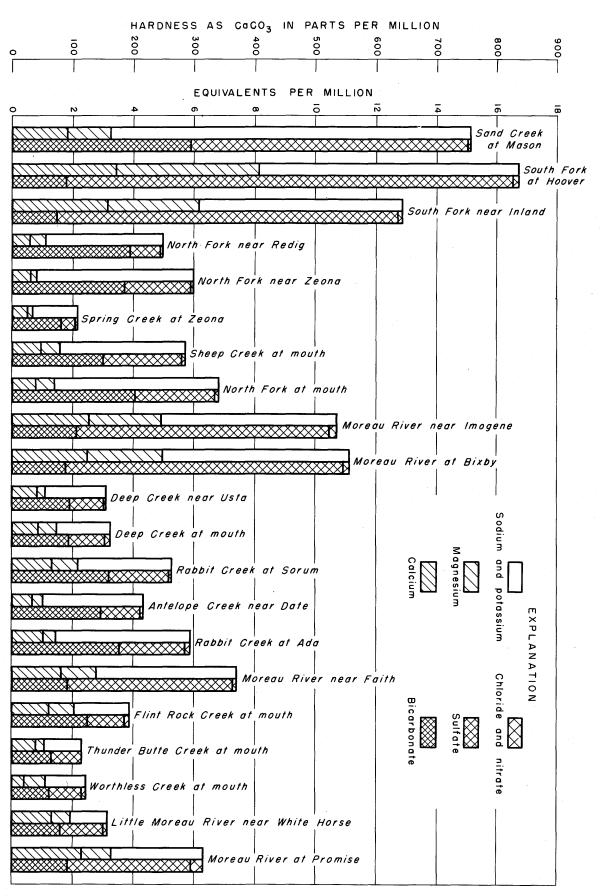



Figure 9.--Principal mineral constituents during periods of high and low flows at sampling stations, Moreau River drainage basin, 1945-51.

tion except in the lower reaches, which are underlain by the Fox Hills sandstone. Therefore, the samples represent mixtures of two types of water. Waters that drain from the Fox Hills sandstone and Pierre shale are more mineralized than waters that drain from the Hell Creek formation. The difference in concentrations is probably related to the nonmarine origin of the Hell Creek formation and to the marine origin of the Fox Hills sandstone and the Pierre shale.

The percentage composition of the water in the South Fork and in the entire main stem of the Moreau River shows the effect of the outcrops of Pierre shale, and the percentage is not altered materially by the relatively dilute water that drains from areas that are underlain by the Hell Creek formation.

Moreau River at Bixby

Samples were collected daily from the Moreau River at Bixby from March 6, 1949, to September 30, 1951. The results of chemical analyses are given in table 7.

Water passing the station at Bixby is a mixture of water from the North and South Forks. Consequently, the Hell Creek formation, Fox Hills sandstone, and Pierre shale jointly contribute to the mineralization of the water. (See fig. 6.) When the discharge is low, nearly base flow, the water is highly mineralized and predominantly sodium sulfate. This is chiefly due to the Pierre shale, which underlies most of the South Fork and part of the North Fork.

Moreau River near Faith

Analyses of seven samples that were collected from April 16, 1941, to May 7, 1945, were furnished by the Bureau of Reclamation. Seven additional spot samples were collected by the Geological Survey from November 29, 1945, to March 26, 1947. Samples were collected daily from April 9, 1947, through September 30, 1949. Results of chemical analyses for all these samples are given in table 8.

The water in the Moreau River near Faith is similar to the water at Bixby. However, water from Rabbit and Deep Creeks enters the main stem upstream from the station near Faith and causes a slight increase in percent sodium and a decrease in concentration. These changes are due to the fact that Rabbit and Deep Creeks are underlain mostly by the Hell Creek formation. The water quality at Bixby can be compared approximately with the water quality near Faith from the weighted-average figures for the 1949 water year (tables 7 and 8), as both stations were then sampled on a daily basis.

Moreau River near Eagle Butte

Analyses of 13 samples that were collected from April 17, 1941, to July 8, 1943, were furnished by the Bureau of Reclamation. Since November 30, 1945, the Geological Survey has collected samples at irregular intervals. The analytical results for all samples are given in table 9. In general, the water near Eagle Butte contains less sodium than the water at Bixby or near Faith, but it is more highly mineralized. The change in lithology between Faith and Eagle Butte is the principal reason for the change in water quality.

Moreau River at Promise

Analyses of eight samples that were collected from October 10, 1941, to June 15, 1943, were furnished by the Bureau of Reclamation. Since November 30, 1945, the Geological Survey has collected samples at irregular intervals. The analytical results for all samples are given in table 10.

The composition of the water at Promise is somewhat similar to the composition of the water near Eagle Butte. However, the water at Promise has a higher ratio of calcium and magnesium to sodium.

Suitability of Water for Irrigation

The suitability of water for irrigation, as determined by water-quality criteria only, depends primarily on mineral concentration, percent sodium, and concentration of boron. All these factors may vary considerably with water discharge. Thus, weighted-average analyses by water years are helpful in determining concentrations to be expected only if the water is impounded. However, concentrations as shown by these analyses maybe misleading because they will be lower or higher during a wet or dry climatic cycle than longterm average concentrations.

For the Moreau River study, relatively short-term chemical-quality records are available. Weighted averages have been calculated from analyses of water samples from the river near Faith (1948 and 1949 water years) and at Bixby (1949, 1950, and 1951 water years) and are given in tables 7 and 8. No other daily chemical-quality stations in the basin have been operated. In order to determine whether the 3-year records for Bixby and the 2-year records for Faith are representative of a wet, dry, or average climatic period, it is necessary to compare the discharge records of these years with a long-term average discharge. As a long-term average discharge is not available for the two stations, it must be calculated after consideration of certain factors, which are (1) the climate throughout the basin is fairly uniform and consequently has a very small variance in average annual precipitation, and (2) the geology and topography are fairly uniform; therefore, the runoff does not vary appreciably from one place to another. As a result of these two factors, the discharge per square mile of drainage area is relatively constant for the entire length of the river's main stem, as shown in figure 7. A 21-year record of discharge is available for the station at Promise. Thus, the discharge per square mile at Bixby and Faith canbe calculated with reasonable accuracy for periods when no records of streamflow are available.

The average annual discharge at the Promise station for the 21-year period that ended September 30, 1951, was 273 cfs from the drainage area of 5,223 square miles. The calculated discharge per square mile equals 0.052 cfs, which when multiplied by the drainage areas above the other stations gives the approximate 21-year average discharge for each of these areas. Thus, the 21-year average discharge at Bixby (drainage area, 1,570 sq miles) is about 82 cfs; near Faith (2,660 sq miles), about 138 cfs; and near Eagle Butte (4,320 sq miles), about 225 cfs. Discharge for each year of sampling is compared with the 21-year average for each station in table 1. The discharges for several of the years are lower than the calculated 21-year averages. However, the average discharge for the period of sampling is somewhat higher than the 21-year average. This indicates that the period of sampling was during a relatively wet climatic cycle. Consequently, an average discharge - weighted concentration of dissolved minerals for the period of sampling would be lower than normal, and the percentage composition would not be representative of a long-term average.

Table 1Discharges for periods of sampling compared with calculated 21-year averages for stations o	a the
Moreau River	

Station	Years of sampling (water years)	Annual average discharge (cfs)		Average discharge for period of sampling (cfs)	Calculated 21-year average discharge (cfs) <u>1</u> /
Bixby	1949	97.0	h		82
Do	1950	216		112	82
Do	1951	21.9	IJ		82
Faith	1946	70.1	h		138
Do	1947	270		140	138
Do	1948	102		149	138
Do	1949	152	IJ	•	138
Eagle Butte	1946	105	h		225
Do	1947	454			225
Do	1948	176		304	225
Do	1949	350		504	225
Do	1950	645			225
Do	1951	92.4	IJ		225
Promise	1946	116	Ь		273
Do	1947	575			273
Do	1948	251		000	273
Do	1949	446		388	273
Do	1950	812			273
Do	1951	126	IJ		273

1 Drainage area in square miles x 0.052.

Note. --At Faith, infrequent samples included; at Eagle Butte and Promise, infrequent samples only.

Weighted - average concentrations for incomplete years are not necessarily representative of the water that flows past a station during a full year. For example, there were days when the water was not sampled at the Bixby station during the 3-year period of record. The following table compares the estimated weighted averages of specific conductance and percent sodium for 3 complete years of record at Bixby with the weighted averages for the sampling periods only. From these estimated annual figures, the 3year weighted average for specific conductance would be 632 micromhos and the 3-year weighted average for percent sodium would be 57. The graphic method of rating a water for irrigation as proposed by Wilcox (1948) would rate the water as good to permissible.

Weighted averages of specific conductance and percent sodium for water in the Moreau River at Bixby, 1949-51

317 e k	Percent (micromhos p		conductance per cm at 25 ⁰ C)	Percent sodium	
Water year	of flow sampled	Period sampled	Estimated for water year	Period sampled	Estimated for water year
1949	94	698	735	54	55
1950	81	544	518	56	56
1951	98	1,300	1,300	79	79
Weighted avera	ge 1949-51		632		57

The results of analyses of composited samples for the stations at or near Bixby, Faith, Eagle Butte, and Promise have been used to classify graphically the water for irrigation (fig. 11). In general, the water becomes less suitable as the streamflow decreases. Therefore, if the period of sampling is during a wet cycle, the short-term weighted averages would imply that the water is of better quality than would actually be available over a long period of time. By correlation of the calculated 21-year average discharge at the Bixby station (82 cfs) with the data given in figure 11, it is estimated that water impounded at Bixby for an

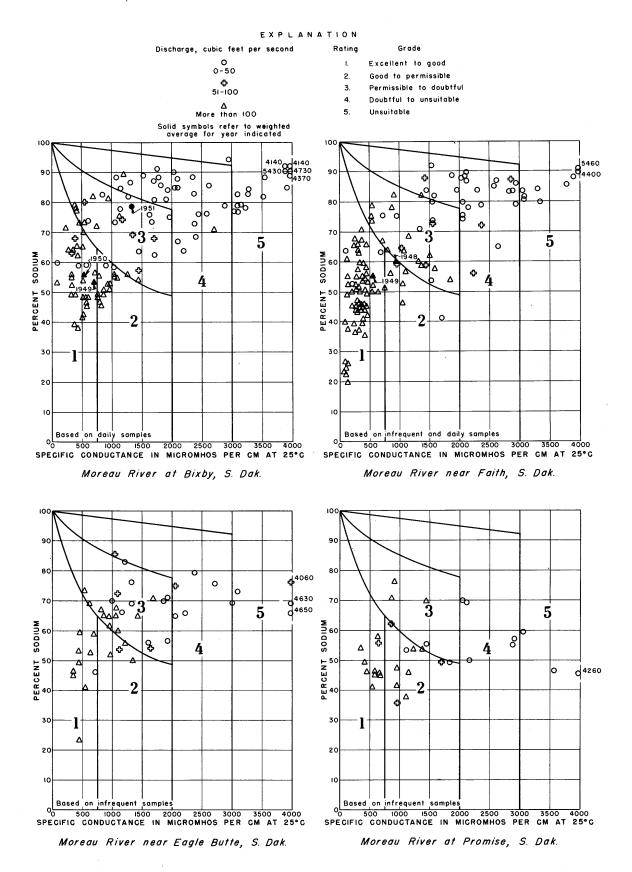


Figure 11. --Classification of surface water for irrigation, Moreau River drainage basin (after Wilcox).

average year would be permissible to doubtful for irrigation. Of course, some years the water would be more suitable for irrigation and some years less suitable than the average would indicate. However, Wilcox states that the graphical classification of irrigation water is dependent on permeability, drainage, quantity of water used, climate, and crops, and that irregularities that relate to any of these would alter the intended use of the graph. Therefore, heavy soils, low permeability, inadequate drainage, high rates of evapotranspiration, the application of too little water, or the growing of crops with poor salt tolerance may alter the classification of the water.

Other chemical-quality characteristics besides total concentration and percent sodium must be considered in rating the water for irrigation. Boron in irrigation water can be toxic to crops if the concentration exceeds the limits suggested by Scofield (1936, p. 286). Water in the Moreau River usually contains low concentrations of boron, and the higher concentrations during certain low-flow periods would not cause quality-of-water problems if the water were impounded. Eaton (1949, p. 38) states:

. . . if the water contains more HCO_3 - CO_3 than it does Ca plus Mg, then with evaporation the Ca and Mg carbonates are precipitated and there remains sodium carbonate, and Na is the only important base. Since the strong base, Na, is present with the excess of carbonate, a weak acid, the solution becomes strongly alkaline. It is the presence or absence of this residual sodium carbonate that now appears to furnish a criterion of whether black alkali can or cannot develop in irrigated soils.

Black-alkali soil is the descriptive name applied to a soil that has a pH of 8.4 or more and contains organic matter. The organic matter is dissolved by the alkaline solution, and the soil becomes dark brown to black. During certain periods of time, low-flow water at the Bixby station contained amounts of carbonate and bicarbonate in excess of calcium plus magnesium, as shown in figures 12, 13, and 14. The relation to discharge of carbonate and bicarbonate in excess of calcium and magnesium (shown by crosshatching), hydrogen ion concentration, and percent sodium indicates that the excess carbonate and bicarbonate, hydrogen ion concentration, and percent sodium vary inversely with the discharge. However, the decrease of the percent sodium, pH, and excess bicarbonate is not so rapid as the increase of the discharge. Consequently, the concentrations of the constituents may temporarily remain high when the discharge increases. Figures 12, 13, and 14 show that during low flows carbonate and bicarbonate are in excess of calcium and magnesium, and the weighted average for the 1951 water year shows an excess because the ratio of flood flows to low flows is low. However, the weighted averages for the 1949 and 1950 water years show no excess because the ratio is high. During the 1951 water year the percent sodium was high, and the hydrogen ion concentration (pH) exceeded 8.0 much of the time.

The chemical-quality data for the station at Bixby for the 1951 water year may be used to estimate the water quality for previous years. Figure 7 shows that from 1931 to 1940 the discharge per square mile for 6 of the years was less than during 1951, and figure 12 shows that excess carbonate, percent sodium, and pH are all high when water discharges are low. Therefore, during many years of a dry period, such as 1931-40, the water would contain excess amounts of bicarbonate and high percent sodium, and the pH would probably exceed 8.0. This water would be conducive to the formation of black alkali.

Eaton (1949, 1950) has made an extensive study of the relations of residual carbonate and percent sodium to the occurrence of black alkali and the suitability for irrigation of water in the Nile River basin. His findings are applicable to any natural water that may be used for irrigation. He stated (1949, p. 38-39):

During period of low water the Nile water has a pH well above 8.0. The water has such a large proportion of HCO₃-CO₃ that when it is greatly reduced in volume by evaporation it precipitates much of its Ca and Mg as carbonates and silicates, giving rise to an alkaline solution with little else than sodium salts of carbonate, chloride, and sulfate. Such a solution washing onto a soil from neighboring land, or rising from below and moving through it, would bring about the replacement of exchangeable calcium and magnesium, produce a high pH, establish impermeability, and, in other words, create those conditions that are descriptive of black-alkali soils If the possibility of black-alkali formation can be anticipated by recognition of the ionic relations of the water supply, advantage can be taken of the facts, not necessarily as a basis for condemning a water, but rather as a means of establishing the need of precautionary measures. Productivity can be maintained by adequate water use and drainage at less expense than it can be restored by reclamation.

In the following table, a comparison is shown between the composition of waters of the Moreau River during the 1951 water year and of the Nile River during 8 months of low flow.

A comparison of waters from the Nile and Moreau Rivers
[Results in equivalents per million except percent sodium]

Source	Calcium	Magnesium	Excess bicarbonate	Bicarbonate and carbonate	Percent sodium
Nile River (8 months of low flow) $1/$	0.87	0.72	1.44	3.03	56
Moreau River weighted average (1951 water year)	1.65	1.07	2.33	5.05	79

1 Eaton, 1949, p. 37.

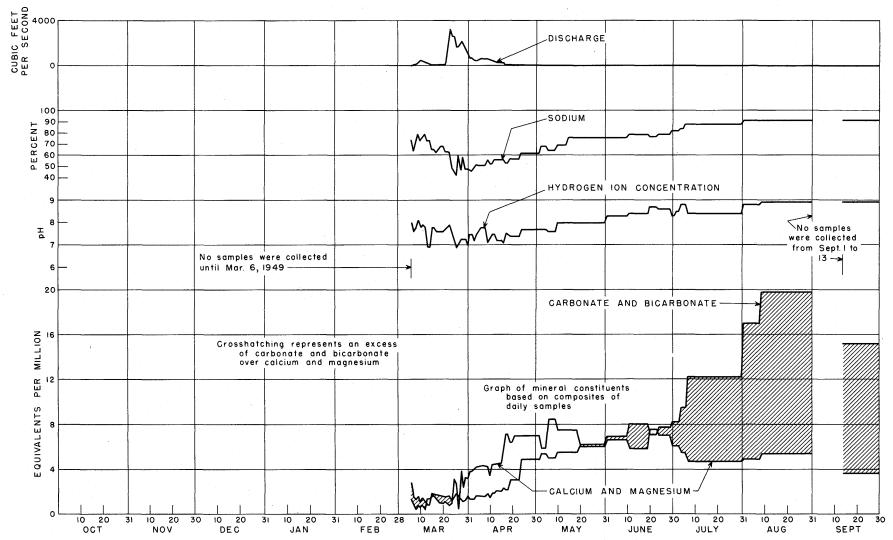


Figure 12. --Comparison to discharge of carbonate and bicarbonate in excess of calcium and magnesium, hydrogen ion concentration, and percent sodium, Moreau River at Bixby, water year 1949.

