

Fluvial-Sediment Discharge to the Oceans from the Conterminous United States

.

Fluvial-Sediment Discharge to the Oceans from the Conterminous United States

By W. F. Curtis, J. K. Culbertson, and E. B. Chase

GEOLOGICAL SURVEY CIRCULAR 670

A contribution to the International Hydrologic Decade

Department of the Interior

WILLIAM P. CLARK, Secretary

1

U.S. Geological Survey Dallas L. Peck, Director

First printing 1973 Second printing 1984

Free on application to Distribution Branch, Text Products Section, U. S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304

CONTENTS

	Page
Abstract	1
Introduction	1
Explanation of data	1
Drainage area and water discharge	1
Period of record	4
Suspended-sediment discharge	4
Suspended-sediment yield	4
Suspended-sediment concentration	5
Sediment discharge to the Atlantic Ocean	5
Sediment discharge to the Gulf of Mexico	e
Gulf of Mexico drainage area	e
Mississippi River drainage basin	6
Sediment discharge to the Pacific Ocean	8
Pacific Ocean drainage area	8
Colorado River drainage basin	8
Comparison of present and previous estimates of suspended-sediment discharge_ Summary	9 10
References cited	11

ILLUSTRATIONS

COVER. Space photograph of the Colorado River Delta, Baja California, showing fluvial sediment entering the Gulf of California. Flight of Apollo 9, March 1969. From NASA color infrared photograph AS9-26D-3781.

FIGURE	1.	Map of the conterminous United States delineating drainage areas and location of sediment	Page
		stations	2
	2.	Section of river showing zones of sampled and unsampled sediment	5
	3.	Sketch map of the lower Mississippi River drainage basin showing location of stations used to	
		compute sediment discharge for the Mississippi River	7
	4.	Hydrographs of water discharge and suspended-sediment discharge for the Colorado River at	
		Yuma, Ariz., 1911–67	9

TABLES

			Page
TABLE	1.	Historical suspended-sediment discharge data for the lower Mississippi River	8
	2.	Comparison between present and past estimates of sediment yields for selected rivers dis-	
		charging to the oceans from the conterminous United States	10
	3.	Summary of suspended-sediment discharge to the oceans from the conterminous United States_	11
	4.	Suspended-sediment discharge from the conterminous United States to the Atlantic Ocean,	
		Gulf of Mexico, and the Pacific Ocean	14
	5.	Identification of river stations used to compute sediment data	16

Ł 1

Fluvial-Sediment Discharge to the Oceans from the Conterminous United States

By W. F. Curtis, J. K. Culbertson, and E. B. Chase

ABSTRACT

This report is a contribution to the UNESCOsponsored project of the International Hydrological Decade called the World Water Balance. Annual fluvial-sediment discharge from the conterminous United States averages 491,449,600 short tons, of which 14,204,000 is discharged to the Atlantic Ocean, 378,179,000 to the Gulf of Mexico, and 99,066,600 to the Pacific Ocean. Data from 27 drainage areas were used to estimate the average annual discharge, yield, and concentration of fluvial sediment. The data may be used to extrapolate part of the total world sediment yield to the marine environment.

INTRODUCTION

Sediment is defined as fragmental material derived primarily from the physical and chemical disintegration of rocks from the earth's crust. Once the sediment particles are detached, they may be transported either by gravity, wind, or water, or by a combination of these agents. When the transporting agent is water, the sediment is termed "fluvial sediment." The terms "fluvial sediment" and "suspended sediment" are used synonymously in this report to mean inorganic material that is transported in suspension by streams and rivers.

Knowledge of the amount of sediment transported by the various rivers of the world is important for many reasons. For example, reservoirs should be designed with enough space to store the sediment expected to accumulate in them and yet retain full effectiveness during their design life, and sediment yield can be an indication of the rate of erosion in the drainage basin. A summation of sediment yields by basins may indicate a regional, continental, and even an approximate world rate of ϵ rosion (Holeman, 1968). This report, which is a contribution to the UNESCO-sponsored project of the International Hydrological Decade called the World Water Balance, summarizes the quantity of fluvial sediment discharged to the Atlantic and Pacific Oceans and the Gulf of Mexico from the conterminous United States. The data given here may be useful to obtain the present total of world sediment yield to the marine environment.

The average annual amounts of suspended sediment discharged into the occans from 27 major drainage areas were computed from suspended-sediment records from the files of the U.S. Geological Survey, the International Boundary and Water Commission, and the U.S. Army Corps of Engineers. These drainage areas and the location of selected sediment stations within the areas are shown in figure 1. The data for these areas are given in table 4 in the back of the report, and an explanation of the data is given below.

EXPLANATION OF DATA

DRAINAGE AREA AND WATER DISCHARGE

The names, total drainage areas, and water discharges for the 27 drainage areas used in this report were taken from Wilson and Iseri (1967). Some of the data used in that report have since been revised (Alfonso Wilson and K. T. Iseri, oral commun., 1971) and the revised data are identified in table 4. Water and sediment discharged into the Great Lakes from the United States are not included in this report.

