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Abstract—This paper presents a scalable, autonomous 
framework for diagnostics of wind turbine gearbox failures using 
a multi-feature supervisory control and data acquisition data set 
spanning multiple years. Because of the size of the data set studied, 
all algorithms were constructed to be scalable using a Spark-
Hadoop data framework. An unsupervised approach was used to 
detect significant failures based on predetermined criteria. The 
initial criteria selected were an abnormal spike in turbine 
component temperature followed by a turbine power off, which 
helps reduce the number of potential false alarms. To detect 
abnormal spikes in component temperature, a model was 
introduced to adjust the temperature data for effects caused by 
ambient temperature and normal temperature increases when 
loaded. This study evaluates methods for normalizing temperature 
sensor data to identify anomalies. The models that performed the 
best were a linear regression and a multivariate polynomial 
regression. The proposed process for finding failures has tunable 
parameters that can be adjusted to be more or less sensitive. The 
combination of sensor data normalization and application of these 
criteria is successful in finding turbine failures resulting in 
downtime. The proposed methods can operate without failure or 
maintenance logs and can be utilized for offline analysis of large 
high-resolution data sets. 

Keywords: diagnostic model; machine learning; big data; wind 
turbine; gearbox; component failures 

I.  INTRODUCTION 
One mission of the U.S. Department of Energy 

(DOE) is to promote the adoption of clean energy 
sources. Wind energy will play a big role in this 
energy revolution. DOE has published scenarios that 
predict 20% of U.S. energy needs coming from wind 
by 2030 [1].  To further promote the adoption of wind 
energy, it is necessary to make wind turbines more 
resilient to failures. This can be addressed in a 
multifaceted approach, such as design, testing, and 
operation and maintenance (O&M) [2]. By increasing 

the reliability of turbines, substantial gains can be 
made to minimize O&M costs of wind energy. 

Once turbines are installed in a wind power plant, 
the main opportunity to improve turbine availability 
lies in improving O&M practices. Performance 
monitoring based on turbine supervisory control and 
data acquisition (SCADA) data and condition 
monitoring based on dedicated instrumentation, such 
as vibration and oil analysis, have been actively 
explored by the wind industry [3] to help accomplish 
this. The advantage with performance monitoring is 
SCADA data is readily available and does not need 
additional investments for hardware as condition 
monitoring typically does. On the other hand, there 
are still opportunities for mining of SCADA data by 
the wind industry to help improve turbine availability 
and reduce O&M costs. This study extends existing 
work by National Renewable Energy Laboratory 
(NREL) researchers on wind turbine gearboxes [4],  
which have been shown to be the most costly 
subsystem to maintain throughout a turbine’s 20-year 
design life, by using data-driven approaches to 
catalog and understand component failures in wind 
turbine gearboxes.  

This work uses historical data of wind turbines to 
detect failures identified by overheating of 
components inside turbine gearboxes. The data set is 
948 gigabytes (GB), so it requires scalable algorithms 
and use of NREL’s high-performance computing 
(HPC) resources. The data include many features 
(e.g., multiple component temperatures, power 
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generated, wind velocity) over a long period of time. 
We developed a model that adjusts component 
temperature for weather and power production 
returning a normalized temperature value. This 
computational model demonstrates temperature 
behavior under normal conditions. By comparing the 
model predictions with the observed data, we can see 
where the turbine is behaving in abnormal ways. 
These anomalies in the data point to possible failures 
in the components of the turbine. The diagnostic 
framework developed identifies failures as a 
combination of substantial temperature anomalies 
followed by system downtime. 

In Section II (Background), we will introduce the 
data set used for this study and discuss prior related 
work to identify turbine failures from operational 
data. In Section III (Methods), we introduce a new 
method for normalization of SCADA data channels 
and a diagnostic algorithm to identify gearbox 
failures. In Section IV (Results), we apply the 
proposed method to the data and present the results. 
Finally, in Section V (Conclusion) we summarize the 
contribution and areas for future work. 

II. BACKGROUND 
In this project, we work with the Continuous 

Reliability Enhancement for Wind (CREW) data set. 
This is a large data set of SCADA data compiled by 
Sandia National Laboratories, with the mission of 
characterizing reliability performance issues and 
identifying opportunities for improving reliability 
and availability performance of the U.S. national 
wind energy infrastructure [5]. The version of 
CREW we use includes data from 614 turbines from 
7 different plants, providing 388 years of turbine data 
as shown in Table I.  

