Lessons Learned from
the World’s Most Energy-
Efficient Data Center

Otto Van Geet, PE
Principal Engineer

EUCI Utilities, Data Centers, and Renewable
Energy Summit

July 25, 2018
NREL/PR-7A40-71928



NRELs Dual Computing Mission

e Provide HPC and related systems expertise to advance NREL's mission,
and push the leading edge for data center sustainability

« Demonstrate leadership in liquid cooling, waste heat capture, and re-use
* Holistic “chips to bricks” approaches to data center efficiency
 Showcase data center at NREL's Energy Systems Integration Facility (ESIF)
Critical Topics Include:

* Liquid cooling and energy efficiency
Water efficiency
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Planning for a New Data Center

e Started planning for new data center in 2006

* Based on HPC industry/technology trends, committed to direct liquid cooling

* Holistic approach: integrate racks into the data center, data center into the facility,
the facility into the NREL campus

» Capture and use data center waste heat: office and lab space (now) and export to
campus (future)
* |ncorporate high power density racks—60kW+ per rack
* Implement liquid cooling at the rack, no mechanical chillers
* Use chilled beam for office/lab space heating. Low-grade waste heat use
* Considered two critical temperatures:
- Information technology (IT) cooling supply—could produce 242C (752F) on
hottest day of the year, ASHRAE “W2” class
- IT return water—required 352C (952F) to heat the facility on the coldest day
of the year

Build the World’s Most Energy Efficient Data Center
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NREL Data Center

Showcase Facility Data Center Features

. ESIF 182,000 ft.? research facility e Direct, component-level liquid cooling,
. 10,000 ft.? data center 24°C (759F) cooling water supply

. 10-MW at full buildout e 35-409°C (95-1049F) return water (waste
. LEED Platinum Facility, PUE < 1.06 heat), captured and used to heat offices
. NO mechanical cooling (eliminates and lab space

expensive and inefficient chillers) e  Pumps more efficient than fans

* High voltage 480-VAC power distribution
_ directly to high power density 60-80-kW
= compute racks

Compared to a Typical Data Center
« Lower CapEx—costs less to build
« Lower OpEx—efficiencies save

Utilize the bytes and the BTUs! Integrated “Chips to Bricks”
Approach
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Cooling Efficiency

. Liquid conduits require 250 to 1,000 times less space than air conduits for
transporting the same quantity of heat energy.

. Liquids require 10 to 20 times less energy to transport energy.

. Liquid-to-liquid heat exchangers have closer approach temperatures than liquid-
to-air (coils), yielding greater efficiency and increased economizer hours.

. ASHRAE TC9.9 liquid standards provide excellent guide.

Heat Transfer Resultant Energy Requirements
Rate AT Heat Transfer Fluid Flow | Conduit| Theoretical
Medium Rate Size Horsepower
s
Forced Air B> 9217 cfm | 34" @ 3.63 Hp
10 Tons | 12°F B
~
water ) 20gpm | 2" @ .25 Hp
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Choices regarding power, packaging,
cooling, and energy recovery in data
centers drive total cost of ownership.

Why should we care?

©)

O
©)
©)

Energy Efficient Data Centers

Water usage

Limited utility power
Mega$S per MW year
Cost: OpEx ~ IT CapEx!

Space Premium: Ten 100-kW racks take
much less space than the equivalent 50
20-kW air cooled racks.
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Metrics

“Facility energy” + “IT energy”

PUE =

“IT energy”

“Facility energy” + “IT energy” — “Reuse energy
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Metrics
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the units of WUE are liters/kWh

“Annual Site Water Usage” + “Annual Source Energy Water Usage”

WUEsource = “IT energy”
“Annual Site Water Usage”
WUESOURCE: “/Tenergy" + [EW/FX PUE]

where EWIF is energy water intensity factor
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System Schematic: Original Configuration
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Air-Cooled to Liquid-Cooled Racks

Traditional air-cooled Require liquid-cooled when rack
allow for rack power power densities in 5kW to 80kW
densities of 1kW-5kW range, have several options
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Liguid-Cooled Server Options

Cold Plates
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Fanless Liquid-Cooled Server Options
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Data Center Water Distribution
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Liguid Cooling—Considerations

Liquid cooling essential at high power density

Compatible metals and water chemistry is crucial

Cooling distribution units (CDUs)

o Efficient heat exchangers to separate facility and server liquids
o Flow control to manage heat return

o System filtration (with bypass) to ensure quality

Redundancy in hydronic system (pumps, heat exchangers)