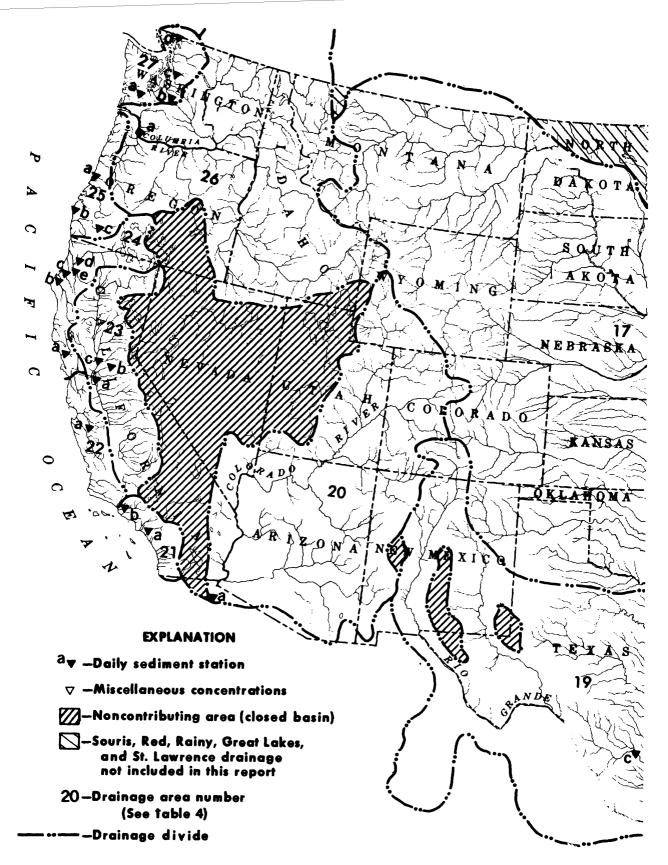


FIGURE 1 (above and right).-Drainage areas and location of sediment stations.

FIGURE 1.—Continued.

PERIOD OF RECORD

To keep this report as up to date as possible, and yet provide a sufficient period of record for a meaningful average, the 1950–69 period was chosen. Although a longer period of record may be desirable, a 20-year period can be expected to span one or more extreme events, dry and wet years, and is a reasonable base for statistical summary.

All sediment stations (43) selected for this study did not have records covering the full 20year period; however, all records available within this period were used. For those stations with relatively short periods of record that included one or more extreme floods, the average annual suspended-sediment discharge was revised downward to reflect conditions more compatible with the long-term discharge. For example, in 1969, three stations in California experienced a flood of approximately the 100year recurrence interval; thus, the 1969 sediment records for those stations were not used. Also, two other stations, Rouge River at Raygold, Oreg. (25c), and Skagit River near Mt. Vernon, Wash. (27d), each had only 1 year of record, 1912 and 1910, respectively (Van Winkle, 1914a, b); these records were used although they were outside the period of record selected for the report. For some of the drainage areas, no continuous records were available and the data presented in table 4 are estimates by the authors from miscellaneous sediment samples, upstream sediment records, and (or) water-sediment relations for adjacent or similar basins; thus, no period of record was given.

SUSPENDED-SEDIMENT DISCHARGE

The suspended-sediment discharge data presented in this report are based on analyses of samples collected with discharge-weighted suspended-sediment samplers used in the United States ([U.S.] Inter-Agency Committee on Water Resources, Subcommittee on Sedimentation, 1963). These samplers are used to collect representative samples of the entire depth of flow with the exception of a zone (the unsampled zone) between the streambed and about 0.3 to 0.5 foot (9 to 15 centimeters) above the streambed. Most of the sediment moved by rivers and streams is held in suspension and is transported at about the mean velocity of flow. The remainder of the sediment moves more slowly on or near the streambed in the unsampled zone and generally is referred to as bedload plus saltation load, or simply anneasured load. Computations of bedload or unmeasured load may be made using various theoretical formulas; however, for long-term estimates, an unmeasured sediment discharge of 10 percent of the suspended-sediment discharge frequently is used. Unmeasured load is not included in this report. Figure 2 shows the sampled and unsampled zones in sediment sampling.

Daily sediment discharge, in tons per day, is determined by multiplying water discharge, in cubic feet per second, by the concentration of suspended sediment, in milligrams per liter, times a coefficient and assuming a specific gravity of 2.65 for sediment. The daily records are then summed to give the annual sediment discharge. To determine the average annual suspended-sediment discharge at a station, the authors summed the annual sediment discharges and divided that sum by the number of years of record. When there were no longterm records (see "Period of Record") the average annual suspended-sediment discharge for a drainage area was estimated All data are given in English units unless otherwise specified.

For this report, the sediment records used were from the sediment station, in the flowing part of the river above tide, closest to the mouth of the chosen river. The latitude and longitude of the individual stations, the sources of the sediment-discharge data used in computing the average annual suspended-sediment discharge and concentration, and the station identification numbers used by the agency collecting the data and by the Office of Water Data Coordination (U.S. Geological Survey, Office of Water Data Coordination, 1971) are given in table 5 in the back of the report.

SUSPENDED-SEDIMENT YIELD

Average annual suspended-sediment yields were computed for the 27 drainage areas and for the areas encompassed by the 43 selected

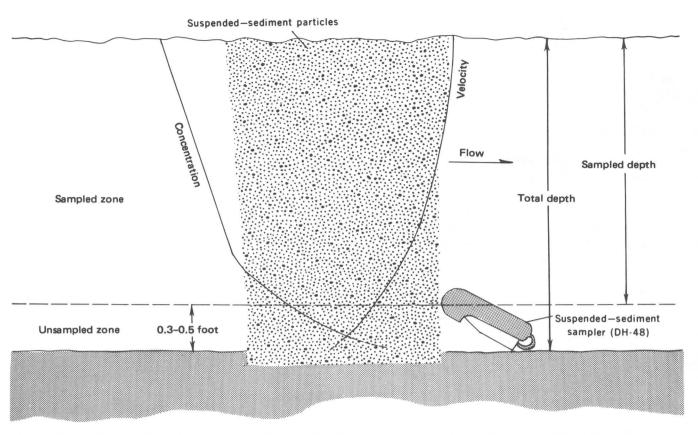


FIGURE 2.—Section of river showing zones of sampled sediment and unsampled sediment (modified from Guy and Norman, 1970).

sediment stations. The sediment yields were determined by dividing the annual average suspended-sediment discharge by the total drainage area. In some instances, the values for sediment yield may be relatively meaningless in terms of the total drainage area because reservoirs and diversions within the area may trap 75 to 95 percent of the sediment. (See "Colorado River Drainage Area.")

