GEOLOGICAL SURVEY CIRCULAR 205

INVESTIGATIONS OF FLUVIAL SEDIMENTS OF THE NIOBRARA RIVER NEAR VALENTINE, NEBRASKA

By B. R. Colby, D. Q. Matejka, and D. W. Hubbell

UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary

> GEOLOGICAL SURVEY W. E. Wrather, Director

GEOLOGICAL SURVEY CIRCULAR 205

INVESTIGATIONS OF FLUVIAL SEDIMENTS OF THE NIOBRARA RIVER NEAR VALENTINE, NEBRASKA

By B. R. Colby, D. Q. Matejka, and D. W. Hubbell

•

.

.

Prepared as part of a program of the Department of the Interior for development of the Missouri River Basin

Washington, D. C., 1953

Free on application to the Geological Survey, Washington 25, D. C.

CONTENTS

•

•

.

Abstract	2 2 4 4	Measured slopes of the water surface Distribution of sediment in section <u>B</u> Particle size Analyses of suspended sediment Analyses of bed material Unmeasured sediment discharge Conclusions Tables	Page 23 23 23 23 31 31 41
Daily water and sediment discharges	23	Tables	43

ILLUSTRATIONS

.

.

.

	1	Page
Figure 1.	Sketch map of the Niobrara River near Valentine and Sparks, Nebr	2
2.	Looking upstream toward the contraction of the Niobrara River formed by bank	
	caving	3
3.	Looking downstream from the upper end of the contracted channel	3
	Footbridge where samples were taken to determine total sediment discharge of the	_
4•	river-section B	1
Ľ	Sketch map showing location of sampling sections of the Niobrara River above	4
2.	Duridan Reiden and Valenting Valenting Valenting Sections of the Miobrara River above	-
,	Buffalo Bridge, near Valentine, Nebr	
6.	View of section A' from right bank	1
7.	View of section C from left bank	
8.	View of channel at section D' from left bank	6
9.	View of bridge section, Sparks gaging station	7
10.	View of wading sections Sparks gaging station	7
11.	Lateral distribution of depth, velocity, and concentration of suspended sediment,	
	section A, Niobrara River near Valentine	ç
12.	Lateral distribution of depth, velocity, and concentration of suspended sediment,	
	section A', Niobrara River near Valentine	10
12 16	section A, Nicorara River near valentine	ТС
13-15.	Lateral distribution of depth, velocity, and concentration of suspended sediment, section <u>B</u> , Niobrara River near Valentine	
- (- 0	section B, Niobrara River near valentine	11
16-18.	Lateral distribution of depth, velocity, and concentration of suspended sediment,	
	section <u>C</u> , Niobrara River near Valentine	14
19.	Lateral distribution of depth, velocity, and concentration of suspended sediment,	
	section D', Niobrara River near Valentine	17
20.	Lateral distribution of depth, velocity, and concentration of suspended sediment,	
	section D, Niobrara River near Valentine	18
21-22-	Lateral distribution of depth, velocity, and concentration of suspended sediment,	
	bridge section, Niobrara River near Sparks	19
22	Lateral distribution of depth, velocity, and concentration of suspended sediment,	т,
-23	in the set of the set	21
	wading sections, Niobrara River near Sparks	21
24•	Lateral distribution of depth, velocity, and concentration of suspended sediment,	0.0
<u>a</u>	wading section, Niobrara River near Sparks	22
25.	Rating curve for the Niobrara River above Buffalo Bridge, near Valentine	2L
26.	Water-sediment discharge curve for the Niobrara River near Sparks	25
27.	Vertical distributions at section B. Nov. 30. 1950	26
28.	Vertical distributions at section B. Dec. 7, 1950	27
29.	Vertical distributions at section $\overline{\underline{B}}$, Dec. 21, 1950	28
30.	Vertical distributions at section B, May 8, 1951	29
31.	Vertical distributions at section <u>B</u> , June 28, 1951	30
22	Particle-size analyses of suspended sediment, section \underline{A} , Niobrara River near	
• - 2	Valentine	32
1 1		20
• در	Particle-size analyses of suspended sediment, section \underline{A} , Niobrara River near	
	Valentine	32
34-36.	Particle-size analyses of suspended sediment, section <u>B</u> , Niobrara River near	
	Valentine	- 33
37-38.	Particle-size analyses of suspended sediment, section \underline{C} , Niobrara River near	
	Valentine	34
39.	Particle-size analyses of suspended sediment. section D'. Niobrara River near	
27.	Particle-size analyses of suspended sediment, section <u>D</u> ', Niobrara River near Valentine	35
	Particle-size analyses of suspended sediment of the Niobrara River near Sparks	36
		38
	Particle-size analyses of bed material of the Niobrara River near Valentine	40
40-49.	Particle-size analyses of bed material of the Niobrara River near Sparks	- 40

.

TABLES

.

٠

	•	
Table	1.	Discharge measurements of the Niobrara River above Buffalo Bridge, near Valentine, Nebr., during the year ending Sept. 30, 1951
	2.	Discharge measurements of the Niobrara River near Sparks, during the year ending Sept. 30, 1951
	3.	Sediment discharge measurements of the Niobrara River near Valentine (contracted section)
	4.	Section) Sediment discharge measurements of the Niobrara River near Valentine (normal sections)
		Sediment discharge measurements of the Niobrara River near Sparks
	6.	Comparison of suspended-sediment concentrations of measuring sections of the Nicbrara River near Valentine and Sparks, from Nov. 2, 1950, to July 17, 1951
	7.	Suspended-sediment concentrations at cross sections of the Niobrara River near Valentine and Sparks, from Nov. 2, 1950, to July 17, 1951, in average percentage of the concentration at the contracted section B
	8.	Daily suspended-sediment discharge of the Niobrara River near Valentine, section <u>B</u> , and near Sparks, 1950-51 water year
	9.	Slope observations on the Niobrara River near Sparks
-		Particle-size analyses of suspended sediment (point-integrated samples), Niobrara River near Valentine, section B, 1950-51 water year
:	11.	Particle-size analyses of suspended sediment, Niobrara River near Valentine, section B. 1950-51 water year
	12.	Particle-size analyses of suspended sediment, Niobrara River near Valentine, normal sections, 1950-51 water year
-	13.	Particle-size analyses of suspended sediment, Niobrara River near Sparks, 1950-51 water year
:	14.	Particle-size analyses of bed material, Niobrara River near Valentine, normal sections
]	15.	Particle-size analyses of bed material, Niobrara River near Sparks

•

•

INVESTIGATIONS OF FLUVIAL SEDIMENTS OF THE NIOBRARA RIVER NEAR VALENTINE, NEBRASKA

ABSTRACT

This report contains results of observations that were made from the time when a natural constriction was formed in the Niobrara River near Valentine, Nebr., to the time when it was widened by high flows. After the constriction was widened, insufficient turbulence was developed to suspend most of the sediment. The report gives information on the amount and characteristics of the sediment that moves as unmeasured load at normal sections of the stream near the constriction and at the measuring sections at the Sparks gaging station.

Lateral distributions of depth, velocity, and concentration are shown for the sections where sediment discharge was measured. In addition, vertical distributions of concentration, velocity, and percentage of particles coarser than 0.25 mm are shown for the contracted section. The vertical distributions seem to indicate that the total sediment load of the stream was usually in suspension at the contracted section. Exclusive of the period during the winter when upstream reservoirs. were not flushed, the measured discharge of suspended sediment at the normal sections near the contraction averaged 47 percent and at the Sparks gaging station 41 percent of the measured sediment discharge at the contracted section.

Particle sizes of suspended sediment and bed material are tabulated, and some size distributions are plotted. In conformity with bedload theory, the computed particle sizes of the unmeasured load were slightly smaller than the average particle sizes in the samples of bed material.

INTRODUCTION

An investigation of sediment transport within a reach of the Niobrara River on the Fort Niobrara National Wildlife Refuge near Valentine and Sparks, Nebr. (fig. l),was undertaken by the U. S. Geological Survey at the request of and in cooperation with the U. S. Bureau of Reclamation. This investigation to determine water and sediment discharges in and near a contracted channel was made as a part of the Department of Interior program for the development of the Missouri River basin. The contracted channel was formed about October 1, 1950, when bank caving constricted the low and medium flows of the Niobrara River east of Valentine to a chute about 30 ft wide. (See fig. 2.) During the period November 2 to 17, measurements relating to stream flow, suspended sediment, and bed material were made in the chute, at nearby sections, and at the gaging station near Sparks. On November 17, 1950, a meeting of representatives of the Bureau of Reclamation and of the Geological Survey was held to discuss future operations of the investigation. At this meeting the scope of the field work was limited to observations at the contracted section and at the Sparks gaging station. A similar meeting was held on May 8 and 9, 1951, at which time the investigation was expanded to include again the collection of data on stream flow, suspended sediment, and bed material at the previously investigated sections near the chute. However, two of these former sections were replaced by more completely alluvial sections.

The part of the investigation carried on by the Geological Survey was under the supervision of P. C. Benedict, regional engineer, Quality of Water Branch, and R. B. Vice, hydraulic engineer. D. Q. Matejka, hydraulic engineer, was in charge of field work. C. E. Burdick, area engineer, Bureau of Reclamation, assigned engineers from the Ainsworth office to do much of the field work. Mean daily water discharges at the Sparks gaging station for the 1951 water year were furnished by the Lincoln district office of the Surface Water Branch, D. D. Lewis, district engineer.

The field work included determinations of water and sediment discharges and the collection of samples of suspended sediment and bed material for particle-size analysis. Vertical and lateral distributions of velocity, concentration, and particle size were defined for the contracted section, five normal sections near the contraction, and two sections at the Sparks gaging station. Velocities and vertical distributions in the chute indicated that most, if not all, of the sediment load of the river was in suspension. Also, data from field measurements provided information as to the amount of sediment that is discharged as unmeasured load at normal sections near the chute. Indirectly they helped in computing the rate of sediment discharge as unmeasured load at the gaging station near Sparks, about 6 miles downstream, where daily discharges of suspended sediment were determined from May 1947 to January 1951.

This report contains a summary of the information that was obtained from November 2, 1950, to July 17, 1951. High flow on July 29

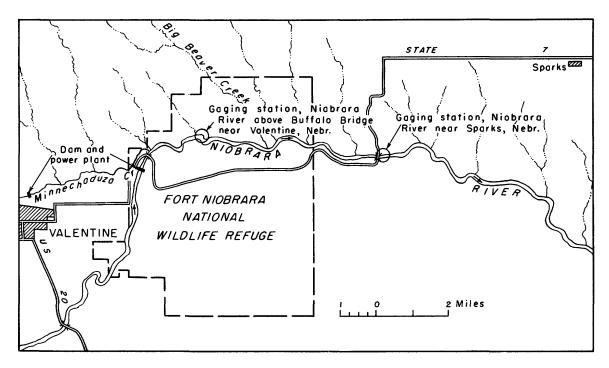


Figure 1 .-- Sketch map of the Niobrara River near Valentine and Sparks, Nebr.

widened the constriction to the extent that velocities and turbulence were not nearly sufficient to suspend the total sediment load. The final field data were collected on July 17.

In this report <u>suspended sediment</u> is that part of the sediment load of a stream that can be collected in a depth-integrating sediment sampler. <u>Suspended-sediment discharge</u> or <u>suspended-sediment load</u> is the sediment discharge that can be computed from water discharge and the concentration from depthintegrated sediment samples. The <u>unmeasured</u> <u>load</u> is the difference between the total sediment load of a stream and the suspendedsediment load.

RIVER CHANNEL

The channel of the Niobrara River in the Fort Niobrara National Wildlife Refuge averages about 150 ft in width. Most of the stream bed is composed of shifting sand, but in places the bed is scoured down to shale or firm clay. The channel banks are generally low and partly covered with brush except for an occasional place where the river flows at the base of a steep bank of Brule clay. The slope of the channel is about 8 ft per mile; the measured slopes downstream near the Sparks gaging station averaged 7.5 ft per mile.

A small power dam about $2\frac{1}{2}$ miles upstream from the contraction forms a pool in which sediment is trapped. (See fig. 1.) During the summer this pool is flushed periodically to remove part of the accumulated sediment. A small power dam on Minnechaduza Creek about 6 miles upstream from the contraction forms another small pool that is also flushed occasionally. The flushing of these pools probably causes alternate fill and scour of the channel for several miles below the dams.

MEASURING SECTIONS

Contracted Section

Before the contracted section was formed, the channel was probably 100 to 150 ft wide. immediately after, it was constricted to a width of about 30 ft for a distance of about 100 ft along the channel (fig. 3). A foot-bridge was built by the Bureau of Reclamation near the downstream end of the contracted channel, where the flow was swift and turbu-lent (fig. 4). The downstream side of the footbridge was the section, called section \underline{B} , at which measurements were made to determine total sediment discharge of the river. Sampling stations were measured from the right bank. Mean velocities measured at section B during the period November through January ranged from 3.28 fps at a discharge of 237 cfs to 8.77 fps at a discharge of 1,140 cfs. Standing waves, high velocities, and an uneven stream bed were factors that limited the accuracy of measurements of stream flow at this section. During the early part of February, ice dislodged the footbridge and widened the constriction to about 40 ft. A second footbridge was constructed in April by personnel of the Bureau of Reclamation. It spanned the constriction at the original site; however, the bridge stationing was shifted 12 ft to the right so that station 0 would be over the right bank. After the channel was widened, measured velocities ranged from 6.00 fps at 990 cfs to 6.94 fps at 1,040 cfs. Standing waves, high velocities, and an uneven stream bed continued to limit the accuracy of streamflow measurements at the section.

On July 29, 1951, a flood collapsed the footbridge and further widened the constriction to about 75 ft. Resulting lower velocities and turbulence were sufficient to suspend

Errata -- Circular 205

Credit to the U.S. Bureau of Reclamation for figure 2 on page 3 was inadvertently mitted. The title for figure 2 on page 3 should read as fellows:

Figure 2.--Looking upstream toward the contraction of the Niobrara River formed by bank caving (Photograph courtesy of U. S. Bureau of Reclamation).

۰.

Figure 2.--Looking upstream toward the contraction of the Niobrara River formed by bank caving.

Figure 3.--Looking downstream from the upper end of the contracted channel.

Figure 4.--Footbridge where samples were taken to determine total sediment discharge of the river--section B.

only a part of the sediment load that was unmeasured at the normal sections.

The locations of the contracted section, the five normal sections, and the staff gage in the reach of the Niobrara River near Valentine are shown in figure 5.

Normal Sections

Section <u>A</u> is the farthest upstream of any of the measuring sections. At this section the water surface is about 140 ft wide, and the stream bed is composed of shifting sand. Section <u>A</u> is about a quarter of a mile upstream from section <u>B</u> and is reasonably representative of this reach of the river channel; however, it is in a relatively inaccessible part of the stream.

On May 8, section <u>A</u> was replaced by section <u>A'</u> (fig. 6), which is 450 ft upstream from section <u>B</u>. Section <u>A'</u> is about 150 ft wide. Its bed is composed of relatively stable sand. Low standing waves sometimes are present near the center of the stream.

Section <u>C</u> (fig. 7) was selected as a typical section of the channel. It is about 500 ft downstream from section <u>B</u> and close below Buffalo Bridge. The bottom is shifting sand except for an occasional place where more stable material is exposed. The section is about 190 ft wide.

Section <u>D</u>, three-quarters of a mile downstream from section <u>B</u>, was initially a representative section of the channel. It was about 160 ft wide and had a sandy, shifting bottom. Subsequent measurements, however, indicated that section \underline{D} is not a true alluvial section because it sometimes scours to its Brule clay bed.

On May 8, section <u>D</u> was replaced by section <u>D'</u>(fig. 8), about 1,500 ft downstream from section <u>B</u>. Section <u>D'</u> is about 140 ft wide, and its bed is composed of fairly firm sand. It is considered to be a representative section of the channel.

Sections <u>A</u>, <u>A'</u>, <u>C</u>, <u>D'</u>, and <u>D</u> (fig. 5) were all selected as sections at which the ratio of suspended-sediment discharge to total sediment discharge seemed likely to be representative of the normal river channel near the contracted section. In this report these five sections are frequently referred to as normal sections to contrast them with the natural constriction, section <u>B</u>.

Sections at Sparks Gaging Station

The gaging station near Sparks, Nebr., is about 6 miles downstream from section <u>B</u>. The channel under the bridge (fig. 9) is somewhat narrower than the average width of the river. Measurements of water discharge are made from the bridge, which is a few feet upstream from the recording gage, or at low stages, by wading at wider sections downstream from the bridge. (See fig. 10.) Samples for determining the average concentration of suspended sediment at a cross section were collected at the section where the measurement of stream flow was made on the same day.

