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Cover.   Map showing simulated present conditions steady-state heads at model layer 42 
(–500 feet above the North American Vertical Datum of 1988) and heterogeneity realizations 1 
through 9 in the focus area in Bethpage, New York; from figure 11 of this report.
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Simulation of Zones of Groundwater Contribution to Wells 
South of the Naval Weapons Industrial Reserve Plant in 
Bethpage, New York

By Paul E. Misut

Abstract
A steady-state three-dimensional groundwater-flow 

model that simulates present conditions was coupled with 
the particle-tracking program MODPATH to delineate zones 
of contribution to wells pumping from the Magothy aquifer 
near a chlorinated volatile organic compound (VOC) plume. 
This modeling was part of a study by the U.S. Geological 
Survey in cooperation with the Naval Facilities Engineering 
Command to delineate groundwater near the Naval Weapons 
Industrial Reserve Plant in Bethpage, New York. Because 
rates of advection within the coarse-grained sediments typi-
cally exceed 0.1 foot per day, transport by dispersion and (or) 
diffusion was assumed to be negligible. Resulting zones of 
contribution are complex shapes, influenced by hydrogeologic 
features including confining beds and a basal gravel zone, and 
the interplay of nearby hydrologic stresses. The use of two 
particle tracking techniques identified zones of contribution to 
wells. Particles are backtracked from pumping well screens, 
and particles are forward tracked from the location of a VOC 
plume, as defined by surfaces of equal total VOC concentra-
tion. During any period of 5 years or less, about 1 to 3 percent 
of particles backtracked from pumping wells within a focus 
area intersected the 5-part per billion (ppb) VOC plume shell, 
indicating that the vast majority of particles were not sourced 
from the plume. During 5 years or less, none of the particles 
backtracked from pumping wells intersected the 50-ppb VOC 
plume shell. Forward-tracking techniques identified the fate of 
water within the VOC plume after 5 years as it moves toward 
ultimate well capture and (or) discharge to model constant 
head and drain boundaries. Out of 4,813 forward tracked 
particles started within the 50-ppb VOC plume shell, 1 for-
ward-tracked particle was captured by well ANY8480. Out 
of 22,958 forward tracked particles started within the 5-ppb 
VOC plume shell, 100 were captured by production wells (less 
than 1 percent). The subset of forward pathlines that represent 
well plume capture are similar in number and shape to those of 
backtracked pathlines.

Model simulations were conducted to assess uncertainties 
and improve understanding of how variability in hydraulic 
properties, pumpage rates, and maximum particle traveltime 
affect delineation of zones of contribution. By use of driller’s’ 

logs, a transitional probability approach generated nine 
alternative realizations of heterogeneity within the Magothy 
aquifer to assess uncertainty in model representation. Fine-
grained sediments with low hydraulic conductivity were 
realized as laterally discontinuous, thickening towards the 
south, and comprising about 27 percent of the total aquifer 
volume within the transitional probability subgrid. Model 
simulations with alternative pumpage rates, porosity terms, 
and alternative maximum particle traveltime were also used to 
demonstrate how the size and shape of zones of contribution 
may vary.

Introduction
Several plumes1 of dissolved volatile organic compounds 

(VOCs), including trichloroethylene (TCE), were identified 
by the U.S. Geological Survey (USGS) in cooperation with 
the Naval Facilities Engineering Command in a semiconfined 
aquifer near the Naval Weapons Industrial Reserve Plant 
(NWIRP) at Bethpage, New York (fig. 1). The operable unit 
(OU) plume OU2 is generated to the south of the NWIRP, 
and in 2003, the Navy issued a record of decision for OU2, 
which presently consists of plume remnants to the south and 
west of the NWIRP (Naval Facilities Engineering Command, 
2003). Since 1950, the downgradient edge of the OU2 plume 
has been estimated to travel about 285 feet per year (ft/yr) on 
average (Harre and others, 2011). At present, about 3,500 gal-
lons per minute (gal/min) of water is pumped from an OU2 
onsite hydraulic containment system. Groundwater captured 
at the onsite hydraulic containment system is piped to an air 
stripping and vapor phase granular activated carbon adsorption 
plant, treated to New York State Department of Environmental 
Conservation (NYSDEC) State Pollutant Discharge Elimina-
tion System (SPDES) standards, then transferred to recharge 
basins where the effluent percolates downward and reenters 
the groundwater system. Production wells that pump from the 
Magothy aquifer downgradient of the OU2 onsite hydraulic 
containment system include South Farmingdale Water District 
wells SFWD6150, SFWD8664, and SFWD8665 and Aqua 

1Terms in bold are defined in the glossary.
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NY wells ANY8480 and ANY9338 (fig. 1). Identification and 
better understanding of factors affecting the zones of contri-
bution (ZOCs) to these wells is needed for their protection 
and management.

Purpose and Scope

This report presents the results of a study undertaken 
to provide a better understanding of ZOCs of wells within 
a focus area (fig. 1) of a regional model grid. The study 
evaluated advective groundwater-flow patterns through 
groundwater-flow simulation and particle-tracking analysis 
in forward and backward modes. The groundwater-flow 
simulation and particle-tracking analysis had the following 
general objectives:

•	 Delineate ZOCs based on present conditions through 
backwards tracking of particles that are initiated at wells.

•	 By use of hypothetical simulations, determine hydro-
geologic and pumping-rate controls on the size and 
shape of ZOCs.

The report contains a description of simulations and 
analyses that meet the study objectives. As a result of simula-
tion analysis, further field-data collection activities that may 
result in improved ZOC delineation are discussed. A discus-
sion of the limitations of this approach is also included.

Representation of plume source loading mechanisms 
such as contaminant inflow was beyond the scope of the study. 
Simulations described in this report do not characterize the 
historical development of any plume.

Previous Investigations

Simulation of the groundwater-flow system of Nassau 
County began before the advent of computers through the 
use of electric-analog models (Getzen, 1977). Smolensky 
and Feldman (1995) simulated groundwater-flow paths in the 
Bethpage area in cooperation with the Nassau County Depart-
ment of Health (NCDH) through the use of the USGS codes 
MODFLOW (McDonald and Harbaugh, 1988) and MOD-
PATH (Pollock, 1989). At the time of the first MODFLOW 
analysis, groundwater flowed towards deep industrial pump-
ing wells and away from surface recharge basins where water 
captured by industrial wells was reintroduced. A pumping-
recharge open geothermal cooling loop resulted in rearrange-
ment and partial containment of a plume of VOCs, which was 
migrating in a generally southward direction at a rate of about 
200 ft/yr, as described by Smolensky and Feldman (1995). 
The analysis also indicated that some groundwater upgradi-
ent of surface recharge basins was drawn into the deep zones 
of industrial well influence, but not captured, and ultimately 
discharged to the far southern model boundary in the bottom 
part of the Magothy aquifer, near the contact with the underly-
ing Raritan confining unit as described by Smolensky and 
Feldman (1995). From 1995 to the present [2017], a series of 

MODFLOW, MODPATH, and MT3D models were developed 
(Zheng, 1990) that are generally consistent with the earlier 
USGS work but depict greater containment of VOCs upgradi-
ent of the onsite hydraulic containment system and continued 
southward migration of VOCs downgradient from the onsite 
hydraulic containment system (Arcadis CE, Inc., 2009, 2010). 
A timeline of the modeling efforts is given in Misut (2011). 
Misut (2014) also conducted a particle tracking analysis of 
the OU3 area (fig. 1), which is in general agreement with 
previous studies.

Methods
Simulation of groundwater flow and advective transport 

included steady-state flow modeling using USGS codes. Gen-
eration of alternate equiprobable hydraulic property distribu-
tions uses transitional probability methods (Carle, 1999).

Simulation of Groundwater Flow and Sources of 
Water to Wells

The numerical calculations of the various ZOC cases 
investigated in this study are carried out using the USGS 
MODFLOW–2005 suite of codes (Harbaugh, 2005) coupled 
with MODPATH version 6 (Pollock, 2012). The model is 
documented according to USGS guidelines (U.S. Geological 
Survey, 1996). Because of the use of transitional probability 
methods (Carle, 1999) to represent Magothy aquifer hetero-
geneity, the MODFLOW model was finely discretized into 
65 layers in the subdomain of heterogeneity representation.

Model Development
To fully describe the groundwater-flow model, the 

following topics are introduced: hydrologic system under 
investigation, mathematical methods used, model spatial and 
temporal discretization, aquifer system properties, stresses 
modeled, calibration criteria, procedure, and results, and 
limitations of the model of the actual system and the impact 
those limitations have on the results and conclusions of the 
report. Parameters are assigned for aquifer and confining 
unit hydraulic properties, and for boundary condition fluxes 
and conductances.

Hydrologic System Under Investigation

The Bethpage area is situated within the Long Island 
groundwater system, which has been described in previous 
USGS publications (Smolensky and Feldman, 1995; 
Busciolano, 2005; Misut and Busciolano, 2009). The aquifer 
and confining units in the Bethpage area are described in 
table 1. The average horizontal hydraulic conductivity of 
the upper glacial, Magothy, and Lloyd aquifers is 270, 50, 
and 60 feet per day (ft/d), respectively. The estimated ratio 
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Table 1.  Characteristics of hydrogeologic units, Bethpage, New York.

Hydrogeologic unit Geologic unit Description and hydraulic properties

Upper glacial aquifer Upper Pleistocene deposits Till and outwash deposits of sand, silt, clay, and boulders. Varied permeability with 
an average hydraulic conductivity of 270 feet per day and a horizontal to verti-
cal anisotropy of 10:1. Outwash has the highest hydraulic conductivity. About 
100 feet thick.