Recording SCADA data from wind turbines is an 
industry standard practice and typically includes both 
10-minute average time series data and turbine status 
codes. The information available in SCADA is 
helpful to analyze turbine status in a general manner 
but there are many SCADA data sets that only have 
time series channels and not failure status codes or 
supplementary maintenance logs, which might be 
used to identify or diagnose failures. This makes the 
time series SCADA data less useful for machine 
learning training.  

TABLE I.  CREW PLANT STATISTICS 

Wind 
Plant 

ID 

Turbine 
Numbers   

Turbine 
Days 

Plant 
Rated 
Power 
(MW) 

Turbine 
Rated 
Power 
(MW) 

Native 
Resolution 

(sec) 

1 41 20,902 61.5 1.5 5 
2 147 22,653 207.5 1.5, 1.6 2 
3 69 25,863 103.5 1.5 2 

4 102 39,863 153 1.5 2 

5 53 5,291 108.65 2.05 7 - 8 
6 66 20,832 132 2 2 
7 136 6,259 204 1.5 5 - 6 

All 
Plants 614 141,666 970.15 1.5, 1.6, 2, 

2.05 2 - 8 

Various efforts have been made for mining wind 
power plant SCADA data to support turbine 
component health diagnostics. Most of these efforts 
first develop a model for normal conditions when the 
monitored turbine is considered healthy, and then 
analysts compare measured data against predictions 
given by the developed model to evaluate the 
deviations, which are used in turbine component 
fault diagnostics. In [6], an online wind turbine fault 
detection framework was presented and it integrated 
diagnostics models targeting various turbine 
subsystems, such as the gearbox and generator. By 
examining the deviations of test data sets from 
models developed under normal conditions, gearbox 
failures, based on cooling oil and bearing 
temperature data, and generator failures, based on 
generator winding temperature, were successfully 
detected. In [7], a damage model was developed by 
targeting one failure mode to describe the 
relationships between turbine operating 
environment, applied loads, and damage 
accumulation rates. Using measured SCADA data 
and the developed damage model, a reliability value 
for the monitored gearbox to fail under the targeted 
failure mode could be obtained.  In [8], a 
nonparametric regression method named least 
squares support vector regression was proposed to 
characterize the baseline relationship between 
turbine responses and wind resources. Based on the 
baseline model, response and residual control charts 
were derived and used to identify abnormal turbine 
responses including diagnostics of a wind turbine 
gearbox failure. Most of these efforts used relatively 
small data sets, and their developed baseline models 
are not scalable or hard to generalize.   
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The method we propose is an unsupervised 
approach of labeling failures in SCADA data sets 
such as CREW. Unsupervised learning is a class of 
machine learning that operates without requiring data 
to be labeled. These algorithms identify structure in 
data including patterns, relationships, and groups. 
Using unsupervised analysis can unlock value in 
these data sets for identifying, diagnosing, and 
summarizing failures as well as providing input to 
prognostic models (i.e., supervised machine 
learning) that may avoid failures by detecting them 
before they occur. 

The CREW data set includes many features. The 
failure detection method that we present makes use 
of component temperature readings and power 
output. Using only two features to train a model is a 
novel way of performing diagnostic analysis. 
Normally, models make use of more features, such 
as the 18 features presented in the work of Kusiak et 
al. [9]. The method we suggest is quicker and 
requires fewer features. Therefore, it can be scaled 
more easily to larger data sets and is more generally 
applicable because temperature and power data are 
prevalent in most SCADA data sets. 

III. METHODS AND PROCESS 

A. Data Preprocessing 
The CREW data set is loaded initially as a large 

CSV data file that was extracted from a Microsoft 
SQL database. In order to perform scalable analysis 
on this data, we first process it into a more 
manageable format and size. We down sampled the 
data by taking the moving average of all the time-
series features. The resolution selected was 300 
measurements per window, corresponding to a 10- 
minute windowed average for data at 2 second native 
resolution (plants 2, 3, 4 & 6). This 10-minute 
average is an industry standard for summarized 
SCADA streams and is similar to what many 
operators may archive. Plants 1, 5, and 7 provide data 
at a lower native resolution, so the resulting temporal 
resolution is larger.  