SUSPENDED-SEDIMENT CONCENTRATION

Average annual suspended-sediment concentrations for the 27 major drainages also were computed by dividing the daily average suspended-sediment discharge, in tons, by the daily average water discharge, in cubic feet per second (cfs), and using appropriate conversion factors. As an example, for area 1 where the average annual sediment discharge is 460,000 short tons and the daily average water discharge is 23,500 cfs, the conversion factor is 0.0027, and average annual daily sediment concentration, in milligrams per liter (mg/l) is computed as follows:

460,000 short tons =20 mg/l.

365 days×23,500 cfs×0.0027

In the metric system, the water discharge is 665 cubic meters per second (cms), the sediment discharge is 417,000 metric tons, and the conversion factor is 0.0864; thus

417,000 metric tons

 $\frac{1}{365 \text{ days} \times 665 \text{ cms} \times 0.0864} = 20 \text{ mg/l}.$

SEDIMENT DISCHARGE TO THE ATLANTIC OCEAN

Sediment discharge to the Atlantic Ocean was determined for 10 major drainage areas (table 4A). Of these 10 areas, no long-term sediment records were available for six of the areas, which represent about 46 percent of the total water discharged to the Atlantic Ocean. Thus, estimates of sediment discharge for these six areas were based on samples collected intermittently within the areas during 1950-69. Suspended-sediment discharges range from 134,000 tons per year for area 10 to 5,800,000 tons per year for area 5.

For the 10 areas, the average annual suspended-sediment yields range from about 12 tons per square mile for area 10 to 73.2 tons per square mile for area 5, which contributes 28.8 percent of the total water discharged and 37.6 percent of the total sediment discharged to the Atlantic Ocean and contains the three river basins that have the highest sediment yields (Delaware River at Trenton, N.J., 111 tons per square mile; Potomac River at Point of Rocks, Md., 81.4 tons per square mile; and Susquehanna River at Harrisburg, Pa., 81 tons per square mile).

The average annual suspended-sediment concentrations for the 10 areas range from 20 mg/l for area 1 to 58 mg/l for area 5. For the entire Atlantic Ocean drainage area the dischargeweighted average annual suspended-sediment concentration is 40 mg/l.

SEDIMENT DISCHARGE TO THE GULF OF MEXICO

GULF OF MEXICO DRAINAGE AREA

Sediment discharge to the Gulf of Mexico was determined for nine major drainage areas (table 4B). Long-term sediment records were not available for four of these areas, and estimates of sediment discharge were based on miscellaneous samples collected at several locations within these areas. The suspended-sediment discharges for the Gulf of Mexico area range from 37,000 tons per year for area 11 to 326,468,000 tons per year for area 17.

For the nine areas, the average annual suspended-sediment yields range from about 6 tons per square mile for area 11 to 259 tons per square mile for area 17. Interestingly, the single river basin with the highest sediment yield (Brazos River, Tex., 398 tons per square mile) is in area 19, whereas area 17, which has the highest annual tonnage, contains the river basin with the second highest sediment yield.

The average annual suspended-sediment concentrations range from 15 mg/l for areas 11, 12, and 13 to 820 mg/l for area 19. Area 17, which has the highest average annual tonnage in the Gulf of Mexico drainage area, has an average annual suspended-sediment concentration of 510 mg/l. For the entire Gulf of Mexico drainage area the discharge-weighted average annual suspended-sediment concentration is 433 mg/l.

MISSISSIPPI RIVER DRAINAGE BASIN

The Mississippi River drains 1,262,000 square miles (3,268,580 square kilometers) or 47.4 percent of the total area covered in this report and contributes about 37 percent of the total amount of water and 66 percent of the suspended-sediment discharge from the conterminous United States. Sediment sampling had been carried on intermittently at different locations along the lower Mississippi River since 1838. At the beginning of the 1950 water year, the U.S. Army Corps of Engineers began a formal continuing program of sediment sampling.

The lower Mississippi River system (fig. 3) is highly controlled and regulated, both for normal flow and flood flow. Prior to 1963, some of the Mississippi River flood flows went into the Red-Atchafalaya system through a connecting channel. In 1963, the Corps of Engineers completed a control structure on the by-pass channel to keep flow in the two river systems separated.

Data for six stations within this complex system were used by the authors in computing the average annual suspended-sediment discharge for the Mississippi and Atchafalaya Rivers. These stations and their periods of record are listed below. Figure 3 shows the location of the six stations, and table 5 gives their latitude and longitude.

Station	Period of record
1. Mississippi River at Baton Rouge, La	1950 - 67
2. Mississippi River at Red River Landing,	
La	1958 - 63
3. Mississippi River at Tarbot Landing, La _	1963-69
4. Atchafalaya River at Simmesport, La	1952 - 69
5. Wax Lake Outlet at Calumet, La	1966 - 68
6. Atchafalaya River at Morgan City, La	1966 - 68

. . .

Data for the three stations on the Mississippi River at Baton Rouge, La., Red River Landing, La., and Tarbot Landing, La., were combined to