Magothy aquifer Matawan Group-Magothy 
Formation, undifferentiated

Fine sand with silt and interbedded clay, with basal gravel. Gray and pale yellow 
quartz sand. Lignite is common. Moderately permeable with an average hydraulic 
conductivity of 50 feet per day and an anisotropy of 100:1. About 800 feet thick.

Raritan confining unit 
(Raritan clay)

Unnamed clay member of the 
Raritan Formation

Clay; solid with gray, white, red, or tan colors. Very poorly permeable. Confines 
water underlying unit. Average hydraulic conductivity of 0.001 foot per day. 
About 200 feet thick.

Lloyd aquifer Lloyd Sand Member of the 
Raritan Formation

Underlies the Raritan confining unit. Fine to coarse sand and gravel with clay 
lenses. White and pale-yellow sand well sorted. Moderately permeable with an 
average horizontal hydraulic conductivity of 60 feet per day, and anisotropy of 
10:1. About 200 feet thick.

Bedrock Hartland Formation; crystal-
line bedrock

Biotite-garnet schist overlain by a thick saprolitic zone 50 to 100 feet thick, consist-
ing of white, yellow, and gray clay. Impermeable to poorly permeable.

of horizontal to vertical hydraulic conductivity is 10:1 for 
the upper glacial and Lloyd aquifers and 100:1 for the 
Magothy aquifer. Locally, borings penetrated a gravel zone 
within the basal Magothy aquifer (Resolution Consultants, 
written commun., 2016). The average horizontal hydraulic 
conductivity of the gravel zone is believed to be greater than 
120 ft/d, which is the estimated value corresponding to a 
deep zone of the Magothy aquifer defined to include a gravel 
zone and other less permeable zones (Resolution Consultants, 
written commun., 2016).

Precipitation is the dominant source of water that 
recharges the groundwater system. Recharge to the ground-
water system is from precipitation that infiltrates downward 
through an unsaturated zone. Recharge is locally enhanced by 
constructed recharge basins. Factors affecting rates of recharge 
include spatial and temporal variations in precipitation, perme-
ability of surficial hydrogeologic units, land-cover character-
istics, and discharge of domestic and industrial wastewater. 
Annual average precipitation is about 42 inches (Miller and 
Fredrick, 1969). Under predevelopment conditions, about 
50 percent of the precipitation reached the water table, mainly 
during the nongrowing season (Seaburn and Aronson, 1974; 
McClymonds and Franke, 1972). Under present conditions, 
recharge is mainly from infiltration of precipitation through 
unpaved areas, and infiltration through recharge basins.

Groundwater enters and exits the area by lateral flow 
from the regional Long Island system. Discharge from the 
groundwater system is to pumping wells and gaining streams 
that occupy former glacial meltwater channels, including 
Massapequa Creek, Bellmore Creek, and Seaford Creek.

Across the study area, the upper glacial aquifer is uncon-
fined except in the north, where the upper glacial aquifer is 
unsaturated and the water table is in the deeper semiconfined 
Magothy aquifer. Even though the uppermost aquifer is the 

glacial aquifer, the Magothy aquifer is the primary water 
supply aquifer and aquifer of concern for VOCs. Within the 
Magothy aquifer, sands and gravels are interbedded with 
fine-grained sediments. Fine-grained sediments, as reported 
on driller’s’ logs, are delineated on sections A–Aʹ and B–Bʹ 
(figs. 2 and 3).

The top of the Raritan confining unit, at about 900 to 
950 feet (ft) below sea level, or the relatively impermeable 
bedrock, at about 1,200 to 1,300 ft below sea level was consid-
ered the lower boundary of the local groundwater subsystem 
(table 1). The Raritan confining unit is estimated to be 150 to 
200 ft thick in the region (Smolenksy and others, 1989). How-
ever, its presence was not confirmed at vertical profile boring 
VPB–129, and the depth of top surface at VPB–132 was found 
to be greater than estimated. The regional hydraulic gradient 
from the Lloyd aquifer across the Raritan confining unit into 
the Magothy aquifer is about 0.03 [ft per ft] upward near Beth-
page (Monti and others, 2013). Given a Raritan confining unit 
vertical conductivity of about 0.001 ft/d, upward flow from 
the Raritan confining unit into the Magothy aquifer is likely 
negligible (less than 1 percent of groundwater recharge to an 
equivalent area), except where it is absent.

Mathematical Methods Used

The numerical calculations of the ZOC cases investigated 
in this study are carried out using flow fields represented by a 
finite difference grid and simulated by the MODFLOW–2005 
suite of codes (Harbaugh, 2005) through solution of the 
groundwater flow equation using finite difference techniques. 
Particles are tracked through the simulated flow fields 
using MODPATH version 6 (Pollock, 2012). The graphical 
user interface ModelMuse (Winston, 2009) is used to aid 
the input of data and the postprocessing of model results. 
The MODFLOW suite represents three-dimensional geometry 
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Figure 2.  Location of hydrogeologic sections A–Aʹ and B–Bʹ across Bethpage, New York. 
Location of focus area shown on figure 1.

B B'

A

A'

50

5

A'A
B'B

!

!

!

!

!

!

!

!

!

!!

!

!!

!!

0 1,500 2,250 3,000750 FEET

0 500 1,000 METERS

50

SFWD6150

SFWD8665

ANY8480

SFWD8664

ANY9338
RO

UT
E 

13
5

SOUTHERN STATE PARKWAY

W
ANTA

GH A
VE

NUE

50

50

50

5

5

5

LWD5303

VPB154

VPB148

VPB149

VPB152

VPB151

VPB146

VPB158

VPB155

VPB150

VPB164

VPB153

VPB151

VPB132VPB125

BPOW4-1,2

VPB46

VPB129
VPB76

VPB128

VPB126

BPOW3-2

BPOW3-1

VPB130

VPB44

VPB124

VPB133

HEMPSTEAD TURNPIKE

BPOW5-1,2,3

SFWD8664

EXPLANATION

Production well and number

Vertical profile boring and number

°73  30’ 73  29’

40  44’°

°

°40  43’

Model grid for focus area

Line of equal trichloroethylene (TCE) concentration 
    within focus area, 50 parts per billion, 
    March 2016—Data from Resolution Consultants 
    (written commun., 2016)

Line of equal trichloroethylene (TCE) concentration 
    within focus area, 5 parts per billion, 
    March 2016—Data from Resolution Consultants 
    (written commun., 2016)

Grid transect line A – A’ (fig. 3A) 

Grid transect line B – B’ (fig. 3B) 

Base from U.S. Geological Survey digital data, 1:24,000
Lambert conformal conic projection 
North American Datum 1983



6    Simulation of Zones of Groundwater Contribution to Wells in Bethpage, New York

Figure 3.  Sections A, A–Aʹ and B, B–Bʹ through focus area showing hydrogeologic units and borehole intervals of fine-
grained sediments, Bethpage, New York. Location of cross-section lines shown on figure 2. Data are from Smolensky 
and others (1989), Tetra Tech (2012a), David Brayack (Tetra Tech, written commun., 2013), and Brian Caldwell (Resolution 
Consultants, written commun., 2016).
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Figure 3.  Sections A–Aʹ and B–Bʹ through focus area showing hydrogeologic 
units and borehole intervals of fine-grained sediments, Bethpage, New York. 
Location of cross-section lines shown on figure 2. Data are from Smolensky 
and others (1989), Tetra Tech (2012a), David Brayack (Tetra Tech, written 
commun., 2013), and Brian Caldwell (Resolution Consultants, written commun., 
2016).—Continued
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and complex boundary conditions, allows for variably spaced 
model discretization, and can be used by particle tracking 
methods to delineate ZOCs to wells.

Particle tracking evaluations were made for repre-
sentative modern steady-state conditions using MODPATH 
version 6 (Pollock, 2012), which accounts for advective 
transport but does not consider dispersive transport or chemi-
cal reactions. Advective particle tracking was used to develop 
the ZOCs for the study area. Dispersion from molecular 
diffusion is assumed to be negligible. Changes to travel-
time related to geologic heterogeneity was accounted for 
by considering multiple realizations of the distribution of 
hydrogeologic properties.

The transition probability geostatistical software  
T–PROGS (Carle, 1999) was used to generate alternative 
realizations representing zones of high-permeability sands and 
low-permeability clays within the Magothy aquifer. Transition 
probability and Markov chain methods use geologic data to 
compute the probability that a particular geologic unit is pen-
etrated given the location of nearby geologic units. Twenty-
three boring logs were distributed throughout the focus area 
(figs. 1 and 2) with density of about 13 logs per square mile. 
Once the probabilities are computed, equiprobable realiza-
tions of hydrogeologic properties can be created based on the 
known lithologies in the boreholes. This method ensures the 
model matches reality at all measured locations and matches 
the statistics of the system at all unmeasured locations.

Boundary Conditions

The northern and southern boundaries of the ground-
water-flow model (fig. 4) are represented as constant-head 
boundaries. The eastern and western model boundaries are 
represented as no-flow boundaries where flow is generally 
parallel to the active boundary. Head values for the boundary 
conditions are estimated from 2013 regional contour maps, 
which are representative of present steady-state conditions 
(Como and others, 2016). Recharge is a specified flux bound-
ary with several factors affecting the rate, as described by the 
model stresses section below. MODFLOW drain boundaries 
are used to represent three streams draining to the south of 
the model (Massapequa, Seaford, and Bellmore Creeks). The 
constant heads for these drains are also taken from Como 
and others (2016). Flow at Massapequa and Bellmore Creeks 
is reported at U.S. Geological Survey (2017c). Pumpages are 
specified flux boundaries and are described in the “Model 
stresses” section.