The data include turbines from multiple wind 
power plants and were not standardized. This 
presented a challenge because data from one plant 
(Plant 6 in Table I) did not have the temperature 
readings required for our full failure analysis. As a 

result, we chose to leave this plant out of the final 
results. 

B. Proposed Failure Detection Process 
The process to detect failures involves four steps. 

First, we train a model that maps the two independent 
variables, ambient temperature and power output, to 
the dependent variable, component temperature. 
Next, data output from the trained model is used to 
create a residual between the modeled output and the 
observed data. These data points show when the 
temperature is abnormally high. From these data 
points that show abnormally high temperatures, we 
filter out only those that are followed by a turbine 
shutdown. In this case, we define a turbine shutdown 
to be power output being zero when wind velocity 
data shows that the wind is still blowing. Lastly, we 
can nominate these filtered-out data points as a 
component failure. After flagging all failures for a 
turbine, we can then perform plantwide failure 
analysis. 

C. Selecting Process Parameters 
The proposed process gives rise to several 

adjustable parameters: 

• A temperature threshold that is denominated as a 
temperature spike: we select the 99th quantile of 
the model residue to be the threshold. 

• Amount of turbine components that share a 
temperature spike: we choose that at least half of 
the turbine components must “agree” that there is 
a temperature spike.  

• Number of data points in the future after a 
temperature spike to look out for turbine power-
off time: this is a sensitivity parameter. Refer to 
the second column of Table II for chosen values. 

• Amount of turbine power-off time that will be 
declared a power off: this is a sensitivity 
parameter. Refer to the third column of Table II 
for chosen values. 

A study presented by Reder et al., which studied 
more than 4,300 turbines, concluded that geared wind 
turbines rated at 1 MW or more fail at the rate of 0.52 
per year [10]. The sensitivity parameters of the 
process were adjusted by hand using this statistic as a 
guide.  



4 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

TABLE II.  FINAL SENSITIVITY PARAMETERS 

Wind Plant ID Data Points in  
Future Lookout Downtime (%) 

1 120 99 
2 5 60 
3 15 80 
4 60 90 
5 120 90 
6 NA NA 
7 10 80 

Table II shows the final sensitivity parameters that 
were chosen. As a rule of thumb, lower values of 
these parameters will make the process criteria less 
“strict,” resulting in more detected failures. Areas 
where parameters may be auto-tuned to the point of 
only catching true failures is a topic for future work. 

D. Methods for Modeling Normal Temperature 
Behavior 
To classify temperature data as abnormal, we first 

adjust the data to eliminate any effects that are caused 
by the ambient temperature and normal temperature 
increases when the turbine is generating power. The 
motivation is that we want to avoid flagging high 
temperatures that are not abnormal—for example, a 
spike in temperature caused by a hot day (adjusting 
for ambient temperature), or a spike caused by the 
turbine working harder (adjusting for power output). 
These two examples are expected behavior and do 
not constitute a failure in the turbine.  

To adjust for the ambient data and the power 
output, we will construct a model, as shown in (1), 
that learns what the causal relationship is between the 
input features (ambient temperature and power 
output) and the output features (component 
temperatures). Once we have this model, we will 
subtract the model output temperature data from the 
raw temperature data. This is called an adjusted 
temperature and has been used to detect abnormal 
behavior in sensor readings [9]. 

𝑇𝑇𝑎𝑎(𝑖𝑖) = 𝑇𝑇𝑟𝑟(𝑖𝑖) − 𝑇𝑇𝑚𝑚(𝑖𝑖){𝑇𝑇𝑒𝑒(𝑖𝑖),𝑃𝑃(𝑖𝑖)}          (1) 

where Ta   is adjusted temperature, Tr  is raw 
temperature, Tm  is modeled temperature, Te  is 
environmental or ambient temperature, and 𝑃𝑃   is 
power. There are many models that can be used for 
this purpose. To find the best model for the task, we 
selected several candidates that were tested 

according to their success with three metrics: the 
root-mean-square error (RMSE), the Pearson 
correlation coefficient (PCC), and the Shapiro-Wilk 
normality test (SWNT). 