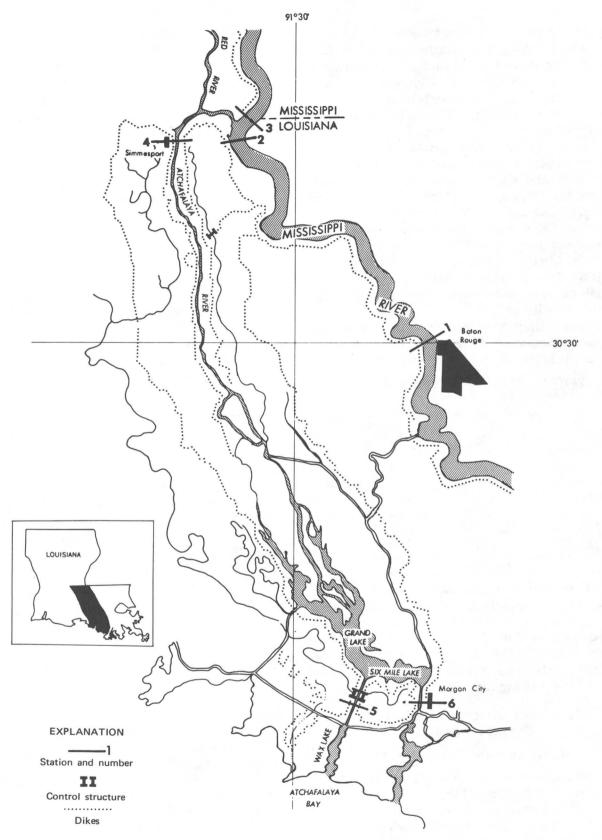


FIGURE 3.—Sketch map of the lower Mississippi River drainage basin showing location of stations used to compute sediment discharge for the Mississippi River (area 17). Numbers correspond to list in text, "Mississippi River Drainage Basin."

compute the record for the Mississippi River at Red River Landing, La. (station 17a, table 4B). Data for the three stations on the Atchafalaya River at Simmesport, La., Calumet, La., and Morgan City, La., were used to compute the record for the Atchafalaya suspended-sediment discharge (station 17b, table 4B).

A study of the suspended-sediment records for Simmesport, Calumet, and Morgan City indicated that about 31 percent of the sediment passing the Simmesport station was deposited in Grand Lake and Six Mile Lake; therefore, 69 percent of the suspended-sediment discharge at Simmesport for 1950–65 was used and a summation of the Calumet and Morgan City stations for 1966–69 was used in deriving the average annual suspended-sediment discharge for the Atchafalaya River.

Although they were not used in this report, historical sediment-discharge data obtained during 1851-1931 are summarized in table 1. If

 TABLE 1.—Historical suspended-sediment discharge data

 for the lower Mississippi River

[Data from U.S. Army, Corps of Engineers, New Orleans District]

Location	Period of record	Suspended-sediment discharge, in tons per				
		Day	Year			
New Orleans	Feb. 17, 1851- Feb. 15, 1852.	945,000	345,000,000			
New Orleans	Feb. 16, 1852- Feb. 20, 1853.	1,364,000	498,000,000			
Passes		934.000	341.000.000			
New Orleans		995,000	363,000,000			
Red River Landing		1,136,000				
Red River Landing		296,000				

the annual sediment discharges shown are assumed to be relatively accurate, it would appear that the average annual suspended-sediment discharge contributed by the main stem Mississippi River to the Gulf of Mexico has been reduced by about 30 percent during the 100-year period (1851–1931, 1950–69).

SEDIMENT DISCHARGE TO THE PACIFIC OCEAN

PACIFIC OCEAN DRAINAGE AREA

Sediment discharge to the Pacific Ocean was determined for eight major drainage areas (table 4C). Suspended-sediment discharges for this area range from 10,600 tons per year for

area 20 to 67,816,000 tons per year for area 24.

Sediment yields from the area draining into the Pacific Ocean in terms of tons per square mile are considerably greater than the yields from areas draining into the Atlantic Ocean or the Gulf of Mexico. The average annual suspended-sediment yields, exclusive of area 20 (Colorado River) range from 60.5 tons per square mile for area 26 to 3,108 tons per square mile for area 24. Area 24, which contains the individual river that has the greatest sediment yield (Eel River, Calif., 9,426 tons per square mile), has the greatest sediment yield for any area draining into the oceans from the conterminous United States.

The average annual suspended-sediment concentrations range from 49 mg/l for area 27 to 1,634 mg/l for area 21. Area 24 has the highest discharge and yield and the second highest sediment concentration (1,630 mg/l). For the entire Pacific Ocean drainage area the dischargeweighted average annual suspended-sediment concentration of discharge is 201 mg/l.

COLORADO RIVER DRAINAGE BASIN

The Colorado River drainage basin (area 20) has the lowest sediment discharge (10,600 tons per year) and sediment yield (0.04 ton per square mile per year) of any contributing area draining into the oceans from the conterminous United States. However, even with this extremely low sediment yield, the average annual suspended-sediment concentration (165 mg/l) is greater than that from any contributing area draining into the Atlantic Ocean.

The apparent low sediment yield for this drainage basin is the result of better land-use practices and sediment entrapment in the highly developed reservoir system on the Colorado River. Data for the station Colorado River at Yuma, Ariz., are used to illustrate the dramatic effect these changes have had on the sediment discharge. During 1911–16, the average annual suspended-sediment discharge at Yuma was 234,600,000 tons (966 tons per square mile). As a result of the development of the reservoir system and the increased use of water for irrigation the suspended-sediment discharge was reduced considerably and for 1965–67 the average annual suspended-sediment discharge was 152,600 tons (0.63 ton per square mile). At the station used in this report, Colorado River at Miguel C. Rodriguez, Mexico, which is about 52 miles downstream from Yuma, the average annual suspended-sediment discharge for the period 1965–69 was further reduced to 10,600 tons (0.04 ton per square mile), largely due to diversion of water for irrigation. Hydrographs of water discharge and suspended-sediment discharge for the Colorado River at Yuma, Ariz., for 1911–67 are shown in figure 4 and clearly indicate the major changes that have occurred during this period.

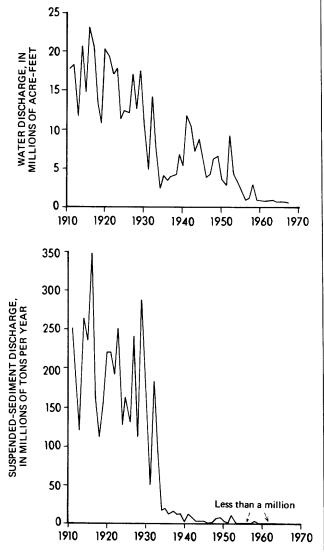


FIGURE 4.—Water discharge and suspended-sediment discharge for the Colorado River at Yuma, Ariz., 1911-67.