Model Spatial Discretization

The areal extent of the model grid (fig. 4) is similar to 
that described by Arcadis CE, Inc. (2010), with finer grid spac-
ing in the vicinity of a focus zone that includes public-supply 
production wells SFWD6150, SFWD8664, SFWD8665, and 
Aqua NY wells ANY8480 and ANY9338. The total number of 
rows (127) and columns (89), along with the number of model 
layers (70), results in about 800,000 cells. In the outlying 

zone, model cell dimensions generally range from 1,800 ft by 
1,800 ft horizontally in corners to 100 ft by 100 ft in the focus 
area. Layers extend horizontally from the focus zone outwards 
to the regional model domain boundary. For the focus zone 
(inner region of model grid with 54 columns by 89 rows by 
65 layers of 100 ft by 100 ft by 10 ft cells; fig. 5), the Mago-
thy aquifer heterogeneity is represented using the transitional 
probability approach, and particle tracking of production well 
ZOCs are conducted. Fine horizontal and vertical discretiza-
tion is necessary in the focus zone to represent the discontinu-
ous character of the fine-grained sediments and to simulate 
the influence of these structures on particle pathways. The 
grid layering is coarse in the upper glacial aquifer (gener-
ally two layers with average thickness of 100 ft), fine in the 
Magothy aquifer (focus area thickness of 10 ft), and coarse 
in the Raritan formation (generally three layers with aver-
age thickness of 200 ft). The bottom of the top layer is at sea 
level, a conservative level below the water table that prevents 
model cells from dewatering, which would introduce nonlin-
earity into the MODFLOW numerical solution. The top of the 
plume is located within the finely discretized focus zone of the 
Magothy aquifer. The bottom no-flow boundary of the model 
is chosen to be the base of unconsolidated deposits (base of 
the Lloyd aquifer of the Raritan Formation) in order to fully 
represent the groundwater flow system, as has been done by 
other Nassau County groundwater flow models such as (Misut 
and Aphale, 2014).

Aquifer System Properties

Aquifer system properties are summarized in table 1 
and include three geologic units: upper Pleistocene deposits, 
Magothy Formation, and Raritan Formation. Aquifer proper-
ties are discussed in Smolenksy and Feldman (1995), McCly-
monds and Franke (1972), Smolensky and others (1989), and 
Arcadis CE, Inc. (2003). Initial hydraulic conductivity values 
were estimated for the hydrogeologic units using specific-
capacity data with drillers’ logs and other methods that are 
summarized in McClymonds and Franke (1972). The initial 
effective porosity value for all model layers is 0.25 based on 
(Arcadis CE, Inc., 2011; Misut, 2011). Storage parameters 
applied in previous modeling studies on Long Island are 
summarized by Buxton and Smolenksy (1999), with specific 
yield values ranging from 0.1 (Magothy aquifer) to 0.3 (gla-
cial outwash) and a specific storage of 6.0×10-7 [1/ft] for all 
confining units. Misut and Busciolano (2009) estimated the 
specific storage of the upper Magothy to be 5.0×10-6 [1/ft]. 
Simulated aquifer system properties were refined during 
model calibration as data became available through an ongo-
ing U.S. Department of the Navy drilling program (Resolution 
Consultants, written commun., 2016), including addition of 
a basal gravel zone within the Magothy aquifer and lowering 
the altitude of top of the Raritan confining unit. The horizontal 
and vertical hydraulic conductivity of the Raritan confining 
unit is specified as 0.001 ft/d (isotropic), following Buxton and 
Smolensky (1999).
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Figure 4.  Specified production wells in focus area, model drain cells, creeks, streamgaging stations, model constant head 
cells, water-level contours, no-flow model boundaries, and other features in Bethpage, New York.
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Figure 5.  Focus area of MODFLOW model grid showing row and column numbers and other 
local features at Bethpage, New York. Location of focus area shown in figure 1.
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Initial parameter values for the main part of the Mago-
thy aquifer included a horizontal hydraulic conductivity of 
50 ft/d and a vertical hydraulic conductivity of 0.5 ft/d. These 
values relate to implicit representation of local confining lay-
ers within the Magothy aquifer through a vertical anisotropy 
factor (ratio of horizontal to vertical hydraulic conductivity) 
of 100:1. However, local confining layers within the focus 
area (figs. 1 and 5) of the Magothy aquifer are further repre-
sented as a sequence of nine conditional stochastic simula-
tions—equally probable spatial distributions that represent the 
borehole data shown in figure 3. These distributions were not 
screened from a larger population of distributions and there-
fore do not represent a Monte Carlo analysis; they are simply 
the only randomly selected distributions generated; each 
provides a reasonable match to the observed data and interpre-
tations of confining bed structures.

Sedimentary facies in the Magothy aquifer identified 
(Tetra Tech 2012a, 2012b; Resolution Consultants, writ-
ten commun., 2016) in the borings and the monitoring and 
public-supply wells include coarse-grained sediments, fine-
grained sediments, and interbedded coarse and fine-grained 
sediments. Twenty-three boring logs were distributed through-
out the focus area (figs. 1 and 2) with density of about 13 logs 
per square mile. Coarse-grained sediments comprise about 
73 percent of the Magothy aquifer material. Fine-grained and 
interbedded sediments comprise 8 and 19 percent, respec-
tively. The identified facies intervals were not changed in the 
conditional simulation. A 10-ft vertical sampling interval is 
used to represent these hard data. The conditional simulation 
domain (sections shown in fig. 6) uses a regularly spaced grid 
of data points in 54 columns by 89 rows by 60 layers (100 ft 
by 100 ft by 10 ft); these data points overlap the focus zone of 
fine MODFLOW model discretization (figs. 1 and 5).

A matrix of facies vertical transiograms may be used to 
represent the probability of transitioning from one facies to 
another within a Markov chain. For example, as the vertical 
distance increases away from a fine-grained facies, the prob-
ability increases that one would encounter a coarse-grained 
facies. Furthermore, the highest probability lies in transition-
ing into a coarse-grained facies, no matter which facies one 
starts at. Discrete probabilities were computed every 2 ft verti-
cally using 5-ft moving intervals over a lag range of 0 to 30 ft 
and are shown as points (fig. 7). To extend transition probabili-
ties from borehole data throughout the conditional simulation 
domain, it is necessary to construct continuous transition prob-
ability models (shown as lines in fig. 7). Although the transio-
gram matrix defines vertical transition probabilities, it is also 
necessary to define horizontal transition probabilities. To do 
this, a 1:60 ratio of vertical to horizontal transition probability 
was applied using the embedded transition probability method 
(Carle, 1999) following Misut (2014). Resultant conditional 
realizations 1 and 2 are displayed (fig. 8) along sections A–A′ 
and B–B′ (fig. 2) and show representative differences between 
realizations. Realization 1 is also shown as a block diagram 
within the regional flow model (fig. 9). Horizontal transition-
ing is isotropic and honors the data from the borings and wells.

Realizations differ slightly because of the probabilistic 
nature of the realization method, which generates randomized 
realizations. Nine equiprobable realizations were performed 
as a preliminary analysis of the role of heterogeneity on plume 
capture. Nine realizations are a tractable sample population, 
and the results demonstrate the influence of the distribution 
of fine-grained facies on plume transport. All realizations 
matched observed data and facies interpretations given in 
Tetra Tech (2012a).

Model Stresses and Recharge

Stresses applied as boundary conditions within the 
MODFLOW model include pumping wells, using the MNW2 
multinode well package (Konikow and others, 2009); recharge 
to the water table, using the RCH package embedded within 
MODFLOW–2005 (Harbaugh, 2005); streams, using the DRN 
package embedded within MODFLOW–2005; and flow-
through at artificial model boundaries, using the GHB package 
embedded within MODFLOW–2005. Pumpage data compiled 
by the NYSDEC, which included public supply, remedial, and 
golf-course pumpage, were averaged from 2004 to 2007 to 
represent steady-state postdevelopment conditions (Arcadis 
CE, Inc., 2010; Misut, 2014). The averages for 2004 to 2007 
were applied in the regional model area, with averages of 
NYSDEC data for 1980 to 2014 applied within the focus area 
for production wells SFWD6150, SFWD8664, SFWD8665, 
ANY8480, and ANY9338 (differences listed in table 2). 
Representation of the variation in pumpage on a seasonal basis 
was beyond the scope of this study.

Sources of recharge simulated in the MODFLOW model 
are shown in comparison with other water budget terms in 
table 3. Recharge from precipitation accounted for spatial and 
temporal variations in precipitation, permeability of surficial 
hydrogeologic units, land-cover characteristics, and discharge 
of domestic and industrial wastewater. Annual average precipi-
tation is about 42 inches (Miller and Fredrick, 1969). Under 
predevelopment conditions, about 50 percent of the precipi-
tation reached the water table, mainly during the nongrow-
ing season (McClymonds and Franke, 1972; Seaburn and 
Aronson, 1974). Under present conditions, recharge is mainly 
from infiltration of precipitation through unpaved areas, and 
infiltration through recharge basins. At the southern boundary 
of the model, stormwater runoff is routed into the headwaters 
of south-flowing stream channels, reducing the recharge basin 
contribution. Integrated over the regional model area, the 
present conditions recharge rate is about 25 inches per year 
(equivalent to 6,555,300 cubic feet per day [ft3/d] applied to 
the regional model area).

Steady-State Flow Model Results

The simulated water balance (table 3) indicates that water 
mainly enters as water table recharge while water mainly exits 
as either well pumpage or lateral discharge across southern 
model boundaries. Simulated steady-state flow fields are 
generally oriented from northwest to southeast with zones of 
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Figure 6.  Distribution of coarse-grained, fine-grained, and interbedded facies identified in borings and wells along 
sections A, A–Aʹ and B, B–Bʹ used in conditional simulation of Magothy aquifer heterogeneity at Bethpage, New York. 
Location of sections shown on figure 2.
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Figure 6.  Distribution of coarse-grained, fine-grained, and interbedded facies identified 
in borings and wells along sections A, A–Aʹ and B, B–Bʹ used in conditional simulation of 
Magothy aquifer heterogeneity at Bethpage, New York. Location of sections shown on 
figure 2.—Continued
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Figure 7.  Probability of transitioning between facies of the Magothy aquifer at Bethpage, New York, at vertical lag distances 
from 2 to 30 feet.
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Table 2.  Difference in pumping rates between Misut (2014) and present [steady-state] conditions (1980–2014) models, Bethpage, 
New York.

