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Abstract—We propose an optimal power flow method for
multiphase power systems. The method works for both radial
and meshed networks, and is able to accommodate different types
of load/source connections such as wye, delta, and combination
thereof. Moreover, the method generates a sequence of non-
singular points (i.e., associated with non-singular power-flow
Jacobian) in the electrical state space and a corresponding
sequence of power injections, which can be used in real-time
control settings. Under certain conditions, the sequences attain
the local minimum. The method has been tested using several
typical networks, including the IEEE 37-bus and 123-bus test
feeders.

Index Terms—Multiphase power networks; AC optimal power
flow; successive linear approximation; non-singularity; existence;
uniqueness; feasibility.

I. INTRODUCTION

The AC optimal power flow (OPF) problem is one of the
fundamental problems in power system operation and analysis.
Mainly due to the nonlinearity of the power flow equations, the
OPF problem is nonconvex and NP-hard in general (see, e.g.,
[1]). In transmission systems, OPF methods are typically based
on DC power-flow models and on the assumption that the
system is balanced. In distribution systems, however, these two
simplifying assumptions are no longer valid, since distribution
systems generally have high R/X ratio and are unbalanced with
a variety of different types of connections. Therefore a full
multiphase power-flow model has to be used, and AC OPF
methodology has to be developed and applied.

There is a wide range of literature that addressed the
AC OPF problem by using relaxation techniques, such as
semidefinite relaxation (SDR) [2], [3] and generalizations
thereof (e.g., [4]); due to the scope of this paper, we will not
present an exhaustive list here. Several papers addressed the
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AC OPF problem for multiphase distribution networks (see [5]
for an extensive review). A majority of them (see, e.g., [6]–
[8] and pertinent references therein) utilized generic solvers
to identify a solution of this challenging nonconvex (and
NP-hard) optimization problem; nonetheless, no theoretical
convergence guarantees are offered. In [9], an SDR approach
was proposed, and a feasible (and globally optimal) solution
can be identified under certain conditions. Similarly, in [10], an
SDR approach was applied for multiphase radial distribution
networks. Finally, [11] developed a successive convex approx-
imation methodology, which is proven to converge to a KKT
point of the original non-convex AC OPF. Overall, with the
exception of [7], the network models utilized in the existing
literature can support only wye-connected sources, and they
cannot be straightforwardly extended to delta connections.

In this paper, we propose to solve the AC OPF for multi-
phase unbalanced systems using a new solution methodology
based on successive linear approximations. The distinctive
characteristics of the proposed method are highlighted as
following: 1) We leverage the general multiphase power-flow
model recently proposed in [12]. This allows us to explicitly
consider different types of load/source connections, such as
wye, ungrounded delta, and a combination thereof; 2) We
propose the following iterative method. At each iteration:

(1) We convexify the original non-convex problem by re-
placing the exact AC power-flow constraints with an
appropriate linear approximation, leveraging the model
in [12]. The linearization is performed around the power-
flow solution obtained in the previous iteration.

(2) In this convex optimization problem, we explicitly impose
constraints on the power injections to guarantee the
existence of the exact AC power-flow solution that is
non-singular (namely, having a non-singular power-flow
Jacobian) and unique in an analytically specified domain.

(3) After obtaining the optimal power injections in the con-
vexified problem, we compute its exact AC power-flow
solution using the algorithm in [12].

a) If the exact AC power-flow solution is feasible in the
sense that it truly satisfies the security constraints, then
we set this solution as the next linearization point and
move on to the next iteration.

b) Otherwise, we shrink the constraints imposed by The-
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orem 2 in [12], recompute the solution and repeat this
step until the conditions in (a) are satisfied.

We prove that the algorithm generates a non-singular se-
quence of power-flow solutions that, under certain conditions,
approaches a local minimum in the original multiphase AC
OPF problem. Moreover, all the members in this sequence
belong to the same non-singular path-connected component in
the voltage space, which means that we can move from one
member to another without passing the steady-state stability
limit.

Overall, the main advantages of the proposed algorithm are:
(i) It generates a sequence of non-singular points in the state

space and a corresponding sequence of power injections;
the latter can be used in real-time control settings to
dispatch setpoints.

(ii) It is applicable to the general multiphase model and
accommodates different types of connections, including
wye, delta, and a combination thereof.

(iii) It does not require radiality of the network topology.
It is worth mentioning that feature (i) above is important in
practice as it ensures that the entire trajectory from the current
operating point to the optimal one satisfies the operational
constraints and does not pass through the stability limits.

