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Cover.  Directed acyclic graph of the Bayesian network developed to describe associations among 
selected water-quality parameters at U.S. Geological Survey streamgage 03374100 White River at 
Hazleton, Indiana, water years 1991–2016.
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U.S. customary units to International System of Units

Multiply By To obtain

Length

inch (in.) 25.4 millimeters
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area

square miles (mi2) 2.590 square kilometers (km2)
Volume

cubic foot (ft3) 0.02832 cubic meter (m3) 
Flow rate

cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F = (1.8 × °C) + 32.

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C = (°F − 32) / 1.8.

Supplemental Information
Concentrations of chemical constituents in water are given in either milligrams per liter (mg/L) 
or micrograms per liter (µg/L).
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Abstract
An exploratory discrete Bayesian network (BN) was 

developed to assess the potential of this type of model for 
estimating the magnitudes and uncertainties of an arbitrary 
subset of unmeasured water-quality parameters given the 
measured complement of parameters historically measured at 
a U.S. Geological Survey streamgage. Water-quality data for 
27 water-quality parameters from 596 discrete measurements 
at U.S. Geological Survey streamgage 03374100 White River 
at Hazleton, Indiana, were used to develop this BN. Data for 
each of the water-quality parameters were discretized into 
five intervals based on the quintiles of the measured values. 
The 596 discrete measurements were randomly partitioned 
into a training set with 80 percent of the data and a testing set 
with 20 percent of the data to identify, estimate, and assess the 
training and testing accuracy of the Bayesian network.

A BN with 28 nodes was formed from the 27 water-
quality parameters and the month of sample collection. Based 
on data in the training set, a network with 53 directed edges 
and month as the target node was identified by minimizing 
the negative log-likelihood function for all nodes treated, in 
turn, as the target variable. The edge structure determines the 
number and magnitude of elements in conditional probability 
tables associated with all nodes. 

The effectiveness of the BN was assessed on the basis of 
correct classification rates to one of the five discrete intervals, 
which were computed separately for the training and testing 
datasets and for two conditioning variable sets. The selected 
sets of conditioning variables represent two of many possible 
sets of measured parameters on which to base estimates of 
unmeasured parameters. The first set includes only the month 
of sample collection (month), and an expanded set includes 
month and six other continuously measurable parameters, 
referred to as the ContMeasSet, all of which were obtained 
from the discrete data. 

Results indicated that the training dataset had average 
correct classification rates of 41.7- and 61.2-percent rates 
conditioned on the month and ContMeasSet sets, respectively. 

The testing dataset had somewhat lower average correct classi-
fication rates of 40.8 and 56.5 percent for the two conditioning 
variable sets. When conditioned on month only, the average 
correct classification rate for the testing dataset was only 
slightly lower than the average correct classification rate in the 
training dataset, indicating little model overfitting. When using 
the ContMeasSet, however, the average decrease in accuracy 
between training and testing sets was 4.9 percent. The training 
and testing datasets and both sets of conditioning variables, 
however, indicate that the BN would substantially outperform 
a random assignment model, which would be expected to 
have a 20-percent correct classification rate. In addition, the 
edge structure of the BN depicts how information can flow 
through the network, which may help prioritize parameters for 
measurement to facilitate estimation of unmeasured param-
eters. Finally, extension of a static BN, like the one developed 
in this report, to a dynamic BN may provide a basis for using 
high-frequency or continuous water-quality data to extend 
information in time between discrete water-quality samples, 
and this integration could mitigate some of the limitations of 
high-frequency and discrete water-quality sampling methods.

Introduction
The U.S. Geological Survey (USGS) National Water 

Quality Program (NWQP) collects, analyzes, and interprets 
water-quality data on the Nation’s streams and aquifers to 
assess their status and trends and to characterize how natural 
processes and human interventions affect the Nation’s water 
resources. Local, regional, and national studies are enabled by 
consistent methods of water-quality data collection and analy-
sis. These data are made available for public access and future 
uses by archiving in the USGS National Water Information 
System (NWIS; U.S. Geological Survey, 2018a). 

Stream water-quality data are routinely collected at fixed-
location monitoring stations distributed across the Nation. 
At each station, water-quality information is commonly 
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obtained at differing intervals as discrete samples, which can 
be analyzed for a large number of parameters in a laboratory. 
Only data from discrete samples are discussed in this report. 
It is technically possible, however, to measure a subset of 
the parameters in discrete samples by in situ methods at high 
frequencies, typically every 15 to 60 minutes. These continu-
ously measurable (high frequency) parameters are of special 
interest because they have the potential to update water-quality 
information in Bayesian networks (BNs) between discrete 
measurements. 

Numerous water-quality parameters can be measured in 
the laboratory. More than 21,500 five-digit parameter codes 
(U.S. Geological Survey, 2011a) are assigned to water-quality 
parameters in NWIS. Parameter codes are organized within 
17 parameter groups characterizing physical properties, 
nutrient concentrations, organic and inorganic constituents, 
informational, and other data. The precise definition of each 
parameter code, including parameter name and description, the 
Chemical Abstracts Service Registry Number of the parameter 
where available, the U.S. Environmental Protection Agency 
Substance Registry Services name where available, and the 
parameter units of measurement, can be obtained by use of the 
NWIS website (U.S. Geological Survey, 2018b). 

As a part of the NWQP, the National Water-Quality 
Assessment (NAWQA) Project operates long-term fixed-site 
monitoring stations. Repetitive water samples from monitored 
streams are commonly obtained at irregular intervals. These 
frequencies range from weekly to quarterly samples and may 
change over extended periods of time. Individual discrete 
water samples may be formed by compositing multiple point 
samples throughout a channel cross section. Measurements 
on these integrated water samples are more likely to repre-
sent the average concentration in a stream than in situ point 
measurements. 

Limitations of discrete samples include (1) the expense 
of mobilizing and deploying a sampling team to a site with 
the appropriate measurement equipment, (2) the time delay 
between sampling and receiving the analytical results from a 
laboratory, (3) possible diel sampling bias due to the need to 
work in daylight hours for efficiency and safety, (4) possible 
day-of-week bias due to sampling primarily during week days 
for economy, and (5) limitation of sampling frequency to one 
or two samples per hour per team, given the flow or width 
integrated sampling approach commonly used. 

A complementary program of high-frequency and dis-
crete water-quality sampling provides a basis for mitigating 
some of the limitations of both sampling protocols. Stream 
water-quality sites are usually co-located at or near USGS 
streamgages, which provide a continuous record of stream-
flow. Streamgages are commonly equipped with monitoring 
and telemetry equipment to measure and transmit environmen-
tal data in real time. In addition to streamflow, streamgages 
monitor water-level information and, in some cases, multiple 
measurements per day of water temperature, specific conduc-
tance, pH, turbidity, and other continuously measurable physi-
cal characteristics or properties of water. Some streamgages 

are equipped to continuously measure surrogate water-quality 
parameters, such as specific conductance or turbidity, which 
can be used to estimate parameters of primary interest (Schenk 
and others, 2016). 

Recent progress in instrumentation for in situ water-qual-
ity monitoring has expanded the set of continuously measur-
able parameters, including forms of nitrogen and phosphorus 
that were previously only measurable in a laboratory. Such 
high-frequency data can provide insight on dynamic processes 
occurring over sub diel time scales or document water-
quality changes in response to rapidly changing hydrologic 
conditions. 

High-frequency measurements, however, introduce a 
potential spatial sampling bias because the concentration or 
property measured at a fixed sampling point may not represent 
the average property of the stream at that time or may vary 
systematically from the mean as a function of stream water 
level. Also, high-frequency water-quality monitoring equip-
ment is expensive to acquire and maintain. In particular, more 
site visits may be needed to mitigate effects of probe fouling or 
electronic drift of a continuously monitoring instrument than 
required for maintaining streamflow-gaging operations. Used 
together, however, discrete and high-frequency monitoring 
may improve sampling accuracy and efficiency and mitigate 
limitations of both sampling methods. Bayesian networks may 
provide a basis for integrating discrete and high-frequency 
data by increasing the understanding of the relations among 
water-quality parameters and identifying how information on 
one set of parameters may flow to other parameters. 

Purpose and Scope

This report describes the development of a discrete BN 
that depicts the conditional dependency structure and infor-
mation flow among 27 historically measured water-quality 
parameters and month at a selected stream site. The util-
ity of the BN is assessed for estimating the magnitudes and 
uncertainties of an unmeasured subset of these water-quality 
parameters given only data on a measured complement. 
Also, analysis of the directional separation (d-separated) and 
d-connected of a BN describes how information can flow 
through a BN conditioned on the directionality of the edges 
and the measured parameters. This analysis may help identify 
parameters that are critical to the flow of information and 
may help prioritize parameters for measurement to facilitate 
estimation of unmeasured parameters. 

The reliance on discrete measurements for development 
of the BN restricts model applications to static conditions. 
Although a static BN can be extended to a dynamic BN with 
time-delay coefficients, sufficient high-frequency data needed 
to estimate these coefficients are not yet widely available. 
Although high-frequency data may be used to update cor-
responding parameters and resultant information propagated 
through the network, the estimates reflect static relations. 
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Initialization, training, and verification data for the BN are 
available separately (Hopple, 2018).