[ft3/d, cubic foot per day; ft, foot; NAVD 88, North American Vertical Datum of 1988; NA, not available]

Production well
Pumping rate, in ft3/d Screen top elevation, 

in ft above NAVD 88
Screen bottom elevation,  

in ft above NAVD 88Misut (2014) model Present conditions model Difference

ANY8480 258,725 194,103 –64,622 –509 –596
ANY9338 166,207 190,761 24,554 –525 –589
SFWD6150 47,506 68,043 20,537 –492 –552
SFWD8664 7,846 72,187 64,341 –490 –555
SFWD8665 167,267 86,892 –80,375 –435 –505
Averaging period 2004 to 2007 1980 to 2014 NA NA NA
Total 647,551 611,987 –35,564 NA NA
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Table 3.  Regional model water balance, Bethpage, New York.

Variable
Water balance,  

in cubic feet per day

Inflow

Constant head 557,312
Specified recharge basins 878,625
Recharge from precipitation 6,555,300
Total 7,991,237

Outflow

Constant head 3,434,748
Drains 740,274
Wells 3,816,283
Total 7,991,305

convergence at pumping wells and refraction due to the pres-
ence of confining beds. There is also a downward component 
to the simulated flow because of the entry of groundwater 
recharge from precipitation. The simulated downward com-
ponent mainly occurs in the northern part of the model, which 
is just south of a regional flow divide between waters that 
ultimately discharge to either the northern or southern shores 
of Long Island (fig. 1, inset). Model layer 42 is a 10-ft thick 
horizontal layer located about 500 ft below sea level, which is 
nearby pumping well screens and cones of depression (figs. 10 
and 11).

Model Calibration and Sensitivity Analysis
Hydraulic conductivity and recharge parameters were 

adjusted through automated and manual methods based on 
water-level and streamflow data observations. The automated 
calibration software UCODE_2005 (Poeter and others, 2005) 
was applied to the present steady-state conditions MODFLOW 
model (heterogeneity realization 1), and manual adjustment of 
parameter values was conducted through visual target match-
ing (trial-and-error). After calibration, the steady-state model 
was used to delineate ZOCs. The calibration water-level data 
(locations shown in fig. 12) were collected by personnel from 
Resolution Consultants and USGS in 2015 to 2016 (Resolu-
tion Consultants, written commun., 2016) and assumed to rep-
resent present steady-state conditions. Use of observations to 
approximate present steady-state conditions may be evaluated 
by long-term hydrographs of USGS-collected data. Figure 13 
is a hydrograph of observation well N8214 collected by USGS 
from 1970 to 2016, with the average 2015 water level used 
for present conditions steady state model calibration. Water-
level fluctuations in well N8214 and others like it around Long 
Island are discussed in detail in Busciolano (2005) and Misut 
(2011). An influence on water-level changes is the large-scale 
Nassau County sewering project of the 1980s. 2006 was the 
beginning of a relatively stable condition continuing to about 

2015 after which a dryer-than-normal period was entered. As 
indicated in figure 13, the average water level of 2015 is simi-
lar to the average from 1970 to 2016.

Streamflow data used in calibration (gaging station 
locations shown in figure 4; data available at U.S. Geological 
Survey, 2017c) was averaged from 1980 to 2008 by Rozell 
(2010) to represent present condition average flow rates. Per-
cent of total base flow discharge to streams (fig. 14) trended 
downward from the 1960s to 1980 because of urbanization but 
appears to have stabilized (Rozell, 2010) through the present 
[2017]. The large-scale sewering project of the 1980s likely 
resulted in decreased streamflow; however, because the overall 
period 1980 to 2008 includes significant periods of above-
average rainfall, groundwater measurements and base flow 
discharges represent a long-term present condition. Mean total 
discharge at gages from 1980 to 2008 for the model stream 
channels are as follows: Massapequa Creek, 6.7 cubic feet 
per second (ft3/s), and Bellmore Creek, 5.01 ft3/s. Estimated 
base flows corresponding to the area of model drain bound-
ary conditions (fig. 4) for Massapequa and Bellmore gages 
are 340,000 and 336,000 ft3/d (Misut, 2014), respectively, 
which may be compared with total simulated base flow of 
740,274 ft3/d (table 3).

During calibration and parameter estimation, horizontal 
hydraulic conductivity (Kx), vertical hydraulic conductivity 
(Kz), and recharge parameters were initially set to previous 
model values of (Misut, 2014) and allowed to vary within the 
ranges given in table 6. UCODE_2005 utilized the sum of 
squared residuals (simulated minus observed) for its objective 
function, with reduction in the function corresponding to bet-
ter match of simulated with observed composite scaled sensi-
tivity (CSS) was used to compare the amount of information 
provided by different types of parameters, with model simula-
tion results more sensitive to parameters with large composite 
scaled sensitivity. A composite scaled sensitivity analysis is 
available as part of the report model archive (Misut, 2017).

According to the composite scaled sensitivity (fig. 15), 
the model results are most sensitive to recharge, Magothy 
aquifer hydraulic conductivity anisotropy ratio Kx:Kz, and 
upper glacial aquifer Kx parameters (fig. 15). Model results 
are least sensitive to Lloyd aquifer and Raritan confining 
unit parameters. The Lower Magothy gravel zone Kx was 
moderately sensitive, whereas the gravel zone Kz was 
insensitive. In general, sensitivity of low-permeability Kx and 
Kz parameters is low because of the lack of calibration targets 
within these units (observation wells are typically screened in 
the high-permeability units). The confidence intervals of the 
fine-grained facies parameter estimates are relatively large, 
indicating that it is not possible to confidently estimate these 
parameters without more observational data. Nevertheless, 
these parameters may be adjusted within allowed ranges 
to optimize model fit. A high degree of correlation existed 
between the following parameter pairs: Raritan confining unit 
Kx with outer Magothy aquifer Kx, upper glacial aquifer Kz 
with unconfined Magothy aquifer Kz, and the background 
recharge rate with the recharge basins adjustment factor 
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(factor increases background recharge rate where recharge 
basins are present). The drain conductance parameter (limits 
amount of simulated flow for a given hydraulic gradient) was 
also correlated with both the background recharge rate and the 
recharge basins adjustment factor.

Final parameter values are somewhat different than those 
used in the Misut (2014) model. This may be attributed to the 
following factors: the model grids have different rotations, dif-
ferent cell sizes, and different inactive areas; and the calibra-
tion targets are measured during different hydrologic condi-
tions. Most of the target locations are also different due to the 
shifting of the local focus area from the GM38 water treatment 
plant (Misut, 2014) to the southwestern wellfields of the South 
Farmingdale water supply district and the leading edge of the 
OU2 plume.

The final fit of the water levels simulated by the cali-
brated steady-state model with heterogeneity realization 1 

to observed water levels in the target wells may be assessed 
quantitatively with table 4 and figure 15A. The mean residual 
(observed minus simulated) was 0.32 ft, with 25 residuals 
greater than zero and 17 residuals less than zero (table 4). The 
sum of squared water level residuals was 367 and the root 
mean square error was 2.65 ft. These statistics are similar for 
other heterogeneity realizations; for example, the root mean 
square error associated with heterogeneity realization 2 was 
2.57 ft.

A greater sensitivity to heterogeneity realization may 
be expected for simulated particle pathway shapes than for 
water-level response, because particles take significantly more 
time to travel around fine-grained bed obstacles than the very 
short time required for water pressure equalization. Evaluating 
the sensitivity of the computed model responses to changes in 
parameter values that reflect plausible parameter uncertainty 
helps to assess the model reliability.
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Table 4.  Observed minus simulated residuals of calibrated 
present steady-state conditions model, Bethpage, New York.

[Well identification numbers are the MODFLOW well/head observation well 
identifiers; see appendix 1 for additional well identification information. 
ft, foot; NGVD 29, National Geodetic Vertical Datum of 1929; MODFLOW, 
U.S. Geological Survey groundwater-flow modeling software]

Well identifi-
cation number

Water level, in ft above NGVD 29 Residual,  
in ftObserved Simulated

bpow_6_1 23.93 27.14645 –3.21645
bpow15 44.13 44.41131 –0.28131
bpow16 44.05 44.02892 0.021084
bpow23 22.57 33.59109 –11.0211
bpow33 36.97 34.34173 2.628266
bpow34 37.11 35.29956 1.810437
bpow5_1 33.89 32.79659 1.093407
bpow5_4 29.16 25.97721 3.182787
bpow5_5 30.64 33.33637 –2.69637
bpow5_6 29.83 27.49847 2.331527
bpow52 33.71 31.60814 2.101862
bpow53 33.63 31.83279 1.797205
bpow6_2 23.53 26.77075 –3.24075
bpow6_3 24.74 27.77789 –3.03789
bpow6_4 25.5 27.9715 –2.4715
n12250 48.51 50.35212 –1.84212
n1233 65.53 64.32316 1.206836
n1259 50.19 52.10994 –1.91994
n7397 66.53 73.47295 –6.94295
n8214 24.67 27.76574 –3.09574
re103d1 54.75 53.03917 1.71083
re103d2 54.71 52.7635 1.946501
re103d3 54.34 52.61903 1.720971
re104d2 52.2 49.38167 2.818333
re104d3 51.78 49.44266 2.337337
re105d1 51.52 47.94436 3.575636
re105d2 49.57 44.75004 4.819958
re108d1 56.83 53.71628 3.11372
re108d2 56.28 53.03022 3.249775
re117d1 29.4 31.96802 –2.56802
re117d2 30.27 31.75955 –1.48955
re118d1 30.84 32.77596 –1.93596
re120d1 49.86 48.06559 1.794406
re120d2 50.03 47.72542 2.304579
re120d3 55.06 47.45818 7.601816
re122d1 57.22 54.37334 2.846662
re122d2 56.79 53.95444 2.835562
re122d3 55.86 53.56541 2.294587
tt101d1 46.1 46.27803 –0.17803
tt101d2 46.53 45.3542 1.175799
tt102d1 26.79 26.82283 –0.03283
tt102d2 26.71 29.70359 –2.99359

Table 5.  Monitored observation wells in Bethpage, New York.