.

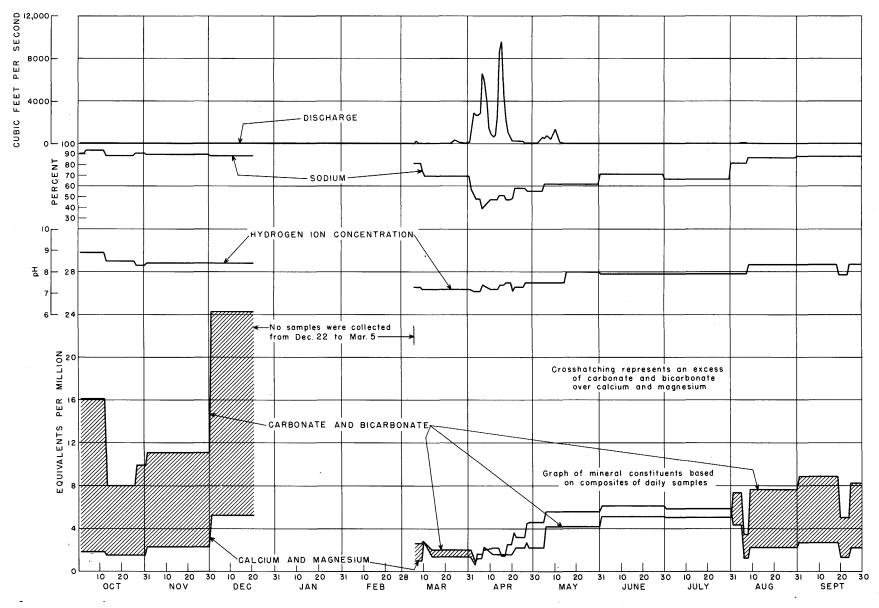


Figure 13. --Comparison to discharge of carbonate and bicarbonate in excess of calcium and magnesium, hydrogen ion concentration, and percent sodium, Moreau River at Bixby, water year 1950.

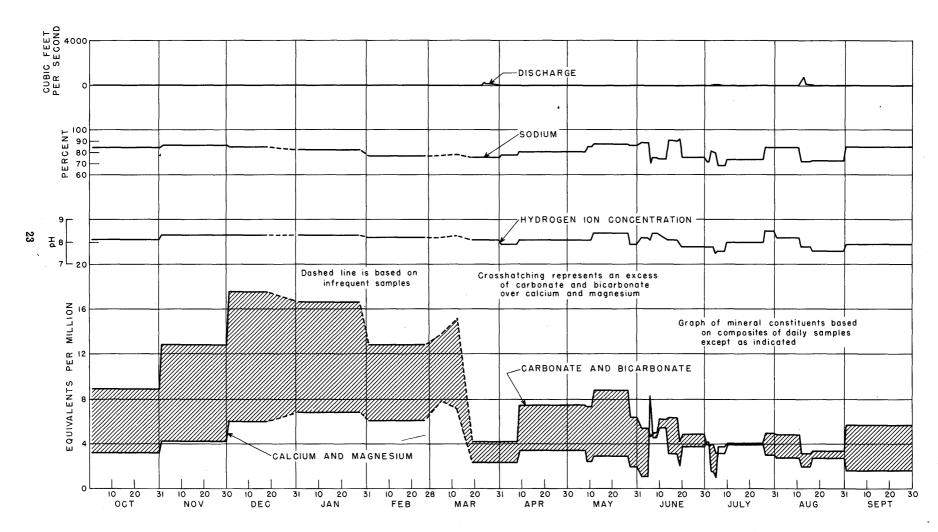


Figure 14. --Comparison to discharge of carbonate and bicarbonate in excess of calcium and magnesium, hydrogen ion concentration, and percent sodium, Moreau River at Bixby, water year 1951.

The quality of the water in the Moreau River at Bixby is so poor for irrigation that a complete evaluation of soil, permeability, drainage, climate, application rates, and crops is necessary. During the dry periods of the climatic cycle, when irrigation would be needed most, the water quality is very poor.

The use of the water for irrigation is not precluded where adequate drainage is provided and where infiltration rates are sufficient to provide low rates of evaporation and good flushing.

Downstream from Bixby the water becomes progressively better for irrigation. However, the improvement is not great by the time the water reaches the station near Faith. Data are inadequate to foretell satisfactorily the suitability for irrigation of the water at the stations near Eagle Butte and at Promise. Available data (tables 9 and 10) seem to indicate that the percent sodium is lower and amounts of carbonate and bicarbonate in excess of calcium and magnesium are much less likely to be troublesome than in the water at upstream stations.

FLUVIAL SEDIMENT

Information on the sediment yield of a drainage basin should include rates and quantities of discharge of all the sediment that is transported either in suspension or as bed load, the particle-size distribution of the suspended sediment and of the bed load, and the principal sources of the sediment. This report contains only the measured rates and quantities of suspended sediment and the results of particle-size analyses of suspended sediments.

Stream slopes are low and the particle sizes of the suspended sediment are small, so bed-load discharge must be low. Also few data are available for computing rates and quantities of sediment that is discharged as bed load. For these reasons the bed-load discharge of the Moreau River was not computed.

Definition of Terms

As the definitions of terms that relate to fluvial sediments are not completely standardized, some of the terms in this report are defined as follows:

Sediment is fragmental material that originates from weathering of rocks and is transported by, suspended in, or deposited by water or air or is accumulated in beds by other natural agencies.

Fluvial sediment is sediment that is transported by, suspended in, or deposited by water.

Suspended sediment or suspended load is sediment that moves in suspension in water and is maintained in suspension by the upward components of turbulent currents or by colloidal suspension.

Bed load or sediment discharged as bed load includes both the sediment that moves in essentially continuous contact with the stream bed (contact load) and the material that bounces along the bed in short skips or leaps (saltation load). <u>Sediment sample</u> is a quantity of water-sediment mixture that is collected to represent the average concentration of suspended sediment, the average size distribution of suspended or deposited sediment, or the specific weight of deposited sediment.

Depth-integrated sediment sample is a sediment sample that is accumulated continuously in a sampler that moves vertically at a constant transit rate and that admits sediment-water mixture at a velocity about equal to the stream velocity at every point. Because depth-integrated sediment samplers are not designed to collect water-sediment mixture within about 0.3 foot of the stream bed, the suspended-sediment discharge based on such samples is less than the total suspendedsediment discharge. However, for sediment in the silt and clay sizes, the difference is usually negligible. As the suspended sediments of the Moreau River are nearly all smaller than sand size, the term "suspended-sediment discharge" is applied to the sediment discharge that is computed from depth-integrated sediment samples.

Sediment discharge is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or by volume, that is discharged in a given time.

<u>Specific weight</u> of sediment is weight of solids per unit volume of deposit in place.

The <u>size classification</u> used in this report is the classification recommended by the American Geophysical Union Subcommittee on sediment terminology (Lane, 1947, p. 937). According to this classification, clay size particles have diameters between 0.0002 and 0.004 millimeter, silt size particles have diameters between 0.004 and 0.062 millimeter, and sand size particles have diameters between 0.062 and 2.0 millimeters.

According to Twenhofel and Tyler (1941, p. 110):

The median, or median diameter, is the midpoint in the size distribution of a sediment of which one-half of the weight is composed of particles larger in diameter than the median and one-half of smaller diameter. The median diameter may be read directly from the cumulative curve by noting the diameter value at the point of intersection of the 50 percent line and the curve.

<u>Water discharge</u> is the discharge of natural water of a stream. The natural water contains both dissolved solids and suspended sediment.

Measurement of Suspended-Sediment Discharge

Discharge of suspended sediment is proportional to the product of water discharge and average concentration of suspended sediment. Procedures for gaging the flow of streams are fairly well standardized and are explained in Water-Supply Paper 888 (Corbett, 1943).

Concentration of suspended sediment in the Moreau River basin was determined usually from depth-integrated samples. These samples were collected either with the US DH-48 hand sampler or with the US D-43 sampler. A bucket-type sampler was used when no better sampler was available or when the air temperatures were too low for a sampler with a nozzle.

At each sediment sampling station, samples were collected generally at one vertical in the stream cross section, called the daily sampling station, once or twice a day except during periods of high or rapidly changing concentration or discharge when samples were taken more frequently. Engineers collected additional samples periodically at the daily sampling stations. Usually they also sampled at a few verticals that were spaced to represent equal quantities of water discharge. The average concentration of the samples from these verticals was used as the average concentration of suspended sediment for the entire cross section. At some measuring stations, the average concentration for the cross section sometimes differed significantly from the simultaneous concentration at the daily sampling station. For such stations, corrections were applied to adjust concentrations that were based on samples at the daily sampling station to average concentrations for the cross section.

The concentration of suspended sediment in each sample was determined in the laboratory. First, each sample was weighed. Then, after the sediment had settled, the supernatant water was drawn off. The residue was filtered or evaporated, and the sediment was dried and weighed. Corrections were applied for any appreciable quantity of dissolved solids that remained with the sediment after the water was evaporated.

Daily mean concentrations of suspended sediment were computed by plotting the concentrations of samples from the daily sampling station on the gage-height graph, drawing a smooth curve through the plotted points, and picking the daily mean concentrations for the daily sampling station from this graph. If the concentrations at the daily sampling station were not representative of the concentration for the entire cross section of the stream, a coefficient was applied to compute the daily mean concentrations.

Discharge of suspended sediment in tons per day usually was computed by multiplying daily concentration, in parts per million, by daily mean water discharge, in cubic feet per second, and by 0.0027. On days when both concentration and water discharge were changing rapidly, each day was subdivided, and sediment discharge was computed for parts of the day. For days when no samples were collected, the daily discharges of suspended sediment were estimated on the basis of water discharge, concentration for adjacent days, weather records, and records for other stations.

Suspended-Sediment Records

Daily records of suspended-sediment discharge of the Moreau River have been obtained and computed for the gaging station near Faith from August 15, 1946, to September 30, 1949, and for the gaging station at Bixby from April 28, 1949, to September 30, 1951. Sediment samples were also collected at Bixby on March 24 and April 13, 1949. The locations of the sediment stations at Bixby and near Faith are shown on figure 1 (map reference nos. 10 and 16).

Table 2 is a summary of the more detailed record (tables 11 and 12) of suspended-sediment discharge for the two stations. The average concentration weighted with water discharge was about 3, 700 ppm for the station near Faith and about 4,600 ppm for the station at Bixby. The difference in average concentration at the two stations is due mostly to having sediment records during the water year of 1950 at Bixby but not at Faith. During the water year of 1950, the streamflow of the Moreau River was $2\frac{1}{2}$ to 3 times normal. At the station near Faith the suspended-sediment discharge averaged about 650,000 tons per year during the period of record or slightly less than 250 tons per square miles annually. Water discharge during this period averaged somewhat less than 130,000 acre-feet annually. The Moreau River at Bixby discharged about 1,000,000 tons of suspended sediment and about 160,000 acre-feet of water during the water year of 1950 but only about 80,000 tons and 16,000 acre-feet during the water year of 1951. Sediment yield per square mile averaged nearly 350 tons per year. Available records are for too short a time to prove that the average sediment yield per square mile is appreciably different at the station at Bixby than at the station near Faith. As soils, topography, vegetation, precipitation, and runoff all seem to be about uniform throughout the Moreau River basin, the sediment yields per square mile are probably reasonably uniform within the basin except in small areas of badlands or active gullies.

Gaging station	Drainage area (sq miles)	Period	Water discharge (acre-ft)	Suspended- sediment discharge (tons)	Average concentra- tion <u>1</u> / (ppm)
At Bixby	1,570′	Apr. 28 to Sept. 30, 1949 Water year 1949-50 Water year 1950-51	2,440 156,700 15,840	3, 940 997, 100 81, 920	1,190 4,670 3,800
Near Faith	2,660	Aug. 15 to Sept. 30, 1946 Water year 1946-47 Water year 1947-48 Water year 1948-49	4,050 195,500 74,380 110,300	32,120 1,077,000 353,600 515,400	5,830 4,050 3,490 3,430

Table 2. -- Summary of records of suspended-sediment discharge of the Moreau River

1 Weighted with water discharge.

Suspended - sediment discharge fluctuates with changes in any one of several interrelated variables, which include water discharge, turbulence and temperature of the flowing water, and availability of sediments of each size range. The fluctuations are large and frequent and have only a general relation to water discharge. Except, perhaps, at very high water discharges, the suspended-sediment discharge generally increases more rapidly than the water discharge because the concentration also tends to increase with water discharge. Throughout much of the range covered by the records, the suspended - sediment discharge increases approximately as the square of the water discharge. (See figs. 15 and 16, which show the relation of daily discharges of suspended sediment to water discharge.) In general, for a given water discharge, concentrations of suspended sediment are much lower during the spring than at other seasons of the year.

Size Composition of Suspended Sediment

At the sediment sampling stations at Bixby and near Faith, representative samples were collected periodically for particle-size analyses. (See tables 13 and 14.) One or both of two general types of particle-size distributions were determined from a sample. One type showed particle sizes according to settling velocities in native water in which the degree of flocculation may have been somewhat the same as might occur in a pool or reservoir. The other type of particlesize distribution was the classification of particles by their settling diameters when the particles were completely dispersed. For particle sizes smaller than 0.031 millimeter, the difference between the two types of particle-size distributions is large. The difference is due to flocculation of the soil particles, which is caused by certain dissolved solids in the native water. Average size distributions of samples for which duplicate portions were analyzed in native water and in distilled water are plotted on figures 17 and 18. Also plotted on these figures are the curves of average particle-size distributions for all samples that were analyzed in distilled water. All average particle sizes are simply arithmetic averages of the size distributions of the particles; that is, particle sizes were not weighted with sediment discharge except that more samples were collected for particle-size analyses during periods of high flow than during periods of low flow.

Particle sizes resulting from analyses in native water are helpful in estimating the rates and locations of sediment deposition in slowly moving parts of a stream and in reservoirs. However, the degree of flocculation in a reservoir may not be the same as in the sedimentation cylinder in the laboratory.

Absolute particle sizes, measured by settling velocities of dispersed particles in distilled water, are probably the most suitable size distributions for computing the specific weight of sediment after it is deposited in a reservoir. The specific weight of sediment increases as the absolute sizes of the sediment particles increase. Sediment particles, even though they may flocculate to a larger settling diameter in the process of deposition, will, after they are deposited in a reservoir, probably assume the same specific weight that they would have had if they had been deposited while the particles were dispersed. Also the available data for defining the relation between median particle size of deposited sediments and specific weight were obtained from samples that were analyzed usually when the particles were dispersed.

Until 1950 the particle-size analyses, both in native and in distilled water, were made with the bottomwithdrawal tube. During 1950 and 1951 many samples were analyzed for particle size by the sieve-pipette method (Twenhofel and Tyler, 1941, p. 54-55). In this method particles coarser than 0.062 millimeter are separated from the finer particles by a combination of wet and dry sieving. The coarser portion is then weighed and discarded or is subdivided into different size classifications by dry sieving. The finer portion is analyzed according to sedimentation diameters by the pipette method.

The suspended sediment transported by the Moreau River is mostly fine material. (See figs. 17 and 18.) The average percentage of particles in the sand range (0.062 to 2.0 mm) was 10 percent at Bixby and 6 percent for the station near Faith. The larger percentage of coarser particles at Bixby probably was due to the abnormally high water discharges during 1950. Median particle sizes as shown by the average sizes of the dispersed samples were, by extrapolation, about 0.0017 millimeter for the station at Bixby and about 0.0015 millimeter for the station near Faith (figs. 17 and 18). The samples were not weighted with water discharge or sediment discharge.

Specific Weight of Fluvial Sediment

One significant factor in the design of reservoirs is the rate of depletion of storage capacity by sediment deposits. Estimates of the rate of reservoir depletion should be based on a knowledge of the probable location and specific weight of the deposited sediments. The location of the deposited sediments is dependent on inflow-outflow relationships or elevation of water surface in the reservoir, sedimentation diameter of particles in transport, mineral constituents in solution, and effect of density currents. The specific weight of sediment deposits depends on the type of material in transport, absolute particle size, effect of change in concentration of the mineral constituents in solution, degree of sorting, and amount of consolidation.