Study Area

U.S. Geological Survey streamgage 03374100 White 
River at Hazleton, Ind., was selected for this exploratory 
assessment (fig. 1). White River drains 11,305 square miles 
(mi2) of central and southwestern Indiana. The upper basin 
is situated in part of the Cornbelt and Northern Great Plains 
aggregate ecoregion; the lower basin drains part of the South-
east Temperate Forested Plains and Hills aggregate ecoregion 

(Risch and others, 2014). The streamgage monitors flow and 
water-quality constituents from the White River. From this 
site, White River flows westward 18.8 miles (mi) and empties 
into the Wabash River at the Indiana-Illinois border. When 
flows associated with discrete water-quality measurements 
were not measured at streamgage 03374100, which was about 
16 percent of the time, they were estimated on the basis of 
flows at streamgage 03374000 White River at Petersburg, Ind., 
with a drainage area of 11,125 mi2, which is located 26.8 mi 
upstream from 03374100. Daily flows at 03374000 gener-
ally have greater magnitudes and variabilities from February 
through May than from August through October (fig. 2). 
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Figure 1.  Drainage basin and location of water-quality monitoring streamgage 03374100 White River at Hazleton, Indiana, in central-
southwestern Indiana.

Methods of Bayesian Network 
Analysis

The following paragraphs discuss the identification of 
the directed edge structure connecting nodes in a BN, estima-
tion of conditional probabilities at each node given an edge 
structure, and the resulting implications for information flow 
through the network.

Structure of Bayesian Networks

A BN is a probabilistic graphical model that has an 
information-flow structure described by a directed acyclic 
graph (DAG) (Koller and Friedman, 2009). In this report, the 
model is depicted graphically by nodes representing water-
quality parameters and by directed edges (links) indicating 
statistical associations among parameters. This directional-
ity enables estimation of the magnitudes and uncertainties of 
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Figure 2.  Daily flow characteristics at U.S. Geological Survey streamgage 03374000 White River at Petersburg, Indiana, from 1929 to 
2014.

unmeasured parameters on the basis of measured parameters 
and conditional probabilities but prevents cycles in the graph, 
which make it impossible to return to an originating node by 
following the d-connected edges.

Nodes may be classified by their edge configuration. A 
node without an in-coming edge is a root node, which has 
no parent (predecessor) nodes. Thus, parameters associated 
with root nodes are not conditionally dependent on other 
parameters but are described by their marginal distributions. 
Root nodes commonly may have one or more child (descen-
dent) nodes, which are connected by out-going edges. Child 
nodes have one or more parent nodes and may themselves 
have descendent nodes. Terminal nodes have one or more 

in-coming edges but no out-going edges. Nodes without edges 
are considered to be disconnected from the network. 

Degree is a measure of the centrality of the node in the 
network and is determined by the total number of incident 
edges. Thus, water-quality parameters for nodes with high 
degree centrality are associated with more parameters than 
those of lower degree centrality. Knowing which parameters 
have a high degree of centrality may help prioritize param-
eters for measurement. Degree centrality can be refined 
into in-degree and out-degree measures by considering the 
directionality of the edges. The maximum degree of a graph 
is the degree of the highest of any node in the graph, and the 
minimum degree is the degree of the lowest of any node. 
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Discrete Probabilities and Discretization of 
Water-Quality Data

A BN can use either a continuous probability density 
function (PDF) or, as in this report, a discrete probability mass 
function (PMF) for probabilistic computations. The PMFs 
accumulate probability densities depicted in PDFs within 
a fixed set of intervals that span the range in water-quality 
parameters. Each discrete interval in a PMF has a non-
negative probability, with probabilities summing to one over 
all intervals. The PMFs that are conditioned on the multiple 
intervals of one or more other parameters are referred to as 
conditional probability tables (CPTs).

Mathematical operations on PMFs are much faster than 
comparable integrations over PDFs, especially when these dis-
tributions are conditioned on one or more parameters. Discret-
ization does result in some loss of precision, particularly when 
the discretization is coarse relative to the number of mea-
surements. A discretization that is too fine for the variability 
and number of observations, however, can produce irregular 
(noisy) CPTs that could degrade the estimation process.

Finding the optimal number of intervals and procedures 
for discretizing continuous variables is one of the more chal-
lenging tasks in developing discrete BN and is still an active 
area of research. Alameddine and others (2011) experimented 
with 3 to 7 bins per variable and determined that changing the 
number of bins had a profound effect on the identified edge 
structure; for example, more discretized intervals resulted in 
having fewer directed edges in the network. 

The distribution of parameter values in root nodes is not 
conditioned on other parameters, so it is simply a (marginal) 
PMF, which can be visualized as a histogram or a table with 
one row and k columns, corresponding to each interval of 
discretization for the parameter. In this report, the range of 
each parameter was initially subdivided at five quantiles using 
probabilities from 0 to 1 by quantile increments of 0.2. Thus, 
the range in parameter values within each interval would 
likely vary, but the average probability within each interval is 
nominally constant.

The distribution of parameter values in descendent nodes 
is described by a CPT, where the number of conditioning 
variables is determined by the number of edges originating 
from parent nodes. For a child node with one parent (incoming 
edge), the CPT would contain kparent  rows and kchild  columns. 
For example, a water-quality parameter discretized into 
five intervals that was conditioned on month, which discretizes 
a year into 12 intervals, would have a conditional probabil-
ity table containing 12 rows and 5 columns, where each row 
would sum to one. Similarly, a child node, in which the param-
eter range was discretized into 5 intervals and was conditioned 
on month (12 intervals) and a water-quality parameter dis-
cretized into 5 intervals, would form a probability table with 
60 rows and 5 columns. Thus, the number of elements in a 
CPT grows rapidly with the number of conditioning variables.

Information Flow and Directional 
Connectedness

A DAG provides a basis for characterizing the flow of 
information through a network. Pearl (2009) presents three 
rules that describe conditions for information to propa-
gate through a DAG, which are based on the argument that 
directional connectedness is a sufficient condition for describ-
ing information flow. Rule 1 states that two graph nodes are 
directionally connected (d-connected) if there is an unblocked 
path between them. In a probabilistic sense, information flows 
through a d-connected path. A path refers to a sequence of dis-
tinct edges through a set of adjacent nodes. An unblocked path 
indicates that a path between the two nodes can be traversed 
without encountering a pair of convergent edges colliding 
head-to-head at a node. For example, in figure 3A, the node 
sequences x r s t� � �� � and t u v y� � �� � are d-con-
nected, but s t u� �� � is d-separated by the head-to-head 
collision at t.. Probabilistically, if t is unknown, then s and u 
are conditionally independent. Similarly, for node v  unknown, 
information flows from u and y.. All adjacent node tuples in a 
d-connected sequence are also d-connected.

Rule 2 states that a set of nodes x y,� � are d-connected 
and conditioned on a set of measured nodes Z  if there is a col-
lider free path between x  and y  that does not traverse a mem-
ber of set Z.. In figure 3B, the measurement set Z  with circled 
elements r v,� � d-separates nodes x  and s,, and nodes u and y,, 
whereas s and u  are d-separated by the collider at t  according 
to rule 1. Observing r,, however, makes x  and s  conditionally 
independent (d-separated), whereas observing v  makes u  and 
y  conditionally independent. From a water-quality network 
perspective, a measurement at r  informs x s and , despite the 
loss of information between x s to .. Likewise, information 
measured at node v  can propagate to y u and ..

Finally, rule 3 states that if a collider is a member of a 
conditioning set Z  or has a descendent in Z ,, then the collider 
no longer blocks any path that traces the collider. In figure 
3C, the set Z  contains circled nodes r p, .� �. Because the 
collider at t  has descendant p Z in ,, the path from r y to  is 
unblocked. The path from x s to ,, however, is still blocked by 
r  in Z,, according to rule 2, although information at r  can flow 
throughout the graph except to node p..

Software for Bayesian Networks

The Netica application, version 5.24 for Windows, by 
Norsys Software Corp. (Norsys Software Corporation, 2016), 
was used to develop the BN in this report. Netica provides a 
graphical user interface that facilitates the development and 
applications. Algorithms for identification of the edge structure 
and for estimation of CPT from data are provided. Netica also 
is able to use data from fully and partially quantified sets of 
observations, where elements of partially quantified observa-
tions may include missing, censored, or estimated (interval) 
values.
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Figure 3.  Information flow in a Bayesian network. A, A head-to-head collision at node t creating d-separation between the subgraphs 
to the right and left of node t. B, Measurements at nodes r and v creating d-separation between nodes x and s, and nodes u and y, 
respectively. C, A measurement at node p, which is a descendant of t, unblocking information flow at the collider.

Nonproprietary alternatives to Netica include the statisti-
cal programming environment R (R Core Team, 2016) pack-
ages abn (Additive Bayesian Network) developed by Fraser 
(2016), and bnlearn developed by Scutari (2010). The alterna-
tives, however, are not known to provide a basis for comput-
ing with missing, censored, or estimated observations, which 
are ubiquitous in water-quality data. 