[Well numbers listed are local well numbers; see appendix 1 for additional 
well identification. ft, foot; NAVD 88, North American Vertical Datum of 
1988]

Well
Screen interval, in ft above NAVD 88

Top Bottom

RE117D2 –738.00 –743.00
RE118D1 –723.00 –728.00
BPOW6–2 –713.00 –718.00
BPOW6–3 –708.00 –713.00
RE117D1 –679.00 –704.00
TT101D2 –696.00 –701.00
BPOW1–6 –642.94 –692.94
RE104D3 –675.00 –680.00
RE120D3 –659.00 –664.00
RE105D2 –648.00 –653.00
N8214 –646.00 –651.00
RE104D2 –625.00 –630.00
RE103D4 –624.00 –629.00
RE122D3 –623.00 –628.00
BPOW3–4 –577.56 –627.56
RE120D2 –609.00 –614.00
BPOW5–3 –563.96 –603.96
BPOW1–5 –543.25 –593.25
RE103D2 –565.00 –570.00
BPOW3–3 –519.36 –559.36
RE120D1 –549.00 –554.00
BPOW5–6 –543.00 –548.00
RE108D2 –540.00 –545.00
RE103D1 –534.00 –539.00
BPOW2–3 –506.02 –536.02
TT101D2 –526.00 –531.00
BPOW5–2 –483.68 –523.68
BPOW6–1 –508.00 –513.00
BPOW5–4 –503.00 –508.00
BPOW6–4 –503.00 –508.00
RE122D2 –498.00 –503.00
TT102D1 –496.00 –501.00
BPOW5–5 –463.00 –488.00
BPOW5–1 –423.88 –453.88
RE105D1 –448.00 –453.00
RE108D1 –440.00 –445.00
RE122D1 –428.00 –433.00
N12250 27.00 22.00
N1259 42.50 37.50
N1233 53.00 48.00
N7397 59.00 54.00
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Figure 10.  Present conditions steady-state heads and other features in Bethpage, New York, in A, regional model and B, the 
focus area using aquifer heterogeneity realization 1.
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Bethpage, New York. Kx, horizontal hydraulic conductivity; Kz, vertical hydraulic conductivity.

Archived Model Information

An archive of the model files used in this report are 
published in Misut (2018). Steady-state inputs and parameters 
of MODFLOW and MODPATH models include arrays or 
matrices of cell-by-cell values, point sets, and scalar values. 
Arrays include top layer recharge rate, top and bottom model 

layer altitudes, and most hydraulic conductivities. Point sets 
include constant-head boundary conditions, well discharges, 
recharge-basin inflow, stream boundary conditions, and 
particle release points. Because of a lack of spatial variability, 
constant values are used for the following inputs: bottom of 
model layer 1 (set to sea level), porosity, and conductivity of 
the Raritan formation units.
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Table 6.  Initial and final calibrated parameter values of a MODFLOW present steady-state conditions model, as estimated by 
UCODE_2005, for Bethpage, New York.

[NA, not available]

Parameter and zone
Initial value 
(Misut, 2014)

Lower limit Upper limit Final value

Upper glacial horizontal hydraulic conductivity 233 100 300 200

Unconfined Magothy horizontal hydraulic conductivity 170 50 250 50

Magothy fine horizontal hydraulic conductivity 15 0.01 75 1.5

Magothy gravel zone horizontal hydraulic conductivity NA (1) 300 100

Basal Magothy horizontal hydraulic conductivity 61 50 100 60

Raritan confining horizontal hydraulic conductivity 0.001 0.0001 10 0.001

Lloyd aquifer horizontal hydraulic conductivity 75 0.1 100 75

Magothy coarse horizontal hydraulic conductivity 46 0.1 75 50

Magothy interbedded horizontal hydraulic conductivity 55 0.1 75 5

Upper glacial vertical hydraulic conductivity 80 1 100 10

Magothy fine vertical hydraulic conductivity 3 0.0001 75 0.2

Magothy gravel zone vertical hydraulic conductivity NA (2) 300 100

Basal Magothy vertical hydraulic conductivity 0.1 0.01 75 0.6

Raritan confining vertical hydraulic conductivity 0.00001 0.00001 10 0.0001

Lloyd aquifer vertical hydraulic conductivity 15 1 75 15

Magothy coarse vertical hydraulic conductivity 1.7 0.01 75 0.5

Magothy interbedded vertical hydraulic conductivity 0.00002 0.000001 75 0.009

Unconfined Magothy vertical hydraulic conductivity 80 0.1 100 0.5

Recharge background 0.0058 0.004 0.0063 0.0063

Recharge basins factor 0.0018 0.00001 0.1 0.1

Recharge loss factor –0.00005 –0.00001 –0.001 –0.004

Drain conductance 60 0.01 100 2
1Lower limit is the Magothy coarse horizontal hydraulic conductivity.
2Lower limit is the Magothy coarse vertical hydraulic conductivity.

Analysis of Zones of Contribution to 
Wells

As discussed by Reilly and Pollock (1993), the term 
“source of water to wells” has been used in the hydrologic 
literature in two distinct contexts: a water-budget context and 
a transport context. The water-budget context addresses the 
water-budget components affected by water withdrawn from 
the groundwater system (for example, water withdrawn from 
a well can cause a net decrease in groundwater discharge to a 
stream). The transport context represents the plume geometry 
and the location where the water discharging from a well orig-
inally entered the groundwater system (see Franke and others, 
1998). The transport context focuses on the flow paths of 
water to the actual point of discharge. The following transport 
terms are considered standard terminology for USGS reports: 
“area contributing recharge” and “zone of contribution” 

(ZOC). The USGS does not use the term “capture zone” (as 
used by Tetra Tech, 2012b), which is a somewhat stronger 
term suggesting total capture including dispersion, as opposed 
to partial “contribution” (U.S. Geological Survey, 2003) from 
MODFLOW-based advection.

Area contributing recharge is defined as the surface area 
on the boundary of the groundwater system that delineates 
the location of the water entering the groundwater system that 
eventually flows to the well (modified from Reilly and Pol-
lock, 1993). This boundary is typically located on the water 
table; however, depending upon the definition of the ground-
water system under investigation, it can be located along any 
boundary. One boundary that may be used is a plume shell 
delineation, typically an isoconcentration surface. “ZOC” 
is defined as the three-dimensional volumetric part of an 
aquifer through which groundwater flows to a well from the 
area contributing recharge (modified from Morrissey, 1989). 
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The ZOC can be visualized as a three-dimensional stream 
tube through the aquifer. Typically, these are projected to an 
areal view or a cross-sectional view. ZOCs may be delineated 
through backwards tracking of particles that are initiated at 
wells, and simulated with present conditions steady-state 
models. In this report, ZOC stream tubes are bounded by the 
pumping well and one or more of the following: the water 
table recharge boundary, specified flow boundaries represent-
ing recharge basins receiving waters from water treatment 
plants, and various delineations of the surface boundaries or 
shells of the plume solid, further described below. ZOCs may 
also be limited by time; for example, a 5-year ZOC refers to 
that part of the ZOC that extends from the well to points of 
particle traveltime not exceeding 5 years. This ZOC relates to 
the source of water captured by a well within 5 years.

Factors that affect the size and shape of 5-year ZOCs to 
pumping wells are discussed in the following sections and 
include those affecting the calibration of the present steady-
state conditions model, and porosity. The apparent crossing of 
ZOCs in plan view projections (fig. 16) may be addressed by 
limiting the depth interval, by observing the points of path-
line intersection on plume shell delineations (fig. 17), and by 
exploding a schematic diagram to display simultaneous top, 
front, and side views (fig. 18). In figure 17, the distribution 
of the points of intersection of backtracked particles with the 
plume shell may be explained by three-dimensional irregu-
larity of the plume shell and location of particles above or 
below the shell in its three-dimensional context. In addition, 
aquifer heterogeneity contributes to the irregular distribution 
of particle endpoints. Out of 3,100 backward-tracked particles 
released at well ANY8480 (and allowed to pass through weak 
sinks), a total of 188 particles intersect the plume, representing 
about 6 percent of the total particle capture of well ANY8480, 
and less than 1.5 percent of the total particle (13,337) cap-
ture of all wells within the focus area. Of all wells, only 
well ANY8480 captures water from within the 5-ppb plume 

in 15 years or less. In figure 18, the traveltime of paths of 
backtracked particles from well to plume shell intersection 
(maximum of 5 years traveltime) is shown with pathlines 
projected onto slice representations of the plume shell along 
individual rows and columns, indicating the rounded three-
dimensional shape of the downgradient end of 5-ppb plume 
shell. The majority of capture pathways, including shortest-in-
time and longest in distance, are horizontal. However, some 
pathways are located within the gravel zone of the Magothy 
aquifer (layers 59 to 62). Because of a slight dip in the gravel 
zone, particle pathlines within the gravel zone may be slightly 
curved in sectional view.