Conventionally, the fit of a model is measured 
with the RMSE. We added the PCC and SWNT 
because these two metrics can measure how much of 
the effect ambient temperature and power output has 
been eliminated from the raw data. Visually, this will 
look like the scatter plot of the independent variable 
(ambient temperature or power output) than the 
dependent variable (component temperature that we 
are trying to model), changing from showing a clear 

 
                                            (a) 

 
                                            (b) 

Figure 1. Raw temperature correlated with power (a) and adjusted temperature 
based on a trained model minimized such a correlation to strengthen impacts 
from component failures (b). 
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correlation to looking more like two random 
variables (Fig. 1). We also explored the use of a 
quadrat test for total spatial randomness but found 
that it did not contribute meaningfully to our model 
selection. 

The RMSE is used to measure how close of a fit 
the proposed model is in comparison to the observed 
data. The best model will return a smaller RMSE. 
The RMSE is defined as: 

      𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ (𝑐𝑐𝑖𝑖 − 𝑐𝑐𝚤𝚤�)2𝑁𝑁
𝑖𝑖=1                  (2) 

where N is the number of observations, c is observed 
data, and  𝑐𝑐�  is the modeled observation. 

The Pearson correlation coefficient (PCC) will be 
applied on the model-adjusted data to track how 
much of the effect ambient temperature and power 
has been eliminated from the raw data. The PCC lets 
us quantify this “correlation elimination.” The best 
model will return a lower PCC. The Pearson 
correlation coefficient, ρ, between two variables, X 
and Y, is defined as: 

𝜌𝜌(𝑋𝑋,𝑌𝑌) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌)
�𝑉𝑉𝑎𝑎𝑟𝑟(𝑋𝑋)𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌)

             (3) 

The Shapiro-Wilk normality test will be another 
metric used to quantify how much of the input data 
correlation is eliminated by the model. A normality 
test shows how much a certain sample differs from a 
normal distribution. The normality metric of a model 
residual can be used to measure the fit of the model 
[11]. This is because if the model is a good fit, then 
the residual should be close to a normal distribution. 
The Shapiro-Wilk number (W) is the result of the 
formula: 

                         𝑊𝑊 =  (∑ 𝑎𝑎𝑖𝑖𝑥𝑥(𝑖𝑖)
𝑛𝑛
𝑖𝑖=1 )2

∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)2𝑛𝑛
𝑖𝑖=1

                   (4) 

In our testing, we used the statistic W’ = 1 - W so that 
the better model returns a lower number. 

The models we tested in this project are described 
in the following subsections: 

1) Linear regression. If we presume that there is a 
linear relationship between the input and output 
variables, then we can define a linear model of the 
form:  

𝑇𝑇𝑚𝑚(𝑖𝑖) = 𝛼𝛼0 + 𝛼𝛼1 ∗ 𝑇𝑇𝑒𝑒(𝑖𝑖) + 𝛼𝛼2 ∗ 𝑃𝑃(𝑖𝑖)       (5) 

where Tm  is modeled temperature, Te  is 
environmental temperature, 𝑃𝑃   is power, and 
α0,α1,  and α2 are linear regression coefficients. We 
used the linear model package from Scikit-learn [16]. 
This package finds the coefficients that minimize the 
residual sum of squares of the training data. 

2) Multivariate polynomial regression. This type 
of regression is useful because it can be treated as a 
linear regression, wherein the linear variables are the 
coefficients of the polynomial expression: 

𝑇𝑇𝑚𝑚(𝑖𝑖) = 𝛼𝛼0 + 𝛼𝛼1 ∗ 𝑇𝑇𝑒𝑒2(𝑖𝑖) + 
𝛼𝛼2 ∗ 𝑃𝑃(𝑖𝑖) ∗ 𝑇𝑇𝑒𝑒(𝑖𝑖) + 𝛼𝛼3 ∗ 𝑃𝑃2(𝑖𝑖)       (6) 

where Tm  is modeled temperature, Te  is 
environmental temperature, 𝑃𝑃   is power, and 
𝛼𝛼0,𝛼𝛼1,  𝛼𝛼2,  and 𝛼𝛼3  are polynomial regression 
coefficients.  

3) Random forest. Conventionally, the random 
forest algorithm is used as a classifier. For our 
purposes, it works well as a regression. This is 
because it “classifies” the input variables to certain 
output variables, which is in essence a form of 
regression. The random forest algorithm has been 
shown to be a very robust form of regression [12].  