Implementing a Bayesian Network for 
Water-Quality Data

Implementing a BN involves (1) selecting a set of 
water-quality parameters with a sufficient number of measure-
ments as nodes in the network, (2) identifying the statistical 
dependencies (edges) among nodes in a network with a set of 
directed edges, (3) computing the CPTs for the network, and 
(4) evaluating the network performance. 

Selection of Water-Quality Parameters

Existing water-quality data at streamgage 03374100 
White River at Hazleton, Ind., were evaluated to identify 
parameters that would be likely to contain sufficient infor-
mation to support the development of a BN. Data selection 
occurred in two stages. The first stage preselected a subset of 
all measured parameters on the basis of the number of discrete 
measurements by use of data summaries from the water-
quality data inventory. The second stage retrieved time series 
of measured parameters for this subset to identify measure-
ment characteristics, such as the number of fully quantified, 
censored, estimated, and missing values, evaluation of trends, 
and elimination of potentially redundant parameters. 

Water-Quality Inventory Characteristics
The sampling frequency characteristics of water-quality 

data at streamgage 03374100 were initially characterized 
on the basis of water-quality inventory data retrieved from 
NWIS using the function whatNWISdata in the R package 
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Figure 4.  Frequency of unique water-quality parameters within parameter groups at U.S. Geological Survey streamgage 03374100 
White River at Hazleton, Indiana, water years 1973–2016.

dataRetrieval (Hirsch and De Cicco, 2015). This function 
was applied using parameters siteNumbers = ‘03374100’ and 
service = ‘qw,’ where “qw” refers to data from discrete water-
quality samples (U.S. Geological Survey, 2016).

The inventory data contain 29 fields (columns) that sum-
marized measured data for each parameter. Inventory data 
include descriptors for the medium sampled (medium_grp_cd), 
the name of the parameter group (parameter_group_nm) asso-
ciated with each parameter, the number of times each param-
eter was measured (count_nu) within an interval described 
by beginning and ending sampling dates (begin_date and 
end_date, respectively).

A data retrieval for streamgage 03374100 on January 
20, 2017, returned a dataset containing 1,133 observations 
with 1,083 unique parameter codes. Sampling medium groups 

(medium_grp_cd) included biological (‘bio’), sediment 
(‘sed’), and with water (‘wat’). Omitting all but the water 
samples resulted in a dataset with 764 unique parameter codes 
(parm_cd) distributed among 15 parameter groups (fig. 4). 
Results indicate that organic pesticides contained the larg-
est number of unique parameters (491) measured among all 
parameter groups. Only 1 unique parameter was included in 
the radiochemical group, 2 were included in the stable isotopes 
group, and 3 unique parameters were measured in the organic 
polychlorinated biphenyl (PCB) group.

At streamgage 03374100, the 764 unique water-quality 
related parameters were measured one or more times on 
water samples from 1973 to 2016, potentially providing 
91,417 parameter measurements. The distribution of these 
parameter measurements among 15 parameter groups are 
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Figure 5.  Counts of parameter measurements among parameter groups at U.S. Geological Survey streamgage 03374100 White River at 
Hazleton, Indiana, water years 1973–2016.

shown on figure 5. The most frequently measured groups 
include organic pesticides, with 46,890 measurements; physi-
cal parameters, with 10,640 measurements; and nutrients 
with 10,088 measurements. In contrast, the radiochemical 
group included 8 measurements, and organic PCB included 
20 measurements. The informational (termed “information”) 
parameter group consists of metadata, such as agency analyz-
ing the sample, project number, number of sampling points, 
site visit purpose, and details that may support analysis of 
individual results rather than quantify specific water-quality 
parameters. 

The number of repetitive measurements for each param-
eter varied widely among groups (fig. 6). For example, the 
average number of repeated measurements of specific pesti-
cides within the organic pesticide group is 95.5, computed by 
dividing the total number of pesticide measurements, 46,890, 
by the number of unique pesticides measured, 491. The range 
of repetitive pesticide measurements varied among individual 
pesticides from 1 (several compounds) to 554 (atrazine). Some 
of the more frequently measured parameters occurred within 
the nutrient, major inorganics non-metals, and physical param-
eter groups. Metadata associated with parameters from the 
information group were not used in the development of a BN.
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Figure 6.  Distribution of repetitive parameter measurements within parameter groups at U.S. Geological Survey streamgage 03374100 
White River near Hazleton, Indiana, water years 1973–2016.
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The ability to characterize statistical interrelations among 
water-quality parameters in a BN is dependent on the avail-
ability of a sufficient number of measurements in which sets 
of parameters have been measured on the same water sample. 
Although this information is not directly available from the 
inventory, a minimum frequency of measurements based on 
a measurement count greater than 400 field was used as a 
minimum threshold for initial selection of parameters. A total 
of 51 parameters satisfied this threshold (fig. 7). 

Additional details on the 51 parameters that were initially 
selected on the basis of the inventory data are shown in table 
1.1. These 51 parameter codes were considered for possible 
redundancies. For example, instantaneous discharge, in cubic 
feet per second (parameter 00061) was considered to be 

redundant with instantaneous discharge, in cubic meters per 
second (parameter 30209). Similarly, instantaneous discharge 
was considered to be redundant with gage height, in feet 
(parameter 00065), and with gage height above datum, in 
meters (parameter 30207), because of the curvilinear relation 
between gage height and discharge. Thus, for the purpose 
of this report, instantaneous discharge, in cubic meters per 
second (parameter 30209), and gage height, in feet or meters 
(parameters 00065 or 30207) were considered redundant with 
instantaneous discharge, in cubic feet per second (parameter 
00061), and omitted from the BN. Redundancies outlined in 
table 1.1 identified 17 parameters that were omitted from the 
BN.
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Figure 8.  Frequency of discrete water-quality samples at U.S. Geological Survey streamgage 03374100 White River at Hazleton, 
Indiana, water years 1973–2016.

[“discrete water-quality samples” refer to a sample_type_code equal to 9 (https://help.waterdata.usgs.gov/code/sample_type_query?fmt=html), with a medium_
code of ‘WS’ (https://help.waterdata.usgs.gov/code/medium_cd_query?fmt=html)]

Water-Quality Time Series Characteristics
The readNWISqw function from the dataRetrieval pack-

age was used to retrieve time series of discrete water-quality 
measurements from NWIS for streamgage 03374100 using 
34 of the 51 parameters that were not considered redundant. 
The argument ‘startDate’ was specified as ‘1973-01-01’ and 
‘endDate’ was specified as ‘2016-09-30,’ with ‘expanded’ 
and ‘reshape’ set to true. The retrieval returned a table of time 
series data with 839 rows and 496 columns. 

Among the time series information data returned was the 
medium code (‘medium_cd’) U.S. Geological Survey (2011b), 
which described the medium sampled. Based on this code, 

832 surface-water samples, 3 bottom-material samples, 3 plant 
tissue samples, and 1 animal tissue were obtained. Only the 
surface-water samples were retained for analysis. In addi-
tion, sample type codes (“samp_type_cd”), U.S. Geological 
Survey (2011c), included 713 regular water samples (code 9), 
116 replicate samples (code 7), and 3 composite samples (code 
H). Only the regular water samples were retained. 

The varying frequencies of water-quality sampling from 
1973 to 2016 are shown in figure 8 for the 713 regular surface-
water samples analyzed in this report. Data from 1973 to 1981 
were obtained at a median rate of 12 times per year but dimin-
ished to about 4 times per year from 1982 to 1986. No samples 
were obtained from 1987 to 1990. Although frequencies varied 

https://help.waterdata.usgs.gov/code/sample_type_query?fmt=html
https://help.waterdata.usgs.gov/code/medium_cd_query?fmt=html
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from 5 to 72 samples per water year, the median frequency 
increased to 22 samples per year from 1991 to 2016. A water 
year refers to the 12-month period beginning on October 1 and 
ending on September 30; the year is designated on the basis of 
the calendar year in which the water year ends.

Quantified, Censored, Estimated, and Missing Data
For each retrieved water-quality parameter, the table of 

time series data included a column quantifying the concentra-
tion or level for each parameter, identified as ‘p[#####],’ and 
a corresponding column of remarks identified as ‘r[#####],’ 
where [#####] indicates the five-digit parameter code (U.S. 
Geological Survey, 2011a). If the results column contained a 
numerical value and the remark column contained a missing 
value indicator (NA), then the result column was interpreted 
as a fully quantified numerical value. If the result column 
contained a numerical value and the remark column contained 
a less than value indicator (‘<’), the result column was inter-
preted as upper censoring limit for the parameter, and a value 
of zero was assumed for the lower censoring limit. Alterna-
tively, if the remark column contained a greater than value 
indicator (‘>’), the result column was interpreted as the lower 
censoring limit for the parameter. An estimated value indica-
tor (‘E’) in the remarks column was interpreted as a result 
with uncertainty, which might be expressed as an interval 
containing the reported value. The code ‘M,’ which indicates 
that the presence of a parameter was verified, but not quanti-
fied, was coded once for oxygen (parameter code 00300) on 
October 15, 2002, and for carbon dioxide (00405) in samples 
on December 12, 2007, and January 23, 2008. In this report, 
the three ‘M’ codes were treated as missing values. If both the 
result and remark fields contained missing value indicators, 
the parameter was considered a missing value. 