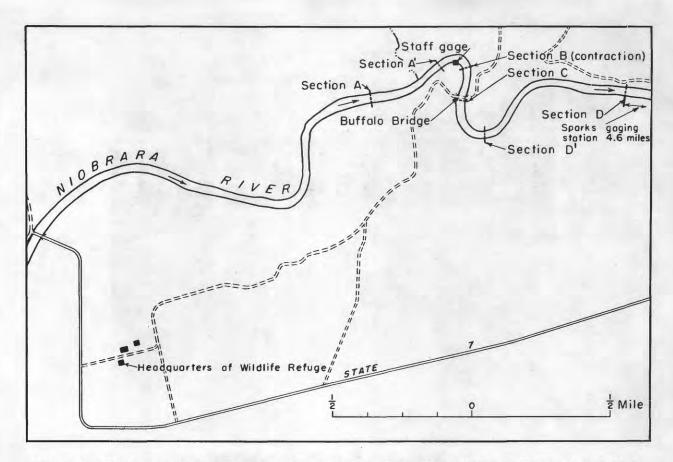


Figure 5.--Sketch map showing location of sampling sections of the Niobrara River above Buffalo Bridge, near Valentine, Nebr.

Figure 6.--View of section \underline{A}' from right bank. Section extends directly across the channel.

Figure 7.--View of section <u>C</u> from left bank. Section is parallel to and about 40 ft downstream from Buffalo Bridge.

Figure 8.--View of channel at section \underline{D} ' from left bank.

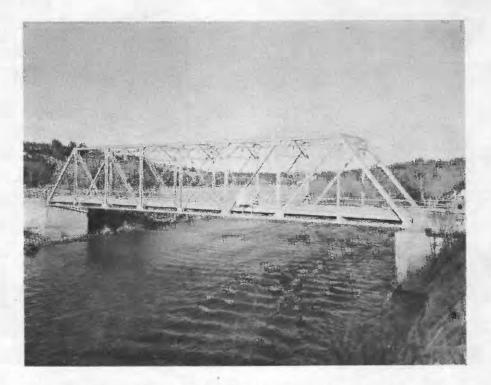


Figure 9.--View of bridge section, Sparks gaging station.

Figure 10.--View of wading sections, Sparks gaging station.

During the period of record, the numbers of determinations of suspended sediment at the different sections with each type of suspendedsediment sampler were as follows:

	Number of determinations with indicated sediment samples			
	US DH-48	US D-43 or US D-49	US P-46	
Section A	3			
Section A'	4			
Section B		8	a 5	
Section B			ъ 38	
Section C	11			
Section D'	3			
Section D	1			
Sparks gaging sections	14	12		

a Point-integrated samples.

b Depth-integrated samples.

Usually the water discharge was measured on each day when samples were collected. All the stream-flow measurements are summarized in tables 1 and 2. Tables 3 to 5 show results of the sediment discharge measurements. Gage heights for measurements at all sections near Valentine were read on a staff gage that was installed on November 8 about 220 ft upstream from section <u>B</u>.

Figures 11 to 24 show the lateral distributions of depth, velocity, and concentration of suspended sediment at each section and the changes in the lateral distribution with time. Because the lateral distribution at section <u>B</u> for a given water discharge (figs. 13 to 15)⁻ changed slowly with time, the results were not plotted for all measurements. The velocity distribution changed considerably with changes in flow of the river. Scour of the bottom and sides of the channel was too slow to be detected by observation or by the measurements at section B.

The general hydraulic characteristics of sections <u>A</u>, <u>A'</u>, <u>C</u>, <u>D'</u>, and <u>D</u> are similar (figs. 11, 12, and 16 to 20), but both sections <u>A</u> and <u>C</u> shift considerably from time to time. At the Sparks gage the bridge section and the wading sections are more stable and seem to change less with time than do sections <u>A</u> and <u>C</u>. The channel at section <u>A'</u> is more stable than at any of the other sections where measurements were made.

A comparison between the suspended-sediment concentrations at section <u>B</u> and at all other sections is shown in table 6. Concentrations at the normal and Sparks sections, taken from tables 4 and 5, are listed along with observed concentrations at section <u>B</u>, taken from table 3, and also estimated concentrations at section <u>B</u>. These estimated concentrations at section <u>B</u> were computed from the observed concentrations and gage-height records. An allowance for the time of travel was made so that they would be comparable to measured suspendedsediment concentrations at the other sections.

An average of concentrations at each of the normal and Sparks sections, expressed as a percentage of the estimated concentrations at section B, is given in table 7. The percentages, within the limits of accuracy of the data, are also the percentages of the total sediment discharge that are in suspension if the following assumptions are correct:

1. For the given times, the stream flow at the uncontracted section was the same as at section \underline{B} .

2. For the given times, the total sediment discharge at the uncontracted section was the same as at section \underline{B} .

Actually, the assumption of equal flow at each section is substantially correct although the flow at the Sparks gage probably averages a few percent greater than at the other sections (table 8). The assumption of equal total sediment discharge is not always even approximately correct when section B and the sections at the Sparks gage are compared. Eight determinations of suspended-sediment concentrations during winter months indicate a greater suspended-sediment discharge at the Sparks station than total sediment discharge at section B. Evidently the channel between section <u>B</u> and the Sparks gage was degrading during this period. Probably total sediment discharge does not vary greatly between section <u>B</u> and any one of the normal sections near section B.

Twenty-one determinations of suspendedsediment concentration at the normal sections near section B ranged from 29 to 88 percent and averaged I_7 percent of the concentration at section B at comparable times. Thus the discharge of sediment as unmeasured load at sections A, <u>A'</u>, <u>C</u>, <u>D'</u>, and <u>D</u> is about equal to the discharge of suspended sediment for the period when these concentrations were determined.

Six determinations of the ratio of suspendedsediment discharge at the gaging station near Sparks to the suspended-sediment discharge at section B, about 6 miles upstream, averaged 0.41 to 1 in the periods November 2 to 17, 1950, and May 8 to July 17, 1951. During the winter period, November 18, 1950, to May 7, 1951, this ratio was about 1.4 to 1. In general, the ratio increased with time within this winter period. The high ratios during the winter were due to low concentrations at the contracted section. These low concentrations were probably caused by entrapment of sediment in the upstream reservoirs after periodic flushing was discontinued. The recorder chart from the Sparks gage indicates that the last flushing of the reservoir on the Niobrara River near Valentine during the fall of 1950 was on November 18. It is also possible, but not likely, that the high ratios during the winter resulted from the seasonal effect of ice formation.

The assumption that the high ratios during the winter were caused by sediment entrapment in the reservoirs seems to be logical because the relatively clear water leaving the reservoirs would immediately begin to degrade the alluvial channel. Probably the most extensive degradation would at first occur directly below the dams. Because the supply of sediment in the channel immediately below the dams would not be replenished at a normal rate after November 18 when flushing operations ceased, scour could be expected in the river reach between the constricted section and the Sparks gage during most of the period until flushing is resumed. Scour between section <u>B</u> and the Sparks gage could cause the high ratio of concentration at the Sparks gage to

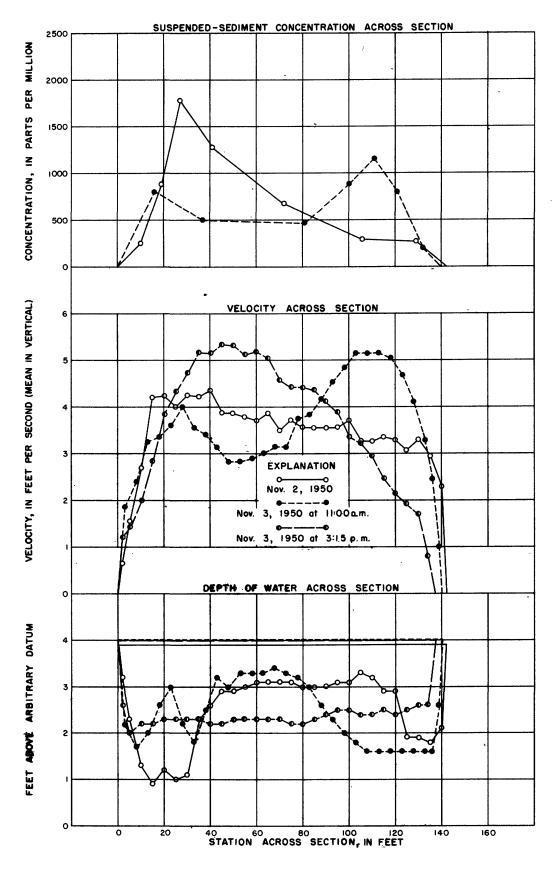


Figure ll.--Lateral distribution of depth, velocity, and concentration of suspended sediment, section \underline{A} , Niobrara River near Valentine.

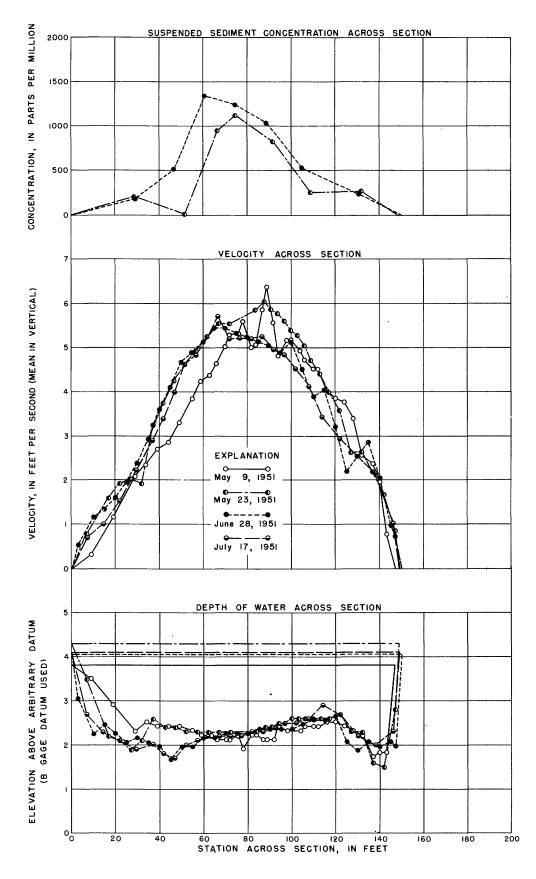
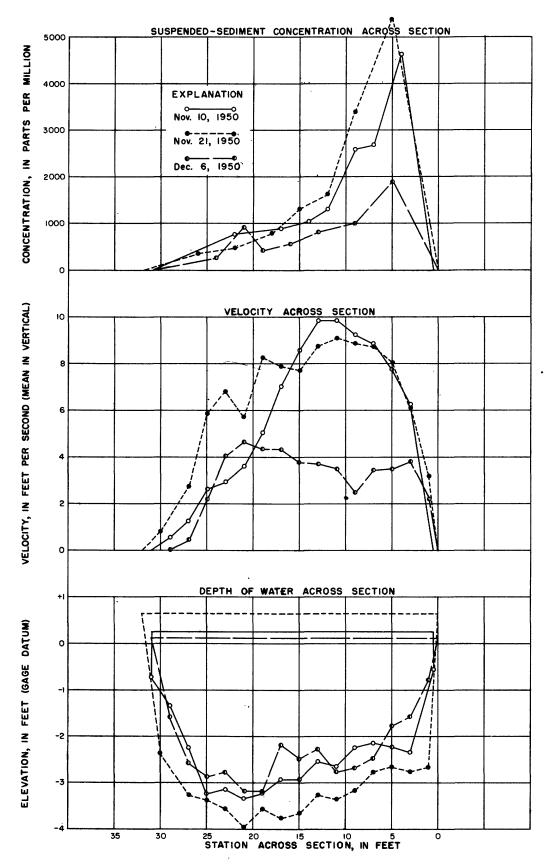
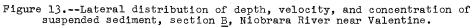




Figure 12.--Lateral distribution of depth, velocity, and concentration of suspended sediment, section \underline{A}^{*} , Niobrara River near Valentine.

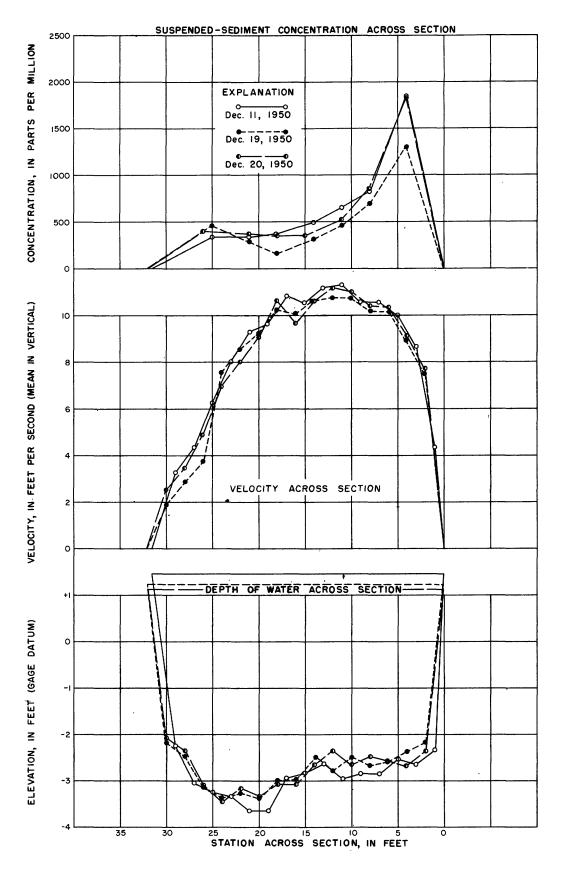


Figure 14.--Lateral distribution of depth, velocity, and concentration of suspended sediment, section \underline{B} , Niobrara River near Valentine.

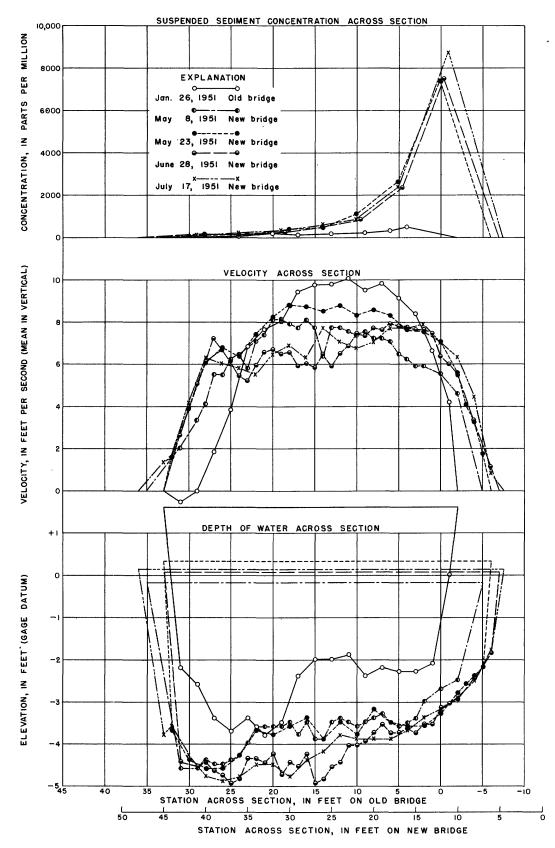


Figure 15.--Lateral distribution of depth, velocity, and concentration of suspended sediment, section \underline{B} , Niobrara River near Valentine.

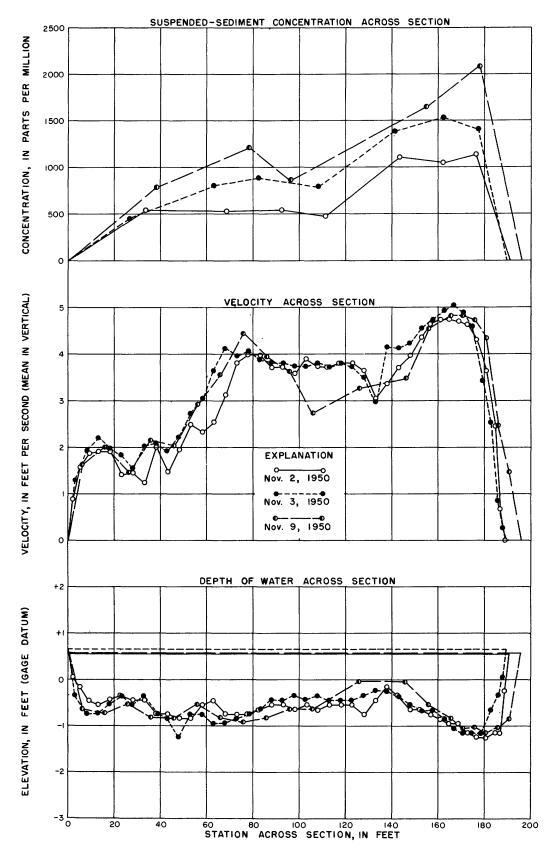


Figure 16.--Lateral distribution of depth, velocity, and concentration of suspended sediment, section \underline{C} , Niobrara River near Valentine.