The rate of deposition of sediment in the upper reaches of a reservoir is a function of the stream velocity (turbulence) and the settling diameters of the material in transport. The coarsest material will be deposited where the backwater begins, but some of the finest material will eventually reach the downstream end of the reservoir because of density currents or reservoir drawdown or both. The reservoir operation may result in deposition of coarse and fine material in alternate lenses at the same location.

The specific weight of material deposited in reservoirs increases with compaction. If all the sediment particles have about the same specific gravity, the specific weight of the deposits is determined solely by the porosity of the deposit. The porosity depends chiefly on (1) the shape and arrangement of the particles, (2) the degree of assortment of the particles,

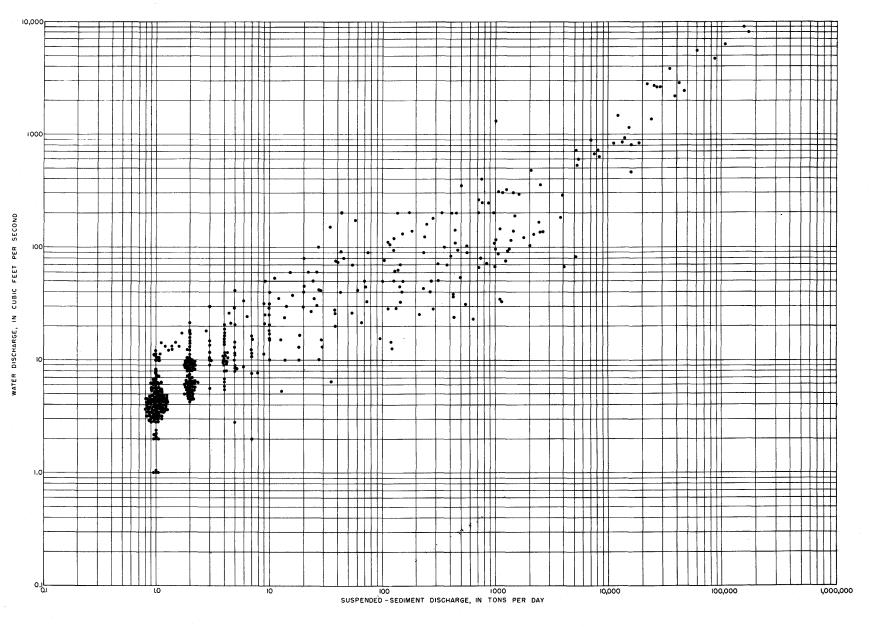


Figure 15. --Relation of suspended-sediment discharge to water discharge, Moreau River at Bixby, March 24, 1949, to September 30, 1951.

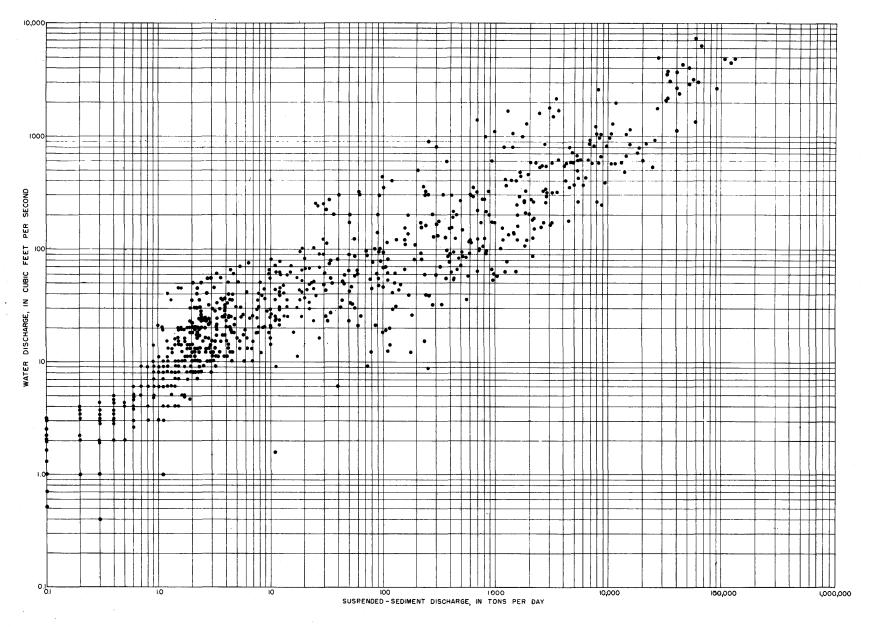
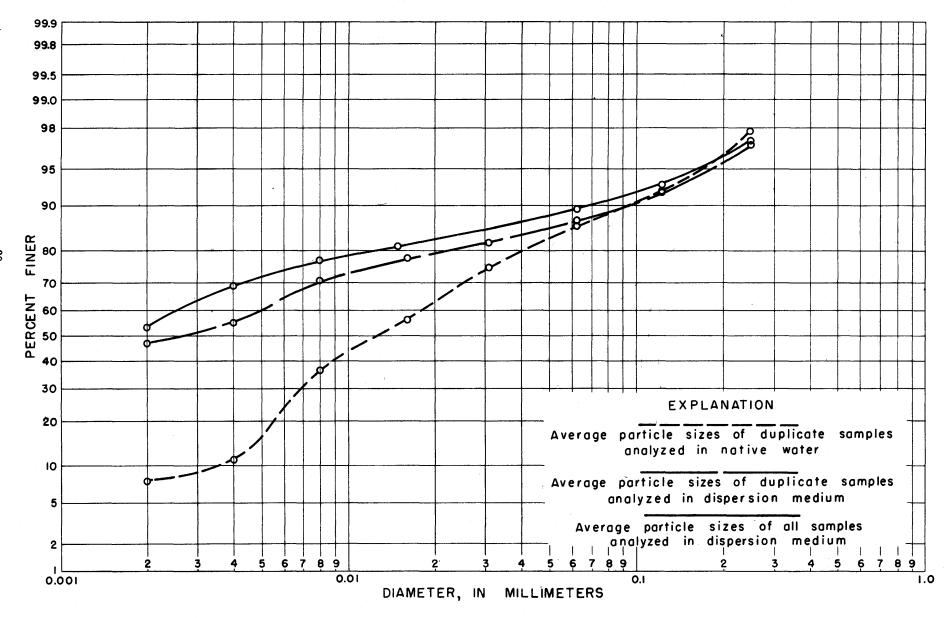



Figure 16. --Relation of suspended-sediment discharge to water discharge, Moreau River near Faith, August 15, 1946, to September 30, 1949.

29

.

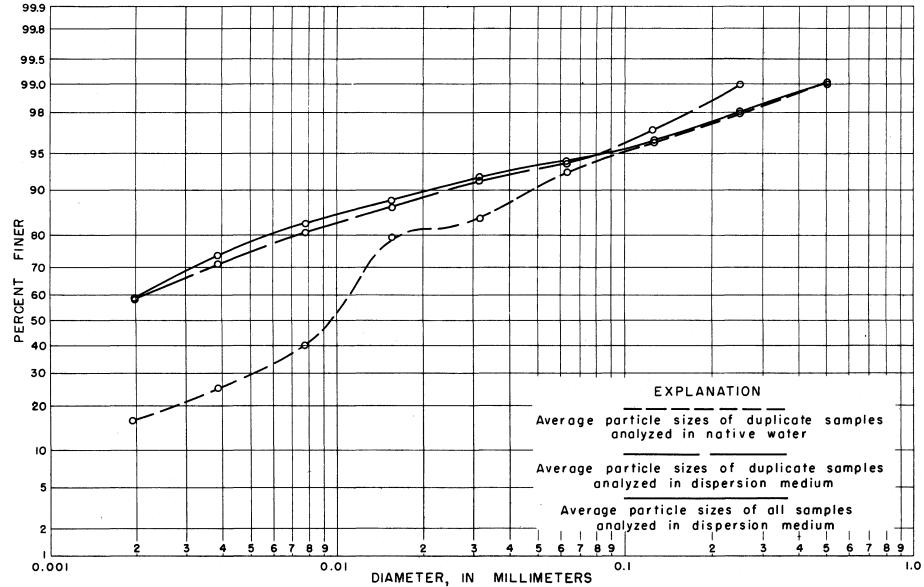


Figure 18. -- Average particle-size distributions of suspended-sediment samples, Moreau River near Faith.

and (3) the cementation and compaction to which the deposit has been subjected since its deposition. The degree of assortment is particularly important in fixing porosity. Sediment of completely uniform particle size (perfectly graded sediment) will have the greatest porosity. If all particles were uniform spheres, the size of the particles would have no effect on the porosity of uniform deposits. However, deposits of silts and clays usually have greater porosity and smaller specific weight than deposits of coarser particles, partly because the range in particle size is usually greater in coarser deposits and partly because the smaller particles fill some pores between the larger particles.

The specific weight is increased and the volume of a sediment deposit is decreased as part of the interstitial water is forced out and as the sediment particles become packed closer together. The smaller the pore spaces, the greater are the friction and other forces that resist compaction of the sediment. Hence, fine-grained deposits usually compact at a much slower rate than coarse - grained deposits. The rate and amount of increase of specific weight depend not only on the particle size of the deposits but also on the method of operation of the reservoir and on the depth of the sediment deposits. The rate of compaction is probably relatively rapid during the first few years after deposition but decreases with time.

An average figure for the specific weight of a deposit that might be formed from the sediment in transport is necessary to compute the space that a given tonnage of the sediment might occupy when first deposited in a reservoir. The accuracy of such a computed average figure is affected not only by reservoir operation but also by inaccuracies in measuring the total sediment discharge and the particle sizes. At present only the suspended sediment is measured; the bed load must be estimated. Hence, only an approximate figure can be computed for the average specific weight that the sediment deposit will have seon after it accumulates in a reservoir. The specific weight of suspended sediment was determined by a method that is based on the median particle size of the suspended sediment. This method is believed to be superior to others that apply specific weights to different size grades because it is simple and is based on actual measurements of specific weights.

This method is as follows: The median particle size of each sample that was analyzed in a dispersed state was plotted against the instantaneous suspendedsediment discharge in tons per day. (See fig. 19.) For predetermined class intervals of suspended-sediment discharge, the corresponding median particle sizes were taken from the curve of figure 19 and were listed in tables 3 and 4.

Figure 20 shows the relation between the median particle size and the specific weight of relatively uncompacted sediment deposits in reservoirs in the United States (Hembree and others, 1952, p. 83-85). The specific weights corresponding to the different median particle sizes that are listed in tables 3 and 4 were determined from figure 20. The specific weight of reservoir deposits that might be formed from the suspended sediment in the Moreau River at Bixby and near Faith was then computed (tables 3 and 4) and was found to be 51 and 50 pounds per cubic foot, respectively. These specific weights, which are for sediment deposits that have not been compacted during a long period of time or under the weight of appreciable amounts of overlying deposits, were used to convert tons of suspended sediment to acre-feet of sediment. (See table 5.) The computed volumes of sediment indicate that the probable maximum space that would be occupied by the suspended sediment that was discharged by the Moreau River at Bixby from April 28, 1949, to September 30, 1951, would be about 980 acrefeet and near Faith from August 15, 1946, to September 30, 1949, would be about 1,820 acre-feet. Flow of the Moreau River was probably appreciably above normal during the period of sediment records for the station near Faith and probably averaged much above normal during the period of sediment records at Bixby.

Suspended-sedi	ment discharge	Median particle	Specific weight	Total tons divided
Middle of class interval (tons per day)	Total tons in class interval	size (mm)	(lb per cu ft)	by specific weight
0.55	273	0.0012	42	6
5.4	1,183	.0012	42	28
60	3,600	. 0012	42	86
344	13, 416	. 0013	43	312
1,002	28,056	. 0015	44	638
1,900	15,200	. 0017	45	338
3,065	9,195	.0019	46	200
4,940	34, 580	. 0022	46	752
8,000	32,000	. 0025	47	681
12,950	64,750	. 0029	48	1,349
21,000	105,000	. 0035	49	2, 143
34,000	136,000	. 0041	51	2,667
54,500	163, 500	.0049	52	3, 144
88,500	177,000	. 0059	53	3, 340
161,000	322,000	. 0073	55	5,855
	1, 105, 753			21, 539

Table 3. --Specific weight based on median particle size for the Moreau River at Bixby

Specific weight in pounds per cubic foot = $\frac{1,105,753}{21,539}$ = 51.3.

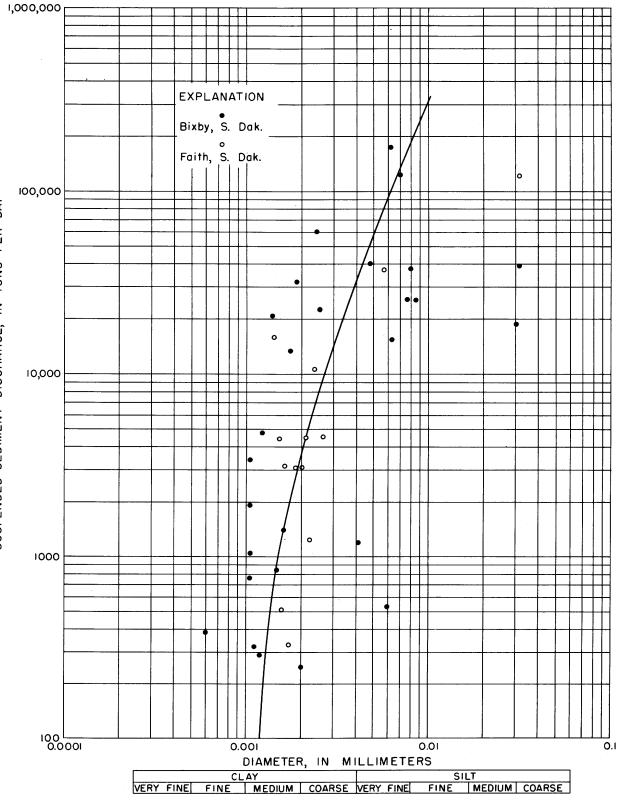


Figure 19. --Median particle size versus suspended-sediment discharge, Moreau River.

32

SUSPENDED-SEDIMENT DISCHARGE, IN TONS PER DAY

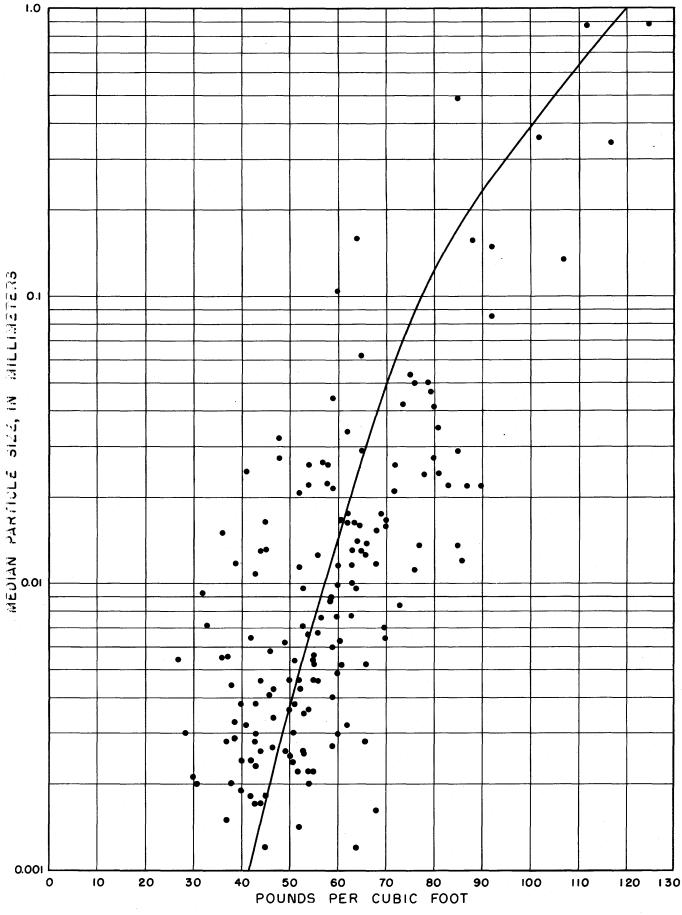


Figure 20.--Relation of specific weight of sediments deposited in reservoirs to median particle size.

Suspended-sedi	ment discharge			
Middle of class interval (tons per day)	Total tons in class interval	Median particle size (mm)	Specific weight (lb per cu ft)	Total tons divided by specific weight
0.5	188	0.0012	42	4
5,5	1,754	. 0012	42	42
60	8,400	. 0012	42	200
275	19,525	. 0013	43	454
770	34,650	. 0014	43	806
1,425	37,050	. 0016	44	842
2, 275	68,250	. 0018	45	1,517
3,625	54,375	. 0020	46	1, 182
5,775	98,175	. 0023	46	2,134
9, 200	156,400	. 0026	48	3, 258
14,650	131,850	. 0031	49	2,691
23, 400	187,200	. 0036	50	3,744
37, 400	374,000	.0042	51	7,333
59,750	418,250	. 0051	52	8,043
94,250	188,500	. 0060	54	3, 488
125,000	250,000	. 0068	54	4,627
	2,028,567	1		40,365

Table 4. --Specific weight based on median particle size for the Moreau River near Faith

Specific weight in pounds per cubic foot = $\frac{2,028,567}{40,365}$ = 50.3.