The type and amount of data qualifications and missing 
values are shown by parameter code in figure 9. Water-quality 
parameters of water temperature (w_temp, parameter 00010), 
specific conductance measured in the field (SpecCond, param-
eter 00095), and pH (pH, parameter 00400), respectively, 
had the most fully quantified measurements, while specific 
conductance measured in the laboratory (parameter 90095), 
bicarbonate (parameter 00453), the pesticide Alachlor (param-
eter 46432), organic nitrogen (parameter 00605), ammonia 
and ammonium as ammonium, NH4, (parameter 71846), 
ammonia and ammonium as nitrogen (parameter 00608), and 
the pesticide Metribuzin (parameter 82630) had fewer than 
330 fully quantified measurements. The 27 water-quality 
parameters having more than 330 fully quantified values after 
October 1, 1990, were used in subsequent analysis.

Statistical Characteristics of Water-Quality Parameters
Risch and others (2014) analyzed water-quality trends in 

selected nutrients, metals, and ions in Indiana streams. In their 
statistical analysis of data from 2000 to 2010, no statistically 
significant trends were detected for streamgage 03374100 
White River at Hazleton, Ind. in any of the constituents tested, 

including annual median nitrate or organic nitrogen, phospho-
rus, suspended solids, copper, iron, lead, chloride, zinc, hard-
ness, sulfate, or dissolved solids concentrations. 

For selected parameters used in the development of a BN 
in this report, measurements of barometric pressure, nitrite and 
nitrate nitrogen, orthophosphate, simazine, metolachlor, atra-
zine, and alkalinity are generally sparse or non-existent before 
1991, whereas other parameters were measured more consis-
tently during the period of record. Some parameters, such as 
fluoride and orthophosphate, show decreased concentration 
granularity (attributed to increased precision of measurements) 
for samples collected beginning October 1, 1990. 

In particular, water temperature, specific conductance, 
pH, and dissolved oxygen are fairly uniformly distributed 
over the vertical axis, considering annual variations, whereas 
discharge, simazine, metolachlor, and atrazine appear more 
frequently at lower concentrations, indicating a positive skew-
ness coefficient. Censored and estimated data are common in 
nitrite and nitrate nitrogen concentrations and orthophosphate. 
One measurement of dissolved oxygen and two measurements 
of carbon dioxide were indicated by the qualifier ‘M’ as pres-
ent but not quantified. These data were treated as missing val-
ues. One measurement of barometric pressure of 10.20 inches 
of mercury, measured on December 12, 1985, was deleted as 
a low outlier. The outlier classification was based on an inner 
99 percent quantile range (from 0.5 to 99.5 percentiles) of 
barometric pressures from 726 to 783 millimeters of mercury 
for 639 pressure measurements at the streamgage. It is pos-
sible that a leading ‘7’ in the pressure value was mistaken for 
a ‘2.’ 

Identifying a Bayesian Network for Selected 
Water-Quality Parameters

In this report, identifying a BN for the selected water-
quality parameters refers to a two-step process that includes 
identifying an appropriate set of directed edges connecting 
nodes (the edge structure), and estimating the corresponding 
CPT, by use of water-quality data. The minimum number of 
edges in a network is zero, implying that all parameters are 
independent, and the maximum number of directed edges, 
#

maxEd , is # # #
maxE N Nd � � �� �� �� �1 2  for #N parameters. 

For a network with 28 nodes, this maximum is 378 edges, 
implying that all parameters are conditionally dependent. The 
contents of CPTs are determined by the edge structure. 

The following paragraphs discuss the format of case files 
of water-quality data used for identification, the parameter-
specific process for identifying the edge structure of the DAG, 
the estimation of corresponding CPTs, and the selection of a 
target parameter for the BN. 

Data for Development of the Bayesian Network
To provide greater consistency in the temporal and statis-

tical distribution of measured parameters used to develop the 
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Figure 9.  Distribution of qualifying codes and missing values among selected water-quality parameters at U.S. Geological Survey 
streamgage 03374100 White River at Hazleton, Indiana, 1990–2016 (full parameter names and parameter codes are given in table 1.1). 

BN, only data measured on or after October 1, 1990 (begin-
ning of water year 1991) were used in this report. Due to the 
timing of this study, no data after September 30, 2016 (end 
of water year 2016), were included. The resulting dataset 
contained 596 observations on 27 parameters, not including 
the month indicator. Within this matrix, about 64.8 percent 
were fully quantified, 32.4 percent were missing values, and 
2.7 percent were censored or estimated values. 

To provide data for developing and testing the BN, the 
available 596 observations of water-quality parameters were 
randomly partitioned into a training dataset of 479 observa-
tions (80 percent) and a testing dataset of 117 observations 
(20 percent). This partitioning provides independent sets of 

data to estimate the parameters of BN and to assess the accu-
racy of estimation. Without this portioning, it can be difficult 
to control or assess the potential overfitting of the model to 
the idiosyncrasies of a particular dataset. A USGS data release 
prepared by Hopple (2018) can be used to access the data used 
in the development of the BN.

Case Files with Water-Quality Parameter Data
Netica can use measured data formatted as case files to 

identify the network structure and to compute CPTs. Netica’s 
case files are formatted with the American Standard Code for 
Information Interchange (ASCII) and are tab-delimited with 
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a header row identifying columns of data. The first column is 
the observation number (IDnum) followed by a set of identi-
fiers corresponding to the nodes in the BN. In this report, the 
parameter short name (table 1.1), including month, w_temp, 
PO4, and so forth, are the node identifiers. Each row after 
the header represents the water-quality parameters measured 
for an individual discrete sample. Numerical values represent 
fully quantified results. Missing values are indicated by an 
asterisk. Censored values are preceded by a less-than (<) or 
greater-than (>) symbol preceding the numerical censoring 
limit. Estimated values are represented by a pair of numeri-
cal values between braces ‘[low, high].’ Interval estimates are 
based on empirical quantiles computed using fully quanti-
fied values for the parameter. The low estimate is the inverse 
empirical quantile at the max (0, empirical quantile of the esti-
mate – 0.1). Similarly, the high estimate is the inverse empiri-
cal quantile at the min (1, empirical quantile of the estimate 
+ 0.1). The selection of a plus or minus 0.1 quantile about the 
quantile of the estimated value was selected to illustrate model 
flexibility. Interval estimates based on the expected percent 
error would also have been viable.

Identifying the Edge Structure of a Bayesian 
Network

Within the Netica (version 5.24) application, the pro-
cess for initiating a network project begins with selecting 
the menu item ‘File,’ then the subitem ‘New,’ and then the 
subitem ‘Network.’ A blank window labeled ‘Untitled-1’ was 
displayed. To initialize the network with the selected param-
eters and set the levels of discretization for each parameter, the 
menu item ‘Cases’ was first selected, then the subitem ‘Learn,’ 
and then the subitem ‘Add Case File Nodes…’ A window 
labeled ‘Case file to obtain nodes from:’ is shown, where the 
list of selectable files in the current directory displayed. In 
this report, the file baye_network_initialize.cas was selected 
to initialize the network. This case file specifies a range of 
parameter values that spans the range for all parameters in 
both the training (baye_network_training.cas) and testing 
(baye_network_testing.cas) datasets. These case files are 
accessible in the USGS data release by Hopple (2018). 

After selecting baye_network_initialize.cas file, an unla-
beled pop-up window appears displaying the text ‘How many 
states would you like continuous node month to have (0 for no 
discretization)?’ The default value of ‘5’ was replaced with 12, 
and the ‘OK’ button was selected. A pop-up window labeled 
‘Netica’ contained the message: ‘You have requested 12 states 
for node month, but only 12 unique values were observed. 
Would you like this to be a DISCRETE numeric node, instead 
of continuous?’ The button labeled ‘YES’ was selected, and an 
unlabeled pop-up displayed the text ‘How many states would 
you like continuous node w_temp to have (0 for no discretiza-
tion)?’ The default value of 12 was replaced with 5, so that 
5 intervals at the quintiles of distribution of water temperature 

were created. A value of 5 was selected as the discretization 
level for all parameters other than month. 

Netica provides the Tree Augmented Naïve (TAN) Bayes 
algorithm (Friedman and others, 1997; Chow and Liu, 1968) 
to identify the edge structure. To apply the TAN algorithm, a 
specific target node must be selected, where the target node 
corresponds to the parameter of primary interest. In the BN 
developed in this report, no parameter was considered to be 
of primary interest, where the objective was to provide an 
estimate of the magnitude and uncertainty of an arbitrary set of 
parameters given data on the measured complement; therefore, 
each parameter in the BN was, in turn, used to identify 28 
alternative edge structures. 