Recently, there were several works on successive linear
or convex approximations for solving OPF problems (see,
e.g., [11], [13], [14]). In particular, in [13], [14], a sequential
linearization with consecutive power-flow verification (of the
similar type proposed in our paper) was used to solve a
certain planning problem for transmission networks; however,
the approach was tailored to balanced networks (hence, no
wye/delta connections were considered), and no convergence
results were provided.

The paper is structured as follows. In Section II, we present
the multiphase distribution network model. In Section III, we
formulate the AC OPF problem and its convex relaxation using
linearized power-flow model. In Section IV, we present our
algorithm and main results. In Section V, we evaluate the
performance of the algorithm on several typical test feeders.
Finally, we present some concluding remarks in Section VI.
Notation. Upper-case (resp. lower-case) boldface letters are
used for matrices (resp. column vectors); (·)T for transposition;
and | · | for the absolute value of a number or the component-
wise absolute value of a vector or a matrix. For a complex
number c ∈ C, <{c} and ={c} denote its real and imaginary
part, respectively; and c denotes the conjugate of c. For an N×
1 vector x ∈ CN , ‖x‖∞ := max(|x1|...|xn|), ‖x‖1 :=

∑N
i=1 |xi|,

and diag(x) returns an N ×N matrix with the entries of x in
its diagonal. For an M×N matrix A ∈ CM×N , the `∞-induced
norm is defined as ||A||∞ = maxi=1,...,M

∑N
j=1 |(A)ij |.

II. SYSTEM MODEL

In this section, we briefly overview the general multiphase
power-flow model recently proposed and analyzed in [12]. A
simpler version, without delta loads and with only fully three-
phase scenarios, can be found in the two-page letter [15].

A. Power-Flow Model
Consider a generic three-phase distribution network with

one slack bus and N three-phase PQ buses. Each bus in the
network can have different types of load/source connections,
such as wye, ungrounded delta, and a combination thereof.
This model is compactly described by the following set of
non-linear equations:

sY = diag(v)
(
YL0v0 + YLLv

)
− diag

(
HTi∆

)
v, (1a)

s∆ = diag (Hv) i∆. (1b)

In (1), sY , s∆ ∈ C3N are the complex power injection vectors
for wye and delta connections, respectively; v ∈ C3N collects
the complex voltages at every bus and phase of the PQ buses;
v0 ∈ C3 collects the complex voltages at the slack bus; i∆ ∈
C3N collects the phase-to-phase currents at every bus; Y00 ∈
C3×3,YL0 ∈ C3N×3,Y0L ∈ C3×3N , and YLL ∈ C3N×3N are
the submatrices of the three-phase admittance matrix

Y :=

[
Y00 Y0L

YL0 YLL

]
∈ C3(N+1)×3(N+1), (2)

which can be formed from the topology of the network, the
π-model of the transmission lines, and other passive network
devices, as shown in, e.g., [16]; and H is a 3N × 3N block-
diagonal matrix defined by

H :=

Γ
. . .

Γ

 , Γ :=

 1 −1 0
0 1 −1
−1 0 1

 . (3)

Note that (1) defines an explicit mapping from the state
vector (vT, (i∆)T)T ∈ C6N to the vector of power injections
s := ((sY )T, (s∆)T)T ∈ C6N . For further development, we
sometimes find it useful to represent the power-flow equa-
tions in real (rather than complex) space. To this end, let
x :=

(
<{sY }T,={sY }T,<{s∆}T,={s∆}T)T collect the active

and reactive power injections of wye and delta sources. Also,
let y :=

(
<{v}T,={v}T,<{i∆}T,={i∆}T)T denote the vector

of the state variables. Then, the power-flow equations can be
written as

x = h(y), (4)

where h : R12N → R12N is the mapping defined explicitly
by (1). When need to revert the real-valued expressions back
to the complex-valued counterparts, we define the operator
comp() such that comps(x) and compv(y) represent the s and
v that correspond to x and y, respectively.

B. Conditions for Existence, Uniqueness, and Non-Singularity
In [12], explicit conditions for existence, uniqueness, and non-

singularity of the solution to the multiphase power-flow equations
were derived. We next summarize these conditions, as they will be
used explicitly in our proposed AC OPF algorithm in Section IV;
see [12] for a thorough review of other similar conditions recently
proposed in the literature.