Table 5Volume	of	suspended-sediment	discharge,	Moreau	River
---------------	----	--------------------	------------	--------	-------

Station	Period	Suspended-sediment	Volume of deposited
	1 01 100	discharge (tons)	sediment (acre-ft)
At Bixby	Apr. 28 to Sept. 30, 1949	3, 940	3
	Water year 1949-50	997, 100	898
	Water year 1950-51	81, 920	74
Total		1,082,960	975
Near Faith	Aug. 15 to Sept. 30, 1946	32, 120	29
	Water year 1946-47	1,077,000	989
	Water year 1947-48	353, 600	325
	Water year 1948-49	515, 400	473
Total		1,978,120	1,816

SUMMARY

Soils, climate, and vegetation are fairly uniform throughout the Moreau River basin. The exposed rocks are of Cretaceous and Tertiary age. The Moreau River is a meandering intermittent stream that flows in a shifting, sandy-bottomed channel.

Runoff from the basin averages about 0.7 inch per year and has been about uniform over the basin during the period of streamflow records. Some of the runoff comes from melting of snow, but most of it probably comes from rains during late spring and early summer.

The chemical quality of the water in the Moreau River and tributaries is dependent on and directly related to the lithologic character of the exposed rocks of the Pierre shale, Fox Hills sandstone, and the Hell Creek formation. Water that drains from areas underlain by the Hell Creek formation and Fox Hills sandstone contains predominantly sodium bicarbonate, whereas water from areas underlain by Pierre shale contains predominantly sodium sulfate. Samples collected daily or infrequently at four places on the main stem and single samples collected from the tributaries for a special salinity study show the relationship between quality of water and geology and also the effects of tributary flow on the water in the main stem. The complexity of the water quality is shown by extremes in concentration and rapid changes in composition.

The suitability of the water for irrigation is determined from relatively short-term records by comparison with long-term discharge records, consideration of the significance of the calculated weighted averages, and consideration of certain ionic relationships. On the basis of concentration and percent sodium, the water in the Moreau River at Bixby is classed as permissible to doubtful for irrigation. On the basis of the ratio of bicarbonate to calcium plus magnesium, percent sodium, and hydrogen ion concentration, the water is conducive to the formation of black alkali on soils during dry periods. The quality of the water of the Moreau River is so poor that all other pertinent factors must be considered before the water is used for irrigation. During 3 complete water years immediately preceding October 1, 1949, the discharge of suspended sediment of the Moreau River averaged about 650,000 tons annually at the gaging station near Faith and was transported by an annual water discharge of about 130,000 acre-feet. During the water years of 1950 and 1951, the Moreau River at Bixby discharged about 1,080,000 tons of suspended sediment and 170,000 acre-feet of water. About 90 percent of this discharge of sediment and water occurred during the water year of 1950 when the streamflow was nearly three times the normal. Sediment yields per square mile may be no greater at Bixby than at the station near Faith.

Suspended sediment transported by the Moreau River is mostly fine material. The averages of median particle sizes (not weighted with water discharge) were, by extrapolation, about 0.0017 millimeter for the station at Bixby and about 0.0015 millimeter for the station near Faith. Only 6 percent of the suspended sediment for the station near Faith and only 10 percent of the suspended sediment for the station at Bixby were coarser than the lower limit of the sand sizes, 0.062 millimeter.

Low channel slopes and small particle sizes indicate that bed-load discharge would be only a small percentage of total sediment discharge, but bed-load discharge was not computed because too few data were available.

Particle sizes of the suspended sediment of the Moreau River at Bixby and near Faith indicate specific weights of 51 and 50 pounds per cubic foot, respectively, for deposits that might form in a reservoir without being compacted over long periods of time or under the weight of appreciable quantities of overlying deposits. On the basis of these specific weights, the suspended sediment discharged at the station at Bixby from April 28, 1949, to September 30, 1951, would occupy a volume of about 980 acre-feet, and the suspended sediment discharged at the station near Faith from August 15, 1946, to September 30, 1949, would occupy about 1, 820 acre-feet of space.

LITERATURE CITED

Congressional Documents, 1934, 73d Cong., 1st sess., H. Doc. 76 (Cannonball, Grand, and Moreau Rivers, North Dakota and South Dakota).

- Corbett, D. M., and others, 1943, Stream-gaging procedure, a manual describing methods and practices of the Geological Survey: U. S. Geol. Survey Water-Supply Paper 888.
- Eaton, F. M., 1949, Irrigation agriculture along the Nile and the Euphrates: Sci. Monthly, v. 69, p. 35-42.
- Eaton, F. M., 1950, Significance of carbonates in irrigation waters: Soil Science, v. 69, p. 123-133.
- Hembree, C. H., and others, 1952, Sedimentation and chemical quality of water in the Powder River drainage basin, Wyoming and Montana: U. S. Geol. Survey Circ. 170.
- Lane, E. W., and others, 1947, Report of the subcommittee on sediment terminology: Am. Geophys. Union Trans., v. 28, p. 936-938.
- Lindgren, Waldemar, 1932, Mineral deposits, 4th ed.: New York, McGraw-Hill Book Co., Inc.
- Petsch, B. C., 1946, Geology of the Missouri Valley in South Dakota: South Dakota Geol. Survey Rept. Inv. 53.
- Raisz, Erwin, 1939, Map of the landforms of the United States, Inst. Geog. Expl., Harvard Univ., Cambridge, Mass.
- Rothrock, E. P., and Robinson, T. W., 1938, Artesian conditions in west central South Dakota: South Dakota Geol. Survey Rept. Inv. 26.
- Scofield, C. S., 1936, The salinity of irrigation water: Smithsonian Inst. Ann. Rept., p. 275-287.
- Twenhofel, W. H., and Tyler, S. A., 1941, Methods of study of sediments: New York, McGraw-Hill Book Co., Inc.
- U. S. Geol. Survey, 1952, Quality of surface waters of the United States, 1947: U. S. Geol. Survey Water-Supply Paper 1102.
- Wilcox, L. V., 1948, The quality of water for irrigation use: U. S. Dept. Agr. Tech. Bull. 962.

TABLES OF BASE DATA

g. 1)		cfs)	oF)							(Еоон)	3)						ids	Hard as C		. g	ui- 25°C)	
No.on map (fig.	Source	Discharge (cf	Temperature (Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (Carbonate (CO3)	Sulfate (SO_4)	Chloride (Cl)	Fluoride (F)	Nitrate (NO $_3$)	Boron (B)	Dissolved soli	Calcium, magnesium	Noncarbonate	Percent sodium	Specific con- ductance (mi- cromhos at 2	pH
1	Sand Creek at Mason	5.71	53	18	0.01	37	17	260	8.0	362	0	438	3.0	0.3	1.9	0.14	964	163	0	77	1,490	8.0
2	South Fork Moreau River at Hoover-	108	46	17	.01	69	58	193	8.0	109	0	712	7.0	•4	1.3	•34	1,120	411	321	50	1,570	7.7
3	South Fork Moreau River near																ļ					l .
	Inland	196	51	14	.01	63	39	153	2.0	89	0	548	6.2	•3	•8	.17	911	318	245	51	1,220	7.4
4	North Fork Moreau River near							07		0.00						07	0.7.0			-	1.00	
	Redig	2.28	57	19	.01	12	6.0	85	6.0	238	0	54	2.0	•3	1.5	•27	318	55	0	73	499	7.8
5	North Fork Moreau River near	64.9	48	11	.02	13	1.5	123	1.6	228	0	112	2.3	.1	1.1	.15	390	38	0	87	587	8.0
6	Zeona Spring Creek at Zeona	1.22	40	8.3	.02		2.0	33	2.4	220 98	ŏ	27	.8	•4	1.5	.18	156	33	0 0	67	507	7.1
. 7	Sheep Creek at mouth	7701	56	9.9	.40		7.4	93	6.4	182	ŏ	122	2.0	•4	1.3		378	78	ŏ	70	566	7.5
8	North Fork Moreau River at mouth	34.3	121	16	.02	16	7.3		5.2	229	8	130	2.0	.2	1.6	•33	436	70	ŏ	77	672	8.3
9	Moreau River near Imogene	318	51	9.4	.01	51	29	13		130	õ	401	6.0	•4	2.5	.09	747	247	140	54	988	7.5
10	Moreau River at Bixby	298	48	11	.01	50	30	140	12.8	107	0	442	5.0	•3	.8	.22	784	248	160	55	1,100	7.5
11	Deep Creek near Usta		55	10	•05	17	3.3	44		117	0	52	•5	•3	1.7	.27	208	56	0	62	343	7.4
12	Deep Creek at mouth	37.7	55 51	11	.62	18	7.4	37	7.2	116	0	56	2.0	•4	1.8		212	76	0	49	320	7.2
13	Rabbit Creek at Sorum	13.5	51	14	.01	27	10		72	196	0	96	1.0	•3	2.4	.05	351	109	0	59	478	7.5
14	Antelope Creek near Date	11.5	52	7.2	•04	14	3.8		77	180	0	63	1.0	•5	1.0		252	50	0	74	416	7.3
15	Rabbit Creek at Ada	67.4	52	11	•04	21	4.8		1.2	218	.0	106	3.0	•.3	1.2	.18	378	72	0	75	559	7.7
16	Moreau River near Faith	594	50	11	.01	33	14		14.0	113	0	262	3.6	•2	1.0	.14	505	140	- 47	61	735	7.6
17	Flint Rock Creek at mouth	44.9	47	8.0	.01	25	9.8		43	153	0	61	3.5	.1	2.3	.07	255	103	0	48	382	7.4
18	Thunder Butte Creek at mouth	11.0	46	14	.10	16	3.8		29	78	0	52	.1	•2	•0		180	56	0	-53	251	7.4
19	Worthless Creek at mouth	18.9	49	7•9	•02	8.0	8.5	1 1	31	76	0	50	4.0	•3	2.2	•00	176	55	0	55	237	7.2
21	Little Moreau River near White						- /			-		6							1.0		205	
	Horse	27.4	53	7.2	.01	27	7.6		27	98	0	69	2.0	•3	2.5	.02	209	99	19	38 հ6	305	7.9
22	Moreau River at Promise	1,630	53	8.3	.01	46	12		64	113	0	196	4.0	•3	1.9	.07	422	165	72	46	575	7.8

38

Table 6.--Mineral constituents and related physical measurements, salinity survey, April 12 to 16, 1949

 \underline{A} nalytical results in parts per million except as indicated \overline{A}

Table 7 .-- Mineral constituents and related physical measurements, Moreau River at Bixby, March 1949 to September 1951

/Analytical results in parts per million except as indicated/

						<u>/</u> ~	lary or c	ar resu	103 111			LI I OII	crocpu	<u>ao</u> 1		<u> </u>				_				
	· · · · · · · · · · · · · · · · · · ·									3)							Dis	solved	l solids	Hard	ness		L.	
·	Date of collection	Mean discharge (cfs)	Temperature (^O F)	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Car bonate (CO3)	Sulfate (SO $_{l_{\rm t}}$)	Chloride (Cl)	Fluoride (F)	Nitrate (NO3)	Boron (B)	Parts per million	Tons per acre- foot	Tons per aay	Calcium, s magnesium 2	Noncarbonate	Percent sodium	Specific conduct- ance (micro- mhos at 25oC)	Hd
			ι.	/Ana	lyses	for pe	riods t	hat exc	Marc eed 1 d	h to Se ay were	eptembe made	er 1949 of sau	9 mples	compo	sited	b y equ	al vol	um <u>e</u> 7						
÷	Mar. 6, 1949 Mar. 7 Mar. 8 Mar. 9 Mar. 10 Mar. 11	50 150 200 300 500 400		12 14 14 28 39 21	0.02 .03 .30 .08 .06 .12	19 13 8.9 12 14 11	6.8 5.0 1.5 .9 4.5 2.6	107 48 36 64 71 61	5.2 3.6 2.8 4.0 2.0 2.0	172 100 69 96 山山 92	0 0 0 0 0	160 72 42 84 85 86	4.0 2.0 6.0 7.6 4.6	0.2 .1 .2 .2 .2		0.11 .00 .02 .05 .03	426 224 160 258 306 244	0.58 .30 .22 .35 .42 .33	58 91 86 209 413 264	76 53 28 34 54 38	0 0 0 18 0	74 64 71 78 73 77	333 225 362 472	8.0 7.6 7.8 8.1 7.6 7.9
	Mar. 12 Mar. 13-14 Mar. 15-16 Mar. 17 Mar. 18 Mar. 19-20	300 225 140 120 110 100		24 71 36 30 46 29	.20 .12 .02 .05 .02 .02	9.9 18 20 18 15 14	1.1 6.0 8.6 5.0 5.4 4.0	56 92 78 55 58 58	3.2 3.6 5.6 6.0 5.6	62 50 106 104 102 101		73 166 160 98 98 92	19 5.3 2.9 4.6 2.0	.2 .2 .4 .4 .4	1.3 1.6 1.3 1.7 1.1 1.4	.04 .04 	232 446 366 276 278 244	•32 •61 •50 •38 •38 •33	188 271 138 89 83 66	29 70 86 66 60 52	0 29 0 0 0	79 73 65 62 65 68	567 529 401	7.8 6.9 7.8 7.6 7.6 7.6
39	Mar. 21 Mar. 23, 11:00 a.m Mar. 23, 4:30 p.m Mar. 24, 10:30 a.m Mar. 24, 1:30 p.m Mar. 24, 4:00 p.m	100 3,280 3,280 2,790 2,790 2,790		35 50 58 74 80 32	.02 .02 .05 .02 .02 .02	14 11 19 14 14 20	5.0 3.3 6.4 5.4 4.4 8.3	52 39 55 38 39 40	7.6 6.4 7.6 6.0 12 4.4	96 100 83 68 60 64	0 0 0 0 0	90 46 104 80 94 114	2.7 1.5 18 4.5 2.5 2.9	.4 .4 .2 .2 .4	1.0 1.1 1.0	 .04 .00	248 190 300 264 278 258	•34 •26 •41 •36 •38 •35	67 <u>1/2,290</u> <u>1/2,010</u>	56 41 74 57 53 84	0 0 6 1 32	63 63 59 56 55 49	346 256 410 300 304 377	7.7 7.9 7.5 7.5 7.3 7.3
	Mar. 25 Mar. 26 Mar. 27, 11:45 a.m Mar. 27, 4:55 p.m Mar. 28, 9:45 a.m Mar. 28, 12:00 m	2,710 1,780 1,780 1,780 2,190 2,190	 36 	12 9.0 10 12 9.0 8.8	.10 .20 .10 .02 .10	36 34 8.0 33 29 45	17 13 1.5 12 13 21	62 49 45 68 8	4.8 •4	96 108 80 92 79 106	0 0 0 0 0	206 148 22 144 196 270	4.0 3.0 1.8 2.2 2.6 3.2	•4 •6 •4 •2	1.9	 .09	414 346 148 334 376 530	.56 .47 .20 .45 .51 .72	3,030 1,660 <u>1</u> /1,160 <u>1</u> /2,580	160 139 28 132 126 199	81 50 57 61 112	45 42 60 42 54 47	168 504 560	7.3 6.9 7.0 7.1 7.3 7.2
	Mar. 28, 2:15 p.m Mar. 29, 10:00 a.m Mar. 29, 3:45 p.m Mar. 30 Mar. 31 Apr. 1-2			11 9.8 8.0 15 12 15	.01 .01 .10 .10 .20	37 25 37 38 37 44	15 13 17 16 17 20	-	6 3.6 4 4.8 4.8 4.0	89 72 80 100 88 92	000000	207 218 218 224 240 280	3.5 3.0 4.5 3.2 2.6 4.2	•3 •2 •3 •3 •4 •2	1.3 2.5 .9 .7	.05 .10 .00	404 411 425 452 454 526	•55 •56 •58 •61 •62 •72	<u>1/2,160</u> 1,830 1,370 1,080	154 116 163 161 163 193	81 57 97 79 91 118	48 59 46 48 48 48 46	606 657	7.2 7.3 7.2 7.3 7.0 7.5
	Apr. 3 Apr. 4 Apr. 5-8 Apr. 9 Apr. 10		 48	10 15 13 11 15	.10 .40 .02 .10 .01	45 48 50 50 39	22 22 23 21 18	92 106 107 10 100	4.8 1.6 4.8 0 1.6	88 102 99 111 86	0 0 0 0	310 338 364 320 300	4.0 4.6 3.4 2.2 3.7	.4 .2 .3 .2	1.2	.20 .06	582 618 648 618 559	•79 •84 •88 •84 •76	935 934 1,300 1,180 830	203 211 220 212 172	131 127 139 121 100	49 52 51 51 56	908 911	7.2 7.5 7.8 7.1 7.4

See fournotes at end of table, p. 42.