As an example of identifying the network structure by 
use of training data, the month node was arbitrarily selected 
(by left clicking on the node corresponding to month), where 
by default the node is displayed as a table icon with 12 rows 
in column 1, labeled 1 through 12 and corresponding to 
months from January to December. The second column of the 
node icon contains the value 8.33, which corresponds to the 
expected frequency of data for each month. Then, ‘Case’ menu 
item is re-selected, followed by the subitem ‘Learn,’ and then 
the subitem ‘Learn TAN structure.’ After this subitem was 
selected, a pop-up window labeled ‘Case file to learn structure 
from:’ appeared with the list of files in the directory, from 
which the file baye_network_training.cas was selected. If a 
pop-up window labeled ‘Netica error #3550’ is displayed with 
the message ‘You must select a single node to classify, or there 
must be a node-set named ‘target’ containing only it.’, click 
the button labeled ‘OK,’ select the target node (month), and 
re-read the training case file as described above. The view of 
the BN was updated with a set of 53 directed edges displayed 
among the 28 nodes. 

Estimating Conditional Probability Tables
Once a set of edge structures was identified by taking 

each parameter, in turn, as the target node, the correspond-
ing conditional probability tables were computed. In Netica, 
the menu item ‘Cases’ was selected, followed by the subitem 
‘Learn,’ and then by the item ‘Learn by EM.’ Within Netica, 
a pop-up window labeled ‘Case file to learn CPTs from:’ is 
displayed along with a list of selectable files in the current 
directory. In this report, the file ‘baye_network_training.cas’ 
was always selected. Then, Netica displays an unlabeled pop-
up window that displays the text ‘Enter degree (normal is 1):’ 
with a text box for data entry. In this report, the default value 
of 1 was used for all parameters. Once the ‘OK’ button is 
pressed on this pop-up window, the iterative expectation maxi-
mization (EM) algorithm computes CPTs for all nodes and a 
negative log-likelihood for the corresponding model. Progress 
of the EM algorithm in minimizing the negative log-likelihood 
for each iteration can be viewed in Netica by selecting the 
menu item ‘Report’ and the submenu ‘Network.’ 

The table icons representing nodes are updated with 
horizontal bars showing the percentage of data for each of 
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the nominal quantile limits displayed in the first column. Left 
clicking on any table icon will set the observed quantile for 
that parameter and update the distribution of conditional prob-
abilities in all child nodes. Quantiles in multiple nodes can be 
set by left clicking, which updates CPTs in all child nodes. 

In the absence of an a priori preferred target node, the 
edge structure of the BN was selected on the basis of the 
target node with the minimum value of the converged nega-
tive log-likelihood value (fig. 10). Based on these results, 
the most likely (smallest negative log-likelihood) BN for the 
28 selected parameters had the month parameter selected as 
the target node. Because the month parameter is associated 
with seasonal changes in temperature, light, precipitation, and 
cultural practices, such as farming, it is likely associated with 
numerous water-quality processes. 

The selected BN is depicted in figure 11. The network 
with 53 directed edges, which is about 14 percent of the num-
ber of edges in a complete graph, has all nodes connected by 
an edge. The network of water-quality parameters is connected 
in that all nodes are connected to the network by one or more 
edges. 

The month node has an out-degree of 27 for the 27 edges 
directed from the month node, making it a parent to all other 

nodes in the network. There are no parent nodes to month, 
making it the only zero in-degree (root) node in the network. 
The parameter silica (Si) has the next highest out-degree of 
three. Specific conductance (SpecCond), sulfate (SO4), pH, 
magnesium (Mg), calcium (Ca), and phosphorus (P) all have 
the next highest out-degree of two. Of the remaining nodes, 
6 have an out-degree of one, and 14 have an out-degree of 
zero, which are referred to as terminal nodes. With the excep-
tion of water temperature (w_temp), which has one parent 
node (month), all other water-quality parameters have an in-
degree of two. Given the 53 directed edges in the BN, estima-
tion of a total of 7,872 elements in the 28 CPT was required.

Although not explicitly indicated in the Netica docu-
mentation, it may be the case that the identification algorithm 
limits the maximum in-degree for all nodes to two, at least for 
the number of observations available in this training dataset. 
Such a restriction would limit the number of CPT elements, 
which increase rapidly with the in-degree of the node. This 
apparent limit for in-degree of 2 can be exceeded by adding 
edges manually. Given that this report focused on develop-
ing an exploratory BN to assess the general feasibility of the 
modeling approach, no further refinement of the network was 
attempted. 
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Figure 10.  Negative log-likelihoods of the Bayesian network as a function of the selected target node (full parameter names and 
parameter codes are given in table 1.1).
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Figure 11.  Directed acyclic graph of the Bayesian network developed to describe associations among selected water-quality 
parameters at U.S. Geological Survey streamgage 03374100 White River at Hazleton, Indiana, water years 1991–2016 (full parameter 
names and parameter codes are given in table 1.1).

The arrangement of edges and levels of discretization 
for individual parameters results in 28 CPTs with a total of 
7,872 elements. Elements of the CPTs are computed during 
the EM step of model development. An example of a CPT for 
this network for nitrate nitrogen (NO3) concentration decile 
ranges conditioned on month number and silica (Si) concentra-
tion decile ranges is shown in table 1.1.

Computing Magnitudes and 
Uncertainties of Selected Parameters

This section provides the equations and a numerical 
example for computing the magnitudes and uncertainties of 
water-quality parameters on the basis of the edge structure and 
conditional probability tables estimated in the development of 

the BN. The magnitude will be estimated on the basis of the 
expected value, and the uncertainty will be expressed as the 
standard deviation. 

Conditioning water-quality parameters for any param-
eter of interest can be identified by inspection of the BN. 
For example, if nitrate nitrogen (NO3) was selected as the 
parameter of interest, then on the basis of the BN (fig. 11), it is 
apparent that month (month) and silica (Si), are the two condi-
tioning parameters. To characterize the conditioning param-
eters, let the month of measurement be August, month = 8, and 
consider that a silica concentration of 2.9 milligrams per liter 
(mg/L) was measured. Based on the discretization of silica 
concentrations, the measured value falls within silica interval 
2, represented as 2 9

2
. ,� � ,which spans concentrations from 

2.4 to 4.8 mg/L (table 1.3). For convenience, the correspond-
ing row from table 1.3 is reproduced below as table 1, with 
probabilities converted to decimal from percent.
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Table 1.  Conditional probabilities for nitrate nitrogen concentrations for the month of August and a silica level ranging from 2.4 to 4.8 
milligrams per liter.

[xmid in the table header refers to the midpoint of the silica concentration range within the discretized interval (quintile), in milligrams per liter (mg/L);  
the month number of 8 refers to August; dimensionless probabilities are reported in the body of the table; ~, approximately]

Probability, conditioned on month equals 8 and silica range in level 2 

Month (number)
Silica range 

(mg/L) 
0.0 to 0.4  

(xmid = 0.2)
0.4 to 1.2  

(xmid = 0.8)
1.2 to 1.9  

(xmid = 1.55)
1.9 to 2.4  

(xmid = 2.15)
2.4 to 6.8  

(xmid = 4.6)

8 2.4 to 4.8 0.7048 0.1478 0.1474 ~10−6 ~10−6

The expected value, E , as an indicator of magnitude, is computed using the following equation:

	
E NO month Si xmid pk k

k
3 8 2 9 0 488

0 2

2
1

5

| , . .

.

= = [ ]  = ⋅ = =
=
∑   mg/L 

⋅⋅ + ⋅ + ⋅ + ⋅ + ⋅− −0 7048 0 8 0 1478 1 55 0 1474 2 15 10 4 60 106 6. . . . . . .       
	 (1)

where
	 xmidk        is the midpoint of the kth nitrate interval, and
	 pk        is the kth conditional probability from table 1.

The variance, Var , as a measure of uncertainty for NO3 conditioned on the month and the silica interval, has two com-
ponents. The first component characterizes the uncertainty of NO3 being observed in any of the five intervals, and the second 
component characterizes the uniform variance of NO3 with an interval specified by endpoints xmin and xmax. Both components 
are computed individually and weighted by the common probability for each interval. This variance can be written using the fol-
lowing equation:
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where  and  are the minimum andxmin xmaxk k   maximum nitrate concentrations for the

 nitrate intervk th aal. 

	 (2)

where
	 xmink and xmaxk        are the minimum and maximum nitrate concentrations for the kth nitrate interval.

Thus, in August, for a measured silica concentration of 2.9 mg/L, which is in silica interval 2, the expected nitrate nitrogen con-
centration is 0.488 mg/L with a standard deviation of 0.512 mg/L. 

Classification Rates for the Bayesian 
Network

In Netica, a correct classification indicates that a mea-
surement is predicted to occur, based on its expected value, in 
the interval in which it was measured. Given the five equi-
probable intervals assigned to each water-quality parameter, 
a correct classification rate of 20 percent would be expected 
by chance. Correct classification rates greater than 20 percent 
indicate some predictive ability. 