Variability in Porosity and Traveltime

Particle velocity is inversely correlated to porosity. Alter-
nate hypothetical simulations were conducted to demonstrate 
how particle termination at plume shells is related to porosity 
and maximum traveltime specification (table 7). The baseline 
porosity parameter value is 0.25, in the middle of a range 
between 0.15 and 0.35. An alternate model with a significant 
porosity decrease to 0.15 results in longer particle pathlines of 
a given maximum traveltime, an increased number of particles 
intersecting the plume shell, and a greater degree of capture 
of plume water by production wells. However, throughout the 
porosity range, in order for wells other than well ANY8480 
to show plume capture, the maximum traveltime must also 
be increased because the sensitivity of results to porosity 
specification within the range is limited. For the traveltime of 
5 years, no wells other than well ANY8480 capture any part 
of a plume within the range of porosity variation; however, if 
the traveltime is increased to 10 years, then other wells capture 
plume water using a decreased porosity value. During long 
traveltime, low porosity simulations, well ANY8480 remains 
most likely to capture a small part of the plume, followed by 
wells ANY9338 and SFWD6150.

Table 7.  Comparison of particle endpoints for alternate porosity and maximum traveltime simulations, Bethpage, New York.

[ppb, part per billion]

Porosity
Maximum 
traveltime,  

in years

Particles 
remaining 

active

Plume shell 
concentration, 

in ppb

Particles 
terminated at 
plume shell

Wells capturing plume
Figure illustration 

of endpoints

0.25 5 13,189 5 188 ANY8480 16,17,18

0.25 10 12,861 5 516 ANY8480, ANY9338

0.25 30 11,790 5 1,587 ANY8480, ANY9338, SFWD6150, 
SFWD8664, SFWD8665

0.35 10 12,967 5 401 ANY8480

0.15 10 12,651 5 726 ANY8480, ANY9338, SFWD6150 19

0.15 10 13,169 50 208 ANY8480 20

0.15 30 9,165 5 2,406 ANY8480, ANY9338, SFWD6150, 
SFWD8664, SFWD8665
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Figure 16.  Zones of contribution represented as projections of maximum extent of three-dimensional 
particle endpoints tracked backward from pumping stresses at South Farmingdale Water District wells 
SFWD6150, SFWD8664, SFWD8665, and Aqua NY wells ANY8480 and ANY9338 at Bethpage, New York, 
after 5 years, simulated using present steady-state conditions model realization 1.
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Figure 17.  Time of travel of particles backtracked from wells at Bethpage, New York, to the 5-part-per-
billion volatile organic compound plume shell.
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Figure 18.  Traveltime of pathlines backtracked from well ANY8480 at Bethpage, New York, to a 5-part per 
billion volatile organic compound plume shell.
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Varying porosity or traveltime does not affect the 
MODFLOW-generated flow field; furthermore, these factors 
are not calibrated using water-level data. To calibrate porosity 
parameters, a transient state model with time-series solute 
concentration observations is typically necessary and beyond 
the scope of this study. In addition, porosity likely varies 
spatially (spatial porosity variation is not represented as part 
of this study). Traveltime may be chosen for consistency with 
proposed water management scenarios.

Variability in Plume Shell Delineation

The size and shape of the outer skin (shell) of a plume 
likely changes as a response to stress, and its delineation 
depends on available data and methods of interpretation. The 
plume is also moving about 285 feet per year (ft/yr) along the 
groundwater flow path (Harre and others, 2011). The effect 
of plume shell delineation on ZOC analysis may be demon-
strated by substitution of the 50-ppb plume shell for the 5-ppb 
shell (table 7). Figure 19 shows terminations at the 5-ppb 
shell whereas figure 20 shows terminations at the 50-ppb 
shell. Terminations occur at the main 50-ppb shell and at two 
hotspot shells to the southeast. There are a greater number of 
terminations at the 5-ppb shell than the 50-ppb shells, as the 
larger 5-ppb shell fully encloses the smaller 50-ppb shells and 
is closer to potential capture wells. In this method of analysis, 
particles that do not terminate after a given maximum travel-
time are considered to remain active at the end of the simula-
tion and are not counted as shell terminations, although it may 
be likely they ultimately intersect a plume shell.

Variability in Heterogeneity

The focus area flow system and ZOCs are affected by 
aquifer heterogeneity within the Magothy aquifer. Figure 21 
shows three views (planimetric along model layer 52, front 
section along a row 78, and side sectional along a model 
column 38) of pathlines overlain on slices of the realization 
1 facies zones to suggest how pathlines are guided through 
model cells of coarser-grained facies and the gravel zone 
and are slowed or avoid model cells of finer-grained facies. 
Nine heterogeneity realizations and associated MODFLOW 
simulations (fig. 11) were generated during the course of this 
study and are available in the model archive (Misut, 2017). 
These simulations demonstrate the uncertainty in distribution 
of fine-grained facies. These heterogeneity realizations are 
equally probable and potentially result in different simulated 
water particle pathways and corresponding ZOCs. Table 8 
gives a comparison of these realizations. Plume capture (as 
represented by particles that intersect the plume) varied from 
about 1 to 3 percent of total well capture (as represented by all 
particles released at a well) and only well ANY8480 captured 
plume particles during any simulation of the nine heteroge-
neous realizations. However, increasing horizontal hydraulic 

conductivity of the Magothy gravel zone from 100 to 250 ft/d 
induces minor plume capture by well ANY9338.

Pumping Wells Independently

Pumping stresses (table 2) influence spatial characteris-
tics of ZOCs to wells, which show combined effects of well 
stress and regional flow patterns. Typically, a ZOC is not cen-
tered about a well but shifted upgradient along regional flow 
patterns. For the outlines of 5-year ZOCs of the focus area, 
this shift is about 700 ft (fig. 22). In addition, the distribution 
of particles within the outline is denser in the upgradient part. 
Shifting may increase by increasing regional flow gradient, 
decreasing porosity, and increasing maximum traveltime 
associated with the ZOC delineation. As an individual pump-
ing stress increases, the cone of depression generally deepens 
and spreads out. This can reshape particle pathlines such 
that a greater number of particles intersect a plume shell. A 
complex configuration of pumping stresses may influence 
ZOCs in unexpected ways. To simplify, it is useful to analyze 
a well’s ZOC by hypothetically turning off nearby interfer-
ing wells which affect regional hydraulic gradients and shape 
the ZOC. Figure 22 shows ZOCs of individually stressed 
wells ANY8480, ANY9338, SFWD8664, SFWD8665, and 
SFWD6150. These are independent simulations but are 
overlaid onto one map, in addition to an overlay of the outline 
of baseline steady-state present conditions ZOCs (all stresses 
active; fig. 16).

As a result of removing well interference effects, the 
ZOC of well SFWD6150 is displaced to the south and west. 
The regional flow gradient in the vicinity of SFWD6150 is 
lessened due to shutting off pumping of SFWD8664 and 8665. 
The independent 5-year ZOC of SFWD6150 intersects the 
5-ppb plume because there is less competition for water cap-
ture toward the south because of a lack of interference from 
wells ANY8480, ANY9338, SFWD8664, and SFWD8665. 
A greater fraction of the total ZOC area is present within the 
study focus area, although there remains a minor extension to 
the east (extension not shown in fig. 22).

As a result of removing well interference effects, the 
ZOCs of wells SFWD8664 and SFWD8665 are displaced 
toward the plume to the north and west because there is less 
competition for water capture in these directions because 
of a lack of interference from wells ANY8480, ANY9338, 
and SFWD6150. The 5-ppb plume is not intersected. A 
greater fraction of the total ZOC areas are present within the 
study focus area, although there are minor extensions to the 
east (extension not shown in fig. 22).With respect to well 
SFWD8665, well SFWD8664 is screened deeper, pumps at a 
lower rate, and is located to the northwest.

As a result of removing well interference effects, the 
ZOCs of wells ANY8480 and ANY9338 are displaced to 
the east as there is less competition for water capture in this 
direction due to interfering wells SFWD8664, SFWD8665, 
and SFWD6150. The 5-ppb plume is intersected by the ZOC 
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Figure 19.  Time of travel of particles backtracked from wells at Bethpage, New York, to a 5-part per 
billion volatile organic compound plume shell with alternate porosity (0.15) and 10-year maximum 
traveltime.



Analysis of Zones of Contribution to Wells    33

EEE

EEE

E

E

E

E

E

EE

E

E

EE

E

RO
W

COLUMN

22

17

111

7144

66

EXPLANATION

Production well, and identifier

Water level observation—Water levels are listed in table 4

Simulated tracking time, in days of endpoint, 
    from wells to termination at outer 
    shell of 50-parts per billion volatile organic
    compound (VOC) plume—Pathlines are delineated 
    using backward-tracking particles with 
    heterogeneity realization 1> 2,937 to 3,650

0 to 1,157

>2,225 to 2,937

>1,157 to 1,869
>1,869 to 2,225

Simulated particle pathline

Line of equal 50-parts per billion (ppb) trichloroethylene (TCE) 
    concentration within focus area March 2016—Data from 
    Resolution Consultants (written commun., 2016)

Line of equal 5-parts per billion (ppb), trichloroethylene (TCE) 
    concentration within focus area, March 2016—Data from 
    Resolution Consultants (written commun., 2016)

0

0

1,000

1,000

FE
ET

0

304.8

M
ET

ER
S

FEET
0 304.8

METERS

SFWD6150

SFWD8665

ANY8480

SFWD8664

AN9338

SFWD8665

E

Figure 20.  Maximum time of travel of particles backtracked from wells at Bethpage, New York, to 50-part per 
billion volatile organic compound plume shell with alternate porosity (0.15) and 10-year maximum traveltime.
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Figure 21.  Aquifer heterogeneity realization 1 and traveltime of pathlines backtracked from well ANY8480 at Bethpage, New York.
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Table 8.  Comparison of particle terminations at the 5-part 
per billion plume shell after 5 years for alternate aquifer 
heterogeneity realization simulations in Bethpage, New York.