Let w ∈ C3N denote the zero-load voltage, which is given
explicitly by w := −Y−1

LLYL0v0. Also, let W := diag(w), and
L := |H| be the component-wise absolute value of the matrix H
defined in (3). For s := ((sY )T, (s∆)T)T ∈ C6N define the following
norm ξ(·) on C6N (see Lemma 1 in [12]):

ξY (s) :=
∥∥∥W−1Y−1

LLW−1diag(sY )
∥∥∥
∞
, (5a)

ξ∆(s) :=
∥∥∥W−1Y−1

LLHTdiag(L|w|)−1diag(s∆)
∥∥∥
∞
, (5b)

ξ(s) := ξY (s) + ξ∆(s), (5c)
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where |w| is the component-wise absolute value of the vector w, and
‖A‖∞ is the induced `∞-norm of a complex matrix A.

Next, for v ∈ C3N , let

α(v) := min
j

|(v)j |
|(w)j |

(6a)

β(v) := min
j

|(Hv)j |
(L|w|)j

(6b)

γ(v) := min {α(v), β(v)} . (6c)

Finally, for any ρ ≥ 0, define

Dρ(v) := {v′ : |(v′)j − (v)j | ≤ ρ|(w)j |, j = 1 . . . 3N}. (7)

We next wrap up the main results from [12] for completeness.

Theorem 1 (Theorems 2 and 3 in [12]). Let v̂ be a given solution
to the power-flow equations with power injection ŝ satisfying:

ξ(ŝ) < (γ(v̂))2, (8)

where ξ(·) and γ(·) are given in (5) and (6), respectively. Consider
some other candidate power injections vector s, and assume that

ξ(s− ŝ) <
1

4

(
(γ(v̂))2 − ξ(ŝ)

γ(v̂)

)2

. (9)

Let

ρ‡(v̂, ŝ) :=
1

2

(
(γ(v̂))2 − ξ(ŝ)

γ(v̂)

)
(10a)

ρ†(v̂, ŝ, s) := ρ‡(v̂, ŝ)−
√

(ρ‡(v̂, ŝ))2 − ξ(s− ŝ) (10b)

Then:
(i) The power-flow solution (v̂, ŝ) is non-singular, in the sense that

the Jacobian matrix of the mapping h defined in (4) evaluated
at
(
v̂, î∆ := diag−1

(
Hv̂
)

ŝ
∆
)

is invertible;
(ii) There exists a unique power-flow solution v in Dρ(v̂) defined

in (7) with ρ = ρ‡(v̂, ŝ);
(iii) The solution is located in Dρ(v̂) with ρ = ρ†(v̂, ŝ, s);
(iv) The solution v satisfies ξ(s) < (γ(v))2, hence is non-singular

as well;
(v) The solution v can be found by iteration (11) starting from

anywhere in Dρ(v̂) with ρ = ρ‡(v̂, ŝ):

v← w + Y−1
LL

(
diag(v)−1sY + HTdiag (Hv)−1 s∆

)
. (11)

Once v is obtained, i∆ can be uniquely recovered using (1).

Remark 1. For general multiphase networks, the vectors v, sY , and
w collect their corresponding electrical quantities for the existent
phases; the vectors i∆ and s∆ collect the electrical quantities for the
existent phase-to-phase connections; H contains rows that correspond
to the existent phase-to-phase connections. More precisely, H is an
N∆ × Nphase matrix, where N∆ is the total number of phase-to-
phase connections and Nphase is the total number of phases. When
there are no phase-to-phase connections in the network, everything
still holds after removing the terms that involve H, L, i∆ and s∆.

III. OPF PROBLEM FORMULATION

We consider the following prototypical multiphase AC OPF prob-
lem

(P0) min
x∈R12N ,y∈C12N

f(x) (12a)

subject to : x ∈ X (12b)
x = h(y) (12c)

V min ≤ |compv(y)| ≤ V
max, (12d)

where f(·) is a convex function, X ⊆ R12N is a convex compact set,
h(·) is the multiphase power-flow mapping, and |compv(y)| ∈ R3N

is the vector of voltage magnitudes that is decided by y. (Recall the
definition of comp() at the end of Section II-A.)

As it is well-known, (P0) is a non-convex problem due to the
non-linear equality constraints (12c) and the lower bound constraint
in (12d). Also, from the practical point of view, there might be several
solutions to the power-flow equations (12c), some of which might be
singular1.