Correct classification rates in a BN would be expected 
to vary based on the conditioning information provided for 
prediction. In general, this conditioning set could be selected 

from a large number of alternative non-empty subsets of 
parameters historically measured at a monitoring site. In this 
report, two conditioning parameter sets are discussed. The 
first parameter set consists of the month of sample collection 
(month); the second set consists of the month and six selected 
continuously measurable parameters (ContMeasSet). These 
selected continuously measurable parameters, and their per-
cent numerical values in the training dataset, were barometric 
pressure (barPres, 85.0), streamflow (Flow, 83.5), dissolved 
oxygen (O2, 84.6), pH (pH, 85.2), specific conductance (Spec-
Cond, 85.2), and water temperature (w_temp, 85.0). 

The correct classification rates may be expected to vary 
between training and testing datasets. In particular, overfit-
ting of the training data may be evident by substantially lower 
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correct classification rates in testing data as compared to train-
ing data. It is possible due to random sampling, however, that 
error rates in some of the testing dataset could be lower than 
the training dataset. 

Correct classification rates for all parameters, con-
ditioning variable sets, and datasets are depicted in figure 
12. When conditioned on month only, water temperature 
(w_temp) had the maximum correct classification rates of 
62.3 and 56.4 percent in the training and testing datasets, 
respectively. When conditioned on the ContMeasSet set of 
parameters, total dissolved solids (tDisSolids) had the maxi-
mum correct classification rates of 86.4 and 84.2 percent in 
the training and testing datasets, respectively. When condi-
tioned on month only, silica (Si) had the minimum correct 
classification rate of 31.9 percent in the training dataset, and 
carbon dioxide (CO2) had minimum correct classification rate 
of 35.2 percent in the testing dataset. When conditioned on 
the ContMeasSet set of parameters, phosphorus (P) had the 

minimum correct classification rates of 38.8 and 35.2 percent 
in the training and testing datasets, respectively. 

The average correct classification rate in the train-
ing dataset for all parameters conditioned on month was 
41.7 percent. With the ContMeasSet set, the average correct 
classification rate increased to 61.2 percent for the training 
dataset. In comparison, the average correct classification rate 
in the testing dataset for all parameters conditioned on month 
was 40.8 percent. With the ContMeasSet set, the average cor-
rect classification rate in the testing dataset was 56.5 percent. 
It may be worth noting that all parameters had higher correct 
classification rates when conditioned on the ContMeasSet set 
than the single condition parameter of month in both training 
and testing datasets (fig. 12), except for total nitrogen, N_all, 
data in the testing dataset. Here, the average correct classifi-
cation rate was 4.62 percent lower when conditioned on the 
ContMeasSet set than when conditioned on month alone. 
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Two primary conclusions are indicated from these 
results. First, even with an average rate of only 84.4 percent 
of conditioning variables in the ContMeasSet set quantified, 
the average correct classification rate in the training and test-
ing datasets increased by 17.6 percent, from conditioning on 
month alone. Thus, data from continuously measurable param-
eters, such as the set of parameters that can increasingly be 
measured at high frequencies, increase the accuracy of a static 
BN, although a dynamic BN would be needed to fully utilize 
information from high-frequency data. 

Second, the average correct classification rates decreased 
0.9 and 4.9 percent in parameters between the training and 
testing datasets, respectively, for parameters conditioned 
on month, and the ContMeasSet set. Thus, when param-
eters were conditioned only on the single parameter month, 
there was no significant change (p-value = 0.4698) in accu-
racy between training and testing datasets based on the one 
sample Wilcoxon Test (Conover, 1980). When parameters 
were conditioned on the seven conditioning parameters 
in the ContMeasSet set, however, there was a significant 
(p-value < 0.0001) decrease in accuracy of 4.9 percent 
between the training and testing datasets. The 4.9-percent 
decrease in accuracy is at least partially attributed to the 
effects of model overfitting with the larger parameter set in 
ContMeasSet.

Application Potential
Discrete samples of water quality provide a basis for the 

development of BNs describing at-site associations among 
water-quality parameters. Such a model could be used to esti-
mate the magnitude and uncertainty of unmeasured parameters 
given a measured complement from historically measured 
parameters. Thus, the utility of a set of measured parameters 
may be extended to estimation of a set of unmeasured param-
eters. In addition, the DAG associated with the BN can be 
used to better understand the flow of information through 
the network based on the rules of directional connectedness. 
Finally, the degree centrality of a parameter, as indicated by 
the number of edges incident upon a node, may help priori-
tize individual parameters that are mostly informative from a 
network perspective. 

It is likely that the number of nodes of water-quality 
parameters in a network could be extended considerably 
beyond the 28 parameters (including month) used in this 
report. Such extensions may provide insight into higher 
dimensional associations that are not apparent from conven-
tional techniques of multivariate analysis, which are com-
monly constrained by missing, censored, and interval data 
characteristic of water-quality data. Such extensions may ben-
efit from resampling experiments to help assess the robustness 
of the edge structure and conditional probability tables defined 
from individual sample realizations. 

In addition, static BNs could be developed for a common 
set of parameters at multiple stream sites, or over multiple 
time periods at the same site, to assess whether parameter 
associations are sensitive to measures or changes in measures 
of aquatic ecosystem health. Analysis of robust network struc-
ture might be used to determine what statistical associations 
are interrupted or initiated with changes in the ecosystem. 

High-frequency (multiple daily or hourly) water-quality 
data are becoming increasingly available for an expanding set 
of water-quality parameters. These data could provide a basis 
for characterizing dynamic interrelations among parameters 
on a subdiel time scale. This extension would involve estima-
tion of time-delay parameters in the network but may provide 
insight in process dynamics that could not be assessed on the 
basis of discrete sample information. 

Despite the potential of BN for describing intrasite, or 
perhaps intersite relations among water-quality parameters, 
difficulties are recognized. Some of these restrictions may be 
associated with the present state of software development in 
Netica, or similar packages, whereas others may present more 
theoretical constraints. 

Continuous variables are commonly discretized into a 
fixed set of class intervals to facilitate computations. Alam-
eddine and others (2011) note, however, that the number of 
discretized intervals can affect the identification of the edge 
structure. In addition, the number of elements in CPTs, which 
would commonly need to be estimated from data, increase 
exponentially with the number of parent nodes. Further inves-
tigation into the possible relation between the number quanti-
fied measurements and the optimum number of class intervals 
needed to optimize model performance may be productive. 
Thus, the complexity of the network structure may need to be 
artificially constrained to compute viable estimates of dis-
crete probabilities. Also, the directionality of edges identified 
from data may not be consistent with causal relations among 
parameters. Finally, not all software provides for the integra-
tion of known causal relations with edge structures inferred 
from data.

Summary and Conclusions
An exploratory discrete Bayesian network (BN) was 

developed to assess the potential for estimating the magnitudes 
and uncertainties of an arbitrary subset of unmeasured water-
quality parameters given the measured complement. Data 
from 596 discrete water quality samples obtained from water 
year 1991 to 2016 at U.S. Geological Survey streamgage 
03374100 White River at Hazleton, Indiana, were used in the 
analysis. Selected parameters included alkalinity (Alkalinity), 
atrazine (Atrazine), barometric pressure (barPres), calcium 
(Ca), chloride (Cl), carbon dioxide (CO2), streamflow (Flow), 
fluoride (F), Kjeldahl nitrogen (Kjeld_N), magnesium (Mg), 
metolachlor (Metolachlor), potassium (K), total nitrogen 
(N_all), sodium (Na), nitrite (NO2), nitrate (NO3), dissolved 
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oxygen (O2), phosphorus (P), pH (pH), orthophosphate (PO4), 
silica (Si), simazine (Simazine), sulfate (SO4), specific con-
ductance (SpecCond), suspended sediment (SuspSedi), total 
dissolved solids (tDisSolids), water temperature (w_temp), 
and month of sample collection (month). The parameters were 
selected because they were commonly measured in water-
quality samples at the streamgage, tended to have fewer cen-
sored or missing observations than non-selected parameters, 
and did not contain obvious temporal trends. 

All water samples used in this report were obtained 
with the interval from October 1, 1990, and September 30, 
2016. Water-quality data from the 596 discrete samples were 
randomly partitioned into a training set, with 80 percent of 
the measurements, and a testing dataset, with the remain-
ing 20 percent of the data. Data for 27 strictly water-quality 
parameters were discretized at their quintiles, providing 
five ordered levels each containing about 20 percent of the 
observations. The month of sampling (month) was discretized 
into 12 monthly levels. Water-quality data for the selected 
parameters included fully quantified numerical values; missing 
value indicators; censored data, represented by less than and 
greater than threshold values; and estimated data, represented 
by intervals. 

The BN was estimated from the selected water-quality 
parameters following a two-step process using the training set 
data. The first step identifies a set of directed edges connecting 
nodes. The Netica software used in this report provides a Tree 
Augmented Naïve (TAN) Bayes algorithm to facilitate this 
step, which requires the specification of a target node (param-
eter). Because any set of nodes in a water-quality network 
might need to be estimated (as a target node), all nodes in the 
network were selected, in turn, to develop a set of edge struc-
tures for evaluation.