COMPARISON OF PRESENT ANI PREVIOUS ESTIMATES OF SUSPENDED-SEDIMENT DISCHARGE

One of the difficulties in comparing present and past estimates of sediment yields is the difference in time periods used and the amount of data available at the time of the various studies. Also, different drainage areas may have been used by the various writers.

Trends of sediment yield for a given river or basin can never be determined very accurately until long-term records of comparable accuracy are available. As more and more records become available, more accurate and reasonable estimates of sediment yield and rate of denudation can be made. Some comparisons can be made, however, between the data presented in this report and past estimates for several of the major rivers and basins in the United States.

Regional erosion rates in the United States were estimated by Dole and Stabler (1909) and rates of regional denudation of the United States were estimated by Judsor and Ritter (1964). A summary of data comparing estimates of these authors with present estimates is given in table 2. Average annual suspendedsediment discharges given in the table were computed by using the contributing drainage area values given in this report and the sediment yields estimated by the previous authors.

Holeman (1968) presented estimates of sediment yields of the major rivers of the world. For selected river basins of North America he estimated an average annual suspended-sediment yield of 245 tons per square mile. The total drainage area contributing sediment discharge to the oceans from the United States is 2.658.776 square miles. Using this drainage area and Holeman's estimate of 245 tons per square mile per year for North America, the average annual suspended-sediment discharge to the oceans from the conterminous United States would be 651,400,000 tons as compared with 491,449,600 tons determined by this study. Most of the difference between Holeman's estimate and the authors' is due to the fact that he used the records for the station Colorado River at Grand Canyon Ariz., 1925-57, which is upstream of most of the present reservoir system.

	sedimen	annual su t yield, in square mile	tons per	Drainage	Average annual suspended- sediment discharge, in thousands of tons				
Area or – river basin	This report	Judson and Ritter (1964)	Dole and Stabler (1909)	- area, in - square miles	This report	Judson and Ritter (1964)	Dole and Stab'er (1907)		
Atlantic Ocean:	49.5		97.2	287,166	14,204		27,900		
Delaware River	111	147	56	6,780	749	998	380		
Susquehanna River	81.0		35	24,100	1,953		845		
Potomac River	81.4		95	9,651	786		913		
Pee Dee River	15.2		154	8,830	442		1,360		
Ogeechee River	23.2		225	2,650	61.6		596		
Gulf of Mexico:	217.4		220	1,739,200	378,179		382,600		
Apalachicola River	10.1		159	17,200	173		2,740		
Tombigbee River	128	120	104	19,200	2,454	2,300	2,000		
Alabama River	115	97	178	22,000	2,528	2,140	£,920		
Pearl River	133		58	6,630	881		385		
Mississippi River	259	244	269	1,262,000	244,900	308,000	340,000		
Pacific Ocean:	157	623		632,410	99,067	¹ 394,100			
Colorado River	.04	1,190	387	245,000	10.6	292,000	94,800		
San Francisco Bay	75.4		77	47,570	3,585		3,660		
Sacramento River	116	94	86	23,530	2,719	2,215	2,020		
Eel River	9.426	5.846		3,113	29,345	18,200			
Mad River	5.549	3,711		485	2,691	1,800			
Trinity River	1.919	1.141		2,865	5,497	3,270			
Columbia River	60.5	125		258,200	15,620	32,300			

 TABLE 2.—Comparison between present and past estimates of sediment yields for selected rivers discharging to the oceans from the conterminous United States

¹ Sum of Colorado, Pacific Slopes, California, and Columbia Regions.

Based on the data given in this report, the average annual suspended-sediment yield from the conterminous United States to the oceans is 184.8 tons per square mile.

SUMMARY

Suspended-sediment discharge data obtained from 27 drainage areas during the period 1950– 69 were used to estimate the sediment contributed to the oceans from the conterminous United States. The data are based on suspendedsediment samples obtained with standard United States depth-integrating samplers and, therefore, do not include that part of the total sediment discharge moving as bedload. The quantity of sediment transported as bedload may be estimated at about 10 percent of the sediment transported in suspension.

The amount of sediment discharged each day into the Atlantic and Pacific Oceans is 38,915 tons and 271,400 tons, respectively. The Gulf of Mexico receives about three times more sediment than both of these areas, a total of 1,037,000 each day. A more pictorial way of expressing these figures is to transport this sediment discharge by train (a boxcar is equivalent to 100,000 pounds or 50 tons). Each day of the year it would take a train of 778 boxcars to transport the suspended-sediment discharged to the Atlantic Ocean and 5,42? boxcars to transport the Pacific Coast sediment; to move the Gulf of Mexico sediment, it would take a daily train 20,740 boxcars long.

Average yearly sediment yields range from 49.5 tons per square mile for the Atlantic Ocean drainage area to 217.4 tons per square mile for the Gulf of Mexico drainage area; the Pacific Ocean drainage area falls into the middle with 156.6 tons per square mile. The mean for the entire conterminous United States (excluding the Great Lakes drainage area) is 184.8 tons per square mile. However, yields computed on the basis of total drainage area can be deceiving because good land-use practices and multiple reservoirs in the drainage area can dramatically reduce the amount of sediment delivered to the sea. The Colorado River drainage basin is a good example. The yield of the station Colorado River at Yuma, Ariz., was reduced from 966 tons per square mile during the period 1911-16 to 0.63 ton per square mile during the period 1965–67.

Concentrations of suspended sediment range from about 15 mg/l along the southern part of the Atlantic Coast to over 1,600 mg/l along the southern part of the Pacific Coast. The Gulf Coast region has the most drainage basins with the lowest (15 mg/l) sediment concentration.