Table 7 .-- Mineral constituents and related physical measurements, Moreau River at Bixby, March 1949 to September 1951 -- Continued

						/A naly	tical re	esults	-	s per	millio	n exce	pt as	indi	cate <u>d</u> /							_	
	1	2	Γ				[ŝ							Disso	lved s	olias	Hard			4	
Date of collection	Mean discharge (cfs)	Temperature (^O F)	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na.)	Potassium (K)	Bicarbonate (HCO 3)	Carbonate (CO3)	Sulfate (SO_{4})	Chloride (Cl)	Fluoride (F)	Nitrate (NO3)	Boron (B)	Parts per million	Tons per acre- foot	Tons per aay	Calcium, ^b magnesium _C	Noncarbonate	Percent sodium	Specific conduct- ance (micro- mhos at 25°C)	pH
:	•		/ I na	JUSAS	for	neriod	N s that e		o Septe					mposi	ted by	equal	volume	7					
Apr. 11-12, 1949 Apr. 12 2/ Apr. 13-15 Apr. 13 2/ Apr. 16	417 374 305 305 311	55 58 51 48 54	11 12 14 11 11	0.02 .02 .02 .01 .02	51 37 52 50 60	23 12 24 30 33	112 88 137 140	4.4 .8 4.0 2.8	116 115 127 107 142	0 0 0 0	364 234 408 442 508	3.6 4.0 3.6 5.0 4.0	0.3 .0 .1 .3 .1	1.8 1.6 1.3 .8 1.5	 0.22	664 476 770 784 924	0.90 .65 1.05 1.07 1.26	748 481 634 645 776	222 142 229 248 285	127 48 125 160 169	52 57 56 55 56	1,070 1,100 1,250	7.5 7.0 7.2 7.5 7.1
Apr. 17-18 Apr. 19-23 Apr. 24-May 2 May 3-5 May 6-9 May 10-19 May 20-31	168 77 46 93 37 15 12	53 60 68 68 68 69	12 14 16 15 13 8.8	.02 .02 .02 .02 .02 .02 .02	73 65 75 65 88 68 42	43 39 40 33 50 50 49	187 202 266 294 356 397 459	3.2 6.0 5.6 6.4 8.8 8.8 7.6	134 190 297 331 307 337 442		640 584 660 646 900 948 904	6.4 6.4 7.6 5.6 6.2 10 12	.1 .3 .2 .4 .4	1.3 1.0 1.2 2.2 1.8 .7 .9	 .37 .31 .34	1,030 1,010 1,220 1,230 1,580 1,660 1,710	1.40 1.37 1.66 1.67 2.15 2.26 2.33	467 210 152 309 158 67 55	359 323 352 298 425 375 307	249 167 108 27 173 99 0	53 57 62 68 64 69 76	1,480 1,460 1,720 1,720 2,210 2,390 2,430	7.5 7.4 7.7 7.7 7.6 8.0 8.0
June 1-10 June 11-19 June 20-23 June 20-29 June 30-July 1 July 2-3	9.6 6.6 4.6 3.2 1.9 1.7	70 70 74 74 83 81	7.2 6.8 7.1 8.8 6.3 8.2	.02 .02 .08 .08 .12 .04	41 55455440	48 48 59 54 50 50	499 535 585 630 675 699	10 13 7.2 9.6 10 16	362 435 382 427 489 456	31 28 28 24 10	976 1,050 1,260 1,280 1,330 1,320	12 14 15 16 18 17	.6 .8 .6 .6 .7 1.0	•7 •9 •8 1.0 •8 1.9	.43 .48 .45 .45	1,820 1,950 2,210 2,290 2,390 2,410	2.48 2.65 3.01 3.11 3.25 3.28	47 35 27 20 12 11	335 298 380 357 308 306	0 0 20 0 0 0	76 79 77 79 82 82	2,640 2,850 3,070 3,150	8.3 8.4 8.7 8.6 8.3 8.5
July 4-6 July 7-31 Aug. 1-8 Aug. 9-31 Sept. 14-30	4.4 1.4 <u>3/0</u> <u>3/0</u> 1.4	75 75 70 58	9.0 7.7 9.4 9.8 7.0	.04 .02 .10 .16 .06	39 25 16 19 17	44 42 50 54 35	7 1 7 828 1,150 1,360 991	12 15 12 14 11	488 701 858 954 756	47 25 92 126 87	1,280 1,340 1,720 2,050 1,460	18 21 32 38 30	1.2 1.0 1.4 1.2 .8	1.9 .8 3.8 3.5 1.7	.87 .70 1.0 1.1 .79	2,410 2,660 3,520 4,160 3,020	3.28 3.62 4.79 5.66 4.11	29 10 0 11	279 235 246 270 187	0 0 0 0 0	84 88 91 91 91	5,430	8.8 8.4 8.8 8.9 8.9
Weighted aver- age <u>4</u> /	<u>5/</u> 171		22	0.07	35	16	87	4.9	6/ 105		242	6.2	0.3	1.4		487	0.66	225	154	68	54	698	
Estimated weighted average <u>7</u> /					34	15	87	4.8													55	735	
			/A nal	yses f	or p	eriods	that e		ber 1949 L day we					posit	ed by	dischar	ge7						
Oct. 1-3, 1949 Oct. 4-12 Oct. 13-26 Oct. 27-31 Nov. 1-30 Dec. 1-21	3.2 16 7.0 8.0 4.1 3.2	58 51 46 48 42 33	7.0 8.4 15 14 13 16	0.06 .06 .12 .08 .08 .08	14 20 27 32	35 14 6.5 2.2 8.3 34	991 708 316 401 473 1,030	11 5.6 6.0 5.6 5.2 13	450	87 79 20 24 20 45	1,460 760 356 408 532 1,200	30 16 7.0 9.0 10 24		1.7 2.0 2.6 1.3 1.0 .9	0.79 .60 .20 .30 .30 .67	3,020 2,020 988 1,170 1,410 3,100	1.34 1.59 1.92	26 87 19 25 16 27	187 .93 62 77 114 267		91 94 89 91 90 89	4,140 2,930 1,510 1,760 2,080 4,370	8.9 8.9 8.5 8.3 8.4 8.4

/Analytical results in parts per million except as indicated/

Mar. 6-9, 1950 Mar. 10 Mar. 14-Apr. 1 Apr. 3 Apr. 4-6 Apr. 7	100 126 2,900 2,800	34 34 33 34 32	16 13 13 13 16 16	0.02 .04 .04 .04 .04	16 39 20 12 23 30	4.1 12 5.7 2.3 7.1 7.7	134 208 87 24 41 33	4.6 6.8 4.5 5.2 3.9 3.8	168 174 130 56 83 146	000000	190 415 140 40 95 55	4.0 17 3.0 4.0 3.0 2.0	.4 .4 .4 .2 .2	2.1 3.6 2.2 4.4 2.0 1.9	.10 .10 .10 .10 .10	510 844 356 180 242 222	.69 1.15 .48 .24 .33 .30	169 228 121 1,410 1,830 3,950	57 147 74 40 87 107	0 4 0 0 19 0	82 74 70 53 49 39	701 1,200 525 176 351 350	7.3 7.2 7.2 7.1 7.1 7.1 7.4
Apr. 11-14 Apr. 15-17 Apr. 18-20 Apr. 21 Apr. 22-26 Apr. 27	7,600 1,350 363 280	36 42 43 45 43 47	17 15 12 11 13 12	.04 .04 .02 .04 .02 .04	31 22 36 46 41 59	8.4 5.6 10 17 15 20	50 41 57 83 114 148	4.0 3.3 4.2 4.9 5.1 5.2	107 98 99 110 144 172	000000	120 78 170 260 273 388	2.5 2.5 2.5 3.0 4.0 5.0	•2 •2 •2 •2 •2 •2	2.1 1.0 2.6 1.4 1.7 1.1	.10 .10 .20 .10 .20	316 220 346 508 558 728	•43 •30 •47 •69 •76 •99	1,080 4,510 1,260 498 422 314	112 78 131 185 164 229	24 0 50 95 46 88	48 52 48 49 59 58	444 332 521 736 819 1,050	7.2 7.4 7.5 7.1 7.3 7.5
Apr. 28-May 15 May 16-31 June 1-30 July 1-31 Aug. 1-5 Aug. 6-8		62 70 72 67 54	16 18 9.8 8.8 12 14	.02 .02 .04 .04 .04 .16	57 66 75 83 39 20	22 30 43 46 30 4•4	143 234 440 390 480 160	5.8 7.0 8.9 9.2 9.2 6.0	144 264 380 316 455 216	000000	400 545 985 935 845 230	5.0 7.5 11 11 16 7.0	22 24 55 75 57	1.4 1.7 1.3 1.1 1.3 3.5	.10 .10 .20 .20 .40	754 1,040 1,760 1,640 1,660 574	1.03 1.41 2.39 2.23 2.26 .78	957 126 143 62 18 116	233 288 363 398 220 68	115 72 51 139 0 0	56 63 72 67 82 82 82	1,050 1,470 2,320 2,140 2,360 838	7.5 8.0 7.9 7.9 7.9 7.9 7.9
Aug. 9-31 Sept. 1-19 Sept. 20-24 Sept. 25-30	4.5 34	67 65 64 57	10 9.8 17 10	•06 •06 •50 •06	26 24 20 26	12 19 3.4 11	377 472 234 384	7.3 7.4 6.4 6.7	456 514 306 481	8 14 0 11	525 680 318 495	10 .14 8.0 10	•5 •5 •6 •5	2.2 1.4 2.4 1.2	.40 .55 .40 .07	1,200 1,500 802 1,190	1.63 2.04 1.09 1.62	22 18 74 17	116 137 64 110	0 0 0	87 88 88 88	1,770 2,160 1,140 1,760	8.3 8.3 7.8 8.3
Weighted aver- age <u>4</u> /			15	0.04	31	9.8	75	6.6	<u>6/</u> 124		166	3.4	0.2	1.7	0.11	380	0.52	240	118	16	56	544	
4	1																						
Estimated weighted average <u>7</u> /					30	9.5	70	6.3													56	518	
➡ Estimated weighted average <u>7</u> /			L	l	<u> </u>			Octobe	r 1950				[e7				56	518	
 → Estimated weighted average <u>7</u>/ Oct. 1-31, 1950 Nov. 1-30 Dec. 1-20 Jan. 1-28, 1951 Feb. 1-26 Mar. 5 	6.36 5.27 2.00 3.80 .85		L	l	<u> </u>			Octobe	r 1950		e of s 570 825 1,140 1,050 1,020		[e7 1.81 2.62 3.59 3.33 3.01 3.16	22.8 27.5 14.3 25.1 5.07 9.40	160 212 300 340 358 378		56 84 86 85 82 77 78	518 1,910 2,670 3,900 3,540 3,130 3,260	8.1 8.3 8.3 8.3 8.2 8.2
average <u>7</u> / Oct. 1-31, 1950 Nov. 1-30 Jan. 1-28, 1951 Feb. 1-26	6.36 5.27 2.00 3.80 .85 1.5 1.5 116.7 37.8 10.7 24.0		/Analy 10 12 14 10 10	rses fo 0.04 .04 .10 .10 .10	pr pe 27 41 66 81 85	riods 22 27 33 34 35	that exce 410 618 824 740 636	0ctobe eed 1 6.2 7.1 9.4 6.6 6.2	r 1950 day wer 543 753 1,010 980 758	e mad 0 15 30 18 16	e of s 570 825 1,140 1,050 1,020	amples 11 16 29 22 22	0.5 .5 .6 .6	osite 1.5 .7 1.3 1.0 .8 .9 1.1 1.8 2.0	d by d 0.10 .20 .50 .47 .48	ischarg 1,330 1,930 2,640 2,450 2,210	1.81 2.62 3.59 3.33 3.01	27.5 14.3 25.1 5.07	160 212 300 340 358	0 0 0 0 0	84 86 85 82 77	1,910 2,670 3,500 3,510 3,260 3,180 1,130 1,120 1,820 1,800	8.1 8.3 8.3 8.3 8.3
average <u>7</u> / Oct. 1-31, 1950 Nov. 1-30 Dec. 1-20 Jan. 1-28, 1951 Feb. 1-26 Mar. 5 Mar. 12 Mar. 12 Mar. 19-31 Apr. 1-8 Apr. 9-May 8 May 9-11	6.36 5.27 2.00 3.80 .85 1.5 1.67 37.8 10.7 21.0 9.39 38.3 138.3 138.3 102 46.0 16.3		/Analy 10 12 14 10 10 11 11 9.0 9.8 8.2 12	rses fo 0.04 .04 .10 .10 .10 .10 .10 .00 .03 .04 .12	pr pe 27 41 66 81 85 89 77 34 28 40 34	riods 22 27 33 34 35 38 42 9.5 13 19 11	that exce 4,10 618 824 740 636 656 6444 196 213 366 374	Control Contro	r 1950 day wer 543 753 1,010 980 758 820 886 262 258 452	e mad 0 15 30 18 16 14 24 0 0 0 0	e of s 570 825 1,140 1,050 1,020 1,070 990 330 350 585 568	amples 11 16 29 22 23 25 7.5 6.0 11 4.5	comp 0.5 .6 .6 .6 .6 .6 .6 .6 .6 .3 .4 .5	osite 1.5 .7 1.3 1.0 .8 .9 1.1 1.8 2.0 1.1 3.5	d by d 0.10 .20 .47 .48 .40 .45 .15 .26 .29 .31	1,330 1,930 2,640 2,450 2,210 2,220 2,220 2,260 772 754 1,260 1,240	1.81 2.62 3.59 3.33 3.01 3.16 3.07 1.05 1.03 1.71 1.69	27.5 14.3 25.1 5.07 9.40 9.15 243 76.9 36.4 80.4	160 212 300 340 358 378 364 124 122 178 129		84 86 85 82 77 78 79 76 78 81 86	1,910 2,670 3,500 3,510 3,260 3,180 1,130 1,120 1,820 1,800	8.1 8.3 8.3 8.2 8.2 8.2 8.2 8.3 8.1 7.9 8.1 8.1

Table 7	7Mineral	constituents	and related physi	cal measurements	, Moreau River	at Bixby,	March 1949 t	o September 1951Continued	
---------	----------	--------------	-------------------	------------------	----------------	-----------	--------------	---------------------------	--

Date of collection	Mean discharge (cfs)	Temperature (^o F)	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonște (HCO3)	arbonate (CO3)	Sulfate (SO ₄)	Chloride (Cl)	Fluoride (F)	Nitrate (NO3)	Boron (B)	Parts per million	Tons per acre- foot	Tons per day	Calcium, Calcium, magnesium		Percent sodium	Specific conduct- ance (micro- mhos at 25°C)	
		L	1		L			r 1950	to Sep	tembe made	r 1951-	-Conti	nued						<u> </u>	_~		10	
July 1-2, 1951 July 3-4 July 5 July 6-9 July 10-26	10 112.5 88 81.5 7.14		 15 15 13 9.4	0.04 .20 .03 .03	46 21 15 46 39	24 6.7 3.6 20 27	261 174 107 208 285	6.2 5.3 4.2 7.0 7.4	245 249 194 197 246	0 0 0 0	555 246 122 488 623	8.0 3.0 2.0 5.5 9.0	0.4 .6 .5 .5	2.3 3.5	0.11 .07 .13 .24	614 386 902 1,120	0.84 .52 1.23 1.52	187 91.7 198 21.6	214 80 53 196 207	13 0 0 34 5	72 81 80 69 74	930 547 1,310 1,660	7.8 7.5 7.6 8.0
July 27-31 Aug. 1-11 Aug. 12-16 Aug. 17-31 Sept. 1-30	.54 2.15 357.6 20.2 14.6	 	8.2 8.4 14 12 13	.04 .04 .20 .04 .04	22 25 27 34 22	23 19 7.9 13 7.1	418 408 124 180 237	7.9 8.6 4.9 6.4 5.6	275 280 197 209 348	17 10 0 0	775 770 193 340 290	12 12 5.0 4.0 4.5	.2 .6 .4 .2 .4	1.9 2.5 5.0 2.0 2.6	.41 .36 .18 .21	1,420 1,400 490 716 764	1.93 1.90 .67 .97 1.04	2.07 8.13 473 39.1 30.1	11/12	0 0 0 0	85 72 73	2,050	8.2 7.8 7.6
Note: Weighted aver-	<u>9</u> / 23.7		12	0.09	33	13	246	5.2	<u>6/</u> 308		402	6.8	0 . 5	6.5	0.19	885	1.20	56.6	136	0	79	1,300	
Estimated weighted average 7/					33	14	250	5.2													79	1,300	

.

1 Mean for day.
2 Not included in weighted average.
3 Ponded--no flow.

3 Ponded--no flow.
4 Weighted average for period sampled only.
5 Mean discharge for water year is 97.0 cfs.
6 Includes carbonate as bicarbonate.
7 On basis of complete water year.
8 Mean discharge for water year is 216 cfs.
9 Mean discharge for water year is 21.9 cfs.