In the second step, the training dataset was applied to 
compute the negative log-likelihood for each edge structure 
defined from individual target nodes, and the corresponding 
elements in conditional probability tables for each node. The 
edge structure with the maximum likelihood (the minimum 
negative log-likelihood) was selected. This structure cor-
responded to the BN with month selected as the target node. 
This network included 53 edges connecting the 28 nodes, and 
required estimation of 7,872 elements in the collection of con-
ditional probability tables given the discretization of param-
eters. The month node, the only node without one or more 
parent nodes, had an out degree of 27, which indicates that all 
other parameters were conditioned on month of sample collec-
tion. In contrast, the maximum in degree of any node was two. 

The accuracy of the BN was evaluated separately on the 
basis of data in the training and testing datasets, and on two 
sets of conditioning variables. The conditioning variables 
included month only in one set, and month plus the selected 
continuously measureable parameters of barometric pressure 
(barPres), streamflow (Flow), dissolved oxygen (O2), pH 
(pH), specific conductance (SpecCond), and water temperature 
(w_temp), forming the ContMeasSet set. Accuracy was based 
on the correct classification rates.

Given the five equiprobable levels of discretization for 
each water-quality parameter, random assignment to an inter-
val would have been expected to produce an average correct 
classification rate of 20 percent, given that month of sampling 
was always observed. For the training set, the average cor-
rect classification rates for parameters conditioned on month 
only was 41.7 percent, and 61.2 percent when conditioned 
on the ContMeasSet set. For the testing dataset, the average 
correct classification rate was 40.8 percent when conditioned 
on month only, and 56.5 percent when conditioned on the 
ContMeasSet set. Thus, conditioning on the ContMeasSet set 
rather than only month increased the correct classification 
rates in both training and testing data. Although some degrada-
tion between training and testing dataset accuracy occurred, 
the ContMeasSet variable set substantially improved estima-
tion accuracy relative to month only. Conditioning variables 
from high-frequency data would likely similarly increase the 
accuracy of classifications.

This exploratory analysis demonstrated the potential util-
ity of BNs for estimating the magnitudes and uncertainties of 
an unmeasured subset of historically measured water-quality 
parameters at U.S. Geological Survey National Water Qual-
ity Program stream sites, given the measured complement of 
parameters. The edge structure of the BN provides details on 
how information propagates through a water-quality network, 
and which parameters may be central to this flow of informa-
tion. This structure may help identify parameters for mea-
surement, either from discrete water-quality samples or from 
high-frequency monitoring.

Many important questions, however, remain unanswered 
and would benefit from further research. In particular, it would 
be helpful to know (1) how effectively information in a BN 
will scale from the tens of parameters used in this analysis to 
the hundreds of parameters commonly available at National 
Water Quality Program sites; (2) how robust network identifi-
cation is to the particular sample of data used in development; 
(3) how sensitive the network structure may be to different 
software or levels of parameter discretization; (4) how process 
knowledge may be used to augment the statistical identifica-
tion of network structure, particularly in the extension of static 
to dynamic BN; and (5) whether or not network structures 
may be used to help identify aquatic ecosystems that are stable 
and healthy.

This report was made possible by publicly available, 
quality-assured data obtained through the U.S. Geologi-
cal Survey National Water Quality Program. The selected 
site is just one of many available for analysis across the 
United States. Data from this repository continues to support 
improved understanding of the static and dynamic relations 
among water-quality characteristics, which provide a basis 
for understanding and monitoring possible changes in aquatic 
ecosystem health as advancements in statistical methodology 
continue.
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Table 1.1.  Redundancy and omission of selected water-quality parameters at U.S. Geological Survey streamgage 03374100 White River 
at Hazleton, Indiana.

[--, no data]

Parameter group1 Parameter 
code

Reason for 
parameter omission 
in Bayesian network

Parameter 
short name

National Water Information System parameter name 
(parameter_nm)

Physical 00010 -- w_temp Temperature, water, degrees Celsius

Physical 00020 2r(00010) -- Temperature, air, degrees Celsius

Physical 00025 -- barPres Barometric pressure, millimeters of mercury

Physical 00061 -- Flow Discharge, instantaneous, cubic feet per second

Physical 00065 r(00061) -- Gage height, feet

Physical 00095 -- SpecCond Specific conductance, water, unfiltered, microsiemens per 
centimeter at 25 degrees Celsius

Physical 00400 -- pH pH, water, unfiltered, field, standard units

Physical 00900 r(39086) -- Hardness, water, milligrams per liter as calcium carbonate

Physical 30207 r(00061) -- Gage height, above datum, meters

Physical 30209 r(00061) -- Discharge, instantaneous, cubic meters per second

Physical 70300 -- tDisSolids Dissolved solids dried at 180 degrees Celsius, water, filtered, 
milligrams per liter

Physical 70301 r(70300) -- Dissolved solids, water, filtered, sum of constituents, mil-
ligrams per liter

Physical 70302 r(70300) -- Dissolved solids, water, tons per day

Physical 70303 r(70300) -- Dissolved solids, water, filtered, tons per acre-foot

Physical 90095 r(00095) -- Specific conductance, water, unfiltered, laboratory, microsie-
mens per centimeter at 25 degrees Celsius

Inorganics, Major, Metals 00915 -- Ca Calcium, water, filtered, milligrams per liter

Inorganics, Major, Metals 00925 -- Mg Magnesium, water, filtered, milligrams per liter

Inorganics, Major, Metals 00930 -- Na Sodium, water, filtered, milligrams per liter

Inorganics, Major, Metals 00931 r(00930) -- Sodium adsorption ratio (SAR), water, number

Inorganics, Major, Metals 00932 r(00930) -- Sodium fraction of cations, water, percent in equivalents of 
major cations

Inorganics, Major, Metals 00935 -- K Potassium, water, filtered, milligrams per liter

Inorganics, Major, Non-
metals

00191 r(00400) -- Hydrogen ion, water, unfiltered, calculated, milligrams per 
liter

Inorganics, Major, Non-
metals

00300 -- O2 Dissolved oxygen, water, unfiltered, milligrams per liter
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Table 1.1.  Redundancy and omission of selected water-quality parameters at U.S. Geological Survey streamgage 03374100 White River 
at Hazleton, Indiana.—Continued

[--, no data]

Parameter group1 Parameter 
code

Reason for 
parameter omission 
in Bayesian network

Parameter 
short name

National Water Information System parameter name 
(parameter_nm)

Inorganics, Major, Non-
metals

00301 r(00300) -- Dissolved oxygen, water, unfiltered, percent of saturation

Inorganics, Major, Non-
metals

00405 -- CO2 Carbon dioxide, water, unfiltered, milligrams per liter

Inorganics, Major, Non-
metals

00453 HPNQD3 -- Bicarbonate, water, filtered, inflection-point titration method 
(incremental titration method), field, milligrams per liter

Inorganics, Major, Non-
metals

00940 -- Cl Chloride, water, filtered, milligrams per liter

Inorganics, Major, Non-
metals

00945 -- SO4 Sulfate, water, filtered, milligrams per liter

Inorganics, Major, Non-
metals

00950 -- F Fluoride, water, filtered, milligrams per liter

Inorganics, Major, Non-
metals

00955 -- Si Silica, water, filtered, milligrams per liter as SiO2

Inorganics, Major, Non-
metals

39086 -- Alkalinity Alkalinity, water, filtered, inflection-point titration method 
(incremental titration method), field, milligrams per liter as 
calcium carbonate

Nutrient 00600 -- N_all Total nitrogen [nitrate + nitrite + ammonia + organic-N], 
water, unfiltered, milligrams per liter

Nutrient 00605 HPNQD -- Organic nitrogen, water, unfiltered, milligrams per liter as 
nitrogen

Nutrient 00608 HPNQD -- Ammonia, water, filtered, milligrams per liter as nitrogen

Nutrient 00613 -- NO2 Nitrite, water, filtered, milligrams per liter as nitrogen

Nutrient 00618 -- NO3 Nitrate, water, filtered, milligrams per liter as nitrogen

Nutrient 00625 -- Kjeld_N Ammonia plus organic nitrogen, water, unfiltered, milligrams 
per liter as nitrogen

Nutrient 00631 r(00613 + 00618) -- Nitrate plus nitrite, water, filtered, milligrams per liter as 
nitrogen

Nutrient 00660 r(00671) -- Orthophosphate, water, filtered, milligrams per liter as PO4

Nutrient 00665 -- P Phosphorus, water, unfiltered, milligrams per liter as phos-
phorus

Nutrient 00671 -- PO4 Orthophosphate, water, filtered, milligrams per liter as phos-
phorus

Nutrient 71846 HPNQD -- Ammonia, water, filtered, milligrams per liter as NH4

Nutrient 71851 r(00618) -- Nitrate, water, filtered, milligrams per liter as nitrate

Nutrient 71856 r(00613) -- Nitrite, water, filtered, milligrams per liter as nitrite

Organics, pesticide 04035 -- Simazine Simazine, water, filtered, recoverable, micrograms per liter
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Table 1.1.  Redundancy and omission of selected water-quality parameters at U.S. Geological Survey streamgage 03374100 White River 
at Hazleton, Indiana.—Continued

[--, no data]

Parameter group1 Parameter 
code

Reason for 
parameter omission 
in Bayesian network

Parameter 
short name

National Water Information System parameter name 
(parameter_nm)

Organics, pesticide 39415 -- Metolachlor Metolachlor, water, filtered, recoverable, micrograms per liter

Organics, pesticide 39632 -- Atrazine Atrazine, water, filtered, recoverable, micrograms per liter

Organics, pesticide 46342 HPNQD -- Alachlor, water, filtered, recoverable, micrograms per liter

Organics, pesticide 82630 HPNQD -- Metribuzin, water, filtered, recoverable, micrograms per liter

Sediment 80154 -- SuspSedi Suspended sediment concentration, milligrams per liter

Sediment 80155 r(80154 × 00061) -- Suspended sediment discharge, tons per day

1The parameter group ‘Informational’ was not included because informational parameters describe metadata about samples rather than chemical or physical 
properties of water samples.