Plan for hierarchy of systems

o Cooling in series rather than parallel

o Most sensitive systems get coolest liquid

At least 95% of rack heat load captured directly to liquid
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Air- and Water-Cooled System Options

Air-Cooled System

* Design day is based on DRY BULB
temperature

* Consumes no water
(no evaporative cooling)

* Large footprint/requires very large
airflow rates

KO TR O T O TR O T

Water-Cooled System —
e Design day is based on the lower WET BULB
temperature
e Evaporative cooling process uses water to improve
cooling efficiency
o 80% LESS AIRFLOW - lower fan energy
o Lower cost and smaller footprint.
e Colder heat rejection temperatures improve
system efficiency
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Traditional Wet Cooling System

Moist Heat
Out

Wet Loop
Sized for Design Day
Thermal Duty

95°F (35.0°C) 75°F (23.9°C)

95°F (35.0°C)

Heat In

—)

Process Loop

Condenser

75°F (23.9°C)

Condenser Water Pump
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Basic Hybrid System Concept

Dry Heat Moist Heat
Out Out
95°F (35.0°C) —rs e e Wet Loop
Dry Sensible Cooler Sized for Design Day

Thermal Duty

Dry Loop
Sized for Water Savings

85°F (29.4°C) 75°F (23.9°C)

95°F (35.0°C)

Heat In

—)

Process Loop

Condenser

“Wet” when it’s hot, “dry” when it’s not.

75°F (23.9°C)

Condenser Water Pump
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Thermosyphon Cooler




Improved WUE—Thermosyphon
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Modeling Program

Version: C9
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Applications

Any application using an open cooling tower is a
potential application for a hybrid cooling system, but
certain characteristics will increase the potential for

SUCCESS.

Favorable Application Characteristics

* Year-round heat rejection load (24/7, 365 days is best)

* Higher loop temperatures relative to average ambient temperatures

* High water and wastewater rates or actual water restrictions

* Owner’s desire to mitigate risk of future lack of continuous water availability

(water resiliency)
* Owner’s desire to reduce water footprint to meet water conservation targets
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Sample Data: Typical Loads and Heat Sinks

Loads and Heat Sinks for 2-Days (October 4-5, 2016)
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Cumulative Water and Cost Savings

Energy = $S0.07/kWh
Water = $5.18/kgal

Cumulative Estimated TSC Operational Cost & Water Savings At The NREL ESIF Installation
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Data Center Metrics

First year of TSC operation (9/1/2016-8/31/2017)

Hourly average IT Load WUE = 0.7 liters/kWh
= 888 kW (with only cooling towers, WUE = 1.42 liters/kWh)
PUE = 1.034 Site Water Usage and Estimated Water Savings
— 300,000 N 1,135,624
ERE = 0.929 N
. o N Y NN § z
Annual Heat Rejection &7 . § % N % N § § \ L <
2 EEEEEEERER g
3 150,000 & § § § § § § % 567,812 =
Building Heat 100,000 N \ N 2 g2 378,541
50,000 i S§ % § 189,271
Coolin s"éﬁ & > e‘s’:& c“""@ \@«O «”p @"‘S\ v""«o @""‘*&\ \\@3\ \&5\ v"é\
Towersg Site Water Usage . Estimated Reuse Energy Water Savings

8t Estimated Thermosyphon Water Savings

Thermosyphon WUE soupce = 5.4 liters/kWh
WUE sppce = 4.9 liters/kWh if energy from

720 kW PV (10.5%) is included
using EWIF 4.542 liters/kWh for Colorado
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Conclusions

 Warm-water liquid cooling has proven very energy
efficient in operation

 Modeling of a hybrid system showed that it was possible
to save significant amounts of water while simultaneously
reducing total operating costs

o System modification was straightforward

o System water and operational cost savings are in line
with modeling

* Hybrid system increased operational resiliency



Questions
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Notice

This research was performed using computational resources sponsored by the U.S.

Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy
and located at the National Renewable Energy Laboratory under Contract No. DE-
AC36-08G028308. Funding provided by the Federal Energy Management
Program. The views expressed in the presentation do not necessarily represent
the views of the DOE or the U.S. Government. The U.S. Government retains and
the publisher, by accepting the presentation for publication, acknowledges that
the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this work, or allow others to
do so, for U.S. Government purposes.
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