To tackle these challenges, we propose a successive linear approx-
imation of the constraints (12c) and (12d). To this end, let x̂ be a
feasible power injection vector with a voltage v̂ that satisfy condition
(8). Consider now a linear approximation of the voltage magnitudes
as a function of power injections:

|v| ≈ K(v̂,x̂)x + a(v̂,x̂) (13)

with the property that K(v̂,x̂)x̂ + a(v̂,x̂) = |v̂|. This linear approx-
imation can be efficiently computed, for example, by computing
the inverse of the load-flow Jacobian, or any other method; see,
e.g., [12], [18], [19]. In this paper, we assume that the matrix
K(v̂,x̂) ∈ R12N×3N and vector a(v̂,x̂) ∈ R3N are continuous in
(v̂, x̂). These assumptions hold for the approximations proposed in,
e.g., [12]. Let

εmax
(v̂,x̂) :=

1

4

(
(γ(v̂))2 − ξ(ŝ)

γ(v̂)

)2

, (14)

and for any ε ∈ (0, εmax
(v̂,x̂)), consider the following local optimization

problem:

(P1(v̂, x̂, ε)) min
x∈R12N

f(x) (15a)

subject to : x ∈ X (15b)

V min ≤ K(v̂,x̂)x + a(v̂,x̂) ≤ V max (15c)
ξ (comps(x− x̂)) ≤ ε, (15d)

where ξ(·) is defined in (5)2. Observe that (P1(v̂, x̂, ε)) is a convex
optimization problem, and constraint (15d) guarantees existence,
uniqueness, and non-singularity of the exact power-flow solution
as prescribed by Theorem 1. An iterative algorithm based on
(P1(v̂, x̂, ε)) is proposed in the next section.

Remark 2. Other constraints can be added to (P0) and (P1). For
example, if we plan to consider the ampacity of branch currents, we
could approximate the branch current by affine functions of x that
are similar to (13). Indeed, this can be efficiently conducted, since the
branch currents are linear functions of the nodal voltages in generic
two-port device modeling. However, for the ease of exposition, we
prefer to analyze here a simpler problem formulation.

IV. ALGORITHM AND MAIN RESULT

In this section, we propose a successive convex approximation
algorithm that is based on solving a sequence of (P1(v̂, x̂, ε)) until
convergence. In order to initialize the algorithm, a strictly feasible
solution (v(0),x(0)) to the power-flow problem is required, in the
sense that

x(0) ∈ X , V min < |v(0)| < V max. (16)

In addition, it is required that this solution satisfies (8). Practically,
such initial values can be obtained from state estimation procedures.
However, in the cases where state estimation is not available, one can
either simply choose v(0) = w and x(0) = 0 as w is almost always
strictly feasible, or utilize techniques as in [11] to find a feasible
point.

The algorithm is given in Algorithm 1.

1See [17] for a practical example where singular state can be feasible.
2Note that (5) defines a norm on C6N which is equivalent to the norm on

R12N .

3 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.



Algorithm 1 Multiphase AC OPF

Input: Strictly feasible power-flow solution (v(0),x(0)), sat-
isfying (16) and (8).

Input: A parameter β ∈ (0, 1).
Output: (v∗,x∗), e, {v(k),x(k), ε

(k)
seq}

1: k ← 0, flagA← 1
2: while flagA do
3: Compute the linear model (K(v(k),x(k)),a(v(k),x(k)))

using (v(k),x(k)).
4: n← 0, flagB← 1
5: while flagB do
6: Set ε(n) := βn+1εmax

(v(k),x(k))
, where εmax

(v(k),x(k))
is

given in (14).
7: {SOLVE THE LOCAL OPTIMIZATION PROB-

LEM}
8: Solve (P1(v(k),x(k), ε(n))), obtain the optimal solu-

tion x̃.
9: {SOLVE THE POWER-FLOW EQUATIONS FOR

THE EXACT SOLUTION}
10: Solve the power-flow equations for x̃ using the

method in [12], let ṽ denote the solution,
11: {CHECK FEASIBILITY}
12: if ṽ is strictly feasible then
13: v(k+1) ← ṽ, x(k+1) ← x̃, ε(k)seq ← ε(n), flagB← 0
14: else
15: n← n+ 1
16: end if
17: end while
18: if

∣∣f(x(k+1))− f(x(k))
∣∣ < ErrBound then

19: flagA← 0, e←
∥∥x(k+1) − x(k)

∥∥
2

20: end if
21: k ← k + 1
22: end while
23: v∗ ← v(k), x∗ ← x(k)

24: return (v∗,x∗), e, {v(k),x(k), ε
(k)
seq}

Remark 3. In fact, each obtained (v(k),x(k)) has an equivalent
(x(k),y(k)). The latter will be used in the statement of the main
theorem.

Remark 4. Some of the practical scenarios may require that the
objective function explicitly involves the electrical state y. If that is
the case, then we want to minimize f(x,y). To extend the proposed
method to these scenarios, we have to make following modifications:
• In (P1(v̂, x̂, ε)), an extra constraint y = K′(v̂,x̂)x + a′(v̂,x̂)

should be added, where K′(v̂,x̂) and a′(v̂,x̂) can be obtained in
the way given by [12];

• In line 12 of the algorithm, the condition should be replaced by
“If ṽ is strictly feasible and f(x̃, ỹ) ≤ f(x(k),y(k))”.