The amount of suspended-sodiment dis-

charged to the oceans from the conterminous United States is 491,449,600 tons per year. (See table 3.) If this amount was deposited in Washington, D.C., on the mall between the Capitol and the Lincoln Memorial (an area 11,000 feet long and 600 feet wide), it would reach a depth of about 1,400 feet or $2\frac{1}{2}$ times as high as the Washington Monument.

 TABLE 3.—Summary of suspended-sediment discharge to the oceans from the conterminous United States

	Drain- age area – (mi ² /km ²)			Suspend	led-sedim	ent dischar	rge
		Water discharge		Tons per			Mil'i-
		cfs/cms	Percent	year (short/ metric)	Percent	Tons per mi²/km²	grams per liter
Atlantic Ocean (areas 1-10) _	287,166 743,760	359,350 10,180	20.6 20.6	14,204,000 12,885,726	2.9 2.9	49.5 17.3	40 40
Gulf of Mexico (areas 11-19) _	1,739,200 4,504,528	887,400 25,120	$50.8 \\ 50.8$	378,179,000 343,080,207	77.0 77.0	217.4 76.1	433 433
Pacific Ocean (areas 20-27)	632,410 1,637,942	499,065 14,132	28.6 28.6	99,066,600 89,872,229	20.1 20.1	156.6 54.9	201 201
Total or mean	2,658,776 6,886,230	1,745,815 49,432	100.0 100.0	491,449,600 445,838,162	100.0 100.0	184.8 64.7	286 286

[Upper numbers are English units; lower numbers are metric units]

REFERENCES CITED

- Dole, R. B., and Stabler, Herman, 1909, Denudation, in Papers on the conservation of water resources: U.S. Geol. Survey Water-Supply Paper 234, p. 78-93.
- Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geol. Survey Techniques Water-Resources Inv., book 3, chap. C2, p. 3.
- Holeman, J. N., 1968, The sediment yield of major rivers of the world: Water Resources Research, v. 4, no. 4, p. 737-747.
- Judson, Sheldon, and Ritter, D. F., 1964, Rates of denudation in the United States: Jour. Geophys. Research, v. 69, no. 16, p. 3395-3401.
- U.S. Geological Survey, Office of Water Data Coordination, 1971, Catalog of information on water data, edition 1970—Index to water quality data: Washington, D.C., U.S. Geol. Survey, 443 p.

- [U.S.] Inter-Agency Committee on Water Resources, Subcommittee on Sedimentation, 1853, Determination of fluvial sediment discharge, in A study of methods used in measurement and analysis of sediment loads in streams: Minneapolis, Minn., St. Anthony Falls Hydrol. Lab. Rept. 14, 151 p.

U.S. Geol. Survey Water-Supply Paper 363.

- Williams, K. F., and Reed, L. A., 1977. Appraisal of stream sedimentation in the Susquehanna River basin: U.S. Geol. Survey Water-Supply Paper 1532-F.
- Wilson, Alfonso, and Iseri, K. T., 1967 (revised 1969), River discharge to the sea from the shores of the conterminous United States, Alaska, and Puerto Rico: U.S. Geol. Survey Hydrol. Inv. Atlas HA-282.

TABLES 4 AND 5

[Drainage area and water-discharge data from Wilson and Iseri (1967); asterisk (*) indicates revised data (Alfonso Wilson and K. T. Iseri, oral commun., 1971). E=estimated. N.d.=not determined]

	Drainage area			Wa			Average annual suspended-sediment					
(8 No.	See figure 1 and table 5 for location.)	Square kilo-	Square miles	disch Cubic meters per	Cubic feet per	Period of record	Discha in thousa tons pe	ands of	mete	per kilo-		
		meters		second	second		Metric tons	Short tons	Metric tons		per liter	
			A. Atlant	ic Ocean								
2.	Passamaquoddy Bay to Penobscott Bay_ St. George River to Cape Cod Bay Cape Cod Bay to New York-	30,047 54,134	11,601 20,901	665 1,162			471 1,179	460 1,300	13.9 21.8	39.6 62.2		
	Connecticut State line New York-Connecticut State line to	46,537	17,968	986	34,810		780	860	16.8	47.9	25	
5.	Cape May Cape May to Cape Henry a. Delaware River at Trenton, N. J _	50,391 205,283 17,560	19,456 79,260 6,780	928 2,866		 195069	970 5,262 680	1,070 5,800 749	$19.2 \\ 25.6 \\ 38.7$	55.0 73.2 111		
	b. Susquehanna River at Harrisburg, Pa ¹	62,419	24,100			1964-68	1,771	1,953	28.4	81.0)	
	c. Potomac River at Point of Rocks, Md	24,996	9,651			1961-69	723	786	28.9	81.4		
	Cape Henry to Neuse River a. Tar River at Tarboro, N.C Cove Sound to Black River	73,199 5,542 75,247	28,262 2,140 29,053	779 		1959-67	$1,361 \\ 105 \\ 1,270$	1,500 116 1,400	18.6 19.0 16.9	53.1 54.1 48.2	L	
	a. Pee Dee River at Pee Dee, S. C Santee River to Sapela Island	22,870 102,525	8,830 39,585		35,290	1967–69 	401 943	442 1,040	17.5 9.2	15.2 26.3	2 <u>-</u> 3 30	
0	a. Ogeechee River near Eden, Ga b. Edisto River near Givhans, S. C Altamaha River to Cape Kennedy	6,863 7,071 77,130	2,650 2,730 29,780	 732		1963-64 1967-69	55.8 19.1 580	61.6 21.1 640	8.1 2.7 7.5	23.2 7.1 21.1	7	
10.	Cape Kennedy to Cape Sable	E29,267	E11,300	255			122	134	4.2	11.		
	Total or annual average	743,760	287,166	10,180	359,350		12,886	14,204	17.3	49.	5 40	
			B. Gulf	of Mexic	:0							
12.	Cape Sable to Alligator Creek Peace River to New River Apalachicola River	E15,540 67,599 51,800	E6,000 26,100 20,000	71 770 756	27,200		33.6 363 354	37.0 400 390	2.2 5.4 6.8	6. 15. 19.	3 15	
14.	a. Apalachicola River at Chattahoo- chee, Fla Wetappo Creek to Perdido River	44,548 36,778	17,200 14,200		25,100	1967-69	157 907	$\begin{array}{r}173\\1.000\end{array}$	3.5 24.6			
15.	Mobile Bay a. Tombigbee River near Jackson,	114,737	44,300	1,818	64,200		6,259	6,900	54.6	156	109	
16.	Miss b. Alabama River at Claiborne, Ala_ Pascagoula River to Pearl River	49,728 56,980 51,023	19,200 22,000 19,700			1952-69	2,226 2,293 2,268	2,454 2,528 2,500	44.8 40.2 44.5	$115 \\ 127$	 81	
17.	a. Pearl River near Bogalusa, La Mississippi River a. Mississippi River at Red River	17,172 *3,268,580	6,630 *1,262,000			196768	799 296,165	881 326,468	46.5 90.6		510	
	Landing (see text) b. Atchafalaya River (see text)	2,923,851	1,128,900			1950-69 1950-69	$222,168 \\ 73,987$	244,900 81,557	76.0	217		