To train a random forest regression model, we 
used the machine learning library of spark, MLlib 
[17]. A random forest of 16 trees was used. 
Increasing the number of trees after this number did 
not show a substantial increase in model 
performance. 

4) Neural network. Neural networks have been 
used many times for wind turbine modeling [9]. They 
are used because they are robust and good at 
modeling nonlinear behaviors. Similar to the random 
forest algorithm, a neural network is a “black box,” 
in which the resulting model cannot be easily 
interpreted. For this project, we used the neural 
network implementation from Scikit-learn [16], 
which is named a multilayer perceptron. We used a 
2-18-1 structure to model component temperature 
given the two inputs: ambient temperature and power 
output. We selected this structure by taking into 
consideration previous work in neural network 
modeling for turbine components [10]. 
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E. Processing Data at Scale 
Because the CREW data set is large (948 GB), all 

parts of the process and algorithms in this project 
were coded in a scalable way. The main library used 
was Spark because it allows the algorithms to be run 
on a local or HPC system. All code was run on the 
NREL HPC Sparkplug cluster environment, which 
implements the Hortonworks Data Platform [13] 
within Openstack [14]. The specifications on the 
cluster are: 5 cores per executor and 20 executor 
nodes with 23 GB of memory each. 

In order to train the different models, we used a 
random sample of the data set. The model was given 
5000 data points to train itself. Some turbines had 
fewer data points than others, so this sample quantity 
was selected because it would permit the greatest 
number of turbines to be analyzed.  

One cycle of the algorithm includes the following 
analysis for one turbine: 

• Down-sample temperature and power data to 
5000 points 

• Use sample data to train model for each 
temperature reading 

• Use modeled temperature data to adjust the 
entire temperature data 

• Flag an adjusted temperature when it is over 
the 99th quantile 

• Flag data points in which at least half of the 
temperature channels agree that there is 
overheating 

• Filter out temperature flags by picking the 
ones that are followed by a turbine shutdown 

• Label the data points corresponding to these 
filtered temperature flags as turbine failures. 
Note: a chain of data points labeled as failures 
will be counted as one failure. 

The time elapsed ranged from 11 s to 17 s per 
turbine, depending on the number of data points 
available for the turbine. 

IV. RESULTS 

A. Model Performance 
We evaluated all four models using the three 

metrics (Table III). Each turbine had eight 
temperature readings so we modeled each one and  

TABLE III.  FINAL SENSITIVITY PARAMETERS 

Model RMSE Pearson 
(Ambient/Power) 

Normality 
(Ambient/Power) 

Linear 
Regression 

8.58 3.27e-16/4.63e-16 0.96/0.97 

Multivariate 
Polynomial 
Regression 

7.66 4.64e-06/4.64e-06 0.94/0.98 

Random 
Forest 9.47 0.56/0.01 0.94/0.96 

Neural 
Network 10.36 0.47/0.14 0.93/0.97 

averaged the metric results of all eight models. 
Because the PCC and normality metric track two 
different variables (ambient temperature and power 
output,) we show the results of each variable 
separately. This reveals that both the random forest 
and the neural network have a considerably higher 
PCC score when eliminating ambient correlation in 
comparison with eliminating power correlation. This 
result makes sense because we expect that a more 
complex relationship exists between component 
temperature and power output as a result of various 
speed turbine operation.  

Each of these metrics will show a lower score if 
the model is performing better. For the purposes of 
our process, we are mostly interested in a low 
Pearson score. The lowest Pearson scores are found 
in the linear regression model. Considering the  
complex nonlinear behavior of the turbine, it is 
noteworthy that the linear model also performed well 
on all metrics. 

B. Adjusting Temperature 
From the temperature values (Fig. 2), we can see 

that the adjusted temperature shows a spike, wherein 
the unadjusted temperature does not. This was a spike 
that was “hidden” before the data was adjusted for 
power and ambient temperature.  Adjusting the 
temperature also fulfills the purpose of removing 
false positives. A false positive would be a 
temperature spike that can be explained by a high 
ambient temperature or a wind turbine that is 
producing more energy. Once such a spike is found, 
the data point is labeled as a failure if it is followed 
by a turbine shutdown.   
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Figure 2. Temperature data adjusted for power output by the trained model 

(top) and corresponding raw temperature data (bottom). 