For brevity, in this paper, we focus on the cases where f(·) does not
explicitly involve y.

Below is our convergence result regarding Algorithm 1. The proof
is deferred to the Appendix.

Theorem 2. The following statements hold for Algorithm 1:
(i) The sequence of solutions (x(k),y(k)) is

• feasible for problem (P0);

• non-singular, in the sense that the Jacobian matrix of h(·)
evaluated at y(k) is invertible;

• connected to each other via non-singular paths.
(ii) f(x(k)) ≤ f(x(k−1)) for all k.

(iii) When ErrBound > 0, the algorithm converges (stops) in a
finite number of steps. Upon convergence, if e = 0, then
(x∗,y∗) is a local minimum of (P0).

(iv) In addition, when ErrBound is set to 0, we obtain an infinite
sequences such that:
(a) If

εmin := lim inf
k→∞

ε(k)
seq > 0, (17)

we have that any limit point of the sequence of solutions
{x(k),y(k)} produced by Algorithm 1 is a non-singular
local minimum of (P0).

(b) If
εmax := lim sup

k→∞
ε(k)
seq > 0, (18)

then there exists a limit point of the sequence {x(k),y(k)}
that is a non-singular local minimum of (P0).

Remark 5. We note that Theorem 2 does not establish convergence
of the sequence of solutions to a local minimum in general. Rather,
under condition (17), it is guaranteed that any limit point is a local
minimum, while under a milder condition (18), we know that there
exists such a limit point. In case the sequence indeed converges,
both part (iv) (a) and (b) state that it converges to a local minimum.
Conditions under which convergence in solutions is guaranteed is left
for future work.

Remark 6. Conditions (17) and (18) are a-posteriori conditions
that cannot be verified before the algorithm’s run. As we show in
the numerical examples in Section V, these conditions are typically
satisfied in practice.

V. PERFORMANCE EVALUATION

In this section, we first illustrate the performance of the algorithm
using a simple example, which involves a single-phase two-bus
network3 and a quadratic objective function. Then, we adopt the
IEEE 37-bus and 123-bus test feeders to evaluate performance of
the proposed method. In particular, (i) the regulators in the two
feeders are set to their nominal values; (ii) the objective function
is linear with randomly generated coefficients. In addition, note that
(15d) is essentially a collection of linear constraints imposed on
|s − ŝ|. Therefore, we introduce auxiliary variables and formulate
(P1(v̂, x̂, ε)) as a second-order conic programming (SOCP) problem,
which can be efficiently solved by the interior-point method.

Finally, we assume that (i) the slack bus voltages are known and
set to nominal values; (ii) the voltage bounds are 0.9 and 1.1 p.u.;
(iii) ErrBound is 0.0001 in all numerical analyses unless otherwise
specified.

A. Illustrative Example
Here, we consider a single-phase two-bus network, where the

PQ bus is directly attached to the slack bus via a line with series
impedance 0.3+0.7 p.u. Suppose that (i) there is no shunt element;
(ii) the PQ-bus power injection belongs to the triangular region
shown on Figure 1(b), which defines X ; (iii) the objective function
is ‖x− (3, 0)T ‖22. Note that, with this objective function, we try to
encourage the local (active) power generation.

In this network, it is easy to check that v(0) = 1 and x(0) =
(0, 0)T form a valid initial point. With this initial point and β = 0.9,
the algorithm converges in 3 steps (i.e., 4 instances of (P1(v̂, x̂, ε))
are solved). We plot the trajectory of voltage v(k) in Figure 1(a) and

3In fact, it is equivalent to a balanced three-phase network.
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Figure 1: Trajectories in (a) voltage space and (b) power
injection space. For each trajectory of (a), the lowest point
represents v(0); for each trajectory of (b), the leftmost point
stands for x(0). Note that in voltage space, a point is nonsin-
gular if its real part is not 0.5 p.u.

its corresponding trajectory x(k) in Figure 1(b) via thick solid lines.
Clearly, the obtained v(k) are all strictly feasible and x∗ = (0.5, 0)T

is the unique minimum in X . Moreover, the obtained points are non-
singular and connected to each other via nonsingular paths. Further
consider that this network can be solved analytically, therefore we are
able to generate other valid initial values for v(0) and x(0). Similar to
the case where v(0) = 1 and x(0) = (0, 0)T , we randomly generate
some v(0), x(0) and plot their corresponding trajectories in Figure 1
via dashed lines of different thickness. As can be seen, all of them
are feasible and nonsingular in voltage space and converge to the
same optimal value.