	Vermilion, Mermentau, and Calcasieu Rivers	22,533	8,700	306	10,800		816	900	36.3	103	8
9.	Sabine River to Rio Grande	875,938	338,200	1,407	49,700		36,400	40.124	41.6	119	82
	a. Brazos River at Richmond, Tex _	114,012	44,020			1966 - 69	15,893	17,519	139	398	
	b. Colorado River at Columbus, Tex_	106,371	41.070			1957-69	1,901	2,096	17.9	51	
	c. Nueces River near Three Rivers, Tex	40,404				1951-52	445	491	11.0	31.5	
	d. Arroyo Colorado at Mercedes, Tex.)	40,404	10,000		• •	1501-52	440	431	11.0	51.5	
	Rio Grande near Brownsville, Tex., North Floodway near Sebastian, Tex.	N.d.	N.d.	N.d.	N.d.	1966-69	1,229	1,355	N.d.	N.d.	
	Total or annual average	4,504,528	1,739,200	25,120	887,400		343,080	378,179	76.1	217.4	43
			C. Pacif	ic Ocean							
20.	Colorado River a. Colorado River at Miguel C.	634,550	245,000	1.8	65		9.6	10.6	0.01	5 0.04	16
	Rodriguez, Mexico	634,550	245,000	1.8	65	1965-69	9.6	10.6	0.01	.04	
21	Tia Juana River to Ventura River	31,572	12,190	14		1000-00	730	805	23.1	66	1,6
	a. San Juan Creek near San Juan	01,012	12,150	14	000		100	000	40.1	00	1,00
	Capistrano, Calif	275	106			1967-68	85.5	94.3	311	890	
	b. Santa Clara River at Saticoy,	210	100			1001 00	00.0	04.0	011	000	
	Calif	4,131	1,595			1968	68.7	75.7	16.6	47.5	
29	San Jose Creek to Pesadero Creek	28,801	11,120	68	2 400		3,320	3,660	115	329	1,5
	a. Salinas River near Spreckels,	20,001	11,120	00	2,400		0,020	0,000	110	020	1,0
		10,767	4.157			1966-68	531	586	49,3	141	
0.0	Calif			861	30,400		3,252	3,585	26.4	75.4	1
ю.	San Francisco Bay	*123,206	*45,570	801	30,400		0,202	0,000	20.4	10.4	T
	a. San Joaquin River near Vernalis, Calif	35,069	12 540			1956-69	350	386	10	28.5	
	b. Consumnes River at Michigan Bar,	30,009	10,040			1900-09	300	300	10	20.0	
		1,388	596			1069 60	143	158	103	295	
	Calif	1,000	000			1903-09	140	100	103	290	
	c. Sacramento River at Sacramento,	60,943	23.530			1957-69	2,464	2,719	40.4	116	
	Calif	00,540	40,000			1907-09	2,404	2,(19	40.4	110	
24.	Lagunitas Creek to Smith River	56,514	21,820	1,192	42,100		61,521	67,816	1.089	3,108	1,6
	a. Russian River near Guerneville,			1,101	,		01,021	01,010	1,000	0,100	1,0
	Calif	3,471	1,340			1958-69	4,135	4,559	1,191	3,402	
	b. Eel River at Scotia, Calif	8,063	3,113			1958-69	26,621	29,345	3,302	9,426	
	c. Mad River at Arcata. Calif	1,256	485			1957-69	2,441	2,691	1,944	5,549	
	d. Klamath River at Orleans, Calif _	22,015	8,500			1967-69	2,389	2,631	108	310	
	e. Trinity River near Hoopa, Calif ² _	7,420	2,865				4,987	5,497		1,919	
25.	Oregon coastal area	43,771	16,900		53,300		2,993	3,300	68.3		
	a. Siuslaw River near Mapleton, Oreg	1,523	588				104			195	
	b. Sixes River at Sixes. Oreg	300	116			1968-69	104	$\begin{array}{c}114\\220\end{array}$	68.3		
	c. Rouge River at Raygold, Oreg	5,317	2.053			1912	59.2	65.3		1,897	
26.	Columbia River	668,738	258,200			1912			11.1	31.8	
	a. Columbia River at Vancouver.	000,100	200,200	1,000	201,200		14,170	15,620	21.2	60.5	
	Wash	624,190	241,000			1964-69	0.704	10 007	18 8		
27.	Naselle River to Nooksack River	50,790	19,610		89 100		9,704	10,697	15.5		
	a. Chehalis River at Porter, Wash _	3.351	1,294		89,100		3,873	4,270	76.3	218	
	b. Skykomish River at Monroe, Wash	2,160	1,294				115	127	34.3		
	c. Snoqualmie River near Carna-	2,100	004			1967 - 69	244	269	113	323	
	tion, Wash	1,562	603			1000 00	0.00	000	140	401	
	d. Skagit River near Mt. Vernon,	1,002	003			1968-69	263	290	168	481	
		8,011	9 000			1010	000				
			a.093			1910	330	364	41.2	118	
	Wash					1010			71.4	110	