[ppb, part per billion]

Realization 
number

Particles  
remaining active

Particles terminated at 
5-ppb plume shell

1 13,189 188
2 13,136 241
3 13,074 303
4 13,102 275
5 13,139 238
6 13,087 290
7 12,962 415
8 13,106 271
9 13,055 322

of either well. Although the two ZOCs are effectively split 
into eastern (ANY8480) and western (ANY9338) half spheres 
during the steady-state combined-stress simulation, during the 
individual stress simulations the two ZOCs are full spheres of 
similar size and shape due to similar pumping rates and well 
screen depths (table 2). With respect to well ANY9338, the 
slight displacement of the ZOC of well ANY8480 to the east 
is because of the eastern location of well ANY9338. There are 
minor extensions to the west of the ZOCs of both wells (exten-
sion not shown in fig. 22).

Discussion
To better understand factors affecting the ZOCs of 

wells at Bethpage, advective particle tracking analysis may 
be conducted in forward and backward modes. ZOCs were 
delineated for present steady-state conditions. Analyses vary-
ing pumping rate, porosity, particle traveltime, and plume shell 
delineation were used to determine controls on the size and 
shape of ZOCs. Through transitional probability analyses, the 
robustness of the estimates for hydraulic conductivity and, 
therefore, ZOCs were demonstrated in this report. Discussion 
topics include the ability of wells to capture the plume, the 
optimal pumping rate configuration, and modeling limitations.

Capture of VOCs

The results of this study indicate that the majority of sim-
ulated water particles captured by wells originate from areas 
other than 5 and (or) 50-ppb plume shells. Within 5 years, 
about 1 to 3 percent of particles captured by well ANY8480 
originate from the 5-ppb plume, and no other wells capture 

any plume particles. Given the baseline particle tracking meth-
odology, which seeds a limited number of particles at well 
screens (total of 13,377 particles in arrays of 7 by 7 by 7 parti-
cles per model cell representing a screen zone) and terminates 
particles at the plume shell outer boundary if reached before a 
maximum traveltime of 5 years, no particles originating within 
the 50-ppb plume were observed to be captured. However, by 
varying combinations of porosity, maximum traveltime, pump-
ing rate, and aquifer heterogeneity realization, a small amount 
of particles may be induced to originate from the southernmost 
isolated area of the 50-ppb plume shell.

By using the alternate particle tracking method where 
particles are started throughout the interior of the 50-ppb 
plume shell (one per model cell or 4,813 total) and tracked for-
ward for a maximum of 5 years or until capture by wells, one 
particle is captured by well ANY8480 (fig. 23), and originates 
from the southernmost isolated area. During this simulation, 
the majority of particles started within the 50-ppb plume do 
not travel beyond the boundaries of the 5-ppb plume. Particles 
are also forward tracked from the 5-ppb plume with one per 
model cell or 22,958 total (fig. 23). The subset of 5-ppb for-
ward pathlines that represent well plume capture are similar in 
number and shape to those of backtracked pathlines as shown 
in figure 17.

Optimal Pumping

Model simulations described in this report provide some 
direction for managing pumping rates with respect to minimiz-
ing and (or) isolating plume capture. Optimization routines 
such as GWM 2005 (Ahlfeld and others, 2009) could be used 
to more precisely maximize pumping and minimize plume 
capture. The current pumpage configuration may be consid-
ered close to optimal in the sense that, based on the present 
steady-state simulation, only one well captures plume water, 
whereas there is a potential for more wells to capture plume 
water. During the simulation, the wellfield of wells ANY8480 
and ANY9338 is the only wellfield capturing a plume within 
5 years. About 1 to 3 percent of particles captured by well 
ANY8480 is sourced from the 5-ppb plume. However, this 
assumes a continuous steady-state pumpage configuration; in 
practice it is likely that there are times when well ANY8480 
is not pumping but well ANY9338 is pumping. In these 
cases, the ZOC of well ANY9338 may begin to revert to an 
individual-stress ZOC as shown in figure 22, capturing a small 
amount of plume water.

With optimal pumping, continuous operation of 
well ANY8480 may reduce plume-water capture by well 
ANY9338. In addition, pumping of either well ANY8480 or 
well ANY9338 may be optimized to shift the ZOC of well 
SFWD6150 away from the 5-ppb plume because all these 
wells are in competition to capture water from the general area 
of the southern tongue of the 5-ppb plume. However, in the 
future, well SFWD6150 may begin to capture water originat-
ing in the 5-ppb plume because the plume itself is moving in a 
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organic compound plumes.
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south-southeasterly direction along the regional flow patterns. 
Because of the extremely low percentage of plume particles 
captured by well ANY8480, this well is not in an ideal posi-
tion to capture plume particles at the current time, in the con-
text of present steady-state conditions. Determining detailed 
optimal rates and locations of remedial wells is beyond the 
scope of this study.

Limitations of Modeling

The calibrated steady-state, present conditions 
MODFLOW model represents the groundwater system 
reasonably well given limitations such as available computing 
resources, borehole data, water-level observations, records 
pertaining to hydrologic stresses, and independent estimates 
of model parameters. MODFLOW limitations may impact 
the accuracy of delineations of the zones of contribution to 
pumping wells because particle tracking analyses follow 
flow fields simulated by MODFLOW. To evaluate limitations 
related to characterization of aquifer heterogeneity, nine 
realizations of the hydrogeologic framework were developed 
using T–PROGS and a fine level of vertical MODFLOW 
discretization. These alternates were subjected to particle 
tracking analysis of ZOCs.

In addition to limitations of the MODFLOW model, there 
are limitations to the MODPATH particle tracking technique. 
Because forward-tracking and backtracking results may differ, 
both were conducted. The MODPATH technique is not cali-
brated through comparison of particle tracking results with rel-
evant observations of the actual system, such as water quality 
data or changes in the plume size and shape over time. Poros-
ity is an uncalibrated parameter and a wide range of values is 
given in the literature. If a greater porosity value is specified 
in the model, then particle velocities decrease, and ZOC area 
also decreases. Particle tracking uses advective transport only 
and does not account for adsorption, degradation, diffusion, 
and other processes that may reduce TVOC concentrations in 
groundwater. Additionally, ZOCs can change with hydraulic 
conductivity and other parameter changes. Because of the 
uncertainty associated with hydraulic conductivity, boundary 
conditions, withdrawals, flows, and recharge, estimated ZOCs 
should be viewed as the most likely areas and be subjected to 
ranges and alternate simulations. It is possible that the source 
loading of the OU2 VOC plume involves dense nonaqueous 
phase liquids; however, no source loading mechanisms of any 
type were considered in model development and calibration. 
ZOCs and particle pathlines are simulated with present condi-
tions steady-state models. Pathlines tracked using steady-state 
models are similar to pathlines tracking using transient state 
models that represent recurring stress cycles such as seasonal 
recharge patterns and pumping well operations as described in 
Reilly and Pollock (1995); however, simulation of long-term 
changes in model stress may result in different simulated path-
lines. In this report, the steady-state models and a static plume 
configuration are used to delineate ZOCs; however, there are 

likely some transient-state variations that may be represented 
to further improve delineation accuracy.

Summary and Conclusions
Downgradient of the Naval Weapons Industrial Reserve 

Plant at Bethpage, New York, the OU2 plume of dissolved 
volatile organic compounds (VOCs) is migrating along the 
direction of groundwater flow. To understand the effect of this 
migration on downgradient production wells, it is useful to 
understand the mechanisms of plume migration. In this study, 
a numerical model was used to simulate advective processes. 
This modeling was part of a study by the U.S. Geological 
Survey in cooperation with the Naval Facilities Engineering 
Command to delineate groundwater near the Naval Weapons 
Industrial Reserve Plant in Bethpage, New York. The plume 
was divided into two regions or volumes corresponding to 
plume shell isosurfaces of 5 and 50-part per billion trichloro-
ethylene (TCE) concentration.

Model simulations were conducted to improve under-
standing of how the following factors affect production well 
zones of contribution: heterogeneity in the Magothy aqui-
fer, variability in pumpage rate, and variability in porosity. 
Both forward- and backward-particle tracking analyses were 
conducted and essentially yielded the same conclusions. The 
forward-tracking simulations focus on the fate of the plume, 
while the backward-tracking simulations focus on particle 
movement processes that are affected by well hydraulic 
stress. The number of backward-tracked particles that were 
sourced from within the plume within 5 years, was less than 
1.5 percent of total particles released (most particles captured 
by wells arrive from other directions than the plume). Well 
ANY8480 captured the vast majority of particles sourced from 
the plume, but these particles still amounted to only about 
1 to 3 percent of total particles captured by the well. Most 
particles were not sourced from the plume within 5 years 
of time, coming instead from points such as to the west and 
south of the plume. The number of backward-tracked particles 
that were sourced from within the plume shell delineation 
within 30 years increased to about 12 percent of total particles 
released. In an unlimited time frame, all particles originate 
as water-table recharge; however, in the 5 to 30 year time 
frame, most particles originate within the flow system, having 
recharged previously.