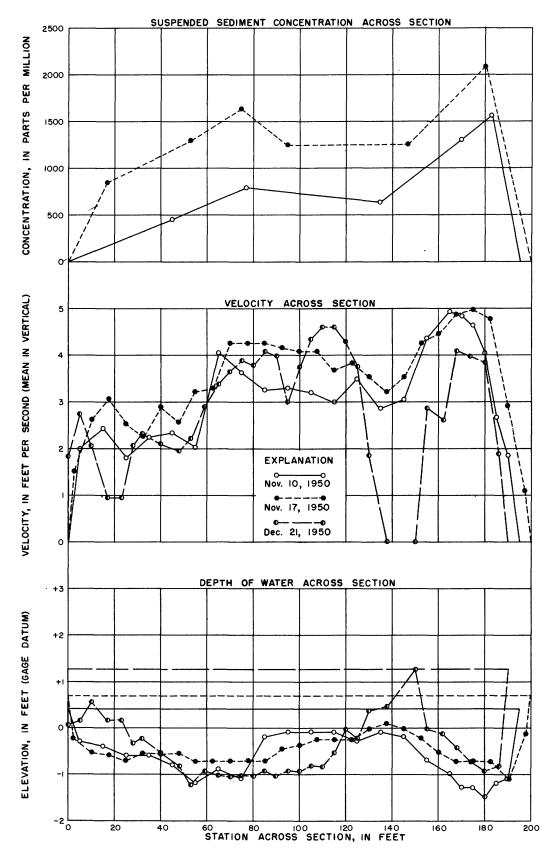


Figure 17.--Lateral distribution of depth, velocity, and concentration of suspended sediment, section \underline{C} , Niobrara River near Valentine.

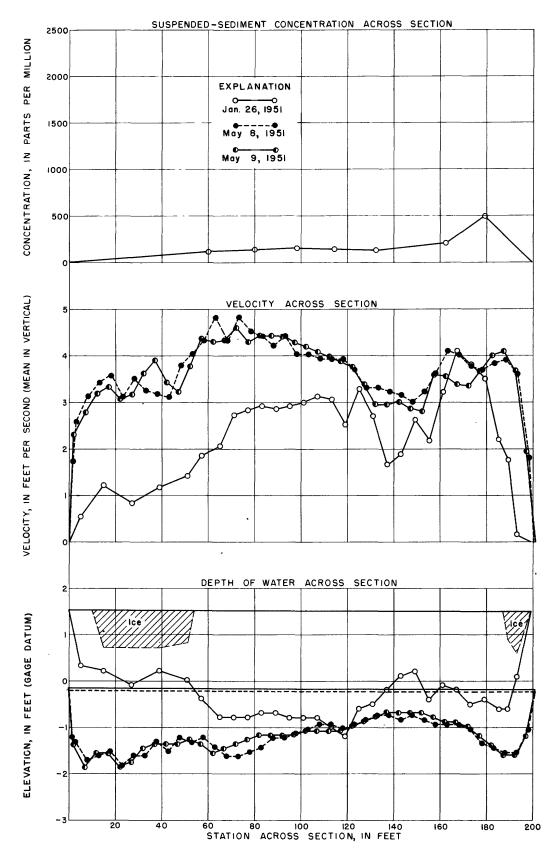


Figure 18.--Lateral distribution of depth, velocity, and concentration of suspended sediment, section \underline{C} , Niobrara River near Valentine.

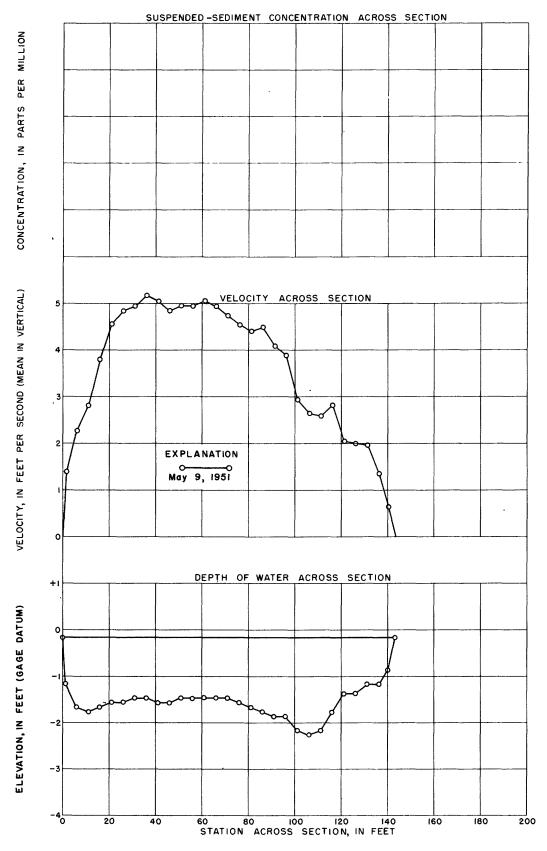
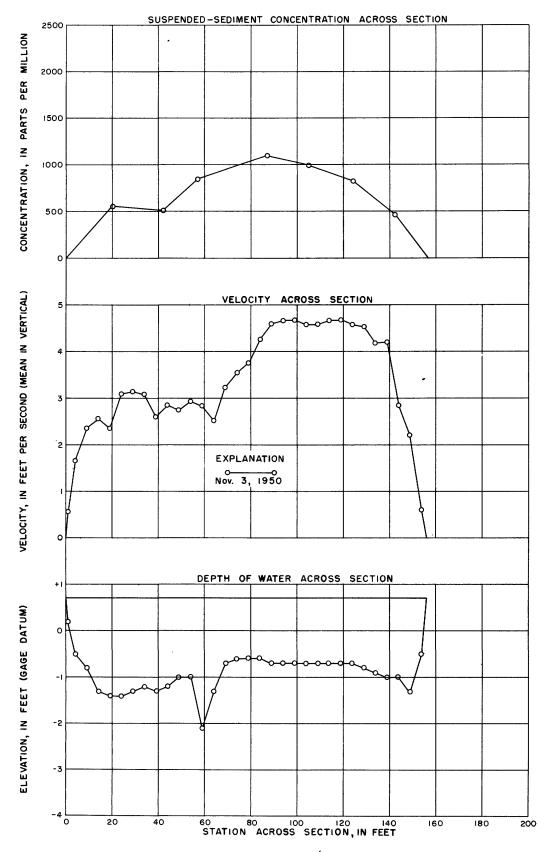
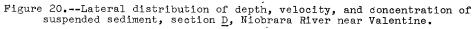




Figure 19.--Lateral distribution of depth, velocity, and concentration of suspended sediment, section \underline{D} , Niobrara River near Valentine.

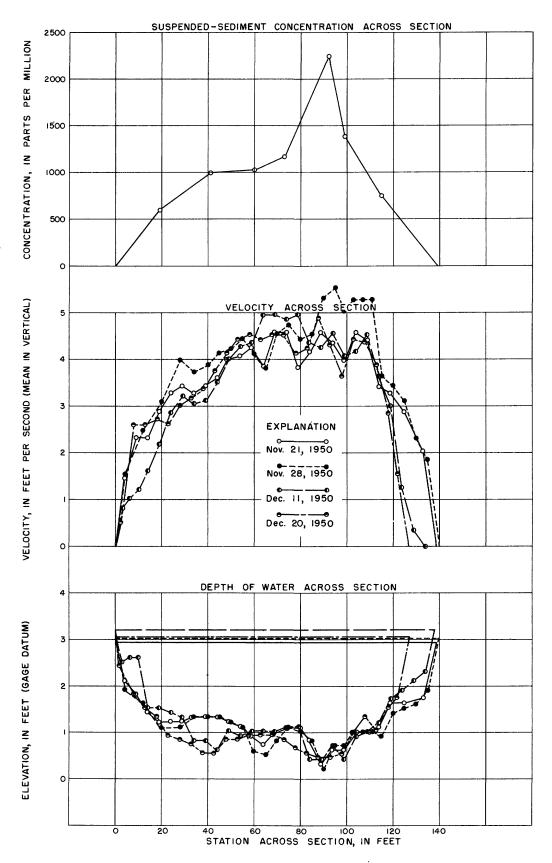


Figure 21.--Lateral distribution of depth, velocity, and concentration of suspended sediment, bridge section, Niobrara River near Sparks.

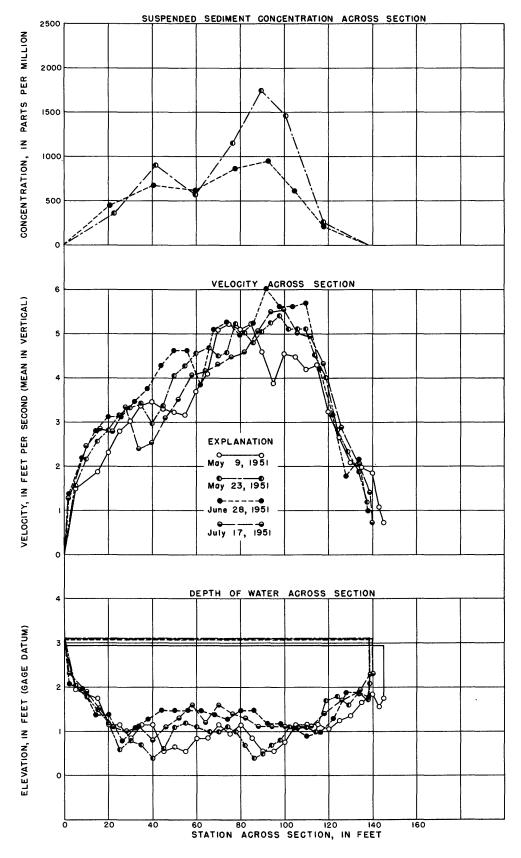
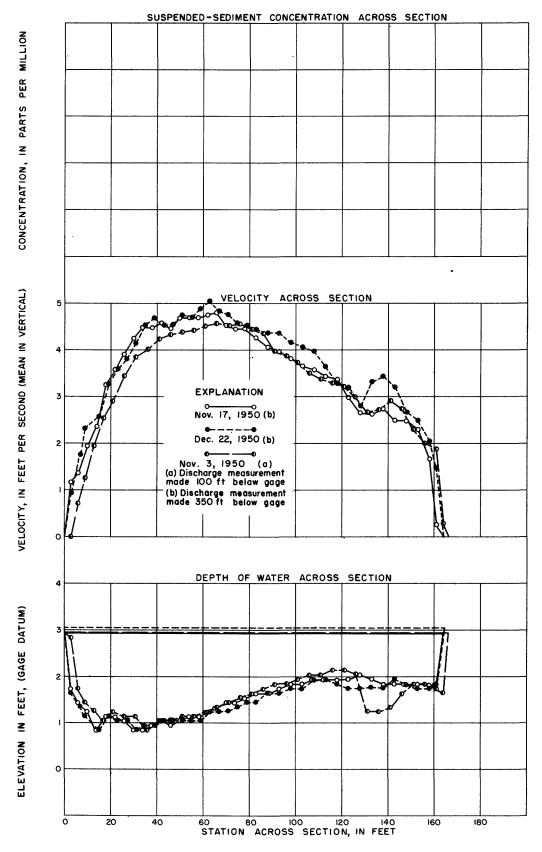
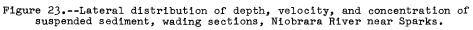




Figure 22.--Lateral distribution of depth, velocity, and concentration of suspended sediment, bridge section, Niobrara River near Sparks.

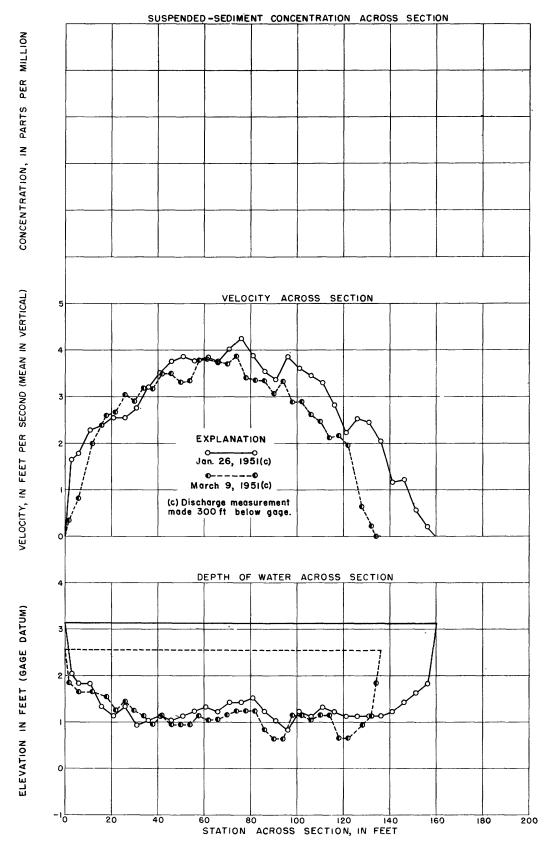


Figure 24.--Lateral distribution of depth, velocity, and concentration of suspended sediment, wading section, Niobrara River near Sparks.

that at section <u>B</u> even though the concentration at the Sparks gage was lower than at other seasons of the year.

DAILY WATER AND SEDIMENT DISCHARGES

Daily water discharge of the Niobrara River above Buffalo Bridge, near Valentine, was com-puted for the period November 28 to December 21. Gage heights read on the staff gage upof the recorder chart for the Sparks gaging station. A continuous graph of estimated gage height at the staff gage was drawn for all this period of the record except December 16 to 19. Between gage readings, the graph was based on the changes in gage height at the Sparks station and on temperature records. The gage-height graph and a rating table based on the rating curve shown in figure 25 were used to compute the daily water discharges for use at section B and at the normal sections near Valentine. Mean daily water discharges for December 16 to 19 were estimated on the basis of records for the Sparks station. When daily water discharges at the staff gage were com-pared with those for the Sparks gaging sta-tion, some inconsistencies were found. The stage-discharge relation shifted considerably at each place because of (a) changes in bed elevation and (b) backwater from ice at times. Records of daily discharge at the staff gage were revised slightly on a few days when the revisions were not inconsistent with measured discharges. On other days when the water discharge at the two sites seemed to be inconsistent by only a small percentage, no revi-sions were made.

Daily discharges of suspended sediment for November 28 to December 21 were computed for section <u>B</u> and for the gaging station near Sparks from daily water discharges and graphs of sediment concentration. The daily figures of water discharge, suspended-sediment discharge, and sediment concentration are listed in table 8. For December 2 to 5 and 7, when no daily samples were collected at the Sparks station, the sediment discharge was computed from a water-sediment discharge curve (fig. 26).

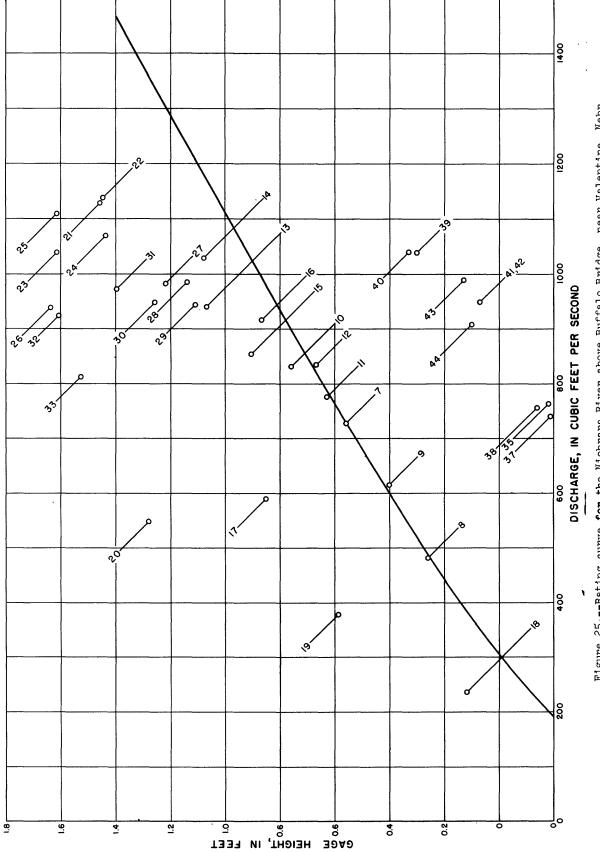
MEASURED SLOPES OF THE WATER SURFACE

Water-surface slopes were recorded for the reach of river above the Sparks gaging station. Simultaneous gage readings were obtained at the Sparks water-stage recorder and at a staff gage 890 ft upstream. Staff gage and recording gage were at the same datum. The average slope was 7.5 ft per mile. (See table 9.) Water-surface slope readings were discontinued after the staff gage was removed by ice. The last reading was obtained November 21, 1950.

