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Abstract— Incorporating SiC power MOSFETs is very 

attractive for advancing power electronic system performance, yet 
the system reliability with new devices remains in question. This 
work presents an overview of accelerated lifetime tests and the 
packaging and semiconductor failure mechanisms they excite. The 
experiments explained here includes High Temperature Gate Bias 
(HTGB), Switching Cycling, Power Cycling, and Thermal 
Cycling. These experiments stress different failure mechanisms, 
that show degradation in different device parameters including, 
but not limited to, threshold voltage and on-resistance. These four 
experiments help illustrate the spectrum between device and 
package degradation that can be used to design more reliable 
power electronic circuits.   

Keywords—Silicon Carbide, MOSFET, Accelerated Testing, 
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I. INTRODUCTION  
The integration of wide-bandgap (WBG) materials into 

power semiconductor devices is a necessary step to progress 
power electronics systems to be lighter, smaller, and more 
efficient. Silicon carbide (SiC) power metal oxide 
semiconductor field effect transistors (MOSFETs), in 
comparison to silicon devices, have most notable advantages in 
electrical breakdown field, thermal conductivity, electron 
saturation drive velocity, and irradiation tolerance [1]-[3]. In 
addition, SiC transistors have been shown to be able to operate 
at higher temperatures (on average at a 25°C higher operating 
temperature to Si [2]). While the material’s characteristics are 
well known, and significant research has been invested into 
characterizing SiC MOSFETs for circuit applications, the 
degradation of these new devices under various operating 
conditions is not fully understood [4].  

This work investigates various accelerated lifetime test 
(ALT) procedures and discusses their impact on packaging and 
semiconductor degradation of SiC MOSFETs. Fig. 1 categorizes 

a spectrum of ALTs by the test’s target failure mechanism – 
packaging-based failure or semiconductor-based failure. While 
there are other ALTs, the experiments shown here help illustrate 
the spectrum between device and package degradation under 
various accelerated test methods. 

The left side of Fig. 1 shows experiments that traditionally 
stress the packaging (extrinsic) failure mechanisms. In this work 
the package is defined as all components outside of the SiC 
MOSFET, including die attach material, electrical interconnects, 
encapsulant, and heat sink. These components are composed of 
various materials with different coefficient of thermal expansion 
rates, which causes stresses to develop when the package 
undergoes thermal changes. Failures within, or between, these 
components typically occur under accelerated thermal aging, 
thermal cycling, and power cycling tests due to large 
temperature swings that permeate throughout the entire package.  

The right side of Fig. 1 shows some experiments that are 
focused on stressing semiconductor (intrinsic) failure 
mechanisms. A major weakness within the semiconductor itself 
is the crystallographic mismatch at the interface of the SiC-SiO2 
layers in the MOSFET. This interface region consists of 
numerous trap charges including – interface traps, oxide traps, 
fixed charges, and mobile ions [5], [6]. Under various energy 
profiles, these charges can shift the threshold voltage (Vth) of the 
device. In addition to shifting Vth, time-dependent dielectric 
breakdown caused by Fowler-Nordheim tunneling can greatly 
weaken the oxide layer of the MOS structure degrading the 
semiconductor performance itself [7]. 

 
Fig. 1 Accelerated lifetime test spectrum. 

This work surveys the effects of two semiconductor-based 
and two packaging-based lifetime experiments on SiC 
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MOSFETs. Section II explores work focusing on high-
temperature gate bias (HTGB) experiments [5]-[9] and 
Switching Cycling [10]. Section III inspects package level 
degradation from both Power Cycling experiments [11]-[15], 
and Thermal Cycling experiments [10], [16], [17]. The effects 
and changes of different device characteristics are discussed, 
with a focus on Vth and ON-resistance (RDSon).   

II. SEMICONDUCTOR FOCUSED LIFETIME TESTS 

A. High Temperature Gate Bias 
One of the most sensitive areas of the MOSFET structure is 

within the gate oxide layer. Significant research has gone into 
better processing techniques and reliability of the gate oxide, 
especially for SiC devices [18]. This is in part because of the 
greater crystallographic mismatch between SiC and the SiO2 
oxide in comparison to Si [19]; in addition, the wider bandgap 
of SiC allows for more Fowler-Nordheim tunneling current to 
take place [7]. To test the resilience of the oxide layer, a HTGB 
experiment can be conducted.  