Table 8.--Mineral constituents and related physical measurements, Moreau River near Faith, April 1941 to September 1949

Analytical results in parts per million except as indicated

								- 1							<u> </u>						_		
-		(oF)							(೮೦							Diss	lved	solids	Hardı as Ca			i ct-	
Date of collection	Mean discharge (cfs)	Temperature (°	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO3)	Carbonate (CO3)	Sulfate (SO ₄)	Chloride (Cl)	Fluoríde (F)	Nitrate (NO_3)	Boron (B)	Parts per million	Tons per acre- foot	Tons per day	Calcium, magnesium	Noncarbonate	Percent sodium	Specific conduct- ance (micro- mhos at 25°C)	μd
		-					A	pril 1	.941 t	o Se	ptember	1946											
Apr. 16, 1941 1/ Sept. 19, 1942 1/ Nov. 6 1/ Apr. 14, 1943 1/ June 14 1/ July 9 1/	2/ 300 2/ 4 2/ 10 2/ 51 2/ 2,740 2/ 219				19 52 29 46 17 27	5.2 11 18 23 3.8 10	168 200 439 138 102 104		304 		190 	2.1		0.6		542 832 1,410 634 270 460	 	 	68 175 148 208 260 110	0 	82 71 87 59 79 67	850 1,270 2,100 910 560 690	7.4 7.7 8.3 7.9 7.5 7.3
May 7, 1945 <u>1</u> / Nov. 29 June 5, 1946 June 26 July 16 Sept. 5	2/ 28 1 2/ 367 2/ 192 2/ 21.1 2/ 1.31		4.9	0.04 .05 .10 .05 .05	57 32 86 35 97 41	10 25 22 14 42 37	59 638 21 11 22 58	L1 L7 25	247 844 160 148 200 408	00090	107 855 598 260 685 1,130	12 16 7.0 4.0 10 10	0.5 • • • • • • •	.1 .5 .2 .6 .9 3.2		432 2,000 1,010 521 1,170 2,010	2.72 1.37 .71 1.59 2.73	 	187 183 305 145 415 254	0 0 174 24 236 0	41 88 60 64 54 83	1,690 2,780 1,290 755 1,520 2,770	8.4 7.8 7.8 7.4 8.3 8.2
5		/	Analys	es for	perio	is that					eptembe ade of			posit	ed by	equal v	olume/	7					
Oct. 2, 1946 Mar. 26, 1947 Apr. 9-18 Apr. 19-28 Apr. 29-May 9 May 10-19	13 2,010 424 90 144 23		12 7.0 6.0 5.0 4.0	0.00 1.0 .10 .10 .07 .07	34 24 22 22 24 24 24	13 10 9.2 5.7 10 12	19 51 274 294 448 474	78	230 92 141 222 355 380	0 0 0 0 12	359 126 575 507 756 764	4.0 8.0 7.0 8.0 12 13	0.4 .4 .2 .2 .4 .4	0.6 .8 2.0 2.0 2.0 2.0 2.0	 0.09 .19 .19 .37 .37	745 287 962 960 1,450 1,520	1.01 .39 1.31 1.31 1.97 2.07	26 1,560 1,100 233 274 94	138 101 93 78 101 109	0 26 0 0 0 0	76 55 82 88 89 88	987 436 1,300 1,390 1,880 2,010	7.4 7.5 7.4 7.8 8.1 8.2
May 20-31 June 1-10 June 11-20 June 21 June 21, 6:00 p.m. June 25	16 39 56 2,720 4,900	52 60 61 	4.0 4.0 22 9.0 7.0 9.0	.05 .03 .03 .18 .16 .10	20 43 61 17 25 63	11 34 43 5.9 5.5 27	503 423 420 53 50 115	21 10 14 8.4 7.2 15	378 380 332 122 130 116	20 20 18 0 0 0	784 775 900 88 90 416	15 16 14 2.0 5.5	.5 .6 .1 .1 .3	2.0 .4 .2 .8 .8 1.2	.37 .13 .14 .15	1,570 1,520 1,660 283 272 713	2.14 2.07 2.26 .38 .37 .97	68 160 251 2,080 9,430	95 247 329 67 85 268	0 27 0 173	90 78 72 60 54 47	2,130 2,190 2,380 435 449 1,100	8.3 8.7 8.6 8.4 8.1 8.2
July 1-10 July 11 July 11-20 July 21-31 Aug. 1-10 Aug. 11-20	126 544 149 21 7.9 9.7	69 70 70 73 66	19 6.0 19 21 14 10	.10 .01 .05 .01 .01	78 116 40 41 43 42	36 43 17 23 34 29	238 291 290 394 425	53 17 18 19	238 244 200 339 305 291	22 0 28 4 32 28	583 770 365 514 758 760	6.0 8.0 4.0 7.0 12 11	•3 •4 •3 •4 •3	.6 4.0 2.0 .8 .6 .8	.23 .30 .16 .34 .47 .44	1,120 1,320 755 1,090 1,460 1,460	1.52 1.80 1.03 1.48 1.99 1.99	381 1,940 304 62 31 38	343 466 170 197 247 224	111 266 0 0 0 0	58 54 69 74 76 80	1,550 1,860 1,140 1,580 2,070 2,070	8.3 8.4 8.2 8.3 8.3 8.3
Aug. 21-31 Sept. 1-10 Sept. 11-30	1.8 1.3 1.1	65 59 50	6.0 7.0 7.6	•05 •00 •04	46 50 52	36 45 49	453 586 708		312 308 395	32 32 11	912 1,210 1,460	14 18 26	•3 •5 •9	•8 •6 •0	•49 •57 •62	1,670 2,120 2,530	2.27 2.88 3.44	8.4 8.5 7.6	263 310 331	0 5 0	78 79 81	2,360 2,930 3,090	8.3 8.3 8.3

See footnotes at end of table, p. 46.

Table 8 .-- Mineral constituents and related physical measurements, Moreau River near Faith, April 1941 to September 1949-- Continued

(нсо₃) Specific conduct-ance (micro-mhos at 25°C) Dissolved solids Hardness (Jo) (co₃) discharge cfs) as CaCO3 sodium (Mg) (SiO₂) (NO3) (K) (so₄) (Ca) 5 Noncarbonate Bicarbonate E 5 day (Na) Calcium, magnesium Temperature ดั Parts per million Date of collection Potassium Carbonate (Fe) Magnesium (B) ns per foot Chloride per Fluoride Calcium Sulfate Percent Silica Nitrate Sodium Boron Iron Tons Tons an Hd October 1947 to September 1948 /Analyses for periods that exceed 1 day were made of samples composited by equal volume Oct. 1, 1947, to Mar. 13, 1948, and by discharge Mar. 18 to Sept. 30, 19487 Oct. 1-11, 1947----4.5 51 7.6 0.04 52 49 708 18 395 11 1,460 26 0.0 0.62 2,530 0.9 3.44 31 331 0 81 3,090 8.3 49 .07 42 492 409 8 •45 Oct. 12-18-----43 13 21 7.2 872 17 •8 •9 1,680 2.28 195 191 0 84 1,960 8.2 652 Oct. 30-Nov. 30----18 34 12 .02 38 23 569 4.8 24 793 18 •7 .6 •48 1,810 2.46 88 189 86 2,600 0 8.3 Dec. 1-31-----8.6 32 12 .02 56 33 642 3.2 806 12 942 19 •7 1.5 .45 2,130 2.90 49 275 2,880 0 83 8.2 65 32 13 .24 28 18 •8• Dec. 16 <u>3</u>/-----1.0 34 695 90L 960 •5 2,270 3.09 6.1 302 0 83 3,070 8.3 ----Jan. 1-7, 1948-----32 18 .03 53 48 9.6 858 0 1,280 2Ь •8 2.0 .56 2,660 330 84 3,290 1.9 799 | 3.62 14 0 8.1 858 .41 Jan. 8-12-----7.4 18 .02 38 5.6 848 39 1,340 27 •9 1.5 2,800 3.81 56 288 86 33 47 0 3,760 8.4 .03 86 718 26 Jan. 13-Feb. 20----2.0 32 16 40 10 824 22 1,200 •6 •9 .36 2,520 3.43 14 379 0 80 3,320 8.2 Feb. 19 3/-----1.0 32 7.5 •30 13 3.5 39 87 0 50 1.0 •2 6.9 192 •5 47 0 64 158 6.5 ----•26 Feb. 21-26-----137 32 9.6 .25 12 166 0 109 4.9 76 4.4 91 12 3.5 •4 .00 370 • 50 137 48 0 505 7.4 .60 15 Feb. 27-28-----380 33 9.4 58 116 81 2.9 .41 68 4.5 1.6 0 1.0 .6 300 308 56 0 342 7.7 ----Feb. 29-Mar. 2----250 15 52 32 9.3 .30 3.0 100 0 82 •4 .21 262 177 50 66 5.6 2.0 2.1 .36 0 238 7.6 2.4 Mar. 3-6-----123 9.5 .15 28 6.3 59 2.4 124 0 2.5 •5 56 32 117 ----340 •46 113 96 01 470 7.4 63 64 36 32 .15 108 5.2 •00 Mar. 7-13-----12 30 11 174 0 203 6.0 .1 3.0 490 .67 48 120 0 702 7.0 34 Mar. 14-----900 7.0 .22 14 2.8 38 81 0 59 .0 202 .27 491 46 0 265 •0 1.4 ____ 6.6 Mar. 15-----1,400 32 7.5 .20 15 1.8 72 0 26 138 522 20 •0 •0 1.5 .19 45 0 49 182 6.7 ----32 .18 Mar. 16, 8:15 a.m.-1,800 7.5 17 1.8 15 64 0 28 1.3 142 .19 690 7.5 •0 •0 50 0 40 161 ----32 .60 16 86 1,450 Mar. 16, 6:00 p.m.-1,800 12 5.0 69 146 0 •0 .05 298 .41 60 0 71 396 .0 2.0 7.0 Mar. 17, 8:00 a.m.-1,040 10 .28 14 4.5 48 104 0 66 32 70 •0 .0 1.7 224 •30 629 53 0 304 6.9 ----1,040 32 .60 Mar. 17, 3:00 p.m.-7.0 12 4.0 47 82 0 75 •0 .0 2.9 .01 204 .28 573 46 0 68 252 7.3 32 Mar. 18-21-----1,200 9.4 •34 33 6.7 50 81 0 118 8.0 •2 .00 284 .39 920 110 44 44 370 4.0 2.6 6.9 Mar. 22-23-----925 32 10 1.1 43 71 0 219 414 •56 161 81 48 13 6.0 94 8.0 •2 2.0 1,030 590 7.4 ----Mar. 24-25-----450 32 11 .82 64 26 6.0 98 52 57 135 0 415 28 •2 2.1 726 .99 882 267 187 1.010 ----7.9 158 121 Mar. 26-31-----255 33 11 .00 50 30 4.8 0 476 9.0 •3 .00 806 555 248 1.0 1.10 149 1,120 8.1 •31 Apr. 1-9----83 36 9.2 .07 70 35 214 227 562 1,010 7.6 0 9.0 1.4 .16 1.37 226 319 133 59 1,450 8.1 47 Apr. 10-30-----139 22 .06 62 32 220 4.0 196 10 560 9.5 •3 2.6 .20 1,020 1.39 383 286 109 62 1,500 8.5 55 71 May 1-31-----60 14 .06 95 330 I 2.8 236 12 1,010 •5 1.5 1,670 271 529 316 57 2,230 14 ____ 2.27 8.5 17 60 5.0 .00 95 88 343 5 15 •7 May 24 3/----514 1,350 •5 .03 2,240 3.05 103 599 310 65 2,650 8.2 314 63 22 .90 47 19 167 | 4.4 165 0 386 •5 2.1 64 June 1-30----5.0 .14 710 602 195 60 7.8 •97 1,130 June 4 3/-----.02 22 164 372 61 10 5.0 144 0 74 100 1.6 .1 2.1 ____ 395 •54 397 75 0 567 7.6 June 8 3/-----15 67 9.0 27 6.5 135 208 0 202 3.8 .1 1.9 505 .69 20 94 0 76 720 7.7 --------July 1-31-----95 69 21 •30 47 19 166 | 4.0 199 0 364 5.0 •5 1.9 .14 708 182 195 32 64 1,110 •96 8.1 120 70 13 .14 28 197 0 246 6.0 580 .79 188 94 July 19 3/-----6.0 154 •6 1.1 ----0 78 841 7.9 20 27 •5 26 65 .20 11 286 | 4.4 344 12 406 8.0 2.1 944 1.28 66 113 84 Aug. 1-31-----0 1,470 8.4 ____ 15 Aug. 4 3/-----8.0 61 .00 33 20 388 0 460 7.0 .6 .1 •34 1,030. 22 165 80 296 1.40 0 1,520 8.0 Sept. 1-30-----56 7.8 .02 25 .8 0 87 2,620 8.5 .04 23 515 | 10 390 17 904 16 1.0 .43 1,710 2.33 157 .2

/Analytical results in parts per million except as indicated/

Weighted average	105		15	0.45	42	18	151	4.3	<u>5</u> /169		344	6.8	0.3	2.1		669	0.91	190	179	40	60	970	
			_ Ana	lyses	for pe	eriods	that ex	October ceed 1	1948 t day wer	o Se e ma	ptember de of s	1949 amples	s comp	osite	d by d	ischarg	<u>e</u> 7						
Oct. 8-31, 1948 Nov. 1-30 Dec. 1-31 Jan. 1-20, 1949 Mar. 4	4.0 20 3.1 .5 <u>6</u> /0	41 33 32	7.8 12 14 25 48	0.02 .02 .01 .01	35 25 46 22 25	26 13 31 64 17	628 456 889 1,350 296	8.4 6.0 8.0 10 8.0	567 582 1,140 1,620 336	26 22 31 0 14	944 518 1,040 1,820 452	22 13 24 36 11	0.8 .7 .6 1.2 .2	1.1 2.5 2.7 .8 1.5	0.65 .09 .02 1.2 .18	1,980 1,360 2,660 4,140 1,040	2.69 1.85 3.62 5.63 1.41	21 73 22 6 0	194 116 242 318 132	0 0 0 0 0	87 89 88 90 82	2,980 2,100 3,800 5,460 1,600	8.5 8.5 8.3 7.9 8.4
Mar. 5 Mar. 6, 10:00 a.m Mar. 6, 12:00 m Mar. 6, 5:00 p.m Mar. 7, 7:00 a.m	50 300 300 300 1,500	36 36 33	51 14 11 8.6 8.7	.03 .05	12 13 14 10 14	5.2 4.2 8.7 8.7 9.2	29 41 21 23 35	4.8 4.0 4.8 .8 1.6	88 96 82 86 106	00000	40 60 44 34 58	3.0 1.0 4.0 1.0 1.0	.2 .2 .8 .8 .8	1.6 1.4 2.0 3.6 1.3	.08 .04	220 228 182 156 188	.30 .31 .25 .21 .26	30 <u>7/153</u> 	52 50 71 61 73	0 0 4 0	52 62 37 45 51	248 271 258 219 276	7.8 7.2 7.2 7.2 7.2
Mar. 7, 12:00 m Mar. 7, 2:00 p.m Mar. 8, 8:00 a.m Mar. 8, 1:20 p.m Mar. 8, 2:00 p.m	1,500 1,500 2,200 2,200 2,200	34 32 1	10 49 9.1 5.0 10	.02 .07 .04	13 14 13 4.0 9.9	9.6 5.2 9.2 4.8 1.7		1.6 6.0 8.0 21 5.2	98 100 74 53 61	00000	48 44 20 25 24	1.0 2.0 2.0 2.0 1.8	.8 .2 .8 .3 .2	.8 1.5 1.7 2.0 1.9	.00 .00 .14	166 218 120 122 112	.23 .30 .16 .17 .15	<u>7</u> /701	72 56 70 30 32	0 0 9 0	45 52 20 61 52	242 248 159 145 164	7.3 7.9 7.0 7.5 7.6
Mar. 8, 5:00 p.m Mar. 9, 9:00 a.m Mar. 9, 2:00 p.m Mar. 9, 5:00 p.m Mar. 10, 9:00 a.m	2,200 1,700 1,700 1,700 1,000	34 34 	8.1 7.8 14 7.0 9.0	.02	11 9.2 7.9 10 9.0	7.9 9.2 3.2 7.9 9.6	11 21 10	1.6 8.3 4.4 8.7 4.8	68 65 45 60 65	00000	24 20 23 22 26	1.0 1.0 15 1.0 .4	•8 •8 •2 •6 •6	1.0 1.3 1.7 2.0 1.1	.00 	116 104 120 112 106	.16 .14 .16 .15 .14	<u>7/514</u> <u>7/324</u>	60 61 32 58 62	4 8 0 9 9	27 23 55 25 25 24	152 133 172 130 130	7.0 7.0 7.4 6.8 7.0
 Mar. 10, 2:00 p.m Mar. 10, 5:00 p.m Mar. 11, 8:30 a.m Mar. 11, 2:00 p.m Mar. 11, 5:00 p.m 	1,000 1,000 800 800 800	34 32 34	31 9.2 9.0 26 9.7	.04 .16	13 12 14 16 16	4.0 7.9 9.2 2.8 7.4	16 12 36 83 53	5.6 5.6 4.8 4.0 5.6	72 76 86 113 114	00000	2C 22 74 129 94	6.8 1.0 .0 5.4 .0	.2 .6 .2 .4	1.5 1.4 1.7 1.5 1.4	.00. .06	136 118 204 326 262	.18 .16 .28 .44 .36	<u>7/570</u>	49 63 73 52 71	0 1 2 0 0	38 27 50 76 60	179 158 315 484 399	7.9 7.2 7.0 8.0 7.1
Mar. 12, 8:30 a.m Mar. 12, 5:00 p.m Mar. 13 Mar. 14 Mar. 14 Mar. 15	600 600 500 400 350	33 36 32 32 32 32	9.8 10 8.5 9.5 9.1		12 16 13 17 14	6.1 6.6 7.9 7.4	35 28 29 21 25	4.8 2.4 2.4 4.0 4.8	86 98 80 92 90	00000	56 48 56 46 44	.0 .0 .0	.6 .6 .6 .4	1.5 1.2 1.4 1.6 1.6	 	170 180 154 182 178	•23 •24 •21 •25 •24	7/284 208 197 168	55 67 60 75 66	0 0 0 0	55 47 50 37 43	260 270 226 264 263	7.0 7.0 7.0 7.0 7.0
Mar. 16 Mar. 17 Mar. 18 Mar. 19 Mar. 20	300 270 240 220 200	32 32 32 32 32 34	10 9.2 8.3 11 6.0		16 16 24 20 18	7.0 8.3 10 9.0 7.2	35 32 50 57 45	3.2 4.0 3.2 2.4 .8	94 90 106 110 108	00000	58 66 124 126 86	.0 .0 3.0 .0 1.0	.6 .6 .4 .4 .3	1.5 1.3 1.2 .8 .9		186 182 308 297 234	•25 •25 •42 •40 •32	151 133 200 176 126	69 74 101 87 75	0 0 14 0 0	51 47 51 58 56	276 265 463 452 362	7.0 7.0 7.1 7.1 7.1 7.1
Mar. 21 Mar. 22 Mar. 23 Mar. 24 Mar. 24	200 300 2,120 4,160	34 34 36 34	11 10 11 14		19 13 16 23	7.2 5.2 6.1 8.1	44 36 20 36	2.4 3.2 4.0 4.0	118 92 94 112	0 0 0 0	78 60 34 78	1.0 1.0 .0 1.0	•2 •3 •4 •4	•5 1•1 •9 •7		232 174 161 222	•32 •24 •22 •30	125 141 922 2,490	77 54 65 91	0 0 0 0	54 58 39 45	352 264 246 333	7.2 7.0 7.2 7.3
Mar. 25, 8:30 a.m Mar. 25, 4:30 p.m Mar. 26, 7:30 a.m Mar. 26, 12:30 p.m. Mar. 26, 5:00 p.m Mar. 27, 8:00 a.m See footnotes a	3,120 2,720	36 34 35 35 35 34 able,	11 12 12 11 9.6 9.4 p. 46		22 19 29 31 30 22	8.5 7.9 13 12 14 12	35 29 50 45 36 36	2.4 1.6 4.8 5.6 4.0 5.6	84 96 84 94 96 88	000000	94 62 160 140 124 114	.0 1.0 .0 1.0 .0	•2 •5 •4 •3 •4	.4 .6 .2 .6 .9 .6		209 181 312 299 288 262	.25 .42 .41 .39	7/2,010 7/2,530 7/1,900	90 80 126 127 133 105	21 1 57 50 54 33	45 43 45 42 36 41	327 283 484 459 436 398	7.1 7.3 7.4 7.3 7.4 7.3 7.2