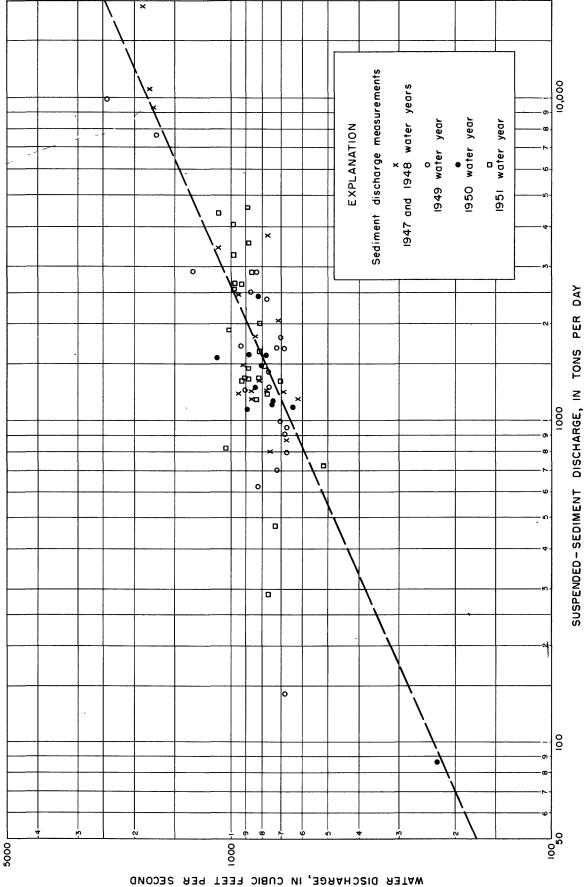
DISTRIBUTION OF SEDIMENT IN SECTION B

Point-integrated samples of suspended sediment were collected at section <u>B</u> on November 30 and December 7 and 21, 1950, and on May 8 and June 28, 1951. Two samples were taken at each sampling point. Concentrations, velocities, and particle sizes for each sampling point are listed in table 10. These velocities were computed from the filling time of the samples. Figures 27 to 31 show the vertical distribution in section <u>B</u> of concentration, velocity, and percentage of particles larger than 0.25 mm. The 0.25-mm size was used for comparison; it approximates the median particle size. Each discontinuous line connecting the plotted points is only one interpretation of the distribution that seems to be indicated by the points and may be inaccurate, especially near the bottom of each vertical.

Samples collected on November 30 and December 21 show little increase in sediment concentration from top to bottom of the verticals. Also the percentage of particles larger than 0.25 mm does not increase appreciably with depth below the surface of the water. The sediment load must be far below the maximum carrying capacity at any section where the turbulence is sufficient to maintain nearly uniform vertical distribution of coarse sediment particles. The sediment transported as unmeasured load at such a section is probably a minute fraction of the total sediment discharge.


On December 7 the water discharge was low, and the mean velocity by current-meter meas-urement at 10:20 a.m. was 4.11 fps. Vertical distributions show an increase of concentration and of percentage of particles coarser than 0.25 mm toward the bottom of the section at four of the seven sampling stations. At the other three verticals the concentration and the percentage of particles coarser than 0.25 mm did not show a significant increase with depth. Perhaps an appreciable amount of sediment was discharged as bed load on December 7, but the engineers who took the samples did not report any deposits of sand on the bottom of the channel at section B at that time. In general, during the period before the channel widened to about 40 ft it is probably safe to assume that, except when the stream flow was exceptionally low or there was backwater from an ice jam, almost all the sediment passed section \underline{B} in suspension.

On both May 8 and June 28, 1951, vertical distributions showed an increase of concentration and of the percentage of particles coarser than 0.25 mm toward the bottom of the section at one of the three verticals that were sampled. The vertical showing this increase was at about the same location on both days. Soundings on May 8, 1951, indicated a wedge of deposited material from the right bank to station 8. In this part of the cross section the velocities of flow were low and the alluvial bank was being undercut. On May 8 and June 28 at the other two verticals in the cross sections, the concentration and distribution of materials coarser than 0.25 mm did not change appreciably with depth. During the period from May 8 to July 17, 1951, probably somewhat less than the total sediment load was transported in suspension.


PARTICLE SIZE

Analyses of Suspended Sediment

The particle-size distributions of suspended sediment were determined l_{μ} times at section <u>B</u>, 22 times at the normal sections near <u>B</u>, and 16 times at the gaging station near Sparks. Usually less than 6 percent of the suspended sediment was coarser than 0.5 mm. (See tables 11 to 13.) Some of the

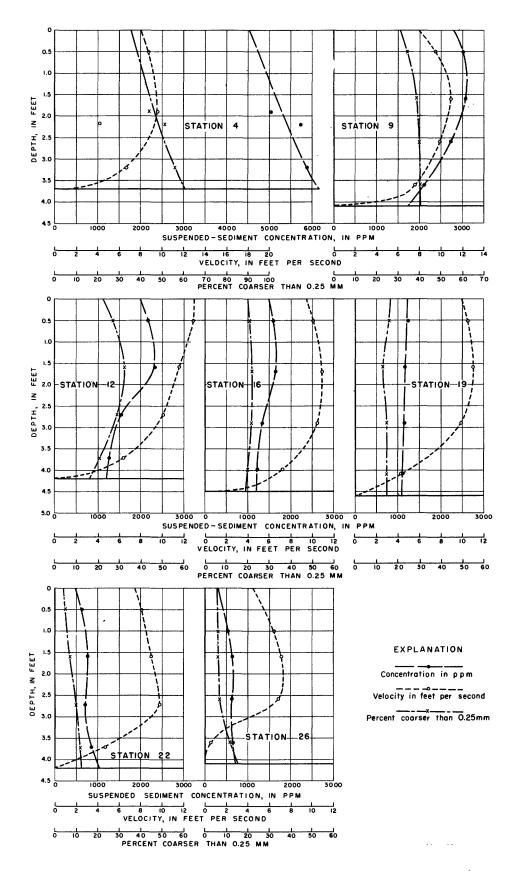
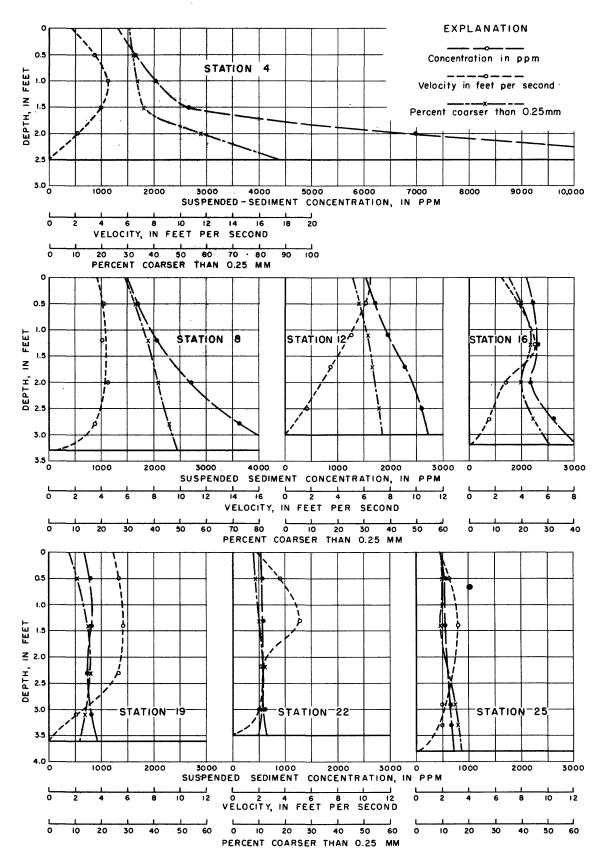
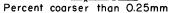


Figure 27.--Vertical distributions at section <u>B</u>, Nov. 30, 1950.




Figure 28.--Vertical distributions at section B, Dec. 7, 1950.

EXPLANATION

Concentration in ppm

_____.

Velocity in feet per second

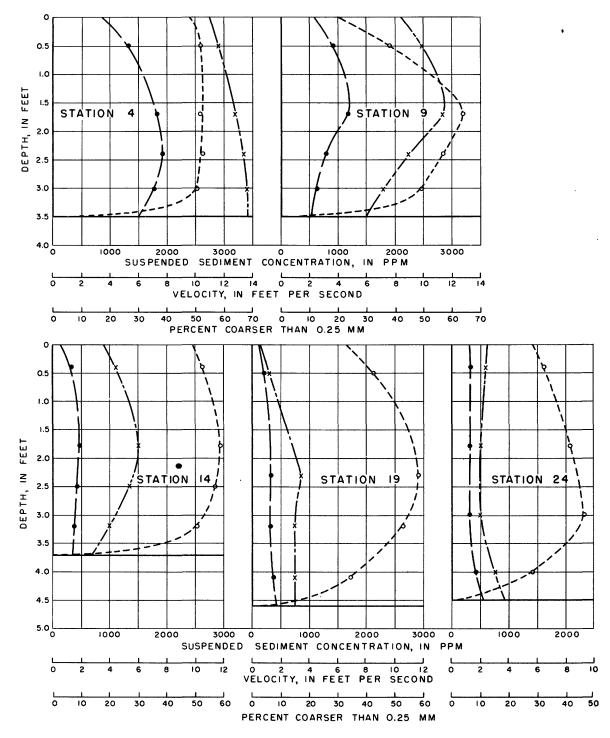
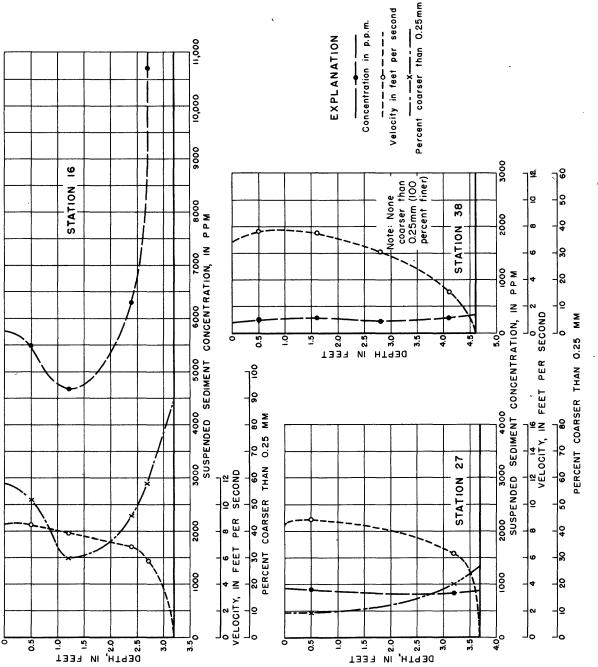
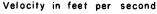


Figure 29.--Vertical distributions at section <u>B</u>, Dec. 21, 1950.




Figure 30.--Vertical distributions at section \underline{B} , May 8, 1951.

29

EXPLANATION

Concentration in ppm

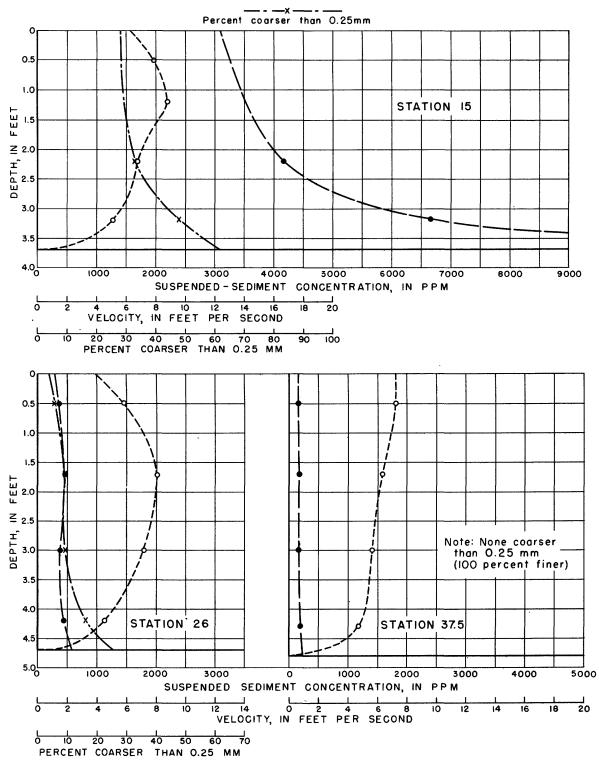


Figure 31.--Vertical distributions at section <u>B</u>, June 28, 1951.

particle-size analyses are shown in figures 32 to 43. The size distribution of the sediment at all the Valentine and Sparks sections for the entire period of record did not seem to vary appreciably with either time or water discharge. In addition, no apparent differences existed in the size distributions between the normal sections near Valentine and the Sparks gaging station.

Analyses of Bed Material

Fifteen sets of bed-material samples from the normal sections and ten sets from the Sparks bridge section were analyzed for particle size by sieving. Each set consisted of samples from two to four points in the sec-tion. Only a few percent of the particles from any analysis were larger than 0.5 mm. Although the size distributions of the different sets of samples varied considerably, the analyses showed that the bed material near the Sparks gage averaged finer than the bed material at the normal sections during the winter period. (See tables 14 and 15 and figs. 14 to 49.) Presumably, the finer materials were depleted from the bed by selective sorting near the normal sections. This selective scour probably continued downstream at a decreasing rate while flushing of the small reservoirs above the power plants was discontinued because of ice. After flushing was resumed in the spring,

the size distribution of the streambed material of the two reaches resembled each other more closely.

UNMEASURED SEDIMENT DISCHARGE

For the period of record exclusive of winter months, the assumption can be made that probably most of the sediment that passed section B was in suspension. (See figs. 27 to 31.) Also an average of 47 percent of the suspended-sediment discharge at section B was in suspension at the normal sections (table 7). Thus, over half of the total sediment discharge was transported as unmeasured load at the normal sections according to samples collected from November 2, 1950, to July 17, 1951. During other periods and at different rates of water discharge, this ratio of unmeasured load to total load might be significantly different.

Information on particle sizes can be used to compute the size distribution of the sediment that passes the normal section as unmeasured load. The averages of the size distributions of the 20 sets of samples from sections A, A', C, D', and D during the period November Z to 17, 1950, and May 8 to July 17, 1951, and of the 11 sets of size distributions from section B during the same period are shown in the following table:

Average particle size of sediments of the Niobrara River near Valentine for the periods Nov. 2 to 17, 1950, and May 8 to July 17, 1951

Type and location of sampling		nt finer t ted size	
	0.125	0.25	0.5
Suspended sediment at sections <u>A</u> , <u>A'</u> , <u>C</u> , <u>D'</u> , and <u>D</u>	35 19 5 5	92 72 55 46	100 99 98 93

If the suspended-sediment discharge is 47 percent of the total sediment discharge and all the sediment is in suspension at section <u>B</u>, then the size distribution of the sediment that is discharged as unmeasured load at sections <u>A</u>, <u>A'</u>, <u>C</u>, <u>D'</u>, and <u>D</u> can be readily computed. If the percentages of particles finer than any particular size are represented by P_B, P_n, and P_u, for suspended sediment at section <u>B</u>, suspended sediment at any normal section, and sediment transported as unmeasured load at the same normal section, respectively; then for measuring sections near Valentine

 $P_B = 0.47 P_n + 0.53 P_u$

This equation was solved for \mathbf{P}_{u} to compute the figures in the next to the last line of the above table. The size distribution of the bed material is also shown in this same table.

Although the size distribution of bed material is not necessarily the same as the size distribution of the sediment that moves as unmeasured load, the two probably are similar for the range of particle sizes that are found in appreciable quantities in the bed of this reach of the Niobrara River. The relatively close agreement between the particle size of unmeasured load and bed material for sections A, A', C, and D' (see above table) may indicate that the computed size distribution for

4

the sediment that moves as unmeasured load at the normal sections is reasonable.

Neither the quantity nor the size distribution of the sediment that is discharged as unmeasured load at the Sparks gaging station can be computed directly during the period November 19 to March 26, the period during which flushing of the reservoirs was discontinued. The average suspended-sediment discharge during this period was greater at the Sparks station than it was at the normal sections near the contraction or even than it was at section <u>B</u>. (See table 6.) Evidently scour during this time, as described previously, prevents any direct determination of the percentage of the total sediment discharge that is in suspension at the Sparks gaging station during the winter months.