It is also worth noticing that, when set ErrBound to 0, we obtain
numerically lim infk→∞ ε

(k)
seq = lim supk→∞ ε

(k)
seq = 0.1211. This

means that the conditions in the fourth item of Theorem 2 hold.

B. IEEE 37-Bus Feeder
In the IEEE 37-bus feeder, all the loads are delta-connected. We

choose v(0) = w, x(0) = 0, which is feasible for this network.
Now, for a positive real number κ, construct set X to be: X =

{x : κxbenchmark
j ≤ xj ≤ 0, j ∈ {1, ..., 12N}}, where xj is the j-

th entry of x and xbenchmark
j is the benchmark value of xj (coming

from the feeder data) that is negative due to consumption.

First, we analyze how the required number of local problem
(P1(v̂, x̂, ε)) (i.e., the number of inner loops) depends on κ. In
other words, we want to test whether a larger set X results in
a much greater number of local problem (P1(v̂, x̂, ε)) to solve.
Indeed, this is important for the algorithm performance as the total
complexity includes the complexity of (P1(v̂, x̂, ε)) and the number
of (P1(v̂, x̂, ε)) instances solved. For a good algorithm, the number
of required (P1(v̂, x̂, ε)) should not change dramatically with the size
of X .

We fix β at 0.8 and gradually increase κ from 1 to 6. The
numerical results show that the algorithm finishes after solving (i)
1 local problem (P1(v̂, x̂, ε)) when κ = 1; (ii) 5 to 7 local problem
(P1(v̂, x̂, ε)) when κ = 6. Thus, the algorithm scales well with the
size of X .

Next, we fix the value of κ at 6, and check the impact of β
on the required number of local problem (P1(v̂, x̂, ε)) to solve. By
letting β be from {0.2, 0.4, 0.6, 0.8}, we observe that the number of
local problem (P1(v̂, x̂, ε)) decreases as β increases. In fact, this is
partially attributed to the accuracy of the linear approximation (13).
In particular, the fact that the linear model is accurate means that
the true values of the state variables are accurately represented by
their approximations. Therefore, if the approximations are feasible,
then the true values are also feasible in most of the cases. By such
observation, any small β becomes conservative and only leads to
more instances of (P1(v̂, x̂, ε)) to solve.

C. IEEE 123-Bus Feeder
In the IEEE 123-bus feeder, we add an additional delta-connected

power injection (−0.03− 0.01,−0.03− 0.01,−0.03− 0.01) p.u.
to bus 1, and hence create a bus with mixed wye-delta load. Denote
the modified benchmark power vector as xbenchmark and let (i) v(0)

be the solution to xbenchmark that is guaranteed in Dρ‡(w,0)(w) by
Theorem 1; (ii) x(0) = xbenchmark. Then, after repetition of the
analysis in the IEEE 37-bus feeder, we obtain similar results. In
particular, for κ = 6, the number of required (P1(v̂, x̂, ε)) is between
8 and 11. This proves that the algorithm is able to work on networks
that have sizes comparable to the IEEE 123-bus feeder.

However, we also notice a limitation of the performance. For
large networks, the number of constraints coming from (15d) is
very large. In order to reduce the complexity, we have to manually
remove some of the constraints that are redundant (i.e., the ones
that are implied by some other constraints). For radial networks with
negligible shunt elements, this can be done through the way given in
[20]. Nonetheless, how to reduce the complexity in general networks
still requires further study.

VI. CONCLUSION

In the paper, we propose an optimal power flow method for
multiphase power systems. The method does not require any specific
network topology and is able to accommodate different types of
load/source connections. Moreover, the method generates a sequence
of non-singular points in the state space and a corresponding sequence
of power injections, which can be used in real-time control settings.
Under certain conditions, the sequences attain the local minimum.
Despite the advantages of this method, there are several limitations
as we mentioned in the paper. The improvement is left as a future
work.

APPENDIX

AUXILIARY SETS AND LEMMAS

A. Auxiliary Sets
For any ε > 0, define the open set

Ỹ(v̂, x̂, ε) :=
{

x ∈ X : V min < K(v̂,x̂)x + a(v̂,x̂) < V max,

ξ(comps(x− x̂)) < ε
}

(19)
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and set

Y(x̂, ε) :=
{

x ∈ X : ∃y ∈ C12N s.t. x = h(y),

V min < |compv(y)| < V max, ξ(comps(x− x̂)) < ε
}
.