 
Figure 3. These five graphs demonstrate the full process by which our method 

detects a failure (highlighted by the dashed box). 

C. Detected Failures 
Following the graphs shown in Fig. 3, this is how 

our diagnostic process labels failures:  

1. Raw temperature data. The unadjusted 
temperature for this component (Bearing A) 
does not show any high temperature spikes. 

2. Model adjusted data. The adjusted 
temperature shows a temperature spike, 
meaning that according to the model the 
turbine is hotter than it should be given the 
ambient temperature and power output 
conditions.  

3. Power output data. Drops to zero values 
revealing a turbine shutdown. 

4. Wind speed data. Wind is still blowing, so the 
turbine shutdown is not caused by low wind 
speeds. 

5. Failure label. Timestamp is labeled as turbine 
failure by diagnostic process. 

D. Failure Detection Statistics on All Plants 
Lastly, we have also calculated failure detection 

statistics for all six power plants (Table IV). Each 
plant used the same diagnostic process but with 
different parameters (Table II). We can see from the 
table that the average failure rate over all the plants 
(0.42) is very close to the failure rate found in actual 
turbines of the same type (0.52). 

Considering the first 30 turbines of each power plant, 
we made the following representative heat map 
showing failure rates by turbine (Fig. 4). Each cell 
represents one turbine labeled with the number of 
failures detected. Each row represents the turbines 
from a single plant. Turbines 16 and 29 in plants 1 
and 5 showed the highest rate of failure, whereas 
some turbines did not appear to fail within the data 
set studied.  

TABLE IV.  PLANTWIDE FAILURE STATISTICS 

Wind 
Plant ID Turbines Failures Detected 

Failures/ 
Turbine/ 

Year 
1 41 78 0.63 
2 147 25 0.17 
3 69 56 0.37 
4 102 69 0.46 
5 53 91 0.60 
6 NA NA NA 
7 136 46 0.31 
All Plants 614 365 0.42 

As is typical at wind plants, the data analyzed here 
were not provided with failure or maintenance logs. 
The conservative method described here appears 
capable of identifying failures. However, a full 
validation with high-resolution sensor data paired 
with digitized maintenance logs will be a topic of 
future work. 

V. CONCLUSION 
We have shown that temperature and power data 

alone can be used to identify potentially catastrophic 
failures using SCADA data. We also found that, with 
the metrics chosen, the linear regression model and 
the fourth-order polynomial model regression had 
the greatest ability to reliably normalize the 
temperature data. Although both models can be 
applied at scale, a linear versus a polynomial 
regression model is preferred for this task because of 
its simplicity and efficiency.  

The parameters used in the process were 
adjustable to be consistent with published failure 
statistics [10]. According to the paper, turbines rated 
at 1 MW or higher experience 0.52 failures per year 
on average. Our process applied on the CREW set 
detected 0.42 failures per year.  
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Figure 4. Number of failures identified for first thirty turbines at all six plants (highest on turbines 16 at plant 1 and 29 at plant 5) 

Scalable diagnostic models such as these can be 
used to mine historical data sets for training machine-
learning prognostic models, thereby providing a rich 
historical training set even in the absence of hand-
labeled data, which may rarely be available. This is a 
capability that will be increasingly important as 
operational data from power plants becomes 
increasingly large and complex due to increased 
numbers of devices and sensors, and increasing 
resolution of data due to increasing prevalence of 
condition monitoring systems [15]. 

We have identified several opportune areas for 
additional work. In future work, we will use models 
with more input parameters and will explore the 
sensitivity of results to the native data resolution and 
method of down-sampling Other authors have shown 
success using models with up to 18 input variables 
[9], which suggests that failures may be identified 
with greater accuracy using more data. 

ACKNOWLEDGMENT  
This work was supported in part by the Office of 

Science and Office of Workforce Development for 
Teachers and Scientists under the Science 
Undergraduate Laboratory Internships Program.  

The Alliance for Sustainable Energy, LLC 
(Alliance) is the manager and operator of the 
National Renewable Energy Laboratory (NREL). 
NREL is a national laboratory of the U.S. 