Throughout the remainder of the period of record, when neither ice nor discontinuance of flushing affected the water-sediment relationships, the six determinations of suspended-sediment discharge at the Sparks gaging station averaged 41 percent of the total sediment discharge at section <u>B</u>. Thus, during this period the relationship for the sections at the Sparks station is

 $P_{\rm B} = 0.41 P_{\rm n} + 0.59 P_{\rm u}$

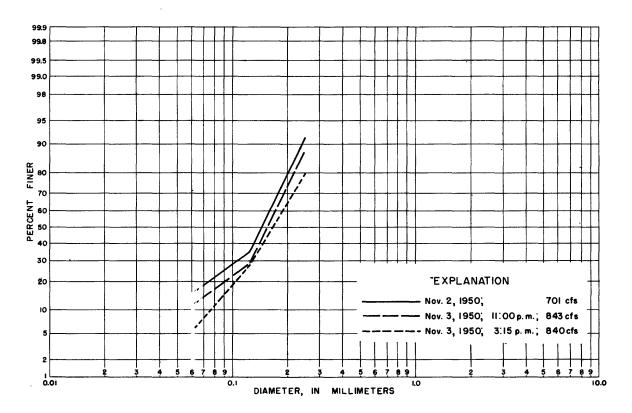


Figure 32.--Particle-size analyses of suspended sediment, section \underline{A} , Niobrara River near Valentine.

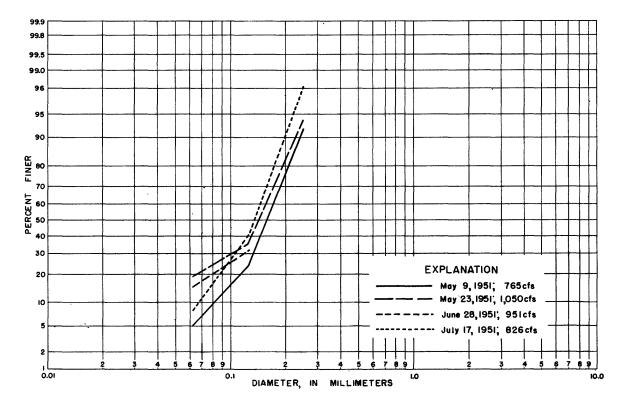


Figure 33.--Particle-size analyses of suspended sediment, section \underline{A}^{\dagger} , Niobrara River near Valentine.

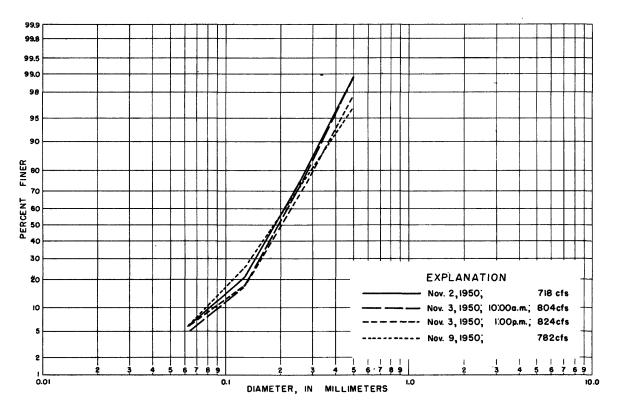


Figure 34.--Particle-size analyses of suspended sediment, section <u>B</u>, Niobrara River near Valentine.

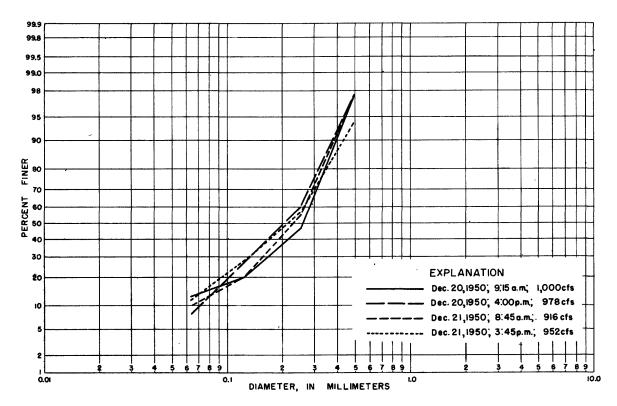


Figure 35.--Particle-size analyses of suspended sediment, section <u>B</u>, Niobrara River near Valentine.

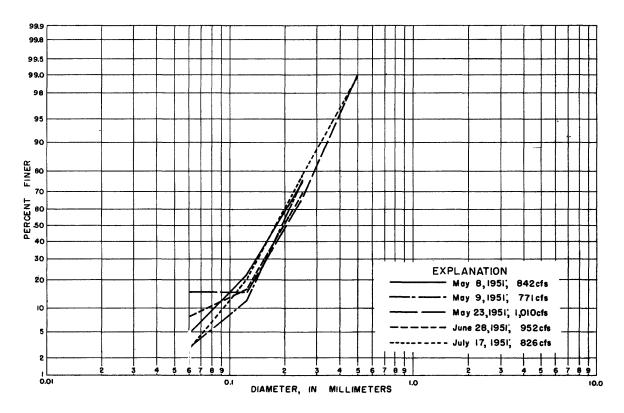


Figure 36.--Particle-size analyses of suspended sediment, section <u>B</u>, Niobrara River near Valentine.

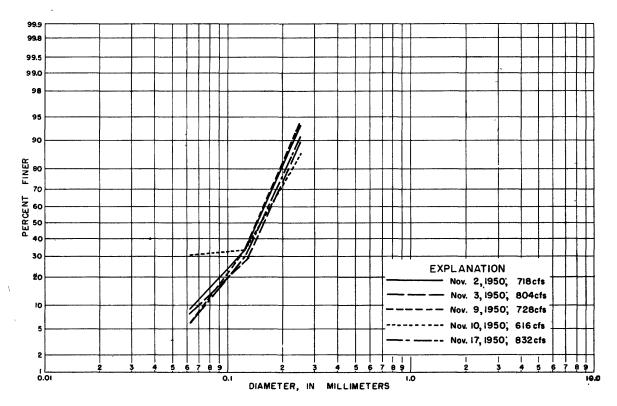
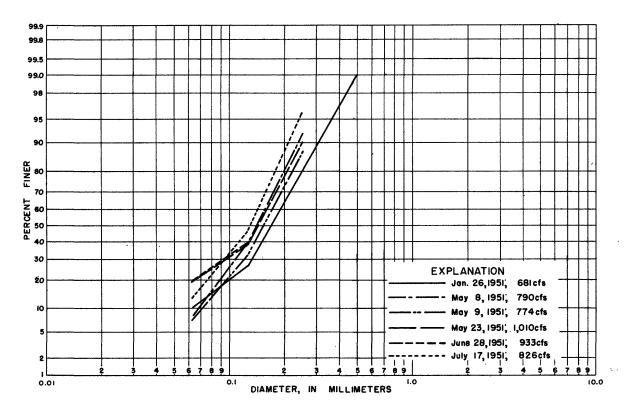
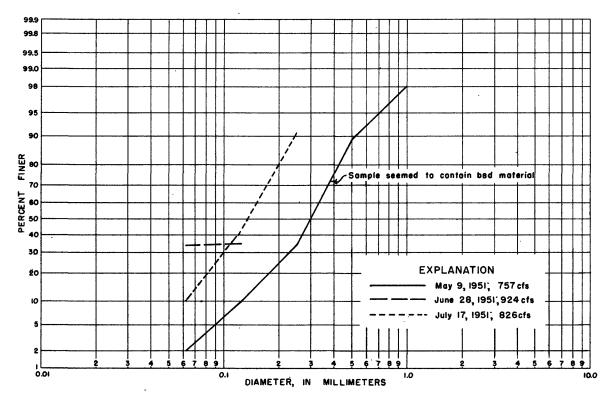
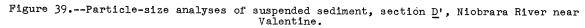
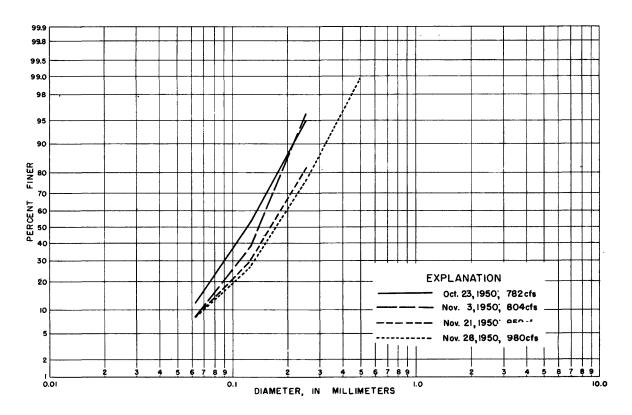
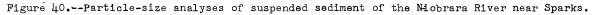
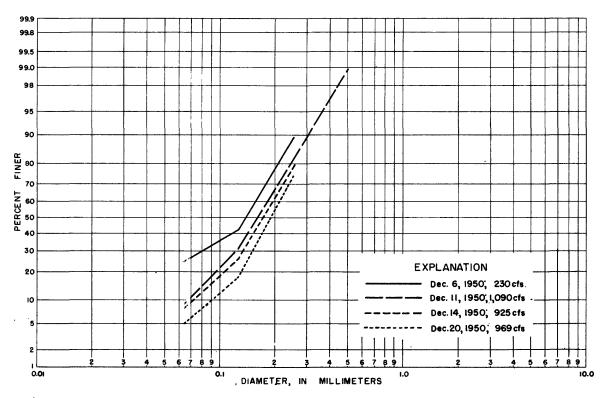
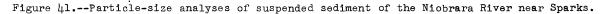


Figure 37.--Particle-size analyses of suspended sediment, section C, Niobrara River near Valentine.


Figure 38.--Particle-size analyses of suspended sediment, section C, Niobrara River near Valentine.



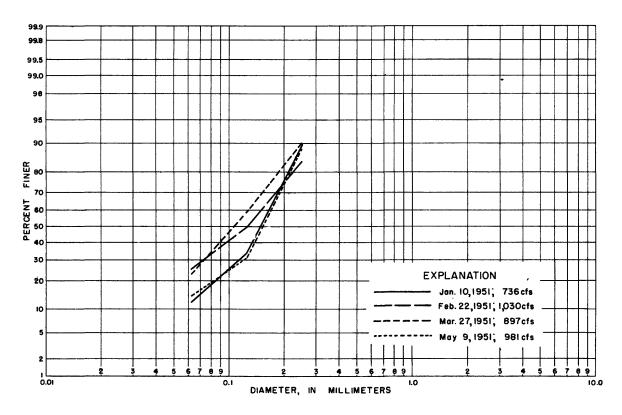
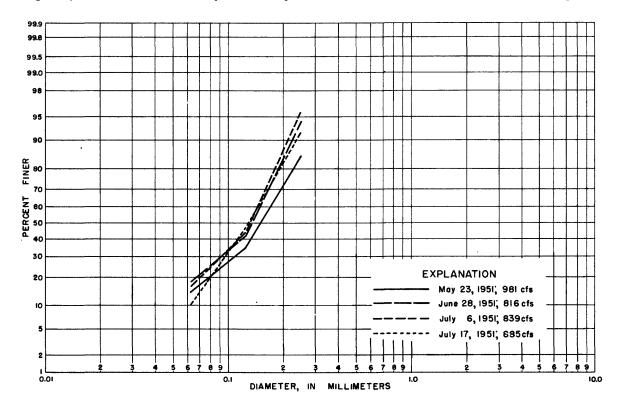
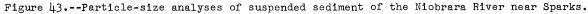
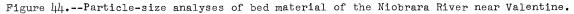





Figure 42.--Particle-size analyses of suspended sediment of the Niobrara River near Sparks.

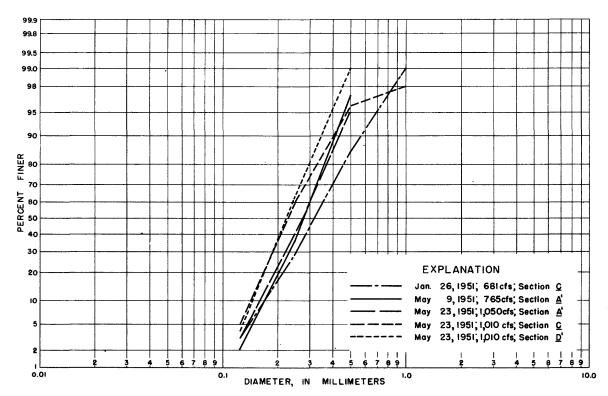


Figure 45 .-- Particle-size analyses of bed material of the Niobrara River near Valentine.

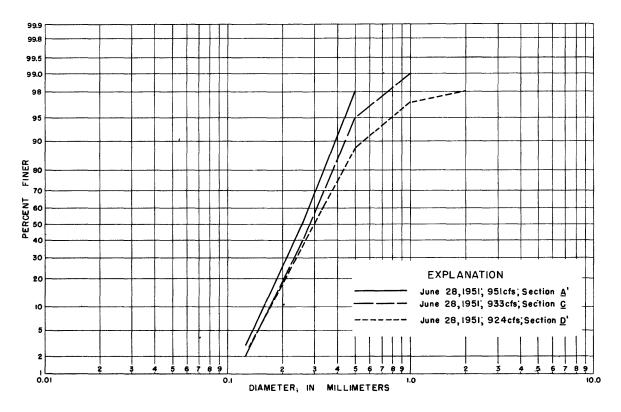


Figure 46.--Particle-size analyses of bed material of the Niobrara River near Valentine.

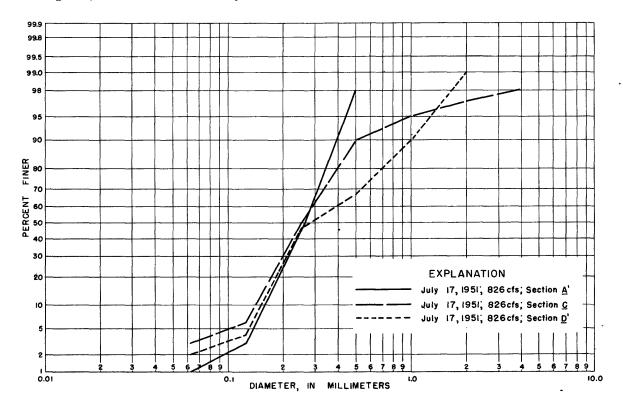
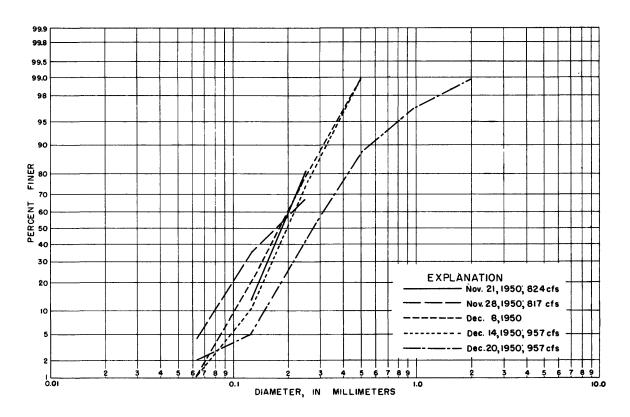
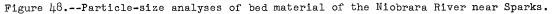
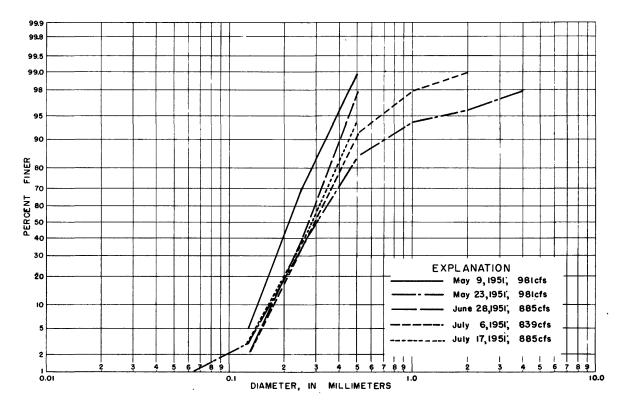





Figure 47 .-- Particle-size analyses of bed material of the Niobrara River near Valentine.

When the equation is solved for $P_{\rm u}$, the computed size distribution compares favorably with the measured size distribution of bed material from the Sparks station, as shown

by the following table. This favorable comparison may indicate that the computed size distribution of the material that moves as unmeasured load is reasonably accurate.