(20)

Moreover, let B(x̂, ε) := {x ∈ X : ξ(comps(x− x̂)) < ε}. These
auxiliary sets form the core of following lemmas.

B. Lemmas
Lemma 1. Assume that x̂ ∈ X and the power flow solution v̂
to x̂ satisfy (i) V min < K(v̂,x̂)x̂ + a(v̂,x̂) < V max and (ii)
ξ(comps(x̂)) < (γ(v̂))2. Then, there exists ε0(v̂, x̂) > 0 such that
for all ε ∈ (0, ε0(v̂, x̂)], we have that

B(x̂, ε) = Ỹ(v̂, x̂, ε) = Y(x̂, ε). (21)

Proof. First, consider that:
1) K(v̂,x̂)x + a(v̂,x̂) is an affine function from R12N to R3N ;
2) V min < K(v̂,x̂)x̂ + a(v̂,x̂) < V max;
3) ξ(·) is a norm and defines a metric that is Lipschitz equivalent

to the Euclidean distance.
Therefore, there exists ε1(v̂, x̂) > 0 such that

ξ(comps(x− x̂)) < ε1(v̂, x̂)

⇒V min < K(v̂,x̂)x + a(v̂,x̂) < V max (22)

Namely, we have

Ỹ(v̂, x̂, ε) = B(x̂, ε), ∀ε ∈ (0, ε1(v̂, x̂)]. (23)

Next, consider:
1) |v̂| = K(v̂,x̂)x̂ + a(v̂,x̂) ⇒ V min < |v̂| < V max;
2) ξ(comps(x̂)) < (γ(v̂))2;
3) Based on item 2), if ξ(comps(x − x̂)) < εmax

(v̂,x̂), then there is
a solution in Dρ†(v̂);

4) The value of ρ†(v̂, comps(x̂), comps(x)) is controlled by
ξ(comps(x− x̂)) as

ρ†(v̂, comps(x̂), comps(x))

=ρ‡(v̂, comps(x̂))−
√

(ρ‡(v̂, comps(x̂)))
2 − ξ(comps(x− x̂))

=ρ‡(v̂, comps(x̂))

(
1−

√
1− ξ(comps(x− x̂))

(ρ‡(v̂, comps(x̂)))
2

)

≤ξ(comps(x− x̂))

ρ‡(v̂, comps(x̂))
. (24)

Therefore, there exists ε2(v̂, x̂) ∈ (0, εmax
(v̂,x̂)] such that

ξ(comps(x− x̂)) < ε2(v̂, x̂)

⇒∃y s.t. x = h(y), V min < |compv(y)| < V max (25)

Namely, we have

Y(x̂, ε) = B(x̂, ε), ∀ε ∈ (0, ε2(v̂, x̂)]. (26)

Let ε0(v̂, x̂) = min{ε1(v̂, x̂), ε2(v̂, x̂)}, we complete the proof.

Using Lemma 1, we are able to prove that at each iteration, we
either output a feasible solution with a smaller objective value, or
converge to a local minimum.

Lemma 2. Assume that the conditions of Lemma 1 hold. Let x̃ =
argminx∈cl(Ỹ(v̂,x̂,ε)) f(x) and suppose that x̃ ∈ cl(Y(x̂, ε)), for
some ε ∈ (0, εmax

(v̂,x̂)). Then x̃ = argminx∈cl(Ỹ(v̂,x̂,ε))∩cl(Y(x̂,ε)) f(x).
Moreover, if x̃ = x̂, then x̂ is a local minimum of f(·) over
cl(Y(x̂,∞)).

Proof. First, observe that under the conditions of the lemma, we have
that

f(x̃) ≤ f(x), ∀x ∈ cl(Ỹ(v̂, x̂, ε)) ∩ cl(Y(x̂, ε)) ⊆ cl(Ỹ(v̂, x̂, ε))
x̃ ∈ cl(Ỹ(v̂, x̂, ε)) ∩ cl(Y(x̂, ε)).

Therefore, the first part of the lemma trivially follows.
Second, notice that by Lemma 1, we have that for any ε > 0, there

exists δ > 0 such that

B(x̂, δ) ⊆ Ỹ(v̂, x̂, ε)∩Y(x̂, ε) ⊆ cl(Ỹ(v̂, x̂, ε))∩cl(Y(x̂, ε)). (27)

Indeed, this is true for δ = ε if ε ≤ ε0(v̂, x̂), and δ = ε0(v̂, x̂)
otherwise. Therefore, by the definition of a local minimum, if
argminx∈cl(Ỹ(v̂,x̂,ε))∩cl(Y(x̂,ε)) f(x) = x̂, then x̂ is a local mini-
mum.