 1 Three dams between station and mouth of river (Williams and Reed, 1972). 3 Tributary to Klamath River.

15

TABLE 5.-Identification of river stations used to compute sediment data

[OWDC, U.S. Geological Survey, Office of Water Data Coordination. Agency collecting data: GS, U.S. Geological Survey; CE, U.S. Army Corps of Engineers; IBW, International Boundary and Water Commission]

S	tation No.					A
This report	Agency collecting data	OWDC	Station name	Latitude north	Longitude west	Agency collecting data
5a	01-463500	51178	Delaware River at Trenton, N. J	40°13'18''	074°46'38''	GS.
5b	01 - 570500	54044	Susquehanna River at Harrisburg, Pa	40°15'10''	076°52'27''	GS.
5c	01 - 638500	54253	Potomac River at Point of Rocks, Md	39°16'25''	077°32'35''	GS.
6a	02-083500	52159	Tar River at Tarboro, N.C	35°53'38''	077°32'00''	GS.
7a	02-131000	54435	Pee Dee River at Pee Dee, SC	34°12'15''	079°32'55''	GS.
8a	02-202500	67025	Ogeechee River near Eden, Ga	32°10'	081°25'	GS.
8b	02 - 175000	53536	Edisto River near Givhans, SC	33°01'40''	080°23′30′′	GS.
3 a	02-358000	53276	Apalachicola River at Chattahoochee, Fla	30°42'03''	084°51'33''	GS.
5a	02-470040	54582	Tombigbee River near Jackson, Ala	31°31′	087°56'	CE.
5b	02 - 429500		Alabama River at Claiborne, Ala	31°32'48''	087°30'45''	CE.
6a	02-489500	53935	Pearl River near Bogalusa, La	30°47'35''	089°49'15''	GS.
7a			Mississippi River at Baton Rouge, La	29°57'	090°08'	CE.
7a			Mississippi River at Red River Landing, La	31°00'	091°36'	CE.
17a	01100		Mississippi River at Tarbot Landing, La	31°00'30''	091°37'25''	CE.
17b	03045	54776	Atchafalaya River at Simmesport, La	30°58'57''	091°47'54''	CE.
17b	03720	68001	Wax Lake Outlet at Calumet, La	29°42'09''	091°22'07''	CE.
17b	03783	54758	Atchafalaya River at Morgan City, La	29°41'47''	091°12'39''	CE.
19a	08-114000	52812	Brazos River at Richmond, Tex	29°34'56''	095°45'27''	GS.
19b	08 - 161000		Colorado River at Columbus, Tex	29°42'20''	096°32'05''	GS.
19c	08-210000	63409	Nueces River at Three Rivers, Tex	28°26'10''	097°51'36''	GS.
19d	08-470300	52761	Arroyo Colorado at Mercedes, Tex	26°07'24''	097 • 54' 33''	ĞŠ.
19d	08-475000		Rio Grande near Brownsville, Tex	25 ° 52'35''	097°27'15''	GS.
19d	08-468500		North Floodway near Sebastian, Tex	26°18'54''	097°46'37''	GS.
20a			Colorado River at Miguel C. Rodriquez, Mexico	32°16'	115°01'	IBW.
21a	11-046500	61625	San Juan Creek near San Juan Capistrano, Calif	33°10'08''	113°37'27''	GS.
21b	11-113920		Santa Clara River at Saticoy, Calif	34°16'29''	119°08'11''	GS.
22a	11-152300	66196	Salinas River near Spreckels, Calif	36°33'14''	121°32'50''	GS.
23a	11-303500	69832	2 San Joaquin River near Vernalis, Calif	37°40'34''	121°15′51′′	
23b	11 - 335000	51533	Consumnes River at Michigan Bar, Calif		121°02'45''	GS.
23c	11 - 447500		Sacramento River at Sacramento, Calif	38°35'20''	121°30'15''	GS.
24a	11-467000	51632	Russian River near Guerneville, Calif	38°30'00''	122°56'05''	GS.
24b	11 - 477000		Eel River at Scotia, Calif		124 ° 05'55''	ĞŠ.
24c	11-481000		Mad River at Arcata. Calif		124°03'35''	
24d	11 - 523000		Klamath River at Orleans, Calif		123 • 32'00''	ĞŠ.
24e	11 - 530000		Trinity River at Hoopa, Calif	41°03'00''	123°40'15''	

25a 25b 25c	Ī·	4-327150 62967	Siuslaw River near Mapleton, Oreg Sixes Rixer at Sixes, Oreg Rouge River at Raygold, Oreg	44°03'45'' 42°49'05'' 42°26'15''	123°52'55'' 124°29'00'' 122°59'10''	GS. GS. GS.
26a	1	4–144700 54203	Columbia River at Vancouver, Wash	45°37'15''	122°40'20''	GS.
27a 27b 27c 27d	11 11	2–141100 2–149000	Chehalis River at Porter, Wash Skykomish River at Monroe, Wash Snoqualmie River near Carnation, Wash Skagit River near Mt. Vernon, Wash	47°39'55''	123°18'45'' 121°58'10'' 121°55'30'' 122°20'25''	GS. GS. GS. GS.