Table 8 Mineral constituents and related physical measurements, Moreau River near Faith, April 1941 to September 1949 Continued	Table 8M	fineral constituents	and related physical measuremen	ts, Moreau River near Faith	n, April 1941 to Septem	ber 1949Continued
---	----------	----------------------	---------------------------------	-----------------------------	-------------------------	-------------------

		(J							(HCO ₃)							Diss	olved	solids		ness a C O3		ct-	
Date of collection	Mean discharge (cfs)	Temperature (^o F)	Silica (SiO2)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (H	C arbonate (CO3)	Sulfate (SO_4)	Chloride (Cl)	Fluoride (F)	Nitrate (NO3)	Boron (B)	Parts per million	Tons per acre- foot	Tons per aay	Calcium, magnesium	Noncarbonate	Percent sodium	Specific conduct- ance (micro- mhos at 25°C)	ph
			Anal	yses f	or pe	eriods t					er 1949 e of sa				b y di	scharge	7						
Mar. 27, 5:00 p.m Mar. 28, 7:30 a.m Mar. 28, 5:00 p.m Mar. 29 Mar. 30	2,720 3,070 3,070 3,070 2,470	36 34 36 34 36	11 9.8 11 13 11	0.10 .01	24 22 27 32 32	11 10 10 10 6.5	32 39 41 56 58	4.0 2.4 5.6 5.6 4.8	104 100 114 100 96	0 0 0 0 0	94 96 106 154 159	.0 .0 .0 .0	0.4 .4 .4 .0	1.0 .7 .9 1.6 .9		256 258 266 338 347	0.35 .35 .36 .46 .47	<u>7/2,170</u> 2,800 2,310	106 96 109 121 107	21 14 16 39 28	39 46 49 53	385 389 395 489 492	7.2 7.2 7.3 7.4 7.2
Mar. 31-Apr. 1 Apr. 2-10 Apr. 11-18 Apr. 12 <u>3</u> / Apr. 19-30	1,480 1,010 462 575 108	38 41 47 50 51	10 12 14 11 14	.01 .01 .01 .01	35 40 44 33 64	11 16 20 14 33	63• 77 118 104 200	4.8 1.2 2.8 4.0 1.6	102 104 136 113 230	00000	174 232 304 262 496	1.0 3.0 3.0 3.6 4.4	.4 .2 .3 .2 .4	.8 1.0 1.6 1.0 1.3	0.16 .36 .14 .25	368 452 592 505 964	.50 .61 .80 .69 1.31	1,470 1,230 738 784 281	133 166 193 140 295	49 81 81 47 106	50 50 57 61 59	543 659 851 735 1,340	7.3 7.3 7.8 7.6 7.8
May 1-12 May 13-June 2 June 3-30 July 1-Aug. 9 Sept. 7-30	91 27 12 1.1 <u>6</u> /0	54 59 63 67 50	18 11 7.4 12 30	.10 .08 .10 .02 1.2	50 51 28 20 19	20 35 28 45 1.0	274 385 466 1,070 341	3.2 3.2 4.0 18 12	308 388 418 770 332	18 21 37 49 0	504 728 760 1,680 480	6.5 12 14 34 14	.4 .4 .4 1.1 1.0	1.3 1.1 1.0 .4 2.9	.41 .62 .22 .90 .30	1,050 1,440 1,560 3,320 1,070	1.96 2.12 4.52	258 105 51 10 0	208 272 185 235 52	00000	75	2,080 2,280	8.6 8.5 8.7 8.7 7.2
Weighted average 4/	152 -		12		29	12	72	3.4	<u>5</u> /122		168	2.0	0.4	1.1		374	0.51	153	122	22	55	546	

/Analytical results in parts per million except as indicated/

Samples collected and analyzed by the U. S. Bureau of Reclamation.
 Discharge at time of sampling.
 Not included in weighted average.
 Weighted average for period sampled only.
 Includes carbonate as bicarbonate.
 Ponded--no flow.

.

7 Mean for day.

Table 9.--Mineral constituents and related physical measurements, Moreau River near Eagle Butte, April 1941 to September 1951

•

		r			i						r			· · · · · · · · · · · · · · · · · · ·			-	÷	r		
	0							(HCO ₃)							Dissolved	l solids	Hardr			in te	
Date of collection	Mean discharge (cfs)	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (H	Carbonate (CO ₃)	Sulfate (SO $_{l_{\rm t}})$.	Chloride (Cl)	Fluoride (F)	Nitrate (NO_3)	Boron (B)	Parts per million	Tons per acre- foot	Calcium, Cal		Percent sodium	Specific conduct- ance (micro- mhos at 25°C)	μ
Apr. 17, 1941 1/ Oct. 10 1/ Dec. 2 1/ Jan. 22, 1942 1/ Mar. 18 1/	300 20 20 20 10			32 50 116 230 33	7.7 14 31 85 11	202 210 288 892 258		359 334 280 414 350	00000	259 358 811 2,420 409	6.0 11 16 58 15		1.2 8.7 6.2 6.2 5.0		754 954 1,460 4,190 970	 	112 183 418 930 129	0 0 0 0	78 69 57 66 76	1,090 1,340 1,910 4,650 1,390	7.2 8.0 7.9 7.6 7.9
Apr. 9 1/ June 3 1/ July 20 1/ Nov. 7 1/ Apr. 4, 1943 1/	20 150 185 8 700			60 60 18 111 70	10 18 4.9 32 20	78 155 81 366 288									496 792 366 1,660 1,180	 	193 226 63 111 260	 	47 60 73 66 71	710 1,160 510 2,210 1,690	7.5 7.3 7.4 8.1 7.9
Apr. 20 1/ July 6 1/ July 8 1/ Nov. 30, 1945 June 6, 1946	66 3,200 1,580 82 626	4.0	0.04	76 38 32 129 95	23 8.0 6.4 60 33	167 78 56 838 1	 12 74	 668 144	00	1,780 596	34 8.0	 0.5 -4	 .3 .6		826 382 206 3,190 979	 4.34 1.33	283 130 106 568 373	21 255	54 59 53 76 50	1,180 570 470 4,060 1,300	7.9 7.8 7.7 7.7 7.3
June 26 July 16 Aug. 6 Aug. 28 Sept. 17	468 46 11.4 39 93.6		•05 •05 •05 •05	70 97 102 40 23	22 41 44 17 9.0	18	50 55	145 197 186 202 400	0 0 0 0 6	404 745 1,010 367 296	5.0 10 16 7.0 2.0	•4 •5 •5 •4	6.0 1.2 .9 4.0 .0		725 1,240 1,630 728 829	.99 1.69 2.22 .99 1.13	265 411 435 170 - 94	146 249 282 4 0	52 57 65 70 85	975 1,610 2,060 1,000 1,090	8.0 7.9 8.1 8.0 8.2
Oct. 8 Mar. 24; 1947 Apr. 16 May 5 June 18	57 10,600 701 68 132	11 9.5 9.0 4.0	.00 .15 .10 .02 .01	47 31 63 88 58	16 6.3 32 36 18	22 40 167 217 207	23 3.2 10 20 21	202 140 130 237 213	0 0 8 7	474 66 514 613 477	5.0 6.0 13 12 12	.3 .8 1.2 .4 .4	.2 1.0 1.5 .7 2.0	0.17 .14 .32 .30	890 239 896 1,120 918	1.21 .33 1.22 1.52 1.25	183 103 288 368 219	17 0 181 161 32	72 47 57 54 65	1,130 372 1,220 1,660 1,420	8.2 7.4 7.7 8.2 8.5
Sept. 10 July 1, 1948 July 20 Aug. 10 Aug. 31	2/0 241 1,680 10 2.4	3.5 12 12 8.2 6.6	•00 •00 •00 •00	87 41 45 57 37	20 17 12 19 16		LO 46 31 92 54	237 155 156 228 384	0 0 0 0 0	1,080 332 198 422 572	62 12 1.0 8.0 11	.5 .0 .4 .5 .6	.8 .8 .8 .2 .6	.47 .18 .11 .06 .34	1,880 642 460 876 1,190	2.56 .87 .63 1.19 1.62	279 172 162 220 158	85 45 34 33 0	79 65 52 66 83	2,300 896 652 1,200 1,720	7.7 7.5 7.8 7.5 7.8
Mar. 8, 1949 Mar. 22 Mar. 27 May 4 May 26 July 14 Apr. 7, 1950	3,280 610 9,010 366 40 8.0 12,200	7.6 10 13 12 6.2 20	.05 .03 .02 .02 .01 .02 .02	34 32 60 28 65 120 55	3.3 3.5 7.2 15 32 11 7.2	11 31 51	38 63 27 36 31 31 53	118 129 119 235 326 224 154	000000000000000000000000000000000000000	78 116 130 320 696 1,450 143	1.0 1.0 5.0 13 26 3.0	.1 .3 .3 .7 .5 .3	3.0 2.4 1.9 2.6 .8 1.2 1.0	.06 .05	234 294 304 696 1,310 2,340 376	.32 .40 .41 .95 1.78 3.18 .51	99 95 179 132 294 468 167	2 0 81 0 27 284 41	46 59 24 75 71 73 41	349 456 481 1,040 1,890 3,100 539	7.6 7.5 7.6 8.0 8.0 7.9

Analytical results in parts per million except as indicated

See footnotes at end of table, p. 48.

Table 9.--Mineral constituents and related physical measurements, Moreau River near Eagle Butte, April 1941 to September 1951--Continued

Date of collection	Mean discharge (cfs)	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Carbonate (CO $_3$)	Sulfate (SO_4)	Chloride (Cl)	Fluoride (F)	Nitrate (NO ₃)	Boron (B)	Parts per million	Tons per acre- foot	Calcium, ^{e H} magnesium dr	eCO3	Percent sodium	Specific conduct- ance (micro- mhos at 25oC)	Hď
Apr. 20, 1950	6,350	8.6	0.04	38	4.4	5	0	136	0	94	8.0	0.2			270	0.37	113	1	49	409	7.5
June 21	99	9.9	.10	64	29	38	7	305	0	810	18	.4	1.3		1,470	2.00	279	29	75	2,080	8.0
Aug. 9	8	·				518									2,280	3.10	480 344		69	3,000	
Sept. 19	31	6.7	.02	85	32	51		256	0	1,160	24	6	1.1		1,950	2.65	344	134	76	2,710	7.7
Dec. 21	1.2	16	.04	237	79	92	0	743	0	2,150	47	.8	.8		3,820	5.20	917	308	69	4,630	7•7
Apr. 3, 1951 Apr. 25 June 19 Aug. 20 Sept. 10	356 32 447 165 112	10 11 	.10 .02	31 57 	6.5 13 	10 319 14 133 128		168 360 170 213 188	0 0 8 0	180 655 350 178 258	3.0 14 4.0 2.6 5.0	 -4 	2.3 5.3	0.16	438 	.60 .93	104 196 	0 57 	69 70 62 77 65	677 1,860 997 731 840	8.1 7.7 7.2 8.4 7.4

[Analytical results in parts per million except as indicated]

1 Samples collected and analyzed by the U. S. Bureau of Reclamation. 2 Ponded--no flow.

2 10110

Table 10.--Mineral constituents and related physical measurements, Moreau River at Promise, October 1941 to September 1951

1 mm				2	· · - ·		P				pt us					· · · · · · · · ·				
	۵ ۵				g)		(HCO3)		Ċ				Disso soli		Hardn as Ca		, Mil	duct- o- oc)	
Date of collection	Mean dischar (cfs)	Silica (SiO ₂	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bi carbonate (Sulfate (SO $_{\rm l}$)	Chloride (Cl	Fluoride (F)	Nitrate (NO ₃)	Boron (B)	Parts per million	rons per acre-foot	Calcium, magnesium	Noncarbonate	Percent sodi	Specific cond ance (micro- mhos at 250	Н
Oct. 10, 1941 1/	40			66	16	143		151	414	10		8.7		794		232	0	54	1,110	8.0
Dec. 2 1/	40			172	37	283		256	974	20]]	5.0		1,730		582	0	50	2,200	7.8
Jan. 22, 1942 1/	40			372	87	573		364	2,220	4 1 .		4.3		3,800		1,290	0	47	4,260	7.4