PROOF OF THEOREM 2
C. Properties of v(k), x(k) and ε

(k)
seq

It is easy to verify that the sequences v(k), x(k) and ε
(k)
seq have

following properties:
• x(k+1) ∈ Y(x(k), ε

(k)
seq);

• x(k+1) minimizes f() over cl(Ỹ(v(k),x(k), ε
(k)
seq));

• ε
(k)
seq < εmax

(v(k),x(k))
;

• ∀k, x(k) and v(k) satisfies the conditions of Lemma 1.
These properties will be used in the subsequent proof of Theorem 2.

D. Proof of Theorem 2
First note that by Theorem 1, Lemma 1 and Lemma 2, we have

that
• the inner loop on n in Algorithm 1 (lines 5-16) completes within

finite number of steps with a strictly feasible solution for the
constraints in (P0);

• f(x(k)) is an infinite monotonically non-increasing sequence if
without the lines 18-20 in the algorithm;

• the Jacobian matrix of h(·) evaluated at y(k) is invertible;
• ∀k, x(k) and x(k+1) can be connected by a continuous path in
B(x(k), εmax

(v(k),x(k))
), which must have a non-singular (hence

continuous) pre-image in the state space as guaranteed by
Theorem 1.

This proves items (i) and (ii) of the theorem.
Now, consider that f(·) is continuous and X is compact, we have

that the sequence f(x(k)) is bounded. By Monotone Convergence
Theorem, f(x(k)) converges. In other words, given ErrBound > 0,
∃M ∈ N such that

∣∣∣f(x(k+1))− f(x(k))
∣∣∣ < ErrBound, ∀k ≥ M .

Furthermore, by Lemma 2, x∗ is a local minimum of f(·) over the
feasible set (12b)–(12d) whenever e = 0. This proves item (iii).

To prove item (iv) (a), note that the sequence {x(k)} stays in a
compact set, hence there exists a convergent subsequence. Let {σ(k)}
denote the indexes of a subsequence of {x(k)} with a limit point x∗,
namely xσ(k) → x∗ as k → ∞. Moreover, observe that, in the
framework of the proposed Algorithm 1, the feasibility constraints
can be wrapped up as φ(x̂,x) ≤ 0. In details, the continuous function
φ is defined as

φ(x̂,x) :=

[
K(g(x̂),x̂)x + a(g(x̂),x̂) − V max

V min −K(g(x̂),x̂)x− a(g(x̂),x̂)

]
,

where g(·) is a continuous function defined by means of Theorem
1. Now we proceed by contradiction. Suppose that x∗ is not a local
minimum of (P0). Therefore, it is not a minimizer of (P1(v∗,x∗, ε))
for any ε > 0. In particular, there exists x̃ such that φ(x∗, x̃) < 0,
ξ(comps(x

∗ − x̃)) < εmin, and

f(x̃) < f(x∗). (28)
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Now, from the fact that
(i) xσ(k) → x∗;

(ii) φ(·,x) is continuous for all x; and
(iii) ξ(compx(·)) is continuous;
(iv) hypothesis (17) holds;

there exists k0 such that for all k ≥ k0, we have that φ(xσ(k), x̃) ≤ 0

and ξ(comps(x
σ(k) − x̃)) ≤ εmin ≤ ε

σ(k)
seq . Therefore, x̃ ∈

cl(Ỹ(g(xσ(k)),xσ(k), ε
σ(k)
seq )). Since xσ(k)+1 is an optimum in

cl(Ỹ(g(xσ(k)),xσ(k), ε
σ(k)
seq )) by its definition, it follows that

f(x̃) ≥ f(xσ(k)+1). (29)

However, since {f(x(k))} is a monotonically non-increasing se-
quence, we have that f(xσ(k)+1) ≥ f(x∗). Combining this last
inequality with (28) and (29), we obtain that

f(xσ(k)+1) ≥ f(x∗) > f(x̃) ≥ f(xσ(k)+1),

a contradiction. Therefore, x∗ is a local minimum of (P0).
For item (iv) (b), let {σ(k)} be a sequence such that εσ(k)

seq → εmax

as k → ∞. Let ε0 ∈ (0, εmax). There exists k0 such that for all
k ≥ k0, we have that εσ(k)

seq > ε0. Now let {σ′(k)} be a subsequence
of {σ(k)} such that xσ

′(k) → x∗ for some x∗. Then, the arguments
in proof for item (iv) (a) apply to x∗, by replacing {σ(k)} with
{σ′(k)} and εmin with ε0. This completes the proof of theorem.
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