Because the model is a simplification of the real 
conditions and because values of important physical 
controlling parameters are to a large extent uncertain, this 
analysis considers variations of both parameter values and 
hydrologic conditions in order to bracket important factors 
that control zones of contribution. By use of borehole logs, 
a transitional probability approach generated alternate 
representations of heterogeneity within the Magothy aquifer. 
Coarse-grained facies comprise about 73 percent of the 
Magothy aquifer material. Fine-grained and interbedded facies 
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were laterally discontinuous, thickening towards the south, 
and statistically comprise 8 and 19 percent of the total aquifer 
volume realized in the focus area of interest surrounding 
wells SFWD6150, SFWD8664, SFWD8665, ANY8480, 
and ANY9338. Through transitional probability analyses, 
the effect of heterogeneity variation on simulated zones of 
contribution was demonstrated.
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Glossary

Definitions pertaining to regulation are from the New York State Department of Environmental Conservation 
and the U.S. Environmental Protection Agency.

finite difference technique  A numeri-
cal method to solve mathematical problems 
through use of a rectangular grid.
forward particle tracking  A method in 
which particles are tracked forward through 
time.
glacial moraine  A glacial deposit upgradi-
ent of the ice limit, typically of relatively low 
hydraulic conductivity.
glacial outwash plain  A glacial deposit 
downgradient of the ice limit, typically of 
relatively high hydraulic conductivity.
governing partial differential equation  A 
multidimensional mathematical equation with 
change terms, representing a physical process.
hard data  A term that is used in the  
T–PROGs literature to describe data that are 
not subject to modification, but are fixed at 
initial values. The model realizes the frame-
work geometry around the hard data but not at 
the hard data. It is important to emphasize that 
hard data are honored. The soft data are the 
realization, which forms an input dataset for 
MODFLOW.
hot spot  A small area of intense or important 
activity embedded in a larger area of rela-
tive calm. In this study, the GM–38 hot spot 
refers to a TVOC plume shell located near the 
GM–38 pumping wells.
interim remedial measure  An interim 
remedial measure is a discrete set of activities 
to address both emergency and nonemergency 
site conditions, which can be undertaken 
without extensive investigation and evalua-
tion, to prevent, mitigate, or remedy human 
exposure and (or) environmental damage or 
the consequences of human exposure and (or) 
environmental damage attributable to a site.
least squares minimization  The best fit 
in the least-squares; minimizes the sum of 
squared residuals, a residual being the differ-
ence between an observed value and the fitted 
value provided by a model.

advection  A transport mechanism of a sub-
stance by a fluid due to the fluid’s bulk motion 
in a particular direction.
anisotropy  The property of being direction-
ally dependent, as opposed to isotropy, which 
implies identical properties in all directions. 
An example of an anisotropic material is 
wood, which is easier to split along its grain 
than against it.
area contributing recharge  The surface area 
on the boundary of the groundwater system 
that delineates the location of the water enter-
ing the groundwater system that eventually 
flows to the well.
composite scaled sensitivity  Composite 
scaled sensitivities indicate the information 
content of all the observations for the estima-
tion of a parameter.
cone of depression  Conical-shaped depres-
sion of head or water level surrounding a 
pumped well.
confining unit  A layer of geologic material 
that impedes the movement of water into and 
(or) out of an aquifer.
constant flux boundary  A boundary condi-
tion at a model location where an amount of 
inflow or outflow is fixed, requiring a vari-
able amount of water to flow towards or away 
from the location to satisfy the condition. 
Simulated head at constant flux boundary con-
dition may vary.
constant head boundary  A boundary condi-
tion at a model location where head is fixed, 
requiring a variable amount of water to flow 
towards or away from the location to satisfy 
the condition.
diffusion  The spread of particles through 
random motion from regions of higher con-
centration to regions of lower concentration.
dispersion  The spreading of mass from 
highly concentrated to less concentrated areas.
ending zone  A model region where a par-
ticle pathlines is terminated.
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Lloyd aquifer  The Lloyd aquifer is the 
deepest and oldest of Long Island’s aquifers, 
composed of fine to coarse sand and gravel 
with a clayey matrix and some layers of silty 
or solid clay. The aquifer was derived from 
stream erosion of areas to the north and west 
during the late Cretaceous age.

Magothy aquifer  The largest of Long 
Island’s aquifers, composed of river delta 
sediments that were deposited on top of the 
Raritan Formation during the late Cretaceous 
age. Fine to medium sand is interbedded with 
clay and sandy clay of moderate permeability 
and silt and clay of low to very low perme-
ability. The basal zone commonly contains 
coarse sand and gravel.

Markov chain  A process that consists of 
a finite number of known probabilities pij, 
where pij is the probability of moving from 
state j to state i.

model archive  A set of files that may be 
used to reproduce a model simulation.

molecular diffusion  Transport or movement 
of individual molecules through a fluid by 
means of random, individual movements of 
the molecules.

monitoring well  A well (often small-diam-
eter) drilled for measuring water levels and 
testing water quality. Monitoring wells are not 
typically used to supply water.

onsite containment system  A system used 
to prevent contaminants from migrating 
offsite.

operable unit  An operable unit addresses 
geographical portions of a site, specific site 
problems, or initial phases of an action, or 
may consist of any set of actions performed 
overtime or any actions that are concurrent 
but located in different parts of a site.

particle tracking analysis  Water particles 
tracked through time assuming they are trans-
ported by advection using a simulated flow 
field. Particles can be tracked either forward 
in time or backward in time. This qualitative 
approach does not conserve mass.

plume  A body of contaminated groundwater 
flowing from a specific source. The move-
ment of the groundwater is influenced by such 
factors as local groundwater-flow patterns, the 
character of the aquifer in which groundwater 
is contained, and the density of contaminants.

porosity  A measure of the void spaces in 
a material; also a fraction of the volume of 
voids over the total volume between 0 and 1 
or as a percentage between 0 and 100 percent.
Raritan confining unit  Underlies the Mago-
thy aquifer, derived from stream erosion of 
areas to the north and west during the late 
Cretaceous age.
record of decision  A public document that 
explains which cleanup alternatives will be 
used to clean a contaminated site.
remedial investigation  An investigation to 
determine the nature and extent of contamina-
tion, assess the treatability of site contamina-
tion, and evaluate the potential performance 
and cost of treatment technologies.
residual  The error in a result.
robustness  The ability of system to resist 
change without adapting its initial stable 
configuration.
sensitivity analysis  A technique for system-
atically changing parameters in a model to 
determine the relative effects of such changes.
starting point  In a forward tracking particle 
analysis, an origination point.
steady state  A system whose behavior is 
unchanging with time.
tracking time  In a forward tracking particle 
analysis, the amount of time elapsed between 
particle starting and particle termination.
transiogram  A transition probability-lag 
diagram.
transitional probability  The probability of 
going from a given state to another state in a 
Markov chain.
upper glacial aquifer  An unconfined aquifer 
directly underlying the Long Island ground 
surface. The upper glacial aquifer was formed 
during the last ice age.
water table  The top of an unconfined aqui-
fer below which the pore spaces are generally 
saturated; the level in the saturated zone.
weak sink cell  In a particle analysis, a cell 
where there is a partial throughput of water. A 
decision may be made to allow the particle to 
track through the cell, or terminate.
zone of contribution  The three-dimensional 
volumetric part of an aquifer through which 
groundwater flows to a well from the area 
contributing recharge.
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Appendix 1.  List of Wells Within the Study Area South of the Naval Weapons 
Industrial Reserve Plant in Bethpage, New York

Table 1–1.  Wells sampled to simulate zones of groundwater contribution in the area south of the Naval Weapons Industrial Reserve 
Plant in Bethpage, New York.

[Includes identification numbers for New York State Department of Environmental Conservation (NYSDEC) and U.S. Geological Survey (USGS) wells. 
USGS wells are listed in the National Water Information System (U.S. Geological Survey, 2017d). NA, not available]

Local well 
number

NYSDEC 
well 

number
USGS well number

ANY8480 N8480 [Production well not in USGS database]
ANY9338 N9338 [Production well not in USGS database]
BPOW1_5 NA [Observation well not in USGS database]
BPOW1_6 NA [Observation well not in USGS database]
BPOW2_3 NA [Observation well not in USGS database]
BPOW3_3 NA [Observation well not in USGS database]
BPOW3_4 NA [Observation well not in USGS database]
BPOW5_1 NA [Observation well not in USGS database]
BPOW5_2 NA [Observation well not in USGS database]
BPOW5_3 NA [Observation well not in USGS database]
BPOW5_4 NA [Observation well not in USGS database]
BPOW5_5 NA [Observation well not in USGS database]
BPOW5_6 NA [Observation well not in USGS database]
BPOW6_1 NA [Observation well not in USGS database]
BPOW6_2 NA [Observation well not in USGS database]
BPOW6_3 NA [Observation well not in USGS database]
BPOW6_4 NA [Observation well not in USGS database]
RE103D1 NA [Observation well not in USGS database]
RE103D2 NA [Observation well not in USGS database]
RE103D3 NA [Observation well not in USGS database]
RE104D2 NA [Observation well not in USGS database]
RE104D3 NA [Observation well not in USGS database]
RE105D1 NA [Observation well not in USGS database]
RE105D2 NA [Observation well not in USGS database]

Local well 
number

NYSDEC 
well 

number
USGS well number

RE108D1 NA [Observation well not in USGS database]
RE108D2 NA [Observation well not in USGS database]
RE117D1 NA [Observation well not in USGS database]
RE117D2 NA [Observation well not in USGS database]
RE118D1 NA [Observation well not in USGS database]
RE120D1 NA [Observation well not in USGS database]
RE120D2 NA [Observation well not in USGS database]
RE120D3 NA [Observation well not in USGS database]
RE122D1 NA [Observation well not in USGS database]
RE122D2 NA [Observation well not in USGS database]
RE122D3 NA [Observation well not in USGS database]
SFWD6150 N6150 404246073290301
SFWD8664 N8664 [Production well not in USGS database]
SFWD8665 N8664 [Production well not in USGS database]
TT101D1 NA [Observation well not in USGS database]
TT101D2 NA [Observation well not in USGS database]
TT102D1 NA [Observation well not in USGS database]
TT102D2 NA [Observation well not in USGS database]
NA N12250 404303073295501
NA N1233 404434073282001
NA N1259 404317073291105
NA N7397 404544073265502
NA N8214 404156073262004
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