Average particle size of sediments of the Niobrara River near Sparks for the periods Nov. 2 to 17, 1950, and May 8 to July 17, 1951

Type and location of sampling		nt finer ted size	
The man to act of sampting	0.125	0.25	0.5
Suspended sediment at Sparks gaging section Suspended sediment at contracted section <u>B</u> Unmeasured load at Sparks gaging section Bed material at Sparks gaging section	41 18 2 3	92 68 51 45	100 96 93 94

CONCLUSIONS

- During the periods November 2 to 17, 1950, and May 8 to July 17, 1951, nearly all the sediment was probably in suspension at the contracted section, section B, although a small amount of sediment may have moved through the contracted section as unmeasured load during May, June, and July, 1951. At times during the winter when the flow was exceptionally low or there was backwater from ice, appreciable quantities of sediment may have been discharged through section B as unmeasured load.
- 2. Twenty-one determinations of suspendedsediment concentration at the normal sections A, A', C, D', and D averaged 47 percent of the concentration at section <u>B</u> at comparable times. Thus at the times of measurement an average of about 53 percent of the total sediment load of the Niobrara River near Valentine was discharged as unmeasured load through the normal sections. During other seasons and at other rates of water discharge the percentage of sediment that moves as unmeasured load might be considerably different.
- 3. The characteristics of sediment discharge gradually changed during the winter months while the periodic flushing of the upstream reservoirs was discontinued. Theoretically, the low concentrations at the outlets of the unflushed reservoirs should begin to increase downstream by the scouring of the finer materials from the stream bed. Both the rate of degra-dation and the particle sizes of the bed material should decrease downstream, but the concentration should increase downstream. However, even as far downstream as the Sparks gage the concentration may be lower than normal. The greater observed suspended-sediment concentrations at the Sparks gaging station than at the contracted section \underline{B} show that the stream bed in this reach was degrading during the winter. The few samples of bed material collected during the winter seem to show the expected decrease of particle size from the normal sections near Valentine to the Sparks gage.
- 4. Six determinations of suspended-sediment concentration at the Sparks gaging station averaged μ percent of the concentration at section <u>B</u> at comparable

times. The standard error of the mean for this average indicates that there is 1 chance in 20 that the actual average would be less than 31 percent or greater than 51 percent. The standard error of the mean may not be very significant for a small sample of this type. Other errors may be more significant than sampling errors.

- At the times of measurement an average of about 59 percent of the total sediment load was transported as unmeasured load at the Sparks gage. The average percentage of unmeasured load may be different at other times or at other rates of water discharge. Certainly during the winter the suspendedsediment concentration at the Sparks gaging station was a much larger percentage of the concentration at section <u>B</u> than during the summer.
- 5. The computed particle sizes of the sediment that moved as unmeasured load at the normal sections near Valentine, but was presumably suspended in the contracted section, were slightly smaller than the average particle sizes in the samples of the bed material. Only small amounts of material coarser than 0.5 mm were found either in the suspended sediment or the bed material.
- 6. During this investigation certain items of base data that were not obtained would have been useful particularly in explaining the results in terms of theories of sediment transportation. Some of these are:
 - a. A continuous gage-height record from a water-stage recorder installed at the staff gage site above the contraction.
 - b. Water-surface slopes and enough cross sections at each normal section near the contraction to determine the energy gradient even though the Niobrara River is not a strictly alluvial stream at all sections near Valentine.
 - c. Occasional point-integrated samples at the normal sections near the contraction and at the measuring sections at the Sparks gaging station. These data would help to define vertical distributions of velocity, concentration,

and particle size and to indicate approximate amounts of unmeasured sediment that is carried in suspension below the sampling range of depth-integrating samplers.

d. Daily suspended-sediment samples at the contracted section and at the Sparks gaging station.

.

- e. A few series of samples of suspended sediment and of bed material every mile or two from just below the dam on the Niobrara River near Valentine to the Sparks gaging station.
- f. Soundings in the chute to locate any possible areas of deposition, undercutting, or other changes in the channel cross section.

.

γ.

.

TABLES

Table 1 .-- Discharge measurements of the Niobrara River above Buffalo Bridge, near Valentine, Nebr., during the year ending Sept. 30, 1951

.

Remarks	Section A. Section G. Section A. Section G.	Section A. Section D. Section C. Section E.	Section C. Do. Section B.	ÅÅÅÅ	8888	8888	8888	Do. Section C. Section <u>B</u> . Do.	Section C. Do. Section B. Section D ¹ .	Section A'. Section C. Section A'. Section B.
Meas. rated	Good Good	Good Fair	Good Good Fair	Fair Fair Good Good	Poor Poor Poor	Fair Fair Poor Fair	Fair Poor Fair	Fair Good Fair Poor	Good Fair	Good Good Fair Fair
Time (mst)	10:15 a.m. 10:45 a.m. 9:50 a.m. 11:00 a.m.	2:25 p.m. 3:00 p.m. 3:15 p.m. 8:40 a.m.	12:15 p.m. 12:50 p.m. 8:35 a.m. 9:15 a.m.	10:00 a.m. 1:50 p.m. 9:15 a.m. 10:55 a.m.	2:30 p.m. 2:20 p.m. 10:20 a.m. 9:20 a.m.	2:55 p.m. 2:00 p.m. 9:50 a.m. 11:30 a.m.	9:40 a.m. 10:05 a.m. 2:30 p.m. 3:00 p.m.	9:40 a.m. 2:15 p.m. 9:50 a.m. 9:30 a.m.	9:50 a.m. 11:20 a.m. 4:05 p.m. 9:45 a.m.	8:50 a.m. 10:30 a.m. 9:05 a.m. 8:45 a.m.
Gage- height change (feet)		-0.12 +.04	+.16 +.02 +.08	•••03 ••03		• • • • • • • • • • • • • • • • • • •	33 14 10	- 09 - 36	22 19	100 • • 0 0
Meas. secs. (no.)	31 31 42	34 20 14	22 29 17	16 18 17	13 13 13	мммм	7757 1757	18 34 17	49 89 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	23 df 23
Method	0.6, .28 .6, .28 .6, .28 .6, .28	.6, .28 .6, .28 .5, .28	6, 6, .2, .8 6, 5, .2, .8 6, .2, .8 7, .2, .8 8, .2, .2, .8 8, .2, .2, .2, .2, .2, .2, .2, .2, .2, .2	6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,	.6, .28 .6, .28 .6, .28	6, .2-8 6, .2-8 6, .2-8 6, .2-8	6, .?8 6, .?8 6, .?8 	6, 6, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,	0.5, .6, .28 .6, .28 .6, .28	
Dis- charge (cfs)	701 718 8L3 804	840 845 728 482	616 832 778 835	941 1,030 855 916	590 237 378 550	1,130 1,140 1,040 1,070	1,110 939 986 986	944 949 974 924	813 750 750 750	1,040 1,040
Gage l height (feet)		0.56 .26	•40 •63	1.07 1.08 -91 -87	.12 .12 1.28	1.46 1.45 1.62 1.44	1.62 1.64 1.22 1.14	1.11 1.26 1.40 1.61	1.53 18	- 19 - 14 - 33
Mean velocity (fps)	3.5¼ 3.19 3.58 3.36	3.16 3.12 3.20 5.97	3.22 3.60 7.28 7.28	8.34 8.30 7.92 7.92	5.40 3.28 4.11 7.00	8.69 8.77 7.76 8.12	7.76 6.90 8.24 8.43	7.74 3.07 7.17 6.70	2.56 3.76 6.01 3.73	3.70 3.68 3.76 6.94
Area (sq ft)	198 225 219 239	224 247 228 80 . 8	192 232 119 115	113 124 121 116	110 72.3 92.6 110	130 130 133	143 136 119 117	122 309 136	318 200 127 201	200 206 277 150
Width (feet)	142 191 140 190	137 156 196 30•5		22222	えれれれ	31.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	32 4. 5 32 32 32	జర్షి జ.స	199 40 140	201 201 39
Made by	Matejka, Raitt McKim, Zellers Raitt, Walker Whitsel, Zentner	Raitt, Wertenberger Thrun, Wark	Macias, Raitt Matias, Raitt Matejka, McKim, Raitt - Matejka, McKim	McKim, Raitt, Whitsel McKim, Whitsel	Raitt, Whitsel McKim, Miller, Raitt do	Raitt, Wark, Whitsel Wark, Whitsel Raitt, Wark	Busalacchi, Wark, Raitt Raitt, Wark McKim, Whitsel	McKim, Vice, Whitsel McKim, Whitsel McKim, Vice, Whitsel Colby, Evjen, Wark	Whitsel do	Hubbell, Wark do Chadwick, Whitsel Chadwick, Davis
Date	Nov. 2, 1950 Do 3 Do	Do Do Nov. 9	Do Nov. 17 Nov. 21	Nov. 28 Nov. 29 Ndv. 30 Dec. 1	Pec. 4 Dec. 4 Dec. 7 Dec. 7 Dec. 8	Dec. 11 Dec. 12 Dec. 13	Dec. 14 Dec. 15 Dec. 19	Dec. 21 Do Dec. 22 Jan. 26, 1951	Do May 8 Do	Do Do May 23

.

	Table 2Discharge measur	¹ Staff gage located on right bank 650 ft above NoteEmployees of Bureau of Reclamation are J. Zentner. Table 2Discharge measur	Fish Busa ements	ish and Wildlife Busalacchi, F. G ents of the Niob	ie Service F G. Macias, brara River Cage I	buffalo , C. R. M er near 5	bridge. Hiller, D.	.28 Raitt, during Meas.		06	10:00 a.m. anberger, G spt. 30, 199	Fair J. Whitse	Section <u>A</u> '. 1, and
Date	Ma	(feet)	Area (sq ft)	velocity (fps)		charge (cfs)	fetho			(mst)	rated		Remarks
23, 1950 3 17 21	Zellars Macias, Zellars Zellars Matejka, McKim, Raitt -	165 164 139	231 228 229 231		2.95 2.94 2.93 2.93	819 781 825 859	0.5, .6, .28 .6, .28 .6, .28 .6, .28	28 28 28 37 28 37 28	+.02	11:30 a.m. 10:35 a.m. 12:50 p.m. 1:30 p.m.	Good	300 ft below gag 100 ft below gag 350 ft below gag Downstream side 15 ft above gag	gage. gage. gage. .de of bridge,
28 11 14 20	McKim, Raitt, Whitsel - Zellars Busalacchi, Raitt, Wark McKim, Whitsel	140 138 142 127	255 265 277 252	4.00 3.66 3.78 78	3.02 3.12 3.11 3.05	1,020 971 1,000	s, 5, 6, 2-8 s, 5, 6, 2-8 6, 2-8	8 28 8 28 8 22 22 27	01	1:25 p.m. 10:30 a.m. 12:35 p.m. 11:00 a.m.	Fair Good	8888 8	5 0 0
22 10, 1951 26 22	Zellars	164 160 160	256 302 324	3.74 2.77 3.15	3.23 3.23 3.24 3.29	959 836 841 1,020	6, 2-8 6, 2-8 6, 2-8 6, 2-8 6, 2-8	35 35 35 35 37 37	07 08	10:35 a.m. 11:35 a.m. 12:07 p.m. 12:50 p.m.		350 ft below 300 ft below Do. Do.	gage. gage.
9 23	Blessum, Caughran Blessum	136 136	188 309	2.77 3.72	2.56 3.08	521 1,150	•6, •2-•8 •5, •6	8 34 6 30	02	ll:25 a.m. l:25 p.m.	Good Poor	Do. Downstream side of	de of bridge,
27 9 30	Blessum, Raitt Zellars	140 163 163 161	316 244 259 222	4.27 3.66 3.76 3.41	3.30 2.94 3.06 2.87	1,350 893 974 758	.5, .6, .28 .6, .28 .6, .28	88888 877 877 877 877 877 877 877 877 8	05 02 +-014	11:13 a.m. 10:20 a.m. 12:10 p.m. 11:42 a.m.	Fair	ft below Do. ft below Do.	• • • ນ ຍ ຍ ນາ ນາ ນາ ຈັດຍ ນ ນາ
-	Wark, Hubbell, Steele, Whitsel	ליוד	261	3.62	2.93	923	·	•6 30	+•03	3:48 p.m.	Fair	Downstream side of 15 ft above gage.	de of bridge, gage.
May 23 May 26 June 8	Davis, Chadwick, Raitt, Whitsel	138 165 164	270 251 249 264	3.92 3.74 3.49 3.90	3.09 3.04 3.21	1,060 940 869 1,030	.6, .28 .6, .28 .6, .28	1238 1238 1238 1238 1238 1238 1238 1238	•••07 •••02 •••02	2:33 p.m. 10:35 a.m. 10:03 a.m. 10:45 a.m.	Good	Do. 250 ft below 300 ft below 250 ft below	00000000000000000000000000000000000000
June 28	Raitt, Whitsel	138	234	4.15	3.06	116	ح	•6 26	-05	3:57 p.m.	Good	Downstream side of	de of bridge,
9	Zellars	139	212	1°00	3.04	8118	5. 6. 2-8	8 37	+ 02	9:18 a.m.		15 IT above gage. Do.	gage.

.

,

.

Note .- - Employees of Bureau of Reclamation are J. Busalacchi, F. G. Macias, D. B. Raitt, R. Steele, and G. J. Whitsel.

		I.I.o. b. o. o.	Suspende	d sediment	,
Date	Time (mst)	Water discharge (cfs)	Mean concentration (ppm)	Discharge (tons per day)	Gage ¹ height
Nov. 2, 1950 Nov. 3 Do Nov. 8 Nov. 9	2:30 p.m. 10:00 a.m. 1:00 p.m. 12:45 p.m. 2:15 p.m.	ь 718 ь 804 ьь 824 782	1,560 2,030 1,790 c 1,510 2,210	3,020 4,410 3,980 4,670	1.34 .62
Nov. 10 Nov. 17 Nov. 21 Do Nov. 22	9:40 a.m. 9:30 a.m. 10:00 a.m. 4:00 p.m. 8:10 a.m.	502 816 969 790	1,990 2,410 1,800 1,210 1,810	2,700 3,960 3,170 3,860	.28 .76 .66 .84 .63
Do	10:30 a.m.	790	1,540	3,280	.63
Nov. 28	11:15 a.m.	858	1,850	4,290	.97
Do	4:40 p.m.	1,330	1,350	4,850	1.41
Nov. 29	10:10 a.m.	867	1,710	4,000	.89
Do	3:05 p.m.	1,080	1,500	4,370	1.14
Dec. 1	8:55 a.m.	918	1,320	3,270	.87
Do	12:00 m.	944	1,770	4,510	.90
Dec. 4	11:20 a.m.	638	440	758	.91
Dec. 5	2:10 p.m.	222	1,770	1,060	.16
Dec. 6	3:30 p.m.	250	830	560	.21
Dec. 8	10:25 a.m.	605	510	833	1.41
Do	4:25 p.m.	589	1,260	2,000	1.39
Dec. 11	10:10 a.m.	918	670	1,660	1.22
Do	3:50 p.m.	1,150	690	2,140	1.48
Dec. 12	10:00 a.m.	1,050	610	1,730	1.35
Do	3:10 p.m.	1,070	560	1,620	1.38
Dec. 13	10:40 a.m.	1,050	440	1,250	1.49
Do	4:45 p.m.	1,030	690	1,920	1.22
Dec. 14	8:40 a.m.	1,100	340	1,010	1.94
Do	4:00 p.m.	850	700	1,610	1.16
Dec. 15 Do Dec. 19 Dec. 20	8:40 a.n. 11:00 a.m. 10:05 a.m. 4:00 p.m. 9:15 a.m.	935 935 1,000 978 1,000	120 150 130 510 210	303 379 351 1,350 567	1.88 1.52 1.44 1.15 1.45
Do	4:00 p.m.	978	670	1,770	1.15
Dec. 21	8:45 a.m.	916	350	866	1.23
Do	3:45 p.m.	952	620	1,590	1.26
Dec. 22	8:40 a.m.	960	120	311	1.65
Do	11:20 a.m.	1,000	770	2,080	.97
Jan. 26, 1951	10:50 a.m.	681	247	454	1.40
May 8	5:10 p.m.	842	1,640	3,730	09
May 9	12:00 m.	771	2,040	4,250	10
May 23	11:30 a.m.	1,010	1,880	5,130	.30
June 28	12:25 p.m.	952	1,680	4,320	.07
July 17	11:40 a.m.	826	2,080	4,640	.02

Table 3.--Sediment discharge measurements of the Niobrara River near Valentine, Nebr. (contracted section)

b Discharge measurement. bb Discharge is average from two measurements made on this day. c For one vertical only.