/Analytical results in parts per million except as indicated/

Mar. 16 1/ Apr. 9 1/ June 9 1/ Aug. 4 1/ June 15, 1943 1/	10 60 2,500 170 7,880			148 41 49 80 89	27 7.8 9.4 14 15	228 81 67 110 90		158	840 	19 		16 		1,520 430 484 650 664		484 136 162 257 284	 	49 57 47 48 41	1,810 640 640 940 950	7.5 7.7 7.6 7.0 7.8
Nov. 30, 1945 June 3, 1946 Mar. 24, 1947 Mar. 26 Apr. 17	87 448 5,160 12,400 689	11 8.8 7.8 12	0.02 .00 .05 .10 .08	78 100 55 32 88	33 25 12 6.2 34	87 11 73 49 178	3.0 40 6.2 5.0 14	250 172 152 118 146	290 486 210 110 593	12 4.0 5.5 3.5 16	0.3 .4 .1 .1 1.2	1.6 2.0 1.8 2.5 1.8	0.15 .03	655 875 457 274 1,010	0.87 1.19 .62 .37 1.37	330 352 187 105 360	9	36 46 45 49 53	939 1,160 695 435 1,420	8.1 8.2 8.0 8.0 7.5
May 6 June 18 Sept. 9 June 10, 1948 June 30	93 503 2.0 141 430	5.0 19 10 15 13	.12 .02 .01 .08 .00	112 99 207 27 78	37 21 61 9•7 28	1	19 20 29 60 71	239 146 260 210 110	653 433 1,400 261 540	14 7.0 19 6.2 19	•4 •4 •4 •4	.8 .6 2.0 .6	.10 .14 .38 .21 .18	1,160 791 2,260 598 905	1.58 1.06 3.07 .81 1.23	432 333 767 107 310	236 213 554 0 220	49 38 55 76 54	1,700 1,130 2,850 858 1,220	7.7 8.0 8.4 7.6 7.2
July 22 Aug. 11 Aug. 31 Mar. 8, 1949 Mar. 22	870 21 6.7 4,600 1,070	11 12 9.1 9.9 8.0	.00 .00 .02 .02	43 97 83 48 16	11 26 31 7.7 7.9	19 30 1	63 94 63 49 39	162 222 264 108 83	148 554 852 158 84	.2 8.0 14 1.5 .2	.4 .3 .6 .1 .2	1.3 1.4 .0 3.2 2.2	.40 .19 .35 .05 .00	392 1,000 1,480 345 214	•53 1•36 2•01 •47 •29	152 349 334 152 73		47 55 70 41 54	579 1,440 2,060 503 321	7.7 7.3 7.4 7.6 7.5
Apr. 12 Apr. 7, 1950 June 22 Aug. 10 Sept. 19	1,620 13,400 86 6 10	8.3 22 13 12	.01 .02 .02 .02	46 45 100 204	12 4.2 31 53			113 142 273 	196 120 915 1,400	4.0 3.0 19 20	.3 .2 .4 .6	1.9 1.0 .9 .5	.07 .05 	422 320 1,590 2,460 2,250	•57 •44 2•16 3•35 3•06	165 130 377 716 727	14 153 	46 47 69 59 57	575 469 2,110 3,060 2,850	7.8 7.9 7.9 7.8
Jan. 15, 1951 Apr. 2 July 6 Aug. 21 Sept. 11	1.4 600 223 237 99	14 6.6 11 	.10 .30 .02	376 45 67 	78 5•7 15 		27 32 46 	505 146 249 210 155	1,840 176 525 193 248	53 5.5 6.5 3.2 4.3	•4 •3 •4	.5 3.1 2.1	.24 .15	3,140 434 996	4.27 .59 1.35	1,260 136 228 		47 58 70 71 62	3,580 636 1,440 739 771	7.7 7.3 7.4 7.9 7.3

1 Samples collected and analyzed by the U. S. Bureau of Reclamation.

Table 11.--Monthly and annual summary of water and sediment discharges, Moreau River at Bixby

					Suspend	ed sedimen	t	
Month	Water discharge (cfs-days)	Runoff (acre-ft)	Load (tons)		Daily load (tons)			tration om)
	(CIS=uays)		(comby	Mean	Maximum	Minimum	Weighted mean	Maximum daily
Apr. 28-30, 1949 May June July August	90 861 194.7 54.1 0	179 1,710 386 107 0	19.6 a 3,900 11.4 3.5 0	126 •4 •1 0	1,300 .8 .3 0	0.5 (t) 0	1,680 22 24 	4,970 40 52 74
September Apr. 28 to Sept. 30	26.5 1,226.3	53 2,440	2.8 a 3,940	•09 25	•7 1,300	0	1,190	4 <u>9</u> 70
October	291.8 121.6 66.4 0 3,035 64,679 8,816 888 435.8 400 286.9	579 241 132 0 6,020 128,300 17,490 1,760 864 793 569	481 30 12 0 3,790 880,500 102,400 836 51 3,400 5,630	16 1 .4 0 122 29,400 3,300 28 1.6 110 188	259 0 763 169,000 24,000 180 2,660 4,050	(t). 0 0 0 143 (t) (t)	611 91 67 463 5,040 4,300 349 43 3,150 7,270	2,400 1,300 7,470 7,120 1,390 6,020 21,500
Water year 1949-50	79,020.5	156 , 748	997,100	2,730	169,000	0	4,670	21,500
October November December January 1951 February April May July August	197.1 158.2 93 108.3 25.7 1,513.5 524.6 472.7 1,534.0 783.1 2,114.5 436.7	391 314 184 215 51 3,060 1,040 938 3,040 1,550 4,190 866	110 46 a 36 b 28 b 4 a 5,437 400 7,625 12,688 7,687 44,965 2,893	3.5 1.5 1.2 .9 .1 175 13 246 423 248 1,450 96	29 1,170 102 5,100 2,150 2,000 18,600 1,260	1 (t) (t) (t) (t) (t) (t)	207 108 143 96 58 1,310 282 5,970 3,060 3,060 3,640 7,880 2,450	665 2,000 758 21,500 5,870 7,250 10,100 6,020
Water year 1950-51	7,991.4	15,840	81,920	224	18,600		3,800	21,500

a Includes estimated loads for a few days. b Includes estimated loads for many days. t Sediment discharge less than 1 ton.

Table 12.--Monthly and annual summary of water and sediment discharges, Moreau River near Faith

.

· · · · · · · · · · · · · · · · · · ·]		Suspendeo	1 sediment	·····	<u>_</u>
Month	Water discharge (cfs-days)	Runoff (acre-ft)	Load (tons)		Daily load (tons)		• •	tration pm)
				Mean	Maximum	Minimum	Weighted mean	Maximum daily
August 15-31, 1946 September	112.8 1,928.5	224 3,830	615 31,500	36 1,050	550 8 , 630	0 .•1	2,020 6,050	5,660 13,000
Aug. 15 to Sept. 30	2,041.3	4,050	32,120	683	8,630	0	5,830	13,000
October No vember December January 1947 February March	7,135 2,725 269 1,820 16,975 30,025 10,043 784 25,324 3,241 196.6 35.1	14,150 5,400 534 3,610 33,670 59,550 19,920 1,560 50,230 6,430 390 70	88,620 13,530 38 990 94,670 216,000 88,870 104 553,700 20,460 228 1	2,860 451 1.2 3,380 6,970 2,960 3.3 18,500 660 7.4 .05	25,300 5,390 2.3 2,12 15,000 65,500 21,600 17 131,000 10,500 100 .3	2.8 1.5 .1 2.2 1.2 11 .9 1.7 2.7 .1 0	1,600 1,840 53 201 2,070 2,660 3,280 49 8,100 2,340 2,340 15	10,600 3,180 111 308 3,790 3,730 9,200 111, 11,700 5,120 2,930 278
Water year 1946-47	98 , 572.7	195 , 500	1,077,000	2,950	131,000	0	4,050	11,700
October November December January 1948 February March April June June July August	508.1 549 268 67 1,940 15,420 3,677 1,868 9,435 2,914 816.9 1.2	1,010 1,090 532 133 3,850 30,590 7,290 3,710 18,710 5,840 1,620 2,4	2,750 155 88.4 17.1 517 a 21,100 73,350 9,770 214,700 23,800 7,380 .1	89 5.2 2.8 .6 18 681 2,140 315 7,160 7,68 238	1,250 18 14 3.0 97 2,960 21,200 2,110 57,900 3,150 1,840 .1	0.2 1.8 0 0 .4 1.1 1.7 1.6 1.0 .3 0	2,000 105 122 94 99 507 7,390 1,940 8,430 2,990 3,350 31	5,860 210 172 135 610 1,250 16,500 4,280 14,400 5,930 8,700 50
Water year 1947-48	37,494.2	74,380	353,600	966	57,900	0	3,490	16,500
October November December	97.0 602 95 10 0 37,450 15,274 1,590 410.1 45.7 0 6.7	192 1,190 188 20 0 74,300 30,300 3,150 813 91 0 13	101 2,180 b 20 b 1 0 389,800 117,000 6,180 103 6.1 0 b 10	3.3 72.7 .6 .03 0 12,600 3,900 199 3.4 .2 0 .3	77 1,210 1.9 60,900 15,200 2,200 50 1.7 0	0 1.7 0 0 0 12 1.0 .5 0 0 0 0	382 1,340 78 37 3,860 2,840 1,440 93 49 	2,370 7,210 7,350 5,010 5,170 439 229
Water year 1948-49	55,580.5	110,300	a 515,400	1,410	60,900	0	3,430	7,350

a Includes estimated loads for a few days. b Includes estimated loads for many days.

.

Table 13.--Particle-size analyses of suspended sediment, Moreau River at Bixby

ZMethods of analyses: B, bottom-withdrawal tube; N, in native waters; W, in distilled water; P, pipette; C, chemically dispersed; S, sieve; M, mechanically dispersed7

	· ·				<u></u>		Susp	ended s	ediment	,						
Date	Time	Water dis- charge	Concen- tration of	Concentration of			Percen	t finer	than i	ndicate	ed size,	in mil	limeter	s		Methods of analysis
		(cfs)	sample (ppm)	suspension analyzed (ppm)	0.002	0.004	0.008	0.016	0.031	0.062	0.125	0.250	0.500	1,000	2.000	
Mar. 24, 1949 Do Apr. 13 May 4	1:00 p.m. 1:00 p.m. 2:00 p.m. 2:00 p.m. 2:00 p.m.	2,710 2,710 298 298 85	3,460 3,460 1,740 1,740 5,130	1,870 1,900 2,060 2,100 1,770	10 32 55 	20 41 72 5 47	53 49 86 15 84	58 58 94 91	70 69 96	79 76 98 98 98	86 86 99 98 100	95 93 100 100	97 95 	 	 	BN BW BW BN BW
May 5 May 6 Do Mar. 7, 1950 Apr. 3	2:15 p.m. 2:15 p.m. 2:15 p.m. 2:20 p.m. 4:45 p.m.	79 50 50 212 2,370	1,150 3,920 3,920 1,160 6,120	780 1,510 1,420 3,370 10,600	48 21 11	74 28 12 89 29	85 15	99 100 45 93 39	99 	99 97 95 67	99 98 	100 100 99	 100		 	BW BW BN PWCM SPWCM
Apr. 4 Do Apr. 5 Apr. 7 Apr. 8	3:10 p.m. 3:10 p.m. 11:15 a.m. 11:50 a.m. 10:00 a.m.	2,390 2,390 2,460 7,540 5,720	2,950 2,950 3,870 6,060 3,890	1,760 1,690 7,260 11,000 7,740	28 21 	33 22 45 44 55	37 26	41 34 58 60 68	51 45 	63 59 74 78 80	76 75 92	91 95 99	100	 		BWCM BN SPWCM SPWCM SPWCM
Apr. 12 Apr. 14 Do Apr. 15 Apr. 18 Apr. 19	11:30 a.m. 2:45 p.m. 2:45 p.m. 11:10 a.m. 10:00 a.m. 10:20 a.m.	702 2,520 2,520 8,860 2,360 1,200	2,520 5,630 5,630 7,400 6,370 4,820	7,330 3,590 3,460 14,000 11,000 8,880	38 5 	64 44 8 44 48 45	50 40	78 56 46 62 62 57	64 60	85 73 74 77 72 64	83 86 89 79 69	94 95 99 93 77	100 100 85	 96	 100	SPWCM BWCM SPWCM SPWCM SPWCM SPWCM
Apr. 20 Apr. 21 Do Apr. 27 May 11 Mar. 24, 1951	10:20 a.m. 5:10 p.m. 5:10 p.m. 10:00 a.m. 9:50 a.m. 1:15 p.m.	605 336 336 165 1,380 69	3,350 2,380 2,380 564 6,100 1,470	6,840 1,380 1,1440 1,390 13,400 3,360	72 4	65 81 87 57 91	89 30	79 94 95 74 97	97 97 	86 98 98 100 87 99	89 99 98 	92 100 99	93	97	100	SPWCM BWCM BN PWCM SPWCM PWCM
Mar. 27 Do Mar. 29 Apr. 5 June 19 June 22 July 4	9:45 a.m. 9:45 a.m. 5:00 p.m. 1:00 p.m. 8:00 p.m. 6:00 p.m. 9:30 a.m.	163 163 117 34 61 108 128	1,780 1,780 992 249 11,000 7,170 2,940	2,100 2,100 997 249 8,260 4,430 2,100	80 1 75 75	88 4 83 86 93 96 90	91 80 90 90	95 94 96 93 	97 95 98 97	99 98 99 98 98	99 98 	100 99	100		 	PWCM PN BWCM BWCM PWCM PWCM PWCM
Aug. 12 Do Aug. 13 Aug. 14 Sept. 1	9:30 a.m. 6:30 p.m. 1:30 p.m. 12:20 p.m. 1:00 p.m.	590 680 1,040 151 58	8,520 17,800 7,260 8,900 5,490	. 4,670 7,030 5,440 3,500 4,280		73 82 81 94 94		85 96 92 98 100		94 100 98 100						SPWCM SPWCM SPWCM SPWCM SPWCM

Sept. 2	9:00 a.m.	100	7,360	5,760		95		99		100	 		 	SPWCM
Sept. 3	5:00 p.m.	45	3,220	2,600	90	95	97	. 99	100		 		 	BWCM

Table 14.--Particle-size analyses of suspended sediment, Moreau River near Faith

/Methods of analyses: B, bottom-withdrawal tube; N, in native waters; W, in distilled water/

-								Susp	ended s	sediment	;						
	Date	Time	Water dis- charge	Concen- tration of	Concentration of suspension			Percer	nt finer	than i	ndicate	ed size,	, in mil	limeter	°S		Methods of analysis
-			(cfs)	sample (ppm)	analyzed (ppm)	0.002	0.004	0.008	0.016	0.031	0.062	0.125	0.250	0.500	1.000	2.000	····· 》 · · · ·
I N	Feb. 17, 1947 Feb. 20 Mar. 26 June 25 Mar. 17, 1948	3:00 p.m. 1:20 p.m. 3:05 p.m. 12:15 p.m. 2:15 p.m.	4,320 772 1,610 5,090 926	5,200 787 2,190 9,040 494	8,810 850 4,500 7,890 1,390	34 23 36 25 77	38 38 40 30 87	48 80 49 36 92	58 84 58 43 95	68 88 65 50 97	82 91 74 66 98	94 93 81 78 98	99 96 89 86 99	100 100 100 92 100			BN BN BN BW BW
5 1	Mar. 19 Do Mar. 24 Mar. 30 Apr. 27	1:00 p.m. 1:00 p.m. 12:00 m. 11:45 a.m. 5:30 p.m.	996 996 386 171 101	422 422 1,190 801 2,120	470 450 924 848 1,580	52 74 48 2 2	70 84 63 12 5	90 79 51 16	92 95 92	93 96 97 	96 97 98 98 98	98 98 99 99 100	99 99 100 100	100 100 			BN BW BW BN BN
e e	May 11 June 18 June 19 Do June 23	10:45 a.m. 6:00 a.m. 6:00 a.m. 12:30 p.m. 3:45 p.m.	64 628 870 673 602	853 8,180 9,420 8,740 3,860	751 1,710 1,540 1,830 2,590	10 58 1	14 78 5 68 4	21 87 15 81 28	88 86	91 76 92	99 92 82 94 94	94 88 96 96	96 95 98 98	98 98 99 100			BN BW BN BW BN
	July 4 Do Do July 7 July 15	5:00 a.m. 11:00 a.m. 6:00 p.m. 9:30 a.m. 6:00 a.m.	411 429 340 194 230	9,620 3,920 4,940 5,120 4,260	3,720 1,480 1,890 4,530 3,420	46 44 48 3	60 58 65 1 9	71 70 78 2	78 80 88 22	82 86 92 	86 89 94 98 93	93 94 96 100 94	96 97 98 	99 99 99 			BW BW BN BN
INTDUP. SE	Do July 19 Nov. 5 Nov. 6 Nov. 9 Aar. 24, 1949 Do Do Do Do Do	1:00 p.m. 4:40 p.m. 8:00 a.m. 8:00 a.m. 12:00 m. 12:00 m. 11:40 a.m. 11:20 a.m. 11:20 a.m.	276 188 73 35 24 3,620 3,620 575 575	3,840 8,720 9,200 3,560 575 3,850 3,850 1,990 1,990 1,990	3,000 6,030 1,870 1,360 550 1,550 1,750 1,260 2,450 2,340	6 54 77 90 86 8 36 52 49 2	11 71 89 98 93 20 45 69 67 5	87 98 99 96 57 55 79 82 14	93 100 97 66 66 87 88	94 99 100 76 77 91 93	95 99 86 86 94 95 96	96 100 92 93 95 97 97	99 96 98 99 99 99	100 98 99 100 100 100			BN BW BW BW BN BW BW BW BW BN
é N £ N	4ay 1 4ay 2 4ay 3 4ay 4 Do	7:00 a.m. 6:30 a.m. 6:00 a.m. 6:30 a.m. 6:30 a.m.	171 102 104 136 136	6,800 1,850 1,170 4,710 4,710	1,450 1,520 963 1,990 1,880	60 66 57 72 3	81 93 86 91 4	91 99 96 98 4	97 99 98 100	100 100 100							BW BW BW BW BN