This HTGB experiment raises the temperature of the 
semiconductor device to a stressful state, generally between 
125°C and 175°C for SiC [7]. Under these conditions, a high 
electric field is applied onto the gate of the MOSFET (with the 
upper limit near 3MV/cm) to stress the oxide layer within the 
device [5], [7], [9]. After a predetermined time, measurements 
of the device characteristics can be taken to observe the full 
effects of the electric field, which can most predominantly be 
seen by shifts in threshold voltage. Another experimental profile 
is shown in Fig. 2 where a device is stressed under both a 
positive and negative bias for set amounts of time (tsoak). A 
common technique when rotating between the two stress-bias 
voltages is to ramp the voltage up/down to the +VGS or –VGS 
values. This will minimize degradation and excessive trap 
charge states [5], [9]. Fig. 3-6 shows degradation effects from 
different HTGB experiments. The main degradation is trap 
movement at the oxide interface and can be observed in shifts 
within the threshold voltage and semiconductor related 
parameters and less on packaging related parameters.  

 
Fig. 2 HTGB experiment showing the soak times for both a +VGS and -VGS bias, 
with ramping voltages between the two bias values [6]. 

   
Fig. 3 Static Vth measurements after HTGB tests in [7].  

 
Fig. 4 Static RDSon measurements after HTGB tests in [7]. 

 
Fig. 5 Dependence of Vth shifts on stress bias for devices with T = 150°C and t 
= 1 hour [8]. 

 
Fig. 6 Dependence of Vth shift on stress temperature for devices with VGS = 
15V, t = 1 hour [8]. 
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B. Switching Cycling 
The HTGB experiments are focused on stressing the gate 

oxide and semiconductor itself through a high electric field on 
the gate terminal. This high electric field is held at a steady state, 
DC-bias. Under normal converter-oriented, operating 
conditions, the electric field is transient through the switching 
events. To stress the oxide and semiconductor under parameters 
closer to normal operating conditions, Switching Cycling has 
been introduced [10]. A variation on HTGB and high-
temperature reverse bias (HTRB) testing [20] (not detailed in 
this work), Switching Cycling applies a DC-bias across the 
drain-source of the device while switching the device on/off 
continuously.  

The device under test (DUT) is placed in a clamped, 
inductive switching circuit and switched continuously. A high 
Drain-Source voltage (VDS) equal to 90% of the breakdown 
voltage is applied onto the device generating a high electric field 
similar to HTRB experiments. The DUT is then switched on and 
off continuously stressing the device primarily through the 
transient electric field generated by switching events. The  on-
time is set to 150 nanoseconds to decrease conduction losses and 
self-heating effects in the device. Fig. 7 shows the continuous 
switching nature of the Switching Cycling experiment in [10]. 

The electrical parameters that have shown most changes 
from Switching Cycling includes output characteristics, transfer 
characteristics (including Vth), Drain-Source leakage current, 
and Gate-Source leakage. Fig. 8-11 show these changes over 
time. The primary degradation can be seen on the semiconductor 
with the large shift in Vth, Drain-Source leakage current, and 
Gate-Source leakage current. Packaging-based degradation is 
minimal, as can be seen in the small shift in RDSon.   

 
Fig. 7 VDS (top) and IDS (bottom) waveforms from Switching Cycling as explain 
in [10]. 

 
Fig. 8 Changes in Drain-Source leakage current over time as a result of 
Switching Cycling. 

 
Fig. 9 Changes in Gate-Source leakage over time as a result of Switching 
Cycling. 

 
Fig. 10 Normalized Vth changes over time as a result of Switching Cycling. 

 
Fig. 11 Normalized RDSon changes over time as a result of Switching Cycling. 

III. PACKAGING FOCUSED LIFETIME TESTS 

A. Power Cycling 
Power Cycling experiments focus on the package 

degradation of a device exploiting the different coefficients in 
thermal expansion of the packaging layers. A large change in 
temperature (Δ𝑇𝑇) [21] causes these different layers to expand at 
different rates creating a mechanical stress throughout the 
packaged device [11], [12], [14], [15]. The Δ𝑇𝑇  is generated 
through the self-heating effects (conduction losses) from a 
Drain-Source current flowing through the DUT [14]. The case 
or device temperature is monitored and current flows through 
the device until a designated maximum temperature is reached. 
A constant current source and control device are used to turn the 
current on/off through the device and is described in more detail 
in [11]-[13], [22], [23]. In the off-state, the DUT operating 
temperature is monitored and the system is held off until the 
lower bounded temperature is reached. The experimental rate of 
the heating and cooling periods can be designed to match 
different industry applications [11], [12] through current 
magnitude, and cooling systems. A general power cycling 
temperature profile is shown in Fig. 12, where 𝑡𝑡𝑜𝑜𝑜𝑜 represents the 
time the current conducts through the device, and 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 when the 
device is in the off-state.  
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Fig. 12 General temperature stress profile for Power Cycling. 