,

1 Staff gage located on right bank 650 ft above Fish and Wildlife Service Buffalo Bridge.

		Vature	Suspendeo	l sediment	17-4	
Date	Time (mst)	Water discharge (cfs)	<pre>Mean concentration (ppm)</pre>	Discharge (tons per day)	Water temperature (°F)	Gage ¹ height
Nov. 2, 1950 Do Nov. 3 Do Do	11:30 a.m. 1:00 p.m. 11:00 a.m. 12:00 m. 3:15 p.m.	ь 701 ь 718 ь 843 ь 804 ь 840	780 770 700 1,040 1,340	A 1,480 C 1,490 A 1,590 C 2,260 A 3,040		
Do Nov. 9 Nov. 10 Nov. 17 Jan. 26, 1951	3:30 p.m. 4:00 p.m. 1:00 p.m. 1:45 p.m. 10:30 a.m.	ь 845 ь 728 ь 616 ь 832 681	750 1,400 1,000 1,440 218	D 1,710 C 2,750 C 1,660 C 3,230 C 401	 	0.50 .48 1.40
May 8 May 9 Do Do May 23	1:00 p.m. 11:55 a.m. 12:15 p.m. 1:00 p.m. 11:15 a.m.	790 774 765 757 1 , 050	811 758 881 c 2,680 602	C 1,730 C 1,580 A' 1,820 D' 5,480 A' 1,710		15 10 10 10 .34
Do June 28 Do July 17	11:40 а.т. 10:40 а.т. 12:30 р.т. 2:20 р.т. 11:40 а.т.	1,010 951 933 924 826	563 752 490 566 982	C 1,540 A' 1,930 C 1,230 D' 1,410 A' 2,190	67 70	•30 •07 •05 •04 •02
Do Do	12:40 p.m. 1:10 p.m.	826 826	683 808	C 1,520 D' 1,800		.02 .02

Table μ_{\bullet} --Sediment discharge measurements of the Niobrara River near Valentine, Nebr. (normal sections)

b Discharge measurement.

c This sample apparently contained bed material.

1 Staff gage located on right bank 650 ft above Fish and Wildlife Service Buffalo Bridge. Note.--Capital letters indicate sections.

			Suspendeo	d sediment		
Date	Time	Water discharge	Mean	D • 1	Water temperature	Gage
Date	(mst)	(cfs)	concentration	Discharge	(^o F)	height
		(015)	(ppm)	(tons per day)	(-1.)	
Oct. 23, 1950	1:40 p.m.	793	700	1,500		2.92
Nov. 3	11:40 a.m.	816	760	1,670		2.94
Nov. 17	1:40 p.m.	782	920	1,940		2.91
Nov. 21	2:30 p.m.	804	1,240	2,690		2.93
NOV. 20	2:25 p.m.	817	1 , 530	3,370		2.99
Dec. 6	11:35 a.m.	a 250	140	94		
Dec. 11	12:20 p.m.	1,140	1,490	4 , 590		3.32
Dec. 14	2:40 p.m.	957	1,060	2.740		3.06
Dec. 20	12:35 p.m.	957	1,020	2,640		3.06
Dec. 22	12:40 p.m.	687	700	1 , 300		2.82
Jan. 10, 1951	1:35 p.m.	736	237	471		3.13
Jan. 26	1:00 p.m.	768	140	290		3.07
Feb. 22	2:45 p.m.	1,040	293	823		3.30
Mar. 9	12:15 p.m.	517	520	726		2.55
Mar. 27	1:30 p.m.	897	1,900	4,600	49	2,92
		0.0-7				
Apr. 9	12:20 p.m.	885	560	1,340		2.91
Apr. 30	1:50 p.m.	897	558	1,350		3.01 2.90
May 7 May 9	1:35 p.m. 7:10 p.m.	770 981	580 1,240	1,210 3,280		3.08
May 23	4:00 p.m.	901 981	1,010	2,680		3.08
May 29	4.00 Pene	701	TOTO	~ , 000		J.00
May 26	12:15 p.m.	933	528	1,330		3.04
June 8	11:40 a.m.	885	1 , 490	3,560		3.00
June 22	12:40 p.m.	1,020	697	1,920		3.20
June 28	5:00 p.m.	885	608	1,450		3.03
July 6	12:30 p.m.	839	510	1,160		3.05
July 17	3:30 p.m.	885	608	1,450		3.09

Table 5 .-- Sediment discharge measurements of the Niobrara River near Sparks, Nebr.

a Mean daily discharge.

	station	Percent- age of concen- tration at sec- tion <u>B</u>		37				38 83	86		17	222
	gaging st	Concen- tration (ppm)		760				920 1,240	1,530		011	1,490
	Sparks g	Time (mst)		11:40 a.m.				1:40 p.m. 2:30 p.m.	2:25 p.m.		11:35 a.m.	12:20 р.т.
		Percent- age of concen- tration at sec- tion <u>B</u>				43						
	Section D	Concen- tration (ppm)				750						
	Se	Time (mst)				3:30 p.m.						
		Percent- age of concen- tration at sec- tion <u>B</u>	49		55		63 53	69				
_	Section C	Concen- tration (ppm)	027		1,040		1,400	1, 1440				
to July 17, 1951	Se	Time (mst)	l:00 p.m.	*****	12:00 m.		l4:00 p.m. 1:00 p.m.	1:45 p.m.				
to Ji		Percent- age of concen- tration at sec- tion <u>B</u>	50		36	77						
	Section A	Concen- tration (ppm)	780		700	1,340						
	ŝ	Time (mst)	ll:30 a.m.		11:00 a.m.	3:15 p.m.						
		comparison Esti- mated tration (ppm)	1	2,040	1,960 1,880	1,740	2,210 1,900	2,400 2,400 1,500	1,780		840	670
	lon B	For comp. Time (mst)	-	9:40 a.m.	ll:00 a.m. 12:00 m.	3:10 р.m. 3:15 р.m.	l4:00 p.m. 1:00 p.m.	11:440 a.m. 1:45 p.m. 12:30 p.m.	12:25 p.m.		9:35 a.m.	l0:20 a.m.
	Section	Concen- tration (ppm)	1,560	2,030	062 [2,210 1,990 2.110	1,210	1,810 1,540 1,850 1,350	1,710 1,500 a 2,040 1,320 1,770	1,770 1,770 830 830 830	510 1,260 670
		Time (mst)	2:30 p.m.	1 1			2:15 p.m. 9:40 a.m.	10:00	8:10 a.m. 10:30 a.m. 11:15 a.m. 4:40 p.m.	10:10 a.m. 3:05 p.m. 2:30 p.m. 8:55 a.m. 12:00 m.	11:20 a.m. 2:10 p.m. 3:30 p.m. 1:25 p.m.	10:25 a.m. 4:25 p.m. 10:10 a.m.
		Date	Nov. 2 Do Do	Nov. 3 Do	 888	1 8 8 8	Nov. 9 Do Nov. 10 - Do Nov. 17 -		Nov. 22 - Do Nov. 28 - Do	Nov. 29 - Do Nov. 30 - Dec. 1 Do	Dec. l4	Dec. 8 Do Dec. 11 -

. Table 6.--Comparison of suspended-sediment concentrations of measuring sections of the Niobrara River near Walentine and Sparks, Nebr., from Nov. 2, 1950, to July 17, 1951

	204 340		103	57	ation			48		57		36	30
	1,060		700	041	gaging station			1,240		1,010		608	608
	2:40 p.m. 12:35 p.m.		12:40 p.m.	l:00 p.m.	Sparks g			7:10 p.m.		4:00 p.m.		5:00 p.m.	3:30 p.m.
											33	40	
					Section D'						556	808	
					Se						2:20 p.m.	1:10 p.m.	
			88			54) (30		29	34	
			218		Section C	811	061		£95.		490	683	
			10:30 a.m.		Se	1:00 p.m.	• • • • • • • • • • • • • • • • • • •		ll:40 a.m.		12:30 p.m.	12:40 p.m.	
							L13	32		114		47	
					Section A'		881	602		752		982	
					Sec		12:15 p.m.	11:15 a.m.		10:40 a.m.		11:40 a.m.	
	520 300		680 247	247		 	2,050	2,060 2,560 1,890	1,870		1,670 1,680	1,690 2,080 2,020 2,010	2,010
	12;40 p.m. 10:35 a.m.		0 a • m 0 a • m	11:00 a.m.	on B	л. 1°00	12:15 p.m.	12:53 p.m. 5:10 p.m. 11:15 a.m.	ll:40 a.m.	2:00 10:40	12:30 p.m. 2:13 p.m.	3:00 p.m. 	l:30 p.m.
690 610 610 690 690	340 700 210	670 350 820 120	710		Section	1,640	2,040			1,680		2,080	
3:50 p.m. 10:00 a.m. 3:10 p.m. 10:40 a.m. 4:45°p.m.	8:40 a.m. 4:00 p.m. 9:15 a.m.	4:00 p.m. 8:45 a.m. 12:00 m. 3:45 p.m. 8:40 a.m.	11:20 a.m.			5:10 p.m.	12:00 m.			12:25 p.m.		11:40 a.m.	
Dec. 12 - Dec. 12 - Dec. 13 - Do	Dec. 14 - Do Do Dec. 20 -	Dec. 21 - Dec. 21 - Do - D	Do Do Jan. 26 -			May 8 Do	of April 49	Do Do May 23	Do	Do June 28 - Do		Do July 17 - Do Do	Do

.

a From point-integrated samples.

•

.

49

Table 7.--Suspended-sediment concentrations at cross sections of the Niobrara River near Valentine and Sparks, Nebr., from Nov. 2, 1950, to July 17, 1951, in average percentage of the concentration at the contracted section \underline{B}

Section	Number of concentration comparisons with section \underline{B}	Average concentration in percent of concentration at section \underline{B}
A A' C D' D	3 4 11 2 1	54 42 50 36 43
All normal sections	21	47
Sparks gaging station	14	97
Sparks gaging station (Nov. 2 to 17, 1950, and May 8 to July 17, 1951)	6	Ці

Table 8.--Daily suspended-sediment discharge of the Niobrara River near Valentine, section $\underline{B},$ and near Sparks, Nebr., 1950-51 water year

Niobra	ara River nea:	r Valentine	, section <u>B</u>		Niobrara Riv	ver near Sp	parks
Date	Water discharge (cfs)	Concen- tration (ppm)	Sediment discharge (tons per day)	Date	Water discharge (cfs)	Concen- tration (ppm)	Sediment discharge (tons per day)
Nov. 28 29 30 Dec. 1 2 3 4	1,090 986 926 952 714 434 541 274	1,600 1,630 1,520 450 1,300	4,700 4,300 3,800 2,200 680 660 960	Nov. 28 29 30 Dec. 1 3 45	1,000 957 8855 720 450 520 300	1,380 1,460 1,540 1,570	3,730 3,770 3,680 3,750 1,230 4,30 590 170
6 7 9 10 11 12 13	228 384 494 814 833 1,040 1,090 1,000	930 860 690 600 560	570 810 1,100 2,000 1,900 1,800 1,500	6 7 9 10 11 12 13	250 400 500 650 850 1,050 1,100 1,100	140 690 1,050 790 910 1,100 1,160	90 330 930 1,840 1,810 2,580 3,270 3,450
14 15 16 17 18 19 20 21	960 901 850 950 944 986 944	530 200 280 380 450	1,400 490 320 490 530 710 1,000 1,100	14 15 16 17 18 19 20 21	1,020 957 897 969 921 945 957 969	1,100 1,020 1,020 1,110 1,140 1,110 1,060 1,180	3,030 2,640 2,470 2,900 2,830 2,830 2,740 3,090
Total	19,035		38,620	Total	19,252		54,180

Table 9.--Slope observations on the Niobrara River near Sparks, Nebr.

Date	Time (mst)	Staff reading (feet)	Recorder reading (feet)	Difference (feet)	Slope (ft per mile)
June 24, 1950	1:00 p.m.	4.20	3.03	1.17	6.94
July 13	10:40 a.m.	4.26	2.96	1.30	7.71
July 30	10:00 a.m.	4.20	2.96	1.24	7.36
Aug. 19	10:10 a.m.	4.23	2.94	1.29	7.65
Aug. 25	10:20 a.m.	4.13	2.87	1.26	7.48
Aug. 28	7:50 a.m.	4.63	3.25	1.38	8.19
Aug. 30	5:40 p.m.	4.28	2.94	1.34	7.95
Sept. 15	12:35 p.m.	4.26	2.92	1.34	7.95
Nov. 3	9:25 a.m.	4.10	2.94	1.16	6.88
Nov. 21	1:45 p.m.	4.15	2.93	1.22	7.24
Do	4:15 p.m.	4.20	2.98	1.22	7.24
Average					7.51

Note.--Staff gage and Sparks recorder set to same datum. Staff gage on right bank 890 ft up-stream from recorder.

Table 10.---Particle-size analyses of suspended sediment (point-integrated samples), Niobrara River near Valentine, Nebr., section <u>B</u>, 1950-51 water year <u>M</u>ethods of analysis: S, sieve; W, in distillea water?

		Methods	or analysis	MS MS	MS MS MS	MS MS MS	MS MS MS	MS MS MS	MS MS MS	MS MS MS	MS MS MS	MS MS
			2.000									
		ers		100	1000	100 100	1000	100			100	100011100
		in millimeter	0•500	96 96 93	98 98 97	100 98 98	100 99 99	001 99 99	001100	0011000	99 99 98	99 98 97
		in mi	0.250	55 11 12 12 12	898V	73 75 79	79 78 78 80	85533 85533	88 9 3 3 7 88 9 3 3 7	94 94 88	68 64 64	58 58 58
		l size.	0.125	15	21 20 21 21	38 38 38	38 33 38 38 38 38	44 47 47 47 47 47 47 47 47 47 47 47 47 4	£32£6	5288 2388 29	22 16 8	11803 11803
		indi cated	0.062	n m t-	ωννω	10 7 8 12	12 12 12	127 127 127 127 127	22 17 15	ល្អដ្ឋ	てたたど	mt-uo
	sediment	an ind	0.031									
water/		Percent finer than	0.016									· · · · · ·
arstilled water.	Suspended	cent fi	0.008									
nu arst	Ś	Pero	700.0									
, М,			0.002									
5, Sleve		nt	Concent tration (ppm)	5,040 5,720 5,870	3,010 3,080 2,740 2,130	2,180 2,340 1,550 1,260	1,570 1,660 1,340 1,220	1,240 1,150 1,150 1,070	620 780 710 870	510 640 660 660	1,660 2,040 2,650 6,980	1,700 2,060 2,700 3,630
anarysıs:		Sampling point	Depth (feet)	20100 20100	0000 700 700 700 700 700 700 700 700 70	-1-16 -1-16 -1-16 -1-16 -12-10	00-72 5-0-1-	100%	-1-16V	0000 000 000	момо • ччо	80.97 80.97
Methods of a		Sam	Velocity (fps)	8.74 9.59 4.16 6.68	9.50 10.86 9.98 7.64	12.96 11.66 10.12 6.51	10.05 10.84 10.45 7.28	10.52 11.00 9.84 4.38	8.04 9.01 9.79 4.64	6.40 7.16 6.84 .60	3.47 1.46 1.00 2.30	4.18 4.04 3.55 3.55
_Me		Total	deptn (feet)	3.7 3.7 3.7		5555 5555 5555	NNNN FFFF	0000 5555	0000 5555		~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~ ~~~~~~
		Sampling		ユユユユ	~~~~	12 12 12 12 12	1466 1466	119 199 199	55 55 55 55 55	5666 2666	5555	ထထထထ
		Water	urscnarge (cfs)	926 926 926 926	926 926 926 926	926 926 926	926 926 926 926	926 926 926	926 926 926	926 926 926	384 381 381 381	384 384 384
			(mst)	11 р.т. 18 р.т. 18 р.т. 11 р.т.	24 p.m. 20 p.m. 14 p.m.	бу р. т. (4 р. т. 13 р. т.	с р р р л л л л л л л л л л л л л л л л	0 0 0 m 0 0 0 m 0 0 m	22 p.m. 29 p.m. 4 p.m.	7 p.m. P.m. P.m. P.m. P.m.	-8 р.т. 14 р.т. 0 р.т.	48 p.m. 42 p.m. 86 p.m. 22 p.m.
		E-1	ت 	1,1,1 1,1,0 3,38 3,31 3,31	3:24 3:24 3:20 3:14 3:05	2:59 2:54 2:148 2:148 2:148	2:32 2:32 2:10 2:10	2:03 1:58 1:49 1:40	1:32 1:32 1:19 1:14	1:07 1:01 12:57 12:51	3:18 3:14 3:14 3:02	2:12 2:12 2:32 2:32
			Date	Nov. 30, 1950 Do Do		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				Do	Dec. 7 Do Do	00 00 00 00 00 00 00 00 00 00 00 00 00
				-				1				