Department of Energy, Office of Energy Efficiency 
and Renewable Energy. This work was authored by 
the Alliance and supported by the U. S. Department 
of Energy under Contract No. DE-AC36-
08GO28308. Funding was provided by the U.S. 
Department of Energy Office of Energy Efficiency 
and Renewable Energy Wind Energy Technologies 
Office. The views expressed in the article do not 
necessarily represent the views of the U.S. 
Department of Energy or the U.S. government. The 
U.S. government retains, and the publisher, by 
accepting the article for publication, acknowledges 
that the U.S. government retains a nonexclusive, 
paid-up, irrevocable, worldwide license to publish or 
reproduce the published form of this work, or allow 
others to do so, for U.S. government purposes. 

REFERENCES 
 
[1]  S. Lindenberg, B. Smith and K. O'Dell, "20% 

Wind Energy by 2030," U.S. Department of 
Energy, Renewable Energy Consulting 
Services, Energetics Incorporated, Washington, 
D.C., 2008. 

[2]  S. Sheng and R. O'Connor, "Reliability of Wind 
Turbines," in Wind Energy Engineering: A 
Handbook for Onshore and Offshore Wind 
Turbines, London, UK, Academic Press, 2017, 
pp. 299-327. 

Turbine Id

Pl
an

t I
d



9 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

[3] S. Sheng, "Improving Component Reliability 
Through Performance and Condition 
Monitoring Data Analysis," 2015. [Online]. 
Available:
https://www.nrel.gov/docs/fy15osti/64027.pdf.

[4] S. Sheng, C. Phillips and N. Wunder, "Gearbox 
Reliability Database," National Renewable 
Energy Laboratory (NREL), 19 January 2018. 
[Online]. Available: http://grd.nrel.gov.

[5] V. Peters, A. Ogilvie and C. Bond, "CREW
Database: Wind Plant Reliability Benchmark," 
Sandia National Laboratories, Albuquerque, 
NM, 2012.

[6] A. Zaher, S. D. J. McArthur, D. G. Infield and 
Y. Patel, "Online wind turbine fault detection 
through automated SCADA data analysis," 
Wind Energy, vol. 12, no. 6, pp. 574-593, 2009. 

[7] C. S. Gray and S. J. Watson, "Physics of failure
approach to wind turbine condition based 
maintenance," Wind Energy, vol. 13, no. 5, pp. 
395-405, 2010.

[8] N. Yampikulsakul, B. Eunshin, H. Shuai, S. 
Shuangwen and Y. Mingdi, "Condition 
Monitoring of Wind Power System With 
Nonparametric Regression Analysis," Energy 
Conversion, IEEE Transactions on, vol. 29, no. 
2, pp. 288-299, 2014.

[9] A. Kusiak and A. Verma, "Analyzing bearing 
faults in wind turbines: A data-mining 
approach," Renewable Energy, vol. 48, pp. 110-
116, 2012.

[10] R. M. D., E. Gonzalez and J. Malero, "Wind
Turbine Failures - Tackling Current Problems
in Failure Data Analysis," Journal of Physics:
Conference Series, vol. 753, no. 7, 2016.

[11] P. Sudhir R. and X. Zhang, "Testing for 
normality in linear regression models," Journal 
of Statistical Computation and Simulation, vol. 
80, no. 10, pp. 1101-1113, 2010.

[12] A. Liaw and M. Wiener, "Classification and 
regression by randomForest," R News, pp. 18-
22, 2002.

[13] Hortonworks, "Open Source Solutions for 
Data-at-Rest," [Online]. Available: 
http://hortonworks.com.

[14] S. Omar, M. Aissaoui and M. Eleuldj, 
"Openstack: toward an open-source solution for 
cloud computing," International Journal of 
Computer Applications, vol. 55, no. 3, 2012.

[15] W. Yang, P. J. Tavner, C. J. Crabtree, Y. Feng 
and Y. Qiu, "Wind turbine condition 
monitoring: technical and commercial 
challenges," Wind Energy, vol. 17, no. 5, pp. 
673-693, 2014.

[16] F. Pedregosa and e. al., "Scikit-learn: Machine 
learning in Python," Journal of Machine 
Learning Research, vol. 12, pp. 2825-2830, Oct 
2011.

[17] Apache Software Foundation, "MLLib - 
Apache Spark's Scalable Machine Learning 
Library," June 2017. [Online]. Available: 
http://spark.apache.org/mllib/.


	71166 CVR.pdf
	Diagnostic Models for Wind Turbine Gearbox Components Using SCADA Time Series Data (