This thermal profile applies a mechanical stress throughout 
the packaged device. The most common degradation through 
Power Cycling includes wire-bond lift-off, and solder 
degradation. Wire-bond lift-off can be best seen through a large 
step change in RDSon, [11]-[13], [22]. Solder degradation can be 
seen by incremental changes in RDSon [12],[14], as well as 
changes in thermal resistance (Zth) [11], [13], [14], [23]. While 
the temperature rise of the device is caused from the conduction 
losses through the device there is little degradation of the 
intrinsic nature of the semiconductor itself. Degradation 
depicting the changes in RDSon from wire-bond lift-off and VDS 
from wire bond lift-off and solder degradation are shown in Fig. 
13 and Fig. 14. 

 
Fig. 13 On-resistance evolution through accelerated test in [15]. 

 
Fig. 14 Measured on-state voltage drop and fitting curves for devices during 
power cycling tests in [24].  

B. Thermal Cycling 
Similar to Power Cycling, Thermal Cycling stresses the 

interconnections of packaging layers (solder joints, wire bonds, 
etc.) through the mismatch in the coefficients of thermal 

expansion [17], [24]. Unlike Power Cycling however, the Δ𝑇𝑇 is 
generated completely through external means such as a hot plate 
or thermal shock chamber and not the conduction losses of the 
device [17]. As a result the Tave, Tmin, and Tmax can be controlled 
with more precision and used to excite different failure 
mechanisms. It has been shown in [24] that the chosen Δ𝑇𝑇 range 
and Tave have a large effect on the degradation of the device. 
Fig. 15 shows a generic thermal cycling experimental profile 
including the rise and fall times, as well as the dwell/soak time 
at Tmax and Tmin. 

The work conducted in [10] involved an experimental 
temperature profile that had a Tmin of -40°C, Tmax of 175°C and 
Δ𝑇𝑇 of 215°C. The rise and fall times were 10 minutes each with 
both the high and low temperature dwell times set to 10 minutes. 
Fig. 16 and Fig. 17 show changes in the RDSon and Vth parameters. 
Fig. 17 shows that the changes in Vth are minimal and Fig. 16 
[10] shows a 44% RDSon change from its initial value after 2,000 
cycles. These results, along with those shown in [17], depict that 
Thermal Cycling is set to degrade the device package as opposed 
to the semiconductor device itself.    

 
Fig. 15 General Thermal Cycling temperature profile. 

 
Fig. 16 Normalized changes of RDSon over time from Thermal Cycling [10]. 

 
Fig. 17 Changes in Vth over time from Thermal Cycling [10]. 
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IV. CONCLUSION 
SiC power MOSFETs have demonstrated properties that can 

enhance power converter performance over traditional 
technologies. The reliability of SiC MOSFETs have remained in 
question and ALTs have only begun to show the results 
necessary to qualify the technology. Table I summarizes the four 
test methods described in this work. It also shows the ALT main 
stress mechanism (package or semiconductor), the system-level 
parameter in which changes are seen, and a general length for 
failure to mature. These tests all show how a packaged 
semiconductor survives under extreme conditions that are much 
harsher than industry-standard, operating conditions.  

TABLE I 
ACCELERATED LIFETIME EXPERIMENTS AND ASSOCIATED STRESS 

MECHANISMS  

ALT Stress 
Mechanism 

System 
Level 

Parameter 
Time to Failure 

HTGB Semiconductor 𝑉𝑉𝑡𝑡ℎ 1000+ hours 

Switching 
Cycling 

Semiconductor 𝑉𝑉𝑡𝑡ℎ 100 hours 

Power 
Cycling 

Package 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑍𝑍𝑡𝑡ℎ 100-1000+ hours 

Thermal 
Cycling 

Package 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 1000+ hours 
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