Table 10.--Particle-size analyses of suspended sediment (point-integrated samples), Niobrara River near Valentine, Nebr., section <u>B</u>, 1950-51 water year--Con. <u>M</u>ethods of analysis: S, sieve; W, in distilled water

		Methods of	analysis	MS MS MS	WS MS MS	MS MS MS	MS MS MS	MS MS MS	MS MS MS	MS MS MS MS	MS MS MS	MS MS MS	SW SW SW
			2.000										
		ters	1.000	100 100 100	100	100	8	100	0011001	100			
		in millimeters	0.500	99 98 88	99 100 99	001 000 100 100	100 100 100	100 100 99 97	8888 8888 8888	99 99 99	0011000110001	80101	001 001 001
		1	0.250	72 68 64	80 76 80 75	86 86 86 86	88 89 89 89	84284	33.3% 33.3%	4 <i>3</i> 24	78 70 73 80	92 83 83 83 83 83 84 83 85 85 85 85 85 85 85 85 85 85 85 85 85	88 0 0 0
		d size,	0.125	27 25 22 20	28 24 24	84458	3888 36	38 gg	5158 8513	21 22 22 27	38%%	장극국왕	47 48 47
		dicate	0.062	たらし	~~~v	6878	7222	2225	トトシン	8901	ртт 2 164740	28 116 16	21 21 21 21
	sediment	Percent finer than indicated	0.031										
water		iner t	0.016										
Defilisio	Suspended	cent f	0.008										
arb dis		Per	0.004										
×.			0.002										
S, Sleve;		int Concen-	tration (ppm)	1,720 1,960 2,300 2,600	1,220 1,310 1,170 1,610	790 820 810	560 570 600	530 670 650 650	1,300 1,820 1,920 1,760	890 1,170 780 610	310 1460 1420 380	320 320 360	340 320 310
analysis:		a –	Depth (feet)	0.5 1.1 2.5	200 200 200 200 200 200 200 200 200 200	₽.0.4 ₽.0.4 ₽.0.1	0000 0050	мон мон мон	9.04 3.04 1.75	0.4-75 9 01-75	0.01 0.01 0.01	н. 5002 1	3.0
Methods of		Sam	Velocity (fps)	6.18 5.02 3.48 1.64	3.78 5.21 2.85	2.05 2.05 2.05	3.59 5.11 2.38 2.10	2.44 3.20 1.00 1.08	10.36 10.32 10.56 10.11	7.146 12.78 11.36 9.84	10.48 11.80 11.39 10.12	8.54 11.61 10.56 6.94	6.14 8.30 9.24
- ₩		Total		0000	~~~~ ~~~~~	0000 0000	wwww nnnn		ኯ፞፝፞፞ኯኯኯ ኯ፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟	ጥጥጥጥ ጣጣጣጣ	~~~~~ ~~~~~	0000 tttt	<i>иии</i> ѣѣѣ
		Sampling		12 12 12	100 1100 1100	6119	22 22 22	<u> </u>	キャマト	~~~~	ㅋㅋㅋㅋ	61 61 61	75 75
		Water discharge	(cfs)	384 384 384	384 384 384	384 384 384	384 384 384	384 384 384	918 910 892 892	884 842 824 824	808 790 782	765 748 740 740	722 722 714
		Time	(Jacur)	2:27 p.m. 2:24 p.m. 2:12 p.m. 2:02 p.m.	1:56 p.m. 1:52 p.m. 1:33 p.m. 1:26 p.m.	1:11 p.m. 1:06 p.m. 1:02 p.m. 12:56 p.m.	12:08 p.m. 12:16 p.m. 12:02 p.m. 11:57 a.m.	11:50 a.m. 11:444 a.m. 11:38 a.m. 11:30 a.m.	12:48 p.m. 12:45 p.m. 12:42 p.m. 12:35 p.m.	12:30 p.m. 12:10 p.m. 12:05 p.m. 12:05 p.m.	12:00 m. 11:55 a.m. 11:55 a.m. 11:50 a.m.	11:45 a.m. 11:40 a.m. 11:35 a.m. 11:35 a.m.	ll:30 a.m. ll:30 a.m. ll:25 a.m.
		Date		Dec. 7, 1950 Do Do Do	Do				Dec. 21 Do Do			D D D D D D D D D D D D D D D D D D D	Do
							55	'n					

-

SW	SW SW SW	MS	SW SW SW	SW	SW SW SW	SW SW SW
	100			100		
100	96 98 98			99 96		
85	48 70 54	16 89 80	100 100 100	 67 52	8522	100 100 100
39	69 15	36 32	64 58 58 56 39	10	2323	75 72 73
15	чо Чо Чо Чо Чо Чо Чо Чо Чо Чо Чо Чо Чо Чо	99	27 24 24	mW	27 21 26 20	282 287 287 287 287 287 287 287 287 287
1420	5,480 4,670 6,290 10,700	894 834	250 282 280 280	4,170 6,660	350 1450 370 4442	169 179 191
p**0	-1#-22 5.51-2		т. •1 •2 •1 •2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5004 t-01	1-5 1-5 1-7
5.72	8.50 7.85 6.80 5.78	8.89 6.32	7.62 7.51 6.07 3.05	7.88 8.82 6.75 5.10	5.80 8.07 7.14 4.48	7.26 6.38 5.64 4.72
4.5		3.7	0000 tttt		1-27 4-7 4-7	8888 1777 1777
24	16666	27 27		អ្នកអ្នក	26 26 26	37.5 37.5 37.5 37.5
706	843 843 843 843	84,3 84,3	84,3 84,3 84,3 84,3	908 908 908 808	908 908 808 808 808	908 809 808 808 808
20 a.m.	38 p.m. 41 p.m. 30 p.m.	-04 p.m. 57 p.m.	28 p.m. 32 p.m. 33 p.m. 24 p.m.	2:10 p.m. 2:11 p.m. 2:12 p.m. 2:13 p.m.	41 p.m. 54 p.m. 55 p.m.	3:27 p.m. 3:11 p.m. 3:31 p.m. 3:26 p.m.
;;; -	ភើរភីរភីរភី 	یری ۱۱	وق وق وق وق وق وق وق وق وق وق وق وق وق و			<u> </u>
Do 11:20 a.m.	May 8, 1951 - 5:3 Do 5:4 Do 5:3 Do 5:5	Do		June 28 Do Do Do	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>ຊ</u> ດດດ

•

Table ll.--Particle-size analyses of suspended sediment, Niobrara River near Valentine, Nebr., section <u>B</u>, 1950-51 water year \sqrt{n} able ll.--Particle-size analyses of analysis: S, sieve; W, in distilled water \sqrt{n}

	Mothods Mot	Metnous of	analysis	WS MS MS MS S	SW SW SW SW	WS SW SW	SW SW SW SW	MS MS MS MS	WS SW SW SW	WS SW SWS	WS SW SW	MS
			2.000			100	100					1
			1.000	100 1000 1000 1000	100 100 100 100	100 99 100 100	100 99 1000	100 100 100	100 100 100 100 100	100 100 100 100	100 100 100 100	
		ters	0•500	99 98 97 98	98 99 98 98	99 98 98 99	999998 989988	98 98 99 100	99 99 90 90	94 96 98 98 98	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
		n millimeters	0.250	75 73 72 70	69 714 62 64	24 65 65 65 65	68 64 66	70 765 89 81	76 67 70 70 55	52 57 61 61	8728 6992	74
		size, in	0.125	21 17 26 21 21	20 19 112 114	25 26 33 33 26 25 25 25 25 25 25 25 25 25 25 25 25 25	30 17 22 22	22 28 28 28 29 26 26 26 26 26 26 26 26 26 26 26 26 26	21 26 34	37 27 21 21 28	54 54 54 54 54 54 54 54 54 54 54 55 55 5	22
-	011	than indicated	0.062	νοσυσ	עב עב	11 9687	ᆸᄵᇮᆋ	しろるした	слиба 2	11 18 18 18 18	10 35 10	У
Susnended sediment			0.031									•
Susnende		Percent finer	0.016									
		Perce	0.008									.
			0,004									
			0,002									
1	Tuovuoj	concen- tration of	sample (ppm)	1,560 2,030 1,790 2,210 1,990	2,410 1,200 1,210 1,510	1,850 1,350 1,710 1,500	1,770 1,440 1,770 830 510	1,260 670 690 560 560	140 690 340 120	150 130 2510 670	350 620 120 770	1,640
	turat an	water discharge	(cfs)	b 718 b 804 bb 824 782 502	816 969 790 790	858 1,330 867 1,080 918	944 638 222 250 605	589 918 1,050 1,050	1,050 1,030 1,100 850 935	935 1,000 1,000 1,000 978	916 952 960 1 , 000	842
		Time (nst)		2:30 p.m. 10:00 a.m. 1:00 p.m. 2:15 p.m. 9:40 a.m.	9:30 a.m. 10:00 a.m. 4:00 p.m. 8:10 a.m. 10:30 a.m.	11:15 a.m. 4:40 p.m. 10:10 a.m. 3:05 p.m. 8:55 a.m.	12:00 m. 11:20 a.m. 2:10 p.m. 3:30 p.m. 10:25 a.m.	4:25 p.m. 10:10 a.m. 3:50 p.m. 10:00 a.m. 3:10 p.m.	10:40 a.m. 4:45 p.m. 8:40 a.m. 1:00 p.m. 8:40 a.m.	11:00 a.m. 10:05 a.m. 1:00 p.m. 9:15 a.m. 1:00 p.m.	8;45 a.m. 3:45 p.m. 8:40 a.m. 11:20 a.m.	5:10 p.m.
		Date		Nov. 2, 1950 Nov. 3 Do Nov. 10	Nov. 17 Nov. 21 Do Nov. 22 Do	Nov. 28 Do Nov. 29 Do	од 54	Do Dec. 11 Do Dec. 12 Do	Dec. 13 Do Dec. 14 Do	Do Dec. 19 Do Dec. 20	Dec. 21 Do Dec. 22	May 8, 1951

•

Mo	МS	MS	MS
U)	ഗ	σ ₂	n

100 99 66

75 68 78 78

പപ്പയ പ

-----1

..........

2,040 1,880 1,680 2,080

771 1,010 952 826

12:00 m. 12:30 p.m. 1:25 p.m. 12:40 p.m.

May 9 ------May 23 ------June 28 ------

į i ---------100

b Discharge measurement. bb Discharge is average of two measurements made on this day.

Table 12.--Particle-size analyses of suspended sediment, Niobrara River near Valentine, Nebr., normal sections, 1950-51 water year Methods of analysis: S, sieve; W, in distilled water

		Location		Section A. Section \overline{C} . Section \overline{A} . Section \overline{C} .	Section D. Section <u>C</u> . Do. Do.	Do. Do. Section A ¹ . Section \overline{C} .	Section \overline{A}^{1} . Section \overline{C} . Section \overline{A}^{1} . Section \overline{C} .	Section \underline{A}^{1} . Section $\overline{\underline{C}}$. Section $\underline{\underline{D}}^{1}$.						
	Methods of analysis			WS MS MS MS MS	MS MS MS	WS MS SW	WS WS WS MS	SW SW						
			2.000											
			1.000											
		eters	0•500	100 100 100 100	100 100 100	99 100		100						
		than indicated size, in	size,	size, in	0.250	92 94 80 80 80 80 80 80 80 80 80 80 80 80 80	92 94 86	80 92 87	94 90 100 100	98 96 91				
					size,	size,	size,	size,	0.125	28 29 2 2	35 35 35 35	26 38. 32. 21. 38.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	41 46 43
+	sealment								ndi cated	ndi cated		.ndi cated	ndi cated	0.062
the function of the function o	suspended se		0.031											
	Isne	Percent finer	0.016											
		Perce	0.008											
			0.004											
			0.002											
		Concen- tration of	sample (ppm)	780 770 700 1,040	750 1,400 1,000 1,440	218 811 881 758 2,680	602 563 152 566 566	982 683 808						
	Water discharge (cfs)			6 701 6 718 6 843 6 804 5 804	b 845 b 728 b 616 b 832	681 765 777 757	1,050 1,010 951 933 924	826 826 826						
	Time (mst)			ll:30 a.m. l:00 p.m. ll:00 a.m. ll:00 a.m. 3:15 p.m.	3:30 p.m. 4:00 p.m. 1:00 p.m. 1:45 p.m.	ll:30 a.m. 2:00 p.m. 12:15 p.m. 11:55 a.m. 1:00 p.m.	12:15 p.m. 12:40 p.m. 11:40 a.m. 1:30 p.m. 2:20 p.m.	12:40 p.m. 1:40 p.m. 2:10 p.m.						
		Date		Nov. 2, 1950 - Do Nov. 3 Do	Do 01 .vov 22	Jan. 26, 1951- May 8 May 9 Do	May 23 Do Do	July 17 Do Do						

b Discharge measurement.

Table 13.--Particle-size analyses of suspended sediment, Niobrara River near Sparks, Nebr., 1950-51 water year $\underline{\text{Methods of analysis: S, sieve; W, in distilled water}}$

Methods of analysis				MO
		2,000		
		1.000		
	eters	0•500	100 1000 1000 1000 1000	
	n millime	0*250	2828888 883438 2828888 888448	72
	Percent finer than indicated size, in millimeters	0.125	555%3% 5558% 53%3%	41
liment	ıdi cated	0.062	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D.T.
Suspended sediment	c than ir	0.031		
Suspe	ent finer	0.008 0.016		f
	Perce			
		0.002 .0.004		
		0.002		
	Concen- tration of	sample (ppm)	700 760 1,510 1,510 1,510 1,060 1,060 1,020 1,020 233 710 233 1,020 233 1,020 1,000 1,020 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,0000	000
Water discharge (cfs)		(cfs)	793 816 816 817 817 817 757 757 757 757 957 957 981 981 981 981	600
Time (mst)			1:40 p.m. 11:40 a.m. 2:30 p.m. 2:33 p.m. 2:25 p.m. 11:35 a.m. 12:35 p.m. 12:35 p.m. 12:35 p.m. 12:35 p.m. 12:30 p.m. 7:10 p.m. 7:00 p.m. 12:30 p.m.	4:JU p.m.
Date			Oct. 23, 1950 Nov. 3 Nov. 21 Nov. 28 Dec. 6 Dec. 11 Dec. 11 Dec. 11 Dec. 11 Dec. 11 Mar. 27 May 2 June 28 June 28	JT Amp

a Mean daily discharge.

e, Nebr., normal sections	
near Valentine	~
Niobrara Rive	by sieve only
f bed material,	Analysis
e analyses of	
ble l4Particle-size	
Tal	

•

	Location		Section A. Section C. Do. Do. Do. Do. Do. Do. Do. Section A. Section G. Section A.	Section D' Section A' Section C
		14.000	100	100 98 100
		2,000	98 100 100 100	98 97 99
	S	1.000	001 97 99 99 98 98 98 98 98 99 98 99	97 95 90
	millimeter	0.500	88488 22888 8	88 98 67
diment	size, in	0.250	% ±0085% 32559	년 년 년 년 년 년 년
Depositea sediment	Percent finer than indicated size, in millimeters	0,125	чьяйы ашл э ш а	t vn v
De	finer than	0.062		0490
	Percent	0.031		
		0.016		
		0.008		
		0.004		
Number	Number of sampling points			๛๛๛๛
	Date		Nov. 2, 1950 Nov. 10 Jan. 26, 1951 May 9 May 23 Do June 28	Do

56

		Location		Sparks gage (bridge).	Do.	Do.	ро. Оо.	Do.	Do. Do.	Do.					
			4.000				100		98						
			2.000				66		96						
		rs.	1.000			100	100 97	100	94 100	98 100					
		Percent finer than indicated size, in millimeters	millimeter	millimeter	millimeter	millimeter	n millimete	0•500	100	100	66	99 88	66	985 98	92 95
1	Deposited sediment		0.250	81	68	62	75 143	72	37 Lt2	36 39					
		i indicated	0.125	13	35	20	12	л	m 01	0 M					
		finer thar	0•062	0	t,	1	10	0	-10	00					
		Percent	0,031												
			0*016												
			0.008	1 1 1 1 1											
			100.00												
	Number of sampling points		٣	m	m	ოო	2	ოო	ωw						
		Date s:		Nov. 21, 1950-	Nov. 28	Dec. 8	Dec. 14	May 9, 1951	May 23 June 28	July 6 July 17					

٢

Table 15.--Particle-size analyses of bed material, Niobrara River near Sparks, Nebr. (Analysis by sieve only)