2r(00010) implies that parameter 00020 is redundant with parameter 00010.  Therefore, parameter 00020 was not included in the Bayesian network developed 
in this report.  The notation was extended to multiple parameters that resulted in redundancy from a sum (+) or product (×) of two or more included parameters.

3 HPNQD indicates a High Percentage of Non-Quantified Data is associated with the parameter, so it was not included in the Bayesian network developed in 
this report even though minimum data requirements were satisfied.
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Table 1.2.  Excerpt from training dataset1 for a Bayesian network of water-quality parameters at U.S. Geological Survey streamgage 
03374100 White River at Hazleton, Indiana.

[data in brackets indicate the expected range for estimated values; *, missing data; <, less than]

Parameter  
short name

Identification number

1 2 3 … 20

month 5 5 5 …. 7
w_temp * * * …. 27.7
SpecCond * * * …. 600
pH * * * …. 8.2
Flow [11245, 19025] [ 9481, 15232] [ 9276, 14932] …. 1960
O2 * * * …. 7.3
P * * * …. 0.18
barPres * * * …. 756
CO2 * * * …. *
SuspSedi * * * …. 222
Cl * * * …. *
SO4 * * * …. *
Metolachlor 0.19 0.15 0.22 …. 0.17
Simazine 0.05 0.08 0.07 …. <0.050
Kjeld_N * * * …. 1.8
Atrazine 0.27 0.31 0.53 …. 0.61
N_all * * * …. <1.90
NO3 * * * …. <0.040
NO2 * * * …. 0.01
Alkalinity * * * …. *
Ca * * * …. *
Mg * * * …. *
Na * * * …. *
K * * * …. *
tDisSolids * * * …. *
Si * * * …. *
F * * * …. *
PO4 * * * …. <0.010

1Note: the training data have been transposed so that the columns would fit on the page.
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Table 1.3.  Conditional probability table for deciles of nitrate nitrogen concentration range conditioned on month number and silica 
range.

[NO3, nitrate nitrogen; mg/L, milligram per liter; >, greater than]

Month number1 Silica range 
(mg/L)

Probability, in percent conditioned on month and silica 
NO3 concentration range, in milligrams per liter

0 to 0.4 >0.4 to 1.2 >1.2 to 1.9 >1.9 to 2.4 >2.4 to 6.8

1 0 to 2.4 0.0010 0.0010 99.9960 0.0010 0.0010
1 2.4 to 4.8 0.0006 0.0006 0.0006 55.5255 44.4729
1 4.8 to 6.6 0.0003 33.5959 0.0003 66.4030 0.0003
1 6.6 to 7.3 0.0002 0.0002 66.5848 16.7074 16.7074
1 7.3 to 9.1 0.0001 0.0001 8.2181 8.1956 83.5862
2 0 to 2.4 0.0010 0.0010 0.0010 0.0010 99.9960
2 2.4 to 4.8 0.0010 0.0010 0.0010 0.0010 99.9960
2 4.8 to 6.6 0.0003 0.0003 33.3331 66.6659 0.0003
2 6.6 to 7.3 0.0005 0.0005 0.0005 0.0005 99.9980
2 7.3 to 9.1 0.0001 0.0001 0.0001 37.4999 62.4997
3 0 to 2.4 0.0002 0.0002 60.6619 39.3375 0.0002
3 2.4 to 4.8 0.0005 0.0005 99.9980 0.0005 0.0005
3 4.8 to 6.6 0.0001 0.0001 14.3378 15.2659 70.3961
3 6.6 to 7.3 0.0002 0.0002 0.0003 25.3489 74.6504
3 7.3 to 9.1 0.0002 0.0002 0.0002 67.1099 32.8896
4 0 to 2.4 0.0003 66.6659 0.0003 0.0003 33.3331
4 2.4 to 4.8 0.0003 26.3795 73.6197 0.0003 0.0003
4 4.8 to 6.6 0.0001 0.0001 28.5714 28.5713 42.8570
4 6.6 to 7.3 0.0002 0.0002 67.7893 32.2102 0.0002
4 7.3 to 9.1 0.0002 0.0002 20.0000 39.9998 39.9998
5 0 to 2.4 39.9999 30.0000 30.0000 0.0001 0.0001
5 2.4 to 4.8 0.0001 0.0001 46.4786 53.5211 0.0001
5 4.8 to 6.6 0.0001 0.0002 73.1765 17.3518 9.4714
5 6.6 to 7.3 0.0001 23.1152 35.1977 10.8666 30.8203
5 7.3 to 9.1 0.0003 0.0003 99.9989 0.0003 0.0003
6 0 to 2.4 42.6870 42.8760 14.4369 0.0001 0.0001
6 2.4 to 4.8 6.0194 11.8300 48.1360 28.0996 5.9151
6 4.8 to 6.6 0.0001 0.0002 41.1627 0.0004 58.8366
6 6.6 to 7.3 0.0001 8.9937 8.9938 11.2369 70.7755
6 7.3 to 9.1 0.0001 0.0001 0.0001 19.7902 80.2095
7 0 to 2.4 60.2634 39.7364 0.0001 0.0001 0.0001
7 2.4 to 4.8 8.7152 74.5614 8.7398 7.9836 0.0001
7 4.8 to 6.6 0.0001 24.8685 33.3732 27.8388 13.9195
7 6.6 to 7.3 0.0002 0.0002 53.9021 30.7317 15.3659
7 7.3 to 9.1 0.0001 14.2863 42.8550 42.8585 0.0001
8 0 to 2.4 89.8485 10.1514 0.0000 0.0000 0.0000
8 2.4 to 4.8 70.4803 14.7802 14.7392 0.0001 0.0001
8 4.8 to 6.6 25.0061 74.9931 0.0003 0.0003 0.0003
8 6.6 to 7.3 0.0002 99.9992 0.0002 0.0002 0.0002
8 7.3 to 9.1 0.0005 0.0005 49.9992 0.0005 49.9992
9 0 to 2.4 85.7727 14.2269 0.0001 0.0001 0.0001
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Table 1.3.  Conditional probability table for deciles of nitrate nitrogen concentration range conditioned on month number and silica 
range.—Continued

[NO3, nitrate nitrogen; mg/L, milligram per liter; >, greater than]

Month number1 Silica range 
(mg/L)

Probability, in percent conditioned on month and silica 
NO3 concentration range, in milligrams per liter

0 to 0.4 >0.4 to 1.2 >1.2 to 1.9 >1.9 to 2.4 >2.4 to 6.8

9 2.4 to 4.8 52.5806 47.4190 0.0001 0.0001 0.0001
9 4.8 to 6.6 0.0005 99.9980 0.0005 0.0005 0.0005
9 6.6 to 7.3 0.0010 99.9960 0.0010 0.0010 0.0010
9 7.3 to 9.1 0.0005 99.9980 0.0005 0.0005 0.0005

10 0 to 2.4 80.9044 19.0950 0.0002 0.0002 0.0002
10 2.4 to 4.8 0.0002 0.0002 99.9990 0.0002 0.0002
10 4.8 to 6.6 40.2395 20.8555 38.9046 0.0002 0.0002
10 6.6 to 7.3 0.0010 0.0010 99.9960 0.0010 0.0010
10 7.3 to 9.1 0.0002 24.9999 74.9993 0.0002 0.0002
11 0 to 2.4 16.6668 66.6663 0.0002 16.6666 0.0002
11 2.4 to 4.8 0.0003 0.0003 99.9987 0.0003 0.0003
11 4.8 to 6.6 0.0001 12.3398 87.6598 0.0001 0.0001
11 6.6 to 7.3 0.0002 0.0002 99.9993 0.0002 0.0002
11 7.3 to 9.1 0.0002 0.0006 49.9994 49.9995 0.0002
12 0 to 2.4 0.0005 0.0005 49.9992 0.0005 49.9992
12 2.4 to 4.8 0.0005 0.0005 99.9980 0.0005 0.0005
12 4.8 to 6.6 0.0010 0.0010 0.0010 99.9960 0.0010
12 6.6 to 7.3 0.0002 59.9996 20.0000 0.0002 20.0000
12 7.3 to 9.1 0.0002 0.0002 16.6667 33.3332 49.9997

1Month number represents consecutive months from January as 1 to December as 12.
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